Science.gov

Sample records for ubiquitin-proteasome degradation pathway

  1. Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast

    ERIC Educational Resources Information Center

    Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

    2006-01-01

    This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

  2. Lipopolysaccharide Induces Degradation of Connexin43 in Rat Astrocytes via the Ubiquitin-Proteasome Proteolytic Pathway

    PubMed Central

    Liao, Chih-Kai; Jeng, Chung-Jiuan; Wang, Hwai-Shi; Wang, Shu-Huei; Wu, Jiahn-Chun

    2013-01-01

    The astrocytic syncytium plays a critical role in maintaining the homeostasis of the brain through the regulation of gap junction intercellular communication (GJIC). Changes to GJIC in response to inflammatory stimuli in astrocytes may have serious effects on the brain. We have previously shown that lipopolysaccharide (LPS) reduces connexin43 (Cx43) expression and GJIC in cultured rat astrocytes via a toll-like receptor 4-mediated signaling pathway. In the present study, treatment of astrocytes with LPS resulted in a significant increase in levels of the phosphorylated forms of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) -1, -2, and -3 for up to 18 h. An increase in nuclear transcription factor NF-κB levels was also observed after 8 h of LPS treatment and was sustained for up to 18 h. The LPS-induced decrease in Cx43 protein levels and inhibition of GJIC were blocked by the SAPK/JNK inhibitor SP600125, but not by the NF-κB inhibitor BAY11-7082. Following blockade of de novo protein synthesis by cycloheximide, LPS accelerated Cx43 degradation. Moreover, the LPS-induced downregulation of Cx43 was blocked following inhibition of 26S proteasome activity using the reversible proteasome inhibitor MG132 or the irreversible proteasome inhibitor lactacystin. Immunoprecipitation analyses revealed an increased association of Cx43 with both ubiquitin and E3 ubiquitin ligase Nedd4 in astrocytes after LPS stimulation for 6 h and this effect was prevented by SP600125. Taken together, these results suggest that LPS stimulation leads to downregulation of Cx43 expression and GJIC in rat astrocytes by activation of SAPK/JNK and the ubiquitin-proteasome proteolytic pathway. PMID:24236122

  3. Ubiquitin proteasome pathway-mediated degradation of proteins: effects due to site-specific substrate deamidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation, aggregation, and precipitation of proteins are etiologic for age-related diseases, particularly cataract, because the precipitates cloud the lens. Deamidation of crystallins is associated with protein precipitation, aging, and cataract. Among the roles of the ubiquitin proteasome p...

  4. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Subs...

  5. The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

    PubMed

    Ravid, T; Doolman, R; Avner, R; Harats, D; Roitelman, J

    2000-11-17

    3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), the key regulatory enzyme in the mevalonate (MVA) pathway, is rapidly degraded in mammalian cells supplemented with sterols or MVA. This accelerated turnover was blocked by N-acetyl-leucyl-leucyl-norleucinal (ALLN), MG-132, and lactacystin, and to a lesser extent by N-acetyl-leucyl-leucyl-methional (ALLM), indicating the involvement of the 26 S proteasome. Proteasome inhibition led to enhanced accumulation of high molecular weight polyubiquitin conjugates of HMGR and of HMGal, a chimera between the membrane domain of HMGR and beta-galactosidase. Importantly, increased amounts of polyubiquitinated HMGR and HMGal were observed upon treating cells with sterols or MVA. Cycloheximide inhibited the sterol-stimulated degradation of HMGR concomitantly with a marked reduction in polyubiquitination of the enzyme. Inhibition of squalene synthase with zaragozic acid blocked the MVA- but not sterol-stimulated ubiquitination and degradation of HMGR. Thus, similar to yeast, the ubiquitin-proteasome pathway is involved in the metabolically regulated turnover of mammalian HMGR. Yet, the data indicate divergence between yeast and mammals and suggest distinct roles for sterol and nonsterol metabolic signals in the regulated ubiquitination and degradation of mammalian HMGR. PMID:10964918

  6. APC/CCdh1 Targets Brain-Specific Kinase 2 (BRSK2) for Degradation via the Ubiquitin-Proteasome Pathway

    PubMed Central

    Zhou, Jun; Wang, Yingli; Luo, Ting; Gu, Xiuting; Chen, Fang; Yu, Long

    2012-01-01

    Studies of brain-specific kinase 2 (BRSK2), an AMP-activated protein kinase (AMPK)-related kinase, and its homologs suggest that they are multifunctional regulators of cell-cycle progression. BRSK2, which contains a ubiquitin-associated (UBA) domain, is polyubiquitinated in cells. However, the regulatory mechanisms and exact biological function of BRSK2 remain unclear. Herein, we show that BRSK2 co-localizes with the centrosomes during mitosis. We also demonstrate that BRSK2 protein levels fluctuate during the cell cycle, peaking during mitosis and declining in G1 phase. Furthermore, Cdh1, rather than Cdc20, promotes the degradation of BRSK2 in vivo. Consistent with this finding, knock-down of endogenous Cdh1 blocks BRSK2 degradation during the G1 phase. The conserved KEN box of BRSK2 is required for anaphase-promoting complex/cyclosome-Cdh1 (APC/CCdh1)-dependent degradation. Additionally, overexpression of either BRSK2(WT) or BRSK2(ΔKEN) increases the percentage of cells in G2/M. Thus, our results provide the first evidence that BRSK2 regulates cell-cycle progression controlled by APC/CCdh1 through the ubiquitin-proteasome pathway. PMID:23029325

  7. The Role of the Ubiquitin Proteasome Pathway in Keratin Intermediate Filament Protein Degradation

    PubMed Central

    Rogel, Micah R.; Jaitovich, Ariel; Ridge, Karen M.

    2010-01-01

    Lung injury, whether caused by hypoxic or mechanical stresses, elicits a variety of responses at the cellular level. Alveolar epithelial cells respond and adapt to such injurious stimuli by reorganizing the cellular cytoskeleton, mainly accomplished through modification of the intermediate filament (IF) network. The structural and mechanical integrity in epithelial cells is maintained through this adaptive reorganization response. Keratin, the predominant IF expressed in epithelial cells, displays highly dynamic properties in response to injury, sometimes in the form of degradation of the keratin IF network. Post-translational modification, such as phosphorylation, targets keratin proteins for degradation in these circumstances. As with other structural and regulatory proteins, turnover of keratin is regulated by the ubiquitin (Ub)-proteasome pathway. The degradation process begins with activation of Ub by the Ub-activating enzyme (E1), followed by the exchange of Ub to the Ub-conjugating enzyme (E2). E2 shuttles the Ub molecule to the substrate-specific Ub ligase (E3), which then delivers the Ub to the substrate protein, thereby targeting it for degradation. In some cases of injury and IF-related disease, aggresomes form in epithelial cells. The mechanisms that regulate aggresome formation are currently unknown, although proteasome overload may play a role. Therefore, a more complete understanding of keratin degradation—causes, mechanisms, and consequences—will allow for a greater understanding of epithelial cell biology and lung pathology alike. PMID:20160151

  8. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J

    2016-01-01

    Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression. PMID:26819641

  9. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  10. Is insulin signaling molecules misguided in diabetes for ubiquitin-proteasome mediated degradation?

    PubMed

    Balasubramanyam, Muthuswamy; Sampathkumar, Rangasamy; Mohan, Viswanathan

    2005-07-01

    Recent mining of the human and mouse genomes, use of yeast genetics, and detailed analyses of several biochemical pathways, have resulted in the identification of many new roles for ubiquitin-proteasome mediated degradation of proteins. In the context of last year's award of Noble Prize (Chemistry) work, the ubiquitin and ubiquitin-like modifications are increasingly recognized as key regulatory events in health and disease. Although the ATP-dependent ubiquitin-proteasome system has evolved as premier cellular proteolytic machinery, dysregulation of this system by several different mechanisms leads to inappropriate degradation of specific proteins and pathological consequences. While aberrations in the ubiquitin-proteasome pathway have been implicated in certain malignancies and neurodegenerative disorders, recent studies indicate a role for this system in the pathogenesis of diabetes and its complications. Inappropriate degradation of insulin signaling molecules such as insulin receptor substrates (IRS-1 and IRS-2) has been demonstrated in experimental diabetes, mediated in part through the up-regulation of suppressors of cytokine signaling (SOCS). It appears that altered ubiquitin-proteasome system might be one of the molecular mechanisms of insulin resistance in many pathological situations. Drugs that modulate the SOCS action and/or proteasomal degradation of proteins could become novel agents for the treatment of insulin resistance and Type 2 diabetes. PMID:16335791

  11. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications

    PubMed Central

    Huang, Qian; Figueiredo-Pereira, Maria E.

    2010-01-01

    The ubiquitin/proteasome pathway is the major proteolytic quality control system in cells. In this review we discuss the impact of a deregulation of this pathway on neuronal function and its causal relationship to the intracellular deposition of ubiquitin protein conjugates in pathological inclusion bodies in all the major chronic neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and Huntington’s diseases as well as amyotrophic lateral sclerosis. We describe the intricate nature of the ubiquitin/proteasome pathway and discuss the paradox of protein aggregation, i.e. its potential toxic/protective effect in neurodegeneration. The relations between some of the dysfunctional components of the pathway and neurodegeneration are presented. We highlight possible ubiquitin/proteasome pathway-targeting therapeutic approaches, such as activating the proteasome, enhancing ubiquitination and promoting SUMOylation that might be important to slow/treat the progression of neurodegeneration. Finally, a model time line is presented for neurodegeneration starting at the initial injurious events up to protein aggregation and cell death, with potential time points for therapeutic intervention. PMID:20131003

  12. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  13. Pristimerin Induces Apoptosis in Prostate Cancer Cells by Down-regulating Bcl-2 through ROS-dependent Ubiquitin-proteasomal Degradation Pathway

    PubMed Central

    Liu, Yong Bo; Gao, Xiaohua; Deeb, Dorrah; Arbab, Ali S; Gautam, Subhash C

    2014-01-01

    Pristimerin is a quinonemethide triterpenoid with the potential of a promising anticancer agent. Pristimerin (PM) has shown anticancer activity against a range of cancer cell lines, but its activity for prostate cancer has not been adequately investigated. In the present study we have examined the underlying mechanisms of the apoptotic response of the hormone-sensitive (LNCaP) and hormone-refractory (PC-3) prostate cancer cell lines to PM. Treatment with PM induced apoptosis in both cell lines as characterized by increased annexin V-binding and cleavage of PARP-1 and procaspases-3 and -9. It also induced mitochondrial depolarization, cytochrome c release from mitochondria and generation of reactive oxygen species (ROS). Response to PM is regulated by Bcl-2 since it down-regulated Bcl-2 expression and overexpression of Bcl-2 rendered prostate cancer cells resistant to PM. ROS plays a role in down-regulation of Bcl-2, since treatment with PM in the presence of various ROS modulators, e.g., n-acetylcysteine (NAC), a general purpose antioxidant; diphenylene iodonium (DPI), a NADPH inhibitor; rotenone (ROT), a mitochondrial electron transport chain interrupter rotenone or MnTBAP, a O2 scavenger, attenuated the down-regulation of Bcl-2. Furthermore, ROS is also involved in the ubiquitination and proteasomal degradation of Bcl-2 as both of these events were blocked by O 2− scavenger MnTBAP. Thus, pristimerin induces apoptosis in prostate cancer cells predominately through the mitochondrial apoptotic pathway by inhibiting antiapoptic Bcl-2 through a ROS-dependent ubiquitin-proteasomal degradation pathway. PMID:24877026

  14. Targeting the ubiquitin proteasome pathway for the treatment of septic shock in patients

    PubMed Central

    2009-01-01

    Endotoxic shock is a serious systemic inflammatory response to an external biological stressor. The responsiveness of NF-κB is built upon rapid protein modification and degradation involving the ubiquitin proteasome pathway. Using transgenic mice, we have obtained in vivo evidence that interference with this pathway can alleviate the symptoms of toxic shock. We posit that administration of proteasome inhibitors may enhance the survival of patients with septic shock. PMID:19691815

  15. Inhibition of PCSK9 Transcription by Berberine Involves Down-regulation of Hepatic HNF1α Protein Expression through the Ubiquitin-Proteasome Degradation Pathway*

    PubMed Central

    Dong, Bin; Li, Hai; Singh, Amar Bahadur; Cao, Aiqin; Liu, Jingwen

    2015-01-01

    Our previous in vitro studies have identified hepatocyte nuclear factor 1α (HNF1α) as an obligated trans-activator for PCSK9 gene expression and demonstrated its functional involvement in the suppression of PCSK9 expression by berberine (BBR), a natural cholesterol-lowering compound. In this study, we investigated the mechanism underlying the inhibitory effect of BBR on HNF1α-mediated PCSK9 transcription. Administration of BBR to hyperlipidemic mice and hamsters lowered circulating PCSK9 concentrations and hepatic PCSK9 mRNA levels without affecting the gene expression of HNF1α. However, hepatic HNF1α protein levels were markedly reduced in BBR-treated animals as compared with the control. Using HepG2 cells as a model system, we obtained evidence that BBR treatment let to accelerated degradation of HNF1α protein. By applying inhibitors to selectively block the ubiquitin proteasome system (UPS) and autophagy-lysosomal pathway, we show that HNF1α protein content in HepG2 cells was not affected by bafilomycin A1 treatment, but it was dose-dependently increased by UPS inhibitors bortezomib and MG132. Bortezomib treatment elevated HNF1α and PCSK9 cellular levels with concomitant reductions of LDL receptor protein. Moreover, HNF1α protein displayed a multiubiquitination ladder pattern in cells treated with BBR or overexpressing ubiquitin. By expressing GFP-HNF1α fusion protein in cells, we observed that blocking UPS resulted in accumulation of GFP-HNF1α in cytoplasm. Importantly, we show that the BBR reducing effects on HNF1α protein and PCSK9 gene transcription can be eradicated by proteasome inhibitors. Altogether, our studies using BBR as a probe uncovered a new aspect of PCSK9 regulation by ubiquitin-induced proteasomal degradation of HNF1α. PMID:25540198

  16. Degradation of cAMP-Responsive Element–Binding Protein by the Ubiquitin-Proteasome Pathway Contributes to Glucotoxicity in β-Cells and Human Pancreatic Islets

    PubMed Central

    Costes, Safia; Vandewalle, Brigitte; Tourrel-Cuzin, Cécile; Broca, Christophe; Linck, Nathalie; Bertrand, Gyslaine; Kerr-Conte, Julie; Portha, Bernard; Pattou, François; Bockaert, Joel; Dalle, Stéphane

    2009-01-01

    OBJECTIVE In type 2 diabetes, chronic hyperglycemia is detrimental to β-cells, causing apoptosis and impaired insulin secretion. The transcription factor cAMP-responsive element–binding protein (CREB) is crucial for β-cell survival and function. We investigated whether prolonged exposure of β-cells to high glucose affects the functional integrity of CREB. RESEARCH DESIGN AND METHODS INS-1E cells and rat and human islets were used. Gene expression was analyzed by RT-PCR and Western blotting. Apoptosis was detected by cleaved caspase-3 emergence, DNA fragmentation, and electron microscopy. RESULTS Chronic exposure of INS-1E cells and rat and human islets to high glucose resulted in decreased CREB protein expression, phosphorylation, and transcriptional activity associated with apoptosis and impaired β-cell function. High-glucose treatment increased CREB polyubiquitination, while treatment of INS-1E cells with the proteasome inhibitor MG-132 prevented the decrease in CREB content. The emergence of apoptosis in INS-1E cells with decreased CREB protein expression knocked down by small interfering RNA suggested that loss of CREB protein content induced by high glucose contributes to β-cell apoptosis. Loading INS-1E cells or human islets with a cell-permeable peptide mimicking the proteasomal targeting sequence of CREB blocked CREB degradation and protected INS-1E cells and human islets from apoptosis induced by high glucose. The insulin secretion in response to glucose and the insulin content were preserved in human islets exposed to high glucose and loaded with the peptide. CONCLUSIONS These studies demonstrate that the CREB degradation by the ubiquitin-proteasome pathway contributes to β-cell dysfunction and death upon glucotoxicity and provide new insight into the cellular mechanisms of glucotoxicity. PMID:19223597

  17. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?

    NASA Technical Reports Server (NTRS)

    Jagoe, R. T.; Goldberg, A. L.

    2001-01-01

    Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.

  18. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling

    PubMed Central

    Wang, Feng; Deng, Xing Wang

    2011-01-01

    The ubiquitin-proteasome system (UPS) in plants, like in other eukaryotes, targets numerous intracellular regulators and thus modulates almost every aspect of growth and development. The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome, which represents the major selective protein degradation pathway conserved among eukaryotes. In this review, we will discuss the molecular composition, regulation and function of plant UPS, with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth. PMID:21788985

  19. Ubiquitin-proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells.

    PubMed

    Jaitovich, Ariel; Mehta, Semil; Na, Ni; Ciechanover, Aaron; Goldman, Robert D; Ridge, Karen M

    2008-09-12

    We previously reported that shear stress induces phosphorylation and disassembly of keratin intermediate filaments (IFs). Shear stress also induces a time- and strain-dependent degradation of keratin IFs, and the current study examines the mechanisms involved in degradation of keratin proteins in human A549 cells exposed to 0-24 h of shear stress (7.5-30 dynes/cm(2)). Ubiquitin was found to be covalently associated with keratin proteins immunoprecipitated from shear-stressed cells, and pretreatment with the proteasomal inhibitor MG132 prevented the degradation of the keratin IF network. Importantly, phosphorylation of K8 Ser-73 is required for the shear stress-mediated ubiquitination, disassembly, and degradation of the keratin IF network. Immunofluorescence microscopy revealed that shear stress caused the thin array of keratin fibrils observed in control cells to be reorganized into a perinuclear aggregate, known as an aggresome, and that ubiquitin was also associated with this structure. Finally, the E2 enzymes, UbcH5b, -c, and Ubc3, but not E2-25K are required for the shear stress-mediated ubiquitin-proteasomal degradation of keratin proteins. These data suggest that shear stress promotes the disassembly and degradation of the keratin IF network via phosphorylation and the ubiquitin-proteasome pathway. PMID:18617517

  20. Protein Degradation by Ubiquitin-Proteasome System in Formation and Labilization of Contextual Conditioning Memory

    ERIC Educational Resources Information Center

    Fustiñana, María Sol; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo

    2014-01-01

    The ubiquitin-proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this…

  1. Ubiquitin-proteasome pathway function is required for lens cell proliferation and differentiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin proteasome pathway is involved in the regulation of many cellular processes, such as cell cycle control, signal transduction, transcription, and removal of obsolete proteins. The objective of this work was to investigate roles for this proteolytic pathway in controlling the differentia...

  2. Impairment of the ubiquitin-proteasome pathway in RPE alters the expression of inflammation related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related f...

  3. Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system

    PubMed Central

    Guharoy, Mainak; Bhowmick, Pallab; Sallam, Mohamed; Tompa, Peter

    2016-01-01

    Specific signals (degrons) regulate protein turnover mediated by the ubiquitin-proteasome system. Here we systematically analyse known degrons and propose a tripartite model comprising the following: (1) a primary degron (peptide motif) that specifies substrate recognition by cognate E3 ubiquitin ligases, (2) secondary site(s) comprising a single or multiple neighbouring ubiquitinated lysine(s) and (3) a structurally disordered segment that initiates substrate unfolding at the 26S proteasome. Primary degron sequences are conserved among orthologues and occur in structurally disordered regions that undergo E3-induced folding-on-binding. Posttranslational modifications can switch primary degrons into E3-binding-competent states, thereby integrating degradation with signalling pathways. Degradation-linked lysines tend to be located within disordered segments that also initiate substrate degradation by effective proteasomal engagement. Many characterized mutations and alternative isoforms with abrogated degron components are implicated in disease. These effects result from increased protein stability and interactome rewiring. The distributed nature of degrons ensures regulation, specificity and combinatorial control of degradation. PMID:26732515

  4. Regulation of the retinoblastoma-E2F pathway by the ubiquitin-proteasome system.

    PubMed

    Sengupta, Satyaki; Henry, R William

    2015-10-01

    The retinoblastoma tumor suppressor (RB) and its related family members p107 and p130 regulate cell proliferation through the transcriptional repression of genes involved in cellular G1 to S phase transition. However, RB proteins are functionally versatile, and numerous genetic and biochemical studies point to expansive roles in cellular growth control, pluripotency, and apoptotic response. For the vast majority of genes, RB family members target the E2F family of transcriptional activators as an integral component of its gene regulatory mechanism. These interactions are regulated via reversible phosphorylation by Cyclin/Cyclin-dependent kinase (Cdk) complexes, a major molecular mechanism that regulates transcriptional output of RB/E2F target genes. Recent studies indicate an additional level of regulation involving the ubiquitin-proteasome system that renders pervasive control over each component of the RB pathway. Disruption of the genetic circuitry for proteasome-mediated targeting of the RB pathway has serious consequences on development and cellular transformation, and is associated with several forms of human cancer. In this review, we discuss the role of the ubiquitin-proteasome system in proteolytic control of RB-E2F pathway components, and recent data that points to surprising non-proteolytic roles for the ubiquitin-proteasome system in novel transcriptional regulatory mechanisms. PMID:26319102

  5. An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes

    PubMed Central

    Ristic, Gorica; Tsou, Wei-Ling; Todi, Sokol V.

    2014-01-01

    The Ubiquitin-Proteasome Pathway (UPP), which is critical for normal function in the nervous system and is implicated in various neurological diseases, requires the small modifier protein ubiquitin to accomplish its duty of selectively degrading short-lived, abnormal or misfolded proteins. Over the past decade, a large class of proteases collectively known as deubiquitinating enzymes (DUBs) has increasingly gained attention in all manners related to ubiquitin. By cleaving ubiquitin from another protein, DUBs ensure that the UPP functions properly. DUBs accomplish this task by processing newly translated ubiquitin so that it can be used for conjugation to substrate proteins, by regulating the “where, when, and why” of UPP substrate ubiquitination and subsequent degradation, and by recycling ubiquitin for re-use by the UPP. Because of the reliance of the UPP on DUB activities, it is not surprising that these proteases play important roles in the normal activities of the nervous system and in neurodegenerative diseases. In this review, we summarize recent advances in understanding the functions of DUBs in the nervous system. We focus on their role in the UPP, and make the argument that understanding the UPP from the perspective of DUBs can yield new insight into diseases that result from anomalous intra-cellular processes or inter-cellular networks. Lastly, we discuss the relevance of DUBs as therapeutic options for disorders of the nervous system. PMID:25191222

  6. Ubiquitin-proteasomal degradation of antiapoptotic survivin facilitates induction of apoptosis in prostate cancer cells by pristimerin

    PubMed Central

    LIU, YONG BO; GAO, XIAOHUA; DEEB, DORAH; BRIGOLIN, CHRIS; ZHANG, YIGUAN; SHAW, JIAJIU; PINDOLIA, KIRIT; GAUTAM, SUBHASH C.

    2014-01-01

    Pristimerin (PM), a quinonemethide triterpenoid, is a promising anticancer agent with potent antiproliferative and apoptosis-inducing activities against cancer cell lines. However, the anticancer activity and mechanisms of PM in prostate cancer cells have not been adequately investigated. Here we report that the degradation of survivin plays an important role in the antiproliferative and proapoptotic effects of PM in carcinoma of the prostate (CaP) cell lines. Treatment with PM inhibited proliferation and induced apoptosis in LNCaP and PC-3 cells as characterized by the loss of cell viability and an increase in Annexin V-binding and cleavage of PARP-1, respectively. The antiproliferative and apoptosis-inducing effects of PM were associated with the inhibition of cell cycle regulatory proteins, antiapoptotic survivin and members of the Bcl-2 family. Data showed that response to PM is regulated by survivin since overexpression of survivin rendered CaP cells resistant to PM. Furthermore, downregulation of survivin by PM was mediated through the ubiquitin-proteasomal degradation. Together, these data demonstrate that pristimerin inhibits proliferation and induces apoptosis in CaP cells by abolishing survivin through the ubiquitin-proteasome pathway. PMID:25175770

  7. Limiting the power of p53 through the ubiquitin proteasome pathway

    PubMed Central

    Pant, Vinod

    2014-01-01

    The ubiquitin proteasome pathway is critical in restraining the activities of the p53 tumor suppressor. Numerous E3 and E4 ligases regulate p53 levels. Additionally, deubquitinating enzymes that modify p53 directly or indirectly also impact p53 function. When alterations of these proteins result in increased p53 activity, cells arrest in the cell cycle, senesce, or apoptose. On the other hand, alterations that result in decreased p53 levels yield tumor-prone phenotypes. This review focuses on the physiological relevance of these important regulators of p53 and their therapeutic implications. PMID:25128494

  8. Targeting Tumor Ubiquitin-Proteasome Pathway with Polyphenols for Chemosensitization

    PubMed Central

    Shen, Min; Chan, Tak Hang; Dou, Q. Ping

    2012-01-01

    The development of tumor drug resistance is one of the biggest obstacles on the way to achieve a favorable outcome of chemotherapy. Among various strategies that have been explored to overcome drug resistance, the combination of current chemotherapy with plant polyphenols as a chemosensitizer has emerged as a promising one. Plant polyphenols are a group of phytochemicals characterized by the presence of more than one phenolic group. Mechanistic studies suggest that polyphenols have multiple intracellular targets, one of which is the proteasome complex. The proteasome is a proteolytic enzyme complex responsible for intracellular protein degradation and has been shown to play an important role in tumor growth and the development of drug resistance. Therefore, proteasome inhibition by plant polyphenols could be one of the mechanisms contributing to their chemosensitizing effect. Plant polyphenols that have been identified to possess proteasome-inhibitory activity include (−)-epigallocatechins-3-gallate (EGCG), genistein, luteolin, apigenin, chrysin, quercetin, curcumin and tannic acid. These polyphenols have exhibited an appreciable effect on overcoming resistance to various chemotherapeutic drugs as well as multidrug resistance in a broad spectrum of tumors ranging from carcinoma and sarcoma to hematological malignances. The in vitro and in vivo studies on polyphenols with proteasome-inhibitory activity have built a solid foundation to support the idea that they could serve as a chemosensitizer for the treatment of cancer. In-depth mechanistic studies and identification of optimal regimen are needed in order to eventually translate this laboratory concept into clinical trials to actually benefit current chemotherapy. PMID:22292765

  9. Impairment of the Ubiquitin-Proteasome Pathway in RPE Alters the Expression of Inflammation Related Genes

    PubMed Central

    Liu, Zhenzhen; Qin, Tingyu; Zhou, Jilin; Taylor, Allen; Sparrow, Janet R.

    2016-01-01

    The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related factors. The UPP could be impaired by oxidative stress or chemical inhibition. Impairment of the UPP in RPE increased the expression of several inflammatory cytokines, such as IL-6 and IL-8. However, the expression of monocyte chemoattractant protein-1 (MCP-1) and complement factor H (CFH) and was reduced upon impairment of the UPP. These data suggest that impairment of the UPP in RPE may be one of the causes of retinal inflammation and abnormal functions of monocyte and the complement system during the pathogenesis of age-related macular degeneration. PMID:24664704

  10. Oxidative stress, NF-κB and the ubiquitin proteasomal pathway in the pathology of calpainopathy.

    PubMed

    Rajakumar, Dhanarajan; Alexander, Mathew; Oommen, Anna

    2013-10-01

    The neuromuscular disorder, calpainopathy (LGMD 2A), is a major muscular dystrophy classified under limb girdle muscular dystrophies. Genetic mutations of the enzyme calpain 3 cause LGMD 2A. Calpainopathy is phenotypically observed as progressive muscle wasting and weakness. Pathomechanisms of muscle wasting of calpainopathy remain poorly understood. Oxidative stress, NF-κB and the ubiquitin proteasomal pathway underlie the pathology of several muscle wasting conditions but their role in calpainopathic dystrophy is not known. Oxidative and nitrosative stress, the source of reactive oxygen species, NF-κB signaling and protein ubiquitinylation were studied in 15 calpainopathic and 8 healthy control human muscle biopsies. Oxidative stress and NF-κB/IKK β signaling were increased in calpainopathic muscle and may contribute to increased protein ubiquitinylation and muscle protein loss. Preventing oxidative stress or inhibition of NF-κB signaling could be considered for treatment of LGMD 2A. PMID:23846623

  11. Ribosomal proteins produced in excess are degraded by the ubiquitin-proteasome system.

    PubMed

    Sung, Min-Kyung; Reitsma, Justin M; Sweredoski, Michael J; Hess, Sonja; Deshaies, Raymond J

    2016-09-01

    Ribosome assembly is an essential process that consumes prodigious quantities of cellular resources. Ribosomal proteins cannot be overproduced in Saccharomyces cerevisiae because the excess proteins are rapidly degraded. However, the responsible quality control (QC) mechanisms remain poorly characterized. Here we demonstrate that overexpression of multiple proteins of the small and large yeast ribosomal subunits is suppressed. Rpl26 overexpressed from a plasmid can be detected in the nucleolus and nucleoplasm, but it largely fails to assemble into ribosomes and is rapidly degraded. However, if the endogenous RPL26 loci are deleted, plasmid-encoded Rpl26 assembles into ribosomes and localizes to the cytosol. Chemical and genetic perturbation studies indicate that overexpressed ribosomal proteins are degraded by the ubiquitin-proteasome system and not by autophagy. Inhibition of the proteasome led to accumulation of multiple endogenous ribosomal proteins in insoluble aggregates, consistent with the operation of this QC mechanism in the absence of ribosomal protein overexpression. Our studies reveal that ribosomal proteins that fail to assemble into ribosomes are rapidly distinguished from their assembled counterparts and ubiquitinated and degraded within the nuclear compartment. PMID:27385339

  12. Degradation Signals for Ubiquitin-Proteasome Dependent Cytosolic Protein Quality Control (CytoQC) in Yeast.

    PubMed

    Maurer, Matthew J; Spear, Eric D; Yu, Allen T; Lee, Evan J; Shahzad, Saba; Michaelis, Susan

    2016-01-01

    Cellular protein quality control (PQC) systems selectively target misfolded or otherwise aberrant proteins for degradation by the ubiquitin-proteasome system (UPS). How cells discern abnormal from normal proteins remains incompletely understood, but involves in part the recognition between ubiquitin E3 ligases and degradation signals (degrons) that are exposed in misfolded proteins. PQC is compartmentalized in the cell, and a great deal has been learned in recent years about ER-associated degradation (ERAD) and nuclear quality control. In contrast, a comprehensive view of cytosolic quality control (CytoQC) has yet to emerge, and will benefit from the development of a well-defined set of model substrates. In this study, we generated an isogenic "degron library" in Saccharomyces cerevisiae consisting of short sequences appended to the C-terminus of a reporter protein, Ura3 About half of these degron-containing proteins are substrates of the integral membrane E3 ligase Doa10, which also plays a pivotal role in ERAD and some nuclear protein degradation. Notably, some of our degron fusion proteins exhibit dependence on the E3 ligase Ltn1/Rkr1 for degradation, apparently by a mechanism distinct from its known role in ribosomal quality control of translationally paused proteins. Ubr1 and San1, E3 ligases involved in the recognition of some misfolded CytoQC substrates, are largely dispensable for the degradation of our degron-containing proteins. Interestingly, the Hsp70/Hsp40 chaperone/cochaperones Ssa1,2 and Ydj1, are required for the degradation of all constructs tested. Taken together, the comprehensive degron library presented here provides an important resource of isogenic substrates for testing candidate PQC components and identifying new ones. PMID:27172186

  13. Degradation Signals for Ubiquitin-Proteasome Dependent Cytosolic Protein Quality Control (CytoQC) in Yeast

    PubMed Central

    Maurer, Matthew J.; Spear, Eric D.; Yu, Allen T.; Lee, Evan J.; Shahzad, Saba; Michaelis, Susan

    2016-01-01

    Cellular protein quality control (PQC) systems selectively target misfolded or otherwise aberrant proteins for degradation by the ubiquitin-proteasome system (UPS). How cells discern abnormal from normal proteins remains incompletely understood, but involves in part the recognition between ubiquitin E3 ligases and degradation signals (degrons) that are exposed in misfolded proteins. PQC is compartmentalized in the cell, and a great deal has been learned in recent years about ER-associated degradation (ERAD) and nuclear quality control. In contrast, a comprehensive view of cytosolic quality control (CytoQC) has yet to emerge, and will benefit from the development of a well-defined set of model substrates. In this study, we generated an isogenic “degron library” in Saccharomyces cerevisiae consisting of short sequences appended to the C-terminus of a reporter protein, Ura3. About half of these degron-containing proteins are substrates of the integral membrane E3 ligase Doa10, which also plays a pivotal role in ERAD and some nuclear protein degradation. Notably, some of our degron fusion proteins exhibit dependence on the E3 ligase Ltn1/Rkr1 for degradation, apparently by a mechanism distinct from its known role in ribosomal quality control of translationally paused proteins. Ubr1 and San1, E3 ligases involved in the recognition of some misfolded CytoQC substrates, are largely dispensable for the degradation of our degron-containing proteins. Interestingly, the Hsp70/Hsp40 chaperone/cochaperones Ssa1,2 and Ydj1, are required for the degradation of all constructs tested. Taken together, the comprehensive degron library presented here provides an important resource of isogenic substrates for testing candidate PQC components and identifying new ones. PMID:27172186

  14. Formation of distinct inclusion bodies by inhibition of ubiquitin-proteasome and autophagy-lysosome pathways

    SciTech Connect

    Lee, Junho; Yang, Kyu-Hwan; Joe, Cheol O.; Kang, Seok-Seong

    2011-01-14

    Research highlights: {yields} Distinct inclusion bodies are developed by inhibition of UPP and ALP. {yields} The inclusion bodies differ in morphology, localization and formation process. {yields} The inclusion bodies are distinguishable by the localization of TSC2. {yields} Inhibition of both UPP and ALP simultaneously induces those inclusion bodies. -- Abstract: Accumulation of misfolded proteins is caused by the impairment of protein quality control systems, such as ubiquitin-proteasome pathway (UPP) and autophagy-lysosome pathway (ALP). In this study, the formation of inclusion bodies was examined after the blockade of UPP and/or ALP in A549 cells. UPP inhibition induced a single and large inclusion body localized in microtubule-organizing center. Interestingly, however, ALP inhibition generated dispersed small inclusion bodies in the cytoplasm. Tuberous sclerosis complex 2 was selectively accumulated in the inclusion bodies of UPP-inhibited cells, but not those of ALP-inhibited cells. Blockade of transcription and translation entirely inhibited the formation of inclusion body induced by UPP inhibition, but partially by ALP inhibition. Moreover, the simultaneous inhibition of two protein catabolic pathways independently developed two distinct inclusion bodies within a single cell. These findings clearly demonstrated that dysfunction of each catabolic pathway induced formation and accumulation of unique inclusion bodies on the basis of morphology, localization and formation process in A549 cells.

  15. Production of Infectious Dengue Virus in Aedes aegypti Is Dependent on the Ubiquitin Proteasome Pathway.

    PubMed

    Choy, Milly M; Sessions, October M; Gubler, Duane J; Ooi, Eng Eong

    2015-11-01

    Dengue virus (DENV) relies on host factors to complete its life cycle in its mosquito host for subsequent transmission to humans. DENV first establishes infection in the midgut of Aedes aegypti and spreads to various mosquito organs for lifelong infection. Curiously, studies have shown that infectious DENV titers peak and decrease thereafter in the midgut despite relatively stable viral genome levels. However, the mechanisms that regulate this decoupling of infectious virion production from viral RNA replication have never been determined. We show here that the ubiquitin proteasome pathway (UPP) plays an important role in regulating infectious DENV production. Using RNA interference studies, we show in vivo that knockdown of selected UPP components reduced infectious virus production without altering viral RNA replication in the midgut. Furthermore, this decoupling effect could also be observed after RNAi knockdown in the head/thorax of the mosquito, which otherwise showed direct correlation between infectious DENV titer and viral RNA levels. The dependence on the UPP for successful DENV production is further reinforced by the observed up-regulation of key UPP molecules upon DENV infection that overcome the relatively low expression of these genes after a blood meal. Collectively, our findings indicate an important role for the UPP in regulating DENV production in the mosquito vector. PMID:26566123

  16. Activation of the Ubiquitin Proteasome Pathway by Silk Fibroin Modified Chitosan Nanoparticles in Hepatic Cancer Cells

    PubMed Central

    Yang, Ming-Hui; Chung, Tze-Wen; Lu, Yi-Shan; Chen, Yi-Ling; Tsai, Wan-Chi; Jong, Shiang-Bin; Yuan, Shyng-Shiou; Liao, Pao-Chi; Lin, Po-Chiao; Tyan, Yu-Chang

    2015-01-01

    Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation. PMID:25588218

  17. Activation of the ubiquitin proteasome pathway by silk fibroin modified chitosan nanoparticles in hepatic cancer cells.

    PubMed

    Yang, Ming-Hui; Chung, Tze-Wen; Lu, Yi-Shan; Chen, Yi-Ling; Tsai, Wan-Chi; Jong, Shiang-Bin; Yuan, Shyng-Shiou; Liao, Pao-Chi; Lin, Po-Chiao; Tyan, Yu-Chang

    2015-01-01

    Silk fibroin (SF) is a protein with bulky hydrophobic domains and can be easily purified as sericin-free silk-based biomaterial. Silk fibroin modified chitosan nanoparticle (SF-CSNP), a biocompatible material, has been widely used as a potential drug delivery system. Our current investigation studied the bio-effects of the SF-CSNP uptake by liver cells. In this experiment, the characterizations of SF-CSNPs were measured by particle size analysis and protein assay. The average size of the SF-CSNP was 311.9 ± 10.7 nm, and the average zeta potential was +13.33 ± 0.3 mV. The SF coating on the SF-CSNP was 6.27 ± 0.17 μg/mL. Moreover, using proteomic approaches, several proteins involved in the ubiquitin proteasome pathway were identified by analysis of differential protein expressions of HepG2 cell uptake the SF-CSNP. Our experimental results have demonstrated that the SF-CSNP may be involved in liver cancer cell survival and proliferation. PMID:25588218

  18. Production of Infectious Dengue Virus in Aedes aegypti Is Dependent on the Ubiquitin Proteasome Pathway

    PubMed Central

    Choy, Milly M.; Sessions, October M.; Gubler, Duane J.; Ooi, Eng Eong

    2015-01-01

    Dengue virus (DENV) relies on host factors to complete its life cycle in its mosquito host for subsequent transmission to humans. DENV first establishes infection in the midgut of Aedes aegypti and spreads to various mosquito organs for lifelong infection. Curiously, studies have shown that infectious DENV titers peak and decrease thereafter in the midgut despite relatively stable viral genome levels. However, the mechanisms that regulate this decoupling of infectious virion production from viral RNA replication have never been determined. We show here that the ubiquitin proteasome pathway (UPP) plays an important role in regulating infectious DENV production. Using RNA interference studies, we show in vivo that knockdown of selected UPP components reduced infectious virus production without altering viral RNA replication in the midgut. Furthermore, this decoupling effect could also be observed after RNAi knockdown in the head/thorax of the mosquito, which otherwise showed direct correlation between infectious DENV titer and viral RNA levels. The dependence on the UPP for successful DENV production is further reinforced by the observed up-regulation of key UPP molecules upon DENV infection that overcome the relatively low expression of these genes after a blood meal. Collectively, our findings indicate an important role for the UPP in regulating DENV production in the mosquito vector. PMID:26566123

  19. Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory.

    PubMed

    Sol Fustiñana, María; de la Fuente, Verónica; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo

    2014-09-01

    The ubiquitin-proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates. PMID:25135196

  20. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running.

    PubMed

    Jamart, Cécile; Francaux, Marc; Millet, Guillaume Y; Deldicque, Louise; Frère, Delphine; Féasson, Léonard

    2012-05-01

    In this study, the coordinated activation of ubiquitin-proteasome pathway (UPP), autophagy-lysosomal pathway (ALP), and mitochondrial remodeling including mitophagy was assessed by measuring protein markers during ultra-endurance running exercise in human skeletal muscle. Eleven male, experienced ultra-endurance athletes ran for 24 h on a treadmill. Muscle biopsy samples were taken from the vastus lateralis muscle 2 h before starting and immediately after finishing exercise. Athletes ran 149.8 ± 16.3 km with an effective running time of 18 h 42 min ( ± 41 min). The phosphorylation state of Akt (-74 ± 5%; P < 0.001), FOXO3a (-49 ± 9%; P < 0.001), mTOR Ser2448 (-32 ± 14%; P = 0.028), and 4E-BP1 (-34 ± 7%; P < 0.001) was decreased, whereas AMPK phosphorylation state increased by 247 ± 170% (P = 0.042). Proteasome β2 subunit activity increased by 95 ± 44% (P = 0.028), whereas the activities associated with the β1 and β5 subunits remained unchanged. MuRF1 protein level increased by 55 ± 26% (P = 0.034), whereas MAFbx protein and ubiquitin-conjugated protein levels did not change. LC3bII increased by 554 ± 256% (P = 0.005), and the form of ATG12 conjugated to ATG5 increased by 36 ± 17% (P = 0.042). The mitochondrial fission marker phospho-DRP1 increased by 110 ± 47% (P = 0.003), whereas the fusion marker Mfn1 and the mitophagy markers Parkin and PINK1 remained unchanged. These results fit well with a coordinated regulation of ALP and UPP triggered by FOXO3 and AMPK during ultra-endurance exercise. PMID:22345427

  1. CDK11{sup p58} represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation

    SciTech Connect

    Chi, Yayun; Hong, Yi; Zong, Hongliang; Wang, Yanlin; Zou, Weiying; Yang, Junwu; Kong, Xiangfei; Yun, Xiaojing; Gu, Jianxin

    2009-08-28

    Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and regulates transcription of target genes. In this study, we identified CDK11{sup p58} as a novel protein involved in the regulation of VDR. CDK11{sup p58}, a member of the large family of p34cdc2-related kinases, is associated with cell cycle progression, tumorigenesis, and apoptotic signaling. Our study demonstrated that CDK11{sup p58} interacted with VDR and repressed VDR-dependent transcriptional activation. Furthermore, overexpression of CDK11{sup p58} decreased the stability of VDR through promoting its ubiquitin-proteasome-mediated degradation. Taken together, these results suggest that CDK11{sup p58} is involved in the negative regulation of VDR.

  2. Dopamine or biopterin deficiency potentiates phosphorylation at (40)Ser and ubiquitination of tyrosine hydroxylase to be degraded by the ubiquitin proteasome system.

    PubMed

    Kawahata, Ichiro; Ohtaku, Shiori; Tomioka, Yoshihisa; Ichinose, Hiroshi; Yamakuni, Tohru

    2015-09-11

    The protein amount of tyrosine hydroxylase (TH), that is the rate-limiting enzyme for the biosynthesis of dopamine (DA), should be tightly regulated, whereas its degradation pathway is largely unknown. In this study, we analyzed how the TH protein is chemically modified and subsequently degraded under deficiencies of DA and tetrahydrobiopterin (BH4), a cofactor for TH, by using pharmacological agents in PC12D cells and cultured mesencephalic neurons. When inhibition of DA- or BH4-synthesizing enzymes greatly reduced the DA contents in PC12D cells, a marked and persistent increase in phosphorylated TH at (40)Ser (p40-TH) was concomitantly observed. This phosphorylation was mediated by D2 dopamine auto-receptor and cAMP-dependent protein kinase (PKA). Our immunoprecipitation experiments showed that the increase in the p40-TH level was accompanied with its poly-ubiquitination. Treatment of PC12D cells with cycloheximide showed that total-TH protein level was reduced by the DA- or BH4-depletion. Notably, this reduction in the total-TH protein level was sensitive not only to a 26S proteasomal inhibitor, MG-132, but also to a PKA inhibitor, H-89. These data demonstrated that DA deficiency should induce compensatory activation of TH via phosphorylation at (40)Ser through D2-autoreceptor and PKA-mediated pathways, which in turn give a rise to its degradation through an ubiquitin-proteasome pathway, resulting in a negative spiral of DA production when DA deficiency persists. PMID:26225746

  3. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy

    PubMed Central

    Zhao, Jinghui; Zhai, Bo; Gygi, Steven P.; Goldberg, Alfred Lewis

    2015-01-01

    Growth factors and nutrients enhance protein synthesis and suppress overall protein degradation by activating the protein kinase mammalian target of rapamycin (mTOR). Conversely, nutrient or serum deprivation inhibits mTOR and stimulates protein breakdown by inducing autophagy, which provides the starved cells with amino acids for protein synthesis and energy production. However, it is unclear whether proteolysis by the ubiquitin proteasome system (UPS), which catalyzes most protein degradation in mammalian cells, also increases when mTOR activity decreases. Here we show that inhibiting mTOR with rapamycin or Torin1 rapidly increases the degradation of long-lived cell proteins, but not short-lived ones, by stimulating proteolysis by proteasomes, in addition to autophagy. This enhanced proteasomal degradation required protein ubiquitination, and within 30 min after mTOR inhibition, the cellular content of K48-linked ubiquitinated proteins increased without any change in proteasome content or activity. This rapid increase in UPS-mediated proteolysis continued for many hours and resulted primarily from inhibition of mTORC1 (not mTORC2), but did not require new protein synthesis or key mTOR targets: S6Ks, 4E-BPs, or Ulks. These findings do not support the recent report that mTORC1 inhibition reduces proteolysis by suppressing proteasome expression [Zhang Y, et al. (2014) Nature 513(7518):440–443]. Several growth-related proteins were identified that were ubiquitinated and degraded more rapidly after mTOR inhibition, including HMG-CoA synthase, whose enhanced degradation probably limits cholesterol biosynthesis upon insulin deficiency. Thus, mTOR inhibition coordinately activates the UPS and autophagy, which provide essential amino acids and, together with the enhanced ubiquitination of anabolic proteins, help slow growth. PMID:26669439

  4. Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation

    PubMed Central

    Geddes, J. M. H.; Caza, M.; Croll, D.; Stoynov, N.; Foster, L. J.

    2016-01-01

    ABSTRACT The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA) signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway in C. neoformans showed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis. PMID:26758180

  5. Multi-output Model with Box-Jenkins Operators of Quadratic Indices for Prediction of Malaria and Cancer Inhibitors Targeting Ubiquitin- Proteasome Pathway (UPP) Proteins.

    PubMed

    Casañola-Martin, Gerardo M; Le-Thi-Thu, Huong; Pérez-Giménez, Facundo; Marrero-Ponce, Yovani; Merino-Sanjuán, Matilde; Abad, Concepción; González-Díaz, Humberto

    2016-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets. PMID:26427384

  6. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration.

    PubMed

    Figueiredo-Pereira, Maria E; Rockwell, Patricia; Schmidt-Glenewinkel, Thomas; Serrano, Peter

    2014-01-01

    The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation) may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia, and prion diseases. Cyclooxygenases (COX-1 and COX-2), which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1) exert their actions, (2) potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3) disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4) contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury (TBI), and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects. PMID:25628533

  7. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration

    PubMed Central

    Figueiredo-Pereira, Maria E.; Rockwell, Patricia; Schmidt-Glenewinkel, Thomas; Serrano, Peter

    2015-01-01

    The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation) may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia, and prion diseases. Cyclooxygenases (COX-1 and COX-2), which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1) exert their actions, (2) potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3) disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4) contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury (TBI), and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects. PMID:25628533

  8. Replication stress induced site-specific phosphorylation targets WRN to the ubiquitin-proteasome pathway

    PubMed Central

    Su, Fengtao; Bhattacharya, Souparno; Abdisalaam, Salim; Mukherjee, Shibani; Yajima, Hirohiko; Yang, Yanyong; Mishra, Ritu; Srinivasan, Kalayarasan; Ghose, Subroto; Chen, David J.; Yannone, Steven M.; Asaithamby, Aroumougame

    2016-01-01

    Faithful and complete genome replication in human cells is essential for preventing the accumulation of cancer-promoting mutations. WRN, the protein defective in Werner syndrome, plays critical roles in preventing replication stress, chromosome instability, and tumorigenesis. Herein, we report that ATR-mediated WRN phosphorylation is needed for DNA replication and repair upon replication stress. A serine residue, S1141, in WRN is phosphorylated in vivo by the ATR kinase in response to replication stress. ATR-mediated WRN S1141 phosphorylation leads to ubiquitination of WRN, facilitating the reversible interaction of WRN with perturbed replication forks and subsequent degradation of WRN. The dynamic interaction between WRN and DNA is required for the suppression of new origin firing and Rad51-dependent double-stranded DNA break repair. Significantly, ATR-mediated WRN phosphorylation is critical for the suppression of chromosome breakage during replication stress. These findings reveal a unique role for WRN as a modulator of DNA repair, replication, and recombination, and link ATR-WRN signaling to the maintenance of genome stability. PMID:26695548

  9. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis.

    PubMed

    Abrigo, Johanna; Rivera, Juan Carlos; Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando; Ezquer, Marcelo; Cabello-Verrugio, Claudio

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  10. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    PubMed Central

    Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  11. Intracellular Protein Degradation: From a Vague Idea through the Lysosome and the Ubiquitin-Proteasome System and onto Human Diseases and Drug Targeting

    PubMed Central

    Ciechanover, Aaron

    2012-01-01

    Between the 1950s and 1980s, scientists were focusing mostly on how the genetic code was transcribed to RNA and translated to proteins, but how proteins were degraded had remained a neglected research area. With the discovery of the lysosome by Christian de Duve it was assumed that cellular proteins are degraded within this organelle. Yet, several independent lines of experimental evidence strongly suggested that intracellular proteolysis was largely non-lysosomal, but the mechanisms involved have remained obscure. The discovery of the ubiquitin-proteasome system resolved the enigma. We now recognize that degradation of intracellular proteins is involved in regulation of a broad array of cellular processes, such as cell cycle and division, regulation of transcription factors, and assurance of the cellular quality control. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of human disease, such as malignancies and neurodegenerative disorders, which led subsequently to an increasing effort to develop mechanism-based drugs. PMID:23908826

  12. High-Throughput siRNA Screening Applied to the Ubiquitin-Proteasome System.

    PubMed

    Poulsen, Esben G; Nielsen, Sofie V; Pietras, Elin J; Johansen, Jens V; Steinhauer, Cornelia; Hartmann-Petersen, Rasmus

    2016-01-01

    The ubiquitin-proteasome system is the major pathway for intracellular protein degradation in eukaryotic cells. Due to the large number of genes dedicated to the ubiquitin-proteasome system, mapping degradation pathways for short lived proteins is a daunting task, in particular in mammalian cells that are not genetically tractable as, for instance, a yeast model system. Here, we describe a method relying on high-throughput cellular imaging of cells transfected with a targeted siRNA library to screen for components involved in degradation of a protein of interest. This method is a rapid and cost-effective tool which is also highly applicable for other studies on gene function. PMID:27613054

  13. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality.

    PubMed

    Baumann, Cory W; Liu, Haiming M; Thompson, LaDora V

    2016-01-01

    It is well known that the ubiquitin-proteasome system is activated in response to skeletal muscle wasting and functions to degrade contractile proteins. The loss of these proteins inevitably reduces skeletal muscle size (i.e., quantity). However, it is currently unknown whether activation of this pathway also affects function by impairing the muscle's intrinsic ability to produce force (i.e., quality). Therefore, the purpose of this study was twofold, (1) document how the ubiquitin-proteasome system responds to denervation and (2) identify the physiological consequences of these changes. To induce soleus muscle atrophy, C57BL6 mice underwent tibial nerve transection of the left hindlimb for 7 or 14 days (n = 6-8 per group). At these time points, content of several proteins within the ubiquitin-proteasome system were determined via Western blot, while ex vivo whole muscle contractility was specifically analyzed at day 14. Denervation temporarily increased several key proteins within the ubiquitin-proteasome system, including the E3 ligase MuRF1 and the proteasome subunits 19S, α7 and β5. These changes were accompanied by reductions in absolute peak force and power, which were offset when expressed relative to physiological cross-sectional area. Contrary to peak force, absolute and relative forces at submaximal stimulation frequencies were significantly greater following 14 days of denervation. Taken together, these data represent two keys findings. First, activation of the ubiquitin-proteasome system is associated with reductions in skeletal muscle quantity rather than quality. Second, shortly after denervation, it appears the muscle remodels to compensate for the loss of neural activity via changes in Ca2+ handling. PMID:27513942

  14. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality

    PubMed Central

    Liu, Haiming M.; Thompson, LaDora V.

    2016-01-01

    It is well known that the ubiquitin-proteasome system is activated in response to skeletal muscle wasting and functions to degrade contractile proteins. The loss of these proteins inevitably reduces skeletal muscle size (i.e., quantity). However, it is currently unknown whether activation of this pathway also affects function by impairing the muscle’s intrinsic ability to produce force (i.e., quality). Therefore, the purpose of this study was twofold, (1) document how the ubiquitin-proteasome system responds to denervation and (2) identify the physiological consequences of these changes. To induce soleus muscle atrophy, C57BL6 mice underwent tibial nerve transection of the left hindlimb for 7 or 14 days (n = 6–8 per group). At these time points, content of several proteins within the ubiquitin-proteasome system were determined via Western blot, while ex vivo whole muscle contractility was specifically analyzed at day 14. Denervation temporarily increased several key proteins within the ubiquitin-proteasome system, including the E3 ligase MuRF1 and the proteasome subunits 19S, α7 and β5. These changes were accompanied by reductions in absolute peak force and power, which were offset when expressed relative to physiological cross-sectional area. Contrary to peak force, absolute and relative forces at submaximal stimulation frequencies were significantly greater following 14 days of denervation. Taken together, these data represent two keys findings. First, activation of the ubiquitin-proteasome system is associated with reductions in skeletal muscle quantity rather than quality. Second, shortly after denervation, it appears the muscle remodels to compensate for the loss of neural activity via changes in Ca2+ handling. PMID:27513942

  15. Ubiquitin proteasome system research in gastrointestinal cancer

    PubMed Central

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-01-01

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design. PMID:26909134

  16. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  17. Clomiphene citrate down-regulates estrogen receptor-α through the ubiquitin-proteasome pathway in a human endometrial cancer cell line.

    PubMed

    Amita, Mitsuyoshi; Takahashi, Toshifumi; Igarashi, Hideki; Nagase, Satoru

    2016-06-15

    We examined how clomiphene citrate (CC) reduces estrogen receptor-α (ERα) in a human endometrial cancer cell line. Ishikawa human endometrial cancer cells were treated with ERα ligands such as 17β-estradiol (E2), CC, and the pure antiestrogen, ICI 182,780 (ICI). Thereafter, the expression levels of ERα protein and mRNA were analyzed by western blot and real-time quantitative PCR, respectively, and those of ubiquitinated ERα were analyzed by immunoprecipitation of ERα followed by immunoblotting with an anti-ubiquitin antibody. The expression levels of ERα protein after treatment with E2, CC, and ICI were significantly decreased compared to pre-treatment levels without a corresponding decrease in ERα mRNA. These ligands significantly increased the levels of ubiquitinated ERα compared to vehicle treatment. Co-treatment with the proteasome inhibitor, MG132, abrogated the decrease in ERα levels caused by treatment with the ligands only. We demonstrated, for the first time, a CC-induced decrease in ERα mediated by the ubiquitin-proteasome pathway in human endometrial cancer cells. PMID:27033325

  18. Inhibition of the ubiquitin-proteasome pathway does not protect against ventilator-induced accelerated proteolysis or atrophy in the diaphragm

    PubMed Central

    Smuder, Ashley J.; Nelson, W. Bradley; Hudson, Matthew B.; Kavazis, Andreas N.; Powers, Scott K.

    2014-01-01

    Background Mechanical ventilation (MV) is a life-saving intervention in patients with acute respiratory failure. However, prolonged MV results in ventilator-induced diaphragm dysfunction (VIDD), a condition characterized by both diaphragm fiber atrophy and contractile dysfunction. Previous work has shown calpain, caspase-3 and the ubiquitin-proteasome pathway (UPP) are all activated in the diaphragm during prolonged MV. However, while it is established that both calpain and caspase-3 are important contributors to VIDD, the role that the UPP plays in VIDD remains unknown. These experiments tested the hypothesis that inhibition of the UPP will protect the diaphragm against VIDD. Methods We tested this prediction in an established animal model of MV using a highly specific UPP inhibitor, epoxomicin, to prevent MV-induced activation of the proteasome in the diaphragm (n = 8/group). Results Our results reveal that inhibition of the UPP did not prevent ventilator-induced diaphragm muscle fiber atrophy and contractile dysfunction during 12 hours of MV. Also, inhibition of the UPP does not impact MV-induced increases in calpain and caspase-3 activity in the diaphragm. Finally, administration of the proteasome inhibitor did not protect against the MV-induced increases in the expression of the E3 ligases, MuRF1 and atrogin-1/MaFbx. Conclusions Collectively, these results indicate that proteasome activation does not play a required role in VIDD during the first 12 hours of MV. PMID:24681580

  19. Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia

    PubMed Central

    Taylor, Cormac T.; Furuta, Glenn T.; Synnestvedt, Kristin; Colgan, Sean P.

    2000-01-01

    Hypoxia activates a number of gene products through degradation of the transcriptional coactivator cAMP response element binding protein (CREB). Other transcriptional regulators (e.g., β-catenin and NF-κB) are controlled through phosphorylation-targeted proteasomal degradation, and thus, we hypothesized a similar degradative pathway for CREB. Differential display analysis of mRNA derived from hypoxic epithelia revealed a specific and time-dependent repression of protein phosphatase 1 (PP1), a serine phosphatase important in CREB dephosphorylation. Subsequent studies identified a previously unappreciated proteasomal-targeting motif within the primary structure of CREB (DSVTDS), which functions as a substrate for PP1. Ambient hypoxia resulted in temporally sequential CREB serine phosphorylation, ubiquitination, and degradation (in vitro and in vivo). HIV-tat peptide-facilitated loading of intact epithelia with phosphopeptides corresponding to this proteasome targeting motif resulted in inhibition of CREB ubiquitination. Further studies revealed that PP1 inhibitors mimicked hypoxia-induced gene expression, whereas proteasome inhibitors reversed the hypoxic phenotype. Thus, hypoxia establishes conditions that target CREB to proteasomal degradation. These studies may provide unique insight into a general mechanism of transcriptional regulation by hypoxia. PMID:11035795

  20. Intracellular Dynamics of the Ubiquitin-Proteasome-System.

    PubMed

    Chowdhury, Maisha; Enenkel, Cordula

    2015-01-01

    The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum (ER) membranes. In prolonged quiescence, proteasome granules drop off the NE / ER membranes and migrate as stable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells which comprise the majority of our body's cells. PMID:26339477

  1. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma

    NASA Technical Reports Server (NTRS)

    Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.

    1995-01-01

    Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.

  2. The Stability of Ribosome Biogenesis Factor WBSCR22 Is Regulated by Interaction with TRMT112 via Ubiquitin-Proteasome Pathway

    PubMed Central

    Õunap, Kadri; Leetsi, Lilian; Matsoo, Maarja; Kurg, Reet

    2015-01-01

    The human WBSCR22 protein is a 18S rRNA methyltransferase involved in pre-rRNA processing and ribosome 40S subunit biogenesis. Recent studies have shown that the protein function in ribosome synthesis is independent of its enzymatic activity. In this work, we have studied the WBSCR22 protein interaction partners by SILAC-coupled co-immunoprecipitation assay and identified TRMT112 as the interaction partner of WBSCR22. Knock-down of TRMT112 expression decreased the WBSCR22 protein level in mammalian cells, suggesting that the stability of WBSCR22 is regulated through the interaction with TRMT112. The localization of the TRMT112 protein is determined by WBSCR22, and the WBSCR22-TRMT112 complex is localized in the cell nucleus. We provide evidence that the interaction between WBSCR22/Bud23 and TRMT112/Trm112 is conserved between mammals and yeast, suggesting that the function of TRMT112 as a co-activator of methyltransferases is evolutionarily conserved. Finally, we show that the transiently expressed WBSCR22 protein is ubiquitinated and degraded through the proteasome pathway, revealing the tight control of the WBSCR22 protein level in the cells. PMID:26214185

  3. The ubiquitin-proteasome system meets angiogenesis.

    PubMed

    Rahimi, Nader

    2012-03-01

    A strict physiological balance between endogenous proangiogenic and antiangiogenic factors controls endothelial cell functions, such that endothelial cell growth is normally restrained. However, in pathologic angiogenesis, a shift occurs in the balance of regulators, favoring endothelial growth. Much of the control of angiogenic events is instigated through hypoxia-induced VEGF expression. The ubiquitin-proteasome system (UPS) plays a central role in fine-tuning the functions of core proangiogenic proteins, including VEGF, VEGFR-2, angiogenic signaling proteins (e.g., the PLCγ1 and PI3 kinase/AKT pathways), and other non-VEGF angiogenic pathways. The emerging mechanisms by which ubiquitin modification of angiogenic proteins control angiogenesis involve both proteolytic and nonproteolytic functions. Here, I review recent advances that link the UPS to regulation of angiogenesis and highlight the potential therapeutic value of the UPS in angiogenesis-associated diseases. PMID:22357635

  4. The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy.

    PubMed

    Chen, Yan-Jie; Wu, Hao; Shen, Xi-Zhong

    2016-09-01

    The ubiquitin-proteasome system (UPS) is a complicated tightly controlled system in charge of degrading 80-90% of proteins, and is central to regulating cellular function and keeping protein homeostasis. Therefore, the components of UPS attract considerable attention as potential targets for hepatocellular carcinoma (HCC) therapy. The clinical success of bortezomib in multiple myeloma and mantle cell lymphoma patients has set the precedent for therapeutically targeting this pathway. This review will provide an overview of the UPS in HCC and the current status of therapeutic strategies. PMID:26193663

  5. The possible role of the ubiquitin proteasome system in the development of atherosclerosis in diabetes.

    PubMed

    Marfella, Raffaele; D' Amico, Michele; Di Filippo, Clara; Siniscalchi, Mario; Sasso, Ferdinando Carlo; Ferraraccio, Franca; Rossi, Francesco; Paolisso, Giuseppe

    2007-01-01

    and chronic hyperglycemia play a role in the atherosclerotic process and may require intervention 67. Moreover, it is important to recognize that these risk factors frequently "cluster" inindividual patients and possibly interact with each other, favouring the atherosclerosis progression toward plaque instability. Thus, a fundamental question is, "which is the common soil hypothesis that may unifying the burden of all these factors on atherosclerosis of diabetic patients? Because evidences suggest that insulin-resistance, diabetes and CHD share in common a deregulation of ubiquitin-proteasome system (UPS), the major pathway for nonlysosomal intracellular protein degradation in eucaryotic cells 89, in this review ubiquitin-proteasome deregulation is proposed as the common persistent pathogenic factor mediating the initial stage of the atherosclerosis as well as the progression to complicated plaque in diabetic patients. PMID:17971205

  6. Lack of muscle recovery after immobilization in old rats does not result from a defect in normalization of the ubiquitin-proteasome and the caspase-dependent apoptotic pathways.

    PubMed

    Magne, Hugues; Savary-Auzeloux, Isabelle; Vazeille, Emilie; Claustre, Agnès; Attaix, Didier; Anne, Listrat; Véronique, Santé-Lhoutellier; Philippe, Gatellier; Dardevet, Dominique; Combaret, Lydie

    2011-02-01

    Immobilization periods increase with age because of decreased mobility and/or because of increased pathological episodes that require bed-rest. Then, sarcopaenia might be partially explained by an impaired recovery of skeletal muscle mass after a catabolic state due to an imbalance of muscle protein metabolism, apoptosis and cellular regeneration. Mechanisms involved during muscle recovery have been little studied and in elderly they remain almost unknown. We show, in rats, that a short immobilization period during ageing initiated muscle atrophy that was indeed not recovered after 40 days. Immobilization was associated with an activation of both the ubiquitin-proteasome and the mitochondria-associated apoptotic pathways and the inflammatory and redox processes, and a decrease of cellular regeneration. We show that the lack of muscle recovery during ageing is not due to a defect in proteolysis or apoptosis down-regulation. These observations lead us to hypothesize that muscle protein synthesis activation after immobilization was altered during ageing. PMID:21115641

  7. The role of allostery in the ubiquitin-proteasome system

    PubMed Central

    Liu, Jin; Nussinov, Ruth

    2012-01-01

    The Ubiquitin-Proteasome System is involved in many cellular processes including protein degradation. Degradation of a protein via this system involves two successive steps: ubiquitination and degradation. Ubiquitination tags the target protein with ubiquitin-like proteins, such as ubiquitin, SUMO and NEDD8, via a cascade involving three enzymes: activating enzyme E1, conjugating enzyme E2, and E3 ubiquitin ligases. The proteasomes recognize the ubiquitin-like protein tagged substrate proteins and degrade them. Accumulating evidence indicates that allostery is a central player in the regulation of ubiquitination, as well as deubiquitination and degradation. Here, we provide an overview of the key mechanistic roles played by allostery in all steps of these processes, and highlight allosteric drugs targeting them. Throughout the review, we emphasize the crucial mechanistic role played by linkers in allosterically controlling the Ubiquitin-Proteasome System action by biasing the sampling of the conformational space, which facilitate the catalytic reactions of the ubiquitination and degradation. Finally, we propose that allostery may similarly play key roles in the regulation of molecular machines in the cell, and as such allosteric drugs can be expected to be increasingly exploited in therapeutic regimes. PMID:23234564

  8. The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato.

    PubMed

    Hondo, Daisuke; Hase, Shu; Kanayama, Yoshinori; Yoshikawa, Nobuyuki; Takenaka, Shigehito; Takahashi, Hideki

    2007-01-01

    The expression of LeATL6, an ortholog of Arabidopsis ATL6 that encodes a RING-H2 finger protein, was induced in tomato roots treated with a cell wall protein fraction (CWP) elicitor of the biocontrol agent Pythium oligandrum. The LeATL6 protein was expressed as a fusion protein with a maltose-binding protein (MBP) in Escherichia coli, and it catalyzed the transfer of ubiquitin to the MBP moiety on incubation with ubiquitin, the ubiquitin-activating enzyme E1, and the ubiquitin-conjugating enzyme E2; this indicated that LeATL6 represents ubiquitin ligase E3. LeATL6 expression also was induced by elicitor treatment of jail-1 mutant tomato cells in which the jasmonic acid (JA)-mediated signaling pathway was impaired; however, JA-dependent expression of the basic PR-6 and TPI-1 genes that encode proteinase inhibitor II and I, respectively, was not induced in elicitor-treated jail-1 mutants. Furthermore, transient overexpression of LeATL6 under the control of the Cauliflower mosaic virus 35S promoter induced the basic PR6 and TPI-1 expression in wild tomato but not in the jail-1 mutant. In contrast, LeATL6 overexpression did not activate salicylic acid-responsive acidic PR-1 and PR-2 promoters in wild tomato. These results indicated that elicitor-responsive LeATL6 probably regulates JA-dependent basic PR6 and TPI-1 gene expression in tomato. The LeATL6-associated ubiquitin/proteasome system may contribute to elicitor-activated defense responses via a JA-dependent signaling pathway in plants. PMID:17249424

  9. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation.

    PubMed

    Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin

    2016-10-01

    C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response. PMID:27443248

  10. The ubiquitin proteasome system and efficacy of proteasome inhibitors in diseases.

    PubMed

    Chitra, Selvarajan; Nalini, Ganesan; Rajasekhar, Gopalakrishnan

    2012-06-01

    In eukaryotes the ubiquitin proteasome pathway plays an important role in cellular homeostasis and also it exerts a critical role in regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription and immune response. Defects in these pathways have been implicated in a number of human pathologies. Inhibition of the ubiquitin proteasome pathway by proteasome inhibitors may be a rational therapeutic approach for various diseases, such as cancer and inflammatory diseases. Many of the critical cytokine and chemokine mediators of the progression of rheumatoid arthritis are regulated by nuclear factor kappa B (NF-κB). In peptidoglycan/polysaccharide-induced polyarthritis, proteasome inhibitors limit the overall inflammation, reduce NF-κB activation, decrease cellular adhesion molecule expression, inhibit nitric oxide synthase, attenuate circulating levels of proinflammatory cytokine interleukin-6 and reduce the arthritis index and swelling in the joints of the animals. Since proteasome inhibitors exhibit anti-inflammatory and anti proliferative effects, diseases characterized by both of these processes such as rheumatoid arthritis might also represent clinical opportunities for such drugs. The regulation of the proteasomal complex by proteasome inhibitors also has implications and potential benefits for the treatment of rheumatoid arthritis. This review summarizes the ubiquitin proteasome pathway, the structure of 26S proteasomes and types of proteasome inhibitors, with their actions, and clinical applications of proteasome inhibitors in various diseases. PMID:22709487

  11. Melatonin, bone regulation and the ubiquitin-proteasome connection: A review.

    PubMed

    Vriend, Jerry; Reiter, Russel J

    2016-01-15

    Recently, investigators have shown that ubiquitin-proteasome-mediated protein degradation is critical in regulating the balance between bone formation and bone resorption. The major signal transduction pathways regulating bone formation are the RANK/NF-κB pathway and the Wnt/β-catenin pathway. These signal transduction pathways regulate the activity of mature osteoblasts and osteoclasts. In addition, the Wnt/β-catenin pathway is one of the major signaling pathways in the differentiation of osteoblasts. The ubiquitin ligases that are reported to be of major significance in regulating these pathways are the ubiquitin SCF(B-TrCP) ligase (which regulates activation of NF-κB via degradation of IkBα in osteoclasts, and regulates bone transcription factors via degradation of β-catenin), the Keap-Cul3-Rbx1 ligase (which regulates degradation of IkB kinase, Nrf2, and the antiapoptotic factor Bcl-2), and Smurf1. Also of significance in regulating osteoclastogenesis is the deubiquitinase, CYLD (cylindramatosis protein), which facilitates the separation of NF-κB from IkBα. The degradation of CYLD is also under the regulation of SCF(B-TrCP). Proteasome inhibitors influence the activity of mature osteoblasts and osteoclasts, but also modulate the differentiation of precursor cells into osteoblasts. Preclinical studies show that melatonin also influences bone metabolism by stimulating bone growth and inhibiting osteoclast activity. These actions of melatonin could be interpreted as being mediated by the ubiquitin ligases SCF(B-TrCP) and Keap-Cul3-Rbx, or as an inhibitory effect on proteasomes. Clinical trials of the use of melatonin in the treatment of bone disease, including multiple myeloma, using both continuous and intermittent modes of administration, are warranted. PMID:26706287

  12. Ubiquitin, Proteasomes and Proteolytic Mechanisms Activated by Kidney Disease

    PubMed Central

    Rajan, Vik; Mitch, William E.

    2008-01-01

    Summary The ubiquitin-proteasome system (UPS) includes 3 enzymes that conjugate ubiquitin to intracellular proteins that are then recognized and degraded in the proteasome. The process participates in the regulation of cell metabolism. In the kidney, the UPS regulates the turnover of transporters and signaling proteins and its activity is down regulated in acidosis-induced proximal tubular cell hypertrophy. In chronic kidney disease (CKD), muscle wasting occurs because complications of CKD including acidosis, insulin resistance, inflammation, and increased angiotensin II levels stimulate the UPS to degrade muscle proteins. This response also includes caspase-3 and calpains which act to cleave muscle proteins to provide substrates for the UPS. For example, caspase-3 degrades actomyosin, leaving a 14kD fragment of actin in muscle. The 14 kD actin fragment is increased in muscle of patient with kidney disease, burn injury and surgery. In addition, acidosis, insulin resistance, inflammation and angiotensin II stimulate glucocorticoid production. Glucocorticoids are also required for the muscle wasting that occurs in CKD. Thus, the UPS is involved in regulating kidney function and participates in highly organized responses that degrade muscle protein in response to loss of kidney function. PMID:18723090

  13. The Role of the Ubiquitin Proteasome System in Ischemia and Ischemic Tolerance

    PubMed Central

    Meller, Robert

    2010-01-01

    Ubiquitin modification targets a protein for rapid degradation by the proteasome. However, poly-ubiquitination of proteins can result in multiple functions depending on the topology of the ubiquitin chain. Therefore ubiquitin signaling offers a more complex and versatile biology compared to many other post translational modifications. One area of potential for the application of this knowledge is the field of ischemia-induced brain damage, as occurs following a stroke. The ubiquitin proteasome system may exert a dual role on neuronal outcome following ischemia. Harmful ischemia results in an overload of the ubiquitin proteasome system, and blocking the proteasome reduces brain infarction following ischemia. However, the rapid and selective degradation of proteins following brief ischemia results in endogenous protection against ischemia. Therefore further understanding of the molecular signaling mechanisms which regulate the ubiquitin proteasome system may reveal novel therapeutic targets to reduce brain damage when ischemia is predicted, or to reduce the activation of the cell death mechanisms and the inflammatory response following stroke. The aim of this review is to discuss some of the recent advances in the understanding of protein ubiquitination and its implications for novel stroke therapies. PMID:19181875

  14. Measuring activity in the ubiquitin-proteasome system: From large scale discoveries to single cells analysis

    PubMed Central

    Melvin, Adam T.; Woss, Gregery S.; Park, Jessica H.; Waters, Marcey L.; Allbritton, Nancy L.

    2013-01-01

    The ubiquitin proteasome system (UPS) is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins in addition to performing essential roles in DNA repair, cell cycle regulation, cell migration, and the immune response. While traditional biochemical techniques have proven useful in the identification of key proteins involved in this pathway, the implementation of novel reporters responsible for measuring enzymatic activity of the UPS have provided valuable insight into the effectiveness of therapeutics and role of the UPS in various human diseases such as multiple myeloma and Huntington’s disease. These reporters, usually consisting of a recognition sequences fused to an analytical handle, are designed to specifically evaluate enzymatic activity of certain members of the UPS including the proteasome, E3 ubiquitin ligases, and deubiquitinating enzymes (DUBs). This review highlights the more commonly used reporters employed in a variety of scenarios ranging from high-throughput screening of novel inhibitors to single cell microscopy techniques measuring E3 ligase or proteasome activity. Finally, recent work is presented highlighting the development of novel degron-based substrate designed to overcome the limitations of current reporting techniques in measuring E3 ligase and proteasome activity in patient samples. PMID:23686610

  15. Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease

    PubMed Central

    Hegde, Ashok N.; Upadhya, Sudarshan C.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) is now widely recognized as a molecular mechanism controlling myriad normal functions in the nervous system. Also, this pathway is intimately linked to many diseases and disorders of the brain. Among the diseases connected to the UPP are neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases. Perturbation in the UPP is also believed to play a causative role in mental disorders such as Angelman syndrome. The pathology of neurodegenerative diseases is characterized by abnormal deposition of insoluble protein aggregates or inclusion bodies within neurons. The ubiquitinated protein aggregates are believed to result from dysfunction of the UPP or from structural changes in the protein substrates which prevent their recognition and degradation by the UPP. An early effect of abnormal UPP in diseases of the nervous system is likely to be impairment of synaptic function. Here we discuss the UPP and its physiological roles in the nervous system and how alterations in the UPP relate to development of nervous system diseases. PMID:20674814

  16. Role of the ubiquitin proteasome system in Alzheimer's disease

    PubMed Central

    Upadhya, Sudarshan C; Hegde, Ashok N

    2007-01-01

    Though Alzheimer's disease (AD) is a syndrome with well-defined clinical and neuropathological manifestations, an array of molecular defects underlies its pathology. A role for the ubiquitin proteasome system (UPS) was suspected in the pathogenesis of AD since the presence of ubiquitin immunoreactivity in AD-related neuronal inclusions, such as neurofibrillary tangles, is seen in all AD cases. Recent studies have indicated that components of the UPS could be linked to the early phase of AD, which is marked by synaptic dysfunction, as well as to the late stages of the disease, characterized by neurodegeneration. Insoluble protein aggregates in the brain of AD patients could result from malfunction or overload of the UPS, or from structural changes in the protein substrates, which prevent their recognition and degradation by the UPS. Defective proteolysis could cause the synaptic dysfunction observed early in AD since the UPS is known to play a role in the normal functioning of synapses. In this review, we discuss recent observations on possible links between the UPS and AD, and the potential for utilizing UPS components as targets for treatment of this disease. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ). PMID:18047736

  17. Role of ubiquitin-proteasome system (UPS) in left ventricular hypertrophy (LVH)

    PubMed Central

    Cacciapuoti, Federico

    2014-01-01

    Cardiac hypertrophy is a key compensatory mechanism acting in response to pressure or volume overload, involving some alterations in signaling transduction pathways and transcription factors-regulation. These changes result in enhanced proteins’ synthesis leading to Left Ventricular Hypertrophy (LVH). It is known that the main function of Ubiquitin-Proteasome System (UPS) is to prevent accumulation of damaged, misfolded and mutant proteins by proteolysis. But emerging evidences suggest that UPS also attends to the cells’ growth, favoring proteins’ synthesis, subsequently evolving in LVH. The role of the proteasome in to favor cellular hypertrophy consists in upregulation of the catalytic proteasome subunit, with prevalence of proteins-synthesis on proteins degradation. It is also evident that UPS inhibition may prevent cells’ growth opposing to the hypertrophy. In fact in several experimental models, UPS inhibition demonstrated to be able to prevent or reverse cardiac hypertrophy induced by abdominal aortic banding (AAB). That can happen with several proteasome inhibitors acting by multifactorial mechanisms. These evidences induce to hypothesize that, in the future, in patients with the increased volume overload by systemic hypertension, some proteasome-inhibitors could be used to antagonize or prevent LVH without reducing peripheral high blood pressure levels too. PMID:24551479

  18. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation.

    PubMed

    Bilodeau, Philippe A; Coyne, Erin S; Wing, Simon S

    2016-09-01

    Muscle atrophy complicates many diseases as well as aging, and its presence predicts both decreased quality of life and survival. Much work has been conducted to define the molecular mechanisms involved in maintaining protein homeostasis in muscle. To date, the ubiquitin proteasome system (UPS) has been shown to play an important role in mediating muscle wasting. In this review, we have collated the enzymes in the UPS whose roles in muscle wasting have been confirmed through loss-of-function studies. We have integrated information on their mechanisms of action to create a model of how they work together to produce muscle atrophy. These enzymes are involved in promoting myofibrillar disassembly and degradation, activation of autophagy, inhibition of myogenesis as well as in modulating the signaling pathways that control these processes. Many anabolic and catabolic signaling pathways are involved in regulating these UPS genes, but none appear to coordinately regulate a large number of these genes. A number of catabolic signaling pathways appear to instead function by inhibition of the insulin/IGF-I/protein kinase B anabolic pathway. This pathway is a critical determinant of muscle mass, since it can suppress key ubiquitin ligases and autophagy, activate protein synthesis, and promote myogenesis through its downstream mediators such as forkhead box O, mammalian target of rapamycin, and GSK3β, respectively. Although much progress has been made, a more complete inventory of the UPS genes involved in mediating muscle atrophy, their mechanisms of action, and their regulation will be useful for identifying novel therapeutic approaches to this important clinical problem. PMID:27510905

  19. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization.

    PubMed

    Song, Won-Hee; Yi, Young-Joo; Sutovsky, Miriam; Meyers, Stuart; Sutovsky, Peter

    2016-09-01

    Maternal inheritance of mitochondria and mtDNA is a universal principle in human and animal development, guided by selective ubiquitin-dependent degradation of the sperm-borne mitochondria after fertilization. However, it is not clear how the 26S proteasome, the ubiquitin-dependent protease that is only capable of degrading one protein molecule at a time, can dispose of a whole sperm mitochondrial sheath. We hypothesized that the canonical ubiquitin-like autophagy receptors [sequestosome 1 (SQSTM1), microtubule-associated protein 1 light chain 3 (LC3), gamma-aminobutyric acid receptor-associated protein (GABARAP)] and the nontraditional mitophagy pathways involving ubiquitin-proteasome system and the ubiquitin-binding protein dislocase, valosin-containing protein (VCP), may act in concert during mammalian sperm mitophagy. We found that the SQSTM1, but not GABARAP or LC3, associated with sperm mitochondria after fertilization in pig and rhesus monkey zygotes. Three sperm mitochondrial proteins copurified with the recombinant, ubiquitin-associated domain of SQSTM1. The accumulation of GABARAP-containing protein aggregates was observed in the vicinity of sperm mitochondrial sheaths in the zygotes and increased in the embryos treated with proteasomal inhibitor MG132, in which intact sperm mitochondrial sheaths were observed. Pharmacological inhibition of VCP significantly delayed the process of sperm mitophagy and completely prevented it when combined with microinjection of autophagy-targeting antibodies specific to SQSTM1 and/or GABARAP. Sperm mitophagy in higher mammals thus relies on a combined action of SQSTM1-dependent autophagy and VCP-mediated dislocation and presentation of ubiquitinated sperm mitochondrial proteins to the 26S proteasome, explaining how the whole sperm mitochondria are degraded inside the fertilized mammalian oocytes by a protein recycling system involved in degradation of single protein molecules. PMID:27551072

  20. Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system.

    PubMed

    Scheffner, Martin; Whitaker, Noel J

    2003-02-01

    Certain types of human papillomaviruses have been etiologically associated with malignant lesions, most notably with cervical cancer. The major oncoproteins of these cancer-associated viruses are encoded by the viral E6 and E7 genes. Thorough characterization of these oncoproteins and their interaction with cellular proteins has shown that both E6 and E7 exploit the ubiquitin-proteasome system to degrade and, thus, to functionally inactivate negative cell-regulatory proteins including members of the p110(RB) family and p53. This act of piracy is assumed to contribute to both the efficient propagation of HPVs and HPV-induced carcinogenesis. PMID:12507557

  1. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia.

    PubMed

    Silva, Kleiton Augusto Santos; Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Schor, Nestor; Tweardy, David J; Zhang, Liping; Mitch, William E

    2015-04-24

    Cachexia occurs in patients with advanced cancers. Despite the adverse clinical impact of cancer-induced muscle wasting, pathways causing cachexia are controversial, and clinically reliable therapies are not available. A trigger of muscle protein loss is the Jak/Stat pathway, and indeed, we found that conditioned medium from C26 colon carcinoma (C26) or Lewis lung carcinoma cells activates Stat3 (p-Stat3) in C2C12 myotubes. We identified two proteolytic pathways that are activated in muscle by p-Stat3; one is activation of caspase-3, and the other is p-Stat3 to myostatin, MAFbx/Atrogin-1, and MuRF-1 via CAAT/enhancer-binding protein δ (C/EBPδ). Using sequential deletions of the caspase-3 promoter and CHIP assays, we determined that Stat3 activation increases caspase-3 expression in C2C12 cells. Caspase-3 expression and proteolytic activity were stimulated by p-Stat3 in muscles of tumor-bearing mice. In mice with cachexia caused by Lewis lung carcinoma or C26 tumors, knock-out of p-Stat3 in muscle or with a small chemical inhibitor of p-Stat3 suppressed muscle mass losses, improved protein synthesis and degradation in muscle, and increased body weight and grip strength. Activation of p-Stat3 stimulates a pathway from C/EBPδ to myostatin and expression of MAFbx/Atrogin-1 and increases the ubiquitin-proteasome system. Indeed, C/EBPδ KO decreases the expression of MAFbx/Atrogin-1 and myostatin, while increasing muscle mass and grip strength. In conclusion, cancer stimulates p-Stat3 in muscle, activating protein loss by stimulating caspase-3, myostatin, and the ubiquitin-proteasome system. These results could lead to novel strategies for preventing cancer-induced muscle wasting. PMID:25787076

  2. The Ubiquitin-Proteasome System as a Prospective Molecular Target for Cancer Treatment and Prevention

    PubMed Central

    Chen, Di; Dou, Q. Ping

    2012-01-01

    Proteasomes are large multicatalytic proteinase complexes located in the cytosol and the nucleus of eukaryotic cells. The ubiquitin-proteasome system is responsible for the degradation of most intracellular proteins and therefore plays an essential regulatory role in critical cellular processes including cell cycle progression, proliferation, differentiation, angiogenesis and apoptosis. Besides involving in normal cellular functions and homeostasis, the alteration of proteasomal activity contributes to the pathological states of several clinical disorders including inflammation, neurodegeneration and cancer. It has been reported that human cancer cells possess elevated level of proteasome activity and are more sensitive to proteasome inhibitors than normal cells, indicating that the inhibition of the ubiquitin-proteasome system could be used as a novel approach for cancer therapy. In this review we summarize several specific aspects of research for the proteasome complex, including the structure and catalytic activities of the proteasome, properties and mechanisms of action of various proteasome inhibitors, and finally the clinical development of proteasome inhibitors as novel anticancer agents. PMID:20491623

  3. It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease

    PubMed Central

    Tramutola, Antonella; Di Domenico, Fabio; Barone, Eugenio; Perluigi, Marzia; Butterfield, D. Allan

    2016-01-01

    Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency of degradative systems. One of the most important cellular proteolytic systems responsible for the removal of oxidized proteins in the cytosol and in the nucleus is the proteasomal system. Several studies have demonstrated the impairment of the proteasome in AD thus suggesting a direct link between accumulation of oxidized/misfolded proteins and reduction of this clearance system. In this review we discuss the impairment of the proteasome system as a consequence of oxidative stress and how this contributes to AD neuropathology. Further, we focus the attention on the oxidative modifications of a key component of the ubiquitin-proteasome pathway, UCHL1, which lead to the impairment of its activity. PMID:26881020

  4. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease.

    PubMed

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems. PMID:26448817

  5. Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease.

    PubMed

    Willis, Monte S; Townley-Tilson, W H Davin; Kang, Eunice Y; Homeister, Jonathon W; Patterson, Cam

    2010-02-19

    The ubiquitin proteasome system (UPS) plays a crucial role in biological processes integral to the development of the cardiovascular system and cardiovascular diseases. The UPS prototypically recognizes specific protein substrates and places polyubiquitin chains on them for subsequent destruction by the proteasome. This system is in place to degrade not only misfolded and damaged proteins, but is essential also in regulating a host of cell signaling pathways involved in proliferation, adaptation to stress, regulation of cell size, and cell death. During the development of the cardiovascular system, the UPS regulates cell signaling by modifying transcription factors, receptors, and structural proteins. Later, in the event of cardiovascular diseases as diverse as atherosclerosis, cardiac hypertrophy, and ischemia/reperfusion injury, ubiquitin ligases and the proteasome are implicated in protecting and exacerbating clinical outcomes. However, when misfolded and damaged proteins are ubiquitinated by the UPS, their destruction by the proteasome is not always possible because of their aggregated confirmations. Recent studies have discovered how these ubiquitinated misfolded proteins can be destroyed by alternative "specific" mechanisms. The cytosolic receptors p62, NBR, and histone deacetylase 6 recognize aggregated ubiquitinated proteins and target them for autophagy in the process of "selective autophagy." Even the ubiquitination of multiple proteins within whole organelles that drive the more general macro-autophagy may be due, in part, to similar ubiquitin-driven mechanisms. In summary, the crosstalk between the UPS and autophagy highlight the pivotal and diverse roles the UPS plays in maintaining protein quality control and regulating cardiovascular development and disease. PMID:20167943

  6. Roles of the ubiquitin proteasome system in the effects of drugs of abuse

    PubMed Central

    Massaly, Nicolas; Francès, Bernard; Moulédous, Lionel

    2015-01-01

    Because of its ability to regulate the abundance of selected proteins the ubiquitin proteasome system (UPS) plays an important role in neuronal and synaptic plasticity. As a result various stages of learning and memory depend on UPS activity. Drug addiction, another phenomenon that relies on neuroplasticity, shares molecular substrates with memory processes. However, the necessity of proteasome-dependent protein degradation for the development of addiction has been poorly studied. Here we first review evidences from the literature that drugs of abuse regulate the expression and activity of the UPS system in the brain. We then provide a list of proteins which have been shown to be targeted to the proteasome following drug treatment and could thus be involved in neuronal adaptations underlying behaviors associated with drug use and abuse. Finally we describe the few studies that addressed the need for UPS-dependent protein degradation in animal models of addiction-related behaviors. PMID:25610367

  7. Fluorescent Tools for In Vivo Studies on the Ubiquitin-Proteasome System.

    PubMed

    Matilainen, Olli; Jha, Sweta; Holmberg, Carina I

    2016-01-01

    The ubiquitin-proteasome system (UPS) plays a key role in maintaining proteostasis by degrading most of the cellular proteins. Traditionally, UPS activity is studied in vitro, in yeast, or in mammalian cell cultures by using short-lived GFP-based UPS reporters. Here, we present protocols for two fluorescent tools facilitating real-time imaging of UPS activity in living animals. We have generated transgenic Caenorhabditis elegans (C. elegans) expressing a photoconvertible UbG76V-Dendra2 UPS reporter, which permits measurement of reporter degradation by the proteasome independently of reporter protein synthesis, and a fluorescent polyubiquitin-binding reporter for detection of the endogenous pool of Lys48-linked polyubiquitinated proteasomal substrates. These reporter systems facilitate cell- and tissue-specific analysis of UPS activity especially in young adult animals, but can also be used for studies during development, aging, and for example stress conditions. PMID:27613038

  8. Interplay between the virus and the ubiquitin-proteasome system: molecular mechanism of viral pathogenesis.

    PubMed

    Luo, Honglin

    2016-04-01

    The ubiquitin-proteasome system (UPS) plays a central role in a wide range of fundamental cellular functions by ensuring protein quality control and through maintaining a critical level of important regulatory proteins. Viruses subvert or manipulate this cellular machinery to favor viral propagation and to evade host immune response. The UPS serves as a double-edged sword in viral pathogenesis: on the one hand, the UPS is utilized by many viruses to maintain proper function and level of viral proteins; while on the other hand, the UPS constitutes a host defense mechanism to eliminate viral components. To combat this host anti-viral machinery, viruses have evolved to employ the UPS to degrade or inactivate cellular proteins that limit viral growth. This review will highlight our current knowledge pertaining to the different roles for the UPS in viral pathogenesis. PMID:26426962

  9. Time-course changes in muscle protein degradation in heat-stressed chickens: Possible involvement of corticosterone and mitochondrial reactive oxygen species generation in induction of the ubiquitin-proteasome system.

    PubMed

    Furukawa, Kyohei; Kikusato, Motoi; Kamizono, Tomomi; Toyomizu, Masaaki

    2016-03-01

    Heat stress (HS) induces muscle protein degradation as well as production of mitochondrial reactive oxygen species (ROS). In the present study, to improve our understanding of how protein degradation is induced by HS treatment in birds, a time course analysis of changes in the circulating levels of glucocorticoid and N(τ)-methylhistidine, muscle proteolysis-related gene expression, and mitochondrial ROS generation, was conducted. At 25days of age, chickens were exposed to HS conditions (33°C) for 0, 0.5, 1 or 3days. While no alteration in plasma N(τ)-methylhistidine concentration relative to that of the control group was observed in the 0.5day HS group, the concentration was significantly higher in the 3-d HS treatment group. Plasma corticosterone concentrations increased in response to 0.5-d HS treatment, but subsequently returned to near-normal values. HS treatment for 0.5days did not change the levels of μ-calpain, cathepsin B, or proteasome C2 subunit mRNA, but increased the levels of mRNA encoding atrogin-1 (P<0.05) and its transcription factor, forkhead box O3 (P=0.09). Under these hyperthermic conditions, mitochondrial superoxide production was significantly increased than that of thermoneutral control. Here, we show that HS-induced muscle protein degradation may be due to the activation of ubiquitination by atrogin-1, and that this process may involve mitochondrial ROS production as well as corticosterone secretion. PMID:26883687

  10. Exposure to Melan-A/MART-126-35 tumor epitope specific CD8(+)T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS).

    PubMed

    Ebstein, Frédéric; Keller, Martin; Paschen, Annette; Walden, Peter; Seeger, Michael; Bürger, Elke; Krüger, Elke; Schadendorf, Dirk; Kloetzel, Peter-M; Seifert, Ulrike

    2016-01-01

    Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing. Interestingly, deregulation of p97/VCP expression, which is an IFN-γ-independent component of the UPS and part of the ER-dependent protein degradation pathway (ERAD), was found to be essentially involved in the observed immune escape. In support, our data demonstrate that re-expression of p97/VCP in Melan-A/MART-126-35 CTL-resistant melanoma cells completely restored immune recognition by Melan-A/MART-126-35 CTL. In conclusion, our experiments show that impaired expression of IFN-γ-independent components of the UPS can exert rapid immune evasion of tumor cells and suggest that tumor antigens processed by distinct UPS degradation pathways should be simultaneously targeted in T cell therapies to restrict the likelihood of immune evasion due to impaired antigen processing. PMID:27143649

  11. Exposure to Melan-A/MART-126-35 tumor epitope specific CD8+T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS)

    PubMed Central

    Ebstein, Frédéric; Keller, Martin; Paschen, Annette; Walden, Peter; Seeger, Michael; Bürger, Elke; Krüger, Elke; Schadendorf, Dirk; Kloetzel, Peter-M.; Seifert, Ulrike

    2016-01-01

    Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing. Interestingly, deregulation of p97/VCP expression, which is an IFN-γ-independent component of the UPS and part of the ER-dependent protein degradation pathway (ERAD), was found to be essentially involved in the observed immune escape. In support, our data demonstrate that re-expression of p97/VCP in Melan-A/MART-126-35 CTL-resistant melanoma cells completely restored immune recognition by Melan-A/MART-126-35 CTL. In conclusion, our experiments show that impaired expression of IFN-γ-independent components of the UPS can exert rapid immune evasion of tumor cells and suggest that tumor antigens processed by distinct UPS degradation pathways should be simultaneously targeted in T cell therapies to restrict the likelihood of immune evasion due to impaired antigen processing. PMID:27143649

  12. Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells.

    PubMed

    Li, Xu; Zhu, Feng; Jiang, Jianxin; Sun, Chengyi; Zhong, Qing; Shen, Ming; Wang, Xin; Tian, Rui; Shi, Chengjian; Xu, Meng; Peng, Feng; Guo, Xingjun; Hu, Jun; Ye, Dawei; Wang, Min; Qin, Renyi

    2016-09-01

    In contrast to normal tissue, cancer cells display profound alterations in protein synthesis and degradation. Therefore, proteins that regulate endoplasmic reticulum (ER) homeostasis are being increasingly recognized as potential therapeutic targets. The ubiquitin-proteasome system and autophagy are crucially important for proteostasis in cells. However, interactions between autophagy, the proteasome, and ER stress pathways in cancer remain largely undefined. This study demonstrated that withaferin-A (WA), the biologically active withanolide extracted from Withania somnifera, significantly increased autophagosomes, but blocked the degradation of autophagic cargo by inhibiting SNARE-mediated fusion of autophagosomes and lysosomes in human pancreatic cancer (PC) cells. WA specifically induced proteasome inhibition and promoted the accumulation of ubiquitinated proteins, which resulted in ER stress-mediated apoptosis. Meanwhile, the impaired autophagy at early stage induced by WA was likely activated in response to ER stress. Importantly, combining WA with a series of ER stress aggravators enhanced apoptosis synergistically. WA was well tolerated in mice, and displayed synergism with ER stress aggravators to inhibit tumor growth in PC xenografts. Taken together, these findings indicate that simultaneous suppression of 2 key intracellular protein degradation systems rendered PC cells vulnerable to ER stress, which may represent an avenue for new therapeutic combinations for this disease. PMID:27308733

  13. The amazing ubiquitin-proteasome system: structural components and implication in aging.

    PubMed

    Tsakiri, Eleni N; Trougakos, Ioannis P

    2015-01-01

    Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases. PMID:25619718

  14. Ubiquitin-Proteasome System Inhibition Promotes Long-Term Depression and Synaptic Tagging/Capture.

    PubMed

    Li, Qin; Korte, Martin; Sajikumar, Sreedharan

    2016-06-01

    A balance of protein synthesis and degradation is critical for the dynamic regulation and implementation of long-term memory storage. The role of the ubiquitin-proteasome system (UPS) in regulating the plasticity at potentiated synapses is well studied, but its roles in depressed synaptic populations remain elusive. In this study, we probed the possibility of regulating the UPS by inhibiting the proteasome function during the induction of protein synthesis-independent form of hippocampal long-term depression (early-LTD), an important component of synaptic plasticity. Here, we show that protein degradation is involved in early-LTD induction and interfering with this process facilitates early-LTD to late-LTD. We provide evidence here that under the circumstances of proteasome inhibition brain-derived neurotrophic factor is accumulated as plasticity-related protein and it drives the weakly depressed or potentiated synapses to associativity. Thus, UPS inhibition promotes LTD and establishes associativity between weakly depressed or potentiated synapses through the mechanisms of synaptic tagging/capture or cross-capture. PMID:25924950

  15. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases

    PubMed Central

    Jansen, Anne H. P.; Reits, Eric A. J.; Hol, Elly M.

    2014-01-01

    The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s disease, leading to the hypothesis that proteasomal impairment is contributing to these diseases. So far, most research related to the UPS in neurodegenerative diseases has been focused on neurons, while glial cells have been largely disregarded in this respect. However, glial cells are essential for proper neuronal function and adopt a reactive phenotype in neurodegenerative diseases, thereby contributing to an inflammatory response. This process is called reactive gliosis, which in turn affects UPS function in glial cells. In many neurodegenerative diseases, mostly neurons show accumulation and aggregation of ubiquitinated proteins, suggesting that glial cells may be better equipped to maintain proper protein homeostasis. During an inflammatory reaction, the immunoproteasome is induced in glia, which may contribute to a more efficient degradation of disease-related proteins. Here we review the role of the UPS in glial cells in various neurodegenerative diseases, and we discuss how studying glial cell function might provide essential information in unraveling mechanisms of neurodegenerative diseases. PMID:25152710

  16. Fine-Tuning of FACT by the Ubiquitin Proteasome System in Regulation of Transcriptional Elongation.

    PubMed

    Sen, Rwik; Ferdoush, Jannatul; Kaja, Amala; Bhaumik, Sukesh R

    2016-06-01

    FACT (facilitates chromatin transcription), an evolutionarily conserved histone chaperone involved in transcription and other DNA transactions, is upregulated in cancers, and its downregulation is associated with cellular death. However, it is not clearly understood how FACT is fine-tuned for normal cellular functions. Here, we show that the FACT subunit Spt16 is ubiquitylated by San1 (an E3 ubiquitin ligase) and degraded by the 26S proteasome. Enhanced abundance of Spt16 in the absence of San1 impairs transcriptional elongation. Likewise, decreased abundance of Spt16 also reduces transcription. Thus, an optimal level of Spt16 is required for efficient transcriptional elongation, which is maintained by San1 via ubiquitylation and proteasomal degradation. Consistently, San1 associates with the coding sequences of active genes to regulate Spt16's abundance. Further, we found that enhanced abundance of Spt16 in the absence of San1 impairs chromatin reassembly at the coding sequence, similarly to the results seen following inactivation of Spt16. Efficient chromatin reassembly enhances the fidelity of transcriptional elongation. Taken together, our results demonstrate for the first time a fine-tuning of FACT by a ubiquitin proteasome system in promoting chromatin reassembly in the wake of elongating RNA polymerase II and transcriptional elongation, thus revealing novel regulatory mechanisms of gene expression. PMID:27044865

  17. Hepatitis B Virus HBx Protein Interactions with the Ubiquitin Proteasome System

    PubMed Central

    Minor, Marissa M.; Slagle, Betty L.

    2014-01-01

    The hepatitis B virus (HBV) causes acute and chronic hepatitis, and the latter is a major risk factor for the development of hepatocellular carcinoma (HCC). HBV encodes a 17-kDa regulatory protein, HBx, which is required for virus replication. Although the precise contribution(s) of HBx to virus replication is unknown, many viruses target cellular pathways to create an environment favorable for virus replication. The ubiquitin proteasome system (UPS) is a major conserved cellular pathway that controls several critical processes in the cell by regulating the levels of proteins involved in cell cycle, DNA repair, innate immunity, and other processes. We summarize here the interactions of HBx with components of the UPS, including the CUL4 adaptor DDB1, the cullin regulatory complex CSN, and the 26S proteasome. Understanding how these protein interactions benefit virus replication remains a challenge due to limited models in which to study HBV replication. However, studies from other viral systems that similarly target the UPS provide insight into possible strategies used by HBV. PMID:25421893

  18. Novel strategies to target the ubiquitin proteasome system in multiple myeloma

    PubMed Central

    Lub, Susanne; Maes, Ken; Menu, Eline; De Bruyne, Elke; Vanderkerken, Karin; Van Valckenborgh, Els

    2016-01-01

    Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of plasma cells in the bone marrow (BM). The success of the proteasome inhibitor bortezomib in the treatment of MM highlights the importance of the ubiquitin proteasome system (UPS) in this particular cancer. Despite the prolonged survival of MM patients, a significant amount of patients relapse or become resistant to therapy. This underlines the importance of the development and investigation of novel targets to improve MM therapy. The UPS plays an important role in different cellular processes by targeted destruction of proteins. The ubiquitination process consists of enzymes that transfer ubiquitin to proteins targeting them for proteasomal degradation. An emerging and promising approach is to target more disease specific components of the UPS to reduce side effects and overcome resistance. In this review, we will focus on different components of the UPS such as the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2, the E3 ubiquitin ligases, the deubiquitinating enzymes (DUBs) and the proteasome. We will discuss their role in MM and the implications in drug discovery for the treatment of MM. PMID:26695547

  19. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution

    PubMed Central

    Dantuma, Nico P.; Bott, Laura C.

    2014-01-01

    The ubiquitin-proteasome system (UPS) has been implicated in neurodegenerative diseases based on the presence of deposits consisting of ubiquitylated proteins in affected neurons. It has been postulated that aggregation-prone proteins associated with these disorders, such as α-synuclein, β-amyloid peptide, and polyglutamine proteins, compromise UPS function, and delay the degradation of other proteasome substrates. Many of these substrates play important regulatory roles in signaling, cell cycle progression, or apoptosis, and their inadvertent stabilization due to an overloaded and improperly functioning UPS may thus be responsible for cellular demise in neurodegeneration. Over the past decade, numerous studies have addressed the UPS dysfunction hypothesis using various model systems and techniques that differ in their readout and sensitivity. While an inhibitory effect of some disease proteins on the UPS has been demonstrated, increasing evidence attests that the UPS remains operative in many disease models, which opens new possibilities for treatment. In this review, we will discuss the paradigm shift that repositioned the UPS from being a prime suspect in the pathophysiology of neurodegeneration to an attractive therapeutic target that can be harnessed to accelerate the clearance of disease-linked proteins. PMID:25132814

  20. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease.

    PubMed

    Gadhave, Kundlik; Bolshette, Nityanand; Ahire, Ashutosh; Pardeshi, Rohit; Thakur, Krishan; Trandafir, Cristiana; Istrate, Alexandru; Ahmed, Sahabuddin; Lahkar, Mangala; Muresanu, Dafin F; Balea, Maria

    2016-07-01

    The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD. PMID:27028664

  1. The regulation of glucose on milk fat synthesis is mediated by the ubiquitin-proteasome system in bovine mammary epithelial cells.

    PubMed

    Liu, Lily; Jiang, Li; Ding, Xiang-dong; Liu, Jian-feng; Zhang, Qin

    2015-09-11

    Glucose as one of the nutrition factors plays a vital role in the regulation of milk fat synthesis. Ubiquitin-proteasome system (UPS) is a vital proteolytic pathway in all eukaryotic cells through timely marking, recognizing and degrading the poly-ubiquitinated protein substrates. Previous studies indicated that UPS plays a considerable role in controlling the triglyceride (TG) synthesis. Therefore, the aim of this study is to confirm the link between high-glucose and UPS and its regulation mechanism on milk fat synthesis in BMEC (bovine mammary epithelial cells). We incubated BMEC with normal (17.5 mm/L) and high-glucose (25 mm/L) with and without proteasome inhibitor epoxomicin and found that, compared with the control (normal glucose and without proteasome inhibitor), both high-glucose concentration and proteasome inhibitor epoxomicin could increase the accumulation of TG and poly-ubiquitinated proteins, and reduce significantly three proteasome activities (chymotrypsin-like, caspase-like, and trypsin-like). In addition, high-glucose concentration combined with proteasome inhibitor further enhanced the increase of the poly-ubiquitinated protein level and the decrease of proteasome activities. Our results suggest that the regulation of high-glucose on milk fat synthesis is mediated by UPS in BMEC, and high-glucose exposure could lead to a hypersensitization of BMEC to UPS inhibition which in turn results in increased milk fat synthesis. PMID:26231798

  2. Coupling histone homeostasis to centromere integrity via the ubiquitin-proteasome system

    PubMed Central

    2010-01-01

    In many eukaryotes, histone gene expression is regulated in a cell cycle-dependent manner, with a spike pattern at S phase. In fission yeast the GATA-type transcription factor Ams2 is required for transcriptional activation of all the core histone genes during S phase and Ams2 protein levels per se show concomitant periodic patterns. We have recently unveiled the molecular mechanisms underlying Ams2 fluctuation during the cell cycle. We have found that Ams2 stability varies during the cell cycle, and that the ubiquitin-proteasome pathway is responsible for Ams2 instability. Intriguingly, Ams2 proteolysis requires Hsk1-a Cdc7 homologue in fission yeast generally called Dbf4-dependent protein kinase (DDK)-and the SCF ubiquitin ligase containing the substrate receptor Pof3 F-box protein. Here, we discuss why histone synthesis has to occur only during S phase. Our results indicate that excess synthesis of core histones outside S phase results in deleterious effects on cell survival. In particular, functions of the centromere, in which the centromere-specific H3 variant CENP-A usually form centromeric nucleosomes, are greatly compromised. This defect is, at least in part, ascribable to abnormal incorporation of canonical histone H3 into these nucleosomes. Finally, we address the significance and potential implications of our work from an evolutionary point of view. PMID:20604974

  3. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer's Disease and Spinal Cord Injury.

    PubMed

    Gong, Bing; Radulovic, Miroslav; Figueiredo-Pereira, Maria E; Cardozo, Christopher

    2016-01-01

    The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer's disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick's disease and Down's syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions. PMID:26858599

  4. Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In skeletal muscle, transcript levels of proteins regulating the ubiquitin proteasome system (UPS) increase with atrophy and decrease with hypertrophy. Whether the same is true for heart muscle is not known. We set out to characterize the transcriptional profile of regulators of the UPS during atrop...

  5. The ubiquitin proteasome system in Caenorhabditis elegans and its regulation☆

    PubMed Central

    Papaevgeniou, Nikoletta; Chondrogianni, Niki

    2014-01-01

    Protein degradation constitutes a major cellular function that is responsible for maintenance of the normal cellular physiology either through the degradation of normal proteins or through the elimination of damaged proteins. The Ubiquitin–Proteasome System (UPS)1 is one of the main proteolytic systems that orchestrate protein degradation. Given that up- and down- regulation of the UPS system has been shown to occur in various normal (such as ageing) and pathological (such as neurodegenerative diseases) processes, the exogenous modulation of the UPS function and activity holds promise of (a) developing new therapeutic interventions against various diseases and (b) establishing strategies to maintain cellular homeostasis. Since the proteasome genes are evolutionarily conserved, their role can be dissected in simple model organisms, such as the nematode, Caenorhabditis elegans. In this review, we survey findings on the redox regulation of the UPS in C. elegans showing that the nematode is an instrumental tool in the identification of major players in the UPS pathway. Moreover, we specifically discuss UPS-related genes that have been modulated in the nematode and in human cells and have resulted in similar effects thus further exhibiting the value of this model in the study of the UPS. PMID:24563851

  6. Sequential posttranslational modifications regulate PKC degradation

    PubMed Central

    Wang, Yan; Wang, Yangbo; Zhang, Huijun; Gao, Yingwei; Huang, Chao; Zhou, Aiwu; Zhou, Yi; Li, Yong

    2016-01-01

    Cross-talk among different types of posttranslational modifications (PTMs) has emerged as an important regulatory mechanism for protein function. Here we elucidate a mechanism that controls PKCα stability via a sequential cascade of PTMs. We demonstrate that PKCα dephosphorylation decreases its sumoylation, which in turn promotes its ubiquitination and ultimately enhances its degradation via the ubiquitin-proteasome pathway. These findings provide a molecular explanation for the activation-induced down-regulation of PKC proteins. PMID:26564794

  7. Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin?

    PubMed Central

    Ross, Jaime M.; Olson, Lars; Coppotelli, Giuseppe

    2015-01-01

    Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, the proteome, and mitophagy, and mitochondrial dysfunction impairing cellular protein homeostasis by oxidative damage. Here, we review the current literature and argue that the interplay of the two systems should be considered in order to better understand the cellular dysfunction observed in ageing and age-related diseases. Such an approach may provide valuable insights into molecular mechanisms underlying the ageing process, and further discovery of treatments to counteract ageing and its associated diseases. Furthermore, we provide a hypothetical model for the heterogeneity described among individuals during ageing. PMID:26287188

  8. Search for Inhibitors of the Ubiquitin-Proteasome System from Natural Sources for Cancer Therapy.

    PubMed

    Tsukamoto, Sachiko

    2016-01-01

    Since the approval of the proteasome inhibitor, Velcade(®), by the Food and Drug Administration (FDA) for the treatment of relapsed multiple myeloma, inhibitors of the ubiquitin-proteasome system have been attracting increasing attention as promising drug leads for cancer therapy. While the development of drugs for diseases related to this proteolytic system has mainly been achieved by searching libraries of synthetic small molecules or chemical modifications to drug leads, limited searches have been conducted on natural sources. We have been searching natural sources for inhibitors that target this proteolytic system through in-house screening. Our recent studies on the search for natural inhibitors of the ubiquitin-proteasome system, particularly, inhibitors against the proteasome, E1 enzyme (Uba1), E2 enzyme (Ubc13-Uev1A heterodimer), and E3 enzyme (Hdm2), and also those against deubiquitinating enzyme (USP7), are reviewed here. PMID:26833439

  9. Reproductive Cytotoxicity Is Predicted by Magnetic Resonance Microscopy and Confirmed by Ubiquitin Proteasome Immunohistochemistry in a Theophylline-Induced Model of Rat Testicular and Epididymal Toxicity

    NASA Astrophysics Data System (ADS)

    Tengowski, M. W.; Sutovsky, P.; Hedlund, L. W.; Guyot, D. J.; Burkhardt, J. E.; Thompson, W. E.; Sutovsky, M.; Johnson, G. A.

    2005-08-01

    This study investigated the testicular changes in the rat induced by the nonspecific phosphodiesterase inhibitor, theophylline using magnetic resonance microscopy (MRM) and ubiquitin immunostaining techniques. In vivo T1- and T2-weighted images were acquired at 2 T under anesthesia. Increased signal observed in the theophylline-treated rats suggests that leakage of MRM contrast was occurring. In vivo MRM results indicate that day 16 testis displayed an increased T1-weighted water signal in the area of the seminiferous tubule that decreased by day 32. These findings were validated by histopathology, suggesting that in vivo MRM has the sensitivity to predict changes in testis and epididymal tissues. The participation of the ubiquitin system was investigated, using probes for various markers of the ubiquitin-proteasome pathway. MRM can be used to detect subtle changes in the vascular perfusion of organ systems, and the up-regulation/mobilization of ubiquitin-proteasome pathway may be one of the mechanisms used in theophylline-treated epididymis to remove damaged cells before storage in the cauda epididymis. The combined use of in vivo MRM and subsequent tissue or seminal analysis for the presence of ubiquitin in longitudinal studies may become an important biomarker for assessing testis toxicities drug studies.

  10. SIAH-1 interacts with alpha-tubulin and degrades the kinesin Kid by the proteasome pathway during mitosis.

    PubMed

    Germani, A; Bruzzoni-Giovanelli, H; Fellous, A; Gisselbrecht, S; Varin-Blank, N; Calvo, F

    2000-12-01

    SIAH-1, a human homologue of the Drosophila seven in absentia (Sina), has been implicated in ubiquitin-mediated proteolysis of different target proteins through its N-terminal RING finger domain. SIAH-1 is also induced during p53-mediated apoptosis. Furthermore, SIAH-1-transfected breast cancer cell line MCF-7 exhibits an altered mitotic process resulting in multinucleated giant cells. Now, using the two-hybrid system, we identified two new SIAH interacting proteins: Kid (kinesin like DNA binding protein) and alpha-tubulin. We demonstrate that SIAH is involved in the degradation of Kid via the ubiquitin-proteasome pathway. Our results suggest that SIAH-1 but not its N-terminal deletion mutant, affects the mitosis by an enhanced reduction of kinesin levels. Our results imply, for the first time, SIAH-1 in regulating the degradation of proteins directly implicated in the mitotic process. PMID:11146551

  11. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans

    PubMed Central

    Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai

    2016-01-01

    Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates. DOI: http://dx.doi.org/10.7554/eLife.12821.001 PMID:26952214

  12. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system

    PubMed Central

    Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying

    2015-01-01

    Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394

  13. Reactive center loop moiety is essential for the maspin activity on cellular invasion and ubiquitin-proteasome level.

    PubMed

    Khanaree, Chakkrit; Chairatvit, Kongthawat; Roytrakul, Sittiruk; Wongnoppavich, Ariyaphong

    2013-01-01

    Maspin, a tumor suppressor (SERPINB5), inhibits cancer migration, invasion, and metastasis in vitro and in vivo. The tumor-suppressing effects of maspin depend in part on its ability to enhance cell adhesion to extracellular matrix. Although the molecular mechanism of maspin's action is still unclear, its functional domain is believed to be located at the reactive center loop (RCL). We have elucidated the role of maspin RCL on adhesion, migration, and invasion by transfecting the highly invasive human breast carcinoma MDA-MB-231 cell line with pcDNA3.1-His/FLAG containing wild-type maspin, ovalbumin, or maspin/ovalbumin RCL chimeric mutants in which maspin RCL is replaced by ovalbumin (MOM) and vice versa (OMO). MDA-MB-231 cells transfected with maspin- or OMO-containing recombinant expression plasmid manifested significant increase in adhesion to fibronectin and reduction in in vitro migration and invasion through Matrigel compared with mock transfection or cells transfected with ovalbumin or MOM. Proteomics analysis of maspin- or OMO-transfected MDA-MB-231 cells revealed reduction in contents of proteins known to promote cancer metastasis and those of ubiquitin-proteasome pathway, while those with tumor-suppressing properties were increased. Furthermore, MDA-MB-231 cells containing maspin or OMO transgene have significantly higher levels of ubiquitin and ubiquitinated conjugates, but reduced 20S proteasome chymotrypsin-like activity. These results clearly demonstrate that the tumor-suppressive properties of maspin reside in its RCL domain. PMID:23924927

  14. Replication of the Rotavirus Genome Requires an Active Ubiquitin-Proteasome System▿

    PubMed Central

    López, Tomás; Silva-Ayala, Daniela; López, Susana; Arias, Carlos F.

    2011-01-01

    Here we show that the ubiquitin-proteasome system is required for the efficient replication of rotavirus RRV in MA104 cells. The proteasome inhibitor MG132 decreased the yield of infectious virus under conditions where it severely reduces the synthesis of not only viral but also cellular proteins. Addition of nonessential amino acids to the cell medium restored both viral protein synthesis and cellular protein synthesis, but the production of progeny viruses was still inhibited. In medium supplemented with nonessential amino acids, we showed that MG132 does not affect rotavirus entry but inhibits the replication of the viral genome. It was also shown that it prevents the efficient incorporation into viroplasms of viral polymerase VP1 and the capsid proteins VP2 and VP6, which could explain the inhibitory effect of MG132 on genome replication and infectious virus yield. We also showed that ubiquitination is relevant for rotavirus replication since the yield of rotavirus progeny in cells carrying a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme was reduced at the restrictive temperature. In addition, overexpression of ubiquitin in MG132-treated MA104 cells partially reversed the effect of the inhibitor on virus yield. Altogether, these data suggest that the ubiquitin-proteasome (UP) system has a very complex interaction with the rotavirus life cycle, with both the ubiquitination and proteolytic activities of the system being relevant for virus replication. PMID:21900156

  15. Mechanisms Stimulating Muscle Wasting in Chronic Kidney Disease: The Roles of the Ubiquitin-Proteasome System and Myostatin

    PubMed Central

    Thomas, Sandhya S.; Mitch, William E.

    2013-01-01

    Catabolic conditions including chronic kidney disease (CKD), cancer, and diabetes cause muscle atrophy. The loss of muscle mass worsens the burden of disease because it is associated with increased morbidity and mortality. To avoid these problems or to develop treatment strategies, the mechanisms leading to muscle wasting must be identified. Specific mechanisms uncovered in CKD generally occur in other catabolic conditions. These include stimulation of protein degradation in muscle arising from activation of caspase-3 and the ubiquitin-proteasome system (UPS). These proteases act in a coordinated fashion with caspase-3 initially cleaving the complex structure of proteins in muscle yielding fragments that are substrates which are degraded by the UPS. Fortunately, the UPS exhibits remarkable specificity for proteins to be degraded because it is the major intracellular proteolytic system. Without a high level of specificity cellular functions would be disrupted. The specificity is accomplished by complex reactions that depend on recognition of a protein substrate by specific E3 ubiquitin ligases. In muscle, the specific ligases are Atrogin-1 and MuRF1 and their expression has characteristics of a biomarker of accelerated muscle proteolysis. Specific complications of CKD (metabolic acidosis, insulin resistance, inflammation, and angiotensin II) activate caspase-3 and the UPS through mechanisms that include glucocorticoids and impaired insulin or IGF-1 signaling. Mediators activate myostatin which functions as a negative growth factor in muscle. In models of cancer or CKD, strategies that block myostatin prevent muscle wasting suggesting that therapies which block myostatin could prevent muscle wasting in catabolic conditions. PMID:23292175

  16. Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis

    PubMed Central

    Kraus, William E.; Muoio, Deborah M.; Stevens, Robert; Craig, Damian; Bain, James R.; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H.; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R.; Gregory, Simon G.; Newgard, Christopher B.; Shah, Svati H.

    2015-01-01

    Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6–2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk. PMID:26540294

  17. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer’s Disease and Spinal Cord Injury

    PubMed Central

    Gong, Bing; Radulovic, Miroslav; Figueiredo-Pereira, Maria E.; Cardozo, Christopher

    2016-01-01

    The ubiquitin-proteasome system (UPS) is a crucial protein degradation system in eukaryotes. Herein, we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer’s disease (AD) and functional recovery after spinal cord injury (SCI). The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase (Uch-L1) has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aβ accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates β-secretase thus targeting it for proteasomal degradation and reducing generation of Aβ. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick’s disease and Down’s syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions. PMID:26858599

  18. BRK Targets Dok1 for Ubiquitin-Mediated Proteasomal Degradation to Promote Cell Proliferation and Migration

    PubMed Central

    Miah, Sayem; Goel, Raghuveera Kumar; Dai, Chenlu; Kalra, Natasha; Beaton-Brown, Erika; Bagu, Edward T.; Bonham, Keith; Lukong, Kiven E.

    2014-01-01

    Breast tumor kinase (BRK), also known as protein tyrosine kinase 6 (PTK6), is a non-receptor tyrosine kinase overexpressed in more that 60% of human breast carcinomas. The overexpression of BRK has been shown to sensitize mammary epithelial cells to mitogenic signaling and to promote cell proliferation and tumor formation. The molecular mechanisms of BRK have been unveiled by the identification and characterization of BRK target proteins. Downstream of tyrosine kinases 1 or Dok1 is a scaffolding protein and a substrate of several tyrosine kinases. Herein we show that BRK interacts with and phosphorylates Dok1 specifically on Y362. We demonstrate that this phosphorylation by BRK significantly downregulates Dok1 in a ubiquitin-proteasome-mediated mechanism. Together, these results suggest a novel mechanism of action of BRK in the promotion of tumor formation, which involves the targeting of tumor suppressor Dok1 for degradation through the ubiquitin proteasomal pathway. PMID:24523872

  19. The Ubiquitin-Proteasome System Plays an Important Role during Various Stages of the Coronavirus Infection Cycle ▿

    PubMed Central

    Raaben, Matthijs; Posthuma, Clara C.; Verheije, Monique H.; te Lintelo, Eddie G.; Kikkert, Marjolein; Drijfhout, Jan W.; Snijder, Eric J.; Rottier, Peter J. M.; de Haan, Cornelis A. M.

    2010-01-01

    The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2α. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection. PMID:20484504

  20. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin.

    PubMed

    Liebl, Martina P; Hoppe, Thorsten

    2016-08-01

    Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases. PMID:27225656

  1. Protein Degradation Pathways Regulate the Functions of Helicases in the DNA Damage Response and Maintenance of Genomic Stability

    PubMed Central

    Sommers, Joshua A.; Suhasini, Avvaru N.; Brosh, Robert M.

    2015-01-01

    Degradation of helicases or helicase-like proteins, often mediated by ubiquitin-proteasomal pathways, plays important regulatory roles in cellular mechanisms that respond to DNA damage or replication stress. The Bloom’s syndrome helicase (BLM) provides an example of how helicase degradation pathways, regulated by post-translational modifications and protein interactions with components of the Fanconi Anemia (FA) interstrand cross-link (ICL) repair pathway, influence cell cycle checkpoints, DNA repair, and replication restart. The FANCM DNA translocase can be targeted by checkpoint kinases that exert dramatic effects on FANCM stability and chromosomal integrity. Other work provides evidence that degradation of the F-box DNA helicase (FBH1) helps to balance translesion synthesis (TLS) and homologous recombination (HR) repair at blocked replication forks. Degradation of the helicase-like transcription factor (HLTF), a DNA translocase and ubiquitylating enzyme, influences the choice of post replication repair (PRR) pathway. Stability of the Werner syndrome helicase-nuclease (WRN) involved in the replication stress response is regulated by its acetylation. Turning to transcription, stability of the Cockayne Syndrome Group B DNA translocase (CSB) implicated in transcription-coupled repair (TCR) is regulated by a CSA ubiquitin ligase complex enabling recovery of RNA synthesis. Collectively, these studies demonstrate that helicases can be targeted for degradation to maintain genome homeostasis. PMID:25906194

  2. Cereblon is recruited to aggresome and shows cytoprotective effect against ubiquitin-proteasome system dysfunction.

    PubMed

    Sawamura, Naoya; Wakabayashi, Satoru; Matsumoto, Kodai; Yamada, Haruka; Asahi, Toru

    2015-09-01

    Cereblon (CRBN) is encoded by a candidate gene for autosomal recessive nonsyndromic intellectual disability (ID). The nonsense mutation, R419X, causes deletion of 24 amino acids at the C-terminus of CRBN, leading to mild ID. Although abnormal CRBN function may be associated with ID disease onset, its cellular mechanism is still unclear. Here, we examine the role of CRBN in aggresome formation and cytoprotection. In the presence of a proteasome inhibitor, exogenous CRBN formed perinuclear inclusions and co-localized with aggresome markers. Endogenous CRBN also formed perinuclear inclusions under the same condition. Treatment with a microtubule destabilizer or an inhibitor of the E3 ubiquitin ligase activity of CRBN blocked formation of CRBN inclusions. Biochemical analysis showed CRBN containing inclusions were high-molecular weight, ubiquitin-positive. CRBN overexpression in cultured cells suppressed cell death induced by proteasome inhibitor. Furthermore, knockdown of endogenous CRBN in cultured cells increased cell death induced by proteasome inhibitor, compared with control cells. Our results show CRBN is recruited to aggresome and has functional roles in cytoprotection against ubiquitin-proteasome system impaired condition. PMID:26188093

  3. The Ubiquitin Proteasome System Plays a Role in Venezuelan Equine Encephalitis Virus Infection

    PubMed Central

    Amaya, Moushimi; Keck, Forrest; Lindquist, Michael; Voss, Kelsey; Scavone, Lauren; Kehn-Hall, Kylene; Roberts, Brian; Bailey, Charles; Schmaljohn, Connie; Narayanan, Aarthi

    2015-01-01

    Many viruses have been implicated in utilizing or modulating the Ubiquitin Proteasome System (UPS) to enhance viral multiplication and/or to sustain a persistent infection. The mosquito-borne Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is an important biodefense pathogen and select agent. There are currently no approved vaccines or therapies for VEEV infections; therefore, it is imperative to identify novel targets for therapeutic development. We hypothesized that a functional UPS is required for efficient VEEV multiplication. We have shown that at non-toxic concentrations Bortezomib, a FDA-approved inhibitor of the proteasome, proved to be a potent inhibitor of VEEV multiplication in the human astrocytoma cell line U87MG. Bortezomib inhibited the virulent Trinidad donkey (TrD) strain and the attenuated TC-83 strain of VEEV. Additional studies with virulent strains of Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus (WEEV) demonstrated that Bortezomib is a broad spectrum inhibitor of the New World alphaviruses. Time-of-addition assays showed that Bortezomib was an effective inhibitor of viral multiplication even when the drug was introduced many hours post exposure to the virus. Mass spectrometry analyses indicated that the VEEV capsid protein is ubiquitinated in infected cells, which was validated by confocal microscopy and immunoprecipitation assays. Subsequent studies revealed that capsid is ubiquitinated on K48 during early stages of infection which was affected by Bortezomib treatment. This study will aid future investigations in identifying host proteins as potential broad spectrum therapeutic targets for treating alphavirus infections. PMID:25927990

  4. Contribution of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems to total proteolysis in rainbow trout (Oncorhynchus mykiss) myotubes.

    PubMed

    Seiliez, Iban; Dias, Karine; Cleveland, Beth M

    2014-12-01

    The ubiquitin-proteasome system (UPS) is recognized as the major contributor to total proteolysis in mammalian skeletal muscle, responsible for 50% or more of total protein degradation in skeletal muscle, whereas the autophagic-lysosome system (ALS) plays a more minor role. While the relative contribution of these systems to muscle loss is well documented in mammals, little is known in fish species. The current study uses myotubes derived from rainbow trout myogenic precursor cells as an in vitro model of white muscle tissue. Cells were incubated in complete or serum-deprived media or media supplemented with insulin-like growth factor-1 (IGF-1) and exposed to selective proteolytic inhibitors to determine the relative contribution of the ALS and UPS to total protein degradation in myotubes in different culture conditions. Results indicate that the ALS is responsible for 30-34% and 50% of total protein degradation in myotubes in complete and serum-deprived media, respectively. The UPS appears to contribute much less to total protein degradation at almost 4% in cells in complete media to nearly 17% in serum-deprived cells. IGF-1 decreases activity of both systems, as it inhibited the upregulation of both proteolytic systems induced by serum deprivation. The combined inhibition of both the ALS and UPS reduced degradation by a maximum of 55% in serum-deprived cells, suggesting an important contribution of other proteolytic systems to total protein degradation. Collectively, these data identify the ALS as a potential target for strategies aimed at improving muscle protein retention and fillet yield through reductions in protein degradation. PMID:25274907

  5. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways.

    PubMed

    Ahner, Annette; Gong, Xiaoyan; Frizzell, Raymond A

    2013-09-01

    Defining the significant checkpoints in cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis should identify targets for therapeutic intervention with CFTR folding mutants such as F508del. Although the role of ubiquitylation and the ubiquitin proteasome system is well established in the degradation of this common CFTR mutant, the part played by SUMOylation is a novel aspect of CFTR biogenesis/quality control. We identified this post-translational modification of CFTR as resulting from its interaction with small heat shock proteins (Hsps), which were found to selectively facilitate the degradation of F508del through a physical interaction with the SUMO (small ubiquitin-like modifier) E2 enzyme, Ubc9. Hsp27 promoted the SUMOylation of mutant CFTR by the SUMO-2 paralogue, which can form poly-chains. Poly-SUMO chains are then recognized by the SUMO-targeted ubiquitin ligase, RNF4, which elicited F508del degradation in a Hsp27-dependent manner. This work identifies a sequential connection between the SUMO and ubiquitin modifications of the CFTR mutant: Hsp27-mediated SUMO-2 modification, followed by ubiquitylation via RNF4 and degradation of the mutant via the proteasome. Other examples of the intricate cross-talk between the SUMO and ubiquitin pathways are discussed with reference to other substrates; many of these are competitive and lead to different outcomes. It is reasonable to anticipate that further research on SUMO-ubiquitin pathway interactions will identify additional layers of complexity in the process of CFTR biogenesis and quality control. PMID:23809253

  6. Unfolded Protein Response and Activated Degradative Pathways Regulation in GNE Myopathy

    PubMed Central

    Li, Honghao; Chen, Qi; Liu, Fuchen; Zhang, Xuemei; Li, Wei; Liu, Shuping; Zhao, Yuying; Gong, Yaoqin; Yan, Chuanzhu

    2013-01-01

    Although intracellular beta amyloid (Aβ) accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP) deposition including unfolded protein response (UPR), ubiquitin proteasome system (UPS) activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau) and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94), glucose-regulated protein 78 (GRP78), calreticulin and calnexin and valosin containing protein (VCP) were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS) and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD) in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation. PMID:23472144

  7. cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons.

    PubMed

    Myeku, Natura; Wang, Hu; Figueiredo-Pereira, Maria E

    2012-10-11

    Proteasome impairment and accumulation of ubiquitinated proteins are implicated in neurodegeneration associated with different forms of spinal cord injury. We show herein that elevating cAMP in rat spinal cord neurons increases 26S proteasome activity in a protein kinase A-dependent manner. Treating spinal cord neurons with dibutyryl-cAMP (db-cAMP) also raised the levels of various components of the UPP including proteasome subunits Rpt6 and β5, polyubiquitin shuttling factor p62/sequestosome1, E3 ligase CHIP, AAA-ATPase p97 and the ubiquitin gene ubB. Finally, db-cAMP reduced the accumulation of ubiquitinated proteins, proteasome inhibition, and neurotoxicity triggered by the endogenous product of inflammation prostaglandin J2. We propose that optimizing the effects of cAMP/PKA-signaling on the UPP could offer an effective therapeutic approach to prevent UPP-related proteotoxicity in spinal cord neurons. PMID:22982149

  8. The N-end rule pathway catalyzes a major fraction of the protein degradation in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Solomon, V.; Lecker, S. H.; Goldberg, A. L.

    1998-01-01

    In skeletal muscle, overall protein degradation involves the ubiquitin-proteasome system. One property of a protein that leads to rapid ubiquitin-dependent degradation is the presence of a basic, acidic, or bulky hydrophobic residue at its N terminus. However, in normal cells, substrates for this N-end rule pathway, which involves ubiquitin carrier protein (E2) E214k and ubiquitin-protein ligase (E3) E3alpha, have remained unclear. Surprisingly, in soluble extracts of rabbit muscle, we found that competitive inhibitors of E3alpha markedly inhibited the 125I-ubiquitin conjugation and ATP-dependent degradation of endogenous proteins. These inhibitors appear to selectively inhibit E3alpha, since they blocked degradation of 125I-lysozyme, a model N-end rule substrate, but did not affect the degradation of proteins whose ubiquitination involved other E3s. The addition of several E2s or E3alpha to the muscle extracts stimulated overall proteolysis and ubiquitination, but only the stimulation by E3alpha or E214k was sensitive to these inhibitors. A similar general inhibition of ubiquitin conjugation to endogenous proteins was observed with a dominant negative inhibitor of E214k. Certain substrates of the N-end rule pathway are degraded after their tRNA-dependent arginylation. We found that adding RNase A to muscle extracts reduced the ATP-dependent proteolysis of endogenous proteins, and supplying tRNA partially restored this process. Finally, although in muscle extracts the N-end rule pathway catalyzes most ubiquitin conjugation, it makes only a minor contribution to overall protein ubiquitination in HeLa cell extracts.

  9. Contribution of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems to total proteolysis in rainbow trout (Oncorhynchus mykiss) myotubes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two major proteolytic systems are thought to (co-) operate in the skeletal muscle of vertebrates, the ubiquitin-proteasomal system (UPS) and the autophagic/lysosomal system (ALS). While their relative contribution to muscle loss has been already well documented in mammals, little is known in fish sp...

  10. Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats.

    PubMed

    de Andrade, Luiz Henrique Soares; de Moraes, Wilson Max Almeida Monteiro; Matsuo Junior, Eduardo Hiroshi; de Orleans Carvalho de Moura, Elizabeth; Antunes, Hanna Karen Moreira; Montemor, Jairo; Antonio, Ednei Luiz; Bocalini, Danilo Sales; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-04-01

    The activity of the ubiquitin proteasome system (UPS) and the level of oxidative stress contribute to the transition from compensated cardiac hypertrophy to heart failure in hypertension. Moreover, aerobic exercise training (AET) is an important therapy for the treatment of hypertension, but its effects on the UPS are not completely known. The aim of this study was to evaluate the effect of AET on UPS's activity and oxidative stress level in heart of spontaneously hypertensive rats (SHR). A total of 53 Wistar and SHR rats were randomly divided into sedentary and trained groups. The AET protocol was 5×/week in treadmill for 13 weeks. Exercise tolerance test, non-invasive blood pressure measurement, echocardiographic analyses, and left ventricle hemodynamics were performed during experimental period. The expression of ubiquitinated proteins, 4-hydroxynonenal (4-HNE), Akt, phospho-Akt(ser473), GSK3β, and phospho-GSK3β(ser9) were analyzed by western blotting. The evaluation of lipid hydroperoxide concentration was performed using the xylenol orange method, and the proteasomal chymotrypsin-like activity was measured by fluorimetric assay. Sedentary hypertensive group presented cardiac hypertrophy, unaltered expression of total Akt, phospho-Akt, total GSK3β and phospho-GSK3β, UPS hyperactivity, increased lipid hydroperoxidation as well as elevated expression of 4-HNE but normal cardiac function. In contrast, AET significantly increased exercise tolerance, decreased resting systolic blood pressure and heart rate in hypertensive animals. In addition, the AET increased phospho-Akt expression, decreased phospho-GSK3β, and did not alter the expression of total Akt, total GSK3β, and ubiquitinated proteins, however, significantly attenuated 4-HNE levels, lipid hydroperoxidation, and UPS's activity toward normotensive group levels. Our results provide evidence for the main effect of AET on attenuating cardiac ubiquitin proteasome hyperactivity and oxidative stress in SHR

  11. FBG1 Is the Final Arbitrator of A1AT-Z Degradation

    PubMed Central

    Wen, John H.; Wen, Hsiang; Gibson-Corley, Katherine N.; Glenn, Kevin A.

    2015-01-01

    Alpha-1 antitrypsin deficiency is the leading cause of childhood liver failure and one of the most common lethal genetic diseases. The disease-causing mutant A1AT-Z fails to fold correctly and accumulates in the endoplasmic reticulum (ER) of the liver, resulting in hepatic fibrosis and hepatocellular carcinoma in a subset of patients. Furthermore, A1AT-Z sequestration in hepatocytes leads to a reduction in A1AT secretion into the serum, causing panacinar emphysema in adults. The purpose of this work was to elucidate the details by which A1AT-Z is degraded in hepatic cell lines. We identified the ubiquitin ligase FBG1, which has been previously shown to degrade proteins by both the ubiquitin proteasome pathway and autophagy, as being key to A1AT-Z degradation. Using chemical and genetic approaches we show that FBG1 degrades A1AT-Z through both the ubiquitin proteasome system and autophagy. Overexpression of FBG1 decreases the half-life of A1AT-Z and knocking down FBG1 in a hepatic cell line, and in mice results in an increase in ATAT. Finally, we show that FBG1 degrades A1AT-Z through a Beclin1-dependent arm of autophagy. In our model, FBG1 acts as a safety ubiquitin ligase, whose function is to re-ubiquitinate ER proteins that have previously undergone de-ubiquitination to ensure they are degraded. PMID:26295339

  12. KLHL20 links the ubiquitin-proteasome system to autophagy termination.

    PubMed

    Liu, Chin-Chih; Chen, Ruey-Hwa

    2016-05-01

    Autophagy is a dynamic and self-limiting process. The amplitude and duration of this process need to be properly controlled to maintain cell homeostasis, and excessive or insufficient autophagy activity could each lead to disease states. Compared to our understanding of the molecular mechanisms of autophagy induction, little is known about how the autophagy process is turned off after its activation. We recently identified KLHL20 as a key regulator of autophagy termination. By functioning as a substrate-binding subunit of CUL3 ubiquitin ligase, KLHL20 targets the activated ULK1 and phagophore-residing PIK3C3/VPS34 and BECN1 for ubiquitination and proteasomal degradation, which in turn triggers a destabilization of their complex components ATG13 and ATG14. These hierarchical degradation events cause the exhaustion of the autophagic pool of ULK1 and PIK3C3/VPS34 complexes, thereby preventing persistent and excessive autophagy activity. Impairment of KLHL20-dependent feedback regulation of autophagy enhances cell death under prolonged starvation and aggravates muscle atrophy in diabetic mice, which highlights the pathophysiological significance of this autophagy termination mechanism in cell survival and tissue homeostasis. Modulation of this autophagy termination pathway may be effective for treating diseases associated with deregulation of autophagy activity. PMID:26985984

  13. Activation Domain-dependent Degradation of Somatic Wee1 Kinase*

    PubMed Central

    Owens, Laura; Simanski, Scott; Squire, Christopher; Smith, Anthony; Cartzendafner, Jeff; Cavett, Valerie; Caldwell Busby, Jennifer; Sato, Trey; Ayad, Nagi G.

    2010-01-01

    Cell cycle progression is dependent upon coordinate regulation of kinase and proteolytic pathways. Inhibitors of cell cycle transitions are degraded to allow progression into the subsequent cell cycle phase. For example, the tyrosine kinase and Cdk1 inhibitor Wee1 is degraded during G2 and mitosis to allow mitotic progression. Previous studies suggested that the N terminus of Wee1 directs Wee1 destruction. Using a chemical mutagenesis strategy, we report that multiple regions of Wee1 control its destruction. Most notably, we find that the activation domain of the Wee1 kinase is also required for its degradation. Mutations in this domain inhibit Wee1 degradation in somatic cell extracts and in cells without affecting the overall Wee1 structure or kinase activity. More broadly, these findings suggest that kinase activation domains may be previously unappreciated sites of recognition by the ubiquitin proteasome pathway. PMID:20038582

  14. Degradation-mediated protein quality control at the inner nuclear membrane

    PubMed Central

    Boban, Mirta; Foisner, Roland

    2016-01-01

    abstract An intricate machinery protects cells from the accumulation of misfolded, non-functional proteins and protein aggregates. Protein quality control pathways have been best described in the cytoplasm and the endoplasmic reticulum, however, recent findings indicate that the nucleus is also an important compartment for protein quality control. Several nuclear ubiquitinylation pathways target soluble and membrane proteins in the nucleus and mediate their degradation through nuclear proteasomes. In addition, emerging data suggest that nuclear envelope components are also degraded by autophagy, although the mechanisms by which cytoplasmic autophagy machineries get access to nuclear targets remain unclear. In this minireview we summarize the nuclear ubiquitin-proteasome pathways in yeast, focusing on pathways involved in the protein degradation at the inner nuclear membrane. In addition, we discuss potential mechanisms how nuclear targets at the nuclear envelope may be delivered to the cytoplasmic autophagy pathways in yeast and mammals. PMID:26760377

  15. Acute ER stress regulates amyloid precursor protein processing through ubiquitin-dependent degradation.

    PubMed

    Jung, Eun Sun; Hong, HyunSeok; Kim, Chaeyoung; Mook-Jung, Inhee

    2015-01-01

    Beta-amyloid (Aβ), a major pathological hallmark of Alzheimer's disease (AD), is derived from amyloid precursor protein (APP) through sequential cleavage by β-secretase and γ-secretase enzymes. APP is an integral membrane protein, and plays a key role in the pathogenesis of AD; however, the biological function of APP is still unclear. The present study shows that APP is rapidly degraded by the ubiquitin-proteasome system (UPS) in the CHO cell line in response to endoplasmic reticulum (ER) stress, such as calcium ionophore, A23187, induced calcium influx. Increased levels of intracellular calcium by A23187 induces polyubiquitination of APP, causing its degradation. A23187-induced reduction of APP is prevented by the proteasome inhibitor MG132. Furthermore, an increase in levels of the endoplasmic reticulum-associated degradation (ERAD) marker, E3 ubiquitin ligase HRD1, proteasome activity, and decreased levels of the deubiquitinating enzyme USP25 were observed during ER stress. In addition, we found that APP interacts with USP25. These findings suggest that acute ER stress induces degradation of full-length APP via the ubiquitin-proteasome proteolytic pathway. PMID:25740315

  16. Proteomic Profiling of Cranial (Superior) Cervical Ganglia Reveals Beta-Amyloid and Ubiquitin Proteasome System Perturbations in an Equine Multiple System Neuropathy*

    PubMed Central

    McGorum, Bruce C.; Pirie, R. Scott; Eaton, Samantha L.; Keen, John A.; Cumyn, Elizabeth M.; Arnott, Danielle M.; Chen, Wenzhang; Lamont, Douglas J.; Graham, Laura C.; Llavero Hurtado, Maica; Pemberton, Alan; Wishart, Thomas M.

    2015-01-01

    Equine grass sickness (EGS) is an acute, predominantly fatal, multiple system neuropathy of grazing horses with reported incidence rates of ∼2%. An apparently identical disease occurs in multiple species, including but not limited to cats, dogs, and rabbits. Although the precise etiology remains unclear, ultrastructural findings have suggested that the primary lesion lies in the glycoprotein biosynthetic pathway of specific neuronal populations. The goal of this study was therefore to identify the molecular processes underpinning neurodegeneration in EGS. Here, we use a bottom-up approach beginning with the application of modern proteomic tools to the analysis of cranial (superior) cervical ganglion (CCG, a consistently affected tissue) from EGS-affected patients and appropriate control cases postmortem. In what appears to be the proteomic application of modern proteomic tools to equine neuronal tissues and/or to an inherent neurodegenerative disease of large animals (not a model of human disease), we identified 2,311 proteins in CCG extracts, with 320 proteins increased and 186 decreased by greater than 20% relative to controls. Further examination of selected proteomic candidates by quantitative fluorescent Western blotting (QFWB) and subcellular expression profiling by immunohistochemistry highlighted a previously unreported dysregulation in proteins commonly associated with protein misfolding/aggregation responses seen in a myriad of human neurodegenerative conditions, including but not limited to amyloid precursor protein (APP), microtubule associated protein (Tau), and multiple components of the ubiquitin proteasome system (UPS). Differentially expressed proteins eligible for in silico pathway analysis clustered predominantly into the following biofunctions: (1) diseases and disorders, including; neurological disease and skeletal and muscular disorders and (2) molecular and cellular functions, including cellular assembly and organization, cell

  17. Proteomic Profiling of Cranial (Superior) Cervical Ganglia Reveals Beta-Amyloid and Ubiquitin Proteasome System Perturbations in an Equine Multiple System Neuropathy.

    PubMed

    McGorum, Bruce C; Pirie, R Scott; Eaton, Samantha L; Keen, John A; Cumyn, Elizabeth M; Arnott, Danielle M; Chen, Wenzhang; Lamont, Douglas J; Graham, Laura C; Llavero Hurtado, Maica; Pemberton, Alan; Wishart, Thomas M

    2015-11-01

    Equine grass sickness (EGS) is an acute, predominantly fatal, multiple system neuropathy of grazing horses with reported incidence rates of ∼2%. An apparently identical disease occurs in multiple species, including but not limited to cats, dogs, and rabbits. Although the precise etiology remains unclear, ultrastructural findings have suggested that the primary lesion lies in the glycoprotein biosynthetic pathway of specific neuronal populations. The goal of this study was therefore to identify the molecular processes underpinning neurodegeneration in EGS. Here, we use a bottom-up approach beginning with the application of modern proteomic tools to the analysis of cranial (superior) cervical ganglion (CCG, a consistently affected tissue) from EGS-affected patients and appropriate control cases postmortem. In what appears to be the proteomic application of modern proteomic tools to equine neuronal tissues and/or to an inherent neurodegenerative disease of large animals (not a model of human disease), we identified 2,311 proteins in CCG extracts, with 320 proteins increased and 186 decreased by greater than 20% relative to controls. Further examination of selected proteomic candidates by quantitative fluorescent Western blotting (QFWB) and subcellular expression profiling by immunohistochemistry highlighted a previously unreported dysregulation in proteins commonly associated with protein misfolding/aggregation responses seen in a myriad of human neurodegenerative conditions, including but not limited to amyloid precursor protein (APP), microtubule associated protein (Tau), and multiple components of the ubiquitin proteasome system (UPS). Differentially expressed proteins eligible for in silico pathway analysis clustered predominantly into the following biofunctions: (1) diseases and disorders, including; neurological disease and skeletal and muscular disorders and (2) molecular and cellular functions, including cellular assembly and organization, cell

  18. Phosphorylation of Kif26b promotes its polyubiquitination and subsequent proteasomal degradation during kidney development.

    PubMed

    Terabayashi, Takeshi; Sakaguchi, Masaji; Shinmyozu, Kaori; Ohshima, Toshio; Johjima, Ai; Ogura, Teru; Miki, Hiroaki; Nishinakamura, Ryuichi

    2012-01-01

    Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development. PMID:22768111

  19. Role of Ubiquitin-Mediated Degradation System in Plant Biology.

    PubMed

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K; Gupta, Aditya K; Bhatt, Tarun K

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  20. Role of Ubiquitin-Mediated Degradation System in Plant Biology

    PubMed Central

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K.; Gupta, Aditya K.; Bhatt, Tarun K.

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  1. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway.

    PubMed

    Ahner, Annette; Gong, Xiaoyan; Schmidt, Bela Z; Peters, Kathryn W; Rabeh, Wael M; Thibodeau, Patrick H; Lukacs, Gergely L; Frizzell, Raymond A

    2013-01-01

    Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27's ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4's impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin-proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein. PMID:23155000

  2. Human Cytomegalovirus UL76 Elicits Novel Aggresome Formation via Interaction with S5a of the Ubiquitin Proteasome System

    PubMed Central

    Lin, Shin-Rung; Jiang, Meei Jyh; Wang, Hung-Hsueh; Hu, Cheng-Hui; Hsu, Ming-Shan; Hsi, Edward; Duh, Chang-Yih

    2013-01-01

    HCMV UL76 is a member of a conserved Herpesviridae protein family (Herpes_UL24) that is involved in viral production, latency, and reactivation. UL76 presents as globular aggresomes in the nuclei of transiently transfected cells. Bioinformatic analyses predict that UL76 has a propensity for aggregation and targets cellular proteins implicated in protein folding and ubiquitin-proteasome systems (UPS). Furthermore, fluorescence recovery after photobleaching experiments suggests that UL76 reduces protein mobility in the aggresome, which indicates that UL76 elicits the aggregation of misfolded proteins. Moreover, in the absence of other viral proteins, UL76 interacts with S5a, which is a major receptor of polyubiquitinated proteins for UPS proteolysis via its conserved region and the von Willebrand factor type A (VWA) domain of S5a. We demonstrate that UL76 sequesters polyubiquitinated proteins and S5a to nuclear aggresomes in biological proximity. After knockdown of endogenous S5a by RNA interference techniques, the UL76 level was only minimally affected in transiently expressing cells. However, a significant reduction in the number of cells containing UL76 nuclear aggresomes was observed, which suggests that S5a may play a key role in aggresome formation. Moreover, we show that UL76 interacts with S5a in the late phase of viral infection and that knockdown of S5a hinders the development of both the replication compartment and the aggresome. In this study, we demonstrate that UL76 induces a novel nuclear aggresome, likely by subverting S5a of the UPS. Given that UL76 belongs to a conserved family, this underlying mechanism may be shared by all members of the Herpesviridae. PMID:23966401

  3. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system.

    PubMed

    Shruthi, Karnam; Reddy, S Sreenivasa; Reddy, P Yadagiri; Shivalingam, Potula; Harishankar, Nemani; Reddy, G Bhanuprakash

    2016-07-01

    Dietary restriction (DR) has been shown to increase longevity, delay onset of aging, reduce DNA damage and oxidative stress and prevent age-related decline of neuronal activity. We previously reported the role of altered ubiquitin proteasome system (UPS) in the neuronal cell death in a spontaneous obese rat model (WNIN/Ob rat). In this study, we investigated the effect of DR on obesity-induced neuronal cell death in a rat model. Two groups of 40-day-old WNIN/Ob rats were either fed ad libitum (Ob) or pair-fed with lean. The lean phenotype of WNIN/Ob rats served as ad libitum control. These animals were maintained for 6.5months on their respective diet regime. At the end of the study, cerebral cortex was collected and markers of UPS, endoplasmic reticulum (ER) stress and autophagy were analyzed by quantitative real-time polymerase chain reaction, immunoblotting and immunohistochemistry. Chymotrypsin-like activity of proteasome was assayed by the fluorimetric method. Apoptotic cells were analyzed by TUNEL assay. DR improved metabolic abnormalities in obese rats. Alterations in UPS (up-regulation of UCHL1, down-regulation of UCHL5, declined proteasomal activity), increased ER stress, declined autophagy and increased expression of α-synuclein, p53 and BAX were observed in obese rats and DR alleviated these changes in obese rats. Further, DR decreased TUNEL-positive cells. In conclusion, DR in obese rats could not only restore the metabolic abnormalities but also preserved neuronal health in the cerebral cortex by preventing alterations in the UPS. PMID:27260470

  4. The COP9 signalosome coerces autophagy and the ubiquitin-proteasome system to police the heart.

    PubMed

    Liu, Jinbao; Su, Huabo; Wang, Xuejun

    2016-03-01

    We demonstrated for the first time that the COP9 signalosome (COPS) controls the degradation of a surrogate and a bona fide misfolded protein in the cytosol of cardiomyocytes likely via supporting ubiquitination by CUL/cullin-RING ligases, and that Cops8 hypomorphism exacerbates cardiac proteinopathy in mice, in which autophagic impairment appears to be in play. It will be extremely imprtant to investigate cardiac ablation of another Cops gene to decipher whether COPS8 deficiency phenotypes are attributable to the COPS or unique to COPS8. PMID:26760900

  5. Atypical ubiquitination by E3 ligase WWP1 inhibits the proteasome-mediated degradation of mutant huntingtin.

    PubMed

    Lin, Li; Jin, Zhenzhen; Tan, Huiping; Xu, Qiaoqiao; Peng, Ting; Li, He

    2016-07-15

    Huntington's disease (HD) is caused by the expansion of CAG trinucleotide repeats in exon 1 of HD gene encoding huntingtin (Htt), which is characterized by aggregation and formation of mutant Htt containing expanded polyglutamine (polyQ) repeats. Dysfunction of the ubiquitin-proteasome system (UPS) plays a critical role in the pathogenesis of HD. As the linkage mediator between ubiquitin and specific target proteins, E3 ubiquitin ligases have been suggested to be involved in mHtt degradation and HD pathology. However, the potential involvement of the E3 ligase WWP1 in HD has not been explored. The present study determined whether WWP1 is involved in the development of HD in both in vivo and in vitro models. The results showed that in contrast to several other E3 ligases, expression of WWP1 is enhanced in mice and N2a cells expressing mutant Htt (160Q) and co-localized with mHtt protein aggregates. In addition, expression of WWP1 positively regulates mutan Htt levels, aggregate formation, and cell toxicity. Further analysis revealed that WWP1 ubiquitinated mHtt at an atypical position of Lys-63, which may have inhibited degradation of mutant Htt through the ubiquitin-proteasome pathway. In conclusion, these results suggested that the E3 ligase WWP1 is involved in the pathogenesis of HD; therefore, it may be a novel target for therapeutic intervention. PMID:27107943

  6. Protein Degradation and the Stress Response

    PubMed Central

    Flick, Karin; Kaiser, Peter

    2012-01-01

    Environmental stresses are manifold and so are the responses they elicit. This is particularly true for higher eukaryotes where various tissues and cell types are differentially affected by the insult. Type and scope of the stress response can therefore differ greatly among cell types. Given the importance of the Ubiquitin Proteasome System (UPS) for most cellular processes, it comes as no surprise that the UPR plays a pivotal role in counteracting the effects of stressors. Here we outline contributions of the UPS to stress sensing, signaling, and response pathways. We make no claim to comprehensiveness but choose selected examples to illustrate concepts and mechanisms by which protein modification with ubiquitin and proteasomal degradation of key regulators ensures cellular integrity during stress situations. PMID:22414377

  7. Role of ubiquitin-proteasome in protein quality control and signaling: implication in the pathogenesis of eye diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin–proteasome pathway (UPP) plays important roles in many cellular functions, such as protein quality control, cell cycle control, and signal transduction. The selective degradation of aberrant proteins by the UPP is essential for the timely removal of potential cytotoxic damaged or other...

  8. L166P MUTANT DJ-1, CAUSATIVE FOR RECESSIVE PARKINSON'S DISEASE IS DEGRADED THROUGH THE UBIQUITIN-PROTEASOME SYSTEM

    EPA Science Inventory

    Abstract

    Mutations in a gene on chromosome 1, DJ-1, have been reported recently to be associated with recessive, early-onset Parkinson's disease. Whilst one mutation is a large deletion that is predicted to produce an effective knockout of the gene, the second is a point ...

  9. Heat shock transcription factor δ³² is targeted for degradation via an ubiquitin-like protein ThiS in Escherichia coli.

    PubMed

    Xu, Xibing; Niu, Yulong; Liang, Ke; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2015-04-01

    The posttranslational modification of proteins with ubiquitin and ubiquitin-like proteins (UBLs) plays an important role in eukaryote biology, through which substrate proteins are targeted for degradation by the proteasome. Prokaryotes have been thought to degrade proteins by an ubiquitin independent pathway. Here, we show that ThiS, an ubiquitin-like protein, is covalently attached to δ(32) and at least 27 other proteins, leading to their subsequent degradation by proteases, in a similar manner to the ubiquitin-proteasome system (UPS) in eukaryotes. Molecular biology and biochemical studies confirm that specific lysine sites in δ(32) can be modified by ThiS. The results presented here establish a new model for δ(32) degradation and show that Escherichia coli uses a small-protein modifier to control protein stability. PMID:25721662

  10. Small-Molecule NSC59984 Restores p53 Pathway Signaling and Antitumor Effects against Colorectal Cancer via p73 Activation and Degradation of Mutant p53.

    PubMed

    Zhang, Shengliang; Zhou, Lanlan; Hong, Bo; van den Heuvel, A Pieter J; Prabhu, Varun V; Warfel, Noel A; Kline, Christina Leah B; Dicker, David T; Kopelovich, Levy; El-Deiry, Wafik S

    2015-09-15

    The tumor-suppressor p53 prevents cancer development via initiating cell-cycle arrest, cell death, repair, or antiangiogenesis processes. Over 50% of human cancers harbor cancer-causing mutant p53. p53 mutations not only abrogate its tumor-suppressor function, but also endow mutant p53 with a gain of function (GOF), creating a proto-oncogene that contributes to tumorigenesis, tumor progression, and chemo- or radiotherapy resistance. Thus, targeting mutant p53 to restore a wild-type p53 signaling pathway provides an attractive strategy for cancer therapy. We demonstrate that small-molecule NSC59984 not only restores wild-type p53 signaling, but also depletes mutant p53 GOF. NSC59984 induces mutant p53 protein degradation via MDM2 and the ubiquitin-proteasome pathway. NSC59984 restores wild-type p53 signaling via p73 activation, specifically in mutant p53-expressing colorectal cancer cells. At therapeutic doses, NSC59984 induces p73-dependent cell death in cancer cells with minimal genotoxicity and without evident toxicity toward normal cells. NSC59984 synergizes with CPT11 to induce cell death in mutant p53-expressing colorectal cancer cells and inhibits mutant p53-associated colon tumor xenograft growth in a p73-dependent manner in vivo. We hypothesize that specific targeting of mutant p53 may be essential for anticancer strategies that involve the stimulation of p73 in order to efficiently restore tumor suppression. Taken together, our data identify NSC59984 as a promising lead compound for anticancer therapy that acts by targeting GOF-mutant p53 and stimulates p73 to restore the p53 pathway signaling. PMID:26294215

  11. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    SciTech Connect

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-10-16

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic {alpha}- and {beta}-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.

  12. Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation

    PubMed Central

    Li, Jun; Chen, Cancan; Ma, Xiancai; Geng, Guannan; Liu, Bingfeng; Zhang, Yijun; Zhang, Shaoyang; Zhong, Fudi; Liu, Chao; Yin, Yue; Cai, Weiping; Zhang, Hui

    2016-01-01

    Long noncoding RNAs (lncRNAs) play multiple key regulatory roles in various cellular pathways. However, their functions in HIV-1 latent infection remain largely unknown. Here we show that a lncRNA named NRON, which is highly expressed in resting CD4+ T lymphocytes, could be involved in HIV-1 latency by specifically inducing Tat protein degradation. Our results suggest that NRON lncRNA potently suppresses the viral transcription by decreasing the cellular abundance of viral transactivator protein Tat. NRON directly links Tat to the ubiquitin/proteasome components including CUL4B and PSMD11, thus facilitating Tat degradation. Depletion of NRON, especially in combination with a histone deacetylase (HDAC) inhibitor, significantly reactivates the viral production from the HIV-1-latently infected primary CD4+ T lymphocytes. Our data indicate that lncRNAs play a role in HIV-1 latency and their manipulation could be a novel approach for developing latency-reversing agents. PMID:27291871

  13. Tyrosine Hydroxylase Is Short-Term Regulated by the Ubiquitin-Proteasome System in PC12 Cells and Hypothalamic and Brainstem Neurons from Spontaneously Hypertensive Rats: Possible Implications in Hypertension

    PubMed Central

    Carbajosa, Nadia A. Longo; Corradi, Gerardo; Verrilli, María A. Lopez; Guil, María J.; Vatta, Marcelo S.; Gironacci, Mariela M.

    2015-01-01

    Aberrations in the ubiquitin-proteasome system (UPS) are implicated in the pathogenesis of various diseases. Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamines biosynthesis, is involved in hypertension development. In this study we investigated whether UPS regulated TH turnover in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats (SHR) and whether this system was impaired in hypertension. PC12 cells were exposed to proteasome or lysosome inhibitors and TH protein level evaluated by Western blot. Lactacystin, a proteasome inhibitor, induced an increase of 86±15% in TH levels after 30 min of incubation, then it started to decrease up to 6 h to reach control levels and finally it rose up to 35.2±8.5% after 24 h. Bafilomycin, a lysosome inhibitor, did not alter TH protein levels during short times, but it increased TH by 92±22% above basal after 6 h treatment. Before degradation proteasome substrates are labeled by conjugation with ubiquitin. Efficacy of proteasome inhibition on TH turnover was evidenced by accumulation of ubiquitinylated TH after 30 min. Further, the inhibition of proteasome increased the quantity of TH phosphorylated at Ser40, which is essential for TH activity, by 2.7±0.3 fold above basal. TH protein level was upregulated in neurons from hypothalami and brainstem of SHR when the proteasome was inhibited during 30 min, supporting that neuronal TH is also short-term regulated by the proteasome. Since the increased TH levels reported in hypertension may result from proteasome dysfunction, we evaluate proteasme activity. Proteasome activity was significantly reduced by 67±4% in hypothalamic and brainstem neurons from SHR while its protein levels did not change. Present findings show that TH is regulated by the UPS. The impairment in proteasome activity observed in SHR neurons may be one of the causes of the increased TH protein levels reported in hypertension. PMID:25710381

  14. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways.

    PubMed

    Anandhan, Annadurai; Rodriguez-Rocha, Humberto; Bohovych, Iryna; Griggs, Amy M; Zavala-Flores, Laura; Reyes-Reyes, Elsa M; Seravalli, Javier; Stanciu, Lia A; Lee, Jaekwon; Rochet, Jean-Christophe; Khalimonchuk, Oleh; Franco, Rodrigo

    2015-09-01

    Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways. PMID:25497688

  15. Effects of slow-release urea and rumen-protected methionine and histidine on mammalian target of rapamycin (mTOR) signaling and ubiquitin proteasome-related gene expression in skeletal muscle of dairy cows.

    PubMed

    Sadri, H; Giallongo, F; Hristov, A N; Werner, J; Lang, C H; Parys, C; Saremi, B; Sauerwein, H

    2016-08-01

    The mammalian target of rapamycin (mTOR) is a major regulator of protein synthesis, whereas the ubiquitin-proteasome system (UPS) is regarded as the main proteolytic pathway in skeletal muscle. The objective of the current study was to investigate the effects of slow-release urea and rumen-protected (RP) Met and His supplementation of a metabolizable protein (MP)-deficient diet on the abundance of key components of the mTOR pathway and of the UPS in skeletal muscle of dairy cows. Sixty Holstein cows were blocked based on days in milk and milk yield and were randomly assigned within block to 1 of 5 diets in a 10-wk experiment (including the first 2 wk as covariate period) as follows: (1) MP-adequate diet (AMP; 107% of MP requirements, based on the National Research Council requirements); (2) MP-deficient diet (DMP; 95% of MP requirements); (3) DMP supplemented with slow-release urea (DMPU); (4) DMPU supplemented with RPMet (DMPUM); and (5) DMPUM supplemented with RPHis (DMPUMH). Muscle biopsies were collected from longissimus dorsi during the last week of the experiment. The mRNA abundance of key mTOR signaling genes was not affected by the treatments. The phosphorylated (P)-mTOR protein was or tended to be greater for DMP compared with DMPU and AMP, respectively. The P-mTOR protein in DMPUMH was decreased when compared against DMPUM. The P-ribosomal protein S6 tended to be increased by DMPUM compared with DMPU. The abundance of total-S6 was or tended to be greater for DMP compared with AMP and DMPU, respectively. The mRNA abundance of ubiquitin activating and conjugating enzymes was not affected by the treatments, whereas that of muscle ring-finger protein 1 (MuRF-1) was greater in DMP than DMPU. The increased abundance of mTOR-associated signaling proteins and MuRF-1 mRNA abundance indicates a higher rate of protein turnover in muscle of DMP-fed cows. The reduced abundance of P-mTOR by supplementation of RPHis may suggest that His is likely partitioned to the

  16. Induction of Caspase-3-like activity in Rice following release of cytochrome-f from the chloroplast and subsequent interaction with the Ubiquitin-Proteasome System

    PubMed Central

    Wang, Hongjuan; Zhu, Xiaonan; Li, Huan; Cui, Jing; Liu, Cheng; Chen, Xi; Zhang, Wei

    2014-01-01

    It has been known that the process of leaf senescence is accompanied by programmed cell death (PCD), and the previous study indicated that dark-induced senescence in detached leaves from rice led to the release of cytochrome f (Cyt f) from chloroplast into the cytoplasm. In this study, the effects of Cyt f on PCD were studied both in vitro and in vivo. In a cell-free system, purified Cyt f activated caspase-3-like protease and endonuclease OsNuc37, and induced DNA fragmentation. Furthermore, Cyt f-induced caspase-3-like activity could be inhibited by MG132, which suggests that the activity was attributed to the 26S proteasome. Conditional expression of Cyt f in the cytoplasm could also activate caspase-3-like activity and DNA fragmentation. Fluorescein diacetate staining and annexin V-FITC/PI double staining demonstrated that Cyt f expression in cytoplasm significantly increased the percentage of PCD protoplasts. Yeast two-hybrid screening showed that Cyt f might interact with E3-ubiquitin ligase and RPN9b, the subunits of the ubiquitin proteasome system (UPS), and other PCD-related proteins. Taken together, these results suggest that the released Cyt f from the chloroplast into the cytoplasm might activate or rescue caspase-3-like activity by interacting with the UPS, ultimately leading to the induction of PCD. PMID:25103621

  17. Induction of caspase-3-like activity in rice following release of cytochrome-f from the chloroplast and subsequent interaction with the ubiquitin-proteasome system.

    PubMed

    Wang, Hongjuan; Zhu, Xiaonan; Li, Huan; Cui, Jing; Liu, Cheng; Chen, Xi; Zhang, Wei

    2014-01-01

    It has been known that the process of leaf senescence is accompanied by programmed cell death (PCD), and the previous study indicated that dark-induced senescence in detached leaves from rice led to the release of cytochrome f (Cyt f) from chloroplast into the cytoplasm. In this study, the effects of Cyt f on PCD were studied both in vitro and in vivo. In a cell-free system, purified Cyt f activated caspase-3-like protease and endonuclease OsNuc37, and induced DNA fragmentation. Furthermore, Cyt f-induced caspase-3-like activity could be inhibited by MG132, which suggests that the activity was attributed to the 26S proteasome. Conditional expression of Cyt f in the cytoplasm could also activate caspase-3-like activity and DNA fragmentation. Fluorescein diacetate staining and annexin V-FITC/PI double staining demonstrated that Cyt f expression in cytoplasm significantly increased the percentage of PCD protoplasts. Yeast two-hybrid screening showed that Cyt f might interact with E3-ubiquitin ligase and RPN9b, the subunits of the ubiquitin proteasome system (UPS), and other PCD-related proteins. Taken together, these results suggest that the released Cyt f from the chloroplast into the cytoplasm might activate or rescue caspase-3-like activity by interacting with the UPS, ultimately leading to the induction of PCD. PMID:25103621

  18. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system.

    PubMed

    Dou, Q Ping; Zonder, Jeffrey A

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  19. Overview of Proteasome Inhibitor-Based Anti-cancer Therapies: Perspective on Bortezomib and Second Generation Proteasome Inhibitors versus Future Generation Inhibitors of Ubiquitin-Proteasome System

    PubMed Central

    Dou, Q. Ping; Zonder, Jeffrey A.

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ-based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  20. The Proteasome Inhibitor, MG132, Attenuates Diabetic Nephropathy by Inhibiting SnoN Degradation In Vivo and In Vitro

    PubMed Central

    Huang, Wei; Yang, Chen; Nan, Qinling; Gao, Chenlin; Feng, Hong; Gou, Fang; Chen, Guo; Zhang, Zhihong; Yan, Pijun; Peng, Juan

    2014-01-01

    Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF-β/Smad signaling in DN is still unclear. In this study, diabetic rats were randomly divided into a diabetic control group (DC group) and a proteasome inhibitor (MG132) diabetes therapy group (DT group). Kidney damage parameters and the expression of SnoN, Smurf2, and TGF-β were observed. Simultaneously, we cultured rat glomerular mesangial cells (GMCs) stimulated with high glucose, and SnoN and Arkadia expression were measured. Results demonstrated that 24-hour urine protein, ACR, BUN, and the expression of Smurf2 and TGF-β were significantly increased (P < 0.05), whereas SnoN was significantly decreased in the DC group (P < 0.05). However, these changes diminished after treatment with MG132. SnoN expression in GMCs decreased significantly (P < 0.05), but Arkadia expression gradually increased due to high glucose stimulation (P < 0.05), which could be almost completely reversed by MG132 (P < 0.05). The present results support the hypothesis that MG132 may alleviate kidney damage by inhibiting SnoN degradation and TGF-β activation, suggesting that the ubiquitin-proteasome pathway may become a new therapeutic target for DN. PMID:25003128

  1. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact

    PubMed Central

    Rajan, Vik R.

    2007-01-01

    Muscle wasting in chronic kidney disease (CKD) and other catabolic diseases (e.g. sepsis, diabetes, cancer) can occur despite adequate nutritional intake. It is now known that complications of these various disorders, including acidosis, insulin resistance, inflammation, and increased glucocorticoid and angiotensin II production, all activate the ubiquitin–proteasome system (UPS) to degrade muscle proteins. The initial step in this process is activation of caspase-3 to cleave the myofibril into its components (actin, myosin, troponin, and tropomyosin). Caspase-3 is required because the UPS minimally degrades the myofibril but rapidly degrades its component proteins. Caspase-3 activity is easily detected because it leaves a characteristic 14kD actin fragment in muscle samples. Preliminary evidence from several experimental models of catabolic diseases, as well as from studies in patients, indicates that this fragment could be a useful biomarker because it correlates well with the degree of muscle degradation in dialysis patients and in other catabolic conditions. PMID:17987322

  2. Pupylation-dependent and -independent proteasomal degradation in mycobacteria.

    PubMed

    Imkamp, Frank; Ziemski, Michal; Weber-Ban, Eilika

    2015-08-01

    Bacteria make use of compartmentalizing protease complexes, similar in architecture but not homologous to the eukaryotic proteasome, for the selective and processive removal of proteins. Mycobacteria as members of the actinobacteria harbor proteasomes in addition to the canonical bacterial degradation complexes. Mycobacterial proteasomal degradation, although not essential during normal growth, becomes critical for survival under particular environmental conditions, like, for example, during persistence of the pathogenic Mycobacterium tuberculosis in host macrophages or of environmental mycobacteria under starvation. Recruitment of protein substrates for proteasomal degradation is usually mediated by pupylation, the post-translational modification of lysine side chains with the prokaryotic ubiquitin-like protein Pup. This substrate recruitment strategy is functionally reminiscent of ubiquitination in eukaryotes, but is the result of convergent evolution, relying on chemically and structurally distinct enzymes. Pupylated substrates are recognized by the ATP-dependent proteasomal regulator Mpa that associates with the 20S proteasome core. A pupylation-independent proteasome degradation pathway has recently been discovered that is mediated by the ATP-independent bacterial proteasome activator Bpa (also referred to as PafE), and that appears to play a role under stress conditions. In this review, mechanistic principles of bacterial proteasomal degradation are discussed and compared with functionally related elements of the eukaryotic ubiquitin-proteasome system. Special attention is given to an understanding on the molecular level based on structural and biochemical analysis. Wherever available, discussion of in vivo studies is included to highlight the biological significance of this unusual bacterial degradation pathway. PMID:26352358

  3. α-Synuclein and protein degradation systems: a reciprocal relationship.

    PubMed

    Xilouri, Maria; Brekk, Oystein Rod; Stefanis, Leonidas

    2013-04-01

    An increasing wealth of data indicates a close relationship between the presynaptic protein alpha-synuclein and Parkinson's disease (PD) pathogenesis. Alpha-synuclein protein levels are considered as a major determinant of its neurotoxic potential, whereas secreted extracellular alpha-synuclein has emerged as an additional important factor in this regard. However, the manner of alpha-synuclein degradation in neurons remains contentious. Both the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway (ALP)-mainly macroautophagy and chaperone-mediated autophagy-have been suggested to contribute to alpha-synuclein turnover. Additionally, other proteases such as calpains, neurosin, and metalloproteinases have been also proposed to have a role in intracellular and extracellular alpha-synuclein processing. Both UPS and ALP activity decline with aging and such decline may play a pivotal role in many neurodegenerative conditions. Alterations in these major proteolytic pathways may result in alpha-synuclein accumulation due to impaired clearance. Conversely, increased alpha-synuclein protein burden promotes the generation of aberrant species that may impair further UPS or ALP function, generating thus a bidirectional positive feedback loop leading to neuronal death. In the current review, we summarize the recent findings related to alpha-synuclein degradation, as well as to alpha-synuclein-mediated aberrant effects on protein degradation systems. Identifying the factors that regulate alpha-synuclein association to cellular proteolytic pathways may represent potential targets for therapeutic interventions in PD and related synucleinopathies. PMID:22941029

  4. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways.

    PubMed

    Raynes, Rachel; Pomatto, Laura C D; Davies, Kelvin J A

    2016-08-01

    The proteasome is a ubiquitous and highly plastic multi-subunit protease with multi-catalytic activity that is conserved in all eukaryotes. The most widely known function of the proteasome is protein degradation through the 26S ubiquitin-proteasome system, responsible for the vast majority of protein degradation during homeostasis. However, the proteasome also plays an important role in adaptive immune responses and adaptation to oxidative stress. The unbound 20S proteasome, the core common to all proteasome conformations, is the main protease responsible for degrading oxidized proteins. During periods of acute stress, the 19S regulatory cap of the 26S proteasome disassociates from the proteolytic core, allowing for immediate ATP/ubiquitin-independent protein degradation by the 20S proteasome. Despite the abundance of unbound 20S proteasome compared to other proteasomal conformations, many publications fail to distinguish between the two proteolytic systems and often regard the 26S proteasome as the dominant protease. Further confounding the issue are the differential roles these two proteolytic systems have in adaptation and aging. In this review, we will summarize the increasing evidence that the 20S core proteasome constitutes the major conformation of the proteasome system and that it is far from a latent protease requiring activation by binding regulators. PMID:27155164

  5. Coupled local translation and degradation regulate growth cone collapse

    PubMed Central

    Deglincerti, Alessia; Colak, Dilek; Hengst, Ulrich; Liu, Yaobin; Xu, Guoqiang; Jaffrey, Samie R.

    2015-01-01

    Local translation mediates axonal responses to Semaphorin3A (Sema3A) and other guidance cues. However, only a subset of the axonal proteome is locally synthesized, while most proteins are trafficked from the soma. The reason why only specific proteins are locally synthesized is unknown. Here we show that local protein synthesis and degradation are linked events in growth cones. We find that growth cones exhibit high levels of ubiquitination and that local signaling pathways trigger the ubiquitination and degradation of RhoA, a mediator of Sema3A-induced growth cone collapse. Inhibition of RhoA degradation is sufficient to remove the protein-synthesis requirement for Sema3A-induced growth cone collapse. In addition to RhoA, we find that locally translated proteins are the main targets of the ubiquitin-proteasome system in growth cones. Thus, local protein degradation is a major feature of growth cones and creates a requirement for local translation to replenish proteins needed to maintain growth cone responses. PMID:25901863

  6. Redox control of protein degradation

    PubMed Central

    Pajares, Marta; Jiménez-Moreno, Natalia; Dias, Irundika H.K.; Debelec, Bilge; Vucetic, Milica; Fladmark, Kari E.; Basaga, Huveyda; Ribaric, Samo; Milisav, Irina; Cuadrado, Antonio

    2015-01-01

    Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies. PMID:26381917

  7. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    NASA Technical Reports Server (NTRS)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  8. Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy

    PubMed Central

    Bialek, Peter; Morris, Carl; Parkington, Jascha; St. Andre, Michael; Owens, Jane; Yaworsky, Paul; Seeherman, Howard

    2011-01-01

    Skeletal muscle atrophy can be a consequence of many diseases, environmental insults, inactivity, age, and injury. Atrophy is characterized by active degradation, removal of contractile proteins, and a reduction in muscle fiber size. Animal models have been extensively used to identify pathways that lead to atrophic conditions. We used genome-wide expression profiling analyses and quantitative PCR to identify the molecular changes that occur in two clinically relevant mouse models of muscle atrophy: hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7, and 14 days after casting or injury. The total amount of muscle loss, as measured by wet weight and muscle fiber size, was equivalent between models on day 14, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tenotomy resulted in the regulation of significantly more mRNA transcripts then did casting. Analysis of the regulated genes and pathways suggest that the mechanisms of atrophy are distinct between these models. The degradation following casting was ubiquitin-proteasome mediated, while degradation following tenotomy was lysosomal and matrix-metalloproteinase mediated, suggesting a possible role for autophagy. These data suggest that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat atrophy resulting from different conditions. PMID:21791639

  9. Effect of prolonged intravenous glucose and essential amino acid infusion on nitrogen balance, muscle protein degradation and ubiquitin-conjugating enzyme gene expression in calves

    PubMed Central

    Sadiq, Fouzia; Crompton, Leslie A; Scaife, Jes R; Lomax, Michael A

    2008-01-01

    Background Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose (to stimulate insulin) and essential amino acids (EAA) would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of synergistic effects between

  10. Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina: implications in the pathogenesis of age-related macular degeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of damaged or postsynthetically modified proteins and dysregulation of inflammatory responses and angiogenesis in the retina/RPE are thought be etiologically related to formation of drusen and choroidal neovascularization (CNV), hallmarks of age-related macular degeneration (AMD). T...

  11. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    PubMed Central

    2014-01-01

    Background The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6- and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation. Results Abundance of atrogin-1, but not MuRF1, was greater in 26- than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6- than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the

  12. TGF-β Targets the Hippo Pathway Scaffold RASSF1A to Facilitate YAP/SMAD2 Nuclear Translocation.

    PubMed

    Pefani, Dafni-Eleftheria; Pankova, Daniela; Abraham, Aswin G; Grawenda, Anna M; Vlahov, Nikola; Scrace, Simon; O' Neill, Eric

    2016-07-01

    Epigenetic inactivation of the Hippo pathway scaffold RASSF1A is associated with poor prognosis in a wide range of sporadic human cancers. Loss of expression reduces tumor suppressor activity and promotes genomic instability, but how this pleiotropic biomarker is regulated at the protein level is unknown. Here we show that TGF-β is the physiological signal that stimulates RASSF1A degradation by the ubiquitin-proteasome pathway. In response to TGF-β, RASSF1A is recruited to TGF-β receptor I and targeted for degradation by the co-recruited E3 ubiquitin ligase ITCH. RASSF1A degradation is necessary to permit Hippo pathway effector YAP1 association with SMADs and subsequent nuclear translocation of receptor-activated SMAD2. We find that RASSF1A expression regulates TGF-β-induced YAP1/SMAD2 interaction and leads to SMAD2 cytoplasmic retention and inefficient transcription of TGF-β targets genes. Moreover, RASSF1A limits TGF-β induced invasion, offering a new framework on how RASSF1A affects YAP1 transcriptional output and elicits its tumor-suppressive function. PMID:27292796

  13. Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif.

    PubMed

    Belizario, José E; Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João Marcelo

    2008-06-01

    The degradation is critical to activation and deactivation of regulatory proteins involved in signaling pathways to cell growth, differentiation, stress responses and physiological cell death. Proteins carry domains and sequence motifs that function as prerequisite for their proteolysis by either individual proteases or the 26S multicomplex proteasomes. Two models for entry of substrates into the proteasomes have been considered. In one model, it is proposed that the ubiquitin chain attached to the protein serves as recognition element to drag them into the 19S regulatory particle, which promotes the unfolding required to its access into the 20S catalytic chamber. In second model, it is proposed that an unstructured tail located at amino or carboxyl terminus directly track proteins into the 26S/20S proteasomes. Caspases are cysteinyl aspartate proteases that control diverse signaling pathways, promoting the cleavage at one or two sites of hundreds of structural and regulatory protein substrates. Caspase cleavage sites are commonly found within PEST motifs, which are segments rich in proline (P), glutamic acid (D), aspartic acid (E) and serine (S) or threonine (T) residues. Considering that N- and C- terminal peptide carrying PEST motifs form disordered loops in the globular proteins after caspase cleavage, it is postulated here that these exposed termini serve as unstructured initiation site, coupling caspase cleavage and ubiquitin-proteasome dependent and independent degradation of short-lived proteins. This could explain the inherent susceptibility to proteolysis among proteins containing PEST motif. PMID:18537676

  14. Role of Hsc70 binding cycle in CFTR folding and endoplasmic reticulum–associated degradation

    PubMed Central

    Matsumura, Yoshihiro; David, Larry L.; Skach, William R.

    2011-01-01

    The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones. PMID:21697503

  15. The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARα.

    PubMed

    Ying, M; Zhang, L; Zhou, Q; Shao, X; Cao, J; Zhang, N; Li, W; Zhu, H; Yang, B; He, Q

    2016-08-18

    Retinoic acid receptor alpha (RARα) has a critical role in the differentiation process of osteosarcoma cells induced by all-trans retinoic acid (ATRA). However, degradation of RARα through ubiquitin proteasome pathway weakens the differentiation efficiency of osteosarcoma cells. In this study, we discover that murine double minute-2 (MDM2) acts as an E3 ubiquitin ligase to target RARα for degradation. We observe that MDM2 is required for RARα polyubiquitination and proteasomal degradation because downregulation of MDM2 by short hairpin RNA results in the accumulation of RARα, and MDM2 overexpression promotes the degradation of RARα. We also demonstrate that the N-terminal domain of MDM2 (amino acids 1-109) is the major RARα-binding site. Importantly, endogenous MDM2 levels are not only upregulated in human primary osteosarcoma blasts but are also inversely correlated with the level of osteopontin, which is a marker of bone differentiation. Moreover, MDM2 impairs the ATRA-induced osteoblastic differentiation of osteosarcoma cells, whereas an inhibitor of the MDM2 ubiquitin ligase synergizes with ATRA to enhance the differentiation of osteosarcoma cells and primary osteosarcoma blasts. Therefore, our study indicates that MDM2 serves as an E3 ubiquitin ligase to regulate the degradation of RARα and suggests that MDM2 is a novel therapeutic target for ATRA-based differentiation therapeutic approaches in osteosarcoma. PMID:26776160

  16. Negative regulation of DAB2IP by Akt and SCFFbw7 pathways

    PubMed Central

    Inuzuka, Hiroyuki

    2014-01-01

    Deletion of ovarian carcinoma 2/disabled homolog 2 (DOC-2/DAB2) interacting protein (DAB2IP), is a tumor suppressor that serves as a scaffold protein involved in coordinately regulating cell proliferation, survival and apoptotic pathways. DAB2IP is epigenetically down-regulated in a variety of tumors through the action of the histone methyltransferase EZH2. Although DAB2IP is transcriptionally down-regulated in a variety of tumors, it remains unclear if other mechanisms contribute to functional inactivation of DAB2IP. Here we demonstrate that DAB2IP can be functionally down-regulated by two independent mechanisms. First, we identified that Akt1 can phosphorylate DAB2IP on S847, which regulates the interaction between DAB2IP and its effector molecules H-Ras and TRAF2. Second, we demonstrated that DAB2IP can be degraded in part through ubiquitin-proteasome pathway by SCFFbw7. DAB2IP harbors two Fbw7 phosho-degron motifs, which can be regulated by the kinase, CK1δ. Our data hence indicate that in addition to epigenetic down-regulation, two additional pathways can functional inactivate DAB2IP. Given that DAB2IP has previously been identified to possess direct causal role in tumorigenesis and metastasis, our data indicate that a variety of pathways may pass through DAB2IP to govern cancer development, and therefore highlight DAB2IP agonists as potential therapeutic approaches for future anti-cancer drug development. PMID:24912918

  17. Validation of microarray data in human lymphoblasts shows a role of the ubiquitin-proteasome system and NF-kB in the pathogenesis of Down syndrome

    PubMed Central

    2013-01-01

    Background Down syndrome (DS) is a complex disorder caused by the trisomy of either the entire, or a critical region of chromosome 21 (21q22.1-22.3). Despite representing the most common cause of mental retardation, the molecular bases of the syndrome are still largely unknown. Methods To better understand the pathogenesis of DS, we analyzed the genome-wide transcription profiles of lymphoblastoid cell lines (LCLs) from six DS and six euploid individuals and investigated differential gene expression and pathway deregulation associated with trisomy 21. Connectivity map and PASS-assisted exploration were used to identify compounds whose molecular signatures counteracted those of DS lymphoblasts and to predict their therapeutic potential. An experimental validation in DS LCLs and fetal fibroblasts was performed for the most deregulated GO categories, i.e. the ubiquitin mediated proteolysis and the NF-kB cascade. Results We show, for the first time, that the level of protein ubiquitination is reduced in human DS cell lines and that proteasome activity is increased in both basal conditions and oxidative microenvironment. We also provide the first evidence that NF-kB transcription levels, a paradigm of gene expression control by ubiquitin-mediated degradation, is impaired in DS due to reduced IkB-alfa ubiquitination, increased NF-kB inhibitor (IkB-alfa) and reduced p65 nuclear fraction. Finally, the DSCR1/DYRK1A/NFAT genes were analysed. In human DS LCLs, we confirmed the presence of increased protein levels of DSCR1 and DYRK1A, and showed that the levels of the transcription factor NFATc2 were decreased in DS along with a reduction of its nuclear translocation upon induction of calcium fluxes. Conclusions The present work offers new perspectives to better understand the pathogenesis of DS and suggests a rationale for innovative approaches to treat some pathological conditions associated to DS. PMID:23830204

  18. The role of p97/Cdc48p in endoplasmic reticulum-associated degradation: from the immune system to yeast.

    PubMed

    Bar-Nun, S

    2005-01-01

    Quality control mechanisms in the endoplasmic reticulum prevent deployment of aberrant or unwanted proteins to distal destinations and target them to degradation by a process known as endoplasmic reticulum-associated degradation, or ERAD. Attempts to characterize ERAD by identifying a specific component have revealed that the most general characteristic of ERAD is that the protein substrates are initially translocated to the ER and eventually eliminated in the cytosol by the ubiquitin-proteasome pathway. Hence, dislocation from the ER back to the cytosol is a hallmark in ERAD and p97/Cdc48p, a cytosolic AAA-ATPase that is essential for ERAD, appears to provide the driving force for this process. Moreover, unlike many ERAD components that participate in degradation of either lumenal or membrane substrates, p97/Cdc48p has a more general role in that it is required for ERAD of both types of substrates. Although p97/Cdc48p is not dedicated exclusively to ERAD, its ability to physically associate with ERAD substrates, with VIMP and with the E3 gp78 suggest that the p97/Cdc48Ufdl/Npl4 complex acts as a coordinator that maintains coupling between the different steps in ERAD. PMID:16573238

  19. Cyclophilin A Restricts Influenza A Virus Replication through Degradation of the M1 Protein

    PubMed Central

    Xu, Chongfeng; Sun, Lei; Chen, Jilong; Zhang, Lianfeng; Liu, Wenjun

    2012-01-01

    Cyclophilin A (CypA) is a typical member of the cyclophilin family of peptidyl-prolyl isomerases and is involved in the replication of several viruses. Previous studies indicate that CypA interacts with influenza virus M1 protein and impairs the early stage of the viral replication. To further understand the molecular mechanism by which CypA impairs influenza virus replication, a 293T cell line depleted for endogenous CypA was established. The results indicated that CypA inhibited the initiation of virus replication. In addition, the infectivity of influenza virus increased in the absence of CypA. Further studies indicated that CypA had no effect on the stages of virus genome replication or transcription and also did not impair the nuclear export of the viral mRNA. However, CypA decreased the viral protein level. Additional studies indicated that CypA enhanced the degradation of M1 through the ubiquitin/proteasome-dependent pathway. Our results suggest that CypA restricts influenza virus replication through accelerating degradation of the M1 protein. PMID:22347431

  20. TRC8-dependent degradation of hepatitis C virus immature core protein regulates viral propagation and pathogenesis.

    PubMed

    Aizawa, Sayaka; Okamoto, Toru; Sugiyama, Yukari; Kouwaki, Takahisa; Ito, Ayano; Suzuki, Tatsuya; Ono, Chikako; Fukuhara, Takasuke; Yamamoto, Masahiro; Okochi, Masayasu; Hiraga, Nobuhiko; Imamura, Michio; Chayama, Kazuaki; Suzuki, Ryosuke; Shoji, Ikuo; Moriishi, Kohji; Moriya, Kyoji; Koike, Kazuhiko; Matsuura, Yoshiharu

    2016-01-01

    Signal-peptide peptidase (SPP) is an intramembrane protease that participates in the production of the mature core protein of hepatitis C virus (HCV). Here we show that SPP inhibition reduces the production of infectious HCV particles and pathogenesis. The immature core protein produced in SPP-knockout cells or by treatment with an SPP inhibitor is quickly degraded by the ubiquitin-proteasome pathway. Oral administration of the SPP inhibitor to transgenic mice expressing HCV core protein (CoreTg) reduces the expression of core protein and ameliorates insulin resistance and liver steatosis. Moreover, the haploinsufficiency of SPP in CoreTg has similar effects. TRC8, an E3 ubiquitin ligase, is required for the degradation of the immature core protein. The expression of the HCV core protein alters endoplasmic reticulum (ER) distribution and induces ER stress in SPP/TRC8 double-knockout cells. These data suggest that HCV utilizes SPP cleavage to circumvent the induction of ER stress in host cells. PMID:27142248

  1. Geldanamycin-induced degradation of Chk1 is mediated by proteasome

    SciTech Connect

    Nomura, M.; E-mail: nomura413jp@yahoo.co.jp; Nomura, N.; Yamashita, J.

    2005-09-30

    Checkpoint kinase 1 (Chk1) is a cell cycle regulator and a heat shock protein 90 (Hsp90) client. It is essential for cell proliferation and survival. In this report, we analyzed the mechanisms of Chk1 regulation in U87MG glioblastoma cells using Geldanamycin (GA), which interferes with the function of Hsp90. GA reduced Chk1 protein level but not its mRNA level in glioblastoma cells. Co-treatment with GA and cycloheximide (CHX), a protein synthesis inhibitor, induced a decrease of half-life of the Chk1 protein to 3 h and resulted in Chk1 down-regulation. CHX alone induced only 32% reduction of Chk1 protein even after 24 h. These findings indicated that reduction of Chk1 by GA was due to destabilization and degradation of the protein. In addition, GA-induced down-regulation of Chk1 was reversed by MG132, a specific proteasome inhibitor. And it was revealed that Chk1 was ubiquitinated by GA. These results have indicated that degradation of Chk1 by GA was mediated by the ubiquitin-proteasome pathway in U87MG glioblastoma cells.

  2. Preventing p38 MAPK-mediated MafA degradation ameliorates β-cell dysfunction under oxidative stress.

    PubMed

    El Khattabi, Ilham; Sharma, Arun

    2013-07-01

    The reduction in the expression of glucose-responsive insulin gene transcription factor MafA accompanies the development of β-cell dysfunction under oxidative stress/diabetic milieu. Humans with type 2 diabetes have reduced MafA expression, and thus preventing this reduction could overcome β-cell dysfunction and diabetes. We previously showed that p38 MAPK, but not glycogen synthase kinase 3 (GSK3), is a major regulator of MafA degradation under oxidative stress. Here, we examined the mechanisms of this degradation and whether preventing MafA degradation under oxidative stress will overcome β-cell dysfunction. We show that under oxidative and nonoxidative conditions p38 MAPK directly binds to MafA and triggers MafA degradation via ubiquitin proteasomal pathway. However, unlike nonoxidative conditions, MafA degradation under oxidative stress depended on p38 MAPK-mediated phosphorylation at threonine (T) 134, and not T57. Furthermore the expression of alanine (A) 134-MafA, but not A57-MafA, reduced the oxidative stress-mediated loss of glucose-stimulated insulin secretion, which was independent of p38 MAPK action on protein kinase D, a regulator of insulin secretion. Interestingly, the expression of proteasomal activator PA28γ that degrades GSK3-phosphorylated (including T57) MafA was reduced under oxidative stress, explaining the dominance of p38 MAPK over the GSK3 pathway in regulating MafA stability under oxidative stress. These results identify two distinct pathways mediating p38 MAPK-dependent MafA degradation under oxidative and nonoxidative conditions and show that inhibiting MafA degradation under oxidative stress ameliorates β-cell dysfunction and could lead to novel therapies for diabetes. PMID:23660596

  3. Parkin Protects against Oxygen-Glucose Deprivation/Reperfusion Insult by Promoting Drp1 Degradation.

    PubMed

    Tang, Jiayu; Hu, Zhiping; Tan, Jieqiong; Yang, Sonlin; Zeng, Liuwang

    2016-01-01

    Ischemic stroke results in severe brain damage and remains one of the leading causes of death and disability worldwide. Effective neuroprotective therapies are needed to reduce brain damage resulting from ischemic stroke. Mitochondria are crucial for cellular energy production and homeostasis. Modulation of mitochondrial function mediates neuroprotection against ischemic brain damage. Dynamin-related protein 1 (Drp1) and parkin play a key role in regulating mitochondrial dynamics. They are potential therapeutic targets for neuroprotection in ischemic stroke. Protective effects of parkin-Drp1 pathway on mitochondria were assessed in a cellular ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces mitochondrial fragmentation. The expression of Drp1 protein is increased after OGDR insult, while the parkin protein level is decreased. The altered protein level of Drp1 after OGDR injury is mediated by parkin through ubiquitin proteasome system (UPS). Drp1 depletion protects against OGDR induced mitochondrial damage and apoptosis. Meanwhile, parkin overexpression protects against OGDR induced apoptosis and mitochondrial dysfunction, which is attenuated by increased expression of Drp1. Our data demonstrate that parkin protects against OGDR insult through promoting degradation of Drp1. This neuroprotective potential of parkin-Drp1 pathway against OGDR insult will pave the way for developing novel neuroprotective agents for cerebral ischemia-reperfusion related disorders. PMID:27597885

  4. Parkin Protects against Oxygen-Glucose Deprivation/Reperfusion Insult by Promoting Drp1 Degradation

    PubMed Central

    Tang, Jiayu; Hu, Zhiping; Tan, Jieqiong; Yang, Sonlin

    2016-01-01

    Ischemic stroke results in severe brain damage and remains one of the leading causes of death and disability worldwide. Effective neuroprotective therapies are needed to reduce brain damage resulting from ischemic stroke. Mitochondria are crucial for cellular energy production and homeostasis. Modulation of mitochondrial function mediates neuroprotection against ischemic brain damage. Dynamin-related protein 1 (Drp1) and parkin play a key role in regulating mitochondrial dynamics. They are potential therapeutic targets for neuroprotection in ischemic stroke. Protective effects of parkin-Drp1 pathway on mitochondria were assessed in a cellular ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces mitochondrial fragmentation. The expression of Drp1 protein is increased after OGDR insult, while the parkin protein level is decreased. The altered protein level of Drp1 after OGDR injury is mediated by parkin through ubiquitin proteasome system (UPS). Drp1 depletion protects against OGDR induced mitochondrial damage and apoptosis. Meanwhile, parkin overexpression protects against OGDR induced apoptosis and mitochondrial dysfunction, which is attenuated by increased expression of Drp1. Our data demonstrate that parkin protects against OGDR insult through promoting degradation of Drp1. This neuroprotective potential of parkin-Drp1 pathway against OGDR insult will pave the way for developing novel neuroprotective agents for cerebral ischemia-reperfusion related disorders. PMID:27597885

  5. Binding-induced folding of prokaryotic ubiquitin-like protein on the mycobacterium proteasomal ATPase targets substrates for degradation

    SciTech Connect

    Wang, T.; Li, H.; Darwin, K. H.

    2010-11-01

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  6. Binding-induced Folding of Prokaryotic Ubiquitin-like Protein on the Mycobacterium Proteasomal ATPase Targets Substrates for Degradation

    SciTech Connect

    T Wang; K Heran Darwin; H Li

    2011-12-31

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  7. Understanding Degradation Pathways in Organic Photovoltaics (Poster)

    SciTech Connect

    Lloyd, M. T.; Olson, D. C.; Garcia, A.; Kauvar, I.; Kopidakis, N.; Reese, M. O.; Berry, J. J.; Ginley, D. S.

    2011-02-01

    Organic Photovoltaics (OPVs) recently attained power conversion efficiencies that are of interest for commercial production. Consequently, one of the most important unsolved issues facing a new industry is understanding what governs lifetime in organic devices and discovering solutions to mitigate degradation mechanisms. Historically, the active organic components are considered vulnerable to photo-oxidation and represent the primary degradation channel. However, we present several (shelf life and light soaking) studies pointing the relative stability of the active layers and instabilities in commonly used electrode materials. We show that engineering of the hole/electron layer at the electrode can lead to environmentally stable devices even without encapsulation.

  8. Cystatin C Shifts APP Processing from Amyloid-β Production towards Non-Amyloidgenic Pathway in Brain Endothelial Cells

    PubMed Central

    Liang, Yue; Xing, Li-Li; Zhao, Wen-Hui; Qin, Xiao-Xue; Shang, De-Shu; Li, Bo; Fang, Wen-Gang; Cao, Liu; Zhao, Wei-Dong; Chen, Yu-Hua

    2016-01-01

    Amyloid-β (Aβ), the major component of neuritic plaques in Alzheimer’s disease (AD), is derived from sequential proteolytic cleavage of amyloid protein precursor (APP) by secretases. In this study, we found that cystatin C (CysC), a natural cysteine protease inhibitor, is able to reduce Aβ40 secretion in human brain microvascular endothelial cells (HBMEC). The CysC-induced Aβ40 reduction was caused by degradation of β-secretase BACE1 through the ubiquitin/proteasome pathway. In contrast, we found that CysC promoted secretion of soluble APPα indicating the activated non-amyloidogenic processing of APP in HBMEC. Further results revealed that α-secretase ADAM10, which was transcriptionally upregulated in response to CysC, was required for the CysC-induced sAPPα secretion. Knockdown of SIRT1 abolished CysC-triggered ADAM10 upregulation and sAPPα production. Taken together, our results demonstrated that exogenously applied CysC can direct amyloidogenic APP processing to non-amyloidgenic pathway in brain endothelial cells, mediated by proteasomal degradation of BACE1 and SIRT1-mediated ADAM10 upregulation. Our study unveils previously unrecognized protective role of CysC in APP processing. PMID:27532339

  9. Vitamin C Degradation Products and Pathways in the Human Lens*

    PubMed Central

    Nemet, Ina; Monnier, Vincent M.

    2011-01-01

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p < 0.05). In water-insoluble proteins, only 3-deoxythreosone and threosone were detected, whereby the level of 3-deoxythreosone was ∼20 times higher than the level of threosone. The identification of 3-deoxythreosone as the major degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo. PMID:21885436

  10. Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways.

    PubMed

    Alvarez-Vasco, Carlos; Zhang, Xiao

    2013-12-01

    This study investigated softwood hemicelluloses degradation pathways during alkaline hydrogen peroxide (AHP) pretreatment of Douglas fir. It was found that glucomannan is much more susceptible to alkaline pretreatment than xylan. Organic acids, including lactic, succinic, glycolic and formic acid are the predominant products from glucomannan degradation. At low treatment temperature (90°C), a small amount of formic acid is produced from glucomannan, whereas glucomannan degradation to lactic acid and succinic acid becomes the main reactions at 140°C and 180°C. The addition of H2O2 during alkaline pretreatment of D. fir led to a significant removal of lignin, which subsequently facilitated glucomannan solubilization. However, H2O2 has little direct effect on the glucomannan degradation reaction. The main degradation pathways involved in glucomannan conversion to organics acids are elucidated. The results from this study demonstrate the potential to optimize pretreatment conditions to maximize the value of biomass hemicellulose. PMID:24185034

  11. Degradation of Tiam1 by Casein Kinase 1 and the SCFβTrCP Ubiquitin Ligase Controls the Duration of mTOR-S6K Signaling*

    PubMed Central

    Magliozzi, Roberto; Kim, Jihoon; Low, Teck Yew; Heck, Albert J. R.; Guardavaccaro, Daniele

    2014-01-01

    Tiam1 (T-cell lymphoma invasion and metastasis 1) is a guanine nucleotide exchange factor that specifically controls the activity of the small GTPase Rac, a key regulator of cell adhesion, proliferation, and survival. Here, we report that in response to mitogens, Tiam1 is degraded by the ubiquitin-proteasome system via the SCFβTrCP ubiquitin ligase. Mitogenic stimulation triggers the binding of Tiam1 to the F-box protein βTrCP via its degron sequence and subsequent Tiam1 ubiquitylation and proteasomal degradation. The proteolysis of Tiam1 is prevented by βTrCP silencing, inhibition of CK1 and MEK, or mutation of the Tiam1 degron site. Expression of a stable Tiam1 mutant that is unable to interact with βTrCP results in sustained activation of the mTOR/S6K signaling and increased apoptotic cell death. We propose that the SCFβTrCP-mediated degradation of Tiam1 controls the duration of the mTOR-S6K signaling pathway in response to mitogenic stimuli. PMID:25124033

  12. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1.

    PubMed

    Dong, Chun-Hai; Agarwal, Manu; Zhang, Yiyue; Xie, Qi; Zhu, Jian-Kang

    2006-05-23

    Plant responses to cold stress are mediated by a transcriptional cascade, in which the transcription factor ICE1 and possibly related proteins activate the expression of C-repeat (CRT)-binding factors (CBFs), leading to the transcription of downstream effector genes. The variant RING finger protein high expression of osmotically responsive gene (HOS)1 was identified genetically as a negative regulator of cold responses. We present evidence here that HOS1 is an E3 ligase required for the ubiquitination of ICE1. HOS1 physically interacts with ICE1 and mediates the ubiquitination of ICE1 both in vitro and in vivo. We found that cold induces the degradation of ICE1 in plants, and this degradation requires HOS1. Consistent with enhanced cold-responsive gene expression in loss-of-function hos1 mutant plants, overexpression of HOS1 represses the expression of CBFs and their downstream genes and confers increased sensitivity to freezing stress. Our results indicate that cold stress responses in Arabidopsis are attenuated by a ubiquitination/proteasome pathway in which HOS1 mediates the degradation of the ICE1 protein. PMID:16702557

  13. Proteasomal degradation of preemptive quality control (pQC) substrates is mediated by an AIRAPL-p97 complex.

    PubMed

    Braunstein, Ilana; Zach, Lolita; Allan, Susanne; Kalies, Kai-Uwe; Stanhill, Ariel

    2015-11-01

    The initial folding of secreted proteins occurs in the ER lumen, which contains specific chaperones and where posttranslational modifications may occur. Therefore lack of translocation, regardless of entry route or protein identity, is a highly toxic event, as the newly synthesized polypeptide is misfolded and can promiscuously interact with cytosolic factors. Mislocalized proteins bearing a signal sequence that did not successfully translocate through the translocon complex are subjected to a preemptive quality control (pQC) pathway and are degraded by the ubiquitin-proteasome system (UPS). In contrast to UPS-mediated, ER-associated degradation, few components involved in pQC have been identified. Here we demonstrate that on specific translocation inhibition, a p97-AIRAPL complex directly binds and regulates the efficient processing of polyubiquitinated pQC substrates by the UPS. We also demonstrate p97's role in pQC processing of preproinsulin in cases of naturally occurring mutations within the signal sequence of insulin. PMID:26337389

  14. Proteasomal degradation of preemptive quality control (pQC) substrates is mediated by an AIRAPL–p97 complex

    PubMed Central

    Braunstein, Ilana; Zach, Lolita; Allan, Susanne; Kalies, Kai-Uwe; Stanhill, Ariel

    2015-01-01

    The initial folding of secreted proteins occurs in the ER lumen, which contains specific chaperones and where posttranslational modifications may occur. Therefore lack of translocation, regardless of entry route or protein identity, is a highly toxic event, as the newly synthesized polypeptide is misfolded and can promiscuously interact with cytosolic factors. Mislocalized proteins bearing a signal sequence that did not successfully translocate through the translocon complex are subjected to a preemptive quality control (pQC) pathway and are degraded by the ubiquitin-proteasome system (UPS). In contrast to UPS-mediated, ER-associated degradation, few components involved in pQC have been identified. Here we demonstrate that on specific translocation inhibition, a p97–AIRAPL complex directly binds and regulates the efficient processing of polyubiquitinated pQC substrates by the UPS. We also demonstrate p97’s role in pQC processing of preproinsulin in cases of naturally occurring mutations within the signal sequence of insulin. PMID:26337389

  15. Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation.

    PubMed

    Guan, Feng; Ding, Youming; Zhang, Yemin; Zhou, Yu; Li, Mingxin; Wang, Changhua

    2016-01-01

    Previous studies have evidenced that the anticancer potential of curcumin (diferuloylmethane), a main yellow bioactive compound from plant turmeric was mediated by interfering with PI3K/Akt signaling. However, the underlying molecular mechanism is still poorly understood. This study experimentally revealed that curcumin treatment reduced Akt protein expression in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells, along with an activation of autophagy and suppression of ubiquitin-proteasome system (UPS) function. The curcumin-reduced Akt expression, cell proliferation, and migration were prevented by genetic and pharmacological inhibition of autophagy but not by UPS inhibition. Additionally, inactivation of AMPK by its specific inhibitor compound C or by target shRNA-mediated silencing attenuated curcumin-activated autophagy. Thus, these results indicate that curcumin-stimulated AMPK activity induces activation of the autophagy-lysosomal protein degradation pathway leading to Akt degradation and the subsequent suppression of proliferation and migration in breast cancer cell. PMID:26752181

  16. RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2alpha.

    PubMed

    van Hagen, Martijn; Overmeer, René M; Abolvardi, Sharareh S; Vertegaal, Alfred C O

    2010-04-01

    Hypoxia-inducible factors (HIFs) are critical transcription factors that mediate cell survival during reduced oxygen conditions (hypoxia). At regular oxygen conditions (normoxia), HIF-1alpha and HIF-2alpha are continuously synthesized in cells and degraded via the ubiquitin-proteasome pathway. During hypoxia, these proteins are stabilized and translocate to the nucleus to activate transcription of target genes that enable cell survival at reduced oxygen levels. HIF proteins are tightly regulated via post-translational modifications including phosphorylation, acetylation, prolyl-hydroxylation and ubiquitination. Here we show for the first time that exogenous and endogenous HIF-2alpha are also regulated via the ubiquitin-like modifier small ubiquitin-like modifiers (SUMO). Using mutational analysis, we found that K394, which is situated in the sumoylation consensus site LKEE, is the major SUMO acceptor site in HIF-2alpha. Functionally, sumoylation reduced the transcriptional activity of HIF-2alpha. Similar to HIF-1alpha, HIF-2alpha is regulated by the SUMO protease SENP1. The proteasome inhibitor MG132 strongly stabilized SUMO-2-conjugated HIF-2alpha during hypoxia but did not affect the total level of HIF-2alpha. The ubiquitin E3 ligases von Hippel-Lindau and RNF4 control the levels of sumoylated HIF-2alpha, indicating that sumoylated HIF-2alpha is degraded via SUMO-targeted ubiquitin ligases. PMID:20026589

  17. Crosstalk of EDA-A2/XEDAR in the p53 signaling pathway.

    PubMed

    Tanikawa, Chizu; Ri, Cui; Kumar, Vinod; Nakamura, Yusuke; Matsuda, Koichi

    2010-06-01

    We recently identified X-linked ectodermal dysplasia receptor (XEDAR, also known as TNFRSF27 or EDA2R) as a direct p53 target that was frequently downregulated in colorectal cancer tissues due to its epigenetic alterations or through the p53 gene mutations. However, the role of the posttranslational regulation of XEDAR protein in colorectal carcinogenesis was not well clarified thus far. Here, we report that the extracellular NH(2) terminus of XEDAR protein was cleaved by a metalloproteinase and released into culture media. The remaining COOH-terminal membrane-anchored fragment was rapidly degraded through the ubiquitin-proteasome pathway. Interestingly, ectopic p53 expression also transactivated an XEDAR ligand, EDA-A2, together with XEDAR. Moreover, EDA-A2 blocked the cleavage of XEDAR and subsequently inhibited cell growth. We also found a missense mutation of the XEDAR gene in NCI-H716 colorectal cancer cells, which caused the translocation of XEDAR protein from cell membrane to cytoplasm. This mutation attenuated the growth-suppressive effect of XEDAR, indicating that membrane localization is critical for physiologic XEDAR function. Thus, our findings clearly revealed the crucial role of EDA-A2/XEDAR interaction in the p53-signaling pathway. PMID:20501644

  18. Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis.

    PubMed

    Dos Santos, Maísa Pavani; Batistela, Emanuele; Pereira, Mayara Peron; Paula-Gomes, Silvia; Zanon, Neusa Maria; Kettelhut, Isis do Carmo; Karatzaferi, Christina; Andrade, Claudia Marlise Balbinotti; de França, Suélem Aparecida; Baviera, Amanda Martins; Kawashita, Nair Honda

    2016-08-01

    Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis. PMID:27239756

  19. Development of a peptide-based inducer of nuclear receptors degradation.

    PubMed

    Demizu, Yosuke; Ohoka, Nobumichi; Nagakubo, Takaya; Yamashita, Hiroko; Misawa, Takashi; Okuhira, Keiichiro; Naito, Mikihiko; Kurihara, Masaaki

    2016-06-01

    A peptide-based protein knockdown system for inducing nuclear receptors degradation via the ubiquitin-proteasome system was developed. Specifically, the designed molecules were composed of two biologically active scaffolds: a peptide that binds to the estrogen receptor α (ERα) surface and an MV1 molecule that binds to cellular inhibitors of apoptosis proteins (IAP: cIAP1/cIAP2/XIAP) to induce ubiquitylation of the ERα. The hybrid peptides induced IAP-mediated ubiquitylation followed by proteasomal degradation of the ERα. Those peptides were also applicable for inducing androgen receptor (AR) degradation. PMID:27086122

  20. Cathodic degradation of antibiotics: characterization and pathway analysis.

    PubMed

    Kong, Deyong; Liang, Bin; Yun, Hui; Cheng, Haoyi; Ma, Jincai; Cui, Minhua; Wang, Aijie; Ren, Nanqi

    2015-04-01

    Antibiotics in wastewaters must be degraded to eliminate their antibacterial activity before discharging into the environment. A cathode can provide continuous electrons for the degradation of refractory pollutants, however the cathodic degradation feasibility, efficiency and pathway for different kinds of antibiotics is poorly understood. Here, we investigated the degradation of four antibiotics, namely nitrofurazone (NFZ), metronidazole (MNZ), chloramphenicol (CAP), and florfenicol (FLO) by a poised cathode in a dual chamber electrochemical reactor. The cyclic voltammetry preliminarily proved the feasibility of the cathodic degradation of these antibiotics. The cathodic reducibility of these antibiotics followed the order of NFZ > MNZ > CAP > FLO. A decreased phosphate buffered solution (PBS) concentration as low as 2 mM or utilization of NaCl buffer solution as catholyte had significant influence on antibiotics degradation rate and efficiency for CAP and FLO but not for NFZ and MNZ. PBS could be replaced by Na2CO3-NaHCO3 buffer solution as catholyte for the degradation of these antibiotics. Reductive dechlorination of CAP proceeded only after the reduction of the nitro group to aromatic amine. The composition of the degradation products depended on the cathode potential except for MNZ. The cathodic degradation process could eliminate the antibacterial activity of these antibiotics. The current study suggests that the electrochemical reduction could serve as a potential pretreatment or advanced treatment unit for the treatment of antibiotics containing wastewaters. PMID:25660806

  1. Current Understanding on the Role of Standard and Immunoproteasomes in Inflammatory/Immunological Pathways of Multiple Sclerosis

    PubMed Central

    Bellavista, Elena; Santoro, Aurelia; Galimberti, Daniela; Comi, Cristoforo; Luciani, Fabio; Mishto, Michele

    2014-01-01

    The ubiquitin-proteasome system is the major intracellular molecular machinery for protein degradation and maintenance of protein homeostasis in most human cells. As ubiquitin-proteasome system plays a critical role in the regulation of the immune system, it might also influence the development and progression of multiple sclerosis (MS). Both ex vivo analyses and animal models suggest that activity and composition of ubiquitin-proteasome system are altered in MS. Proteasome isoforms endowed of immunosubunits may affect the functionality of different cell types such as CD8+ and CD4+ T cells and B cells as well as neurons during MS development. Furthermore, the study of proteasome-related biomarkers, such as proteasome antibodies and circulating proteasomes, may represent a field of interest in MS. Proteasome inhibitors are already used as treatment for cancer and the recent development of inhibitors selective for immunoproteasome subunits may soon represent novel therapeutic approaches to the different forms of MS. In this review we describe the current knowledge on the potential role of proteasomes in MS and discuss the pro et contra of possible therapies for MS targeting proteasome isoforms. PMID:24523959

  2. ORGANOPHOSPHATE PESTICIDE DEGRADATION PATHWAYS DURING DRINKING WATER TREATMENT

    EPA Science Inventory

    Free chlorine has been found to react with organophosphate (OP) pesticides resulting in the more toxic oxon products. We will discuss OP pesticide degradation pathways and modeling in the presence of chlorine and chloramines, as well as present a relationship between structure a...

  3. Tamoxifen Inhibits ER-negative Breast Cancer Cell Invasion and Metastasis by Accelerating Twist1 Degradation

    PubMed Central

    Ma, Gang; He, Jianjun; Yu, Yang; Xu, Yixiang; Yu, Xiaobin; Martinez, Jarrod; Lonard, David M.; Xu, Jianming

    2015-01-01

    Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers. PMID:25892968

  4. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation.

    PubMed

    Ma, Gang; He, Jianjun; Yu, Yang; Xu, Yixiang; Yu, Xiaobin; Martinez, Jarrod; Lonard, David M; Xu, Jianming

    2015-01-01

    Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers. PMID:25892968

  5. Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth.

    PubMed

    Lignitto, Luca; Arcella, Antonietta; Sepe, Maria; Rinaldi, Laura; Delle Donne, Rossella; Gallo, Adriana; Stefan, Eduard; Bachmann, Verena A; Oliva, Maria A; Tiziana Storlazzi, Clelia; L'Abbate, Alberto; Brunetti, Arturo; Gargiulo, Sara; Gramanzini, Matteo; Insabato, Luigi; Garbi, Corrado; Gottesman, Max E; Feliciello, Antonio

    2013-01-01

    Human glioblastoma is the most frequent and aggressive form of brain tumour in the adult population. Proteolytic turnover of tumour suppressors by the ubiquitin-proteasome system is a mechanism that tumour cells can adopt to sustain their growth and invasiveness. However, the identity of ubiquitin-proteasome targets and regulators in glioblastoma are still unknown. Here we report that the RING ligase praja2 ubiquitylates and degrades Mob, a core component of NDR/LATS kinase and a positive regulator of the tumour-suppressor Hippo cascade. Degradation of Mob through the ubiquitin-proteasome system attenuates the Hippo cascade and sustains glioblastoma growth in vivo. Accordingly, accumulation of praja2 during the transition from low- to high-grade glioma is associated with significant downregulation of the Hippo pathway. These findings identify praja2 as a novel upstream regulator of the Hippo cascade, linking the ubiquitin proteasome system to deregulated glioblastoma growth. PMID:23652010

  6. Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene

    SciTech Connect

    Nishino, S.F.; Paoli, G.C.; Spain, J.C.

    2000-05-01

    An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2,4-DNT) by Burkholderia sp. strain DNT has been reported previously. The authors report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2,6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon and nitrogen. The initial steps in the pathway for degradation of 2,6-DNT were determined by simultaneous induction, enzyme assays, and identification of metabolites through mass spectroscopy and nuclear magnetic resonance. 2,6-DNT was converted to 3-methyl-4-nitrocatechol by a dioxygenation reaction accompanied by the release of nitrite. 3-Methyl-4-nitrocatechol was the substrate for extradiol ring cleavage yielding 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid. 2,4-DNT-degrading strains also converted 2,6-DNT to 3-methyl-4-nitrocatechol but did not metabolize the 3-methyl-4-nitrocatechol. Although 2,6-DNT prevented the degradation of 2,4-DNT by 2,4-DNT-degrading strains, the effect was not the result of inhibition of 2,4-DNT dioxygenase by 2,6-DNT or of 4-methyl-5-nitrocatechol monooxygenase by 3-methyl-4-nitrocatechol.

  7. Identification of the major degradation pathways of ticagrelor.

    PubMed

    Sadou Yaye, Hassane; Secrétan, Philippe-Henri; Henriet, Théo; Bernard, Mélisande; Amrani, Fatma; Akrout, Wiem; Tilleul, Patrick; Yagoubi, Najet; Do, Bernard

    2015-02-01

    Ticagrelor is a direct-acting and reversible P2Y12-adenosine diphosphate (ADP) receptor blocker used as antiplatelet drug. Forced degradation under various stress conditions was carried out. The degradation products have been detected and identified by high-pressure liquid chromatography multistage mass spectrometry (LC-MS(n)) along with high-resolution mass spectrometry. C18 XTerra MS column combined with a linear gradient mobile phase composed of a mixture of 10 mM acetate ammonium/acetonitrile was shown suitable for drug and impurity determinations and validated as a stability indicating method. Structural elucidation of the degradation products relied on MS(n) studies and accurate mass measurements giving access to elemental compositions. Up to nine degradation products resulting from oxidation/auto-oxidation, S-dealkylation and N-dealkylation have been identified, covering a range of possible degradation pathways for derivatives with such functional groups. Kinetics was also studied in order to assess the molecule's shelf-life and to identify the most important degradation factors. PMID:25543285

  8. Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson's Disease.

    PubMed

    Rivero-Ríos, Pilar; Madero-Pérez, Jesús; Fernández, Belén; Hilfiker, Sabine

    2016-01-01

    Autophagy is a cellular quality control mechanism crucial for neuronal homeostasis. Defects in autophagy are critically associated with mechanisms underlying Parkinson's disease (PD), a common and debilitating neurodegenerative disorder. Autophagic dysfunction in PD can occur at several stages of the autophagy/lysosomal degradative machinery, contributing to the formation of intracellular protein aggregates and eventual neuronal cell death. Therefore, autophagy inducers may comprise a promising new therapeutic approach to combat neurodegeneration in PD. Several currently available FDA-approved drugs have been shown to enhance autophagy, which may allow for their repurposing for use in novel clinical conditions including PD. This review summarizes our current knowledge of deficits in the autophagy/lysosomal degradation pathways associated with PD, and highlight current approaches which target this pathway as possible means towards novel therapeutic strategies. PMID:26517050

  9. Alpha-synuclein aggregation involves a bafilomycin A1-sensitive autophagy pathway

    PubMed Central

    Klucken, Jochen; Poehler, Anne-Maria; Ebrahimi-Fakhari, Darius; Schneider, Jacqueline; Nuber, Silke; Rockenstein, Edward; Schlötzer-Schrehardt, Ursula; Hyman, Bradley T.; McLean, Pamela J.; Masliah, Eliezer; Winkler, Juergen

    2012-01-01

    Synucleinopathies like Parkinson disease and dementia with Lewy bodies (DLB) are characterized by α-synuclein aggregates within neurons (Lewy bodies) and their processes (Lewy neurites). Whereas α-synuclein has been genetically linked to the disease process, the pathological relevance of α-synuclein aggregates is still debated. Impaired degradation is considered to result in aggregation of α-synuclein. In addition to the ubiquitin-proteasome degradation, the autophagy-lysosomal pathway (ALP) is involved in intracellular degradation processes for α-synuclein. Here, we asked if modulation of ALP affects α-synuclein aggregation and toxicity. We have identified an induction of the ALP markers LAMP-2A and LC3-II in human brain tissue from DLB patients, in a transgenic mouse model of synucleinopathy, and in a cell culture model for α-synuclein aggregation. ALP inhibition using bafilomycin A1 (BafA1) significantly potentiates toxicity of aggregated α-synuclein species in transgenic mice and in cell culture. Surprisingly, increased toxicity is paralleled by reduced aggregation in both in vivo and in vitro models. The dichotomy of effects on aggregating and nonaggregating species of α-synuclein was specifically sensitive to BafA1 and could not be reproduced by other ALP inhibitors. The present study expands on the accumulating evidence regarding the function of ALP for α-synuclein degradation by isolating an aggregation specific, BafA1-sensitive, ALP-related pathway. Our data also suggest that protein aggregation may represent a detoxifying event rather than being causal for cellular toxicity. PMID:22647715

  10. Alpha-synuclein aggregation involves a bafilomycin A 1-sensitive autophagy pathway.

    PubMed

    Klucken, Jochen; Poehler, Anne-Maria; Ebrahimi-Fakhari, Darius; Schneider, Jacqueline; Nuber, Silke; Rockenstein, Edward; Schlötzer-Schrehardt, Ursula; Hyman, Bradley T; McLean, Pamela J; Masliah, Eliezer; Winkler, Juergen

    2012-05-01

    Synucleinopathies like Parkinson disease and dementia with Lewy bodies (DLB) are characterized by α-synuclein aggregates within neurons (Lewy bodies) and their processes (Lewy neurites). Whereas α-synuclein has been genetically linked to the disease process, the pathological relevance of α-synuclein aggregates is still debated. Impaired degradation is considered to result in aggregation of α-synuclein. In addition to the ubiquitin-proteasome degradation, the autophagy-lysosomal pathway (ALP) is involved in intracellular degradation processes for α-synuclein. Here, we asked if modulation of ALP affects α-synuclein aggregation and toxicity. We have identified an induction of the ALP markers LAMP-2A and LC3-II in human brain tissue from DLB patients, in a transgenic mouse model of synucleinopathy, and in a cell culture model for α-synuclein aggregation. ALP inhibition using bafilomycin A 1 (BafA1) significantly potentiates toxicity of aggregated α-synuclein species in transgenic mice and in cell culture. Surprisingly, increased toxicity is paralleled by reduced aggregation in both in vivo and in vitro models. The dichotomy of effects on aggregating and nonaggregating species of α-synuclein was specifically sensitive to BafA1 and could not be reproduced by other ALP inhibitors. The present study expands on the accumulating evidence regarding the function of ALP for α-synuclein degradation by isolating an aggregation specific, BafA1-sensitive, ALP-related pathway. Our data also suggest that protein aggregation may represent a detoxifying event rather than being causal for cellular toxicity. PMID:22647715

  11. Hydroxide Degradation Pathways for Substituted Trimethylammonium Cations: A DFT Study

    SciTech Connect

    Long, H.; Kim, K.; Pivovar, B. S.

    2012-05-03

    Substituted trimethylammonium cations serve as small molecule analogues for tetherable cations in anion exchange membranes. In turn, these membranes serve as the basis for alkaline membrane fuel cells by allowing facile conduction of hydroxide. As these cations are susceptible to hydroxide attack, they degrade over time and greatly limit the lifetime of the fuel cell. In this research, we performed density functional theory calculations to investigate the degradation pathways of substituted trimethylammonium cations to probe the relative durability of cation tethering strategies in alkyl and aromatic tethers. Our results show that significant changes in calculated energy barriers occur when substitution groups change. Specifically, we have found that, when available, the Hofmann elimination pathway is the most vulnerable pathway for degradation; however, this barrier is also found to depend on the carbon chain length and number of hydrogens susceptible to Hofmann elimination. S{sub N}2 barriers were also investigated for both methyl groups and substitution groups. The reported findings give important insight into potential tethering strategies for trimethylammonium cations in anion exchange membranes.

  12. CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70.

    PubMed

    Urushitani, Makoto; Kurisu, Junko; Tateno, Minako; Hatakeyama, Shigetsugu; Nakayama, Kei-Ichi; Kato, Shinsuke; Takahashi, Ryosuke

    2004-07-01

    Over 100 mutants in superoxide dismutase 1 (SOD1) are reported in familial amyotrophic lateral sclerosis (ALS). However, the precise mechanism by which they are degraded through a ubiquitin-proteasomal pathway (UPP) remains unclear. Here, we report that heat-shock protein (Hsp) or heat-shock cognate (Hsc)70, and the carboxyl terminus of the Hsc70-interacting protein (CHIP), are involved in proteasomal degradation of mutant SOD1. Only mutant SOD1 interacted with Hsp/Hsc70 in vivo, and in vitro experiments revealed that Hsp/Hsc70 preferentially interacted with apo-SOD1 or dithiothreitol (DTT)-treated holo-SOD1, compared with metallated or oxidized forms. CHIP, a binding partner of Hsp/Hsc70, interacted only with mutant SOD1 and promoted its degradation. Both Hsp70 and CHIP promoted polyubiquitination of mutant SOD1-associated molecules, but not of mutant SOD1, indicating that mutant SOD1 is not a substrate of CHIP. Moreover, mutant SOD1-associated Hsp/Hsc70, a known substrate of CHIP, was polyubiquitinated in vivo, and polyubiquitinated Hsc70 by CHIP interacted with the S5a subunit of the 26S proteasome in vitro. Furthermore, CHIP was predominantly expressed in spinal neurons, and ubiquitinated inclusions in the spinal motor neurons of hSOD1(G93A) transgenic mice were CHIP-immunoreactive. Taken together, we propose a novel pathway in which ubiquitinated Hsp/Hsc70 might deliver mutant SOD1 to, and facilitate its degradation, at the proteasome. PMID:15198682

  13. Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation.

    PubMed

    Gong, Xiaoyan; Ahner, Annette; Roldan, Ariel; Lukacs, Gergely L; Thibodeau, Patrick H; Frizzell, Raymond A

    2016-01-22

    A newly identified pathway for selective degradation of the common mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), F508del, is initiated by binding of the small heat shock protein, Hsp27. Hsp27 collaborates with Ubc9, the E2 enzyme for protein SUMOylation, to selectively degrade F508del CFTR via the SUMO-targeted ubiquitin E3 ligase, RNF4 (RING finger protein 4) (1). Here, we ask what properties of CFTR are sensed by the Hsp27-Ubc9 pathway by examining the ability of NBD1 (locus of the F508del mutation) to mimic the disposal of full-length (FL) CFTR. Similar to FL CFTR, F508del NBD1 expression was reduced 50-60% by Hsp27; it interacted preferentially with the mutant and was modified primarily by SUMO-2. Mutation of the consensus SUMOylation site, Lys(447), obviated Hsp27-mediated F508del NBD1 SUMOylation and degradation. As for FL CFTR and NBD1 in vivo, SUMO modification using purified components in vitro was greater for F508del NBD1 versus WT and for the SUMO-2 paralog. Several findings indicated that Hsp27-Ubc9 targets the SUMOylation of a transitional, non-native conformation of F508del NBD1: (a) its modification decreased as [ATP] increased, reflecting stabilization of the nucleotide-binding domain by ligand binding; (b) a temperature-induced increase in intrinsic fluorescence, which reflects formation of a transitional NBD1 conformation, was followed by its SUMO modification; and (c) introduction of solubilizing or revertant mutations to stabilize F508del NBD1 reduced its SUMO modification. These findings indicate that the Hsp27-Ubc9 pathway recognizes a non-native conformation of mutant NBD1, which leads to its SUMO-2 conjugation and degradation by the ubiquitin-proteasome system. PMID:26627832

  14. Effectiveness and pathways of electrochemical degradation of pretilachlor herbicides.

    PubMed

    Wei, Jinzhi; Feng, Yujie; Sun, Xiaojun; Liu, Junfeng; Zhu, Limin

    2011-05-15

    Pretilachlor used as one kind of acetanilide herbicides is potentially dangerous and biorefractory. In this work, electrochemical degradation of lab-synthetic pretilachlor wastewater was carried out with Sb doped Ti/SnO(2) electrode as anode and stainless steel as cathode. The effect of current density on pretilachlor degradation was investigated, and the degradation pathway of pretilachlor was inferred by analyzing its main degradation intermediates. The results showed that the removal of pretilachlor and TOC in treatment time of 60 min were 98.8% and 43.1% under the conditions of current density of 20 mA cm(-2), initial concentration of pretilachlor of 60 mg L(-1), Na(2)SO(4) dosage of 0.1 mol L(-1), pH of 7.2, respectively, while the energy consumption was 15.8 kWhm(-3). The main reactions for electrochemical degradation of pretilachlor included hydroxylation, oxidation, dechlorination, C-O bond and C-N bond cleavage, resulting in the formation of nine main intermediates. PMID:21382661

  15. Degradation of toluene-2,4-diamine by persulphate: kinetics, intermediates and degradation pathway.

    PubMed

    Jiang, Yong-hai; Zhang, Jin-bao; Xi, Bei-dou; An, Da; Yang, Yu; Li, Ming-xiao

    2015-01-01

    In this study, the degradation of toluene-2,4-diamine (TDA) by persulphate (PS) in an aqueous solution at near-neutral pH was examined. The result showed that the degradation rate of TDA increased with increasing PS concentrations. The optimal dosage of PS in the reaction system was determined by efficiency indicator (I) coupling in the consumption of PS and decay half-life of TDA. Calculation showed that 0.74 mM of PS was the most effective dosage for TDA degradation, at that level the maximum I of 24.51 was obtained. PS can oxidize TDA for an extended reaction time period. Under neutral condition without activation, four degradation intermediates, 2,4-diamino-3-hydroxy-5-sulfonicacidtoluene, 2,4-diaminobenzaldehyde, 2,4-bis(vinylamino)benzaldehyde and 3,5-diamino-4-hydroxy-2-pentene, were identified by high-performance liquid chromatography-mass spectrometry. The tentative degradation pathway of TDA was proposed as well. It was found that hydroxyl radical played an important role in degradation of TDA with the activation of Fe2+, whereas PS anion and sulphate radicals were responsible for the degradation without activation of Fe2+. PMID:25442404

  16. Protein Degradation and Quality Control in Cells from Laforin and Malin Knockout Mice*

    PubMed Central

    Garyali, Punitee; Segvich, Dyann M.; DePaoli-Roach, Anna A.; Roach, Peter J.

    2014-01-01

    Lafora disease is a progressive myoclonus epilepsy caused by mutations in the EPM2A or EPM2B genes that encode a glycogen phosphatase, laforin, and an E3 ubiquitin ligase, malin, respectively. Lafora disease is characterized by accumulation of insoluble, poorly branched, hyperphosphorylated glycogen in brain, muscle, heart, and liver. The laforin-malin complex has been proposed to play a role in the regulation of glycogen metabolism and protein quality control. We evaluated three arms of the protein degradation/quality control process (the autophago-lysosomal pathway, the ubiquitin-proteasomal pathway, and the endoplasmic reticulum (ER) stress response) in mouse embryonic fibroblasts from Epm2a−/−, Epm2b−/−, and Epm2a−/− Epm2b−/− mice. The levels of LC3-II, a marker of autophagy, were decreased in all knock-out cells as compared with wild type even though they still showed a slight response to starvation and rapamycin. Furthermore, ribosomal protein S6 kinase and S6 phosphorylation were increased. Under basal conditions there was no effect on the levels of ubiquitinated proteins in the knock-out cells, but ubiquitinated protein degradation was decreased during starvation or stress. Lack of malin (Epm2b−/− and Epm2a−/− Epm2b−/− cells) but not laforin (Epm2a−/− cells) decreased LAMP1, a lysosomal marker. CHOP expression was similar in wild type and knock-out cells under basal conditions or with ER stress-inducing agents. In conclusion, both laforin and malin knock-out cells display mTOR-dependent autophagy defects and reduced proteasomal activity but no defects in the ER stress response. We speculate that these defects may be secondary to glycogen overaccumulation. This study also suggests a malin function independent of laforin, possibly in lysosomal biogenesis and/or lysosomal glycogen disposal. PMID:24914213

  17. Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways.

    PubMed

    Sayed, Murtaza; Ismail, M; Khan, Sanaullah; Tabassum, Safia; Khan, Hasan M

    2016-03-01

    Gamma-radiation-induced degradation of ciprofloxacin (CIP) in aqueous solution and the factors affecting the degradation process have been investigated. The results showed that CIP (4.6 mg/L) was almost completely degraded at an absorbed dose of 870 Gy. The kinetic studies of aqueous solutions containing 4.6, 10, 15 and 17.9 mg/L indicated that the decomposition of CIP by gamma irradiation followed pseudo-first-order kinetics and the decay constant (k) decreased from 5.9  ×  10(-3) to 1.6  ×  10(-3) Gy(-1) with an increase in CIP initial concentration from 4.6 to 17.9 mg/L. The effect of saturation of CIP solution with N2, N2O or air on radiation-induced degradation of CIP was also investigated. The effects of radical scavengers, such as t-BuOH and i-PrOH, showed the role of reactive radicals towards degradation of CIP in the order of [Formula: see text]. The apparent second-order rate constant of [Formula: see text] with CIP was calculated to be 2.64 × 10(9) M(-1) s(-1). The effects of solution pH as well as natural water contaminants, such as [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], on CIP degradation by gamma-irradiation were also investigated. Major degradation products, including organic acids, were identified using UPLC-MS/MS and IC, and degradation pathways have been proposed. PMID:26208491

  18. Autophagy as a Regulated Pathway of Cellular Degradation

    PubMed Central

    Klionsky, Daniel J.; Emr, Scott D.

    2009-01-01

    Macroautophagy is a dynamic process involving the rearrangement of subcellular membranes to sequester cytoplasm and organelles for delivery to the lysosome or vacuole where the sequestered cargo is degraded and recycled. This process takes place in all eukaryotic cells. It is highly regulated through the action of various kinases, phosphatases, and guanosine triphosphatases (GTPases). The core protein machinery that is necessary to drive formation and consumption of intermediates in the macroautophagy pathway includes a ubiquitin-like protein conjugation system and a protein complex that directs membrane docking and fusion at the lysosome or vacuole. Macroautophagy plays an important role in developmental processes, human disease, and cellular response to nutrient deprivation. PMID:11099404

  19. Nedd8 targets ubiquitin ligase Smurf2 for neddylation and promote its degradation.

    PubMed

    Shu, Jingyi; Liu, Chao; Wei, Rongfei; Xie, Ping; He, Shan; Zhang, Lingqiang

    2016-05-20

    E3 ubiquitin ligases are pivotal effectors of the ubiquitin-proteasome system as they determine the substrate specificity and transfer ubiquitin to the substrate. HECT-type ubiquitin ligase Smad ubiquitination regulatory factor 2 (Smurf2) has been demonstrated functions as a tumor suppressor. However, the mechanisms underlying regulation of Smurf2 is still unclear. Here we show that ubiquitin-like protein Nedd8 targets the HECT-type ubiquitin ligase Smurf2 for neddylation, and promotes Smurf2 degradation. Neddylation of Smurf1 activates its ubiquitin ligase activity and Smurf2 exerts Nedd8 ligase activity. This study provided new clues of Smurf2 activation regulation. PMID:27086113

  20. Emerging mechanistic insights into AAA complexes regulating proteasomal degradation.

    PubMed

    Förster, Friedrich; Schuller, Jan M; Unverdorben, Pia; Aufderheide, Antje

    2014-01-01

    The 26S proteasome is an integral element of the ubiquitin-proteasome system(UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells.It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates.The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases,shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship.Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS). PMID:25102382

  1. Emerging Mechanistic Insights into AAA Complexes Regulating Proteasomal Degradation

    PubMed Central

    Förster, Friedrich; Schuller, Jan M.; Unverdorben, Pia; Aufderheide, Antje

    2014-01-01

    The 26S proteasome is an integral element of the ubiquitin-proteasome system (UPS) and, as such, responsible for regulated degradation of proteins in eukaryotic cells. It consists of the core particle, which catalyzes the proteolysis of substrates into small peptides, and the regulatory particle, which ensures specificity for a broad range of substrates. The heart of the regulatory particle is an AAA-ATPase unfoldase, which is surrounded by non-ATPase subunits enabling substrate recognition and processing. Cryo-EM-based studies revealed the molecular architecture of the 26S proteasome and its conformational rearrangements, providing insights into substrate recognition, commitment, deubiquitylation and unfolding. The cytosol proteasomal degradation of polyubiquitylated substrates is tuned by various associating cofactors, including deubiquitylating enzymes, ubiquitin ligases, shuttling ubiquitin receptors and the AAA-ATPase Cdc48/p97. Cdc48/p97 and its cofactors function upstream of the 26S proteasome, and their modular organization exhibits some striking analogies to the regulatory particle. In archaea PAN, the closest regulatory particle homolog and Cdc48 even have overlapping functions, underscoring their intricate relationship. Here, we review recent insights into the structure and dynamics of the 26S proteasome and its associated machinery, as well as our current structural knowledge on the Cdc48/p97 and its cofactors that function in the ubiquitin-proteasome system (UPS). PMID:25102382

  2. Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6

    PubMed Central

    Gao, Shumei; Seo, Jong-Su; Wang, Jun; Keum, Young-Soo; Li, Jianqiang; Li, Qing X.

    2013-01-01

    Stenotrophomonas maltophilia strain C6, capable of utilizing phenanthrene as a sole source of carbon and energy, was isolated from creosote-contaminated sites at Hilo, Hawaii. Twenty-two metabolites of phenanthrene, covering from dihydrodiol to protocatechuic acid, were isolated and characterized. Phenanthrene was degraded via an initial dioxygenation on 1,2-, 3,4-, and 9,10-C, where the 3,4-dioxygenation and subsequent metabolisms were most dominant. The metabolic pathways were further branched by ortho- and meta-cleavage of phenanthrenediols to produce 1-hydroxy-2-naphthoic acid, 2-hydroxy-1-naphthoic acid, and naphthalene-1,2-dicarboxylic acid. These intermediates were then transformed to naphthalene-1,2-diol. 1-Hydroxy-2-naphthoic acid was also degraded via a direct ring cleavage. Naphthalene-1,2-diol underwent primarily ortho-cleavage to produce trans-2-carboxycinnamic acid and then to form phthalic acid, 4,5-dihydroxyphthalic acid and protocatechuic acid. Accumulation of salicylic acid in prolonged incubation indicated that a limited extent of meta-cleavage of naphthalene-1, 2-diol also occurred. This is the first study of detailed phenanthrene metabolic pathways by Stenotrophomonas maltophilia. PMID:23539472

  3. Degradation of Ionic Pathway in PEM Fuel Cell Cathode

    SciTech Connect

    Park, Seh Kyu; Shao, Yuyan; Wan, Haiying; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Wang, Yong

    2011-11-12

    The degradation of the ionic pathway throughout the catalyst layer in proton exchange membrane fuel cells was studied under an accelerated stress test of catalyst support (potential hold at 1.2 V). Electrochemical behaviors of the cathode based on graphitic mesoporous carbon supported Pt catalyst were examined using electrochemical impedance spectroscopy and cyclic voltammetry. Impedance data were plotted and expressed in the complex capacitance form to determine useful parameters in the transmission line model: the double-layer capacitance, peak frequency, and ionic resistance. Electrochemical surface area and hydrogen crossover current through the membrane were estimated from cyclic voltammogram, while cathode Faradaic resistance was compared with ionic resistance as a function of test time. It was observed that during an accelerated stress test of catalyst support, graphitic mesoporous carbon becomes hydrophilic which increases interfacial area between the ionomer and the catalyst up to 100 h. However, the ionic resistance in the catalyst layer drastically increases after 100 h with further carbon support oxidation. The underlying mechanism has been studied and it was found that significant degradation of ionic pathway throughout the catalyst layer due to catalyst support corrosion induces uneven hydration and mechanical stress in the ionomer.

  4. The trans-anethole degradation pathway in an Arthrobacter sp.

    PubMed

    Shimoni, Eyal; Baasov, Timor; Ravid, Uzi; Shoham, Yuval

    2002-04-01

    A bacterial strain (TA13) capable of utilizing t-anethole as the sole carbon source was isolated from soil. The strain was identified as Arthrobacter aurescens based on its 16 S rRNA gene sequence. Key steps of the degradation pathway of t-anethole were identified by the use of t-anethole-blocked mutants and specific inducible enzymatic activities. In addition to t-anethole, strain TA13 is capable of utilizing anisic acid, anisaldehyde, and anisic alcohol as the sole carbon source. t-Anethole-blocked mutants were obtained following mutagenesis and penicillin enrichment. Some of these blocked mutants, accumulated in the presence of t-anethole quantitative amounts of t-anethole-diol, anisic acid, and 4,6-dicarboxy-2-pyrone and traces of anisic alcohol and anisaldehyde. Enzymatic activities induced by t-anethole included: 4-methoxybenzoate O-demethylase, p-hydroxybenzoate 3-hydroxylase, and protocatechuate-4,5-dioxygenase. These findings indicate that t-anethole is metabolized to protocatechuic acid through t-anethole-diol, anisaldehyde, anisic acid, and p-hydroxybenzoic acid. The protocatechuic acid is then cleaved by protocatechuate-4,5-dioxygenase to yield 2-hydroxy-4-carboxy muconate-semialdehyde. Results from inducible uptake ability and enzymatic assays indicate that at least three regulatory units are involved in the t-anethole degradation pathway. These findings provide new routes for environmental friendly production processes of valuable aromatic chemicals via bioconversion of phenylpropenoids. PMID:11805095

  5. Proteogenomic Characterization of Monocyclic Aromatic Hydrocarbon Degradation Pathways in the Aniline-Degrading Bacterium Burkholderia sp. K24

    PubMed Central

    Yun, Sung Ho; Choi, Chi-Won; Yi, Yoon-Sun; Kim, Jonghyun; Chung, Young-Ho; Park, Edmond Changkyun; Kim, Seung Il

    2016-01-01

    Burkholderia sp. K24, formerly known as Acinetobacter lwoffii K24, is a soil bacterium capable of utilizing aniline as its sole carbon and nitrogen source. Genomic sequence analysis revealed that this bacterium possesses putative gene clusters for biodegradation of various monocyclic aromatic hydrocarbons (MAHs), including benzene, toluene, and xylene (BTX), as well as aniline. We verified the proposed MAH biodegradation pathways by dioxygenase activity assays, RT-PCR, and LC/MS-based quantitative proteomic analyses. This proteogenomic approach revealed four independent degradation pathways, all converging into the citric acid cycle. Aniline and p-hydroxybenzoate degradation pathways converged into the β-ketoadipate pathway. Benzoate and toluene were degraded through the benzoyl-CoA degradation pathway. The xylene isomers, i.e., o-, m-, and p-xylene, were degraded via the extradiol cleavage pathways. Salicylate was degraded through the gentisate degradation pathway. Our results show that Burkholderia sp. K24 possesses versatile biodegradation pathways, which may be employed for efficient bioremediation of aniline and BTX. PMID:27124467

  6. Cadmium-induced activation of stress signaling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte cocultures.

    PubMed

    Yu, Xiaozhong; Hong, Sungwoo; Faustman, Elaine M

    2008-08-01

    Cadmium (Cd) is a ubiquitous environmental pollutant that has been associated with male reproductive toxicity in both humans and animal models. The underlying mechanism of this response, however, is still uncharacterized. To address this issue, we employed a recently developed and optimized three-dimensional primary Sertoli cell-gonocyte coculture system and examined the time- and dose-dependent effects of Cd on morphological alterations, cell viability, activation of stress signaling pathway proteins, and the disruption of the ubiquitin proteasome system (UPS). Our results demonstrated that Cd exposure lead to time- and dose-dependent morphological changes that are associated with the induction of apoptosis. In response to Cd, we also saw a disruption of the UPS as evaluated through the accumulation of high-molecular weight polyubiquitinated proteins (HMW-polyUb) as well as alterations in proteasome activity. Robust activation of cellular stress response, measured through the increased phosphorylation of stress-activated protein kinase/c-jun N-terminal kinase and p38, paralleled the accumulation of HMW-polyUb. In addition, p53, a key regulatory protein, was upregulated and underwent increased ubiquitination in response to Cd. To further characterize the role of the UPS in Cd cellular response, we compared the above changes with two classic proteasomal inhibitors, lactacystin, and MG132. The stress response and the accumulation of HWM-polyUb induced by Cd were consistent with the response seen with MG132 but not with lactacystin. In addition, Cd treatment resulted in a dose- and time-dependent effect on proteasome activity, but the overall Cd-induced proteasomal inhibition was unique as compared to MG132 and lactacystin. Taken together, our studies further characterize Cd-induced in vitro testicular toxicity and highlight the potential role of the UPS in this response. PMID:18463101

  7. Pathway of degradation of nitrilotriacetate by a Pseudomonas species.

    PubMed Central

    Firestone, M K; Tiedje, J M

    1978-01-01

    The pathway of degradation of nitrilotriacetate (NTA) was determined by using cell-free extracts and a 35-fold purification of NTA monooxygenase. The first step in the breakdown was an oxidative cleavage of the tertiary amine by the monooxygenase to form the aldo acid, glyoxylate, and the secondary amine, iminodiacetate (IDA). NTA N-oxide acted as a substrate analog for induction of the monooxygenase and was slowly metabolized by the enzyme, but was not an intermediate in the pathway. No intermediate before IDA was found, but an unstable alpha-hydroxy-NTA intermediate was postulated. IDA did undergo cleavage in the presence of the purified monooxygenase to give glyoxylate and glycine, but was not metabolized in cell-free extracts. Glyoxylate was further metabolized by cell-free extracts to yield CO2 and glycerate or glycine, products also found from NTA metabolism. Of the three bacterial isolates in which the NTA pathway has been studied, two strains, one isolated from a British soil and ours from a Michigan soil, appear to be almost identical. Images PMID:655711

  8. Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways.

    PubMed

    Brugmans, M C P; Sӧntjens, S H M; Cox, M A J; Nandakumar, A; Bosman, A W; Mes, T; Janssen, H M; Bouten, C V C; Baaijens, F P T; Driessen-Mol, A

    2015-11-01

    The emerging field of in situ tissue engineering (TE) of load bearing tissues places high demands on the implanted scaffolds, as these scaffolds should provide mechanical stability immediately upon implantation. The new class of synthetic supramolecular biomaterial polymers, which contain non-covalent interactions between the polymer chains, thereby forming complex 3D structures by self assembly. Here, we have aimed to map the degradation characteristics of promising (supramolecular) materials, by using a combination of in vitro tests. The selected biomaterials were all polycaprolactones (PCLs), either conventional and unmodified PCL, or PCL with supramolecular hydrogen bonding moieties (either 2-ureido-[1H]-pyrimidin-4-one or bis-urea units) incorporated into the backbone. As these materials are elastomeric, they are suitable candidates for cardiovascular TE applications. Electrospun scaffold strips of these materials were incubated with solutions containing enzymes that catalyze hydrolysis, or solutions containing oxidative species. At several time points, chemical, morphological, and mechanical properties were investigated. It was demonstrated that conventional and supramolecular PCL-based polymers respond differently to enzyme-accelerated hydrolytic or oxidative degradation, depending on the morphological and chemical composition of the material. Conventional PCL is more prone to hydrolytic enzymatic degradation as compared to the investigated supramolecular materials, while, in contrast, the latter materials are more susceptible to oxidative degradation. Given the observed degradation pathways of the examined materials, we are able to tailor degradation characteristics by combining selected PCL backbones with additional supramolecular moieties. The presented combination of in vitro test methods can be employed to screen, limit, and select biomaterials for pre-clinical in vivo studies targeted to different clinical applications. PMID:26316031

  9. Iodinated contrast media electro-degradation: process performance and degradation pathways.

    PubMed

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. PMID:25433384

  10. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway.

    PubMed

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2016-08-01

    Persistent use of the diphenyl ether herbicides oxyfluorfen may seriously increase the health risks and ecological safety problems. A newly bacterium R-21 isolated from active soil was able to degrade and utilize oxyfluorfen as the sole carbon source. R-21 was identified as Chryseobacterium aquifrigidense by morphology, physiobiochemical characteristics, and genetic analysis. Under the optimum cultural conditions (pH 6.9, temperature 33.4 °C, and inoculum size 0.2 g L(-1)), R-21 could degrade 92.1 % of oxyfluorfen at 50 mg L(-1) within 5 days. During oxyfluorfen degradation, six metabolites were detected and identified by atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry, and a plausible degradation pathway was deduced. Strain R-21 is a promising potential in bioremediation of oxyfluorfen-contaminated environments. PMID:27079576

  11. NP1EC Degradation Pathways Under Oxic and Microxic Conditions

    SciTech Connect

    Montgomery-Brown, John; Li, Yongmei; Ding, Wang-Hsien; Mong, Gary M.; Campbell, James A.; Reinhard, Martin

    2008-03-22

    The degradation pathway of nonylphenol ethoxyacetic acid (NP1EC) and the conditions favoring CAP1EC formation were studied in aerobic microcosms constructed with soil from the Mesa soil aquifer treatment (SAT) facility (Arizona, USA) and pristine sediments from Coyote Creek (California, USA). In the Mesa microcosms, para-NP1EC was transformed to para-NP, before being rapidly transformed to nonyl alcohols via ipso-hydroxylation. While the formation of NP from APEMs has been observed by several researchers under anaerobic conditions, this is the first time the transient formation of NP from APEMs has been observed under aerobic conditions. Unlike the Mesa microcosms, large quantities of CAP1ECs were observed in the Coyote Creek microcosms. Initially, CA8P1ECs were the dominant metabolites, but as biodegradation continued, CA6P1ECs became the dominant metabolites. Compared to the CA8P1ECs, the number of CA6P1ECs peaks observed was small (<6) even though their concentrations were high. This suggests that several CA8P1ECs are degraded to only a few CA6P1EC isomers (i.e., the degradation pathway converges) or that some CA6P1EC metabolites are significantly more recalcitrant than others. The different biodegradation pathways observed in the Mesa and Coyote Creek microcosms result from the limited availability of dissolved oxygen in the Coyote Creek microcosms. In both sets of microcosms, the ortho isomers were transformed more slowly than the para isomers and in the Coyote Creek microcosms several ortho-CAP1ECs were observed. In addition, several unknown metabolites were observed in the Coyote Creek microcosms that were not seen in the abiotic or Mesa microcosms; these metabolites appear to be CAP1EC metabolites, have a -CH2-C6H4- fragment, and contain one carboxylic acid. Nitro-nonylphenol was observed in the Mesa microcosms, however, further experimentation illustrated that it was the product of an abiotic reaction between nitrite and nonylphenol under acidic conditions.

  12. Ling Zhi-8 reduces lung cancer mobility and metastasis through disruption of focal adhesion and induction of MDM2-mediated Slug degradation.

    PubMed

    Lin, Tung-Yi; Hsu, Hsien-Yeh

    2016-06-01

    We recently reported that recombinant Ling Zhi-8 (rLZ-8), a medicinal mushroom Ganoderma lucidum recombinant protein, effectively prevents lung cancer cells proliferation in vivo mice model. In our current study, we demonstrated that rLZ-8 suppressed tumor metastasis and increased the survival rate in Lewis lung carcinoma cell-bearing mice. The epithelial to mesenchymal transition (EMT) process is regarded as the critical event in tumor metastasis. Herein, we showed that rLZ-8 effectively induced changes in EMT by interfering with cell adhesion and focal adhesion kinase (FAK) functions in lung cancer cells. Slug, a transcription factor, represses E-cadherin transcription and is regarded as a critical event in EMT and tumor metastasis. Functional studies revealed that downregulation of Slug as a result of rLZ-8-induced FAK inactivation enhanced E-cadherin expression and repressed cancer cell mobility. Moreover, we found that rLZ-8 enhanced the ubiquitination proteasome pathway (UPP)-mediated degradation of Slug in CL1-5 cells. Mechanistically, we demonstrated that rLZ-8 promoted the interaction between MDM2 and Slug, resulting in Slug degradation; however, MDM2-shRNA abolished rLZ-8-enhanced Slug degradation. This study is the first to determine anti-metastatic activity of rLZ-8 and its potential mechanism, with how the regulation of EMT and cell mobility is via the negative modulation of FAK, and thereby leading to the ubiquitination and degradation of Slug. Our findings suggest that the targets of FAK play a key role in metastasis. Moreover, rLZ-8 may be useful as a chemotherapeutic agent for treating lung cancer. PMID:26992741

  13. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways

    SciTech Connect

    Haigler, B.E.; Spain, J.C. )

    1991-11-01

    Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. The authors have investigate the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of {sup 18}O{sub 2} indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1, 2-dihydroxy-3-nitrocyclohexa-3, 5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation.

  14. Degradation of sulphonated azo dye Red HE7B by Bacillus sp. and elucidation of degradative pathways.

    PubMed

    Thakur, Jyoti Kumar; Paul, Sangeeta; Dureja, Prem; Annapurna, K; Padaria, Jasdeep C; Gopal, Madhuban

    2014-08-01

    Bacteria capable of degrading the sulfonated azo dye Red HE7B were isolated from textile mill effluent contaminated soil. The most efficient isolate was identified as Bacillus sp. Azo1 and the isolate could successfully decolorize up to 89% of the dye. The decolorized cultural extract analyzed by HPLC confirmed degradation. Enzymatic analysis showed twofold and fourfold increase in the activity of azoreductase and laccase enzymes, respectively, indicating involvement of both reductive and oxidative enzymes in biodegradation of Red HE7B. Degraded products which were identified by GC/MS analysis included various metabolites like 8-nitroso 1-naphthol, 2-diazonium naphthalene. Mono azo dye intermediate was initially generated from the parent molecule. This mono azo dye was further degraded by the organism, into additional products, depending on the site of cleavage of R-N=N-R molecule. Based on the degradation products identified, three different pathways have been proposed. The mechanism of degradation in two of these pathways is different from that of the previously reported pathway for azo dye degradation. This is the first report of a microbial isolate following multiple pathways for azo dye degradation. Azo dye Red HE7B was observed to be phytotoxic, leading to decrease in root development, shoot length and seedling fresh weight. However, after biotreatment the resulting degradation products were non-phytotoxic. PMID:24682261

  15. Aqueous photodegradation of antibiotic florfenicol: kinetics and degradation pathway studies.

    PubMed

    Zhang, Ya; Li, Jianhua; Zhou, Lei; Wang, Guoqing; Feng, Yanhong; Wang, Zunyao; Yang, Xi

    2016-04-01

    The occurrence of antibacterial agents in natural environment was of scientific concern in recent years. As endocrine disrupting chemicals, they had potential risk on ecology system and human beings. In the present study, the photodegradation kinetics and pathways of florfenicol were investigated under solar and xenon lamp irradiation in aquatic systems. Direct photolysis half-lives of florfenicol were determined as 187.29 h under solar irradiation and 22.43 h under xenon lamp irradiation, respectively. Reactive oxygen species (ROS), such as hydroxyl radical (·OH) and singlet oxygen ((1)O2) were found to play an important role in indirect photolysis process. The presence of nitrate and dissolved organic matters (DOMs) could affect photolysis of florfenicol in solutions through light screening effect, quenching effect, and photoinduced oxidization process. Photoproducts of florfenicol in DOMs solutions were identified by solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) analysis techniques, and degradation pathways were proposed, including photoinduced hydrolysis, oxidation by (1)O2 and ·OH, dechlorination, and cleavage of the side chain. PMID:26705756

  16. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway

    PubMed Central

    Chinchankar, Meghna N.; Ferguson, Annabel A.; Ghazi, Arjumand; Fisher, Alfred L.

    2016-01-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  17. Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats

    NASA Technical Reports Server (NTRS)

    Lecker, S. H.; Solomon, V.; Price, S. R.; Kwon, Y. T.; Mitch, W. E.; Goldberg, A. L.

    1999-01-01

    Insulin deficiency (e.g., in acute diabetes or fasting) is associated with enhanced protein breakdown in skeletal muscle leading to muscle wasting. Because recent studies have suggested that this increased proteolysis is due to activation of the ubiquitin-proteasome (Ub-proteasome) pathway, we investigated whether diabetes is associated with an increased rate of Ub conjugation to muscle protein. Muscle extracts from streptozotocin-induced insulin-deficient rats contained greater amounts of Ub-conjugated proteins than extracts from control animals and also 40-50% greater rates of conjugation of (125)I-Ub to endogenous muscle proteins. This enhanced Ub-conjugation occurred mainly through the N-end rule pathway that involves E2(14k) and E3alpha. A specific substrate of this pathway, alpha-lactalbumin, was ubiquitinated faster in the diabetic extracts, and a dominant negative form of E2(14k) inhibited this increase in ubiquitination rates. Both E2(14k) and E3alpha were shown to be rate-limiting for Ub conjugation because adding small amounts of either to extracts stimulated Ub conjugation. Furthermore, mRNA for E2(14k) and E3alpha (but not E1) were elevated 2-fold in muscles from diabetic rats, although no significant increase in E2(14k) and E3alpha content could be detected by immunoblot or activity assays. The simplest interpretation of these results is that small increases in both E2(14k) and E3alpha in muscles of insulin-deficient animals together accelerate Ub conjugation and protein degradation by the N-end rule pathway, the same pathway activated in cancer cachexia, sepsis, and hyperthyroidism.

  18. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway.

    PubMed

    Keith, Scott A; Maddux, Sarah K; Zhong, Yayu; Chinchankar, Meghna N; Ferguson, Annabel A; Ghazi, Arjumand; Fisher, Alfred L

    2016-02-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  19. Degradation of diclofenac by ultrasonic irradiation: kinetic studies and degradation pathways.

    PubMed

    Nie, Er; Yang, Mo; Wang, Dong; Yang, Xiaoying; Luo, Xingzhang; Zheng, Zheng

    2014-10-01

    Diclofenac (DCF) is a widely used anti-inflammatory drug found in various water bodies, posing threats to human health. In this research, the effects of ultrasonic irradiation at 585kHz on the degradation of DCF were studied under the air, oxygen, argon, and nitrogen saturated conditions. First, the dechlorination efficiencies under the air, oxygen, argon, and nitrogen saturated conditions were calculated to be 67%, 60%, 53% and 59%. Second, there was full mineralization of nitrogen during DCF degradation under the air, oxygen, and argon saturated conditions, but no mineralization of nitrogen under the nitrogen-saturated condition. Different from nitrogen, only partial mineralization of carbon occurred under the four gas-saturated conditions. Third, OH scavengers were added to derive the rate constants in the three reaction zones: cavitation bubble, supercritical interface, and bulk solution. Comparison of the constants indicated that DCF degradation was not limited to the bulk solution as conventionally assumed. Oxidation in the supercritical interface played a dominant role under the air and oxygen saturated conditions, while OH reactions in the cavitation bubble and/or bulk solution were dominant under the nitrogen and argon saturated conditions. After the addition of H2O2, reactions in the cavitation bubble and bulk solution kept their dominant roles under the nitrogen and argon saturated conditions, while reaction in the supercritical interface decreased under the air and oxygen saturated conditions. Finally, LC-MS analysis was used to derive the by-products and propose the main pathways of DCF degradation by ultrasonic irradiation. PMID:25065805

  20. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways.

    PubMed Central

    Haigler, B E; Spain, J C

    1991-01-01

    Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes. PMID:1781679

  1. Mitofusin 1 degradation is induced by a disruptor of mitochondrial calcium homeostasis, CGP37157: a role in apoptosis in prostate cancer cells.

    PubMed

    Choudhary, Vivek; Kaddour-Djebbar, Ismail; Alaisami, Rabei; Kumar, M Vijay; Bollag, Wendy B

    2014-05-01

    Mitochondria constantly divide (mitochondrial fission) and fuse (mitochondrial fusion) in a normal cell. Disturbances in the balance between these two physiological processes may lead to cell dysfunction or to cell death. Induction of cell death is the prime goal of prostate cancer chemotherapy. Our previous study demonstrated that androgens increase the expression of a mitochondrial protein involved in fission and facilitate an apoptotic response to CGP37157 (CGP), an inhibitor of mitochondrial calcium efflux, in prostate cancer cells. However, the regulation and role of mitochondrial fusion proteins in the death of these cells have not been examined. Therefore, our objective was to investigate the effect of CGP on a key mitochondrial fusion protein, mitofusin 1 (Mfn1), and the role of Mfn1 in prostate cancer cell apoptosis. We used various prostate cancer cell lines and western blot analysis, qRT-PCR, siRNA, M30 apoptosis assay and immunoprecipitation techniques to determine mechanisms regulating Mfn1. Treatment of prostate cancer cells with CGP resulted in selective degradation of Mfn1. Mfn1 ubiquitination was detected following immunoprecipitation of overexpressed Myc-tagged Mfn1 protein from CGP-treated cells, and treatment with the proteasomal inhibitor lactacystin, as well as siRNA-mediated knockdown of the E3 ubiquitin ligase March5, protected Mfn1 from CGP-induced degradation. These data indicate the involvement of the ubiquitin-proteasome pathway in CGP-induced degradation of Mfn1. We also demonstrated that downregulation of Mfn1 by siRNA enhanced the apoptotic response of LNCaP cells to CGP, suggesting a likely pro-survival role for Mfn1 in these cells. Our results suggest that manipulation of mitofusins may provide a novel therapeutic advantage in treating prostate cancer. PMID:24626641

  2. Rates of ubiquitin conjugation increase when muscles atrophy, largely through activation of the N-end rule pathway

    NASA Technical Reports Server (NTRS)

    Solomon, V.; Baracos, V.; Sarraf, P.; Goldberg, A. L.

    1998-01-01

    The rapid loss of muscle mass that accompanies many disease states, such as cancer or sepsis, is primarily a result of increased protein breakdown in muscle, and several observations have suggested an activation of the ubiquitin-proteasome system. Accordingly, in extracts of atrophying muscles from tumor-bearing or septic rats, rates of 125I-ubiquitin conjugation to endogenous proteins were found to be higher than in control extracts. On the other hand, in extracts of muscles from hypothyroid rats, where overall proteolysis is reduced below normal, the conjugation of 125I-ubiquitin to soluble proteins decreased by 50%, and treatment with triiodothyronine (T3) restored ubiquitination to control levels. Surprisingly, the N-end rule pathway, which selectively degrades proteins with basic or large hydrophobic N-terminal residues, was found to be responsible for most of these changes in ubiquitin conjugation. Competitive inhibitors of this pathway that specifically block the ubiquitin ligase, E3alpha, suppressed most of the increased ubiquitin conjugation in the muscle extracts from tumor-bearing and septic rats. These inhibitors also suppressed ubiquitination in normal extracts toward levels in hypothyroid extracts, which showed little E3alpha-dependent ubiquitination. Thus, the inhibitors eliminated most of the differences in ubiquitination under these different pathological conditions. Moreover, 125I-lysozyme, a model N-end rule substrate, was ubiquitinated more rapidly in extracts from tumor-bearing and septic rats, and more slowly in those from hypothyroid rats, than in controls. Thus, the rate of ubiquitin conjugation increases in atrophying muscles, and these hormone- and cytokine-dependent responses are in large part due to activation of the N-end rule pathway.

  3. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4.

    PubMed

    González-Prieto, Román; Cuijpers, Sabine Ag; Kumar, Ramesh; Hendriks, Ivo A; Vertegaal, Alfred Co

    2015-01-01

    c-Myc is the most frequently overexpressed oncogene in tumors, including breast cancer, colon cancer and lung cancer. Post-translational modifications comprising phosphorylation, acetylation and ubiquitylation regulate the activity of c-Myc. Recently, it was shown that c-Myc-driven tumors are strongly dependent on the SUMO pathway. Currently, the relevant SUMO target proteins in this pathway are unknown. Here we show that c-Myc is a target protein for SUMOylation, and that SUMOylated c-Myc is subsequently ubiquitylated and degraded by the proteasome. SUMO chains appeared to be dispensable for this process, polymerization-deficient SUMO mutants supported proteolysis of SUMOylated c-Myc. These results indicate that multiple SUMO monomers conjugated to c-Myc could be sufficient to direct SUMOylated c-Myc to the ubiquitin-proteasome pathway. Knocking down the SUMO-targeted ubiquitin ligase RNF4 enhanced the levels of SUMOylated c-Myc, indicating that RNF4 could recognize a multi-SUMOylated protein as a substrate in addition to poly-SUMOylated proteins. Knocking down the SUMO E3 ligase PIAS1 resulted in reduced c-Myc SUMOylation and increased c-Myc transcriptional activity, indicating that PIAS1 mediates c-Myc SUMOylation. Increased SUMOylation of c-Myc was noted upon knockdown of the SUMO protease SENP7, indicating that it also could regulate a multi-SUMOylated protein in addition to poly-SUMOylated proteins. C-Myc lacks KxE-type SUMOylation consensus motifs. We used mass spectrometry to identify 10 SUMO acceptor lysines: K52, K148, K157, K317, K323, K326, K389, K392, K398 and K430. Intriguingly, mutating all 10 SUMO acceptor lysines did not reduce c-Myc SUMOylation, suggesting that SUMO acceptor lysines in c-Myc act promiscuously. Our results provide novel insight into the complexity of c-Myc post-translational regulation. PMID:25895136

  4. SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation.

    PubMed

    Grishina, Inna; Debus, Katherina; García-Limones, Carmen; Schneider, Constanze; Shresta, Amit; García, Carlos; Calzado, Marco A; Schmitz, M Lienhard

    2012-12-01

    Posttranslational modification of proteins by lysine acetylation regulates many biological processes ranging from signal transduction to chromatin compaction. Here we identify the acetyl-transferases CBP/p300, Tip60 and PCAF as new substrates for the ubiquitin E3 ligases SIAH1 and SIAH2. While CBP/p300 can undergo ubiquitin/proteasome-dependent degradation by SIAH1 and SIAH2, the two other acetyl-transferases are exclusively degraded by SIAH2. Accordingly, SIAH-deficient cells show enhanced protein acetylation, thus revealing SIAH proteins as indirect regulators of the cellular acetylation status. Functional experiments show that Tip60/PCAF-mediated acetylation of the tumor suppressor p53 is antagonized by the p53 target gene SIAH2 which mediates ubiquitin/proteasome-mediated degradation of both acetyl-transferases and consequently diminishes p53 acetylation and transcriptional activity. The p53 kinase HIPK2 mediates hierarchical phosphorylation of SIAH2 at 5 sites, which further boosts its activity as a ubiquitin E3 ligase for several substrates and therefore dampens the late p53 response. PMID:23044042

  5. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.

    PubMed

    Vriend, Jerry; Reiter, Russel J

    2015-02-01

    Both melatonin and proteasome inhibitors upregulate antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GP), hemoxygenase 1 (HO-1), and NADPH:quinone oxidoreductase (NQO1). Recent evidence suggests that the antioxidant action of both melatonin and proteasome inhibitors involves the Keap1-ARE (Keap1 antioxidant response element) pathway via the upregulation of Nrf2. Melatonin and proteasome inhibitors suppress the degradation of Nrf2 and also enhance its nuclear translocation. In the nucleus Nrf2, together with a cofactor, stimulates the transcription of antioxidant enzymes and detoxifying enzymes. The ligase (E3) complex (Keap1-Cul3-Rbx1) responsible for ubiquitinating Nrf2, prior to proteasomal degradation, also ubiquitinates IkB kinase and the antiapoptotic factor Bcl-2, and possibly additional proteins. In various systems, NF-κB, which is inhibited by IkBα, is downregulated by proteasome inhibitors as well as by melatonin. Similarly in leukemic cells, Bcl-2 is down-regulated by the proteasome inhibitor, bortezomib, and also by melatonin. Thus melatonin administration modulates the activity of three separate substrates of the Keap1-Cul3-Rbx1 ubiquitin ligase. These facts could be accounted for by the hypothesis that melatonin interacts with the ubiquitin ligase complex or, more likely, by the hypothesis that melatonin acts as a proteasome inhibitor. A recent study documented that melatonin acts as a proteasome inhibitor in cancer cells as well as inhibiting chymotrypsin-like activity in cell-free systems of these cells. Further studies, however, are needed to clarify the interaction of melatonin and the ubiquitin-proteasome system as they relate to oxidative stress. PMID:25528518

  6. Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast.

    PubMed

    Gowda, Naveen Kumar Chandappa; Kaimal, Jayasankar Mohanakrishnan; Masser, Anna E; Kang, Wenjing; Friedländer, Marc R; Andréasson, Claes

    2016-04-15

    Cells maintain proteostasis by selectively recognizing and targeting misfolded proteins for degradation. InSaccharomyces cerevisiae, the Hsp70 nucleotide exchange factor Fes1 is essential for the degradation of chaperone-associated misfolded proteins by the ubiquitin-proteasome system. Here we show that theFES1transcript undergoes unique 3' alternative splicing that results in two equally active isoforms with alternative C-termini, Fes1L and Fes1S. Fes1L is actively targeted to the nucleus and represents the first identified nuclear Hsp70 nucleotide exchange factor. In contrast, Fes1S localizes to the cytosol and is essential to maintain proteostasis. In the absence of Fes1S, the heat-shock response is constitutively induced at normally nonstressful conditions. Moreover, cells display severe growth defects when elevated temperatures, amino acid analogues, or the ectopic expression of misfolded proteins, induce protein misfolding. Importantly, misfolded proteins are not targeted for degradation by the ubiquitin-proteasome system. These observations support the notion that cytosolic Fes1S maintains proteostasis by supporting the removal of toxic misfolded proteins by proteasomal degradation. This study provides key findings for the understanding of the organization of protein quality control mechanisms in the cytosol and nucleus. PMID:26912797

  7. Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast

    PubMed Central

    Gowda, Naveen Kumar Chandappa; Kaimal, Jayasankar Mohanakrishnan; Masser, Anna E.; Kang, Wenjing; Friedländer, Marc R.; Andréasson, Claes

    2016-01-01

    Cells maintain proteostasis by selectively recognizing and targeting misfolded proteins for degradation. In Saccharomyces cerevisiae, the Hsp70 nucleotide exchange factor Fes1 is essential for the degradation of chaperone-associated misfolded proteins by the ubiquitin-proteasome system. Here we show that the FES1 transcript undergoes unique 3′ alternative splicing that results in two equally active isoforms with alternative C-termini, Fes1L and Fes1S. Fes1L is actively targeted to the nucleus and represents the first identified nuclear Hsp70 nucleotide exchange factor. In contrast, Fes1S localizes to the cytosol and is essential to maintain proteostasis. In the absence of Fes1S, the heat-shock response is constitutively induced at normally nonstressful conditions. Moreover, cells display severe growth defects when elevated temperatures, amino acid analogues, or the ectopic expression of misfolded proteins, induce protein misfolding. Importantly, misfolded proteins are not targeted for degradation by the ubiquitin-proteasome system. These observations support the notion that cytosolic Fes1S maintains proteostasis by supporting the removal of toxic misfolded proteins by proteasomal degradation. This study provides key findings for the understanding of the organization of protein quality control mechanisms in the cytosol and nucleus. PMID:26912797

  8. The N-end rule pathway regulates pathogen responses in plants.

    PubMed

    de Marchi, Rémi; Sorel, Maud; Mooney, Brian; Fudal, Isabelle; Goslin, Kevin; Kwaśniewska, Kamila; Ryan, Patrick T; Pfalz, Marina; Kroymann, Juergen; Pollmann, Stephan; Feechan, Angela; Wellmer, Frank; Rivas, Susana; Graciet, Emmanuelle

    2016-01-01

    To efficiently counteract pathogens, plants rely on a complex set of immune responses that are tightly regulated to allow the timely activation, appropriate duration and adequate amplitude of defense programs. The coordination of the plant immune response is known to require the activity of the ubiquitin/proteasome system, which controls the stability of proteins in eukaryotes. Here, we demonstrate that the N-end rule pathway, a subset of the ubiquitin/proteasome system, regulates the defense against a wide range of bacterial and fungal pathogens in the model plant Arabidopsis thaliana. We show that this pathway positively regulates the biosynthesis of plant-defense metabolites such as glucosinolates, as well as the biosynthesis and response to the phytohormone jasmonic acid, which plays a key role in plant immunity. Our results also suggest that the arginylation branch of the N-end rule pathway regulates the timing and amplitude of the defense program against the model pathogen Pseudomonas syringae AvrRpm1. PMID:27173012

  9. The N-end rule pathway regulates pathogen responses in plants

    PubMed Central

    de Marchi, Rémi; Sorel, Maud; Mooney, Brian; Fudal, Isabelle; Goslin, Kevin; Kwaśniewska, Kamila; Ryan, Patrick T.; Pfalz, Marina; Kroymann, Juergen; Pollmann, Stephan; Feechan, Angela; Wellmer, Frank; Rivas, Susana; Graciet, Emmanuelle

    2016-01-01

    To efficiently counteract pathogens, plants rely on a complex set of immune responses that are tightly regulated to allow the timely activation, appropriate duration and adequate amplitude of defense programs. The coordination of the plant immune response is known to require the activity of the ubiquitin/proteasome system, which controls the stability of proteins in eukaryotes. Here, we demonstrate that the N-end rule pathway, a subset of the ubiquitin/proteasome system, regulates the defense against a wide range of bacterial and fungal pathogens in the model plant Arabidopsis thaliana. We show that this pathway positively regulates the biosynthesis of plant-defense metabolites such as glucosinolates, as well as the biosynthesis and response to the phytohormone jasmonic acid, which plays a key role in plant immunity. Our results also suggest that the arginylation branch of the N-end rule pathway regulates the timing and amplitude of the defense program against the model pathogen Pseudomonas syringae AvrRpm1. PMID:27173012

  10. Activated Rac1 regulates the degradation of IκBα and the nuclear translocation of STAT3–NFκB complexes in starved cancer cells

    PubMed Central

    Kim, Sung Joo; Yoon, Sarah

    2016-01-01

    In several human tumors, signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB (NFκB) are activated and interact; how these STAT3–NFκB complexes are transported to the nucleus is not fully understood. In this study, we found that Rac1 was activated in starved cancer cells and that activated Rac1 coexisted with STAT3 and NFκB. Rac1 knockdown and overexpression of the dominant-negative mutant Rac1N19 inhibited the degradation of IκBα, an inhibitor of NFκB. MG132, an inhibitor of the ubiquitin proteasome pathway, increased the amount of non-phosphorylated IκBα, but not serine-phosphorylated IκBα, indicating that IκBα degradation by Rac1 in starved cancer cells is independent of IκBα serine phosphorylation by IKK. Rac1 knockdown also inhibited the nuclear translocation of STAT3–NFκB complexes, indicating that this translocation requires activated Rac1. We also demonstrated that the mutant STAT3 Y705F could form complexes with NFκB, and these unphosphorylated STAT3–NFκB complexes translocated into the nucleus and upregulated the activity of NFκB in starved cancer cells, suggesting that phosphorylation of STAT3 is not essential for its translocation. To our knowledge, this is the first study demonstrating the crucial role of Rac1 in the function of STAT3–NFκB complexes in starved cancer cells and implies that targeting Rac1 may have future therapeutic significance in cancer therapy. PMID:27151455

  11. Three degradation pathways of 1-octyl-3-methylimidazolium cation by activated sludge from wastewater treatment process.

    PubMed

    Cho, Chul-Woong; Pham, Thi Phuong Thuy; Kim, Sok; Song, Myung-Hee; Chung, Yun-Jo; Yun, Yeoung-Sang

    2016-03-01

    The biodegradability and degradation pathways of 1-octyl-3-methylimidazolium cation [OMIM](+) by microbial community of wastewater treatment plant in Jeonju city, Korea were investigated. It was found that [OMIM](+) could be easily degraded by the microbial community. New degradation products and pathways of [OMIM](+) were identified, which are partially different from previous results (Green Chem. 2008, 10, 214-224). For the analysis of the degradation pathways and intermediates, the mass peaks observed in the range m/z of 50-300 were screened by using a tandem mass spectrometer (MS), and their fragmentation patterns were investigated by MS/MS. Surprisingly, we found three different degradation pathways of [OMIM](+), which were separated according to the initially oxidized position i.e. middle of the long alkyl chain, end of the long alkyl chain, and end of the short alkyl chain. The degradation pathways showed that the long and short alkyl chains of [OMIM](+) gradually degraded by repeating oxidation and carbon release. The results presented here shows that [OMIM](+) can be easily biodegraded through three different degradation pathways in wastewater treatment plants. PMID:26748207

  12. Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway.

    PubMed

    Kung, Johannes W; Meier, Anne-Katrin; Mergelsberg, Mario; Boll, Matthias

    2014-10-01

    The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. PMID:25112478

  13. Disease-associated mutations of TDP-43 promote turnover of the protein through the proteasomal pathway.

    PubMed

    Araki, Wataru; Minegishi, Seiji; Motoki, Kazumi; Kume, Hideaki; Hohjoh, Hirohiko; Araki, Yumiko M; Tamaoka, Akira

    2014-12-01

    TAR DNA-binding protein (TDP-43) is a major component of most ubiquitin-positive neuronal and glial inclusions of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A number of missense mutations in the TARDBP gene have been identified in patients with familial and sporadic ALS, as well as familial FTLD with ALS. In the diseased states, TDP-43 proteins exhibit characteristic alterations, including truncation, abnormal phosphorylation, and altered subcellular distribution. However, the mechanisms by which TDP-43 mutations induce neurodegeneration remain unclear at present. In the current study, we analyzed protein turnover and subcellular distribution of wild-type TDP-43 and two disease-associated mutants (G298S and A382T) in human neuroblastoma SH-SY5Y cells stably expressing TDP-43 with a C-terminal tag. Cycloheximide chase experiments revealed more rapid turnover of TDP-43 mutant proteins than their wild-type counterpart. The decrease in the TDP-43 level after cycloheximide treatment was partially recovered upon co-treatment with the proteasome inhibitor, epoxomicin, but not the lysosomotropic agent, chloroquine, suggesting involvement of the proteasomal pathway in TDP-43 degradation. Analysis of the subcellular distribution of TDP-43 revealed predominant localization in the nuclear fraction, whereas the relative level in the cytoplasm remained unaltered in cells expressing either mutant protein, compared with wild-type protein. Our results suggest that higher turnover of disease-associated mutant TDP-43 proteins through the ubiquitin proteasome system is pathogenetically relevant and highlight the significance of proteolysis in the pathogenetic mechanism of TDP-43 proteinopathy. PMID:24477737

  14. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-01

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation. PMID:19122240

  15. Hydroxide Degradation Pathways for Substituted Benzyltrimethyl Ammonium: A DFT Study

    SciTech Connect

    Long, Hai; Pivovar, Bryan S.

    2014-11-01

    The stability of cations used in the alkaline exchange membranes has been a major challenge. In this paper, degradation energy barriers were investigated by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations. Findings show that electron-donating substituent groups at meta-position(s) of the benzyl ring could result in increased degradation barriers. However, after investigating more than thirty substituted BTMA+ cations, the largest improvement in degradation barrier found was only 6.7 kJ/mol. This suggests a modest (8×) improvement in stability for this type of approach may be possible, but for anything greater other approaches will need to be pursued.

  16. Genetic causes of Parkinson's disease: extending the pathway.

    PubMed

    Riess, O; Krüger, R; Hochstrasser, H; Soehn, A S; Nuber, S; Franck, T; Berg, D

    2006-01-01

    The functional characterization of identified disease genes in monogenic forms of Parkinson's disease (PD) allows first insights into molecular pathways leading to neurodegeneration and dysfunction of the nigrostriatal system. There is increasing evidence that disturbance of the ubiquitin proteasome pathway is one important feature of this process underscoring the relevance of protein misfolding and accumulation in the neurodegenerative process of PD. Other genes are involved in mitochondrial homeostasis and still others link newly identified signalling pathways to the established paradigm of oxidative stress in PD. Additional factors are posttranslational modifications of key proteins such as phosphorylation. Also, molecular data support the role of altered iron metabolism in PD. Here we describe known genes and novel genetic susceptibility factors and define their role in neurodegeneration. PMID:17017528

  17. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.

    PubMed

    Yoshida, Tadashi; Tabony, A Michael; Galvez, Sarah; Mitch, William E; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-10-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5' AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. PMID:23769949

  18. ORGANOPHOSPHORUS PESTICIDE DEGRADATION PATHWAYS DURING DRINKING WATER TREATMENT

    EPA Science Inventory

    The objective of this work was to investigate organophosphorus (OP) pesticide transformation pathways as a class in the presence of aqueous chlorine. Seven priority OP pesticides were examined for their reactivity with aqueous chlorine: chlorpyrifos (CP), parathion (PA), diazino...

  19. The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation.

    PubMed

    Sun, Tong; Fu, Junjiang; Shen, Tao; Lin, Xia; Liao, Lan; Feng, Xin-Hua; Xu, Jianming

    2016-05-27

    Twist1 is a basic helix-loop-helix transcription factor that strongly promotes epithelial-to-mesenchymal transition, migration, invasion, and metastasis of cancer cells. The MAPK-phosphorylated Twist1 on its serine 68 (Ser(P)(68)-Twist1) has a significantly enhanced stability and function to drive cancer cell invasion and metastasis. However, the phosphatase that dephosphorylates Ser(P)(68)-Twist1 and destabilizes Twist1 has not been identified and characterized. In this study, we screened a serine/threonine phosphatase cDNA expression library in HEK293T cells with ectopically coexpressed Twist1. We found that the small C-terminal domain phosphatase 1 (SCP1) specifically dephosphorylates Ser(P)(68)-Twist1 in both cell-free reactions and living cells. SCP1 uses its amino acid residues 43-63 to interact with the N terminus of Twist1. Increased SCP1 expression in cells decreased Ser(P)(68)-Twist1 and total Twist1 proteins, whereas knockdown of SCP1 increased Ser(P)(68)-Twist1 and total Twist1 proteins. Furthermore, the levels of SCP1 are negatively correlated with Twist1 protein levels in several cancer cell lines. SCP1-dephosphorylated Twist1 undergoes fast degradation via the ubiquitin-proteasome pathway. Importantly, an increase in SCP1 expression in breast cancer cells with either endogenous or ectopically expressed Twist1 largely inhibits the Twist1-induced epithelial-to-mesenchymal transition phenotype and the migration and invasion capabilities of these cells. These results indicate that SCP1 is the phosphatase that counterregulates the MAPK-mediated phosphorylation of Ser(68)-Twist1. Thus, an increase in SCP1 expression and activity may be a useful strategy for eliminating the detrimental roles of Twist1 in cancer cells. PMID:26975371

  20. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    EPA Science Inventory

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  1. AEROBIC DEGRADATION OF DINITROTOLUENES AND PATHWAY FOR BACTERIAL DEGRADATION OF 2,6-DINITROTOLUENE

    EPA Science Inventory

    An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2,4-DNT) by Burkhoderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize dinitrotoluene (2,6-DNT) by a different pathway. Burkhoderia ...

  2. Pathways for degradation of plastic polymers floating in the marine environment.

    PubMed

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids. PMID:26216708

  3. The fine-tuning of proteolytic pathways in Alzheimer's disease.

    PubMed

    Cecarini, Valentina; Bonfili, Laura; Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Angeletti, Mauro; Keller, Jeffrey N; Eleuteri, Anna Maria

    2016-09-01

    Several integrated proteolytic systems contribute to the maintenance of cellular homeostasis through the continuous removal of misfolded, aggregated or oxidized proteins and damaged organelles. Among these systems, the proteasome and autophagy play the major role in protein quality control, which is a fundamental issue in non-proliferative cells such as neurons. Disturbances in the functionality of these two pathways are frequently observed in neurodegenerative diseases, like Alzheimer's disease, and reflect the accumulation of protease-resistant, deleterious protein aggregates. In this review, we explored the sophisticated crosstalk between the ubiquitin-proteasome system and autophagy in the removal of the harmful structures that characterize Alzheimer's disease neurons. We also dissected the role of the numerous shuttle factors and chaperones that, directly or indirectly interacting with ubiquitin and LC3, are used for cargo selection and delivery to one pathway or the other. PMID:27120560

  4. Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 - elucidating the downstream pathway.

    PubMed

    Ricken, Benjamin; Fellmann, Oliver; Kohler, Hans-Peter E; Schäffer, Andreas; Corvini, Philippe François-Xavier; Kolvenbach, Boris Alexander

    2015-12-25

    Microbacterium sp. strain BR1 is among the first bacterial isolates which were proven to degrade sulfonamide antibiotics. The degradation is initiated by an ipso-substitution, initiating the decay of the molecule into sulfur dioxide, the substrate specific heterocyclic moiety as a stable metabolite and benzoquinone imine. The latter appears to be instantaneously reduced to p-aminophenol, as that in turn was detected as the first stable intermediate. This study investigated the downstream pathway of sulfonamide antibiotics by testing the strain's ability to degrade suspected intermediates of this pathway. While p-aminophenol was degraded, degradation products could not be identified. Benzoquinone was shown to be degraded to hydroquinone and hydroquinone in turn was shown to be degraded to 1,2,4-trihydroxybenzene. The latter is assumed to be the potential substrate for aromatic ring cleavage. However, no products from the degradation of 1,2,4-trihydroxybenzene could be identified. There are no signs of accumulation of intermediates causing oxidative stress, which makes Microbacterium sp. strain BR1 an interesting candidate for industrial waste water treatment. PMID:25796473

  5. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway

    PubMed Central

    Derrien, Benoît; Baumberger, Nicolas; Schepetilnikov, Mikhail; Viotti, Corrado; De Cillia, Julia; Ziegler-Graff, Véronique; Isono, Erika; Schumacher, Karin; Genschik, Pascal

    2012-01-01

    Posttranscriptional gene silencing (PTGS) mediated by siRNAs is an evolutionarily conserved antiviral defense mechanism in higher plants and invertebrates. In this mechanism, viral-derived siRNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. In Arabidopsis, a key component of RISC is ARGONAUTE1 (AGO1), which not only binds to siRNAs but also carries the RNA slicer activity. At present little is known about posttranslational mechanisms regulating AGO1 turnover. Here we report that the viral suppressor of RNA silencing protein P0 triggers AGO1 degradation by the autophagy pathway. Using a P0-inducible transgenic line, we observed that AGO1 degradation is blocked by inhibition of autophagy. The engineering of a functional AGO1 fluorescent reporter protein further indicated that AGO1 colocalizes with autophagy-related (ATG) protein 8a (ATG8a) positive bodies when degradation is impaired. Moreover, this pathway also degrades AGO1 in a nonviral context, especially when the production of miRNAs is impaired. Our results demonstrate that a selective process such as ubiquitylation can lead to the degradation of a key regulatory protein such as AGO1 by a degradation process generally believed to be unspecific. We anticipate that this mechanism will not only lead to degradation of AGO1 but also of its associated proteins and eventually small RNAs. PMID:23019378

  6. Phenol degradation by Sulfobacillus acidophilus TPY via the meta-pathway.

    PubMed

    Zhou, Wengen; Guo, Wenbin; Zhou, Hongbo; Chen, Xinhua

    2016-09-01

    Due to its toxicity and volatility, phenol must be cleared from the environment. Sulfobacillus acidophilus TPY, which was isolated from a hydrothermal vent in the Pacific Ocean as a moderately thermoacidophilic Gram-positive bacterium, was capable of aerobically degrading phenol. This bacterium could tolerate up to 1300mg/L phenol and degrade 100mg/L phenol in 40h completely at 45°C and pH 1.8 with a maximal degradation rate of 2.32mg/L/h at 38h. Genome-wide search revealed that one gene (TPY_3176) and 14 genes clustered together in two regions with locus tags of TPY_0628-0634 and TPY_0640-0646 was proposed to be involved in phenol degradation via the meta-pathway with both the 4-oxalocrotonate branch and the hydrolytic branch. Real-time PCR analysis of S. acidophilus TPY under phenol cultivation condition confirmed the transcription of proposed genes involved in the phenol degradation meta-pathway. Degradation of 3-methylphenol and 2-methylphenol confirmed that the hydrolytic branch was utilised by S. acidophilus TPY. Phylogenetic analysis revealed that S. acidophilus TPY was closely related to sulphate-reducing bacteria and some Gram-positive phenol-degrading bacteria. This was the first report demonstrating the ability of S. acidophilus to degrade phenol and characterising the putative genes involved in phenol metabolism in S. acidophilus TPY. PMID:27393997

  7. Degradation pathways of PCBs upon UV irradiation in hexane.

    PubMed

    Miao, X S; Chu, S G; Xu, X B

    1999-10-01

    The photodegradations of eight individual PCB congeners (5, 31, 52, 77, 87, 126, 138, 169) in hexane have been investigated employing a mercury lamp. All degradation reactions of the above mentioned PCB congeners are of the pseudo first order. The principal products of PCB decomposition are the less chlorinated biphenyls, and no PCB-solvent adducts are found. Symmetrical and coplanar PCB congeners show lower photoreactivities. The reactivities of the chlorine atoms at various positions of PCB rings are generally in the order: ortho > meta > para. Photodechlorinations occur mainly on the more substituted rings, when the numbers of chlorine atoms on the two phenyl rings are unequal. During photodegradation, some coplanar PCB congeners are formed, which make the TEQ of solutions to decrease slowly or even to increase. PMID:10520484

  8. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.

    PubMed

    Rodriguez, J; Vernus, B; Chelh, I; Cassar-Malek, I; Gabillard, J C; Hadj Sassi, A; Seiliez, I; Picard, B; Bonnieu, A

    2014-11-01

    Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin-proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin-proteasome and the autophagy-lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin. PMID:25080109

  9. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway.

    PubMed

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng

    2016-03-01

    Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03°C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography-mass spectrometry (GC-MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane-Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h(-1) and 0.63 gs gx(-1)h(-1). A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions. PMID:26623933

  10. Unveiling New Degradation Intermediates/Pathways from the Photocatalytic Degradation of Microcystin-LR

    EPA Science Inventory

    This study focuses on the identification of reaction intermediates formed during the photocatalytic degradation of the cyanotoxin microcystin-LR with immobilized TiO2 Tphotocatalysts at neutral pH. To differentiate between impurities already existing in the MC-LR stand...

  11. Long-term morphine treatment enhances proteasome-dependent degradation of G beta in human neuroblastoma SH-SY5Y cells: correlation with onset of adenylate cyclase sensitization.

    PubMed

    Moulédous, Lionel; Neasta, Jérémie; Uttenweiler-Joseph, Sandrine; Stella, Alexandre; Matondo, Mariette; Corbani, Maïthé; Monsarrat, Bernard; Meunier, Jean-Claude

    2005-08-01

    The initial aim of this study was to identify protein changes associated with long-term morphine treatment in a recombinant human neuroblastoma SH-SY5Y clone (sc2) stably overexpressing the human mu-opioid (MOP) receptor. In MOP receptor-overexpressing sc2 cells, short-term morphine exposure was found to be much more potent and efficacious in inhibiting forskolin-elicited production of cAMP, and long-term morphine exposure was shown to induce a substantially higher degree of opiate dependence, as reflected by adenylate cyclase sensitization, than it did in wild-type neuroblastoma cells. Differential proteomic analysis of detergent-resistant membrane rafts isolated from untreated and chronically morphine-treated sc2 cells revealed long-term morphine exposure to have reliably induced a 30 to 40% decrease in the abundance of five proteins, subsequently identified by mass spectrometry as G protein subunits alphai(2), alphai(3), beta(1), and beta(2), and prohibitin. Quantitative Western blot analyses of whole-cell extracts showed that long-term morphine treatment-induced down-regulation of Gbeta but not of the other proteins is highly correlated (r(2) = 0.96) with sensitization of adenylate cyclase. Down-regulation of Gbeta and adenylate cyclase sensitization elicited by long-term morphine treatment were suppressed in the presence of carbobenzoxy-l-leucyl-l-leucyl-l-norvalinal (MG-115) or lactacystin. Thus, sustained activation of the MOP receptor by morphine in sc2 cells seems to promote proteasomal degradation of Gbeta to sensitize adenylate cyclase. Together, our data suggest that the long-term administration of opiates may elicit dependence by altering the neuronal balance of heterotrimeric G proteins and adenylate cyclases, with the ubiquitin-proteasome pathway playing a pivotal role. PMID:15901846

  12. Proteasome Inhibition Enhances the Induction and Impairs the Maintenance of Late-Phase Long-Term Potentiation

    ERIC Educational Resources Information Center

    Dong, Chenghai; Upadhya, Sudarshan C.; Ding, Lan; Smith, Thuy K.; Hegde, Ashok N.

    2008-01-01

    Protein degradation by the ubiquitin-proteasome pathway plays important roles in synaptic plasticity, but the molecular mechanisms by which proteolysis regulates synaptic strength are not well understood. We investigated the role of the proteasome in hippocampal late-phase long-term potentiation (L-LTP), a model for enduring synaptic plasticity.…

  13. Characterization of a novel RING-type ubiquitin E3 ligase GhRING2 differentially expressed in cotton fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome proteolysis pathway is responsible for the degradation of abnormal and short-lived proteins to regulate many important biochemical activities in eukaryotes. By employing affymetrix microarray analysis, we have identified a novel ubiquitin ligase E3 gene GhRING2 that is diffe...

  14. Ubiquitin control of S phase: a new role for the ubiquitin conjugating enzyme, UbcH7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Events within and transitions between the phases of the eukaryotic cell cycle are tightly controlled by transcriptional and post-translational processes. Prominent among them is a profound role for the ubiquitin proteasome proteolytic pathway. The timely degradation of proteins balances the increase...

  15. Elucidation of pathways of ribosomal RNA degradation: an essential role for RNase E.

    PubMed

    Sulthana, Shaheen; Basturea, Georgeta N; Deutscher, Murray P

    2016-08-01

    Although normally stable in growing cells, ribosomal RNAs are degraded under conditions of stress, such as starvation, and in response to misassembled or otherwise defective ribosomes in a process termed RNA quality control. Previously, our laboratory found that large fragments of 16S and 23S rRNA accumulate in strains lacking the processive exoribonucleases RNase II, RNase R, and PNPase, implicating these enzymes in the later steps of rRNA breakdown. Here, we define the pathways of rRNA degradation in the quality control process and during starvation, and show that the essential endoribonuclease, RNase E, is required to make the initial cleavages in both degradative processes. We also present evidence that explains why the exoribonuclease, RNase PH, is required to initiate the degradation of rRNA during starvation. The data presented here provide the first detailed description of rRNA degradation in bacterial cells. PMID:27298395

  16. Photolysis of chlorantraniliprole and cyantraniliprole in water and soil: verification of degradation pathways via kinetics modeling.

    PubMed

    Sharma, Ashok K; Zimmerman, William T; Singles, Suzanne K; Malekani, Kalumbu; Swain, Scott; Ryan, David; Mcquorcodale, Gordon; Wardrope, Laura

    2014-07-16

    Photodegradation of [(14)C]-chlorantraniliprole (CLAP) and [(14)C]-cyantraniliprole (CNAP) was investigated in sterile buffer solutions, in natural water, and on soil surfaces. Both compounds displayed rapid degradation in aqueous buffers when exposed to light at concentrations which could result from direct overspray to a shallow water body. While the main products observed had analogous structures, a substantial difference was noted in the rate of degradation of the two compounds despite minimal differences in their structures. Transformations observed were primarily intramolecular rearrangements and degradations resulting from addition of hydroxyl radicals leading to molecular cleavage. Some of the degradation products were transient, and several degradates had isomeric molecular compositions. The sequence of transformations was established definitively with the help of kinetics modeling. Utility of kinetics analysis in verification of the proposed pathways is illustrated. PMID:24971760

  17. Aerobic Degradation of Sulfadiazine by Arthrobacter spp.: Kinetics, Pathways, and Genomic Characterization.

    PubMed

    Deng, Yu; Mao, Yanping; Li, Bing; Yang, Chao; Zhang, Tong

    2016-09-01

    Two aerobic sulfadiazine (SDZ) degrading bacterial strains, D2 and D4, affiliated with the genus Arthrobacter, were isolated from SDZ-enriched activated sludge. The degradation of SDZ by the two isolates followed first-order decay kinetics. The half-life time of complete SDZ degradation was 11.3 h for strain D2 and 46.4 h for strain D4. Degradation kinetic changed from nongrowth to growth-linked when glucose was introduced as the cosubstrate, and accelerated biodegradation rate was observed after the adaption period. Both isolates could degrade SDZ into 12 biodegradation products via 3 parallel pathways, of which 2-amino-4-hydroxypyrimidine was detected as the principal intermediate product toward the pyrimidine ring cleavage. Compared with five Arthrobacter strains reported previously, D2 and D4 were the only Arthrobacter strains which could degrade SDZ as the sole carbon source. The draft genomes of D2 and D4, with the same completeness of 99.7%, were compared to other genomes of related species. Overall, these two isolates shared high genomic similarities with the s-triazine-degrading Arthrobacter sp. AK-YN10 and the sulfonamide-degrading bacteria Microbacterium sp. C448. In addition, the two genomes contained a few significant regions of difference which may carry the functional genes involved in sulfonamide degradation. PMID:27477918

  18. Protein/Protein Interactions in the Mammalian Heme Degradation Pathway

    PubMed Central

    Spencer, Andrea L. M.; Bagai, Ireena; Becker, Donald F.; Zuiderweg, Erik R. P.; Ragsdale, Stephen W.

    2014-01-01

    Heme oxygenase (HO) catalyzes the rate-limiting step in the O2-dependent degradation of heme to biliverdin, CO, and iron with electrons delivered from NADPH via cytochrome P450 reductase (CPR). Biliverdin reductase (BVR) then catalyzes conversion of biliverdin to bilirubin. We describe mutagenesis combined with kinetic, spectroscopic (fluorescence and NMR), surface plasmon resonance, cross-linking, gel filtration, and analytical ultracentrifugation studies aimed at evaluating interactions of HO-2 with CPR and BVR. Based on these results, we propose a model in which HO-2 and CPR form a dynamic ensemble of complex(es) that precede formation of the productive electron transfer complex. The 1H-15N TROSY NMR spectrum of HO-2 reveals specific residues, including Leu-201, near the heme face of HO-2 that are affected by the addition of CPR, implicating these residues at the HO/CPR interface. Alanine substitutions at HO-2 residues Leu-201 and Lys-169 cause a respective 3- and 22-fold increase in Km values for CPR, consistent with a role for these residues in CPR binding. Sedimentation velocity experiments confirm the transient nature of the HO-2·CPR complex (Kd = 15.1 μm). Our results also indicate that HO-2 and BVR form a very weak complex that is only captured by cross-linking. For example, under conditions where CPR affects the 1H-15N TROSY NMR spectrum of HO-2, BVR has no effect. Fluorescence quenching experiments also suggest that BVR binds HO-2 weakly, if at all, and that the previously reported high affinity of BVR for HO is artifactual, resulting from the effects of free heme (dissociated from HO) on BVR fluorescence. PMID:25196843

  19. Mechanochemical degradation of tetrabromobisphenol A: performance, products and pathway.

    PubMed

    Zhang, Kunlun; Huang, Jun; Zhang, Wang; Yu, Yunfei; Deng, Shubo; Yu, Gang

    2012-12-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant (BFR), which has received more and more concerns due to its high lipophilicity, persistency and endocrine disrupting property in the environment. Considering the possible need for the safe disposal of TBBPA containing wastes in the future, the potential of mechanochemical (MC) destruction as a promising non-combustion technology was investigated in this study. TBBPA was co-ground with calcium oxide (CaO) or the mixture of iron powder and quartz sand (Fe+SiO(2)) in a planetary ball mill at room temperature. The method of Fe+SiO(2) destructed over 98% of initial TBBPA after 3h and acquired 95% debromination rate after 5h, which showed a better performance than the CaO method. Raman spectra and Fourier transform infrared spectroscopy (FTIR) demonstrated the generation of inorganic carbon with the disappearance of benzene ring and CBr bond, indicating the carbonization and debromination process during mechanochemical reaction. LC-MS-MS screening showed that the intermediates of the treatment with Fe+SiO(2) were tri-, bi-, mono-brominated BPA, BPA and other fragments. Finally all the intermediates were also destroyed after 5h grinding. The bromine balance was calculated and a possible reaction pathway was proposed. PMID:23158692

  20. Terrestrial and marine perspectives on modeling organic matter degradation pathways.

    PubMed

    Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning

    2016-01-01

    Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration. PMID:26015089

  1. Complete and Integrated Pyrene Degradation Pathway in Mycobacterium vanbaalenii PYR-1 Based on Systems Biology▿ †

    PubMed Central

    Kim, Seong-Jae; Kweon, Ohgew; Jones, Richard C.; Freeman, James P.; Edmondson, Ricky D.; Cerniglia, Carl E.

    2007-01-01

    Mycobacterium vanbaalenii PYR-1 was the first bacterium isolated by virtue of its ability to metabolize the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) pyrene. We used metabolic, genomic, and proteomic approaches in this investigation to construct a complete and integrated pyrene degradation pathway for M. vanbaalenii PYR-1. Genome sequence analyses identified genes involved in the pyrene degradation pathway that we have proposed for this bacterium. To identify proteins involved in the degradation, we conducted a proteome analysis of cells exposed to pyrene using one-dimensional gel electrophoresis in combination with liquid chromatography-tandem mass spectrometry. Database searching performed with the M. vanbaalenii PYR-1 genome resulted in identification of 1,028 proteins with a protein false discovery rate of <1%. Based on both genomic and proteomic data, we identified 27 enzymes necessary for constructing a complete pathway for pyrene degradation. Our analyses indicate that this bacterium degrades pyrene to central intermediates through o-phthalate and the β-ketoadipate pathway. Proteomic analysis also revealed that 18 enzymes in the pathway were upregulated more than twofold, as indicated by peptide counting when the organism was grown with pyrene; three copies of the terminal subunits of ring-hydroxylating oxygenase (NidAB2, MvanDraft_0817/0818, and PhtAaAb), dihydrodiol dehydrogenase (MvanDraft_0815), and ring cleavage dioxygenase (MvanDraft_3242) were detected only in pyrene-grown cells. The results presented here provide a comprehensive picture of pyrene metabolism in M. vanbaalenii PYR-1 and a useful framework for understanding cellular processes involved in PAH degradation. PMID:17085566

  2. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology.

    PubMed

    Kim, Seong-Jae; Kweon, Ohgew; Jones, Richard C; Freeman, James P; Edmondson, Ricky D; Cerniglia, Carl E

    2007-01-01

    Mycobacterium vanbaalenii PYR-1 was the first bacterium isolated by virtue of its ability to metabolize the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) pyrene. We used metabolic, genomic, and proteomic approaches in this investigation to construct a complete and integrated pyrene degradation pathway for M. vanbaalenii PYR-1. Genome sequence analyses identified genes involved in the pyrene degradation pathway that we have proposed for this bacterium. To identify proteins involved in the degradation, we conducted a proteome analysis of cells exposed to pyrene using one-dimensional gel electrophoresis in combination with liquid chromatography-tandem mass spectrometry. Database searching performed with the M. vanbaalenii PYR-1 genome resulted in identification of 1,028 proteins with a protein false discovery rate of <1%. Based on both genomic and proteomic data, we identified 27 enzymes necessary for constructing a complete pathway for pyrene degradation. Our analyses indicate that this bacterium degrades pyrene to central intermediates through o-phthalate and the beta-ketoadipate pathway. Proteomic analysis also revealed that 18 enzymes in the pathway were upregulated more than twofold, as indicated by peptide counting when the organism was grown with pyrene; three copies of the terminal subunits of ring-hydroxylating oxygenase (NidAB2, MvanDraft_0817/0818, and PhtAaAb), dihydrodiol dehydrogenase (MvanDraft_0815), and ring cleavage dioxygenase (MvanDraft_3242) were detected only in pyrene-grown cells. The results presented here provide a comprehensive picture of pyrene metabolism in M. vanbaalenii PYR-1 and a useful framework for understanding cellular processes involved in PAH degradation. PMID:17085566

  3. Degradation of endocytosed gap junctions by autophagosomal and endo-/lysosomal pathways: a perspective

    PubMed Central

    Falk, Matthias M.; Fong, John T.; Kells, Rachael M.; O’Laughlin, Michael C.; Kowal, Tia J.; Thévenin, Anastasia F.

    2012-01-01

    Gap junctions (GJs) are composed of tens to many thousands of double-membrane spanning GJ channels that cluster together to form densely packed channel arrays (termed GJ plaques) in apposing plasma membranes of neighboring cells. In addition to providing direct intercellular communication (GJIC, their hallmark function), GJs, based on their characteristic double-membrane-spanning configuration, likely also significantly contribute to physical cell-to-cell adhesion. Clearly, modulation (up-/down-regulation) of GJIC and of physical cell-to-cell adhesion is as vitally important as the basic ability of GJ formation itself. Others and we have previously described that GJs can be removed from the plasma membrane via the internalization of entire GJ plaques (or portions thereof) in a cellular process that resembles clathrin-mediated endocytosis. GJ endocytosis results in the formation of double-membrane vesicles (termed annular gap junctions [AGJs] or connexosomes) in the cytoplasm of one of the coupled cells. Four recent independent studies, consistent with earlier ultrastructural analyses, demonstrate the degradation of endocytosed AGJ vesicles via autophagy. However, in TPA-treated cells others report degradation of AGJs via the endo-/lysosomal degradation pathway. Here we summarize evidence that supports the concept that autophagy serves as the cellular default pathway for the degradation of internalized GJs. Furthermore, we highlight and discuss structural criteria that seem required for an alternate degradation via the endo-/lysosomal pathway. PMID:22825714

  4. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill.

    PubMed

    Dombrowski, Nina; Donaho, John A; Gutierrez, Tony; Seitz, Kiley W; Teske, Andreas P; Baker, Brett J

    2016-01-01

    The Deepwater Horizon blowout in the Gulf of Mexico in 2010, one of the largest marine oil spills(1), changed bacterial communities in the water column and sediment as they responded to complex hydrocarbon mixtures(2-4). Shifts in community composition have been correlated to the microbial degradation and use of hydrocarbons(2,5,6), but the full genetic potential and taxon-specific metabolisms of bacterial hydrocarbon degraders remain unresolved. Here, we have reconstructed draft genomes of marine bacteria enriched from sea surface and deep plume waters of the spill that assimilate alkane and polycyclic aromatic hydrocarbons during stable-isotope probing experiments, and we identify genes of hydrocarbon degradation pathways. Alkane degradation genes were ubiquitous in the assembled genomes. Marinobacter was enriched with n-hexadecane, and uncultured Alpha- and Gammaproteobacteria populations were enriched in the polycyclic-aromatic-hydrocarbon-degrading communities and contained a broad gene set for degrading phenanthrene and naphthalene. The repertoire of polycyclic aromatic hydrocarbon use varied among different bacterial taxa and the combined capabilities of the microbial community exceeded those of its individual components, indicating that the degradation of complex hydrocarbon mixtures requires the non-redundant capabilities of a complex oil-degrading community. PMID:27572965

  5. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    PubMed

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC. PMID:26452660

  6. Delineation of Molecular Pathways Involved in Cardiomyopathies Caused by Troponin T Mutations.

    PubMed

    Gilda, Jennifer E; Lai, Xianyin; Witzmann, Frank A; Gomes, Aldrin V

    2016-06-01

    Familial hypertrophic cardiomyopathy (FHC) is associated with mild to severe cardiac problems and is the leading cause of sudden death in young people and athletes. Although the genetic basis for FHC is well-established, the molecular mechanisms that ultimately lead to cardiac dysfunction are not well understood. To obtain important insights into the molecular mechanism(s) involved in FHC, hearts from two FHC troponin T models (Ile79Asn [I79N] and Arg278Cys [R278C]) were investigated using label-free proteomics and metabolomics. Mutations in troponin T are the third most common cause of FHC, and the I79N mutation is associated with a high risk of sudden cardiac death. Most FHC-causing mutations, including I79N, increase the Ca(2+) sensitivity of the myofilament; however, the R278C mutation does not alter Ca(2+) sensitivity and is associated with a better prognosis than most FHC mutations. Out of more than 1200 identified proteins, 53 and 76 proteins were differentially expressed in I79N and R278C hearts, respectively, when compared with wild-type hearts. Interestingly, more than 400 proteins were differentially expressed when the I79N and R278C hearts were directly compared. The three major pathways affected in I79N hearts relative to R278C and wild-type hearts were the ubiquitin-proteasome system, antioxidant systems, and energy production pathways. Further investigation of the proteasome system using Western blotting and activity assays showed that proteasome dysfunction occurs in I79N hearts. Metabolomic results corroborate the proteomic data and suggest the glycolytic, citric acid, and electron transport chain pathways are important pathways that are altered in I79N hearts relative to R278C or wild-type hearts. Our findings suggest that impaired energy production and protein degradation dysfunction are important mechanisms in FHCs associated with poor prognosis and that cardiac hypertrophy is not likely needed for a switch from fatty acid to glucose metabolism

  7. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes.

    PubMed

    Qin, Lang; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Tian, Fu-Xiang; Zhang, Tian-Yang; Zhu, Wen-Qian; Huang, He; Gao, Nai-Yun

    2014-11-15

    Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment. PMID:25141357

  8. New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs.

    PubMed

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; de Vasconcellos, Suzan Pantaroto; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  9. New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs

    PubMed Central

    Sierra-García, Isabel Natalia; Correa Alvarez, Javier; Pantaroto de Vasconcellos, Suzan; Pereira de Souza, Anete; dos Santos Neto, Eugenio Vaz; de Oliveira, Valéria Maia

    2014-01-01

    Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. PMID:24587220

  10. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil.

    PubMed

    Smith, Daniel; Alvey, Sam; Crowley, David E

    2005-07-01

    Atrazine degradation previously has been shown to be carried out by individual bacterial species or by relatively simple consortia that have been isolated using enrichment cultures. Here, the degradative pathway for atrazine was examined for a complex 8-membered enrichment culture. The species composition of the culture was determined by PCR-DGGE. The bacterial species included Agrobacterium tumefaciens, Caulobacter crescentus, Pseudomonas putida, Sphingomonas yaniokuyae, Nocardia sp., Rhizobium sp., Flavobacterium oryzihabitans, and Variovorax paradoxus. All of the isolates were screened for the presence of known genes that function for atrazine degradation including atzA,-B,-C,-D,-E,-F and trzD,-N. Dechlorination of atrazine, which was obligatory for complete mineralization, was carried out exclusively by Nocardia sp., which contained the trzN gene. Following dechlorination, the resulting product, hydroxyatrazine was further degraded via two separate pathways. In one pathway Nocardia converted hydroxyatrazine to N-ethylammelide via an unidentified gene product. In the second pathway, hydroxyatrazine generated by Nocardia sp. was hydrolyzed to N-isopropylammelide by Rhizobium sp., which contained the atzB gene. Each member of the enrichment culture contained atzC, which is responsible for ring cleavage, but none of the isolates carried the atzD,-E, or -F genes. Each member further contained either trzD or exhibited urease activity. The enrichment culture was destabilized by loss of Nocardia sp. when grown on ethylamine, ethylammelide, and cyanuric acid, after which the consortium was no longer able to degrade atrazine. The analysis of this enrichment culture highlights the broad level bacterial community interactions that may be involved in atrazine degradation in nature. PMID:16329946

  11. Impact of degrading permafrost on subsurface solute transport pathways and travel times

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew; Destouni, Georgia

    2015-09-01

    Subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in the subsurface water and inert solute pathways and travel times are analyzed for different modeled geological configurations. For all simulated cases, the minimum and mean travel times increase nonlinearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. The travel time changes depend on combined warming effects of: i) increase in pathway length due to deepening of the active layer, ii) reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and iii) pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles.

  12. Degradation of Serotonin N-Acetyltransferase, a Circadian Regulator, by the N-end Rule Pathway.

    PubMed

    Wadas, Brandon; Borjigin, Jimo; Huang, Zheping; Oh, Jang-Hyun; Hwang, Cheol-Sang; Varshavsky, Alexander

    2016-08-12

    Serotonin N-acetyltransferase (AANAT) converts serotonin to N-acetylserotonin (NAS), a distinct biological regulator and the immediate precursor of melatonin, a circulating hormone that influences circadian processes, including sleep. N-terminal sequences of AANAT enzymes vary among vertebrates. Mechanisms that regulate the levels of AANAT are incompletely understood. Previous findings were consistent with the possibility that AANAT may be controlled through its degradation by the N-end rule pathway. By expressing the rat and human AANATs and their mutants not only in mammalian cells but also in the yeast Saccharomyces cerevisiae, and by taking advantage of yeast genetics, we show here that two "complementary" forms of rat AANAT are targeted for degradation by two "complementary" branches of the N-end rule pathway. Specifically, the N(α)-terminally acetylated (Nt-acetylated) Ac-AANAT is destroyed through the recognition of its Nt-acetylated N-terminal Met residue by the Ac/N-end rule pathway, whereas the non-Nt-acetylated AANAT is targeted by the Arg/N-end rule pathway, which recognizes the unacetylated N-terminal Met-Leu sequence of rat AANAT. We also show, by constructing lysine-to-arginine mutants of rat AANAT, that its degradation is mediated by polyubiquitylation of its Lys residue(s). Human AANAT, whose N-terminal sequence differs from that of rodent AANATs, is longer-lived than its rat counterpart and appears to be refractory to degradation by the N-end rule pathway. Together, these and related results indicate both a major involvement of the N-end rule pathway in the control of rodent AANATs and substantial differences in the regulation of rodent and human AANATs that stem from differences in their N-terminal sequences. PMID:27339900

  13. A Non-canonical RNA Silencing Pathway Promotes mRNA Degradation in Basal Fungi

    PubMed Central

    Nicolás, Francisco E.; Vila, Ana; Moxon, Simon; Dalmay, Tamas; Torres-Martínez, Santiago; Garre, Victoriano; Ruiz-Vázquez, Rosa M.

    2015-01-01

    The increasing knowledge on the functional relevance of endogenous small RNAs (esRNAs) as riboregulators has stimulated the identification and characterization of these molecules in numerous eukaryotes. In the basal fungus Mucor circinelloides, an emerging opportunistic human pathogen, esRNAs that regulate the expression of many protein coding genes have been described. These esRNAs share common machinery for their biogenesis consisting of an RNase III endonuclease Dicer, a single Argonaute protein and two RNA-dependent RNA polymerases. We show in this study that, besides participating in this canonical dicer-dependent RNA interference (RNAi) pathway, the rdrp genes are involved in a novel dicer-independent degradation process of endogenous mRNAs. The analysis of esRNAs accumulated in wild type and silencing mutants demonstrates that this new rdrp-dependent dicer-independent regulatory pathway, which does not produce sRNA molecules of discrete sizes, controls the expression of target genes promoting the specific degradation of mRNAs by a previously unknown RNase. This pathway mainly regulates conserved genes involved in metabolism and cellular processes and signaling, such as those required for heme biosynthesis, and controls responses to specific environmental signals. Searching the Mucor genome for candidate RNases to participate in this pathway, and functional analysis of the corresponding knockout mutants, identified a new protein, R3B2. This RNase III-like protein presents unique domain architecture, it is specifically found in basal fungi and, besides its relevant role in the rdrp-dependent dicer-independent pathway, it is also involved in the canonical dicer-dependent RNAi pathway, highlighting its crucial role in the biogenesis and function of regulatory esRNAs. The involvement of RdRPs in RNA degradation could represent the first evolutionary step towards the development of an RNAi mechanism and constitutes a genetic link between mRNA degradation and post

  14. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes.

    PubMed

    Andersen, Gorm; Björnberg, Olof; Polakova, Silvia; Pynyaha, Yuriy; Rasmussen, Anna; Møller, Kasper; Hofer, Anders; Moritz, Thomas; Sandrini, Michael Paolo Bastner; Merico, Anna-Maria; Compagno, Concetta; Akerlund, Hans-Erik; Gojković, Zoran; Piskur, Jure

    2008-07-18

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyveri, we show that during degradation, uracil is not reduced to dihydrouracil. Six loci, named URC1-6 (for uracil catabolism), are involved in the novel catabolic pathway. Four of them, URC3,5, URC6, and URC2 encode urea amidolyase, uracil phosphoribosyltransferase, and a putative transcription factor, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1p and Urc4p are therefore likely the core components of this novel biochemical pathway. A combination of genetic and analytical chemistry methods demonstrates that uridine monophosphate and urea are intermediates, and 3-hydroxypropionic acid, ammonia and carbon dioxide the final products of degradation. The URC pathway does not require the presence of an active respiratory chain and is therefore different from the oxidative and rut pathways described in prokaryotes, although the latter also gives 3-hydroxypropionic acid as the end product. The genes of the URC pathway are not homologous to any of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date. PMID:18550080

  15. Degradation of the deubiquitinating enzyme USP33 is mediated by p97 and the ubiquitin ligase HERC2.

    PubMed

    Chan, Nickie C; den Besten, Willem; Sweredoski, Michael J; Hess, Sonja; Deshaies, Raymond J; Chan, David C

    2014-07-11

    Because the deubiquitinating enzyme USP33 is involved in several important cellular processes (β-adrenergic receptor recycling, centrosome amplification, RalB signaling, and cancer cell migration), its levels must be carefully regulated. Using quantitative mass spectrometry, we found that the intracellular level of USP33 is highly sensitive to the activity of p97. Knockdown or chemical inhibition of p97 causes robust accumulation of USP33 due to inhibition of its degradation. The p97 adaptor complex involved in this function is the Ufd1-Npl4 heterodimer. Furthermore, we identified HERC2, a HECT domain-containing E3 ligase, as being responsible for polyubiquitination of USP33. Inhibition of p97 causes accumulation of polyubiquitinated USP33, suggesting that p97 is required for postubiquitination processing. Thus, our study has identified several key molecules that control USP33 degradation within the ubiquitin-proteasome system. PMID:24855649

  16. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species

    PubMed Central

    Hasan, Syed Adnan; Jabeen, Suraiya

    2015-01-01

    This article elucidates that strain Pseudomonas aeruginosa (IES-Ps-1) is a versatile toxic organic compound degrader. With the degradation of malathion and cypermethrin (studied by other researchers previously), this strain was able to degrade phenol. Two other indigenous soil flora (i.e., Pseudomonas sp. (IES-S) and Bacillus subtilis (IES-B)) were also found to be potential phenol degraders. Phenol was degraded with Monod kinetics during growth in nutrient broth and mineral salts medium. Before entering into the growth inhibition phase, strains IES-Ps-1, IES-S and IES-B could tolerate up to 400, 700 and 500 mg/L phenol, respectively, when contained in nutrient broth. However, according to the Luong–Levenspiel model, the growth of strains IES-Ps-1, IES-S and IES-B would cease at 2000, 2174 and 2190 mg/L phenol, respectively. Strain IES-Ps-1 degraded 700, 900 and 1050 mg/L phenol contained in mineral salts medium with the specific rates of 0.034, 0.075 and 0.021 h−1, respectively. All these strains grew by making clusters when exposed to phenol in order to prevent damages due to high substrate concentration. These strains transformed phenol into catechol, which was then degraded via ortho-cleavage pathway. PMID:26740787

  17. Characterization of Two Novel Propachlor Degradation Pathways in Two Species of Soil Bacteria

    PubMed Central

    Martin, Margarita; Mengs, Gerardo; Allende, Jose Luis; Fernandez, Javier; Alonso, Ramon; Ferrer, Estrella

    1999-01-01

    Propachlor (2-chloro-N-isopropylacetanilide) is an acetamide herbicide used in preemergence. In this study, we isolated and characterized a soil bacterium, Acinetobacter strain BEM2, that was able to utilize this herbicide as the sole and limiting carbon source. Identification of the intermediates of propachlor degradation by this strain and characterization of new metabolites in the degradation of propachlor by a previously reported strain of Pseudomonas (PEM1) support two different propachlor degradation pathways. Washed-cell suspensions of strain PEM1 with propachlor accumulated N-isopropylacetanilide, acetanilide, acetamide, and catechol. Pseudomonas strain PEM1 grew on propachlor with a generation time of 3.4 h and a Ks of 0.17 ± 0.04 mM. Acinetobacter strain BEM2 grew on propachlor with a generation time of 3.1 h and a Ks of 0.3 ± 0.07 mM. Incubations with strain BEM2 resulted in accumulation of N-isopropylacetanilide, N-isopropylaniline, isopropylamine, and catechol. Both degradative pathways were inducible, and the principal product of the carbon atoms in the propachlor ring was carbon dioxide. These results and biodegradation experiments with the identified metabolites indicate that metabolism of propachlor by Pseudomonas sp. strain PEM1 proceeds through a different pathway from metabolism by Acinetobacter sp. strain BEM2. PMID:9925619

  18. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB.

    PubMed

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2014-03-01

    Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene-grown cells but not in tetralin- or salicylate-grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes. PMID:24325207

  19. Reaction pathways of the diketonitrile degradate of isoxaflutole with hypochlorite in water.

    PubMed

    Lerch, R N; Lin, C H; Leigh, N D

    2007-03-01

    Isoxaflutole (IXF; Balance) belongs to a new class of isoxazole herbicides. Isoxaflutole has a very short half-life in soil and rapidly degrades to a stable and phytotoxic degradate, diketonitrile (DKN). DKN was previously discovered to rapidly react with hypochlorite (OCl-) in tap water, yielding the benzoic acid (BA) degradate as a major product, but the complete reaction pathway and mechanism have not been elucidated. Thus, the objectives of this work were to (1) determine the stoichiometry of the reaction between DKN and OCl-; (2) identify products in addition to BA; and (3) propose a complete pathway and reaction mechanism for oxidation of DKN by OCl-. Stoichiometry of the reaction showed a molar ratio of OCl-/DKN of 2. In addition, two previously uncharacterized chlorinated intermediates were identified under conditions in which OCl- was the limiting reactant. The proposed chemical structure of a chlorinated benzoyl intermediate was inferred from a series of HPLC/MS and HPLC/MS/MS experiments and the use of mass spectral simulation software. A chlorinated ketone intermediate was also identified using ion trap GC/MS. Two additional end products were also identified: cyclopropanecarboxylic acid (CPCA) and dichloroacetonitrile (DCAN). On the basis of the reaction stoichiometry, the structure of the chlorinated intermediates, and the identification of the products, two reaction pathways are proposed. Both pathways involve a two-step nucleophilic attack and oxidation of the diketone structure of DKN, leading to formation of BA, DCAN, and CPCA. PMID:17284050

  20. Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in lake erie.

    PubMed

    Mou, Xiaozhen; Lu, Xinxin; Jacob, Jisha; Sun, Shulei; Heath, Robert

    2013-01-01

    Cyanobacterial harmful blooms (CyanoHABs) that produce microcystins are appearing in an increasing number of freshwater ecosystems worldwide, damaging quality of water for use by human and aquatic life. Heterotrophic bacteria assemblages are thought to be important in transforming and detoxifying microcystins in natural environments. However, little is known about their taxonomic composition or pathways involved in the process. To address this knowledge gap, we compared the metagenomes of Lake Erie free-living bacterioplankton assemblages in laboratory microcosms amended with microcystins relative to unamended controls. A diverse array of bacterial phyla were responsive to elevated supply of microcystins, including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria of the alpha, beta, gamma, delta and epsilon subdivisions and Verrucomicrobia. At more detailed taxonomic levels, Methylophilales (mainly in genus Methylotenera) and Burkholderiales (mainly in genera Bordetella, Burkholderia, Cupriavidus, Polaromonas, Ralstonia, Polynucleobacter and Variovorax) of Betaproteobacteria were suggested to be more important in microcystin degradation than Sphingomonadales of Alphaproteobacteria. The latter taxa were previously thought to be major microcystin degraders. Homologs to known microcystin-degrading genes (mlr) were not overrepresented in microcystin-amended metagenomes, indicating that Lake Erie bacterioplankton might employ alternative genes and/or pathways in microcystin degradation. Genes for xenobiotic metabolism were overrepresented in microcystin-amended microcosms, suggesting they are important in bacterial degradation of microcystin, a phenomenon that has been identified previously only in eukaryotic systems. PMID:23637924

  1. A functional 4-hydroxybenzoate degradation pathway in the phytopathogen Xanthomonas campestris is required for full pathogenicity

    PubMed Central

    Wang, Jia-Yuan; Zhou, Lian; Chen, Bo; Sun, Shuang; Zhang, Wei; Li, Ming; Tang, Hongzhi; Jiang, Bo-Le; Tang, Ji-Liang; He, Ya-Wen

    2015-01-01

    Plants contain significant levels of natural phenolic compounds essential for reproduction and growth, as well as defense mechanisms against pathogens. Xanthomonas campestris pv. campestris (Xcc) is the causal agent of crucifers black rot. Here we showed that genes required for the synthesis, utilization, transportation, and degradation of 4-hydroxybenzoate (4-HBA) are present in Xcc. Xcc rapidly degrades 4-HBA, but has no effect on 2-hydroxybenzoate and 3-hydroxybenzoate when grown in XOLN medium. The genes for 4-HBA degradation are organized in a superoperonic cluster. Bioinformatics, biochemical, and genetic data showed that 4-HBA is hydroxylated by 4-HBA 3-hydroxylase (PobA), which is encoded by Xcc0356, to yield PCA. The resulting PCA is further metabolized via the PCA branches of the β-ketoadipate pathway, including Xcc0364, Xcc0365, and PcaFHGBDCR. Xcc0364 and Xcc0365 encode a new form of β-ketoadipate succinyl-coenzyme A transferase that is required for 4-HBA degradation. pobA expression was induced by 4-HBA via the transcriptional activator, PobR. Radish and cabbage hydrolysates contain 2-HBA, 3-HBA, 4-HBA, and other phenolic compounds. Addition of radish and cabbage hydrolysates to Xcc culture significantly induced the expression of pobA via PobR. The 4-HBA degradation pathway is required for full pathogenicity of Xcc in radish. PMID:26672484

  2. Catalytic thermolysis in treating Cibacron Blue in aqueous solution: Kinetics and degradation pathway.

    PubMed

    Su, Claire Xin-Hui; Teng, Tjoon-Tow; Wong, Yee-Shian; Morad, Norhashimah; Rafatullah, Mohd

    2016-03-01

    A thermal degradation pathway of the decolourisation of Reactive Cibacron Blue F3GA (RCB) in aqueous solution through catalytic thermolysis is established. Catalytic thermolysis is suitable for the removal of dyes from wastewater as it breaks down the complex dye molecules instead of only transferring them into another phase. RCB is a reactive dye that consists of three main groups, namely anthraquinone, benzene and triazine groups. Through catalytic thermolysis, the bonds that hold the three groups together were effectively broken and at the same time, the complex molecules degraded to form simple molecules of lower molecular weight. The degradation pathway and products were characterized and determined through UV-Vis, FT-IR and GCMS analysis. RCB dye molecule was successfully broken down into simpler molecules, namely, benzene derivatives, amines and triazine. The addition of copper sulphate, CuSO4, as a catalyst, hastens the thermal degradation of RCB by aiding in the breakdown of large, complex molecules. At pH 2 and catalyst mass loading of 5 g/L, an optimum colour removal of 66.14% was observed. The degradation rate of RCB is well explained by first order kinetics model. PMID:26741557

  3. Degradation kinetics and pathways of three calcium channel blockers under UV irradiation.

    PubMed

    Zhu, Bing; Zonja, Bozo; Gonzalez, Oscar; Sans, Carme; Pérez, Sandra; Barceló, Damia; Esplugas, Santiago; Xu, Ke; Qiang, Zhimin

    2015-12-01

    Calcium channel blockers (CCBs) are a group of pharmaceuticals widely prescribed to lower blood pressure and treat heart diseases. They have been frequently detected in wastewater treatment plant (WWTP) effluents and downstream river waters, thus inducing a potential risk to aquatic ecosystems. However, little is known about the behavior and fate of CCBs under UV irradiation, which has been adopted as a primary disinfection method for WWTP effluents. This study investigated the degradation kinetics and pathways of three commonly-used CCBs, including amlodipine (AML), diltiazem (DIL), and verapamil (VER), under UV (254 nm) irradiation. The chemical structures of transformation byproducts (TBPs) were first identified to assess the potential ecological hazards. On that basis, a generic solid-phase extraction method, which simultaneously used four different cartridges, was adopted to extract and enrich the TBPs. Thereafter, the photo-degradation of target CCBs was performed under UV fluences typical for WWTP effluent disinfection. The degradation of all three CCBs conformed to the pseudo-first-order kinetics, with rate constants of 0.031, 0.044 and 0.011 min(-1) for AML, DIL and VER, respectively. By comparing the MS(2) fragments and the evolution (i.e., formation or decay) trends of identified TBPs, the degradation pathways were proposed. In the WWTP effluent, although the target CCBs could be degraded, several TBPs still contained the functional pharmacophores and reached peak concentrations under UV fluences of 40-100 mJ cm(-2). PMID:26003333

  4. Metagenomic Identification of Bacterioplankton Taxa and Pathways Involved in Microcystin Degradation in Lake Erie

    PubMed Central

    Mou, Xiaozhen; Lu, Xinxin; Jacob, Jisha; Sun, Shulei; Heath, Robert

    2013-01-01

    Cyanobacterial harmful blooms (CyanoHABs) that produce microcystins are appearing in an increasing number of freshwater ecosystems worldwide, damaging quality of water for use by human and aquatic life. Heterotrophic bacteria assemblages are thought to be important in transforming and detoxifying microcystins in natural environments. However, little is known about their taxonomic composition or pathways involved in the process. To address this knowledge gap, we compared the metagenomes of Lake Erie free-living bacterioplankton assemblages in laboratory microcosms amended with microcystins relative to unamended controls. A diverse array of bacterial phyla were responsive to elevated supply of microcystins, including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria of the alpha, beta, gamma, delta and epsilon subdivisions and Verrucomicrobia. At more detailed taxonomic levels, Methylophilales (mainly in genus Methylotenera) and Burkholderiales (mainly in genera Bordetella, Burkholderia, Cupriavidus, Polaromonas, Ralstonia, Polynucleobacter and Variovorax) of Betaproteobacteria were suggested to be more important in microcystin degradation than Sphingomonadales of Alphaproteobacteria. The latter taxa were previously thought to be major microcystin degraders. Homologs to known microcystin-degrading genes (mlr) were not overrepresented in microcystin-amended metagenomes, indicating that Lake Erie bacterioplankton might employ alternative genes and/or pathways in microcystin degradation. Genes for xenobiotic metabolism were overrepresented in microcystin-amended microcosms, suggesting they are important in bacterial degradation of microcystin, a phenomenon that has been identified previously only in eukaryotic systems. PMID:23637924

  5. Degradation of ibuprofen by hydrodynamic cavitation: Reaction pathways and effect of operational parameters.

    PubMed

    Musmarra, Dino; Prisciandaro, Marina; Capocelli, Mauro; Karatza, Despina; Iovino, Pasquale; Canzano, Silvana; Lancia, Amedeo

    2016-03-01

    Ibuprofen (IBP) is an anti-inflammatory drug whose residues can be found worldwide in natural water bodies resulting in harmful effects to aquatic species even at low concentrations. This paper deals with the degradation of IBP in water by hydrodynamic cavitation in a convergent-divergent nozzle. Over 60% of ibuprofen was degraded in 60 min with an electrical energy per order (EEO) of 10.77 kWh m(-3) at an initial concentration of 200 μg L(-1) and a relative inlet pressure pin=0.35 MPa. Five intermediates generated from different hydroxylation reactions were identified; the potential mechanisms of degradation were sketched and discussed. The reaction pathways recognized are in line with the relevant literature, both experimental and theoretical. By varying the pressure upstream the constriction, different degradation rates were observed. This effect was discussed according to a numerical simulation of the hydroxyl radical production identifying a clear correspondence between the maximum kinetic constant kOH and the maximum calculated OH production. Furthermore, in the investigated experimental conditions, the pH parameter was found not to affect the extent of degradation; this peculiar feature agrees with a recently published kinetic insight and has been explained in the light of the intermediates of the different reaction pathways. PMID:26584987

  6. A functional 4-hydroxybenzoate degradation pathway in the phytopathogen Xanthomonas campestris is required for full pathogenicity.

    PubMed

    Wang, Jia-Yuan; Zhou, Lian; Chen, Bo; Sun, Shuang; Zhang, Wei; Li, Ming; Tang, Hongzhi; Jiang, Bo-Le; Tang, Ji-Liang; He, Ya-Wen

    2015-01-01

    Plants contain significant levels of natural phenolic compounds essential for reproduction and growth, as well as defense mechanisms against pathogens. Xanthomonas campestris pv. campestris (Xcc) is the causal agent of crucifers black rot. Here we showed that genes required for the synthesis, utilization, transportation, and degradation of 4-hydroxybenzoate (4-HBA) are present in Xcc. Xcc rapidly degrades 4-HBA, but has no effect on 2-hydroxybenzoate and 3-hydroxybenzoate when grown in XOLN medium. The genes for 4-HBA degradation are organized in a superoperonic cluster. Bioinformatics, biochemical, and genetic data showed that 4-HBA is hydroxylated by 4-HBA 3-hydroxylase (PobA), which is encoded by Xcc0356, to yield PCA. The resulting PCA is further metabolized via the PCA branches of the β-ketoadipate pathway, including Xcc0364, Xcc0365, and PcaFHGBDCR. Xcc0364 and Xcc0365 encode a new form of β-ketoadipate succinyl-coenzyme A transferase that is required for 4-HBA degradation. pobA expression was induced by 4-HBA via the transcriptional activator, PobR. Radish and cabbage hydrolysates contain 2-HBA, 3-HBA, 4-HBA, and other phenolic compounds. Addition of radish and cabbage hydrolysates to Xcc culture significantly induced the expression of pobA via PobR. The 4-HBA degradation pathway is required for full pathogenicity of Xcc in radish. PMID:26672484

  7. Degradation of fluorescent and radiolabelled sphingomyelins in intact cells by a non-lysosomal pathway.

    PubMed

    Levade, T; Vidal, F; Vermeersch, S; Andrieu, N; Gatt, S; Salvayre, R

    1995-10-01

    The aim of the present study was to investigate the role of the entitled neutral, sphingomyelinase in the non-lysosomal pathway of sphingomyelin degradation by intact cells (Spence et al. (1983) J. Biol. Chem. 258, 8595-8600; Levade et al. (1991) J. Biol. Chem. 266, 13519-13529). The uptake and degradation of sphingomyelin by intact living cells was studied using cell lines exhibiting a wide range of activity levels of acid, lysosomal and neutral sphingomyelinases as determined in vitro on cell homogenates by their respective standard assays. For this purpose, neuroblastoma, skin fibroblasts, lymphoid and leukemic cell lines, some of them derived from patients with Niemann-Pick disease (deficient in the acid, lysosomal sphingomyelinase) were incubated with radioactive, [oleoyl-3H]sphingomyelin or fluorescent, pyrene-sulfonylaminoundecanoyl-sphingomyelin. Either compound was taken up by a pathway which was not receptor-mediated and hydrolyzed by all intact cells, including those derived from Niemann-Pick disease patients. Moreover, their degradation by the intact cells was not inhibited by treatment with chloroquine, indicating hydrolysis by a non-lysosomal sphingomyelinase. The intracellular sphingomyelin degradation rates showed no correlation with the activity of the 'classical' neutral sphingomyelinase as determined in vitro. In particular, fibroblasts derived from Niemann-Pick patients lacking the lysosomal sphingomyelinase, and having no detectable in vitro activity of the 'classical' neutral sphingomyelinase, were able to degrade the exogenously supplied sphingomyelins. Indeed, in vitro these cells were shown to exhibit neutral, magnesium- and dithiothreitol-dependent sphingomyelinase activities, that might contribute to the non-lysosomal pathway for sphingomyelin degradation to ceramide in intact cells. PMID:7548198

  8. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways.

    PubMed

    Kim, S G; Bae, H S; Lee, S T

    2001-10-01

    The aerobic and anaerobic degradation of trimethylamine by a newly isolated denitrifying bacterium from an enrichment culture with trimethylamine inoculated with activated sludge was studied. Based on 16S rDNA analysis, this strain was identified as a Paracoccus sp. The isolate, strain T231, aerobically degraded trimethylamine, dimethylamine and methylamine and released a stoichiometric amount of ammonium ion into the culture fluid as a metabolic product, indicating that these methylated amines were completely degraded to formaldehyde and ammonia. The strain degraded trimethylamine also under denitrifying conditions and consumed a stoichiometric amount of nitrate, demonstrating that complete degradation of trimethylamine was coupled with nitrate reduction. Cell-free extract prepared from cells grown aerobically on trimethylamine exhibited activities of trimethylamine mono-oxygenase, trimethylamine N-oxide demethylase, dimethylamine mono-oxygenase, and methylamine mono-oxygenase. Cell-free extract from cells grown anaerobically on trimethylamine and nitrate exhibited activities of trimethylamine dehydrogenase and dimethylamine dehydrogenase. These results indicate that strain T231 had two different pathways for aerobic and anaerobic degradation of trimethylamine. This is a new feature for trimethylamine metabolism in denitrifying bacteria. PMID:11685371

  9. Sodium persulfate-assisted mechanochemical degradation of tetrabromobisphenol A: Efficacy, products and pathway.

    PubMed

    Liu, Xitao; Zhang, Xiaohui; Zhang, Kunlun; Qi, Chengdu

    2016-05-01

    In recent years, activated persulfate (PS) oxidation has been developed as a new advanced oxidation process for the degradation of organic pollutants. On the other hand, the mechanochemical method has exhibited a unique advantage in dealing with chemical wastes. The degradation of tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant (BFR), in wastes has attracted considerable attention. In this study, the efficacy of a CaO-mechanochemical (CaO-MC) treatment system assisted by the addition of PS for the degradation of TBBPA was investigated. Under the optimum reaction conditions with a mole ratio of PS:CaO = 1:4 and less than 12.5% of TBBPA by mass, the degradation and debromination of TBBPA were completed within 2 h, while the mineralization was completed within 4 h. Characterization of the milled sample by XRD revealed that CaSO4 crystallization occurred. The TG results illustrate that there was little organic matter left after 4 h of milling. Raman and FT-IR spectra exhibited the TBBPA destruction process and disappearance of the organic groups. Through analysis by LC/MS/MS, seventeen intermediates were identified. The mechanism of TBBPA degradation by the PS-assisted CaO-MC treatment system was explained from two aspects, the course of crystallization and the degradation of TBBPA by activated PS, and two parallel initiation pathways were proposed. PMID:26359264

  10. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG

    PubMed Central

    Arora, Pankaj K.; Sharma, Ashutosh

    2015-01-01

    Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography–mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate, whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis,cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10–12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil. PMID:26082768

  11. Degradation kinetics and pathways of spirotetramat in different parts of spinach plant and in the soil.

    PubMed

    Chen, Xiaojun; Meng, Zhiyuan; Zhang, Yanyan; Gu, Haotian; Ren, Yajun; Lu, Chunliang

    2016-08-01

    Spirotetramat is a new pesticide against a broad spectrum of sucking insects and exhibits a unique property with a two-way systemicity. In order to formulate a scientific rationale for a reasonable spray dose and the safe interval period of 22.4 % spirotetramat suspension concentrate on controlling vegetable pests, we analyzed degradation dynamics and pathways of spirotetramat in different parts of spinach plant (leaf, stalk, and root) and in the soil. We conducted experimental trials under field conditions and adopted a simple and reliable method (dispersive solid phase extraction) combined with liquid chromatography-triple quadrupole tandem mass spectrometry to evaluate the dissipation rates of spirotetramat residue and its metabolites. The results showed that the spirotetramat was degraded into different metabolite residues in different parts of spinach plant (leaf, stalk, and root) and in the soil. Specifically, spirotetramat was degraded into B-keto, B-glu, and B-enol in the leaf; B-glu and B-enol in the stalk; and only B-enol in the root. In the soil where the plants grew, spirotetramat followed a completely different pathway compared to the plant and degraded into B-keto and B-mono. Regardless of different degradation pathways, the dissipation dynamic equations of spirotetramat in different parts of spinach plant and in the soil were all based on the first-order reaction dynamic equations. This work provides guidelines for the safe use of spirotetramat in spinach fields, which would help prevent potential health threats to consumers. PMID:27083908

  12. Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms.

    PubMed

    Lee, Sun Bok; Kim, Jeong Ah; Lim, Hyun Seung

    2016-05-01

    Complete hydrolysis of κ-carrageenan produces two sugars, D-galactose and 3,6-anhydro-D-galactose (D-AnG). At present, however, we do not know how carrageenan-degrading microorganisms metabolize D-AnG. In this study, we investigated the metabolic pathway of D-AnG degradation by comparative genomic analysis of Cellulophaga lytica LIM-21, Pseudoalteromonas atlantica T6c, and Epulopiscium sp. N.t. morphotype B, which represent the classes Flavobacteria, Gammaproteobacteria, and Clostridia, respectively. In this bioinformatic analysis, we found candidate common genes that were believed to be involved in D-AnG metabolism. We then experimentally confirmed the enzymatic function of each gene product in the D-AnG cluster. In all three microorganisms, D-AnG metabolizing genes were clustered and organized in operon-like arrangements, which we named as the dan operon (3,6-d-anhydro-galactose). Combining bioinformatic analysis and experimental data, we showed that D-AnG is metabolized to pyruvate and D-glyceraldehyde-3-phosphate via four enzyme-catalyzed reactions in the following route: 3,6-anhydro-D-galactose → 3,6-anhydro-D-galactonate → 2-keto-3-deoxy-D-galactonate (D-KDGal) → 2-keto-3-deoxy-6-phospho-D-galactonate → pyruvate + D-glyceraldehyde-3-phosphate. The pathway of D-AnG degradation is composed of two parts: transformation of D-AnG to D-KDGal using two D-AnG specific enzymes and breakdown of D-KDGal to two glycolysis intermediates using two DeLey-Doudoroff pathway enzymes. To our knowledge, this is the first report on the metabolic pathway of D-AnG degradation. PMID:26875872

  13. Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1.

    PubMed

    Felux, Ann-Katrin; Spiteller, Dieter; Klebensberger, Janosch; Schleheck, David

    2015-08-01

    Sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose) is the polar head group of the plant sulfolipid SQ-diacylglycerol, and SQ comprises a major proportion of the organosulfur in nature, where it is degraded by bacteria. A first degradation pathway for SQ has been demonstrated recently, a "sulfoglycolytic" pathway, in addition to the classical glycolytic (Embden-Meyerhof) pathway in Escherichia coli K-12; half of the carbon of SQ is abstracted as dihydroxyacetonephosphate (DHAP) and used for growth, whereas a C3-organosulfonate, 2,3-dihydroxypropane sulfonate (DHPS), is excreted. The environmental isolate Pseudomonas putida SQ1 is also able to use SQ for growth, and excretes a different C3-organosulfonate, 3-sulfolactate (SL). In this study, we revealed the catabolic pathway for SQ in P. putida SQ1 through differential proteomics and transcriptional analyses, by in vitro reconstitution of the complete pathway by five heterologously produced enzymes, and by identification of all four organosulfonate intermediates. The pathway follows a reaction sequence analogous to the Entner-Doudoroff pathway for glucose-6-phosphate: It involves an NAD(+)-dependent SQ dehydrogenase, 6-deoxy-6-sulfogluconolactone (SGL) lactonase, 6-deoxy-6-sulfogluconate (SG) dehydratase, and 2-keto-3,6-dideoxy-6-sulfogluconate (KDSG) aldolase. The aldolase reaction yields pyruvate, which supports growth of P. putida, and 3-sulfolactaldehyde (SLA), which is oxidized to SL by an NAD(P)(+)-dependent SLA dehydrogenase. All five enzymes are encoded in a single gene cluster that includes, for example, genes for transport and regulation. Homologous gene clusters were found in genomes of other P. putida strains, in other gamma-Proteobacteria, and in beta- and alpha-Proteobacteria, for example, in genomes of Enterobacteria, Vibrio, and Halomonas species, and in typical soil bacteria, such as Burkholderia, Herbaspirillum, and Rhizobium. PMID:26195800

  14. Entner–Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1

    PubMed Central

    Felux, Ann-Katrin; Spiteller, Dieter; Klebensberger, Janosch; Schleheck, David

    2015-01-01

    Sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose) is the polar head group of the plant sulfolipid SQ-diacylglycerol, and SQ comprises a major proportion of the organosulfur in nature, where it is degraded by bacteria. A first degradation pathway for SQ has been demonstrated recently, a “sulfoglycolytic” pathway, in addition to the classical glycolytic (Embden–Meyerhof) pathway in Escherichia coli K-12; half of the carbon of SQ is abstracted as dihydroxyacetonephosphate (DHAP) and used for growth, whereas a C3-organosulfonate, 2,3-dihydroxypropane sulfonate (DHPS), is excreted. The environmental isolate Pseudomonas putida SQ1 is also able to use SQ for growth, and excretes a different C3-organosulfonate, 3-sulfolactate (SL). In this study, we revealed the catabolic pathway for SQ in P. putida SQ1 through differential proteomics and transcriptional analyses, by in vitro reconstitution of the complete pathway by five heterologously produced enzymes, and by identification of all four organosulfonate intermediates. The pathway follows a reaction sequence analogous to the Entner–Doudoroff pathway for glucose-6-phosphate: It involves an NAD+-dependent SQ dehydrogenase, 6-deoxy-6-sulfogluconolactone (SGL) lactonase, 6-deoxy-6-sulfogluconate (SG) dehydratase, and 2-keto-3,6-dideoxy-6-sulfogluconate (KDSG) aldolase. The aldolase reaction yields pyruvate, which supports growth of P. putida, and 3-sulfolactaldehyde (SLA), which is oxidized to SL by an NAD(P)+-dependent SLA dehydrogenase. All five enzymes are encoded in a single gene cluster that includes, for example, genes for transport and regulation. Homologous gene clusters were found in genomes of other P. putida strains, in other gamma-Proteobacteria, and in beta- and alpha-Proteobacteria, for example, in genomes of Enterobacteria, Vibrio, and Halomonas species, and in typical soil bacteria, such as Burkholderia, Herbaspirillum, and Rhizobium. PMID:26195800

  15. Novel degradation pathway and kinetic analysis for buprofezin removal by newly isolated Bacillus sp.

    PubMed

    Wang, Guangli; Xu, Dayong; Xiong, Minghua; Zhang, Hui; Li, Feng; Liu, Yuan

    2016-09-15

    Given the intensive and widespread application of the pesticide, buprofezin, its environmental residues potentially pose a problem; yet little is known about buprofezin's kinetic and metabolic behaviors. In this study, a novel gram-positive strain, designated BF-5, isolated from aerobic activated sludge, was found to be capable of metabolizing buprofezin as its sole energy, carbon, and nitrogen source. Based on its physiological and biochemical characteristics, other aspects of its phenotype, and a phylogenetic analysis, strain BF-5 was identified as Bacillus sp. This study investigated the effect of culture conditions on bacterial growth and substrate degradation, such as pH, temperature, initial concentration, different nitrogen source, and additional nitrogen sources as co-substrates. The degradation rate parameters, qmax, Ks, Ki and Sm were determined to be 0.6918 h(-1), 105.4 mg L(-1), 210.5 mg L(-1), and 148.95 mg L(-1) respectively. The capture of unpublished potential metabolites by gas chromatography-mass spectrometry (GC-MS) analysis has led to the proposal of a novel degradation pathway. Taken together, our results clarify buprofezin's biodegradation pathway(s) and highlight the promising potential of strain BF-5 in bioremediation of buprofezin-contaminated environments. PMID:27208995

  16. Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp. strain BW001.

    PubMed

    Bai, Yaohui; Sun, Qinghua; Zhao, Cui; Wen, Donghui; Tang, Xiaoyan

    2008-11-01

    A bacterial strain using pyridine as sole carbon, nitrogen and energy source was isolated from the activated sludge of a coking wastewater treatment plant. By means of morphologic observation, physiological characteristics study and 16S rRNA gene sequence analysis, the strain was identified as the species of Paracoccus. The strain could degrade 2,614 mg l(-1) of pyridine completely within 49.5 h. Experiment designed to track the metabolic pathway showed that pyridine ring was cleaved between the C2 and N, then the mineralization of the carbonous intermediate products may comply with the early proposed pathway and the transformation of the nitrogen may proceed on a new pathway of simultaneous heterotrophic nitrification and aerobic denitrification. During the degradation, NH3-N occurred and increased along with the decrease of pyridine in the solution; but the total nitrogen decreased steadily and equaled to the quantity of NH3-N when pyridine was degraded completely. Adding glucose into the medium as the extra carbon source would expedite the biodegradation of pyridine and the transformation of the nitrogen. The fragments of nirS gene and nosZ gene were amplified which implied that the BW001 had the potential abilities to reduce NO2- to NO and/or N2O, and then to N2. PMID:18437507

  17. Ubiquitin-fusion degradation pathway: A new strategy for inducing CD8 cells specific for mycobacterial HSP65

    SciTech Connect

    Shen Jianying; Hisaeda, Hajime; Chou Bin; Yu Qingsheng; Tu Liping; Himeno, Kunisuke

    2008-01-25

    The ubiquitin-proteasome system (UPS) plays an indispensable role in inducing MHC class I-restricted CD8{sup +} T cells. In this study, we exploited UPS to induce CD8{sup +} T cells specific for mycobacterial HSP65 (mHSP65), one of the leading vaccine candidates against infection with Mycobacterium tuberculosis. A chimeric DNA termed pU-HSP65 encoding a fusion protein between murine ubiquitin and mHSP65 was constructed, and C57BL/6 (B6) mice were immunized with the DNA using gene gun bombardment. Mice immunized with the chimeric DNA acquired potent resistance against challenge with the syngeneic B16F1 melanoma cells transfected with the mHSP65 gene (HSP65/B16F1), compared with those immunized with DNA encoding only mHSP65. Splenocytes from the former group of mice showed a higher grade of cytotoxic activity against HSP65/B16F1 cells and contained a larger number of granzyme B- or IFN-{gamma}-producing CD8{sup +} T cells compared with those from the latter group of mice.

  18. Post-Translational Regulation of miRNA Pathway Components, AGO1 and HYL1, in Plants.

    PubMed

    Cho, Seok Keun; Ryu, Moon Young; Shah, Pratik; Poulsen, Christian Peter; Yang, Seong Wook

    2016-08-31

    Post-translational modifications (PTMs) of proteins are essential to increase the functional diversity of the proteome. By adding chemical groups to proteins, or degrading entire proteins by phosphorylation, glycosylation, ubiquitination, neddylation, acetylation, lipidation, and proteolysis, the complexity of the proteome increases, and this then influences most biological processes. Although small RNAs are crucial regulatory elements for gene expression in most eukaryotes, PTMs of small RNA microprocessor and RNA silencing components have not been extensively investigated in plants. To date, several studies have shown that the proteolytic regulation of AGOs is important for host-pathogen interactions. DRB4 is regulated by the ubiquitin-proteasome system, and the degradation of HYL1 is modulated by a de-etiolation repressor, COP1, and an unknown cytoplasmic protease. Here, we discuss current findings on the PTMs of microprocessor and RNA silencing components in plants. PMID:27440184

  19. Post-Translational Regulation of miRNA Pathway Components, AGO1 and HYL1, in Plants

    PubMed Central

    Cho, Seok Keun; Ryu, Moon Young; Shah, Pratik; Poulsen, Christian Peter; Yang, Seong Wook

    2016-01-01

    Post-translational modifications (PTMs) of proteins are essential to increase the functional diversity of the proteome. By adding chemical groups to proteins, or degrading entire proteins by phosphorylation, glycosylation, ubiquitination, neddylation, acetylation, lipidation, and proteolysis, the complexity of the proteome increases, and this then influences most biological processes. Although small RNAs are crucial regulatory elements for gene expression in most eukaryotes, PTMs of small RNA microprocessor and RNA silencing components have not been extensively investigated in plants. To date, several studies have shown that the proteolytic regulation of AGOs is important for host-pathogen interactions. DRB4 is regulated by the ubiquitin-proteasome system, and the degradation of HYL1 is modulated by a de-etiolation repressor, COP1, and an unknown cytoplasmic protease. Here, we discuss current findings on the PTMs of microprocessor and RNA silencing components in plants. PMID:27440184

  20. Enhanced degradation in soil of the herbicide EPTC and determination of its degradative pathway by an isolated soil microorganism

    SciTech Connect

    Ankumah, R.O.

    1988-01-01

    A series of experiments was conducted to examine the ability of Ohio soils to develop enhanced degradation of the herbicide EPTC (s-ethyl N,N-dipropyl carbamothiaote) and to determine its metabolism by an isolated soil microorganism. Three soils selected to obtain an range in pH, texture, and organic carbon were treated with EPTC for 4 consecutive applications (6 weeks between applications). EPTC concentrations as measured by gas chromatography, decreased 80% or more one week after the second application in all three soils. Metabolism of unlabelled and labelled EPTC by an isolated soil microbe was followed by GC/MS and TLC/LSC analysis, respectively. Rapid decrease in 14-C activity in the organic fraction corresponded with rapid {sup 14}CO{sub 2} evolution and transient increase in 14-C activity in the aqueous fraction. Four metabolites were observed in the TLC analysis. Two were identified as EPTC-sulfoxide and N-depropyl EPTC with N-depropyl EPTC being confirmed by GC/MS analysis. The availability of different pathways for EPTC metabolism by soil microbes after repeated applications to the soil results in its very rapid degradation and loss of efficacy.

  1. Comparative genomic analysis of nine Sphingobium strains: Insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways

    DOE PAGESBeta

    Verma, Helianthous; Kumar, Roshan; Oldach, Phoebe; Sangwan, Naseer; Khurana, Jitendra P.; Gilbert, Jack A.; Lal, Rup

    2014-11-23

    Background: Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6). Results: Efficient HCH degraders phylogeneticallymore » clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. In addition, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity. In conclusion, the bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their effects on degradation efficacy. Further, the diversity in the lin gene sequences and copy number, their

  2. Rhodococcus erythropolis DCL14 Contains a Novel Degradation Pathway for Limonene

    PubMed Central

    van der Werf, Mariët J.; Swarts, Henk J.; de Bont, Jan A. M.

    1999-01-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In

  3. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene.

    PubMed

    van der Werf, M J; Swarts, H J; de Bont, J A

    1999-05-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (-)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1, 2-monooxygenase activity, a cofactor-independent limonene-1, 2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S, 4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R, 4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate

  4. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  5. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway.

    PubMed

    Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien

    2015-10-27

    Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous in vitro studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the in situ monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX2 complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs. PMID:26331631

  6. Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways.

    PubMed

    Chen, Zhi; Fang, Jingyun; Fan, Chihhao; Shang, Chii

    2016-05-01

    N-Nitrosopyrrolidine (NPYR) is an emerging contaminant in drinking water and wastewater. The degradation kinetics and mechanisms of NPYR degradation by the O3/UV process were investigated and compared with those of UV direct photolysis and ozonation. A synergistic effect of ozone and UV was observed in the degradation of NPYR due to the accelerated production of OH• by ozone photolysis. This effect was more pronounced at higher ozone dosages. The second-order rate constants of NPYR reacting with OH• and ozone was determined to be 1.38 (± 0.05) × 10(9) M(-1) s(-1) and 0.31 (± 0.02) M(-1) s(-1), respectively. The quantum yield by direct UV photolysis was 0.3 (± 0.01). An empirical model using Rct (the ratio of the exposure of OH• to that of ozone) was established for NPYR degradation in treated drinking water and showed that the contributions of direct UV photolysis and OH• oxidation on NPYR degradation were both significant. As the reaction proceeded, the contribution by OH• became less important due to the exhausting of ozone. Nitrate was the major product in the O3/UV process by two possible pathways. One is through the cleavage of nitroso group to form NO• followed by hydrolysis, and the other is the oxidation of the intermediates of amines by ozonation. PMID:26733013

  7. Metabolic pathway for degradation of 2-chloro-4-aminophenol by Arthrobacter sp. SPG.

    PubMed

    Arora, Pankaj Kumar; Mohanta, Tapan Kumar; Srivastava, Alok; Bae, Hanhong; Singh, Vijay Pal

    2014-01-01

    A degradation pathway of 2-chloro-4-aminophenol (2C4AP) was studied in an Arthrobacter sp. SPG that utilized 2C4AP as its sole source of carbon and energy. The 2C4AP degradation was initiated by a 2C4AP-deaminase that catalyzed the conversion of 2C4AP into chlorohydroquinone (CHQ) with removal of ammonium ion. In the next step, a CHQ-dehalogenase dehalogenated CHQ to hydroquinone (HQ) that cleaved into γ-hydroxymuconic semialdehyde by a HQ-dioxygenase. The 2C4AP degradation was also investigated in sterile and non-sterile soil microcosms using strain SPG. The results show that the SPG cells degraded 2C4AP more rapidly in sterile soil than non-sterile soil. Our studies showed that strain SPG may be used for bioremediation of 2C4AP-contaminated sites. This is the first report of the 2C4AP degradation by any bacteria. PMID:25427856

  8. Effects of reforesting degraded grassland on hydrological flow pathways on Leyte, the Philippines

    NASA Astrophysics Data System (ADS)

    van Meerveld, Ilja; Zhang, Jun; Bruijnzeel, Sampurno

    2014-05-01

    Reforestation of degraded land in the tropics is promoted for a wide range of expected benefits, including carbon sequestration and streamflow regulation. However, how reforestation of degraded land affects runoff generation mechanisms and catchment water yield is still poorly understood as most experimental work pertains to non-degraded terrain. We set out to study the differences in hydrological functioning of a small degraded grassland catchment and a similar catchment that was reforested 15 years ago. Both catchments are located near Tacloban, Leyte, the Philippines. Stream stage, EC and temperature are measured continuously since June 2013. Precipitation, soil moisture content, and groundwater levels are monitored as well. Samples are taken from streamflow, precipitation, groundwater, and soil water prior to and during rainfall events for geochemical and stable isotope analysis to elucidate source contributions to storm runoff. Streamflow and event water contributions increase rapidly during almost every rainfall event in the grassland. In the reforested catchment, event water contributions to streamflow are much smaller and only increase during large events. These tracer results suggest that overland flow occurs much less frequently and is much less widespread in the reforested catchment compared to the grassland catchment. Our results thus indicate that the dominant flow pathways have changed as a result of reforestation and suggest that reforestation can largely restore the hydrological functioning of degraded sites if the forest is allowed to develop over a sufficiently long period without subsequent disturbance.

  9. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus.

    PubMed

    Chen, Mei; Huang, Xuenian; Zhong, Chengwei; Li, Jianjun; Lu, Xuefeng

    2016-09-01

    Itaconic acid, one of the most promising and flexible bio-based chemicals, is mainly produced by Aspergillus terreus. Previous studies to improve itaconic acid production in A. terreus through metabolic engineering were mainly focused on its biosynthesis pathway, while the itaconic acid-degrading pathway has largely been ignored. In this study, we used transcriptomic, proteomic, bioinformatic, and in vitro enzymatic analyses to identify three key enzymes, itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA), and citramalyl-CoA lyase (CclA), that are involved in the catabolic pathway of itaconic acid in A. terreus. In the itaconic acid catabolic pathway in A. terreus, itaconic acid is first converted by IctA into itaconyl-CoA with succinyl-CoA as the CoA donor, and then itaconyl-CoA is hydrated into citramalyl-CoA by IchA. Finally, citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by CclA. Moreover, IctA can also catalyze the reaction between citramalyl-CoA and succinate to generate succinyl-CoA and citramalate. These results, for the first time, identify the three key enzymes, IctA, IchA, and CclA, involved in the itaconic acid degrading pathway in itaconic acid producing A. terreus. The results will facilitate the improvement of itaconic acid production by metabolically engineering the catabolic pathway of itaconic acid in A. terreus. PMID:27102125

  10. A Co-Translational Ubiquitination Pathway For Quality Control of Misfolded Proteins

    PubMed Central

    Wang, Feng; Durfee, Larissa A.; Huibregtse, Jon M.

    2013-01-01

    Previous studies have indicated that 6–30% of all newly synthesized proteins are rapidly degraded by the ubiquitin-proteasome system, however the relationship of ubiquitination to translation for these proteins has been unclear. We report that co-translational ubiquitination (CTU) is a robust process, with ~12–15% of nascent polypeptides being ubiquitinated in human cells. CTU products contained primarily K48-linked polyubiquitin chains, consistent with a proteasomal targeting function. While nascent chains have been shown previously to be ubiquitinated within stalled complexes (CTUS), the majority of nascent chain ubiquitination occurred within active translation complexes (CTUA). CTUA was increased in response to agents that induce protein misfolding, while CTUS was increased in response to agents that lead to translational errors or stalling. These results indicate that ubiquitination of nascent polypeptides occurs in two contexts, and define CTUA as a component of a quality control system that marks proteins for destruction while they are being synthesized. PMID:23583076

  11. Anoxic Androgen Degradation by the Denitrifying Bacterium Sterolibacterium denitrificans via the 2,3-seco Pathway

    PubMed Central

    Wang, Po-Hsiang; Yu, Chang-Ping; Lee, Tzong-Huei; Lin, Ching-Wen; Ismail, Wael; Wey, Shiaw-Pyng; Kuo, An-Ti

    2014-01-01

    The biodegradation of steroids is a crucial biochemical process mediated exclusively by bacteria. So far, information concerning the anoxic catabolic pathways of androgens is largely unknown, which has prevented many environmental investigations. In this work, we show that Sterolibacterium denitrificans DSMZ 13999 can anaerobically mineralize testosterone and some C19 androgens. By using a 13C-metabolomics approach and monitoring the sequential appearance of the intermediates, we demonstrated that S. denitrificans uses the 2,3-seco pathway to degrade testosterone under anoxic conditions. Furthermore, based on the identification of a C17 intermediate, we propose that the A-ring cleavage may be followed by the removal of a C2 side chain at C-5 of 17-hydroxy-1-oxo-2,3-seco-androstan-3-oic acid (the A-ring cleavage product) via retro-aldol reaction. The androgenic activities of the bacterial culture and the identified intermediates were assessed using the lacZ-based yeast androgen assay. The androgenic activity in the testosterone-grown S. denitrificans culture decreased significantly over time, indicating its ability to eliminate androgens. The A-ring cleavage intermediate (≤500 μM) did not exhibit androgenic activity, whereas the sterane-containing intermediates did. So far, only two androgen-degrading anaerobes (Sterolibacterium denitrificans DSMZ 13999 [a betaproteobacterium] and Steroidobacter denitrificans DSMZ 18526 [a gammaproteobacterium]) have been isolated and characterized, and both of them use the 2,3-seco pathway to anaerobically degrade androgens. The key intermediate 2,3-seco-androstan-3-oic acid can be used as a signature intermediate for culture-independent environmental investigations of anaerobic degradation of C19 androgens. PMID:24657867

  12. Autophagic Degradation of the 26S Proteasome Is Mediated by the Dual ATG8/Ubiquitin Receptor RPN10 in Arabidopsis.

    PubMed

    Marshall, Richard S; Li, Faqiang; Gemperline, David C; Book, Adam J; Vierstra, Richard D

    2015-06-18

    Autophagic turnover of intracellular constituents is critical for cellular housekeeping, nutrient recycling, and various aspects of growth and development in eukaryotes. Here we show that autophagy impacts the other major degradative route involving the ubiquitin-proteasome system by eliminating 26S proteasomes, a process we termed proteaphagy. Using Arabidopsis proteasomes tagged with GFP, we observed their deposition into vacuoles via a route requiring components of the autophagy machinery. This transport can be initiated separately by nitrogen starvation and chemical or genetic inhibition of the proteasome, implying distinct induction mechanisms. Proteasome inhibition stimulates comprehensive ubiquitylation of the complex, with the ensuing proteaphagy requiring the proteasome subunit RPN10, which can simultaneously bind both ATG8 and ubiquitin. Collectively, we propose that Arabidopsis RPN10 acts as a selective autophagy receptor that targets inactive 26S proteasomes by concurrent interactions with ubiquitylated proteasome subunits/targets and lipidated ATG8 lining the enveloping autophagic membranes. PMID:26004230

  13. The proteasome and the degradation of oxidized proteins: Part III—Redox regulation of the proteasomal system

    PubMed Central

    Höhn, Tobias Jung Annika; Grune, Tilman

    2014-01-01

    Here, we review shortly the current knowledge on the regulation of the proteasomal system during and after oxidative stress. After addressing the components of the proteasomal system and the degradation of oxidatively damaged proteins in part I and II of this series, we address here which changes in activity undergo the proteasome and the ubiquitin-proteasomal system itself under oxidative conditions. While several components of the proteasomal system undergo direct oxidative modification, a number of redox-regulated events are modulating the proteasomal activity in a way it can address the major tasks in an oxidative stress situation: the removal of oxidized proteins and the adaptation of the cellular metabolism to the stress situation. PMID:24563857

  14. Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus.

    PubMed

    Schmid, Georg; René, Sandra Bosch; Boll, Matthias

    2015-09-01

    The Fe(III)-respiring Ferroglobus placidus is the only known archaeon and hyperthermophile for which a complete degradation of aromatic substrates to CO2 has been reported. Recent genome and transcriptome analyses proposed a benzoyl-coenzyme A (CoA) degradation pathway similar to that found in the phototrophic Rhodopseudomonas palustris, which involves a cyclohex-1-ene-1-carboxyl-CoA (1-enoyl-CoA) forming, ATP-dependent key enzyme benzoyl-CoA reductase (BCR). In this work, we demonstrate, by first in vitro studies, that benzoyl-CoA is ATP-dependently reduced by two electrons to cyclohexa-1,5-dienoyl-CoA (1,5-dienoyl-CoA), which is further degraded by hydration to 6-hydroxycyclohex-1-ene-1-carboxyl-CoA (6-OH-1-enoyl-CoA); upon addition of NAD(+) , the latter was subsequently converted to β-oxidation intermediates. The four candidate genes of BCR were heterologously expressed, and the enriched, oxygen-sensitive enzyme catalysed the two-electron reduction of benzoyl-CoA to 1,5-dienoyl-CoA. A gene previously assigned to a 2,3-didehydropimeloyl-CoA hydratase was heterologously expressed and shown to act as a typical 1,5-dienoyl-CoA hydratase that does not accept 1-enoyl-CoA. A gene previously assigned to a 1-enoyl-CoA hydratase was heterologously expressed and identified to code for a bifunctional crotonase/3-OH-butyryl-CoA dehydrogenase. In summary, the results consistently provide biochemical evidence that F. placidus and probably other archaea predominantly degrade aromatics via the Thauera/Azoarcus type and not or only to a minor extent via the predicted R. palustris-type benzoyl-CoA degradation pathway. PMID:25630364

  15. Involvement of Two Latex-Clearing Proteins during Rubber Degradation and Insights into the Subsequent Degradation Pathway Revealed by the Genome Sequence of Gordonia polyisoprenivorans Strain VH2

    PubMed Central

    Hiessl, Sebastian; Schuldes, Jörg; Thürmer, Andrea; Halbsguth, Tobias; Bröker, Daniel; Angelov, Angel; Liebl, Wolfgang; Daniel, Rolf

    2012-01-01

    The increasing production of synthetic and natural poly(cis-1,4-isoprene) rubber leads to huge challenges in waste management. Only a few bacteria are known to degrade rubber, and little is known about the mechanism of microbial rubber degradation. The genome of Gordonia polyisoprenivorans strain VH2, which is one of the most effective rubber-degrading bacteria, was sequenced and annotated to elucidate the degradation pathway and other features of this actinomycete. The genome consists of a circular chromosome of 5,669,805 bp and a circular plasmid of 174,494 bp with average GC contents of 67.0% and 65.7%, respectively. It contains 5,110 putative protein-coding sequences, including many candidate genes responsible for rubber degradation and other biotechnically relevant pathways. Furthermore, we detected two homologues of a latex-clearing protein, which is supposed to be a key enzyme in rubber degradation. The deletion of these two genes for the first time revealed clear evidence that latex-clearing protein is essential for the microbial utilization of rubber. Based on the genome sequence, we predict a pathway for the microbial degradation of rubber which is supported by previous and current data on transposon mutagenesis, deletion mutants, applied comparative genomics, and literature search. PMID:22327575

  16. Regulation of Arabidopsis MAPKKK18 by ABI1 and SnRK2, components of the ABA signaling pathway.

    PubMed

    Tajdel, Małgorzata; Mituła, Filip; Ludwików, Agnieszka

    2016-04-01

    The plant hormone abscisic acid (ABA), a key regulator in many crucial developmental and physiological processes, recruits diverse components into precisely regulated signaling network. We recently discovered that MAPKKK18, an ABA-activated kinase, is regulated by the protein phosphatase type 2C (PP2C) ABI1 and the kinase SnRK2.6, both components of the ABA core signaling pathway. ABI1 acts to inhibit MAPKKK18 kinase activity, but also affects MAPKKK18 protein turnover via the ubiquitin-proteasome pathway. SnRK2.6 kinase also seems to be important for the regulation of MAPKKK18 function. In this review we summarize the mechanisms that are exclusively involved in MAPKKK18 kinase regulation and that ensure specificity in its activation. PMID:26852793

  17. Blue Light Induces a Distinct Starch Degradation Pathway in Guard Cells for Stomatal Opening.

    PubMed

    Horrer, Daniel; Flütsch, Sabrina; Pazmino, Diana; Matthews, Jack S A; Thalmann, Matthias; Nigro, Arianna; Leonhardt, Nathalie; Lawson, Tracy; Santelia, Diana

    2016-02-01

    Stomatal pores form a crucial interface between the leaf mesophyll and the atmosphere, controlling water and carbon balance in plants [1]. Major advances have been made in understanding the regulatory networks and ion fluxes in the guard cells surrounding the stomatal pore [2]. However, our knowledge on the role of carbon metabolism in these cells is still fragmentary [3-5]. In particular, the contribution of starch in stomatal opening remains elusive [6]. Here, we used Arabidopsis thaliana as a model plant to provide the first quantitative analysis of starch turnover in guard cells of intact leaves during the diurnal cycle. Starch is present in guard cells at the end of night, unlike in the rest of the leaf, but is rapidly degraded within 30 min of light. This process is critical for the rapidity of stomatal opening and biomass production. We exploited Arabidopsis molecular genetics to define the mechanism and regulation of guard cell starch metabolism, showing it to be mediated by a previously uncharacterized pathway. This involves the synergistic action of β-amylase 1 (BAM1) and α-amylase 3 (AMY3)-enzymes that are normally not required for nighttime starch degradation in other leaf tissues. This pathway is under the control of the phototropin-dependent blue-light signaling cascade and correlated with the activity of the plasma membrane H(+)-ATPase. Our results show that guard cell starch degradation has an important role in plant growth by driving stomatal responses to light. PMID:26774787

  18. Unraveling the specific regulation of the central pathway for anaerobic degradation of 3-methylbenzoate.

    PubMed

    Juárez, Javier F; Liu, Huixiang; Zamarro, María T; McMahon, Stephen; Liu, Huanting; Naismith, James H; Eberlein, Christian; Boll, Matthias; Carmona, Manuel; Díaz, Eduardo

    2015-05-01

    The mbd cluster encodes the anaerobic degradation of 3-methylbenzoate in the β-proteobacterium Azoarcus sp. CIB. The specific transcriptional regulation circuit that controls the expression of the mbd genes was investigated. The PO, PB 1, and P3 R promoters responsible for the expression of the mbd genes, their cognate MbdR transcriptional repressor, as well as the MbdR operator regions (ATACN10GTAT) have been characterized. The three-dimensional structure of MbdR has been solved revealing a conformation similar to that of other TetR family transcriptional regulators. The first intermediate of the catabolic pathway, i.e. 3-methylbenzoyl-CoA, was shown to act as the inducer molecule. An additional MbdR-dependent promoter, PA, which contributes to the expression of the CoA ligase that activates 3-methylbenzoate to 3-methylbenzoyl-CoA, was shown to be necessary for an efficient induction of the mbd genes. Our results suggest that the mbd cluster recruited a regulatory system based on the MbdR regulator and its target promoters to evolve a distinct central catabolic pathway that is only expressed for the anaerobic degradation of aromatic compounds that generate 3-methylbenzoyl-CoA as the central metabolite. All these results highlight the importance of the regulatory systems in the evolution and adaptation of bacteria to the anaerobic degradation of aromatic compounds. PMID:25795774

  19. Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate.

    PubMed Central

    Oltmanns, R H; Müller, R; Otto, M K; Lingens, F

    1989-01-01

    Six bacterial strains able to use 4-fluorobenzoic acid as their sole source of carbon and energy were isolated by selective enrichment from various water and soil samples from the Stuttgart area. According to their responses in biochemical and morphological tests, the organisms were assigned to the genera Alcaligenes, Pseudomonas, and Aureobacterium. To elucidate the degradation pathway of 4-fluorobenzoate, metabolic intermediates were identified. Five gram-negative isolates degraded this substrate via 4-fluorocatechol, as described in previous studies. In growth experiments, these strains excreted 50 to 90% of the fluoride from fluorobenzoate. Alcaligenes sp. strains RHO21 and RHO22 used all three isomers of monofluorobenzoate. Alcaligenes sp. strain RHO22 also grew on 4-chlorobenzoate. Aureobacterium sp. strain RHO25 transiently excreted 4-hydroxybenzoate into the culture medium during growth on 4-fluorobenzoate, and stoichiometric amounts of fluoride were released. In cell extracts from this strain, the enzymes for the conversion of 4-fluorobenzoate, 4-hydroxybenzoate, and 3,4-dihydroxybenzoate could be detected. All these enzymes were inducible by 4-fluorobenzoate. These data suggest a new pathway for the degradation of 4-fluorobenzoate by Aureobacterium sp. strain RHO25 via 4-hydroxybenzoate and 3,4-dihydroxybenzoate. PMID:2604392

  20. Unraveling the Specific Regulation of the Central Pathway for Anaerobic Degradation of 3-Methylbenzoate*

    PubMed Central

    Juárez, Javier F.; Liu, Huixiang; Zamarro, María T.; McMahon, Stephen; Liu, Huanting; Naismith, James H.; Eberlein, Christian; Boll, Matthias; Carmona, Manuel; Díaz, Eduardo

    2015-01-01

    The mbd cluster encodes the anaerobic degradation of 3-methylbenzoate in the β-proteobacterium Azoarcus sp. CIB. The specific transcriptional regulation circuit that controls the expression of the mbd genes was investigated. The PO, PB1, and P3R promoters responsible for the expression of the mbd genes, their cognate MbdR transcriptional repressor, as well as the MbdR operator regions (ATACN10GTAT) have been characterized. The three-dimensional structure of MbdR has been solved revealing a conformation similar to that of other TetR family transcriptional regulators. The first intermediate of the catabolic pathway, i.e. 3-methylbenzoyl-CoA, was shown to act as the inducer molecule. An additional MbdR-dependent promoter, PA, which contributes to the expression of the CoA ligase that activates 3-methylbenzoate to 3-methylbenzoyl-CoA, was shown to be necessary for an efficient induction of the mbd genes. Our results suggest that the mbd cluster recruited a regulatory system based on the MbdR regulator and its target promoters to evolve a distinct central catabolic pathway that is only expressed for the anaerobic degradation of aromatic compounds that generate 3-methylbenzoyl-CoA as the central metabolite. All these results highlight the importance of the regulatory systems in the evolution and adaptation of bacteria to the anaerobic degradation of aromatic compounds. PMID:25795774

  1. Formation and Operation of the Histidine-degrading Pathway in Pseudomonas aeruginosa

    PubMed Central

    Lessie, Thomas G.; Neidhardt, Frederick C.

    1967-01-01

    Histidine ammonia lyase (histidase), urocanase, and the capacity to degrade formiminoglutamate, which are respectively involved in steps I, II, and IV in the catabolism of histidine, were induced during growth of Pseudomonas aeruginosa on histidine or urocanate, and were formed gratuitously in the presence of dihydro-urocanate. Urocanase-deficient bacteria formed enzymes I and IV constitutively; presumably they accumulate enough urocanate from the breakdown of endogenous histidine to induce formation of the pathway. Urocanate did not satisfy the histidine requirement of a histidine auxotroph, indicating that it probably acted as an inducer without being converted to histidine. The results imply that urocanate is the physiological inducer of the histidine-degrading enzymes in P. aeruginosa. Enzymes of the pathway were extremely sensitive to catabolite repression; enzymes I and II, but not IV, were coordinately repressed. Our results suggest a specific involvement of nitrogenous metabolites in the repression. Mutant bacteria with altered sensitivity to repression were obtained. The molecular weight of partially purified histidase was estimated at 210,000 by sucrose gradient centrifugation. Its Km for histidine was 2 × 10−3 m in tris(hydroxymethyl)aminomethane chloride buffer. Sigmoid saturation curves were obtained in pyrophosphate buffer, indicating that the enzyme might have multiple binding sites for histidine. Under certain conditions, histidase appeared to be partially inactive in vivo. These findings suggest that some sort of allosteric interaction involving histidase may play a role in governing the operation of the pathway of histidine catabolism. PMID:4290562

  2. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    SciTech Connect

    Chou, Bin; Hiromatsu, Kenji; Hisaeda, Hajime; Duan, Xuefeng; Imai, Takashi; Murata, Shigeo; Tanaka, Keiji; Himeno, Kunisuke

    2010-02-12

    Cytotoxic CD8{sup +} T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8{sup +} T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8{sup +} T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4{sup +} T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8{sup +} T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.

  3. Organelle interactions and possible degradation pathways visualized in high-pressure frozen algal cells.

    PubMed

    Aichinger, N; Lütz-Meindl, U

    2005-08-01

    Summary Organelle interactions, although essential for both anabolic and catabolic pathways in plant cells have not been examined in detail so far. In the present study the structure of different organelle-organelle, organelle-vesicle and organelle-membrane interactions were investigated in growing and nongrowing cells of the green alga Micrasterias denticulata by use of high pressure freeze fixation and energy filtering transmission electron microscopy. It became clear that contacts between mitochondria always occur by formation of a cone-shaped protuberance of one of the mitochondria which penetrates into its fusion partner. In the same way, structural interactions between mitochondria and mucilage vesicles and between microbodies and mucilage vesicles are achieved. Lytic compartments contact mitochondria or mucilage vesicles again by forming protuberances and by extending their contents into the respective compartment. Detached portions of mitochondria are found inside lytic compartments as a consequence of such interactions. Mitochondria found in contact with the plasma membrane reveal structural disintegration. Our study shows that interactions of organelles and vesicles are frequent events in Micrasterias cells of different ages. The interactive contacts between lytic compartments and organelles or vesicles suggest a degradation pathway different from autophagy processes described in the literature. Both the interactions between vesicles and organelles and the degradation pathways occur independently from cytoskeleton function as demonstrated by use of cytochalasin D and the microtubule inhibitor amiprophos-methyl. PMID:16159344

  4. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan.

    PubMed Central

    Kullman, S W; Matsumura, F

    1996-01-01

    Recent studies have shown that cultures of white rot fungi not favoring the production of lignin and manganese peroxidases are effective in degrading certain xenobiotics. In this study we have used endosulfan as a model xenobiotic to assess the enzymatic mechanisms of pesticide metabolism under ligninolytic (nutrient-deficient) and nonligninolytic (nutrient-rich) culture conditions. Rapid metabolism of this chlorinated pesticide occurred under each nutrient condition tested. However, the extent of degradation and the nature of the metabolic products differed for nutrient-deficient and nutrient-rich media. The pathways for endosulfan metabolism were characterized by analysis of the fungal metabolites produced. The major endosulfan metabolites were identified by gas chromatography-electron capture detection and gas chromatography-mass spectrometry as endosulfan sulfate, endosulfan diol, endosulfan hydroxyether, and a unknown metabolite tentatively identified as endosulfan dialdehyde. The nature of the metabolites formed indicates that this organism utilizes both oxidative and hydrolytic pathways for metabolism of this pesticide. Piperonyl butoxide, a known cytochrome P-450 inhibitor, significantly inhibited the oxidation of endosulfan to endosulfan sulfate and enhanced hydrolysis of endosulfan to endosulfan diol. We suggest that the metabolism of endosulfan is mediated by two divergent pathways, one hydrolytic and the other oxidative. Judging by the inactivity of extracellular fluid and partially purified lignin peroxidase in metabolizing endosulfan, we conclude that metabolism of this compound does not involve the action of extracellular peroxidases. PMID:8593059

  5. Sequestration of a highly reactive intermediate in an evolving pathway for degradation of pentachlorophenol

    PubMed Central

    Yadid, Itamar; Rudolph, Johannes; Hlouchova, Klara; Copley, Shelley D.

    2013-01-01

    Microbes in contaminated environments often evolve new metabolic pathways for detoxification or degradation of pollutants. In some cases, intermediates in newly evolved pathways are more toxic than the initial compound. The initial step in the degradation of pentachlorophenol by Sphingobium chlorophenolicum generates a particularly reactive intermediate; tetrachlorobenzoquinone (TCBQ) is a potent alkylating agent that reacts with cellular thiols at a diffusion-controlled rate. TCBQ reductase (PcpD), an FMN- and NADH-dependent reductase, catalyzes the reduction of TCBQ to tetrachlorohydroquinone. In the presence of PcpD, TCBQ formed by pentachlorophenol hydroxylase (PcpB) is sequestered until it is reduced to the less toxic tetrachlorohydroquinone, protecting the bacterium from the toxic effects of TCBQ and maintaining flux through the pathway. The toxicity of TCBQ may have exerted selective pressure to maintain slow turnover of PcpB (0.02 s−1) so that a transient interaction between PcpB and PcpD can occur before TCBQ is released from the active site of PcpB. PMID:23676275

  6. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    SciTech Connect

    Cho, Eun-Ah; Juhnn, Yong-Sung

    2012-06-01

    these results, we conclude that the cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting the ubiquitin-proteasome dependent degradation of XRCC1 in an Epac-dependent pathway in lung cancer cells.

  7. Ozonation of chlortetracycline in the aqueous phase: Degradation intermediates and pathway confirmed by NMR.

    PubMed

    Khan, M Hammad; Jung, Jin-Young

    2016-06-01

    Chlortetracycline (CTC) degradation mechanism in aqueous phase ozonation was evaluated for degradation mechanism and its correlation with the biodegradability and mineralization. CTC was removed within 8 and 4 min of ozonation at pH 2.2 and 7.0, respectively. At pH 2.2, HPLC-triple quadrupole mass spectrometry (MS) detected 30 products. The structures for some of these products were proposed on the basis of ozonation chemistry, CTC structure and MS data; these structures were then confirmed by nuclear magnetic resonance (NMR) spectra. Double bond cleavages, dimethyl amino group oxidation, opening and removal of the aromatic ring and dechlorination, mostly direct ozonation reactions, gave products with molecular weights (m.w.) 494, 510, 524, 495 and 413, respectively. Subsequent degradations gave products with m.w. 449, 465, 463 and 415. These products were arranged into a degradation pathway. At pH 7.0, the rate of reaction was increased, though the detected products were similar. Direct ozonation at pH 2.2 increased the biodegradability by altering the structures of CTC and its products. Nevertheless, direct ozonation alone remained insufficient for the mineralization, which was efficient at pH 7.0 due to the production of free radicals. PMID:26963235

  8. Optimization of polyphosphate degradation and phosphate secretion using hybrid metabolic pathways and engineered host strains

    SciTech Connect

    Dien, S.J. van; Keasling, J.D.

    1998-09-20

    Polyphosphate degradation and phosphate secretion were optimized in Escherichia coli strains over-expressing the E. coli polyphosphate kinase gene (ppk) and either the E. coli polyphosphatase gene (ppx) or the Saccharomyces cerevisiae polyphosphatase gene (scPPX1) from different inducible promoters on medium- and high-copy plasmids. The use of a host strain without functional ppk or ppx genes on the chromosome yielded the highest levels of polyphosphate, as well as the fastest degradation of polyphosphate when the gene for polyphosphatase was induced. The introduction of a hybrid metabolic pathway consisting of the E. coli ppk gene and the S cerevisiae polyphosphatase gene resulted in lower polyphosphate concentrations than when using both the ppk and ppx genes from E. coli, and did not significantly improve the degradation rate. It was also found that the rate of polyphosphate degradation was highest when ppx was induced late in growth, most likely due to the high intracellular polyphosphate concentration. The phosphate released from polyphosphate allowed the growth of phosphate-starved cells; excess phosphate was secreted into the medium, leading to a down-regulation of the phosphate-starvation (Pho) response. The production of alkaline phosphatase, an indicator of the Pho response, can be precisely controlled by manipulating the degree of ppx induction.

  9. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway.

    PubMed

    Malecki, Michal; Viegas, Sandra C; Carneiro, Tiago; Golik, Pawel; Dressaire, Clémentine; Ferreira, Miguel G; Arraiano, Cecília M

    2013-07-01

    The final step of cytoplasmic mRNA degradation proceeds in either a 5'-3' direction catalysed by Xrn1 or in a 3'-5' direction catalysed by the exosome. Dis3/Rrp44, an RNase II family protein, is the catalytic subunit of the exosome. In humans, there are three paralogues of this enzyme: DIS3, DIS3L, and DIS3L2. In this work, we identified a novel Schizosaccharomyces pombe exonuclease belonging to the conserved family of human DIS3L2 and plant SOV. Dis3L2 does not interact with the exosome components and localizes in the cytoplasm and in cytoplasmic foci, which are docked to P-bodies. Deletion of dis3l2(+) is synthetically lethal with xrn1Δ, while deletion of dis3l2(+) in an lsm1Δ background results in the accumulation of transcripts and slower mRNA degradation rates. Accumulated transcripts show enhanced uridylation and in vitro Dis3L2 displays a preference for uridylated substrates. Altogether, our results suggest that in S. pombe, and possibly in most other eukaryotes, Dis3L2 is an important factor in mRNA degradation. Therefore, this novel 3'-5' RNA decay pathway represents an alternative to degradation by Xrn1 and the exosome. PMID:23503588

  10. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes.

    PubMed

    Li, Xiao-Yan; Cui, Yu-Hong; Feng, Yu-Jie; Xie, Zhao-Ming; Gu, Ji-Dong

    2005-05-01

    Laboratory experiments were carried out on the kinetics and pathways of the electrochemical (EC) degradation of phenol at three different types of anodes, Ti/SnO2-Sb, Ti/RuO2, and Pt. Although phenol was oxidised by all of the anodes at a current density of 20 mA/cm2 or a cell voltage of 4.6 V, there was a considerable difference between the three anode types in the effectiveness and performance of EC organic degradation. Phenol was readily mineralized at the Ti/SnO2-Sb anode, but its degradation was much slower at the Ti/RuO2 and Pt anodes. The analytical results of high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (GC/MS) indicated that the intermediate products of EC phenol degradation, including benzoquinone and organic acids, were subsequently oxidised rapidly by the Ti/SnO2-Sb anode, but accumulated in the cells of Ti/RuO2 and Pt. There was also a formation of dark-coloured polymeric compounds and precipitates in the solutions electrolyzed by the Ti/RuO2 and Pt anodes, which was not observed for the Ti/SnO2-Sb cells. It is argued that anodic property not only affects the reaction kinetics of various steps of EC organic oxidation, but also alters the pathway of phenol electrolysis. Favourable surface treatment, such as the SnO2-Sb coating, provides the anode with an apparent catalytic function for rapid organic oxidation that is probably brought about by hydroxyl radicals generated from anodic water electrolysis. PMID:15882890

  11. Degradation of 2,4 dichlorobiphenyl via meta-cleavage pathway by Pseudomonas spp. consortium.

    PubMed

    Jayanna, Shobha K; Gayathri, Devaraja

    2015-06-01

    Two bacterial isolates (Pseudomonas sp. GSa and Pseudomonas sp. GSb) were in close association able to assimilate 2,4 dichlorobiphenyl (2,4 CB), a PCB congener. GC-MS analysis of spent culture medium of the consortium with 2,4 CB as substrate showed 90 % degradation (according to Electron capture detection values) with catechol as one of the important intermediate compounds through meta-cleavage pathway. Further, ability of the consortium to utilise PCB congeners, Methoxychlor, Aroclor 1016, Chlorobenzoic acids and Monoaromatic compounds indicated that the consortium of GSa and GSb would be an ideal candidate for in situ bioremediation of PCB. PMID:25800378

  12. An okadaic acid-sensitive phosphatase negatively controls the cyclin degradation pathway in amphibian eggs.

    PubMed Central

    Lorca, T; Fesquet, D; Zindy, F; Le Bouffant, F; Cerruti, M; Brechot, C; Devauchelle, G; Dorée, M

    1991-01-01

    Inhibition of okadaic acid-sensitive phosphatases released the cyclin degradation pathway from its inhibited state in extracts prepared from unfertilized Xenopus eggs arrested at the second meiotic metaphase. It also switched on cyclin protease activity in a permanent fashion in interphase extracts prepared from activated eggs. Even after cdc2 kinase inactivation, microinjection of okadaic acid-treated interphase extracts pushed G2-arrested recipient oocytes into the M phase, suggesting that the phosphatase inhibitor stabilizes the activity of an unidentified factor which shares in common with cdc2 kinase the maturation-promoting factor activity. Images PMID:1846666

  13. 4-Phenylbutyric acid reduces mutant-TGFBIp levels and ER stress through activation of ERAD pathway in corneal fibroblasts of granular corneal dystrophy type 2.

    PubMed

    Choi, Seung-Il; Lee, Eunhee; Jeong, Jang Bin; Akuzum, Begum; Maeng, Yong-Sun; Kim, Tae-Im; Kim, Eung Kweon

    2016-09-01

    Granular corneal dystrophy type 2 (GCD2) is caused by a point mutation (R124H) in the transforming growth factor β-induced (TGFBI) gene. In GCD2 corneal fibroblasts, secretion of the accumulated mutant TGFBI-encoded protein (TGFBIp) is delayed via the endoplasmic reticulum (ER)/Golgi-dependent secretory pathway. However, ER stress as the pathogenic mechanism underlying GCD2 has not been fully characterized. The aim of this study was to confirm whether ER stress is linked to GCD2 pathogenesis and whether the chemical chaperone, 4-phenylbutyric acid (4-PBA), could be exploited as a therapy for GCD2. We found that the ER chaperone binding immunoglobulin protein (BiP) and the protein disulfide isomerase (PDI) were elevated in GCD2. Western bolt analysis also showed a significant increase in both the protein levels and the phosphorylation of the key ER stress kinases, inositol-requiring enzyme 1α (IRE1α) and double stranded RNA activated protein kinase (PKR)-like ER kinase, as well as in levels of their downstream targets, X box-binding protein 1 (XBP1) and activating transcription factor 4, respectively, in GCD2 corneal fibroblasts. GCD2 cells were found to be more susceptible to ER stress-induced cell death than were wild-type corneal fibroblasts. Treatment with 4-PBA considerably reduced the levels of BiP, IRE1α, and XBP1 in GCD2 cells; notably, 4-PBA treatment significantly reduced the levels of TGFBIp without change in TGFBI mRNA levels. In addition, TGFBIp levels were significantly reduced under ER stress and this reduction was considerably suppressed by the ubiquitin proteasome inhibitor MG132, indicating TGFBIp degradation via the ER-associated degradation pathway. Treatment with 4-PBA not only protected against the GCD2 cell death induced by ER stress but also significantly suppressed the MG132-mediated increase in TGFBIp levels under ER stress. Together, these results suggest that ER stress might comprise an important factor in GCD2 pathophysiology and

  14. Methyl-mercury degradation pathways: A comparison among three mercury impacted ecosystems

    USGS Publications Warehouse

    Marvin-DiPasquale, M.; Agee, J.; Mcgowan, C.; Oremland, R.S.; Thomas, M.; Krabbenhoft, D.; Gilmour, C.C.

    2000-01-01

    We examined microbial methylmercury (MeHg) degradation in sediment of the Florida Everglades, Carson River (NV), and San Carlos Creek (CA), three freshwater environments that differ in the extent and type of mercury contamination and sediment biogeochemistry. Degradation rate constant (k(deg)) values increased with total mercury (Hg(t)) contamination both among and within ecosystems. The highest k(deg)'s (2.8-5.8 d-1) were observed in San Carlos Creek, at acid mine drainage impacted sites immediately downstream of the former New Idria mercury mine, where Hg(t) ranged from 4.5 to 21.3 ppm (dry wt). A reductive degradation pathway (presumably mer-detoxification) dominated degradation at these sites, as indicated by the nearly exclusive production of 14CH4 from 14C-MeHg, under both aerobic and anaerobic conditions. At the upstream control site, and in the less contaminated ecosystems (e.g. the Everglades), k(deg)'s were low (???0.2 d-1) and oxidative demethylation (OD) dominated degradation, as evident from 14CO2 production. k(deg) increased with microbial CH4 production, organic content, and reduced sulfur in the Carson River system and increased with decreasing pH in San Carlos Creek. OD associated CO2 production increased with pore-water SO42- in Everglades samples but was not attributable to anaerobic methane oxidation, as has been previously proposed. This ecosystem comparison indicates that severely contaminated sediments tend to have microbial populations that actively degrade MeHg via mer-detoxification, whereas OD occurs in heavily contaminated sediments as well but dominates in those less contaminated.We examined microbial methylmercury (MeHg) degradation in sediment of the Florida Everglades, Carson River (NV), and San Carlos Creek (CA), three freshwater environments that differ in the extent and type of mercury contamination and sediment biogeochemistry. Degradation rate constant (kdeg) values increased with total mercury (Hgt) contamination both among and

  15. Molecular characterization of the Akt-TOR signaling pathway in rainbow trout: potential role in muscle growth/degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Akt-TOR signaling pathway plays a key role in cellular metabolism and muscle growth. Hormone, nutrition and stress factors affect the Akt-TOR pathway by regulating gene transcription, protein synthesis and degradation. In addition, we previously showed that energetic demands elevate during vit...

  16. The Branched-Chain Dodecylbenzene Sulfonate Degradation Pathway of Pseudomonas aeruginosa W51D Involves a Novel Route for Degradation of the Surfactant Lateral Alkyl Chain

    PubMed Central

    Campos-García, Jesús; Esteve, Abraham; Vázquez-Duhalt, Rafael; Ramos, Juán Luis; Soberón-Chávez, Gloria

    1999-01-01

    Pseudomonas aeruginosa W51D is able to grow by using branched-chain dodecylbenzene sulfonates (B-DBS) or the terpenic alcohol citronellol as a sole source of carbon. A mutant derived from this strain (W51M1) is unable to degrade citronellol but still grows on B-DBS, showing that the citronellol degradation route is not the main pathway involved in the degradation of the surfactant alkyl moiety. The structures of the main B-DBS isomers and of some intermediates were identified by gas chromatography-mass spectrometric analysis, and a possible catabolic route is proposed. PMID:10427075

  17. CHIP: a co-chaperone for degradation by the proteasome.

    PubMed

    Edkins, Adrienne L

    2015-01-01

    Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation. PMID:25487024

  18. Structural disorder and its role in proteasomal degradation.

    PubMed

    Aufderheide, Antje; Unverdorben, Pia; Baumeister, Wolfgang; Förster, Friedrich

    2015-09-14

    The ubiquitin proteasome system is responsible for the controlled degradation of a vast number of intracellular proteins. It targets misfolded or otherwise aberrant proteins as well as proteins no longer needed at a given point in time. The 26S proteasome is a large macromolecular machine comprising 33 distinct subunits as well as a number of transiently associating cofactors. Being essentially a non-specific protease, specificity is conferred by the ubiquitin system, which selects and marks substrates for degradation. Here, we review our current understanding of the structure and function of the 26S proteasome; in doing so we highlight the role of disordered protein regions. Disordered segments in substrates promote their degradation, whereas low complexity regions prevent their proteolysis. In the 26S proteasome itself a main role of disordered segments seems to be rendering the ubiquitin receptors mobile, possibly supporting recruitment of polyubiquitylated substrates. Thus, these structural features of substrates as well as of the 26S proteasome itself likely play important roles at different stages of the protein degradation process. PMID:26226424

  19. A heme-degradation pathway in a blood-sucking insect.

    PubMed

    Paiva-Silva, Gabriela O; Cruz-Oliveira, Christine; Nakayasu, Ernesto S; Maya-Monteiro, Clarissa M; Dunkov, Boris C; Masuda, Hatisaburo; Almeida, Igor C; Oliveira, Pedro L

    2006-05-23

    Hematophagous insects are vectors of diseases that affect hundreds of millions of people worldwide. A common physiological event in the life of these insects is the hydrolysis of host hemoglobin in the digestive tract, leading to a massive release of heme, a known prooxidant molecule. Diverse organisms, from bacteria to plants, express the enzyme heme oxygenase, which catalyzes the oxidative degradation of heme to biliverdin (BV) IX, CO, and iron. Here, we show that the kissing bug Rhodnius prolixus, a vector of Chagas' disease, has a unique heme-degradation pathway wherein heme is first modified by addition of two cysteinylglycine residues before cleavage of the porphyrin ring, followed by trimming of the dipeptides. Furthermore, in contrast to most known heme oxygenases, which generate BV IXalpha, in this insect, the end product of heme detoxification is a dicysteinyl-BV IXgamma. Based on these results, we propose a heme metabolizing pathway that includes the identified intermediates produced during modification and cleavage of the heme porphyrin ring. PMID:16698925

  20. A heme-degradation pathway in a blood-sucking insect

    PubMed Central

    Paiva-Silva, Gabriela O.; Cruz-Oliveira, Christine; Nakayasu, Ernesto S.; Maya-Monteiro, Clarissa M.; Dunkov, Boris C.; Masuda, Hatisaburo; Almeida, Igor C.; Oliveira, Pedro L.

    2006-01-01

    Hematophagous insects are vectors of diseases that affect hundreds of millions of people worldwide. A common physiological event in the life of these insects is the hydrolysis of host hemoglobin in the digestive tract, leading to a massive release of heme, a known prooxidant molecule. Diverse organisms, from bacteria to plants, express the enzyme heme oxygenase, which catalyzes the oxidative degradation of heme to biliverdin (BV) IX, CO, and iron. Here, we show that the kissing bug Rhodnius prolixus, a vector of Chagas' disease, has a unique heme-degradation pathway wherein heme is first modified by addition of two cysteinylglycine residues before cleavage of the porphyrin ring, followed by trimming of the dipeptides. Furthermore, in contrast to most known heme oxygenases, which generate BV IXα, in this insect, the end product of heme detoxification is a dicysteinyl-BV IXγ. Based on these results, we propose a heme metabolizing pathway that includes the identified intermediates produced during modification and cleavage of the heme porphyrin ring. PMID:16698925

  1. Synthesis and characterization of anaerobic degradation biomarkers of n-alkanes via hydroxylation/carboxylation pathways.

    PubMed

    Zhou, Jing; Bian, Xin-Yu; Zhou, Lei; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-01-01

    Metabolite profiling is a powerful method in research on anaerobic biodegradation of hydrocarbons. Hydroxylation and carboxylation are proposed pathways in anaerobic degradation but very little direct evidence is available about metabolites and signature biomarkers. 2-Acetylalkanoic acid is a potential signature metabolite because of its unique and specific structure among possible intermediates. A procedure for the synthesis of four homologues with various carbon chain lengths was proposed and the characteristics of 2-acetyl- alkanoic acid esters were investigated using four derivatization processes, namely methyl, ethyl, n-butyl and trimethylsilyl esterification. Four intermediate fragments observed were at m/z 73 + 14n, 87 + 14n, 102 + 14n (n = 1, 2 and 4 for methyl, ethyl and n-butyl ester, respectively) and [M - 42]+ for three of the derivatization methods. For silylation, characteristic ions were observed at m/z 73, 117, [M - 42](+) and [M - 55](+). These are basic and significant data for the future identification of potential intermediates of the hydroxylation and carboxylation pathways in hydrocarbon degradation. PMID:26863073

  2. Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway.

    PubMed

    Foster, Alexander; Barnes, Nicole; Speight, Robert; Keane, Mark A

    2013-10-01

    The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (K(M)=0.014 mM) and maximum rate (Vmax=11.2 μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria. PMID:23906496

  3. Kinetics and reaction pathways of formaldehyde degradation using the UV-fenton method.

    PubMed

    Liu, Xiangxuan; Liang, Jiantao; Wang, Xuanjun

    2011-05-01

    This study was based on the purpose of investigating the reaction rules of formaldehyde (HCHO) as an intermediate product in the degradation of many other organic wastewaters. The process conditions of UV-Fenton method for the degradation of the low concentrations of HCHO were studied in a batch photochemical reactor. The results showed that, when the original HCHO concentration was 30 mg/L, at an operating temperature of 23 degrees C, pH = 3, an H202 dosage of 68 mg/L, and an H2O2-to-Fe2+ mole ratio (H2O2:Fe2+) of 5, 91.89% of the HCHO was removed after 30 minutes. The degradation of HCHO in the UV-Fenton system was basically in accordance with the exponential decay. The kinetic study results showed that the reaction orders of HCHO, Fe2+, and H2O2 in the system were 1.054, 0.510, and 0.728, respectively, and the activation energy (Ea) was 9.85 kJ/mol. The comparison of UV/H2O2, Fenton, and UV-Fenton systems for the degradation of HCHO, and the results of iron catalyst tests showed that the mechanism of UV-Fenton on the degradation of HCHO was through a synergistic effect of Fe2+ and UV light to catalyze the decomposition of H2O2. The introduction of UV irradiation to the Fenton system largely increased the degradation rate of HCHO, mainly as a result of the accelerating effect on the formation of the Fe2+/Fe3+ cycle. The reaction products were analyzed by gas chromatography-mass spectrometry and a chemical oxygen demand (COD) analyzer. The effluent gases also were analyzed by gas chromatography. Based on those results, the reaction pathways of HCHO in the UV-Fenton system were proposed. The qualitative and quantitative analysis of the reaction products and the COD showed that the main intermediate product of the reaction was formic acid, and the further oxidation of it was the rate-limiting step for the degradation of HCHO. PMID:21657193

  4. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.

    PubMed

    Xiang, Yingying; Fang, Jingyun; Shang, Chii

    2016-03-01

    The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed. PMID:26748208

  5. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease.

    PubMed

    Baranello, Robert J; Bharani, Krishna L; Padmaraju, Vasudevaraju; Chopra, Nipun; Lahiri, Debomoy K; Greig, Nigel H; Pappolla, Miguel A; Sambamurti, Kumar

    2015-01-01

    Amyloid-β proteins (Aβ) of 42 (Aβ42) and 40 aa (Aβ40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer's disease (AD). A number of rare mutations linked to familial AD (FAD) on the Aβ precursor protein (APP), Presenilin-1 (PS1), Presenilin- 2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the ε4 allele of Apolipoprotein E (ApoE-ε4) foster the accumulation of Aβ and also induce the entire spectrum of pathology associated with the disease. Aβ accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD. APP is sequentially processed by β-site APP cleaving enzyme (BACE1) and γ-secretase, a multisubunit PS1/PS2-containing integral membrane protease, to generate Aβ. Although Aβ accumulates in all forms of AD, the only pathways known to be affected in FAD increase Aβ production by APP gene duplication or via base substitutions on APP and γ-secretase subunits PS1 and PS2 that either specifically increase the yield of the longer Aβ42 or both Aβ40 and Aβ42. However, the vast majority of AD patients accumulate Aβ without these known mutations. This led to proposals that impairment of Aβ degradation or clearance may play a key role in AD pathogenesis. Several candidate enzymes, including Insulin-degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme (ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully evaluated in animal models. Several studies also have demonstrated the capacity of γ-secretase inhibitors to paradoxically increase the yield of Aβ and we have recently established that the mechanism is by skirting Aβ degradation. This review outlines major cellular pathways of Aβ degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for A

  6. Alteration of Dynein Function Affects α-Synuclein Degradation via the Autophagosome-Lysosome Pathway

    PubMed Central

    Li, Da; Shi, Ji-Jun; Mao, Cheng-Jie; Liu, Sha; Wang, Jian-Da; Chen, Jing; Wang, Fen; Yang, Ya-Ping; Hu, Wei-Dong; Hu, Li-Fang; Liu, Chun-Feng

    2013-01-01

    Growing evidence suggests that dynein dysfunction may be implicated in the pathogenesis of neurodegeneration. It plays a central role in aggresome formation, the delivery of autophagosome to lysosome for fusion and degradation, which is a pro-survival mechanism essential for the bulk degradation of misfolded proteins and damaged organells. Previous studies reported that dynein dysfuntion was associated with aberrant aggregation of α-synuclein, which is a major component of inclusion bodies in Parkinson’s disease (PD). However, it remains unclear what roles dynein plays in α-synuclein degradation. Our study demonstrated a decrease of dynein expression in neurotoxin-induced PD models in vitro and in vivo, accompanied by an increase of α-synuclein protein level. Dynein down-regulation induced by siRNA resulted in a prolonged half-life of α-synuclein and its over-accumulation in A53T overexpressing PC12 cells. Dynein knockdown also prompted the increase of microtubule-associated protein 1 light chain 3 (LC3-II) and sequestosome 1 (SQSTM1, p62) expression, and the accumulation of autophagic vacuoles. Moreover, dynein suppression impaired the autophagosome fusion with lysosome. In summary, our findings indicate that dynein is critical for the clearance of aberrant α-synuclein via autophagosome-lysosome pathway. PMID:24351814

  7. Degradation and Pathway of Tetracycline Hydrochloride in Aqueous Solution by Potassium Ferrate

    PubMed Central

    Ma, Yan; Gao, Naiyun; Li, Cong

    2012-01-01

    Abstract In the context of water treatment, the ferrate ([FeO4]2−) ion has long been known for its strong oxidizing power and for producing a coagulant from its reduced form [i.e., Fe(III)]. However, it has not been widely applied in water treatment, because of preparation difficulties and high cost. This article describes a low-cost procedure for producing solid potassium ferrate. In this synthetic procedure, NaClO was used in place of chlorine generation; and 10 M KOH was used in place of saturated KOH in the previous procedures. In addition, this study investigated the reactions of potassium ferrate with tetracycline hydrochloride (TC) at different pH and molar ratios. Results showed that the optimal pH range for TC degradation was pH 9–10, and TC could be mostly removed by Fe(VI) in 60 s. However, results showed >70% of TC degraded and <15% of dissolved organic carbon (DOC) reduction at molar ratio of 1:20. The main degradation pathway of TC is proposed based on the experimental data. PMID:22566741

  8. Degradation pathway of quinolines in a biofilm system under denitrifying conditions

    SciTech Connect

    Johansen, S.S.; Arvin, E.; Mosbaek, H.; Hansen, A.B.

    1997-09-01

    This article reports for the first time the degradation pathways of quinoline, isoquinoline, and methylquinolines by a mixed culture in a biofilm under nitrate-reducing conditions. A simple reverse-phase high-performance liquid chromatography method using ultraviolet detection at 223 nm for determination of seven quinoline analogues and 15 metabolites was developed, and gas chromatography--mass spectrometry and thin-layer chromatography analyses were used for identification. The inhibition of nitrification by the parent compounds and their degradation products was assessed by a nitrification toxicity test called MINNTOX. Quinoline and 3-, 4-, 6-, and 8-methylquinoline were all transformed by hydroxylation into their 2-hydroxyquinoline analogues (2-quinolinones), and isoquinoline was transformed into 1-hydroxyisoquinoline. 2-Methylquinoline was not transformed by this microcosm, likely due to the blockage at position 2 by the methyl group. The hydroxylated metabolites of isoquinoline and quinolines methylated at the heterocyclic ring were not transformed further, whereas metabolites of quinoline and quinolines methylated at the homocyclic ring were hydrogenated at position 3 and 4, and the resulting 3,4-dihydro-2-quinolinone analogues accumulated. Of these metabolites, only 3,4-dihydro-2-quinolinone from the degradation of quinoline was further transformed into unidentified products. All quinolines and their metabolites had inhibiting effects on the nitrifying bacteria at the same level (ppm) in the applied bioassay, indicating that the inhibition of the compounds was not influenced by the initial transformation reactions.

  9. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment.

    PubMed

    Wu, Yanlin; Shi, Jin; Chen, Hongche; Zhao, Jianfu; Dong, Wenbo

    2016-10-01

    4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC-MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO) was also studied and H2O2 was added to produce HO. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16h irradiation. PMID:27213674

  10. Identification of Genes and Pathways Related to Phenol Degradation in Metagenomic Libraries from Petroleum Refinery Wastewater

    PubMed Central

    Silva, Cynthia C.; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; De Paula, Sérgio O.; Silva, Lívia C. F.; Vidigal, Pedro M. P.; Vicentini, Renato; Sousa, Maíra P.; Torres, Ana Paula R.; Santiago, Vânia M. J.; Oliveira, Valéria M.

    2013-01-01

    Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system. PMID:23637911

  11. Sequential RNA degradation pathways provide a fail-safe mechanism to limit the accumulation of unspliced transcripts in Saccharomyces cerevisiae

    PubMed Central

    Sayani, Shakir; Chanfreau, Guillaume F.

    2012-01-01

    The nuclear exosome and the nonsense-mediated mRNA decay (NMD) pathways have been implicated in the degradation of distinct unspliced transcripts in Saccharomyces cerevisiae. In this study we show that these two systems can act sequentially on specific unspliced pre-mRNAs to limit their accumulation. Using steady-state and decay analyses, we show that while specific unspliced transcripts rely mostly on NMD or on the nuclear exosome for their degradation, some unspliced RNAs are stabilized only when both the nuclear exosome and NMD are inactivated. We found that the mechanism of degradation of these unspliced pre-mRNAs is not influenced by promoter identity. However, the specificity in the pre-mRNAs degradation pathways can be manipulated by changing the rate of export or retention of these mRNAs. For instance, reducing the nuclear export of pre-mRNAs mostly degraded by NMD results in a higher fraction of unspliced transcripts degraded by the nuclear exosome. Reciprocally, inactivating the Mlp retention factors results in a higher fraction of unspliced transcripts degraded by NMD for precursors normally targeted by the nuclear exosome. Overall, these results demonstrate that a functional redundancy exists between nuclear and cytoplasmic degradation pathways for unspliced pre-mRNAs, and suggest that the degradation routes of these species are mainly determined by the efficiency of their nuclear export rates. The presence of these two sequential degradation pathways for unspliced pre-mRNAs underscores the importance of limiting their accumulation and might serve as a fail-safe mechanism to prevent the expression of these nonfunctional RNAs. PMID:22753783

  12. Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274.

    PubMed Central

    Grifoll, M; Selifonov, S A; Chapman, P J

    1994-01-01

    A fluorene-utilizing microorganism, identified as a species of Pseudomonas, was isolated from soil severely contaminated from creosote use and was shown to accumulate six major metabolites from fluorene in washed-cell incubations. Five of these products were identified as 9-fluorenol, 9-fluorenone, (+)-1,1a-dihydroxy-1-hydro-9-fluorenone, 8-hydroxy-3,4-benzocoumarin, and phthalic acid. This last compound was also identified in growing cultures supported by fluorene. Fluorene assimilation into cell biomass was estimated to be approximately 50%. The structures of accumulated products indicate that a previously undescribed pathway of fluorene catabolism is employed by Pseudomonas sp. strain F274. This pathway involves oxygenation of fluorene at C-9 to give 9-fluorenol, which is then dehydrogenated to the corresponding ketone, 9-fluorenone. Dioxygenase attack on 9-fluorenone adjacent to the carbonyl group gives an angular diol, 1,1a-dihydroxy-1-hydro-9-fluorenone. Identification of 8-hydroxy-3,4-benzocoumarin and phthalic acid suggests that the five-membered ring of the angular diol is opened first and that the resulting 2'-carboxy derivative of 2,3-dihydroxy-biphenyl is catabolized by reactions analogous to those of biphenyl degradation, leading to the formation of phthalic acid. Cell extracts of fluorene-grown cells possessed high levels of an enzyme characteristic of phthalate catabolism, 4,5-dihydroxyphthalate decarboxylase, together with protocatechuate 4,5-dioxygenase. On the basis of these findings, a pathway of fluorene degradation is proposed to account for its conversion to intermediary metabolites. A range of compounds with structures similar to that of fluorene was acted on by fluorene-grown cells to give products consistent with the initial reactions proposed. PMID:8074523

  13. Degradation of 4-Chlorophenol via the meta Cleavage Pathway by Comamonas testosteroni JH5

    PubMed Central

    Hollender, J.; Hopp, J.; Dott, W.

    1997-01-01

    Comamonas testosteroni JH5 used 4-chlorophenol (4-CP) as its sole source of energy and carbon up to a concentration of 1.8 mM, accompanied by the stoichiometric release of chloride. The degradation of 4-CP mixed with the isomeric 2-CP by resting cells led to the accumulation of 3-chlorocatechol (3-CC), which inactivated the catechol 2,3-dioxygenase. As a result, further 4-CP breakdown was inhibited and 4-CC accumulated as a metabolite. In the crude extract of 4-CP-grown cells, catechol 1,2-dioxygenase and muconate cycloisomerase activities were not detected, whereas the activities of catechol 2,3-dioxygenase, 2-hydroxymuconic semialdehyde dehydrogenase, 2-hydroxymuconic semialdehyde hydrolase, and 2-oxopent-4-enoate hydratase were detected. These enzymes of the meta cleavage pathway showed activity with 4-CC and with 5-chloro-2-hydroxymuconic semialdehyde. The activities of the dioxygenase and semialdehyde dehydrogenase were constitutive. Two key metabolites of the meta cleavage pathway, the meta cleavage product (5-chloro-2-hydroxymuconic semialdehyde) and 5-chloro-2-hydroxymuconic acid, were detected. Thus, our previous postulation that C. testosteroni JH5 uses the meta cleavage pathway for the complete mineralization of 4-CP was confirmed. PMID:16535738

  14. Further characterization of o-nitrobenzaldehyde degrading bacterium Pseudomonas sp. ONBA-17 and deduction on its metabolic pathway

    PubMed Central

    Yu, Fang-Bo; Li, Xiao-Dan; Ali, Shinawar Waseem; Shan, Sheng-Dao; Luo, Lin-Ping; Guan, Li-Bo

    2014-01-01

    A previously reported o-nitrobenzaldehyde (ONBA) degrading bacterium Pseudomonas sp. ONBA-17 was further identified and characterized. Based on results of DNA base composition and DNA-DNA hybridization, the strain was identified as P. putida. Its degradation effect enhanced with increase of inoculum amount and no lag phase was observed. Higher removal rate was achieved under shaking conditions. All tested ONBA with different initial concentrations could be completely degraded within 5 d. In addition, degradative enzyme(s) involved was confirmed as intra-cellular distributed and constitutively expressed. Effects of different compounds on relative activity of degradative enzyme(s) within cell-free extract were also evaluated. Finally, 2-nitrobenzoic acid and 2, 3-dihydroxybenzoic acid were detected as metabolites of ONBA degradation by P. putida ONBA-17, and relevant metabolic pathway was preliminary proposed. This study might help with future research in better understanding of nitroaromatics biodegradation. PMID:25763034

  15. Autophagic degradation contributes to muscle wasting in cancer cachexia.

    PubMed

    Penna, Fabio; Costamagna, Domiziana; Pin, Fabrizio; Camperi, Andrea; Fanzani, Alessandro; Chiarpotto, Elena M; Cavallini, Gabriella; Bonelli, Gabriella; Baccino, Francesco M; Costelli, Paola

    2013-04-01

    Muscle protein wasting in cancer cachexia is a critical problem. The underlying mechanisms are still unclear, although the ubiquitin-proteasome system has been involved in the degradation of bulk myofibrillar proteins. The present work has been aimed to investigate whether autophagic degradation also plays a role in the onset of muscle depletion in cancer-bearing animals and in glucocorticoid-induced atrophy and sarcopenia of aging. The results show that autophagy is induced in muscle in three different models of cancer cachexia and in glucocorticoid-treated mice. In contrast, autophagic degradation in the muscle of sarcopenic animals is impaired but can be reactivated by calorie restriction. These results further demonstrate that different mechanisms are involved in pathologic muscle wasting and that autophagy, either excessive or defective, contributes to the complicated network that leads to muscle atrophy. In this regard, particularly intriguing is the observation that in cancer hosts and tumor necrosis factor α-treated C2C12 myotubes, insulin can only partially blunt autophagy induction. This finding suggests that autophagy is triggered through mechanisms that cannot be circumvented by using classic upstream modulators, prompting us to identify more effective approaches to target this proteolytic system. PMID:23395093

  16. Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans

    PubMed Central

    2012-01-01

    Background Monoterpenes present a large and versatile group of unsaturated hydrocarbons of plant origin with widespread use in the fragrance as well as food industry. The anaerobic β-myrcene degradation pathway in Castellaniella defragrans strain 65Phen differs from well known aerobic, monooxygenase-containing pathways. The initial enzyme linalool dehydratase-isomerase ldi/LDI catalyzes the hydration of β-myrcene to (S)-(+)-linalool and its isomerization to geraniol. A high-affinity geraniol dehydrogenase geoA/GeDH and a geranial dehydrogenase geoB/GaDH contribute to the formation of geranic acid. A genetic system was for the first time applied for the betaproteobacterium to prove in vivo the relevance of the linalool dehydratase-isomerase and the geraniol dehydrogenase. In-frame deletion cassettes were introduced by conjugation and two homologous recombination events. Results Polar effects were absent in the in-frame deletion mutants C. defragrans Δldi and C. defragrans ΔgeoA. The physiological characterization of the strains demonstrated a requirement of the linalool dehydratase-isomerase for growth on acyclic monoterpenes, but not on cyclic monoterpenes. The deletion of geoA resulted in a phenotype with hampered growth rate on monoterpenes as sole carbon and energy source as well as reduced biomass yields. Enzyme assays revealed the presence of a second geraniol dehydrogenase. The deletion mutants were in trans complemented with the broad-host range expression vector pBBR1MCS-4ldi and pBBR1MCS-2geoA, restoring in both cases the wild type phenotype. Conclusions In-frame deletion mutants of genes in the anaerobic β-myrcene degradation revealed novel insights in the in vivo function. The deletion of a high-affinity geraniol dehydrogenase hampered, but did not preclude growth on monoterpenes. A second geraniol dehydrogenase activity was present that contributes to the β-myrcene degradation pathway. Growth on cyclic monoterpenes independent of the initial

  17. Novel Pathway of Toluene Catabolism in the Trichloroethylene-Degrading Bacterium G4

    PubMed Central

    Shields, Malcolm S.; Montgomery, Stacy O.; Chapman, Peter J.; Cuskey, Stephen M.; Pritchard, P. H.

    1989-01-01

    o-Cresol and 3-methylcatechol were identified as successive transitory intermediates of toluene catabolism by the trichloroethylene-degrading bacterium G4. The absence of a toluene dihydrodiol intermediate or toluene dioxygenase and toluene dihydrodiol dehydrogenase activities suggested that G4 catabolizes toluene by a unique pathway. Formation of a hybrid species of 18O- and 16O-labeled 3-methylcatechol from toluene in an atmosphere of 18O2 and 16O2 established that G4 catabolizes toluene by successive monooxygenations at the ortho and meta positions. Detection of trace amounts of 4-methylcatechol from toluene catabolism suggested that the initial hydroxylation of toluene was not exclusively at the ortho position. Further catabolism of 3-methylcatechol was found to proceed via catechol-2,3-dioxygenase and hydroxymuconic semialdehyde hydrolase activities. PMID:16347956

  18. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway.

    PubMed

    Hicks, Katherine A; Ealick, Steven E

    2016-06-01

    HpxW from the ubiquitous pathogen Klebsiella pneumoniae is involved in a novel uric acid degradation pathway downstream from the formation of oxalurate. Specifically, HpxW is an oxamate amidohydrolase which catalyzes the conversion of oxamate to oxalate and is a member of the Ntn-hydrolase superfamily. HpxW is autoprocessed from an inactive precursor to form a heterodimer, resulting in a 35.5 kDa α subunit and a 20 kDa β subunit. Here, the structure of HpxW is presented and the substrate complex is modeled. In addition, the steady-state kinetics of this enzyme and two active-site variants were characterized. These structural and biochemical studies provide further insight into this class of enzymes and allow a mechanism for catalysis consistent with other members of the Ntn-hydrolase superfamily to be proposed. PMID:27303801

  19. Involvement of the Nrf2-proteasome pathway in the endoplasmic reticulum stress response in pancreatic β-cells

    SciTech Connect

    Lee, Sanghwan; Hur, Eu-gene; Ryoo, In-geun; Jung, Kyeong-Ah; Kwak, Jiyeon; Kwak, Mi-Kyoung

    2012-11-01

    The ubiquitin-proteasome system plays a central role in protein quality control through endoplasmic reticulum (ER)-associated degradation (ERAD) of unfolded and misfolded proteins. NF-E2‐related factor 2 (Nrf2) is a transcription factor that controls the expression of an array of phase II detoxification and antioxidant genes. Nrf2 signaling has additionally been shown to upregulate the expression of the proteasome catalytic subunits in several cell types. Here, we investigated the role of Nrf2 in tunicamycin-induced ER stress using a murine insulinoma β-cell line, βTC-6. shRNA-mediated silencing of Nrf2 expression in βTC-6 cells significantly increased tunicamycin-induced cytotoxicity, elevated the expression of the pro-apoptotic ER stress marker Chop10, and inhibited tunicamycin-inducible expression of the proteasomal catalytic subunits Psmb5 and Psmb6. The effects of 3H-1,2-dithiole-3-thione (D3T), a small molecule Nrf2 activator, on ER stress were also examined in βTC-6 cells. D3T pretreatment reduced tunicamycin cytotoxicity and attenuated the tunicamycin-inducible Chop10 and protein kinase RNA-activated‐like ER kinase (Perk). The protective effect of D3T was shown to be associated with increased ERAD. D3T increased the expression of Psmb5 and Psmb6 and elevated chymotrypsin-like peptidase activity; proteasome inhibitor treatment blocked D3T effects on tunicamycin cytotoxicity and ER stress marker changes. Similarly, silencing of Nrf2 abolished the protective effect of D3T against ER stress. These results indicate that the Nrf2 pathway contributes to the ER stress response in pancreatic β-cells by enhancing proteasome-mediated ERAD. -- Highlights: ► Nrf2 silencing in pancreatic β-cells enhanced tunicamycin-mediated ER stress. ► Expression of the proteasome was inducible by Nrf2 signaling. ► Nrf2 activator D3T protected β-cells from tunicamycin-mediated ER stress. ► Protective effect of D3T was associated with Nrf2-dependent proteasome

  20. Excretion pathways and ruminal disappearance of glyphosate and its degradation product aminomethylphosphonic acid in dairy cows.

    PubMed

    von Soosten, D; Meyer, U; Hüther, L; Dänicke, S; Lahrssen-Wiederholt, M; Schafft, H; Spolders, M; Breves, G

    2016-07-01

    From 6 balance experiments with total collection of feces and urine, samples were obtained to investigate the excretion pathways of glyphosate (GLY) in lactating dairy cows. Each experiment lasted for 26d. The first 21d served for adaptation to the diet, and during the remaining 5d collection of total feces and urine was conducted. Dry matter intake and milk yield were recorded daily and milk and feed samples were taken during the sampling periods. In 2 of the 6 experiments, at the sampling period for feces and urine, duodenal contents were collected for 5d. Cows were equipped with cannulas at the dorsal sac of the rumen and the proximal duodenum. Duodenal contents were collected every 2h over 5 consecutive days. The daily duodenal dry matter flow was measured by using chromium oxide as a volume marker. All samples (feed, feces, urine, milk and duodenal contents were analyzed for GLY and aminomethylphosphonic acid (AMPA). Overall, across the 6 experiments (n=32) the range of GLY intake was 0.08 to 6.67mg/d. The main proportion (61±11%; ±SD) of consumed GLY was excreted with feces; whereas excretion by urine was 8±3% of GLY intake. Elimination via milk was negligible. The GLY concentrations above the limit of quantification were not detected in any of the milk samples. A potential ruminal degradation of GLY to AMPA was derived from daily duodenal GLY flow. The apparent ruminal disappearance of GLY intake was 36 and 6%. In conclusion, the results of the present study indicate that the gastrointestinal absorption of GLY is of minor importance and fecal excretion represents the major excretion pathway. A degradation of GLY to AMPA by rumen microbes or a possible retention in the body has to be taken into account. PMID:27108173

  1. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone.

    PubMed

    Keen, Olya S; Ferrer, Imma; Michael Thurman, E; Linden, Karl G

    2014-12-01

    Lamotrigine is recently recognized as a persistent pharmaceutical in the water environment and wastewater effluents. Its degradation was studied under UV and ozone advanced oxidation treatments with reaction kinetics of lamotrigine with ozone (≈4 M(-1)s(-1)), hydroxyl radical [(2.1 ± 0.3) × 10(9)M(-1)s(-1)] and by UV photolysis with low and medium pressure mercury vapor lamps [quantum yields ≈0 and (2.7 ± 0.4)× 10(-4) respectively] determined. All constants were measured at pH 6 and at temperature ≈20°C. The results indicate that lamotrigine is slow to respond to direct photolysis or oxidation by ozone and no attenuation of the contaminant is expected in UV or ozone disinfection applications. The compound reacts rapidly with hydroxyl radicals indicating that advanced oxidation processes would be effective for its treatment. Degradation products were identified under each treatment process using accurate mass time-of-flight spectrometry and pathways of decay were proposed. The main transformation pathways in each process were: dechlorination of the benzene ring during direct photolysis; hydroxyl group addition to the benzene ring during the reaction with hydroxyl radicals; and triazine ring opening after reaction with ozone. Different products that form in each process may be to a varying degree less environmentally stable than the parent lamotrigine. In addition, a novel method of ozone quenching without addition of salts is presented. The new quenching method would allow subsequent mass spectrometry analysis without a solid phase extraction clean-up step. The method involves raising the pH of the sample to approximately 10 for a few seconds and lowering it back and is therefore limited to applications for which temporary pH change is not expected to affect the outcome of the analysis. PMID:25150682

  2. Protacs for Treatment of Cancer

    PubMed Central

    Sakamoto, Kathleen M.

    2010-01-01

    Protein degradation is the cell’s mechanism of eliminating misfolded or unwanted proteins. The pathway by which proteins are degraded occurs through the ubiquitin-proteasome system. Ubiquitin is a small 9-kilodalton (kDa) protein that is attached to proteins. A minimum of four ubiquitins is required for proteins to be recognized by the degradation machinery, known as the 26S proteasome. Defects in ubiquitination have been identified in a number of diseases, including cancer, neurodegenerative diseases, and metabolic disorders. We sought to exploit the delicate balance between protein synthesis and degradation to treat cancer by designing a chimeric molecule, known as Protac (Proteolysis Targeting Chimeric molecule). Protacs are heterobifunctional nanomolecules that are approximately 10 nanometers (nm) in size and can recruit proteins that cause cancer to the ubiquitin-proteasome machinery for degradation. In this review, we discuss the development of this novel technology for the treatment of cancer. PMID:20075761

  3. M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

    PubMed Central

    Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537

  4. Structural basis of lentiviral subversion of a cellular protein degradation pathway

    NASA Astrophysics Data System (ADS)

    Schwefel, David; Groom, Harriet C. T.; Boucherit, Virginie C.; Christodoulou, Evangelos; Walker, Philip A.; Stoye, Jonathan P.; Bishop, Kate N.; Taylor, Ian A.

    2014-01-01

    Lentiviruses contain accessory genes that have evolved to counteract the effects of host cellular defence proteins that inhibit productive infection. One such restriction factor, SAMHD1, inhibits human immunodeficiency virus (HIV)-1 infection of myeloid-lineage cells as well as resting CD4+ T cells by reducing the cellular deoxynucleoside 5'-triphosphate (dNTP) concentration to a level at which the viral reverse transcriptase cannot function. In other lentiviruses, including HIV-2 and related simian immunodeficiency viruses (SIVs), SAMHD1 restriction is overcome by the action of viral accessory protein x (Vpx) or the related viral protein r (Vpr) that target and recruit SAMHD1 for proteasomal degradation. The molecular mechanism by which these viral proteins are able to usurp the host cell's ubiquitination machinery to destroy the cell's protection against these viruses has not been defined. Here we present the crystal structure of a ternary complex of Vpx with the human E3 ligase substrate adaptor DCAF1 and the carboxy-terminal region of human SAMHD1. Vpx is made up of a three-helical bundle stabilized by a zinc finger motif, and wraps tightly around the disc-shaped DCAF1 molecule to present a new molecular surface. This adapted surface is then able to recruit SAMHD1 via its C terminus, making it a competent substrate for the E3 ligase to mark for proteasomal degradation. The structure reported here provides a molecular description of how a lentiviral accessory protein is able to subvert the cell's normal protein degradation pathway to inactivate the cellular viral defence system.

  5. Structural basis of lentiviral subversion of a cellular protein degradation pathway

    PubMed Central

    Schwefel, David; Groom, Harriet C. T.; Boucherit, Virginie C.; Christodoulou, Evangelos; Walker, Philip A.; Stoye, Jonathan P.; Bishop, Kate N.; Taylor, Ian A.

    2013-01-01

    Lentiviruses contain accessory genes that have evolved to counteract the effects of host cellular defence proteins that inhibit productive infection. One such restriction factor, SAMHD1, inhibits HIV-1 infection of myeloid-lineage cells 1,2 as well as resting CD4+ T cells 3,4 by reducing the cellular dNTP concentration to a level where the viral reverse transcriptase cannot function 5,6. In other lentiviruses, including HIV-2 and related SIVs, SAMHD1 restriction is overcome by the action of viral accessory protein x (Vpx) or the related viral protein r (Vpr) that target and recruit SAMHD1 for proteasomal degradation 7,8. The molecular mechanism by which these viral proteins are able to usurp the host cell’s ubiquitination machinery to destroy the cell’s protection against these viruses has not been defined. We present here the crystal structure of a ternary complex of Vpx with the host cell’s E3 ligase substrate adaptor DCAF1 and the C-terminal region of SAMHD1. Vpx is made up of a three-helical bundle, stabilised by a zinc finger motif and wraps tightly around the disc-shaped DCAF1 molecule to present a new molecular surface. This adapted surface is then able to recruit SAMHD1 via its C-terminus making it a competent substrate for the E3 ligase to mark for proteasomal degradation. The structure provides the first description of how a lentiviral accessory protein is able to subvert the cell’s normal protein degradation pathway to inactivate the cellular viral defence system. PMID:24336198

  6. Morpholine Degradation Pathway of Mycobacterium aurum MO1: Direct Evidence of Intermediates by In Situ 1H Nuclear Magnetic Resonance

    PubMed Central

    Combourieu, B.; Besse, P.; Sancelme, M.; Veschambre, H.; Delort, A. M.; Poupin, P.; Truffaut, N.

    1998-01-01

    Resting Mycobacterium aurum MO1 cells were incubated with morpholine, a waste from the chemical industry. The kinetics of biodegradation was monitored by using in situ nuclear magnetic resonance (NMR). The incubation medium was directly analyzed by 1H NMR. This technique allowed the unambiguous identification of two intermediates of the metabolic pathway involved in the biodegradation process, glycolate and 2-(2-aminoethoxy)acetate. The latter compound, which was not commercially available, was synthesized, in three steps, from 2-(2-aminoethoxy)ethanol. Quantitative analysis of the kinetics of degradation of morpholine was performed by integrating the signals of the different metabolites in 1H-NMR spectra. Morpholine was degraded within 10 h. The intermediates increased during the first 10 h and finally disappeared after 20 h incubation. Assays of degradation were also carried out with glycolate and ethanolamine, hypothetical intermediates of the morpholine degradation pathway. They were degraded within 4 and 8 h, respectively. Until now, no tool for direct detection of intermediates or even morpholine has been available, consequently, only hypothetical pathways have been proposed. The approach described here gives both qualitative and quantitative information about the metabolic routes used in morpholine degradation by M. aurum MO1. It could be used to investigate many biodegradative processes. PMID:9435073

  7. Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin.

    PubMed

    Deng, Weiqin; Lin, Derong; Yao, Kai; Yuan, Huaiyu; Wang, Zhilong; Li, Jianlong; Zou, Likou; Han, Xinfeng; Zhou, Kang; He, Li; Hu, Xinjie; Liu, Shuliang

    2015-10-01

    Aspergillus niger YAT strain was obtained from Chinese brick tea (Collection number: CGMCC 10,568) and identified on the basis of morphological characteristics and internal transcribed spacer (ITS) sequence. The strain could degrade 54.83 % of β-cypermethrin (β-CY; 50 mg L(-1)) in 7 days and 100 % of 3-phenoxybenzoic acid (3-PBA; 100 mg L(-1)) in 22 h. The half-lives of β-CY and 3-PBA range from 3.573 to 11.748 days and from 5.635 to 12.160 h, respectively. The degradation of β-CY and 3-PBA was further described using first-order kinetic models. The pathway and mechanism of β-CY degraded by YAT were investigated by analyzing the degraded metabolites through high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Relevant enzymatic activities and substrate utilization were also investigated. β-CY degradation products were analyzed. Results indicated that YAT strain transformed β-CY into 3-PBA. 3-PBA was then gradually transformed into permethric acid, protocatechuic acid, 3-hydroxy-5-phenoxy benzoic acid, gallic acid, and phenol gradually. The YAT strain can also effectively degrade these metabolites. The results indicated that YAT strain has potential applications in bioremediation of pyrethroid insecticide (PI)-contaminated environments and fermented food. PMID:26022858

  8. The purine degradation pathway: possible role in paralytic shellfish toxin metabolism in the cyanobacterium Planktothrix sp. FP1.

    PubMed

    Pomati, F; Manarolla, G; Rossi, O; Vigetti, D; Rossetti, C

    2001-12-01

    The paralytic shellfish toxins (PSTs) are potent neurotoxic alkaloids and their major biological effect is due to the blockage of voltage-gated sodium channels in excitable cells. They have been recognised as an important health risk for humans, animals, and ecosystems worldwide. The metabolic pathways that lead to the production and the degradation of these toxic metabolites are still unknown. In this study, we investigated the possible link between PST accumulation and the activation of the metabolism that leads to purine degradation in the filamentous freshwater cyanobacterium Planktothrix sp. FP1. The purine catabolic pathway is related to the nitrogen microcycle in water environments, in which cyanobacteria use traces of purines and ureides as a nitrogen source for growth. Thus, the activity of allantoicase, a key inducible enzyme of this metabolism, was used as tool for assaying the activation of the purine degradation pathway. The enzyme and the pathway were induced by allantoic acid, the direct substrate of allantoicase, as well as by adenine and, to a lower degree, by urea, one of the main products of purine catabolism. Crude cell extract of Escherichia coli was also employed and showed the best induction of allantoicase activity. In culture, Planktothrix sp. FP1 showed a differential accumulation of PST in consequence of the induction with different substrates. The cyanobacterial culture induced with allantoic acid accumulated 61.7% more toxins in comparison with the control. On the other hand, the cultures induced with adenine, urea, and the E. coli extract showed low PST accumulation, respectively, 1%, 38%, and 5% of the total toxins content detected in the noninduced culture. A degradation pathway for the PSTs can be hypothesised: as suggested for purine alkaloids in higher plants, saxitoxin (STX) and derivatives may also be converted into xanthine, urea, and further to CO2 and NH4+ or recycled in the primary metabolism through the purine degradation

  9. Investigation of the molecular mechanism of δ-catenin ubiquitination: Implication of β-TrCP-1 as a potential E3 ligase.

    PubMed

    Shrestha, Hridaya; Yuan, Tingting; He, Yongfeng; Moon, Pyong-Gon; Shrestha, Nensi; Ryu, Taeyong; Park, So-Yeon; Cho, Young-Chang; Lee, Chan-Hyeong; Baek, Moon-Chang; Cho, Sayeon; Simkhada, Shishli; Kim, Hangun; Kim, Kwonseop

    2016-09-01

    Ubiquitination, a post-translational modification, involves the covalent attachment of ubiquitin to the target protein. The ubiquitin-proteasome pathway and the endosome-lysosome pathway control the degradation of the majority of eukaryotic proteins. Our previous study illustrated that δ-catenin ubiquitination occurs in a glycogen synthase kinase-3 (GSK-3) phosphorylation-dependent manner. However, the molecular mechanism of δ-catenin ubiquitination is still unknown. Here, we show that the lysine residues required for ubiquitination are located mainly in the C-terminal portion of δ-catenin. In addition, we provide evidence that β-TrCP-1 interacts with δ-catenin and functions as an E3 ligase, mediating δ-catenin ubiquitin-proteasome degradation. Furthermore, we prove that both the ubiquitin-proteasome pathway and the lysosome degradation pathway are involved in δ-catenin degradation. Our novel findings on the mechanism of δ-catenin ubiquitination will add a new perspective to δ-catenin degradation and the effects of δ-catenin on E-cadherin involved in epithelial cell-cell adhesion, which is implicated in prostate cancer progression. PMID:27316454

  10. Connecting lignin-degradation pathway with pre-treatment inhibitor sensitivity of Cupriavidus necator.

    PubMed

    Wang, Wei; Yang, Shihui; Hunsinger, Glendon B; Pienkos, Philip T; Johnson, David K

    2014-01-01

    To produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity. PMID:24904560

  11. Connecting Lignin-Degradation Pathway with Pre-Treatment Inhibitor Sensitivity of Cupriavidus necator

    SciTech Connect

    Wang, W.; Yang, S.; Hunsinger, G. B.; Pienkos, P. T.; Johnson, D. K.

    2014-05-27

    In order to produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  12. Connecting lignin-degradation pathway with pre-treatment inhibitor sensitivity of Cupriavidus necator

    PubMed Central

    Wang, Wei; Yang, Shihui; Hunsinger, Glendon B.; Pienkos, Philip T.; Johnson, David K.

    2014-01-01

    To produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity. PMID:24904560

  13. The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway

    SciTech Connect

    Copley, Shelley D.; Rokicki, Joseph; Turner, Pernilla; Daligault, Hajnalka E.; Nolan, Matt; Land, Miriam L

    2012-01-01

    Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria.

  14. The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway

    PubMed Central

    Copley, Shelley D.; Rokicki, Joseph; Turner, Pernilla; Daligault, Hajnalka; Nolan, Matt; Land, Miriam

    2012-01-01

    Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria. PMID:22179583

  15. Insights from 14C into C loss pathways in degraded peatlands

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire

    2016-04-01

    Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This

  16. Reaction pathway of the degradation of the p-hydroxybenzoic acid by sulfate radical generated by ionizing radiations

    NASA Astrophysics Data System (ADS)

    Criquet, Justine; Leitner, Nathalie Karpel Vel

    2015-01-01

    The degradation of p-hydroxybenzoic acid (HBA) in aqueous solutions by ionizing radiation was studied. The phenolic pollutant was easily removed by the electron beam irradiation, as more than 80% of the initial 100 μM introduced was degraded for a dose of 600 Gy. It was shown that the addition of persulfate, producing the sulfate radical as additional reactive species, induced a change in the reaction pathway. LC-MS analyses were performed in order to identify the different by-products formed. In the absence of persulfate, the main by-product formed was 3,4-dihydroxybenzoic acid, while in presence of persulfate, 1,4-benzoquinone was detected and the hydroxylated by-products were not present. A reaction pathway of HBA degradation by hydroxyl and sulfate radicals was proposed from the identification of the chemical structure of the different by-products detected. The influences of pH and dissolved oxygen were also studied. A high decline of HBA degradation was observed at pH 11 compared to pH 4.5, this decrease was minimized in the presence of persulfate. The dissolved oxygen concentration was found to be a limiting parameter of HBA degradation, however an excess of dissolved oxygen in solution did not improve the degradation to a large extent.

  17. Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells

    PubMed Central

    Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-01-01

    L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells. PMID:26983598

  18. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway.

    PubMed

    Antunes, Ana T; Goos, Yvonne J; Pereboom, Tamara C; Hermkens, Dorien; Wlodarski, Marcin W; Da Costa, Lydie; MacInnes, Alyson W

    2015-07-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  19. Ribosomal Protein Mutations Result in Constitutive p53 Protein Degradation through Impairment of the AKT Pathway

    PubMed Central

    Hermkens, Dorien; Wlodarski, Marcin W.; Da Costa, Lydie; MacInnes, Alyson W.

    2015-01-01

    Mutations in ribosomal protein (RP) genes can result in the loss of erythrocyte progenitor cells and cause severe anemia. This is seen in patients with Diamond-Blackfan anemia (DBA), a pure red cell aplasia and bone marrow failure syndrome that is almost exclusively linked to RP gene haploinsufficiency. While the mechanisms underlying the cytopenia phenotype of patients with these mutations are not completely understood, it is believed that stabilization of the p53 tumor suppressor protein may induce apoptosis in the progenitor cells. In stark contrast, tumor cells from zebrafish with RP gene haploinsufficiency are unable to stabilize p53 even when exposed to acute DNA damage despite transcribing wild type p53 normally. In this work we demonstrate that p53 has a limited role in eliciting the anemia phenotype of zebrafish models of DBA. In fact, we find that RP-deficient embryos exhibit the same normal p53 transcription, absence of p53 protein, and impaired p53 response to DNA damage as RP haploinsufficient tumor cells. Recently we reported that RP mutations suppress activity of the AKT pathway, and we show here that this suppression results in proteasomal degradation of p53. By re-activating the AKT pathway or by inhibiting GSK-3, a downstream modifier that normally represses AKT signaling, we are able to restore the stabilization of p53. Our work indicates that the anemia phenotype of zebrafish models of DBA is dependent on factors other than p53, and may hold clinical significance for both DBA and the increasing number of cancers revealing spontaneous mutations in RP genes. PMID:26132763

  20. The molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus

    PubMed Central

    Shah, Firoz; Rineau, Francois; Canbäck, Björn; Johansson, Tomas; Tunlid, Anders

    2013-01-01

    Proteins contribute to a major part of the organic nitrogen (N) in forest soils. This N is mobilized and becomes available to trees as a result of the depolymerizing activities of symbiotic ectomycorrhizal fungi. The mechanisms by which these fungi depolymerize proteins and assimilate the released N are poorly characterized. Biochemical analysis and transcriptome profiling were performed to examine the proteolytic machinery and the uptake system of the ectomycorrhizal basidiomycete Paxillus involutus during the assimilation of organic N from various protein sources and extracts of organic matter. All substrates induced secretion of peptidase activity with an acidic pH optimum, mostly contributed by aspartic peptidases. The peptidase activity was transiently repressed by ammonium. Transcriptional analysis revealed a large number of extracellular endo- and exopeptidases. The expression levels of these peptidases were regulated in parallel with transporters and enzymes involved in the assimilation and metabolism of the released peptides and amino acids. For the first time the molecular components of the protein degradation pathways of an ectomycorrhizal fungus are described. The data suggest that the transcripts encoding these components are regulated in response to the chemical properties and the availability of the protein substrates. PMID:23902518

  1. REGγ regulates ERα degradation via ubiquitin–proteasome pathway in breast cancer

    SciTech Connect

    Chai, Fan; Liang, Yan; Bi, Jiong; Chen, Li; Zhang, Fan; Cui, Youhong; Jiang, Jun

    2015-01-02

    Highlights: • High expression of REGγ is correlated with ERα status and poor clinical features. • Cell growth, mobility and invasion are significantly impaired by REGγ knockdown. • REGγ indirectly regulates ERα protein expression. - Abstract: REGγ is a proteasome coactivator which regulates proteolytic activity in eukaryotic cells. Abundant lines of evidence have showed that REGγ is over expressed in a number of human carcinomas. However, its precise role in the pathogenesis of cancer is still unclear. In this study, by examining 200 human breast cancer specimens, we demonstrated that REGγ was highly expressed in breast cancers, and the expression of REGγ was positively correlated with breast cancer patient estrogen receptor alpha (ERα) status. Moreover, the expression of REGγ was found positively associated with poor clinical features and low survival rates in ERα positive breast cancer patients. Further cell culture studies using MCF7 and BT474 breast cancer cell lines showed that cell proliferation, motility, and invasion capacities were decreased significantly by REGγ knockdown. Lastly, we demonstrated that REGγ indirectly regulates the degradation of ERα protein via ubiquitin–proteasome pathway. In conclusion, our findings provide the evidence that REGγ expression was positively correlated with ERα status and poor clinical prognosis in ERα positive breast cancer patients. As well, we disclose a new connection between the two molecules that are both highly expressed in most breast cancer cases.

  2. Clinical and marketed proteasome inhibitors for cancer treatment.

    PubMed

    Zhang, Jiankang; Wu, Peng; Hu, Yongzhou

    2013-01-01

    The ubiquitin-proteasome pathway (UPP), which influences essential cellular functions including cell growth, differentiation, apoptosis, signal transduction, antigen processing and inflammatory responses, has been considered as one of the most important cellular protein degradation approaches. Proteasome functions as a gatekeeper, which controls the execution of protein degradation and plays a critical role in the ubiquitin-proteasome pathway. The unfolding of the close connection between proteasome and cancer provides a potential strategy for cancer treatment by using proteasome inhibitors. Small molecular inhibitors of varied structures and potency against proteasome have been discovered in recent years, with bortezomib and carfilzomib having been successfully approved for clinical application while some other promising candidates are currently under clinical trials. Herein, we review the development history of drugs and candidates that target the 20S proteasome, structure-activity relationships (SARs) of various proteasome inhibitors, and related completed or ongoing clinical trials. PMID:23531219

  3. Molybdenum-Containing Nicotine Hydroxylase Genes in a Nicotine Degradation Pathway That Is a Variant of the Pyridine and Pyrrolidine Pathways

    PubMed Central

    Yu, Hao; Li, Yangyang

    2015-01-01

    Ochrobactrum sp. strain SJY1 utilizes nicotine as a sole source of carbon, nitrogen, and energy via a variant of the pyridine and pyrrolidine pathways (the VPP pathway). Several strains and genes involved in the VPP pathway have recently been reported; however, the first catalyzing step for enzymatic turnover of nicotine is still unclear. In this study, a nicotine hydroxylase for the initial hydroxylation step of nicotine degradation was identified and characterized. The nicotine hydroxylase (VppA), which converts nicotine to 6-hydroxynicotine in the strain SJY1, is encoded by two open reading frames (vppAS and vppAL [subunits S and L, respectively]). The vppA genes were heterologously expressed in the non-nicotine-degrading strains Escherichia coli DH5α and Pseudomonas putida KT2440; only the Pseudomonas strain acquired the ability to degrade nicotine. The small subunit of VppA contained a [2Fe-2S] cluster-binding domain, and the large subunit of VppA contained a molybdenum cofactor-binding domain; however, an FAD-binding domain was not found in VppA. Resting cells cultivated in a molybdenum-deficient medium had low nicotine transformation activity, and excess molybdenum was detected in the purified VppA by inductively coupled plasma-mass spectrometry analysis. Thus, it is demonstrated that VppA is a two-component molybdenum-containing hydroxylase. PMID:26407884

  4. Quantum chemical prediction of redox reactivity and degradation pathways for aqueous phase contaminants: an example with HMPA.

    PubMed

    Blotevogel, Jens; Borch, Thomas; Desyaterik, Yury; Mayeno, Arthur N; Sale, Tom C

    2010-08-01

    Models used to predict the fate of aqueous phase contaminants are often limited by their inability to address the widely varying redox conditions in natural and engineered systems. Here, we present a novel approach based on quantum chemical calculations that identifies the thermodynamic conditions necessary for redox-promoted degradation and predicts potential degradation pathways. Hexamethylphosphoramide (HMPA), a widely used solvent and potential groundwater contaminant, is used as a test case. Its oxidation is estimated to require at least iron-reducing conditions at low to neutral pH and nitrate-reducing conditions at high pH. Furthermore, the transformation of HMPA by permanganate is predicted to proceed through sequential N-demethylation. Experimental validation based on LC/TOF-MS analysis confirms the predicted pathways of HMPA oxidation by permanganate to phosphoramide via the formation of less methylated as well as singly and multiply oxygenated reaction intermediates. Pathways predicted to be thermodynamically or kinetically unfavorable are similarly absent in the experimental studies. Our newly developed methodology will enable scientists and engineers to estimate the favorability of contaminant degradation at a specific field site, suitable approaches to enhance degradation, and the persistence of a contaminant and its reaction intermediates. PMID:20608732

  5. Histone deacetylase 2 is phosphorylated, ubiquitinated, and degraded by cigarette smoke.

    PubMed

    Adenuga, David; Yao, Hongwei; March, Thomas H; Seagrave, Jeanclare; Rahman, Irfan

    2009-04-01

    Cigarette smoke (CS)-induced lung inflammation involves the reduction of histone deacetylase 2 (HDAC2) abundance, which is associated with steroid resistance in patients with chronic obstructive pulmonary disease and in individuals with severe asthma who smoke cigarettes. However, the molecular mechanism of CS-mediated reduction of HDAC2 is not clearly known. We hypothesized that HDAC2 is phosphorylated and subsequently degraded by the proteasome in vitro in macrophages (MonoMac6), human bronchial and primary small airway epithelial cells, and in vivo in mouse lungs in response to chronic CS exposure. Cigarette smoke extract (CSE) exposure in MonoMac6 and in bronchial and airway epithelial cells led to phosphorylation of HDAC2 on serine/threonine residues by a protein kinase CK2-mediated mechanism, decreased HDAC2 activity, and increased ubiquitin-proteasome-dependent HDAC2 degradation. CK2 and proteasome inhibitors reversed CSE-mediated HDAC2 degradation, whereas serine/threonine phosphatase inhibitor, okadaic acid, caused phosphorylation and subsequent ubiquitination of HDAC2. CS-induced HDAC2 phosphorylation was detected in mouse lungs from 2 weeks to 4 months of CS exposure, and mice showed significantly lower lung HDAC2 levels. Thus, CS-mediated down-regulation of HDAC2 in human macrophages and lung epithelial cells in vitro and in mouse lung in vivo involves the induction of serine/threonine phosphorylation and proteasomal degradation, which may have implications for steroid resistance and abnormal inflammation caused by cigarette smoke. PMID:18927347

  6. Facilitated Tau Degradation by USP14 Aptamers via Enhanced Proteasome Activity

    PubMed Central

    Lee, Jung Hoon; Shin, Seung Kyun; Jiang, Yanxialei; Choi, Won Hoon; Hong, Chaesun; Kim, Dong-Eun; Lee, Min Jae

    2015-01-01

    The ubiquitin-proteasome system (UPS) is the primary mechanism by which intracellular proteins, transcription factors, and many proteotoxic proteins with aggregation-prone structures are degraded. The UPS is reportedly downregulated in various neurodegenerative disorders, with increased proteasome activity shown to be beneficial in many related disease models. Proteasomes function under tonic inhibitory conditions, possibly via the ubiquitin chain-trimming function of USP14, a proteasome-associated deubiquitinating enzyme (DUB). We identified three specific RNA aptamers of USP14 (USP14-1, USP14-2, and USP14-3) that inhibited its deubiquitinating activity. The nucleotide sequences of these non-cytotoxic USP14 aptamers contained conserved GGAGG motifs, with G-rich regions upstream, and similar secondary structures. They efficiently elevated proteasomal activity, as determined by the increased degradation of small fluorogenic peptide substrates and physiological polyubiquitinated Sic1 proteins. Additionally, proteasomal degradation of tau proteins was facilitated in the presence of the UPS14 aptamers in vitro. Our results indicate that these novel inhibitory UPS14 aptamers can be used to enhance proteasome activity, and to facilitate the degradation of proteotoxic proteins, thereby protecting cells from various neurodegenerative stressors. PMID:26041011

  7. Immunolocalization of Tom1 in relation to protein degradation systems in Alzheimer's disease.

    PubMed

    Makioka, Kouki; Yamazaki, Tsuneo; Takatama, Masamitsu; Ikeda, Masaki; Murayama, Shigeo; Okamoto, Koichi; Ikeda, Yoshio

    2016-06-15

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. Its pathological hallmarks are senile plaques (SPs), which contain extracellular deposits of amyloid β (Aβ) protein fibrils and dystrophic neurites (DNs), and neurofibrillary tangles (NFTs) containing hyperphosphorylated tau. Impairment of protein-degradation systems, including the ubiquitin-proteasome and the autophagy-lysosome systems, has been proposed as one of the causes of the accumulation of these aberrant proteins in AD brains. Tom1 (target of Myb1) was originally identified by the induction of its expression by the v-Myb oncogene and is a part of two major protein-degradation systems. The present study was conducted by immunohistochemical and immunofluorescent stainings to show that Tom1 was localized in DNs, perisomatic granules (PSGs), and NFTs in AD brains. Moreover, in DNs, Tom1 colocalized with ubiquitin, lysosomal proteins, and Tom1-related proteins (Tollip and myosin VI), which act in both protein-degradation systems via Tom1. These results indicate that Tom1 plays important roles in protein-degradation systems in AD pathogenesis. PMID:27206884

  8. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation

    PubMed Central

    Pailan, Santanu

    2015-01-01

    An organophosphate (OP) degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degraded within 96 h at 37 °C. Growth studies indicated the strain to be moderately thermo-halo tolerant in nature. Investigation based on identification of intermediates of parathion degradation by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), gas chromatography (GC) and liquid chromatography mass spectrometry (LC-MS/MS) provided evidence for possible existence of two pathways. The first pathway proceeds via 4-nitrophenol (4-NP) while the second proceeds through formation of 4-aminoparathion (4-APar), 4-aminophenol (4-AP) and parabenzoquinone (PBQ). This is the first report of chemotaxis towards organophosphate compound by a thermo-halo tolerant bacterium. PMID:26587344

  9. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation.

    PubMed

    Pailan, Santanu; Saha, Pradipta

    2015-01-01

    An organophosphate (OP) degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degraded within 96 h at 37 °C. Growth studies indicated the strain to be moderately thermo-halo tolerant in nature. Investigation based on identification of intermediates of parathion degradation by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), gas chromatography (GC) and liquid chromatography mass spectrometry (LC-MS/MS) provided evidence for possible existence of two pathways. The first pathway proceeds via 4-nitrophenol (4-NP) while the second proceeds through formation of 4-aminoparathion (4-APar), 4-aminophenol (4-AP) and parabenzoquinone (PBQ). This is the first report of chemotaxis towards organophosphate compound by a thermo-halo tolerant bacterium. PMID:26587344

  10. Testing the importance of p27 degradation by the SCFskp2 pathway in murine models of lung and colon cancer.

    PubMed

    Timmerbeul, Inke; Garrett-Engele, Carrie M; Kossatz, Uta; Chen, Xueyan; Firpo, Eduardo; Grünwald, Viktor; Kamino, Kenji; Wilkens, Ludwig; Lehmann, Ulrich; Buer, Jan; Geffers, Robert; Kubicka, Stefan; Manns, Michael P; Porter, Peggy L; Roberts, James M; Malek, Nisar P

    2006-09-19

    Decreased expression of the CDK inhibitor p27kip1 in human tumors directly correlates with increased resistance to chemotherapies, increased rates of metastasis, and an overall increased rate of patient mortality. It is thought that decreased p27 expression in tumors is caused by increased proteasomal turnover, in particular activation of the pathway governed by the SCFskp2 E3 ubiquitin protein ligase. We have directly tested the importance of the SCFskp-mediated degradation of p27 in tumorigenesis by analyzing the tumor susceptibility of mice that express a form of p27 that cannot be ubiquitinated and degraded by this pathway (p27T187A). In mouse models of both lung and colon cancer down-regulation of p27 promotes tumorigenesis. However, we found that preventing p27 degradation by the SCFskp2 pathway had no impact on tumor incidence or overall survival in either tumor model. Our study unveiled a previously unrecognized role for the control of p27 mRNA abundance in the development of non-small cell lung cancers. In the colon cancer model, the frequency of intestinal adenomas was similarly unaffected by the p27T187A mutation, but, unexpectedly, we found that it inhibited progression of intestinal adenomas to carcinomas. These studies may guide the choice of clinical settings in which pharmacologic inhibitors of the Skp2 pathway might be of therapeutic value. PMID:16966613

  11. Anaerobic Degradation Pathway of the Novel Chiral Insecticide Paichongding and Its Impact on Bacterial Communities in Soils.

    PubMed

    Cai, Zhiqiang; Wang, Jing; Ma, Jiangtao; Zhu, Xiaolin; Cai, Jinyan; Yang, Guanghua

    2015-08-19

    To comprehensively understand anaerobic degradation of the novel cis-nitromethylene neonicotinoid insecticide Paichongding (IPP) and its impacts on microbial communities in anaerobic soils, we investigated IPP degradation characteristics, kinetics, and pathway in four different soils. The bacterial community in response to the application of IPP using pyrosequencing of 16S rRNA gene amplicons was also studied. The removal ratio of IPP stereoisomers (RR-IPP, SS-IPP, RS-IPP, and SR-IPP) reached >90% at 60 days after IPP treatment (DAT) in yellow loam soil (F) and paddy field on desalting muddy polder (C), whereas the degradation ratios of RR-IPP and SS-IPP were <30% at 60 DAT in Huangshi soil (J) and yellow paddy soil (H). The results showed that the anaerobic degradation rate of IPP and its stereoisomers was strongly affected by soil physical-chemical characteristics. Furthermore, on the basis of the six metabolites (M1-M6) identified by LC-MS/MS and their behavior, the anaerobic degradation pathway of IPP in soils was proposed. Biodegradation of IPP involved continuous biocatalytic reactions such as nitro reduction and elimination, hydrolysis, demethyl, and ether cleavage reactions. A higher richness of operational taxonomic units (OTUs) was found in soils without IPP application than in soils with IPP application. Both the rarefaction curves and Shannon-Wiener diversity index in anaerobic soils had significant difference after IPP application, and the community composition also differed at both the phyla and genus levels. PMID:26216485

  12. Analysis of Hydroxycinnamic Acid Degradation in Agrobacterium fabrum Reveals a Coenzyme A-Dependent, Beta-Oxidative Deacetylation Pathway

    PubMed Central

    Campillo, Tony; Renoud, Sébastien; Kerzaon, Isabelle; Vial, Ludovic; Baude, Jessica; Gaillard, Vincent; Bellvert, Floriant; Chamignon, Cécile; Comte, Gilles; Lavire, Céline; Hommais, Florence

    2014-01-01

    The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl–CoA, 4-hydroxy-3-methoxyphenyl-β-ketopropionyl–CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-β-ketopropionic acid (HMPKP)–CoA β-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent β-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials. PMID:24657856

  13. Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway.

    PubMed

    Zhang, Chao; Zhou, Minghua; Ren, Gengbo; Yu, Xinmin; Ma, Liang; Yang, Jie; Yu, Fangke

    2015-03-01

    Modified iron-carbon with polytetrafluoroethylene (PTFE) was firstly investigated as heterogeneous electro-Fenton (EF) catalyst for 2,4-dichlorophenol (2,4-DCP) degradation in near neutral pH condition. The catalyst was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and the effects of some important operating parameters such as current intensity and pH on the 2,4-DCP degradation were investigated. After the catalyst modification with 20% PTFE, the degradation performance maintained well with much lower iron leaching, and at current intensity 100 mA, initial pH 6.7, catalyst loading 6 g/L, the degradation efficiency of 2,4-DCP could exceed 95% within 120 min treatment. Two-stage pseudo first-order kinetics of 2,4-DCP degradation was observed, including a slow anodic oxidation stage (first-stage) and much faster heterogeneous EF oxidation (second-stage), in which the automatic drop of pH in the first-stage initiated the Fe(2+) release from micro-electrolysis and thus benefited to the subsequent EF reaction. Aromatic intermediates such as 3,5-dichlorocatechol, 4,6-dichlororesorcinol and 2-chlorohydroquinone were detected by GC-MS. Oxalic acid, acetic acid, formic acid and Cl(-) were quantified by ion chromatograph. Based on these analysis as well as the detection of H₂O₂ and OH, a possible mechanism and degradation pathway for 2,4-DCP were proposed. This work demonstrated that such a heterogeneous EF using cheap modified Fe-C catalyst was promising for organic wastewater treatment in initial neutral pH condition. PMID:25559487

  14. Overlapping 16p13.11 deletion and gain of copies variations associated with childhood onset psychosis include genes with mechanistic implications for autism associated pathways: Two case reports.

    PubMed

    Brownstein, Catherine A; Kleiman, Robin J; Engle, Elizabeth C; Towne, Meghan C; D'Angelo, Eugene J; Yu, Timothy W; Beggs, Alan H; Picker, Jonathan; Fogler, Jason M; Carroll, Devon; Schmitt, Rachel C O; Wolff, Robert R; Shen, Yiping; Lip, Va; Bilguvar, Kaya; Kim, April; Tembulkar, Sahil; O'Donnell, Kyle; Gonzalez-Heydrich, Joseph

    2016-05-01

    Copy number variability at 16p13.11 has been associated with intellectual disability, autism, schizophrenia, epilepsy, and attention-deficit hyperactivity disorder. Adolescent/adult- onset psychosis has been reported in a subset of these cases. Here, we report on two children with CNVs in 16p13.11 that developed psychosis before the age of 7. The genotype and neuropsychiatric abnormalities of these patients highlight several overlapping genes that have possible mechanistic relevance to pathways previously implicated in Autism Spectrum Disorders, including the mTOR signaling and the ubiquitin-proteasome cascades. A careful screening of the 16p13.11 region is warranted in patients with childhood onset psychosis. © 2016 Wiley Periodicals, Inc. PMID:26887912

  15. Porcine arterivirus activates the NF-{kappa}B pathway through I{kappa}B degradation

    SciTech Connect

    Lee, Sang-Myeong; Kleiboeker, Steven B. . E-mail: KleiboekerS@Missouri.edu

    2005-11-10

    Nuclear factor-kappaB (NF-{kappa}B) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-{kappa}B in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-{kappa}B activation was characterized by translocation of NF-{kappa}B from the cytoplasm to the nucleus, increased DNA binding activity, and NF-{kappa}B-regulated gene expression. NF-{kappa}B activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-{kappa}B activation. Degradation of I{kappa}B protein was detected late in PRRSV infection, and overexpression of the dominant negative form of I{kappa}B{alpha} (I{kappa}B{alpha}DN) significantly suppressed NF-{kappa}B activation induced by PRRSV. However, I{kappa}B{alpha}DN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-{kappa}B DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-{kappa}B was activated by PRRSV infection. Moreover, NF-{kappa}B-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-{kappa}B activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV.

  16. Porcine arterivirus activates the NF-kappaB pathway through IkappaB degradation.

    PubMed

    Lee, Sang-Myeong; Kleiboeker, Steven B

    2005-11-10

    Nuclear factor-kappaB (NF-kappaB) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-kappaB in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-kappaB activation was characterized by translocation of NF-kappaB from the cytoplasm to the nucleus, increased DNA binding activity, and NF-kappaB-regulated gene expression. NF-kappaB activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-kappaB activation. Degradation of IkappaB protein was detected late in PRRSV infection, and overexpression of the dominant negative form of IkappaBalpha (IkappaBalphaDN) significantly suppressed NF-kappaB activation induced by PRRSV. However, IkappaBalphaDN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-kappaB DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-kappaB was activated by PRRSV infection. Moreover, NF-kappaB-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-kappaB activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV. PMID:16129468

  17. A vacuolar carboxypeptidase mutant of Arabidopsis thaliana is degraded by the ERAD pathway independently of its N-glycan

    SciTech Connect

    Yamamoto, Masaya; Kawanabe, Mitsuyoshi; Hayashi, Yoko; Endo, Toshiya; Nishikawa, Shuh-ichi

    2010-03-12

    Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained in the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.

  18. Different pathways of degradation of SP-A and saturated phosphatidylcholine by alveolar macrophages.

    PubMed

    Baritussio, A; Alberti, A; Armanini, D; Meloni, F; Bruttomesso, D

    2000-07-01

    Alveolar macrophages degrade surfactant protein (SP) A and saturated phosphatidycholine [dipalmitoylphosphatidylcholine (DPPC)]. To clarify this process, using rabbit alveolar macrophages, we analyzed the effect of drugs known to affect phagocytosis, pinocytosis, clathrin-mediated uptake, caveolae, the cytoskeleton, lysosomal pH, protein kinase C, and phosphatidylinositol 3-kinase (PI3K) on the degradation of SP-A and DPPC. We found the following: 1) SP-A binds to the plasma membrane, is rapidly internalized, and then moves toward degradative compartments. Uptake could be clathrin mediated, whereas phagocytosis, pinocytosis, or the use of caveolae are less likely. An intact cytoskeleton and an acidic milieu are necessary for the degradation of SP-A. 2) Stimulation of protein kinase C increases the degradation of SP-A. 3) PI3K influences the degradation of SP-A by regulating both the speed of internalization and subsequent intracellular steps, but its inhibition does not prevent SP-A from reaching the lysosomal compartment. 4) The degradation of DPPC is unaffected by most of the treatments able to influence the degradation of SP-A. Thus it appears that DPPC is degraded by alveolar macrophages through mechanisms very different from those utilized for the degradation of SP-A. PMID:10893207

  19. Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases.

    PubMed

    Sainsbury, Paul D; Mineyeva, Yelena; Mycroft, Zoe; Bugg, Timothy D H

    2015-06-01

    Bacterial lignin degradation could be used to generate aromatic chemicals from the renewable resource lignin, provided that the breakdown pathways can be manipulated. In this study, selective inhibitors of enzymatic steps in bacterial degradation pathways were developed and tested for their effects upon lignin degradation. Screening of a collection of hydroxamic acid metallo-oxygenase inhibitors against two catechol dioxygenase enzymes, protocatechuate 3,4-dioxygenase (3,4-PCD) and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB), resulted in the identification of selective inhibitors D13 for 3,4-PCD (IC50 15μM) and D3 for MhpB (IC50 110μM). Application of D13 to Rhodococcus jostii RHA1 in minimal media containing ferulic acid led to the appearance of metabolic precursor protocatechuic acid at low concentration. Application of 1mM disulfiram, an inhibitor of mammalian aldehyde dehydrogenase, to R. jostii RHA1, gave rise to 4-carboxymuconolactone on the β-ketoadipate pathway, whereas in Pseudomonas fluorescens Pf-5 disulfiram treatment gave rise to a metabolite found to be glycine betaine aldehyde. PMID:25984987

  20. The poxvirus encoded ubiquitin ligase, p28, is regulated by proteasomal degradation and autoubiquitination.

    PubMed

    Mottet, Kelly; Bareiss, Bettina; Milne, Craig D; Barry, Michele

    2014-11-01

    Virus manipulation of the ubiquitin-proteasome system has become increasingly apparent. Ubiquitin is a 76 amino acid protein that is post-translationally conjugated to target proteins, while poly-ubiquitination subsequently leads to degradation via the 26S proteasome. Target specificity is determined by a large family of ubiquitin ligases. Poxviruses encode p28, a highly conserved ubiquitin ligase expressed in a wide range of poxviruses (J. Virol. 79:597). Here we investigate the relationship between p28 and ubiquitination. Confocal microscopy indicated that orthologs of p28 co-localized with ubiquitin at the virus factory. Flow cytometry assays further demonstrated that p28 was regulated by proteasomal degradation. Moreover, when the ubiquitin ligase activity of p28 was disrupted by mutating the RING domain conjugated ubiquitin still localized to the viral factories, indicating that an unknown ubiquitin ligase(s) was responsible for regulating p28. Our observations indicate that p28 is a ubiquitin ligase that is regulated by ubiquitination and proteasomal degradation. PMID:25240226

  1. HUWE1 ubiquitinates MyoD and targets it for proteasomal degradation

    SciTech Connect

    Noy, Tahel; Suad, Oded; Taglicht, Daniel; Ciechanover, Aaron

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer HUWE1 ubiquitinates MyoD in vitro and in cells. Black-Right-Pointing-Pointer The ubiquitination by HUWE1 targets MyoD for proteasomal degradation. Black-Right-Pointing-Pointer HUWE1 can modify MyoD on its N-terminal residue. -- Abstract: MyoD is a tissue-specific transcriptional activator that acts as a master switch for muscle development. It activates a broad array of muscle-specific genes, which leads to conversion of proliferating myoblasts into mature myotubes. The ubiquitin proteasome system (UPS) plays an important role in controlling MyoD. Both its N-terminal residue and internal lysines can be targeted by ubiquitin, and both modifications appear to direct it for proteasomal degradation. The protein is short-lived and has a half-life of {approx}45 min in different cells. It was reported that MyoD can be ubiquitinated by MAFbx/AT-1, but accumulating lines of experimental evidence showed that other ligase(s) may also participate in its targeting. Here we describe the involvement of HUWE1 in the ubiquitination and proteasomal degradation of MyoD. Furthermore, we show that the ligase can ubiquitinate the protein in its N-terminal residue.

  2. The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R

    PubMed Central

    Andrade, José M.; Hajnsdorf, Eliane; Régnier, Philippe; Arraiano, Cecília M.

    2009-01-01

    Polyadenylation is an important factor controlling RNA degradation and RNA quality control mechanisms. In this report we demonstrate for the first time that RNase R has in vivo affinity for polyadenylated RNA and can be a key enzyme involved in poly(A) metabolism. RNase II and PNPase, two major RNA exonucleases present in Escherichia coli, could not account for all the poly(A)-dependent degradation of the rpsO mRNA. RNase II can remove the poly(A) tails but fails to degrade the mRNA as it cannot overcome the RNA termination hairpin, while PNPase plays only a modest role in this degradation. We now demonstrate that in the absence of RNase E, RNase R is the relevant factor in the poly(A)-dependent degradation of the rpsO mRNA. Moreover, we have found that the RNase R inactivation counteracts the extended degradation of this transcript observed in RNase II-deficient cells. Elongated rpsO transcripts harboring increasing poly(A) tails are specifically recognized by RNase R and strongly accumulate in the absence of this exonuclease. The 3′ oligo(A) extension may stimulate the binding of RNase R, allowing the complete degradation of the mRNA, as RNase R is not susceptible to RNA secondary structures. Moreover, this regulation is shown to occur despite the presence of PNPase. Similar results were observed with the rpsT mRNA. This report shows that polyadenylation favors in vivo the RNase R-mediated pathways of RNA degradation. PMID:19103951

  3. Biodegradation of chlorimuron-ethyl and the associated degradation pathway by Rhodococcus sp. D310-1.

    PubMed

    Li, Chunyan; Zang, Hailian; Yu, Qi; Lv, Tongyang; Cheng, Yi; Cheng, Xiaosong; Liu, Keran; Liu, Wanjun; Xu, Pianpian; Lan, Chuanzeng

    2016-05-01

    Chlorimuron-ethyl is a typical long-term residual sulfonylurea herbicide, and strategies for its removal have attracted increasing attention. Microbial degradation is considered the most acceptable dissipation method. In this study, we optimized the cultivation conditions (substrate concentration, pH, inoculum concentration, and temperature) of the chlorimuron-ethyl-degrading bacterium Rhodococcus sp. D310-1 using response surface methodology (RSM) to improve the biodegradation efficiency. A maximum biodegradation rate of 88.95 % was obtained. The Andrews model was used to describe the changes in the specific degradation rate as the substrate concentration increased. Chlorimuron-ethyl could be transformed with a maximum specific degradation rate (q max), half-saturation constant (K S), and inhibition constant (K i) of 0.4327 day(-1), 63.50045 mg L(-1), and 156.76666 mg L(-1), respectively. Eight biodegradation products (2-amino-4-chloro-6-methoxypyrimidine, ethyl 2-sulfamoyl benzoate, 2-sulfamoyl benzoic acid, o-benzoic sulfimide, 2-[[(4-chloro-6-methoxy-2-pyrimidinyl) carbamoyl] sulfamoyl] benzoic acid, ethyl 2-carbonyl sulfamoyl benzoate, ethyl 2-benzenesulfonyl isocyanate benzoate, and N,N-2(ethyl formate)benzene sulfonylurea) were identified, and three possible degradation pathways were proposed based on the results of high performance liquid chromatography HPLC, liquid chromatography tandem mass spectroscopy (LC-MS/MS), and Fourier transform infrared spectroscopy (FTIR) analyses and the relevant literature. This systematic study is the first to examine the chlorimuron-ethyl degradation pathways of the genus Rhodococcus. PMID:26810662

  4. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages. Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pathway ...

  5. Smurf1 represses TNF-α production through ubiquitination and destabilization of USP5.

    PubMed

    Qian, Guanghui; Ren, Ying; Zuo, Yibo; Yuan, Yukang; Zhao, Peng; Wang, Xiaofang; Cheng, Qiao; Liu, Jin; Zhang, Liting; Guo, Tingting; Liu, Chang; Zheng, Hui

    2016-06-01

    Ubiquitin-specific peptidase 5 (USP5) has been demonstrated to be critical for the production of Tumor Necrosis Factor-alpha (TNF-α), a pivotal mediator for inflammatory responses. Besides, USP5 regulates p53 activation and DNA repair. However, the mechanism underlying the regulation of USP5, especially its responsible E3 ligase is still unclear. Here we found that Smad ubiquitination regulatory factor 1 (Smurf1) down regulated protein expression of USP5, and the E3 enzyme activity of Smurf1 was required for this function. We also revealed that Smurf1 interacted with USP5 and mediated its degradation via the ubiquitin proteasome pathway. Consequently, Smurf1 inhibited the production of TNF-α through down-regulation of USP5. Taken together, our study for the first time clarified that the E3 ligase Smurf1 regulates USP5 protein stability and USP5-mediated TNF-α production through the ubiquitin proteasome pathway. PMID:27133717

  6. Protein breakdown in cancer cachexia.

    PubMed

    Sandri, Marco

    2016-06-01

    Skeletal muscle is a highly adaptive tissue, capable of altering muscle fiber size, functional capacity and metabolism in response to physiological stimuli. However, pathological conditions such as cancer growth compromise the mechanisms that regulate muscle homeostasis, resulting in loss of muscle mass, functional impairment and compromised metabolism. This tumor-induced condition is characterized by enhanced muscle protein breakdown and amino acids release that sustain liver gluconeogenesis and tissue protein synthesis. Proteolysis is controlled by the two most important cellular degradation systems, the ubiquitin proteasome and autophagy lysosome. These systems are carefully regulated by different signalling pathways that determine protein and organelle turnover. In this review we will describe the involvement of the ubiquitin proteasome and autophagy lysosome systems in cancer cachexia and the principal signalling pathways that regulate tumor-induced protein breakdown in muscle. PMID:26564688

  7. Coxsackievirus B5 induced apoptosis of HeLa cells: Effects on p53 and SUMO

    SciTech Connect

    Gomes, Rogerio; Guerra-Sa, Renata; Arruda, Eurico

    2010-01-20

    Coxsackievirus B5 (CVB5), a human enterovirus of the family Picornaviridae, is a frequent cause of acute and chronic human diseases. The pathogenesis of enteroviral infections is not completely understood, and the fate of the CVB5-infected cell has a pivotal role in this process. We have investigated the CVB5-induced apoptosis of HeLa cells and found that it happens by the intrinsic pathway by a mechanism dependent on the ubiquitin-proteasome system, associated with nuclear aggregation of p53. Striking redistribution of both SUMO and UBC9 was noted at 4 h post-infection, simultaneously with a reduction in the levels of the ubiquitin-ligase HDM2. Taken together, these results suggest that CVB5 infection of HeLa cells elicit the intrinsic pathway of apoptosis by MDM2 degradation and p53 activation, destabilizing protein sumoylation, by a mechanism that is dependent on a functional ubiquitin-proteasome system.

  8. Comparative genomic analysis of nine Sphingobium strains: Insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways

    SciTech Connect

    Verma, Helianthous; Kumar, Roshan; Oldach, Phoebe; Sangwan, Naseer; Khurana, Jitendra P.; Gilbert, Jack A.; Lal, Rup

    2014-11-23

    Background: Sphingobium spp. are efficient degraders of a wide range of chlorinated and aromatic hydrocarbons. In particular, strains which harbour the lin pathway genes mediating the degradation of hexachlorocyclohexane (HCH) isomers are of interest due to the widespread persistence of this contaminant. Here, we examined the evolution and diversification of the lin pathway under the selective pressure of HCH, by comparing the draft genomes of six newly-sequenced Sphingobium spp. (strains LL03, DS20, IP26, HDIPO4, P25 and RL3) isolated from HCH dumpsites, with three existing genomes (S. indicum B90A, S. japonicum UT26S and Sphingobium sp. SYK6). Results: Efficient HCH degraders phylogenetically clustered in a closely related group comprising of UT26S, B90A, HDIPO4 and IP26, where HDIPO4 and IP26 were classified as subspecies with ANI value >98%. Less than 10% of the total gene content was shared among all nine strains, but among the eight HCH-associated strains, that is all except SYK6, the shared gene content jumped to nearly 25%. Genes associated with nitrogen stress response and two-component systems were found to be enriched. The strains also housed many xenobiotic degradation pathways other than HCH, despite the absence of these xenobiotics from isolation sources. In addition, these strains, although non-motile, but posses flagellar assembly genes. While strains HDIPO4 and IP26 contained the complete set of lin genes, DS20 was entirely devoid of lin genes (except linKLMN) whereas, LL03, P25 and RL3 were identified as lin deficient strains, as they housed incomplete lin pathways. Further, in HDIPO4, linA was found as a hybrid of two natural variants i.e., linA1 and linA2 known for their different enantioselectivity. In conclusion, the bacteria isolated from HCH dumpsites provide a natural testing ground to study variations in the lin system and their

  9. REACTION PATHWAY OF THE DIKETONITRILE DEGRADATE OF ISOXAFLUTOLE (BALANCE(TM)) WITH HYPOCHLORITE IN WATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isoxaflutole (IXF; Balance(TM)) belongs to the new class of isoxazole herbicides. Isoxaflutole has a very short half-life in soil and rapidly degrades to a stable and phytotoxic degradate, diketonitrile (DKN). DKN was previously discovered to rapidly react with hypochlorite (OCl-) in tap water, yie...

  10. Study of Biochemical Pathways and Enzymes Involved in Pyrene Degradation by Mycobacterium sp. Strain KMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrene degradation is known in bacteria. In this study, Mycobacterium sp. Strain KMS was used to study the metabolites produced during, and enzymes involved in, pyrene degradation. Several key metabolites, including pyrene-4,5-dione, cis-4,5-pyrene-dihydrodiol, phenanthrene-4,5-dicarboxylic acid, ...

  11. Activation of FGF-23 Mediated Vitamin D Degradative Pathways by Cholecalciferol

    PubMed Central

    Alshayeb, Hala; Showkat, Arif; Wall, Barry M.; Gyamlani, Geeta G.; David, Valentin

    2014-01-01

    Context: The optimal circulating concentration of 25(OH) vitamin D is controversial. Objective: The aim was to investigate if FGF-23 and 24,25(OH)2D can guide cholecalciferol replacement. Design: Oral cholecalciferol (10,000 IU weekly) administered to subjects with 25(OH)D levels < 20 ηg/mL and eGFR > 60 mL/min/1.73 m2 (n = 25), chronic kidney disease (CKD) (n = 27), or end stage renal disease (ESRD) (n = 14). Setting: The study was conducted at the Veterans Affairs clinics. Main Outcome Measure: Serum FGF-23, PTH, 25(OH)D, 1,25(OH)2D, 24,25(OH)2D, calcium, and phosphorous concentrations, and urinary excretion of calcium and phosphorus at baseline and after 8 weeks of treatment. Results: Cholecalciferol treatment increased concentrations of serum 25(OH)D by (19.3 ± 8 ηg/mL, P = .001; 12.2 ± 9 ηg/mL, P = .0001) and 24,25(OH)2D (1.14 ± 0.89 ηg/mL, P = .0024; 1.0 ± 0.72 ηg/mL P = .0002), and reduced serum PTH (−11 ± 21 pg/mL, P = .0292; −42 ± 68 pg/mL, P = .0494) in normal and CKD subjects, respectively. Cholecalciferol increased serum FGF-23 levels only in normal subjects (44 ± 57 ηg/mL, P = .01). Increments in serum 25(OH)D positively correlated with serum FGF-23 and 24,25(OH)2D and negatively correlated with PTH. In ESRD, cholecalciferol administration increased 25(OH)D by (16.6 ± 6.6 ηg/mL P ≤ .05) without changing 24,25(OH)2D, FGF-23 or PTH levels. Conclusion: Modest elevations of serum 25(OH)D levels after cholecalciferol treatment are sufficient to induce compensatory degradative pathways in patients with sufficient renal reserves, suggesting that optimal circulating 25(OH)D levels are approximately 20 ηg/mL. In addition, catabolism of 25(OH)D may also contribute to the low circulating vitamin D levels in CKD, since elevations of FGF-23 in CKD are associated with increased 24,25(OH)2D after cholecalciferol administration. PMID:24960544

  12. SCFβ-TRCP-mediated degradation of NEDD4 inhibits tumorigenesis through modulating the PTEN/Akt signaling pathway

    PubMed Central

    Inuzuka, Hiroyuki; Liu, Jiankang; Wang, Zhiwei; Wei, Wenyi

    2014-01-01

    The HECT domain-containing ubiquitin E3 ligase NEDD4 is widely expressed in mammalian tissues and plays a crucial role in governing a wide spectrum of cellular processes including cell growth, tissue development and homeostasis. Recent reports have indicated that NEDD4 might facilitate tumorigenesis through targeted degradation of multiple tumor suppressor proteins including PTEN. However, the molecular mechanism by which NEDD4 stability is regulated has not been fully elucidated. Here we report that SCFβ-TRCP governs NEDD4 protein stability by targeting it for ubiquitination and subsequent degradation in a Casein Kinase-I (CKI) phosphorylation-dependent manner. Specifically, depletion of β-TRCP, or inactivation of CKI, stabilized NEDD4, leading to down-regulation of its ubiquitin target PTEN and subsequent activation of the mTOR/Akt oncogenic pathway. Furthermore, we found that CKIδ-mediated phosphorylation of Ser347 and Ser348 on NEDD4 promoted its interaction with SCFβ-TRCP for subsequent ubiquitination and degradation. As a result, compared to ectopic expression of wild-type NEDD4, introducing a non-degradable NEDD4 (S347A/S348A-NEDD4) promoted cancer cell growth and migration. Hence, our findings revealed the CKI/SCFβ-TRCP signaling axis as the upstream negative regulator of NEDD4, and further suggested that enhancing NEDD4 degradation, presumably with CKI or SCFβ-TRCP agonists, could be a promising strategy for treating human cancers. PMID:24657926

  13. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    PubMed Central

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  14. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1.

    PubMed

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  15. Characterization of a new degradation product of nifedipine formed on catalysis by atenolol: A typical case of alteration of degradation pathway of one drug by another.

    PubMed

    Handa, Tarun; Singh, Saranjit; Singh, Inder Pal

    2014-02-01

    An increasing interest is being shown throughout the world on the use of fixed-dose combinations of drugs in the therapy of select diseases, like cardiovascular diseases, due to their multiple advantages. Though the main criterion for combining drugs in a single dosage form is the rationale, but consideration like stability of formulation is equally important, due to an added aspect of drug-drug interaction. The objective of this study was to evaluate interaction among the drugs in an antihypertensive combination of nifedipine and atenolol. Nifedipine is a known light sensitive drug, which degrades via intra-molecular mechanisms to nitro- and nitroso-pyridine analogs, along with a few minor secondary products that are formed through inter-molecular interactions amongst primary degradation products and their intermediates. Atenolol is reasonably stable weakly basic drug that is mainly hydrolyzed at acetamide terminal amide moiety to its corresponding carboxylic acid. To the best of our knowledge, there is no known information on chemical compatibility among the two drugs. The present study involved subjecting of nifedipine, atenolol and their combination to a variety of accelerated and stress conditions. HPLC studies revealed formation of a new product in the mixture of two drugs (∼2%), which was also generated from nifedipine alone, but at trace levels (<0.1%). The product was isolated by preparative chromatography and subjected to indepth studies for its characterization. Ultra-violet, FT-IR, mass spectrometric and nuclear magnetic resonance spectroscopic studies highlighted that the principal photo-degradation pathway of nifedipine was modified and diverted in the presence of atenolol. To verify the same, a study was conducted employing two other β-blockers with similar structures to atenolol, and the same product was formed in relatively higher quantity therein also. The new product is postulated to be produced as a result of rearrangement of hydroxylamine

  16. The Rtr1p CTD phosphatase autoregulates its mRNA through a degradation pathway involving the REX exonucleases

    PubMed Central

    Hodko, Domagoj; Ward, Taylor; Chanfreau, Guillaume

    2016-01-01

    Rtr1p is a phosphatase that impacts gene expression by modulating the phosphorylation status of the C-terminal domain of the large subunit of RNA polymerase II. Here, we show that Rtr1p is a component of a novel mRNA degradation pathway that promotes its autoregulation through turnover of its own mRNA. We show that the 3′UTR of the RTR1 mRNA contains a cis element that destabilizes this mRNA. RTR1 mRNA turnover is achieved through binding of Rtr1p to the RTR1 mRNP in a manner that is dependent on this cis element. Genetic evidence shows that Rtr1p-mediated decay of the RTR1 mRNA involves the 5′-3′ DExD/H-box RNA helicase Dhh1p and the 3′-5′ exonucleases Rex2p and Rex3p. Rtr1p and Rex3p are found associated with Dhh1p, suggesting a model for recruiting the REX exonucleases to the RTR1 mRNA for degradation. Rtr1p-mediated decay potentially impacts additional transcripts, including the unspliced BMH2 pre-mRNA. We propose that Rtr1p may imprint its RNA targets cotranscriptionally and determine their downstream degradation mechanism by directing these transcripts to a novel turnover pathway that involves Rtr1p, Dhh1p, and the REX family of exonucleases. PMID:26843527

  17. Investigation of the photocatalytic degradation pathway of the urine metabolite, creatinine: the effect of pH.

    PubMed

    Antoniou, Maria G; Nambiar, Usha; Dionysiou, Dionysios D

    2009-09-01

    This study investigated the degradation pathway of creatinine (a urine metabolite) with immobilized titanium dioxide photocatalysts. The degradation of creatinine was studied at three different pH values (acidic, neutral and basic) in the absence of buffering solutions. The intermediates formed were identified by using electrospray ionization mass spectrometer (ESI-MS) in both negative and positive ion mode. Two distinct mechanistic pathways which govern the photocatalytic degradation of creatinine irrespective of the pH of the initial solution were identified. The initial solution pH affected only the selectivity between the two mechanisms. The primary oxidation steps of creatinine with hydroxyl radicals included demethylation, hydrogen abstraction, hydroxylation, oxidation, and ring opening. At acidic pH, additional transformation steps of the two mechanisms were identified. The intermediates detected in the positive ion mode, contained at least one atom of nitrogen in their structure, explaining the observed low nitrogen mineralization of creatinine with TiO(2) photocatalysis. The intermediates in the negative ion mode were low molecular weight organic acids that contained only carbon and hydrogen atoms. PMID:19595423

  18. Toxicity removal assessments related to degradation pathways of azo dyes: Toward an optimization of Electro-Fenton treatment.

    PubMed

    Le, Thi Xuan Huong; Nguyen, Thi Van; Yacouba, Zoulkifli Amadou; Zoungrana, Laetitia; Avril, Florent; Petit, Eddy; Mendret, Julie; Bonniol, Valerie; Bechelany, Mikhael; Lacour, Stella; Lesage, Geoffroy; Cretin, Marc

    2016-10-01

    The degradation pathway of Acid Orange 7 (AO7) by Electro-Fenton process using carbon felt cathode was investigated via HPLC-UV and LC-MS, IC, TOC analysis and bioassays (Vibrio Fischeri 81.9% Microtox(®) screening tests). The TOC removal of AO7 reached 96.2% after 8 h treatment with the optimal applied current density at -8.3 mA cm(-2) and 0.2 mM catalyst concentration. The toxicity of treated solution increased rapidly to its highest value at the early stage of electrolysis (several minutes), corresponding to the formation of intermediate poisonous aromatic compounds such as 1,2-naphthaquinone (NAPQ) and 1,4-benzoquinone (BZQ). Then, the subsequent formation of aliphatic short-chain carboxylic acids like acetic acid, formic acid, before the complete mineralization, leaded to a non-toxic solution after 270 min for 500 mL of AO7 (1 mM). Moreover, a quantitative analysis of inorganic ions (i.e. ammonium, nitrate, sulfate) produced during the course of degradation could help to verify molar balance with regard to original nitrogen and sulfur elements. To conclude, a clear degradation pathway of AO7 was proposed, and could further be applied to other persistent pharmaceuticals in aquatic environment. PMID:27441990

  19. The regulatory role of reversible phosphorylation in the chlorophyll degradation pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Senescence represents the final stage of plant development and is characterized by several processes including the systematic degradation of the photosynthetic apparatus and chlorophyll molecules inside chloroplasts. Normally, chlorophyll is catabolized to colorless compounds through a series of enz...

  20. NEDD4-mediated HSF1 degradation underlies α-synucleinopathy.

    PubMed

    Kim, Eunhee; Wang, Bin; Sastry, Namratha; Masliah, Eliezer; Nelson, Peter T; Cai, Huaibin; Liao, Francesca-Fang

    2016-01-15

    Cellular protein homeostasis is achieved by a delicate network of molecular chaperones and various proteolytic processes such as ubiquitin-proteasome system (UPS) to avoid a build-up of misfolded protein aggregates. The latter is a common denominator of neurodegeneration. Neurons are found to be particularly vulnerable to toxic stress from aggregation-prone proteins such as α-synuclein. Induction of heat-shock proteins (HSPs), such as through activated heat shock transcription factor 1 (HSF1) via Hsp90 inhibition, is being investigated as a therapeutic option for proteinopathic diseases. HSF1 is a master stress-protective transcription factor which activates genes encoding protein chaperones (e.g. iHsp70) and anti-apoptotic proteins. However, whether and how HSF1 is dysregulated during neurodegeneration has not been studied. Here, we discover aberrant HSF1 degradation by aggregated α-synuclein (or α-synuclein-induced proteotoxic stress) in transfected neuroblastoma cells. HSF1 dysregulation via α-synuclein was confirmed by in vivo assessment of mouse and in situ studies of human specimens with α-synucleinopathy. We demonstrate that elevated NEDD4 is implicated as the responsible ubiquitin E3 ligase for HSF1 degradation through UPS. Furthermore, pharmacologically induced SIRT1-mediated deacetylation can attenuate aberrant NEDD4-mediated HSF1 degradation. Indeed, we define the acetylation status of the Lys 80 residue located in the DNA-binding domain of HSF1 as a critical factor in modulating HSF1 protein stability in addition to its previously identified role in the transcriptional activity. Together with the finding that preserving HSF1 can alleviate α-synuclein toxicity, this study strongly suggests that aberrant HSF1 degradation is a key neurodegenerative mechanism underlying α-synucleinopathy. PMID:26503960

  1. Mechanism and Reaction Pathways for Microcystin-LR Degradation through UV/H2O2 Treatment.

    PubMed

    Liu, Yafeng; Ren, Jing; Wang, Xiangrong; Fan, Zhengqiu

    2016-01-01

    Microcystin-LR (MCLR) is the most common cyanotoxin in contaminated aquatic systems. MCLR inhibits protein phosphatases 1 and 2A, leading to liver damage and tumor formation. MCLR is relatively stable owing to its cyclic structures. The combined UV/H2O2 technology can degrade MCLR efficiently. The second-order rate constant of the reaction between MCLR and hydroxyl radical (·OH) is 2.79(±0.23)×1010 M-1 s-1 based on the competition kinetics model using nitrobenzene as reference compound. The probable degradation pathway was analyzed through liquid chromatography mass spectrometry. Results suggested that the major destruction pathways of MCLR were initiated by ·OH attack on the benzene ring and diene of the Adda side chain. The corresponding aldehyde or ketone peptide residues were formed through further oxidation. Another minor destruction pathway involved ·OH attack on the methoxy group of the Adda side chain, followed by complete removal of the methoxy group. The combined UV/H2O2 system is a promising technology for MCLR removal in contaminated aquatic systems. PMID:27281173

  2. Mechanism and Reaction Pathways for Microcystin-LR Degradation through UV/H2O2 Treatment

    PubMed Central

    Liu, Yafeng; Ren, Jing; Wang, Xiangrong; Fan, Zhengqiu

    2016-01-01

    Microcystin-LR (MCLR) is the most common cyanotoxin in contaminated aquatic systems. MCLR inhibits protein phosphatases 1 and 2A, leading to liver damage and tumor formation. MCLR is relatively stable owing to its cyclic structures. The combined UV/H2O2 technology can degrade MCLR efficiently. The second-order rate constant of the reaction between MCLR and hydroxyl radical (·OH) is 2.79(±0.23)×1010 M−1 s−1 based on the competition kinetics model using nitrobenzene as reference compound. The probable degradation pathway was analyzed through liquid chromatography mass spectrometry. Results suggested that the major destruction pathways of MCLR were initiated by ·OH attack on the benzene ring and diene of the Adda side chain. The corresponding aldehyde or ketone peptide residues were formed through further oxidation. Another minor destruction pathway involved ·OH attack on the methoxy group of the Adda side chain, followed by complete removal of the methoxy group. The combined UV/H2O2 system is a promising technology for MCLR removal in contaminated aquatic systems. PMID:27281173

  3. A cotranslational ubiquitination pathway for quality control of misfolded proteins.

    PubMed

    Wang, Feng; Durfee, Larissa A; Huibregtse, Jon M

    2013-05-01

    Previous studies have indicated that 6%-30% of newly synthesized proteins are rapidly degraded by the ubiquitin-proteasome system; however, the relationship of ubiquitination to translation for these proteins has been unclear. We report that cotranslational ubiquitination (CTU) is a robust process, with 12%-15% of nascent polypeptides being ubiquitinated in human cells. CTU products contained primarily K48-linked polyubiquitin chains, consistent with a proteasomal targeting function. While nascent chains have been shown previously to be ubiquitinated within stalled complexes (CTU(S)), the majority of nascent chain ubiquitination occurred within active translation complexes (CTU(A)). CTU(A) was increased in response to agents that induce protein misfolding, while CTU(S) was increased in response to agents that lead to translational errors or stalling. These results indicate that ubiquitination of nascent polypeptides occurs in two contexts and define CTU(A) as a component of a quality control system that marks proteins for destruction while they are being synthesized. PMID:23583076

  4. Dysfunction of the autophagy/lysosomal degradation pathway is a shared feature of the genetic synucleinopathies

    PubMed Central

    Manzoni, Claudia; Lewis, Patrick A.

    2014-01-01

    The past decade has witnessed huge advances in our understanding of the genetics underlying Parkinson’s disease. Identifying commonalities in the biological function of genes linked to Parkinson’s provides an opportunity to elucidate pathways that lead to neuronal degeneration and eventually to disease. We propose that the genetic forms of Parkinson’s disease largely associated with α-synuclein-positive neuropathology (SNCA, LRRK2, and GBA) are brought together by involvement in the autophagy/lysosomal pathway and that this represents a unifying pathway to disease in these cases. PMID:23682122

  5. Novel Pathway for the Degradation of 2-Chloro-4-Nitrobenzoic Acid by Acinetobacter sp. Strain RKJ12▿†

    PubMed Central

    Prakash, Dhan; Kumar, Ravi; Jain, R. K.; Tiwary, B. N.

    2011-01-01

    The organism Acinetobacter sp. RKJ12 is capable of utilizing 2-chloro-4-nitrobenzoic acid (2C4NBA) as a sole source of carbon, nitrogen, and energy. In the degradation of 2C4NBA by strain RKJ12, various metabolites were isolated and identified by a combination of chromatographic, spectroscopic, and enzymatic activities, revealing a novel assimilation pathway involving both oxidative and reductive catabolic mechanisms. The metabolism of 2C4NBA was initiated by oxidative ortho dehalogenation, leading to the formation of 2-hydroxy-4-nitrobenzoic acid (2H4NBA), which subsequently was metabolized into 2,4-dihydroxybenzoic acid (2,4-DHBA) by a mono-oxygenase with the concomitant release of chloride and nitrite ions. Stoichiometric analysis indicated the consumption of 1 mol O2 per conversion of 2C4NBA to 2,4-DHBA, ruling out the possibility of two oxidative reactions. Experiments with labeled H218O and 18O2 indicated the involvement of mono-oxygenase-catalyzed initial hydrolytic dechlorination and oxidative denitration mechanisms. The further degradation of 2,4-DHBA then proceeds via reductive dehydroxylation involving the formation of salicylic acid. In the lower pathway, the organism transformed salicylic acid into catechol, which was mineralized by the ortho ring cleavage catechol-1,2-dioxygenase to cis, cis-muconic acid, ultimately forming tricarboxylic acid cycle intermediates. Furthermore, the studies carried out on a 2C4NBA− derivative and a 2C4NBA+ transconjugant demonstrated that the catabolic genes for the 2C4NBA degradation pathway possibly reside on the ∼55-kb transmissible plasmid present in RKJ12. PMID:21803909

  6. Nicotine Dehydrogenase Complexed with 6-Hydroxypseudooxynicotine Oxidase Involved in the Hybrid Nicotine-Degrading Pathway in Agrobacterium tumefaciens S33

    PubMed Central

    Li, Huili; Xie, Kebo; Yu, Wenjun; Hu, Liejie; Huang, Haiyan; Xie, Huijun

    2016-01-01

    Nicotine, a major toxic alkaloid in tobacco wastes, is degraded by bacteria, mainly via pyridine and pyrrolidine pathways. Previously, we discovered a new hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33 and characterized its key enzyme 6-hydroxy-3-succinoylpyridine (HSP) hydroxylase. Here, we purified the nicotine dehydrogenase initializing the nicotine degradation from the strain and found that it forms a complex with a novel 6-hydroxypseudooxynicotine oxidase. The purified complex is composed of three different subunits encoded by ndhAB and pno, where ndhA and ndhB overlap by 4 bp and are ∼26 kb away from pno. As predicted from the gene sequences and from chemical analyses, NdhA (82.4 kDa) and NdhB (17.1 kDa) harbor a molybdopterin cofactor and two [2Fe-2S] clusters, respectively, whereas Pno (73.3 kDa) harbors an flavin mononucleotide and a [4Fe-4S] cluster. Mutants with disrupted ndhA or ndhB genes did not grow on nicotine but grew well on 6-hydroxynicotine and HSP, whereas the pno mutant did not grow on nicotine or 6-hydroxynicotine but grew well on HSP, indicating that NdhA and NdhB are responsible for initialization of nicotine oxidation. We successfully expressed pno in Escherichia coli and found that the recombinant Pno presented 2,6-dichlorophenolindophenol reduction activity when it was coupled with 6-hydroxynicotine oxidation. The determination of reaction products catalyzed by the purified enzymes or mutants indicated that NdhAB catalyzed nicotine oxidation to 6-hydroxynicotine, whereas Pno oxidized 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde pyridine. These results provide new insights into this novel hybrid pathway of nicotine degradation in A. tumefaciens S33. PMID:26729714

  7. Anaerobic degradation of p-ethylphenol by "Aromatoleum aromaticum" strain EbN1: pathway, regulation, and involved proteins.

    PubMed

    Wöhlbrand, Lars; Wilkes, Heinz; Halder, Thomas; Rabus, Ralf

    2008-08-01

    The denitrifying "Aromatoleum aromaticum" strain EbN1 was demonstrated to utilize p-ethylphenol under anoxic conditions and was suggested to employ a degradation pathway which is reminiscent of known anaerobic ethylbenzene degradation in the same bacterium: initial hydroxylation of p-ethylphenol to 1-(4-hydroxyphenyl)-ethanol followed by dehydrogenation to p-hydroxyacetophenone. Possibly, subsequent carboxylation and thiolytic cleavage yield p-hydroxybenzoyl-coenzyme A (CoA), which is channeled into the central benzoyl-CoA pathway. Substrate-specific formation of three of the four proposed intermediates was confirmed by gas chromatographic-mass spectrometric analysis and also by applying deuterated p-ethylphenol. Proteins suggested to be involved in this degradation pathway are encoded in a single large operon-like structure ( approximately 15 kb). Among them are a p-cresol methylhydroxylase-like protein (PchCF), two predicted alcohol dehydrogenases (ChnA and EbA309), a biotin-dependent carboxylase (XccABC), and a thiolase (TioL). Proteomic analysis (two-dimensional difference gel electrophoresis) revealed their specific and coordinated upregulation in cells adapted to anaerobic growth with p-ethylphenol and p-hydroxyacetophenone (e.g., PchF up to 29-fold). Coregulated proteins of currently unknown function (e.g., EbA329) are possibly involved in p-ethylphenol- and p-hydroxyacetophenone-specific solvent stress responses and related to other aromatic solvent-induced proteins of strain EbN1. PMID:18539747

  8. Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway.

    PubMed

    Liao, Xiaoping; Zhang, Caixiang; Liu, Yuan; Luo, Yinwen; Wu, Sisi; Yuan, Songhu; Zhu, Zhenli

    2016-05-01

    Methyl parathion, a widely used insecticide around the world, has aroused gradually extensive concern of researchers due to its degradation product such as methyl paraoxon, with higher toxicity for mammals and more recalcitrant. Given the ubiquity of manganese dioxide (MnO2) in soils and aquatic sediments, the abiotic degradation of methyl parathion by α-MnO2 was investigated in batch experiments. It was found that methyl parathion was decomposed up to 90% by α-MnO2 in 30 h and the removal efficiency of methyl parathion depended strongly on the loading of α-MnO2 and pH value in the solution where the reactions followed pseudo-first-order model well. The coexisting metal ions (such as Ca(2+), Mg(2+) and Mn(2+)) weakened markedly the degradation of methyl parathion by α-MnO2. However, the effect of dissolved organic matter (HA-Na) on reaction rates presented two sides: to improve hydrolysis rate but deteriorate oxidation rate of methyl parathion. Based on the degradation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high-resolution mass spectrometer (LC/HRMS), both hydrolysis and oxidation processes were proposed to be two predominant reaction mechanisms contributing to methyl parathion degradation by α-MnO2. This study provided meaningful information to elucidate the abiotic dissipation of methyl parathion by manganese oxide minerals in the environment. PMID:26891361

  9. Non-oxygen-forming pathways of hydrogen peroxide degradation by bovine liver catalase at low hydrogen peroxide fluxes.

    PubMed

    de Groot, Herbert; Auferkamp, Oliver; Bramey, Thorsten; de Groot, Klaus; Kirsch, Michael; Korth, Hans-Gert; Petrat, Frank; Sustmann, Reiner

    2006-01-01

    Heme catalases are considered to degrade two molecules of H(2)O(2) to two molecules of H(2)O and one molecule of O(2) employing the catalatic cycle. We here studied the catalytic behaviour of bovine liver catalase at low fluxes of H(2)O(2) (relative to catalase concentration), adjusted by H(2)O(2)-generating systems. At a ratio of a H(2)O(2) flux (given in microM/min(- 1)) to catalase concentration (given in microM) of 10 min(- 1) and above, H(2)O(2) degradation occurred via the catalatic cycle. At lower ratios, however, H(2)O(2) degradation proceeded with increasingly diminished production of O(2). At a ratio of 1 min(- 1), O(2) formation could no longer be observed, although the enzyme still degraded H(2)O(2). These results strongly suggest that at low physiological H(2)O(2) fluxes H(2)O(2) is preferentially metabolised reductively to H(2)O, without release of O(2). The pathways involved in the reductive metabolism of H(2)O(2) are presumably those previously reported as inactivation and reactivation pathways. They start from compound I and are operative at low and high H(2)O(2) fluxes but kinetically outcompete the reaction of compound I with H(2)O(2) at low H(2)O(2) production rates. In the absence of NADPH, the reducing equivalents for the reductive metabolism of H(2)O(2) are most likely provided by the protein moiety of the enzyme. In the presence of NADPH, they are at least in part provided by the coenzyme. PMID:16298761

  10. Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway.

    PubMed

    Xiao, Ying; Chen, Shaohua; Gao, Yuanqi; Hu, Wei; Hu, Meiying; Zhong, Guohua

    2015-03-01

    Continuous use of the pyrethroid insecticide beta-cypermethrin (beta-cp) has resulted in serious environmental contamination problems. We report here that a novel bacterial strain BSF01, which was isolated from activated sludge and identified as Bacillus subtilis (collection number: CCTCC AB 2014103), showed high efficiency in degrading beta-cp. Strain BSF01 was able to utilize beta-cp as the sole carbon source for growth and degraded 89.4 % of 50 mg L(-1) beta-cp within 7 days. The optimal conditions for beta-cp degradation were determined to be 34.5 °C, pH 6.7, and inocula amount 0.11 g dry wt L(-1) using response surface methodology. The kinetic parameters q max, K s, and K i were established to be 2.19 day(-1), 76.37 mg L(-1), and 54.14 mg L(-1), respectively. The critical inhibitor concentration was determined to be 64.30 mg L(-1). Seven metabolites were identified by gas chromatography-mass spectrometry. Furthermore, a novel biodegradation pathway for beta-cp was proposed on the basis of analysis of the metabolites. This strain was also capable of degrading a wide range of pyrethroid insecticides including cypermethrin, deltamethrin, cyhalothrin, and beta-cyfluthrin, which similar to beta-cp are hazardous chemicals. Taken together, our results depict the biodegradation pathway of beta-cp and highlight the promising potentials of strain BSF01 in bioremediation of pyrethroid-contaminated environments. PMID:25398281

  11. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages (Mf). Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pat...

  12. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway

    PubMed Central

    2014-01-01

    Background Due to an increasing demand of transportation fuels, a lower availability of cheap crude oil and a lack of sustainability of fossil fuels, a gradual shift from petroleum based fuels towards alternative and renewable fuel resources will be required in the near future. Fatty acid ethyl esters (FAEEs) have properties similar to current crude diesel and could therefore form an important contribution to the development of sustainable transportation fuels in future. It is important to develop novel cell factories for efficient production of FAEEs and their precursors. Results Here, a Saccharomyces cerevisiae cell factory expressing a heterologous wax ester synthase (ws2) from Marinobacter hydrocarbonoclasticus was used to produce FAEEs from ethanol and acyl-coenzyme A (acyl-CoA). The production of acyl-CoA requires large amounts of NADPH and acetyl-CoA. Therefore, two metabolic engineering strategies for improved provision of NADPH and acetyl-CoA were evaluated. First, the ethanol degradation pathway was employed to re-channel carbon flow towards the synthesis of acetyl-CoA. Therefore, ADH2 and ALD6 encoding, respectively, alcohol dehydrogenase and acetaldehyde dehydrogenase were overexpressed together with the heterologous gene acsSEL641P encoding acetyl-CoA synthetase. The co-overexpression of ADH2, ALD6 and acsSEL641P with ws2 resulted in 408 ± 270 μg FAEE gCDW−1, a 3-fold improvement. Secondly, for the expression of the PHK pathway two genes, xpkA and ack, both descending from Aspergillus nidulans, were co-expressed together with ws2 to catalyze, respectively, the conversion of xylulose-5-phosphate to acetyl phosphate and glyceraldehyde-3-phosphate and acetyl phosphate to acetate. Alternatively, ack was substituted with pta from Bacillus subtilis, encoding phosphotransacetylase for the conversion of acetyl phosphate to acetyl-CoA. Both PHK pathways were additionally expressed in a strain with multiple chromosomally integrated ws2 gene, which

  13. Unraveling the metabolic pathway in Leucosceptrum canum by isolation of new defensive leucosceptroid degradation products and biomimetic model synthesis.

    PubMed

    Luo, Shi-Hong; Hugelshofer, Cedric L; Hua, Juan; Jing, Shu-Xi; Li, Chun-Huan; Liu, Yan; Li, Xiao-Nian; Zhao, Xu; Magauer, Thomas; Li, Sheng-Hong

    2014-12-19

    Seven new leucosceptroid degradation products possessing a C20, C21, or C25 framework, norleucosceptroids D-H (1-5), leucosceptroids P (6), and Q (7), have been isolated from Leucosceptrum canum. Their structures were determined by comprehensive NMR, MS, and single-crystal X-ray diffraction analyses. Discovery of these key intermediates, together with the biomimetic oxidation of a model system, supports the hypothesis that two biosynthetic pathways are operative. Antifeedant activity was observed for compounds 1-3. PMID:25474304

  14. Methylated arsenic metabolites bind to PML protein but do not induce cellular differentiation and PML-RARα protein degradation.

    PubMed

    Wang, Qian Qian; Zhou, Xin Yi; Zhang, Yan Fang; Bu, Na; Zhou, Jin; Cao, Feng Lin; Naranmandura, Hua

    2015-09-22

    Arsenic trioxide (As2O3) is one of the most effective therapeutic agents used for patients with acute promyelocytic leukemia (APL). The probable explanation for As2O3-induced cell differentiation is the direct targeting of PML-RARα oncoprotein by As2O3, which results in initiation of PML-RARα degradation. However, after injection, As2O3 is rapidly methylated in body to different intermediate metabolites such as trivalent monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)), therefore, it remains unknown that which arsenic specie is actually responsible for the therapeutic effects against APL. Here we have shown the role of As2O3 (as iAs(III)) and its intermediate metabolites (i.e., MMA(III)/DMA(III)) in NB4 cells. Inorganic iAs(III) predominantly showed induction of cell differentiation, while MMA(III) and DMA(III) specifically showed to induce mitochondria and endoplasmic reticulum-mediated apoptosis, respectively. On the other hand, in contrast to iAs(III), MMA(III) showed stronger binding affinity for ring domain of PML recombinant protein, however, could not induce PML protein SUMOylation and ubiquitin/proteasome degradation. In summary, our results suggest that the binding of arsenicals to the ring domain of PML proteins is not associated with the degradation of PML-RARα fusion protein. Moreover, methylated arsenicals can efficiently lead to cellular apoptosis, however, they are incapable of inducing NB4 cell differentiation. PMID:26213848

  15. Methylated arsenic metabolites bind to PML protein but do not induce cellular differentiation and PML-RARα protein degradation

    PubMed Central

    Zhang, Yan Fang; Bu, Na; Zhou, Jin; Cao, Feng Lin; Naranmandura, Hua

    2015-01-01

    Arsenic trioxide (As2O3) is one of the most effective therapeutic agents used for patients with acute promyelocytic leukemia (APL). The probable explanation for As2O3-induced cell differentiation is the direct targeting of PML-RARα oncoprotein by As2O3, which results in initiation of PML-RARa degradation. However, after injection, As2O3 is rapidly methylated in body to different intermediate metabolites such as trivalent monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII), therefore, it remains unknown that which arsenic specie is actually responsible for the therapeutic effects against APL. Here we have shown the role of As2O3 (as iAsIII) and its intermediate metabolites (i.e., MMAIII/DMAIII) in NB4 cells. Inorganic iAsIII predominantly showed induction of cell differentiation, while MMAIII and DMAIII specifically showed to induce mitochondria and endoplasmic reticulum-mediated apoptosis, respectively. On the other hand, in contrast to iAsIII, MMAIII showed stronger binding affinity for ring domain of PML recombinant protein, however, could not induce PML protein SUMOylation and ubiquitin/proteasome degradation. In summary, our results suggest that the binding of arsenicals to the ring domain of PML proteins is not associated with the degradation of PML-RARa fusion protein. Moreover, methylated arsenicals can efficiently lead to cellular apoptosis, however, they are incapable of inducing NB4 cell differentiation. PMID:26213848

  16. A Polyomic Approach To Elucidate the Fluoranthene-Degradative Pathway in Mycobacterium vanbaalenii PYR-1▿ †

    PubMed Central

    Kweon, Ohgew; Kim, Seong-Jae; Jones, Richard C.; Freeman, James P.; Adjei, Michael D.; Edmondson, Ricky D.; Cerniglia, Carl E.

    2007-01-01

    Mycobacterium vanbaalenii PYR-1 is capable of degrading a wide range of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), including fluoranthene. We used a combination of metabolomic, genomic, and proteomic technologies to investigate fluoranthene degradation in this strain. Thirty-seven fluoranthene metabolites including potential isomers were isolated from the culture medium and analyzed by high-performance liquid chromatography, gas chromatography-mass spectrometry, and UV-visible absorption. Total proteins were separated by one-dimensional gel and analyzed by liquid chromatography-tandem mass spectrometry in conjunction with the M. vanbaalenii PYR-1 genome sequence (http://jgi.doe.gov), which resulted in the identification of 1,122 proteins. Among them, 53 enzymes were determined to be likely involved in fluoranthene degradation. We integrated the metabolic information with the genomic and proteomic results and proposed pathways for the degradation of fluoranthene. According to our hypothesis, the oxidation of fluoranthene is initiated by dioxygenation at the C-1,2, C-2,3, and C-7,8 positions. The C-1,2 and C-2,3 dioxygenation routes degrade fluoranthene via fluorene-type metabolites, whereas the C-7,8 routes oxidize fluoranthene via acenaphthylene-type metabolites. The major site of dioxygenation is the C-2,3 dioxygenation route, which consists of 18 enzymatic steps via 9-fluorenone-1-carboxylic acid and phthalate with the initial ring-hydroxylating oxygenase, NidA3B3, oxidizing fluoranthene to fluoranthene cis-2,3-dihydrodiol. Nonspecific monooxygenation of fluoranthene with subsequent O methylation of dihydroxyfluoranthene also occurs as a detoxification reaction. PMID:17449607

  17. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the curre...

  18. Organellar oligopeptidase (OOP) provides a complementary pathway for targeting peptide degradation in mitochondria and chloroplasts

    PubMed Central

    Kmiec, Beata; Teixeira, Pedro F.; Berntsson, Ronnie P.-A.; Murcha, Monika W.; Branca, Rui M. M.; Radomiljac, Jordan D.; Regberg, Jakob; Svensson, Linda M.; Bakali, Amin; Langel, Ülo; Lehtiö, Janne; Whelan, James; Stenmark, Pål; Glaser, Elzbieta

    2013-01-01

    Both mitochondria and chloroplasts contain distinct proteolytic systems for precursor protein processing catalyzed by the mitochondrial and stromal processing peptidases and for the degradation of targeting peptides catalyzed by presequence protease. Here, we have identified and characterized a component of the organellar proteolytic systems in Arabidopsis thaliana, the organellar oligopeptidase, OOP (At5g65620). OOP belongs to the M3A family of peptide-degrading metalloproteases. Using two independent in vivo methods, we show that the protease is dually localized to mitochondria and chloroplasts. Furthermore, we localized the OPP homolog At5g10540 to the cytosol. Analysis of peptide degradation by OOP revealed substrate size restriction from 8 to 23 aa residues. Short mitochondrial targeting peptides (presequence of the ribosomal protein L29 and presequence of 1-aminocyclopropane-1-carboxylic acid deaminase 1) and N- and C-terminal fragments derived from the presequence of the ATPase beta subunit ranging in size from 11 to 20 aa could be degraded. MS analysis showed that OOP does not exhibit a strict cleavage pattern but shows a weak preference for hydrophobic residues (F/L) at the P1 position. The crystal structures of OOP, at 1.8–1.9 Å, exhibit an ellipsoidal shape consisting of two major domains enclosing the catalytic cavity of 3,000 Å3. The structural and biochemical data suggest that the protein undergoes conformational changes to allow peptide binding and proteolysis. Our results demonstrate the complementary role of OOP in targeting-peptide degradation in mitochondria and chloroplasts. PMID:24043784

  19. (13)C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H.

    PubMed

    Ostermann, Steffen; Richhardt, Janine; Bringer, Stephanie; Bott, Michael; Wiechert, Wolfgang; Oldiges, Marco

    2015-01-01

    Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner-Doudoroff pathway (EDP) and the pentose phosphate pathway (PPP). Here we studied the in vivo contributions of the two pathways to glucose catabolism on a microtiter scale. In our approach we applied specifically (13)C labeled glucose, whereby a labeling pattern in alanine was generated intracellularly. This method revealed a dynamic growth phase-dependent pathway activity with increased activity of EDP in the first and PPP in the second growth phase, respectively. Evidence for a growth phase-independent decarboxylation-carboxylation cycle around the pyruvate node was obtained from (13)C fragmentation patterns of alanine. For the first time, down-scaled microtiter plate cultivation together with (13)C-labeled substrate was applied for G. oxydans to elucidate pathway operation, exhibiting reasonable labeling costs and allowing for sufficient replicate experiments. PMID:26404385

  20. 13C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H

    PubMed Central

    Ostermann, Steffen; Richhardt, Janine; Bringer, Stephanie; Bott, Michael; Wiechert, Wolfgang; Oldiges, Marco

    2015-01-01

    Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner–Doudoroff pathway (EDP) and the pentose phosphate pathway (PPP). Here we studied the in vivo contributions of the two pathways to glucose catabolism on a microtiter scale. In our approach we applied specifically 13C labeled glucose, whereby a labeling pattern in alanine was generated intracellularly. This method revealed a dynamic growth phase-dependent pathway activity with increased activity of EDP in the first and PPP in the second growth phase, respectively. Evidence for a growth phase-independent decarboxylation-carboxylation cycle around the pyruvate node was obtained from 13C fragmentation patterns of alanine. For the first time, down-scaled microtiter plate cultivation together with 13C-labeled substrate was applied for G. oxydans to elucidate pathway operation, exhibiting reasonable labeling costs and allowing for sufficient replicate experiments. PMID:26404385

  1. Gingipain-dependent degradation of mTOR pathway proteins by the periodontal pathogen Porphyromonas gingivalis during invasion

    PubMed Central

    Stafford, Prachi; Higham, Jon; Pinnock, Abigail; Murdoch, Craig; Douglas, C. W. Ian; Stafford, Graham P; Lambert, Daniel W

    2014-01-01

    SUMMARY Porphyromonas gingivalis and Tannerella forsythia are Gram-negative pathogens strongly associated with periodontitis. Their abilities to interact, invade and persist within host cells are considered crucial to their pathogenicity, but the mechanisms by which they subvert host defences are not well understood. In this study, we set out to investigate whether P. gingivalis and T. forsythia directly target key signalling molecules which may modulate the host cell phenotype to favour invasion and persistence. Our data identify, for the first time, that P. gingivalis, but not T. forsythia, reduces levels of intracellular mammalian target of rapamycin (mTOR) in oral epithelial cells following invasion over a 4 hour time course, via the action of gingipains. The ability of cytochalasin D to abrogate P. gingivalis-mediated mTOR degradation suggests that this effect is dependent upon cellular invasion. We also show that levels of several other proteins in the mTOR signalling pathway are modulated by gingipains, either directly or as a consequence of mTOR degradation including p-4E-BP1. Taken together, our data suggests that P. gingivalis manipulates the mTOR pathway, providing evidence for a potentially novel mechanism by which P. gingivalis mediates its effects on host cell responses to infection. PMID:23714361

  2. Mutations in NGLY1 Cause an Inherited Disorder of the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway

    PubMed Central

    Enns, Gregory M.; Shashi, Vandana; Bainbridge, Matthew; Gambello, Michael J.; Zahir, Farah R.; Bast, Thomas; Crimian, Rebecca; Schoch, Kelly; Platt, Julia; Cox, Rachel; Bernstein, Jonathan; Scavina, Mena; Walter, Rhonda S.; Bibb, Audrey; Jones, Melanie; Hegde, Madhuri; Graham, Brett H.; Need, Anna C.; Oviedo, Angelica; Schaaf, Christian P.; Boyle, Sean; Butte, Atul J.; Chen, Rong; Clark, Michael J.; Haraksingh, Rajini; Cowan, Tina M.; He, Ping; Langlois, Sylvie; Zoghbi, Huda Y.; Snyder, Michael; Gibbs, Richard; Freeze, Hudson H.; Goldstein, David B.

    2014-01-01

    Purpose The endoplasmic reticulum-associated degradation (ERAD) pathway is responsible for the translocation of misfolded proteins across the ER membrane into the cytosol for subsequent degradation by the proteasome. In order to understand the spectrum of clinical and molecular findings in a complex neurological syndrome, we studied a series of eight patients with inherited deficiency of N-glycanase 1 (NGLY1), a novel disorder of cytosolic ERAD dysfunction. Methods Whole-genome, whole-exome or standard Sanger sequencing techniques were employed. Retrospective chart reviews were performed in order to obtain clinical data. Results All patients had global developmental delay, a movement disorder, and hypotonia. Other common findings included hypo- or alacrima (7/8), elevated liver transaminases (6/7), microcephaly (6/8), diminished reflexes (6/8), hepatocyte cytoplasmic storage material or vacuolization (5/6), and seizures (4/8). The nonsense mutation c.1201A>T (p.R401X) was the most common deleterious allele. Conclusions NGLY1 deficiency is a novel autosomal recessive disorder of the ERAD pathway associated with neurological dysfunction, abnormal tear production, and liver disease. The majority of patients detected to date carry a specific nonsense mutation that appears to be associated with severe disease. The phenotypic spectrum is likely to enlarge as cases with a more broad range of mutations are detected. PMID:24651605

  3. Amyloid-Beta Protein Clearance and Degradation (ABCD) Pathways and their Role in Alzheimer’s Disease

    PubMed Central

    Baranello, Robert J.; Bharani, Krishna L.; Padmaraju, Vasudevaraju; Chopra, Nipun; Lahiri, Debomoy K.; Greig, Nigel H.; Pappolla, Miguel A.; Sambamurti, Kumar

    2016-01-01

    Amyloid-β proteins (Aβ) of 42 (Aβ42) and 40 aa (Aβ40) accumulate as senile plaques (SP) and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer’s disease (AD). A number of rare mutations linked to familial AD (FAD) on the Aβ precursor protein (APP), Presenilin-1 (PS1), Presenilin-2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the ε4 allele of Apolipoprotein E (ApoE-ε4) foster the accumulation of Aβ and also induce the entire spectrum of pathology associated with the disease. Aβ accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD. APP is sequentially processed by β-site APP cleaving enzyme (BACE1) and γ-secretase, a multisubunit PS1/PS2-containing integral membrane protease, to generate Aβ. Although Aβ accumulates in all forms of AD, the only pathways known to be affected in FAD increase Aβ production by APP gene duplication or via base substitutions on APP and γ-secretase subunits PS1 and PS2 that either specifically increase the yield of the longer Aβ42 or both Aβ40 and Aβ42. However, the vast majority of AD patients accumulate Aβ without these known mutations. This led to proposals that impairment of Aβ degradation or clearance may play a key role in AD pathogenesis. Several candidate enzymes, including Insulin-degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme (ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully evaluated in animal models. Several studies also have demonstrated the capacity of γ-secretase inhibitors to paradoxically increase the yield of Aβ and we have recently established that the mechanism is by skirting Aβ degradation. This review outlines major cellular pathways of Aβ degradation to provide a basis for future efforts to fully characterize the panel of pathways responsible for

  4. Elucidation of the upper pathway of alicyclic musk Romandolide degradation in OECD screening tests with activated sludge.

    PubMed

    Seyfried, M; Boschung, A; Miffon, F; Ohleyer, E; Chaintreau, A

    2014-01-01

    The degradation of Romandolide ([1-(3',3'-dimethyl-1'-cyclohexyl)ethoxycarbonyl] methyl propanoate), a synthetic alicyclic musk, by activated sludge inocula was investigated using both the manometric respirometry test OECD 301F and the CO₂ evolution test. In addition to measuring its biodegradability, key steps of the upper part of the metabolic pathway responsible for Romandolide degradation were identified using extracts at different time points of incubation. Early metabolism of Romandolide yielded ester hydrolysis products, including Cyclademol (1-(3,3-dimethylcyclohexyl)ethanol). The principal metabolites after 31 days were identified as 3,3-dimethyl cyclohexanone and 3,3-dimethyl cyclohexyl acetate. Formation of 3,3-dimethyl cyclohexanone from Cyclademol by sludge was confirmed in subsequent experiments using Cyclademol as a substrate, indicating the involvement of an oxygen insertion reminiscent of a Baeyer-Villiger oxidation. Further mineralization of 3,3-dimethyl cyclohexanone was also confirmed in subsequent studies. Three steps were thus required for complete biodegradation of the alicyclic musk: (1) successive ester hydrolyses leading to the formation of Cyclademol with concomitant degradation of the resulting acids, (2) conversion of Cyclademol into 3,3-dimethyl cyclohexanone, and (3) further mineralization via ring cleavage. PMID:24277432

  5. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    PubMed

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation. PMID:26468606

  6. Cystic Fibrosis Transmembrane Conductance Regulator Controls Lung Proteasomal Degradation and Nuclear Factor-κB Activity in Conditions of Oxidative Stress

    PubMed Central

    Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky

    2008-01-01

    Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427

  7. Limb-girdle muscular dystrophy (LGMD-1C) mutants of caveolin-3 undergo ubiquitination and proteasomal degradation. Treatment with proteasomal inhibitors blocks the dominant negative effect of LGMD-1C mutanta and rescues wild-type caveolin-3.

    PubMed

    Galbiati, F; Volonte, D; Minetti, C; Bregman, D B; Lisanti, M P

    2000-12-01

    Caveolin-3 is the principal structural protein of caveolae in striated muscle. Autosomal dominant limb-girdle muscular dystrophy (LGMD-1C) in humans is due to mutations (DeltaTFT and Pro --> Leu) within the CAV3 gene. We have shown that LGMD-1C mutations lead to formation of unstable aggregates of caveolin-3 that are retained intracellularly and are rapidly degraded. The mechanism by which LGMD-1C mutants of caveolin-3 are degraded remains unknown. Here, we show that LGMD-1C mutants of caveolin-3 undergo ubiquitination-proteasomal degradation. Treatment with proteasomal inhibitors (MG-132, MG-115, lactacystin, or proteasome inhibitor I), but not lysosomal inhibitors, prevented degradation of LGMD-1C caveolin-3 mutants. In the presence of MG-132, LGMD-1C caveolin-3 mutants accumulated within the endoplasmic reticulum and did not reach the plasma membrane. LGMD-1C mutants of caveolin-3 behave in a dominant negative fashion, causing intracellular retention and degradation of wild-type caveolin-3. Interestingly, in cells co-expressing wild-type and mutant forms of caveolin-3, MG-132 treatment rescued wild-type caveolin-3; wild-type caveolin-3 was not degraded and reached the plasma membrane. These results may have clinical implications for treatment of patients with LGMD-1C. PMID:10973975

  8. Candida albicans Utilizes a Modified β-Oxidation Pathway for the Degradation of Toxic Propionyl-CoA*

    PubMed Central

    Otzen, Christian; Bardl, Bettina; Jacobsen, Ilse D.; Nett, Markus; Brock, Matthias

    2014-01-01

    Propionyl-CoA arises as a metabolic intermediate from the degradation of propionate, odd-chain fatty acids, and some amino acids. Thus, pathways for catabolism of this intermediate have evolved in all kingdoms of life, preventing the accumulation of toxic propionyl-CoA concentrations. Previous studies have shown that fungi generally use the methyl citrate cycle for propionyl-CoA degradation. Here, we show that this is not the case for the pathogenic fungus Candida albicans despite its ability to use propionate and valerate as carbon sources. Comparative proteome analyses suggested the presence of a modified β-oxidation pathway with the key intermediate 3-hydroxypropionate. Gene deletion analyses confirmed that the enoyl-CoA hydratase/dehydrogenase Fox2p, the putative 3-hydroxypropionyl-CoA hydrolase Ehd3p, the 3-hydroxypropionate dehydrogenase Hpd1p, and the putative malonate semialdehyde dehydrogenase Ald6p essentially contribute to propionyl-CoA degradation and its conversion to acetyl-CoA. The function of Hpd1p was further supported by the detection of accumulating 3-hydroxypropionate in the hpd1 mutant on propionyl-CoA-generating nutrients. Substrate specificity of Hpd1p was determined from recombinant purified enzyme, which revealed a preference for 3-hydroxypropionate,