Note: This page contains sample records for the topic ubiquitin-proteasome degradation pathway from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast  

ERIC Educational Resources Information Center

|This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

2006-01-01

2

Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast  

ERIC Educational Resources Information Center

This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

2006-01-01

3

Insulin stimulation of PKC? triggers its rapid degradation via the ubiquitin-proteasome pathway.  

PubMed

Insulin rapidly upregulates protein levels of PKC? in classical insulin target tissues skeletal muscle and liver. Insulin induces both a rapid increase in de novo synthesis of PKC? protein. In this study we examined the possibility that insulin may also inhibit degradation of PKC?. Experiments were performed on L6 skeletal muscle myoblasts or myotubes in culture. Phorbol ester (PMA)- and insulin-induced degradation of PKC? were abrogated by proteasome inhibition. Both PMA and insulin induced ubiquitination of PKC?, but not of that PKC? or PKC? and increased proteasome activity within 5 min. We examined the role of tyrosine phosphorylation of PKC? in targeting PKC? for degradation by the ubiquitin-proteasome pathway. Transfection of cells with PKC?Y(311)F, which is not phosphorylated, resulted in abolition of insulin-induced ubiquitination of PKC? and increase in proteasome activity. We conclude that insulin induces degradation of PKC? via the ubiquitin-proteasome system, and that this effect requires phosphorylation on specific tyrosine residues for targeting PKC? for degradation by the ubiquitin-proteasome pathway. These studies provide additional evidence for unique effects of insulin on regulation of PKC? protein levels. PMID:20708645

Brand, Chagit; Horovitz-Fried, Miriam; Inbar, Aya; Tamar-Brutman-Barazani; Brodie, Chaya; Sampson, Sanford R

2010-08-12

4

Degradation of CFTR by the ubiquitin-proteasome pathway  

Microsoft Academic Search

Most cases of cystic fibrosis are caused by mutations that interfere with the biosynthetic folding of the cystic fibrosis transmembrane conductance regulator (CFTR), leading to the rapid degradation of CFTR molecules that have not matured beyond the endoplasmic reticulum (ER). The mechanism by which integral membrane proteins including CFTR are recognized and targeted for ER degradation and the proteolytic machinery

Cristina L. Ward; Satoshi Omura; Ron R. Kopito

1995-01-01

5

Serogroup-Related Escape of Yersinia enterocolitica YopE from Degradation by the Ubiquitin-Proteasome Pathway  

Microsoft Academic Search

Pathogenic Yersinia spp. employ a type III protein secretion system that translocates several Yersinia outer proteins (Yops) into the host cell to modify the host immune response. One strategy of the infected host cell to resist the bacterial attack is degradation and inactivation of injected bacterial virulence proteins through the ubiquitin-proteasome pathway. The cytotoxin YopE is a known target protein

Moritz Hentschke; Konrad Trulzsch; Jurgen Heesemann; Martin Aepfelbacher; Klaus Ruckdeschel

2007-01-01

6

Degradation of the Met tyrosine kinase receptor by the ubiquitin-proteasome pathway.  

PubMed Central

The Met tyrosine kinase receptor is a widely expressed molecule which mediates pleiotropic cellular responses following activation by its ligand, hepatocyte growth factor/scatter factor (HGF/SF). In this communication we demonstrate that significant Met degradation is induced by HGF/SF and that this degradation can be blocked by lactacystin, an inhibitor of proteasome activity. We also show that Met is rapidly polyubiquitinated in response to ligand and that polyubiquitinated Met molecules, which are normally unstable, are stabilized by lactacystin. Both HGF/SF-induced degradation and polyubiquitination of Met were shown to be dependent on the receptor possessing intact tyrosine kinase activity. Finally, we found that a normally highly labile 55-kDa fragment of the Met receptor is stabilized by lactacystin and demonstrate that it represents a cell-associated remnant that is generated following the ligand-independent proteolytic cleavage of the Met receptor in its extracellular domain. This truncated Met molecule encompasses the kinase domain of the receptor and is itself tyrosine phosphorylated. We conclude that the ubiquitin-proteasome pathway plays a significant role in the degradation of the Met tyrosine kinase receptor as directed by ligand-dependent and -independent signals. We propose that this proteolytic pathway may be important for averting cellular transformation by desensitizing Met signaling following ligand stimulation and by eliminating potentially oncogenic fragments generated via extracellular cleavage of the Met receptor.

Jeffers, M; Taylor, G A; Weidner, K M; Omura, S; Vande Woude, G F

1997-01-01

7

The significance of ubiquitin proteasome pathway in cancer development.  

PubMed

The ubiquitin proteasome pathway is the most significant intracellular proteolytic pathway. The target proteins are usually ubiquitinated prior to degradation by the proteasome; however, ubiquitin-independent targeting mechanisms have also been reported (e.g., the antizyme-mediated degradation of ornithine decarboxylase). Aberrations in the components of the ubiquitin proteasome pathway are commonly observed in many cancers, and uncontrolled growth of cancer cells can result either from stabilization of oncoproteins (e.g., c-jun) or increased degradation of tumor suppressor proteins (e.g., p53). In addition, due to the pleiotropic functions of the ubiquitin proteasome pathway in cells, there is great interest in developing inhibitors to specifically block this pathway for cancer treatment. This review summarizes the recent literature and several patented inventions on the ubiquitin proteasome pathway with respect to its role in cancer development and treatment. PMID:23061719

Yerlikaya, Azmi; Yöntem, Mustafa

2013-09-01

8

Ubiquitin, proteasomes, and the regulation of intracellular protein degradation  

Microsoft Academic Search

Rapid degradation of specific proteins by ubiquitin\\/proteasome-dependent pathways is a component of many cellular regulatory mechanisms. Recent work has shown that protein ubiquitination and deubiquitination are both mediated by large families of enzymes and that proteolysis can be modulated by alterations of the proteasome itself. The complexity of the ubiquitin system is reflected in the broad range of processes it

Mark Hochstrasser

1995-01-01

9

The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation.  

PubMed

Lung injury, whether caused by hypoxic or mechanical stresses, elicits a variety of responses at the cellular level. Alveolar epithelial cells respond and adapt to such injurious stimuli by reorganizing the cellular cytoskeleton, mainly accomplished through modification of the intermediate filament (IF) network. The structural and mechanical integrity in epithelial cells is maintained through this adaptive reorganization response. Keratin, the predominant IF expressed in epithelial cells, displays highly dynamic properties in response to injury, sometimes in the form of degradation of the keratin IF network. Post-translational modification, such as phosphorylation, targets keratin proteins for degradation in these circumstances. As with other structural and regulatory proteins, turnover of keratin is regulated by the ubiquitin (Ub)-proteasome pathway. The degradation process begins with activation of Ub by the Ub-activating enzyme (E1), followed by the exchange of Ub to the Ub-conjugating enzyme (E2). E2 shuttles the Ub molecule to the substrate-specific Ub ligase (E3), which then delivers the Ub to the substrate protein, thereby targeting it for degradation. In some cases of injury and IF-related disease, aggresomes form in epithelial cells. The mechanisms that regulate aggresome formation are currently unknown, although proteasome overload may play a role. Therefore, a more complete understanding of keratin degradation--causes, mechanisms, and consequences--will allow for a greater understanding of epithelial cell biology and lung pathology alike. PMID:20160151

Rogel, Micah R; Jaitovich, Ariel; Ridge, Karen M

2010-02-01

10

Genome-wide approaches to systematically identify substrates of the ubiquitin/proteasome pathway  

PubMed Central

The ubiquitin/proteasome system handles the majority of controlled proteolysis in eukaryotes. Defects in the ubiquitin/proteasome system have been implicated in diseases ranging from cancers to neurodegenerative disorders. However, the precise role of ubiquitin/proteasome-mediated degradation in health and disease is far from clear. A major challenge is to link specific substrates directly to a particular degradation pathway. Here, we review genome-wide approaches that have been developed in recent years to comprehensively identify ubiquitylated substrates of a particular pathway. The components of the ubiquitin/proteasome system are attractive drug targets, as illustrated by the efficacy of some proteasome inhibitors in the treatment of multiple myeloma. Information that has emerged from these studies could reveal novel drug targets and strategies for treating human diseases.

Liu, Chang; Choe, Vitnary; Rao, Hai

2010-01-01

11

Diversity of degradation signals in the ubiquitin–proteasome system  

Microsoft Academic Search

The ubiquitin–proteasome system degrades an enormous variety of proteins that contain specific degradation signals, or 'degrons'. Besides the degradation of regulatory proteins, almost every protein suffers from sporadic biosynthetic errors or misfolding. Such aberrant proteins can be recognized and rapidly degraded by cells. Structural and functional data on a handful of degrons allow several generalizations regarding their mechanism of action.

Tommer Ravid; Mark Hochstrasser

2008-01-01

12

Selective degradation of aggregate-prone CryAB mutants by HSPB1 is mediated by ubiquitin-proteasome pathways  

PubMed Central

Disease-causing mutations of genes encoding small MW heat shock proteins (sHSPs) constitute a growing family of inherited myofibrillar disorders. In the present work, we found that three structurally-distinct CryAB mutants R120G, 450delA and 464delCT are mostly present in the detergent-insoluble fractions when overexpressed in H9c2 rat heart cells. We found that either over-expression or knockdown of HSPB1, a related sHSP, affects the solubility, stability, and degradation of aggregation-prone CryAB mutants. HSPB1 overexpression has negligible effects on the solubility and protein aggregates of either R120G and/or 450delA but increased the solubility and prevented formation of 464delCT aggregates. HSPB1 knockdown decreased solubility and increased protein aggregates of all CryAB mutants, indicating a key role for HSPB1 in clearance of CryAB mutants under basal conditions. We provide four lines of evidence that such selective clearance of R120G, 450delA and 464delCT mutants by HSPB1 is mediated by the ubiquitin–proteasome system (UPS). First, we found that treatment with the proteasome inhibitors increased the levels of all CryAB mutants. Second, R120G and 450delA overexpression corresponded to the accumulation of their specific ubiquitin conjugates in H9c2 cells. Third, HSPB1 knockdown directly increased the levels of all polyubiquitin conjugates. And fourth, the selective attenuation of 464delCT expression by HSPB1 over-expression was abrogated by the proteasome inhibition. We conclude that such selective interactions between CryAB mutants and HSPB1 overexpression might have important implications for the clinical manifestations and potential treatment.

Zhang, Huali; Rajasekaran, Namakkal S.; Orosz, Andras; Xiao, Xianzhong; Rechsteiner, Martin; Benjamin, Ivor J.

2010-01-01

13

Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of ?-synuclein  

PubMed Central

Increased intracellular levels of ?-synuclein are implicated in Parkinson’s disease and related disorders and may be caused by alterations in the ubiquitin-proteasome system (UPS) or the autophagy-lysosomal pathway (ALP). A critical question remains how ?-synuclein is degraded by neurons in vivo. To address this, our study uses ?-synuclein transgenic mice, expressing human ?-synuclein or ?-synuclein-eGFP under the (h)PDGF-? promoter, in combination with in vivo pharmacologic and multiphoton imaging strategies to systematically test degradation pathways in the living mouse brain. We demonstrate that the UPS is the main degradation pathway for ?-synuclein under normal conditions in vivo while with increased ?-synuclein burden the ALP is recruited. Moreover, we report alterations of the UPS in ?-synuclein transgenic mice and age dependence to the role of the UPS in ?-synuclein degradation. In addition, we provide evidence that the UPS and ALP might be functionally connected such that impairment of one can upregulate the other. These results provide a novel link between the UPS, the ALP and ?-synuclein pathology and may have important implications for future therapeutics targeting degradation pathways.

Ebrahimi-Fakhari, Darius; Cantuti-Castelvetri, Ippolita; Fan, Zhanyun; Rockenstein, Edward; Masliah, Eliezer; Hyman, Bradley T.; McLean, Pamela J.; Unni, Vivek K.

2013-01-01

14

The Ubiquitin-Proteasome Pathway as a Therapeutic Target for Muscle Wasting  

Microsoft Academic Search

Atrophy of skeletal muscle is common to a number of condi- tions, including cancer, sepsis, AIDS, renal failure, diabetes, severe trauma, and burns. In all cases, protein synthesis in skeletal muscle is depressed, whereas protein degradation is increased through an increase in activity and expression of the ubiquitin-proteasome proteolytic pathway. This pathway is not responsive to simple nutritional intervention. Certain

Michael J. Tisdale

2005-01-01

15

The Ubiquitin-Proteasome Pathway and Synaptic Plasticity  

ERIC Educational Resources Information Center

|Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

Hegde, Ashok N.

2010-01-01

16

Immunoglobulin light chains dictate vesicular transport-dependent and -independent routes for IgM degradation by the ubiquitin-proteasome pathway.  

PubMed

Degradation of IgM mu heavy chains in light chain-negative pre-B cells is independent of vesicular transport, as is evident by its insensitivity to brefeldin A or cell permeabilization. Conversely, by the same criteria, degradation of the secretory mu heavy chain in light chain-expressing B cells depends on vesicular transport. To investigate whether the presence of conventional light chains or the developmental stage of the B-lymphocytes dictates the degradative route taken by mu, we express in 70Z/3 pre-B cells either lambda ectopically or kappa by lipopolysaccharides-stimulated differentiation into B cells and show their assembly with mu heavy chains. The resulting sensitivity of mu degradation to brefeldin A and cell permeabilization demonstrates that conventional light chains, a hallmark of B cell differentiation, are necessary and sufficient to divert mu from a vesicular transport-independent to a vesicular transport-dependent degradative route. Although both routes converge at the ubiquitin-proteasome degradation pathway, only in light chain-expressing cells is vesicular transport a prerequisite for mu ubiquitination. PMID:12754269

Elkabetz, Yechiel; Kerem, Anat; Tencer, Lilach; Winitz, Dorit; Kopito, Ron R; Bar-Nun, Shoshana

2003-05-23

17

REGULATION OF THE UBIQUITIN PROTEASOME PATHWAY IN HUMAN LENS EPITHELIAL CELLS DURING THE CELL CYCLE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Most proliferating cells follow a series of orderly transitions from one phase to another. These transitions are usually controlled by timed degradation of cell cycle regulators by the ubiquitin-proteasome pathway (UPP). There are no published reports regarding the timing of phases of the human lens...

18

The N-Terminal Region of Nurr1 (a.a 1-31) Is Essential for Its Efficient Degradation by the Ubiquitin Proteasome Pathway  

PubMed Central

NURR1/NR4A2 is an orphan nuclear receptor that is critical for the development and maintenance of mesencephalic dopaminergic neurons and regulates transcription of genes involved in the function of dopaminergic neurons directly via specific NGFI-B response elements (NBRE).and substantial data support a possible role of Nurr1 in the pathogenesis of Parkinson's disease (PD). Here we show that Nurr1 is degraded by the ubiquitin-proteasome pathway and determined that N-terminal region (a.a 1–31) of Nurr1 is essential for an efficient targeting of Nurr1 to degradation in the cell. Nurr1 ?1–31 has a much longer half-life, and as a consequence its steady-state protein levels were higher, than full-length Nurr1 in the cell. Nurr1 ?1–31 was as potent as Nurr1 full length in transcriptional luciferase reporter assays after normalization with the corresponding steady-state protein expression levels, either in trans-activation of NBRE or trans-repression of iNOS (inducible NO synthase) reporters. These results suggest that Nurr1 ?1–31, because of longer persistence in the cell, can be a good candidate for gene and cell therapies in the treatment of PD.

Alvarez-Castelao, Beatriz; Losada, Fernando; Ahicart, Patricia; Castano, Jose G.

2013-01-01

19

The N-terminal region of Nurr1 (a.a 1-31) is essential for its efficient degradation by the ubiquitin proteasome pathway.  

PubMed

NURR1/NR4A2 is an orphan nuclear receptor that is critical for the development and maintenance of mesencephalic dopaminergic neurons and regulates transcription of genes involved in the function of dopaminergic neurons directly via specific NGFI-B response elements (NBRE).and substantial data support a possible role of Nurr1 in the pathogenesis of Parkinson's disease (PD). Here we show that Nurr1 is degraded by the ubiquitin-proteasome pathway and determined that N-terminal region (a.a 1-31) of Nurr1 is essential for an efficient targeting of Nurr1 to degradation in the cell. Nurr1 ?1-31 has a much longer half-life, and as a consequence its steady-state protein levels were higher, than full-length Nurr1 in the cell. Nurr1 ?1-31 was as potent as Nurr1 full length in transcriptional luciferase reporter assays after normalization with the corresponding steady-state protein expression levels, either in trans-activation of NBRE or trans-repression of iNOS (inducible NO synthase) reporters. These results suggest that Nurr1 ?1-31, because of longer persistence in the cell, can be a good candidate for gene and cell therapies in the treatment of PD. PMID:23409108

Alvarez-Castelao, Beatriz; Losada, Fernando; Ahicart, Patrícia; Castaño, Jose G

2013-02-07

20

High-throughput bioluminescence screening of ubiquitin-proteasome pathway inhibitors from chemical and natural sources.  

PubMed

To discover original inhibitors of the ubiquitin-proteasome pathway, the authors have developed a cell-based bioluminescent assay and used it to screen collections of plant extracts and chemical compounds. They first established a DLD-1 human colon cancer cell line that stably expresses a 4Ubiquitin-Luciferase (4Ub-Luc) reporter protein, efficiently targeted to the ubiquitin-proteasome degradation pathway. The assay was then adapted to 96- and 384-well plate formats and calibrated with reference proteasome inhibitors. Assay robustness was carefully assessed, particularly cell toxicity, and the statistical Z factor value was calculated to 0.83, demonstrating a good performance level of the assay. A total of 18,239 molecules and 15,744 plant extracts and fractions thereof were screened for their capacity to increase the luciferase activity in DLD-1 4Ub-Luc cells, and 21 molecules and 66 extracts inhibiting the ubiquitin-proteasome pathway were identified. The fractionation of an active methanol extract of Physalis angulata L. aerial parts was performed to isolate 2 secosteroids known as physalin B and C. In a cell-based Western blot assay, the ubiquitinated protein accumulation was confirmed after a physalin treatment confirming the accuracy of the screening process. The method reported here thus provides a robust approach to identify novel ubiquitin-proteasome pathway inhibitors in large collections of chemical compounds and natural products. PMID:17175525

Ausseil, Frederic; Samson, Arnaud; Aussagues, Yannick; Vandenberghe, Isabelle; Creancier, Laurent; Pouny, Isabelle; Kruczynski, Anna; Massiot, Georges; Bailly, Christian

2006-12-14

21

Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications  

PubMed Central

The ubiquitin/proteasome pathway is the major proteolytic quality control system in cells. In this review we discuss the impact of a deregulation of this pathway on neuronal function and its causal relationship to the intracellular deposition of ubiquitin protein conjugates in pathological inclusion bodies in all the major chronic neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and Huntington’s diseases as well as amyotrophic lateral sclerosis. We describe the intricate nature of the ubiquitin/proteasome pathway and discuss the paradox of protein aggregation, i.e. its potential toxic/protective effect in neurodegeneration. The relations between some of the dysfunctional components of the pathway and neurodegeneration are presented. We highlight possible ubiquitin/proteasome pathway-targeting therapeutic approaches, such as activating the proteasome, enhancing ubiquitination and promoting SUMOylation that might be important to slow/treat the progression of neurodegeneration. Finally, a model time line is presented for neurodegeneration starting at the initial injurious events up to protein aggregation and cell death, with potential time points for therapeutic intervention.

Huang, Qian; Figueiredo-Pereira, Maria E.

2010-01-01

22

Degradation signal diversity in the ubiquitin-proteasome system  

PubMed Central

Preface The ubiquitin-proteasome system degrades an enormous variety of proteins, which are targeted by specific degradation signals (degrons). Besides the degradation of regulatory proteins, virtually every protein suffers from sporadic biosynthetic errors or misfolding, and cells can recognize such aberrant proteins and rapidly degrade them. Structural and functional data on a handful of degrons allows some generalizations about their mechanism of action. We focus on different strategies of degron recognition by the ubiquitin system, and contrast regulatory degrons subject to signalling-dependent modification and those controlled by protein folding or assembly, as frequently occurs during protein quality control.

Ravid, Tommer; Hochstrasser, Mark

2008-01-01

23

Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer cachexia  

Microsoft Academic Search

Muscle protein degradation is thought to play a major role in muscle atrophy in cancer cachexia. To investigate the importance of the ubiquitin-proteasome pathway, which has been suggested to be the main degradative pathway mediating progressive protein loss in cachexia, the expression of mRNA for proteasome subunits C2 and C5 as well as the ubiquitin-conjugating enzyme, E214k, has been determined

J Khal; S M Wyke; S T Russell; A V Hine; M J Tisdale

2005-01-01

24

TGF-beta induces degradation of TAL1/SCL by the ubiquitin-proteasome pathway through AKT-mediated phosphorylation.  

PubMed

T-cell acute lymphoblastic leukemia 1 (TAL1), also known as stem cell leukemia (SCL), plays important roles in differentiation of hematopoietic and endothelial cells and is deregulated in a high percentage of T-cell acute lymphoblastic leukemia (T-ALL). In this report we show that the intracellular concentration of TAL1 is regulated by transforming growth factor beta (TGF-beta), which triggers its polyubiquitylation and degradation by the proteasome. This effect is mediated by AKT1, which phosphorylates TAL1 at threonine 90. Immunoprecipitation experiments showed that this event increases association of TAL1 with the E3 ubiquitin ligase CHIP. The E47 heterodimerization partner of TAL1 hinders this association. Our observations indicate that activation of the TGF-beta and phosphatidylinositol 3-kinase/AKT pathways might reverse overexpression of TAL1 in leukemic cells by inducing proteolysis of this important oncogene. PMID:19406989

Terme, Jean-Michel; Lhermitte, Ludovic; Asnafi, Vahid; Jalinot, Pierre

2009-04-30

25

Angiotensin-(1-7) through AT receptors mediates tyrosine hydroxylase degradation via the ubiquitin-proteasome pathway.  

PubMed

Hypothalamic norepinephrine (NE) release regulates arterial pressure by altering sympathetic nervous system activity. Because angiotensin (Ang) (1-7) decreases hypothalamic NE release and this effect may be correlated with a diminished NE synthesis, we hypothesize that Ang-(1-7) down-regulates tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamines biosynthesis. We investigated the effect of Ang-(1-7) on centrally TH activity and expression. TH activity was evaluated by the release of tritiated water from (3)H-l-tyrosine. TH expression and phosphorylation were determined by western blot. Hypothalami from normotensive or spontaneously hypertensive rats pre-incubated with Ang-(1-7) showed a significant decrease in TH specific activity. Ang-(1-7) caused a decrease in TH phosphorylation at Ser19 and Ser40 residues. The heptapeptide induced a decrease in TH expression that was blocked by an AT(2) receptor antagonist and not by an AT(1) or Mas receptor antagonist, suggesting the involvement of AT(2) receptors. The proteasome inhibitor MG132 blocked the Ang-(1-7)-mediated TH reduction. In addition, Ang-(1-7) increased the amount of TH-ubiquitin complexes, indicating that the Ang-(1-7)-mediated TH degradation involves ubiquitin conjugation prior to proteasome degradation. We conclude that Ang-(1-7) down-regulates TH activity and expression centrally leading to a decrease in the central NE system activity. PMID:19183250

Lopez Verrilli, María A; Pirola, Carlos J; Pascual, Mariano M; Dominici, Fernando P; Turyn, Daniel; Gironacci, Mariela M

2009-01-22

26

The cell senescence inducing gene product MORF4 is regulated by degradation via the ubiquitin/proteasome pathway.  

PubMed

After undergoing several rounds of divisions normal human fibroblasts enter a terminally non-dividing state referred to as cellular or replicative senescence. We cloned MORF4 (mortality factor on human chromosome 4), as a cellular senescence inducing gene that caused immortal cells assigned to complementation group B for indefinite division to stop dividing. To facilitate analyses of this gene, which is toxic to cells at low levels, we obtained stable clones of HeLa cells expressing a tetracycline-induced MORF4 construct that could be induced by doxycycline in a dose-dependent manner. MORF4 induction resulted in reduced colony formation after 14 days of culture, as previously observed. We determined that MORF4 protein was unstable and that addition of the proteasome inhibitor MG132 resulted in the accumulation of the protein. Following removal of MG132 the protein was rapidly degraded. Subcellular fractionation following MG132 treatment demonstrated that the protein accumulates primarily in the cytoplasm with some amounts present in the nucleus. It is therefore possible that MORF4 protein, which escapes degradation in the cytoplasm, is transported to the nucleus where it is functional. The results suggest that levels of MORF4 in cells must be tightly controlled and one mechanism involves stability of the protein. PMID:19769966

Tominaga, Kaoru; Tominaga, Emiko; Ausserlechner, Michael J; Pereira-Smith, Olivia M

2009-09-19

27

Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy.  

PubMed

Selective degradation of proteins by the ubiquitin-proteasome pathway is a critical determinant for maintaining cellular homeostasis. Most intracellular proteins are degraded by the proteasome, a multicatalytic enzyme complex containing a 20S catalytic core and two 19S regulatory complexes. Many proteasome target proteins are involved in the regulation of important processes of carcinogenesis and cancer cell survival, such as cell cycle progression, cell proliferation, differentiation and apoptosis. Indeed, the ubiquitin-proteasome-dependent degradation pathway plays an essential role in both the up-regulation of cell proliferation and down-regulation of cell death in human cancer cells. Both in vitro and in vivo experimental and clinical results have demonstrated the potential use of proteasome inhibitors as novel anticancer drugs. Proteasome inhibition in cancer cells leads to accumulation of pro-apoptotic target proteins followed by induction of cell death. The clinical efficacy of the proteasome inhibitor bortezomib toward multiple myeloma and other hematologic malignancies provides the "proof of concept" that targeting the proteasome is a promising strategy for cancer treatment. Several other proteasome inhibitors have also been identified from natural resources, such as marine microbial metabolites, green tea polyphenols, flavonoids, and medicinal compounds. Additionally, the use of metal complexes as proteasome inhibitors has also been investigated as a potential anticancer strategy. The clinical significance of targeting the tumor survival-associated proteasome pathway for cancer treatment, intervention and prevention will be discussed. PMID:21824109

Frezza, Michael; Schmitt, Sara; Dou, Q Ping

2011-12-01

28

Ubiquitin-proteasome pathway function is required for lens cell proliferation and differentiation  

Technology Transfer Automated Retrieval System (TEKTRAN)

The ubiquitin proteasome pathway is involved in the regulation of many cellular processes, such as cell cycle control, signal transduction, transcription, and removal of obsolete proteins. The objective of this work was to investigate roles for this proteolytic pathway in controlling the differentia...

29

DUAL FUNCTIONS OF UBIQUITIN-PROTEASOME PATHWAY IN LENS PROTEIN QUALITY CONTROL  

Technology Transfer Automated Retrieval System (TEKTRAN)

Accumulation of damaged or denatured proteins is associated with cataract. The purpose of this study is to determine roles of ubiquitin-proteasome pathway (UPP) in removal and repair of damaged proteins. Cultured human lens epithelial cells (HLEC) were exposed to physiologically relevant level of H2...

30

The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders  

Microsoft Academic Search

A unifying feature of neurodegenerative diseases is the abnormal accumulation and processing of mutant or damaged intra- and extracellular proteins; this leads to selective neuronal vulnerability and dysfunction. The ubiquitin-proteasomal pathway (UPP) is poised to play a central role in the processing of damaged and toxic proteins by ubiquitin-dependent proteolysis. The UPP can be overwhelmed in several neurodegenerative diseases. This

Kenny K. K Chung; Valina L Dawson; Ted M Dawson

2001-01-01

31

The ubiquitin ligase F-box/G-domain protein 1 promotes the degradation of the disease-linked protein torsinA through the ubiquitin-proteasome pathway and macroautophagy.  

PubMed

DYT1 dystonia is a dominantly inherited, disabling neurological disorder with low penetrance that is caused by the deletion of a glutamic acid (?E) in the protein torsinA. We previously showed that torsinA(wt) is degraded through macroautophagy while torsinA(?E) is targeted to the ubiquitin-proteasome pathway (UPP). The different catabolism of torsinA(wt) and (?E) potentially modulates torsinA(wt):torsinA(?E) stoichiometry. Therefore, gaining a mechanistic understanding on how the protein quality control machinery clears torsinA(?E) in neurons may uncover important regulatory steps in disease pathogenesis. Here, we asked whether F-box/G-domain protein 1 (FBG1), a ubiquitin ligase known to degrade neuronal glycoproteins, is implicated in the degradation of torsinA(?E) by the UPP. In a first set of studies completed in cultured cells, we show that FBG1 interacts with and influences the steady-state levels of torsinA(wt) and (?E). Interestingly, FBG1 achieves this effect promoting the degradation of torsinA not only through the UPP, but also by macroautophagy. To determine the potential clinical significance of these findings, we asked if eliminating expression of Fbg1 triggers a motor phenotype in torsinA(?E) knock in (KI) mice, a model of non-manifesting DYT1 mutation carriers. We detected differences in spontaneous locomotion between aged torsinA(?E) KI-Fbg1 knock out and control mice. Furthermore, neuronal levels of torsinA were unaltered in Fbg1 null mice, indicating that redundant systems likely compensate in vivo for the absence of this ubiquitin ligase. In summary, our studies support a non-essential role for FBG1 on the degradation of torsinA and uncover a novel link of FBG1 to the autophagy pathway. PMID:22917612

Gordon, K L; Glenn, K A; Bode, N; Wen, H M; Paulson, H L; Gonzalez-Alegre, P

2012-08-20

32

Regulation of Ubiquitin-Proteasome System-mediated Degradation by Cytosolic Stress  

PubMed Central

ER-associated, ubiquitin-proteasome system (UPS)-mediated degradation of the wild-type (WT) gap junction protein connexin32 (Cx32) is inhibited by mild forms of cytosolic stress at a step before its dislocation into the cytosol. We show that the same conditions (a 30-min, 42°C heat shock or oxidative stress induced by arsenite) also reduce the endoplasmic reticulum (ER)-associated turnover of disease-causing mutants of Cx32 and the cystic fibrosis transmembrane conductance regulator (CFTR), as well as that of WT CFTR and unassembled Ig light chain. Stress-stabilized WT Cx32 and CFTR, but not the mutant/unassembled proteins examined, could traverse the secretory pathway. Heat shock also slowed the otherwise rapid UPS-mediated turnover of the cytosolic proteins myoD and GFPu, but not the degradation of an ubiquitination-independent construct (GFP-ODC) closely related to the latter. Analysis of mutant Cx32 from cells exposed to proteasome inhibitors and/or cytosolic stress indicated that stress reduces degradation at the level of substrate polyubiquitination. These findings reveal a new link between the cytosolic stress-induced heat shock response, ER-associated degradation, and polyubiquitination. Stress-denatured proteins may titer a limiting component of the ubiquitination machinery away from pre-existing UPS substrates, thereby sparing the latter from degradation.

Kelly, Sean M.; VanSlyke, Judy K.

2007-01-01

33

Regulation of ubiquitin-proteasome system mediated degradation by cytosolic stress.  

PubMed

ER-associated, ubiquitin-proteasome system (UPS)-mediated degradation of the wild-type (WT) gap junction protein connexin32 (Cx32) is inhibited by mild forms of cytosolic stress at a step before its dislocation into the cytosol. We show that the same conditions (a 30-min, 42 degrees C heat shock or oxidative stress induced by arsenite) also reduce the endoplasmic reticulum (ER)-associated turnover of disease-causing mutants of Cx32 and the cystic fibrosis transmembrane conductance regulator (CFTR), as well as that of WT CFTR and unassembled Ig light chain. Stress-stabilized WT Cx32 and CFTR, but not the mutant/unassembled proteins examined, could traverse the secretory pathway. Heat shock also slowed the otherwise rapid UPS-mediated turnover of the cytosolic proteins myoD and GFPu, but not the degradation of an ubiquitination-independent construct (GFP-ODC) closely related to the latter. Analysis of mutant Cx32 from cells exposed to proteasome inhibitors and/or cytosolic stress indicated that stress reduces degradation at the level of substrate polyubiquitination. These findings reveal a new link between the cytosolic stress-induced heat shock response, ER-associated degradation, and polyubiquitination. Stress-denatured proteins may titer a limiting component of the ubiquitination machinery away from pre-existing UPS substrates, thereby sparing the latter from degradation. PMID:17699585

Kelly, Sean M; Vanslyke, Judy K; Musil, Linda S

2007-08-15

34

Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program  

PubMed Central

The transcriptional activator WRKY45 plays a major role in the salicylic acid/benzothiadiazole-induced defense program in rice. Here, we show that the nuclear ubiquitin–proteasome system (UPS) plays a role in regulating the function of WRKY45. Proteasome inhibitors induced accumulation of polyubiquitinated WRKY45 and transient up-regulation of WRKY45 target genes in rice cells, suggesting that WRKY45 is constantly degraded by the UPS to suppress defense responses in the absence of defense signals. Mutational analysis of the nuclear localization signal indicated that UPS-dependent WRKY45 degradation occurs in the nuclei. Interestingly, the transcriptional activity of WRKY45 after salicylic acid treatment was impaired by proteasome inhibition. The same C-terminal region in WRKY45 was essential for both transcriptional activity and UPS-dependent degradation. These results suggest that UPS regulation also plays a role in the transcriptional activity of WRKY45. It has been reported that AtNPR1, the central regulator of the salicylic acid pathway in Arabidopsis, is regulated by the UPS. We found that OsNPR1/NH1, the rice counterpart of NPR1, was not stabilized by proteasome inhibition under uninfected conditions. We discuss the differences in post-translational regulation of salicylic acid pathway components between rice and Arabidopsis.

Matsushita, Akane; Inoue, Haruhiko; Goto, Shingo; Nakayama, Akira; Sugano, Shoji; Hayashi, Nagao; Takatsuji, Hiroshi

2013-01-01

35

Regulation of Ubiquitin-Proteasome System mediated Degradation by Cytosolic Stress  

Microsoft Academic Search

ER-associated, ubiquitin-proteasome system (UPS)-mediated degradation of the wild-type (WT) gap junction protein connexin32 (Cx32) is inhibited by mild forms of cytosolic stress at a step before its dislocation into the cytosol. We show that the same conditions (a 30-min, 42°C heat shock or oxidative stress induced by arsenite) also reduce the endoplasmic reticulum (ER)-associated turnover of disease-causing mutants of Cx32

Sean M. Kelly; Judy K. VanSlyke; Linda S. Musil

2007-01-01

36

The ubiquitin-proteasome pathway is important for dengue virus infection in primary human endothelial cells.  

PubMed

Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are the most severe forms of dengue virus infection with hemorrhage and plasma leakage. However, pathogenic mechanisms of DHF and DSS remain poorly understood. We therefore investigated host responses as determined by changes in the cellular proteome of primary human endothelial cells upon infection with dengue virus serotype 2 (DEN-2) at a multiplicity of infection (MOI) of 10 for 24 h. Two-dimensional PAGE and quantitative intensity analysis revealed 38 significantly altered protein spots (16 upregulated and 22 downregulated) in DEN-2-infected cells compared to mock controls. These altered proteins were successfully identified by mass spectrometry, including those involved in oxidative stress response, transcription and translation, cytoskeleton assembly, protein degradation, cell growth regulation, apoptosis, cellular metabolism, and antiviral response. The proteomic data were validated by Western blot analyses [upregulated ubiquitin-activating enzyme E1 (UBE1) and downregulated annexin A2] and an immunofluorescence study (upregulated MxA). Interestingly, we found that MxA was colocalized with DEN-2 viral capsid protein, strengthening its role as an antiviral protein. Moreover, we also identified upregulation of a proteasome subunit. Our functional study revealed the significant role of ubiquitination in dengue infection and UBE1 inhibition by its specific inhibitor (UBEI-41) caused a significant reduction in the level of viral protein synthesis and its infectivity. Our findings suggest that various biological processes were triggered in response to dengue infection, particularly antiviral IFN and ubiquitin-proteasome pathways. PMID:20718508

Kanlaya, Rattiyaporn; Pattanakitsakul, Sa-nga; Sinchaikul, Supachok; Chen, Shui-Tein; Thongboonkerd, Visith

2010-10-01

37

Malformed selenoproteins are removed by the ubiquitin--proteasome pathway in Stanleya pinnata.  

PubMed

Despite the widely accepted belief that selenium toxicity in plants is manifested by the misincorporation of selenocysteine into selenoproteins, there is a lack of data suggesting that selenoproteins are malformed or misfolded. Plant mechanisms to prevent the formation of selenoproteins are associated with increased selenium tolerance, yet there is no evidence to suggest that selenoproteins are malformed or potentially misfolded. We reasoned that if selenoproteins are malformed, then they might be degraded by the ubiquitin-proteasome pathway. The data demonstrate that selenate treatment induced the accumulation of both oxidized and ubiquitinated proteins, thus implicating both the 20S and 26S proteasome of Stanleya pinnata, a selenium-hyperaccumulating plant, in a selenate response. Inhibition of the proteasome increases the amount of selenium incorporated into protein, but not other elements. Furthermore, a higher percentage of selenium was found in a ubiquitinated protein fraction compared with other elements, suggesting that malformed selenoproteins are preferentially ubiquitinated and removed by the proteasome. Additionally, levels of the 20S and 26S proteasome and two heat shock proteins increase upon selenate treatment. Arabidopsis mutants with defects in the 26S proteasome have decreased selenium tolerance, which further supports the hypothesis that the 26S proteasome probably prevents selenium toxicity by removing selenoproteins. PMID:22323770

Sabbagh, Melissa; Van Hoewyk, Doug

2012-02-09

38

Space shuttle flight (STS90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin-proteasome pathway  

Microsoft Academic Search

To elucidate the mechanisms of microgravity-induced muscle atrophy, we focused on fast-type myosin heavy chain (MHC) degradation and expression of proteases in atrophied gastrocnemius muscles of neonatal rats exposed to 16-d spaceflight (STS-90). The spaceflight stimulated ubiquitination of proteins, including a MHC molecule, and accumulation of MHC degradation fragments in the muscles. Semiquantitative reverse transcriptase-polymerase chain reaction revealed that the

Madoka Ikemoto; Takeshi Nikawa; Shin' ichi Takeda; Chiho Watanabe; Takako Kitano; Kenneth M. Baldwin; Ryutaro Izumi; Ikuya Nonaka; Takae Towatari; Shigetada Teshima; Kazuhito Rokutan; Kyoichi Kishi

2001-01-01

39

?-catenin is a target for the ubiquitin–proteasome pathway  

Microsoft Academic Search

?-catenin is a central component of the cadherin cell adhesion complex and plays an essential role in the Wingless\\/Wnt signaling pathway. In the current model of this pathway, the amount of ?-catenin (or its invertebrate homolog Armadillo) is tightly regulated and its steady-state level outside the cadherin–catenin complex is low in the absence of Wingless\\/Wnt signal. Here we show that

Hermann Aberle; Andreas Bauer; Jörg Stappert; Andreas Kispert; Rolf Kemler

1997-01-01

40

Involvement of the ubiquitin\\/proteasome pathway in the organisation and polarised growth of kiwifruit pollen tubes  

Microsoft Academic Search

We recently reported the involvement of the ubiquitin pathway in microgametophyte development, and a direct role for the 26S proteasome in regulating pollen tube emergence in kiwifruit. Here we show that the ubiquitin\\/proteasome proteolytic pathway is involved not only in early kiwifruit pollen tube organisation, but also in maintaining polarised growth of tubes. By immunofluorescence analysis we show that ubiquitin

V. Scoccianti; E. Ovidi; A. R. Taddei; A. Tiezzi; R. Crinelli; L. Gentilini; A. Speranza

2003-01-01

41

FBXO15 regulates P-glycoprotein/ABCB1 expression through the ubiquitin--proteasome pathway in cancer cells.  

PubMed

Expression of P-glycoprotein (P-gp)/ABCB1 on cancer cell surfaces is a critical determinant of anticancer drug resistance. Regulators of P-gp expression and function are key molecules controlling drug resistance. Here we report the mechanism underlying the ubiquitin-proteasome pathway-mediated degradation of P-gp. The proteasome inhibitor MG132 increased the P-gp level, enhanced its ubiquitination, and delayed the disappearance of the ubiquitinated P-gp. To search for regulators of P-gp ubiquitination, MALDI-time of flight mass spectrometry analyses were carried out, and 22 candidates were identified as P-gp binding partners. Among them, FBXO15/Fbx15 is known as an F-box protein in the ubiquitin E3 ligase complex, Skp1-Cullin1-FBXO15 (SCF(Fbx15) ); therefore, we further studied the involvement of FBXO15 on P-gp degradation. Coprecipitation assays revealed that FBXO15 bound to P-gp. We screened ubiquitin-conjugating enzyme E2s that bind to FBXO15 and P-gp; Ube2r1/Cdc34/Ubc3 was found to be a binding partner. Exogenous FBXO15 expression enhanced P-gp ubiquitination, but FBXO15 knockdown suppressed it. FBXO15 knockdown increased P-gp expression without affecting its mRNA level. Ube2r1 knockdown decreased P-gp ubiquitination, and simultaneous knockdown of Ube2r1 with FBXO15 further suppressed the ubiquitination. Ube2r1 knockdown increased P-gp expression, suggesting that Ube2r1 is a partner of FBXO15 in P-gp ubiquitination. FBXO15 knockdown enhanced vincristine resistance and lowered intracellular levels of rhodamine 123. These data suggest that FBXO15 and Ube2r1 regulate P-gp expression through the ubiquitin-proteasome pathway. PMID:23465077

Katayama, Kazuhiro; Noguchi, Kohji; Sugimoto, Yoshikazu

2013-04-15

42

IMPAIRMENT OF UBIQUITIN-PROTEASOME PATHWAY IN RETINAL PIGMENT EPITHELIAL CELLS ENHANCES EXPRESSION AND SECRETION OF VASCULAR ENDOTHELIAL GROWTH FACTOR  

Technology Transfer Automated Retrieval System (TEKTRAN)

Choroidal neovascularization (CNV) is a hallmark of age-related macular degeneration (AMD). Angiogenic factors produced by retinal pigment epithelial cells (RPE) are major contributors to CNV development. The ubiquitin-proteasome pathway (UPP) plays critical roles in many cellular processes, such as...

43

Oxidative Stress, NF-?B and the Ubiquitin Proteasomal Pathway in the Pathology of Calpainopathy.  

PubMed

The neuromuscular disorder, calpainopathy (LGMD 2A), is a major muscular dystrophy classified under limb girdle muscular dystrophies. Genetic mutations of the enzyme calpain 3 cause LGMD 2A. Calpainopathy is phenotypically observed as progressive muscle wasting and weakness. Pathomechanisms of muscle wasting of calpainopathy remain poorly understood. Oxidative stress, NF-?B and the ubiquitin proteasomal pathway underlie the pathology of several muscle wasting conditions but their role in calpainopathic dystrophy is not known. Oxidative and nitrosative stress, the source of reactive oxygen species, NF-?B signaling and protein ubiquitinylation were studied in 15 calpainopathic and 8 healthy control human muscle biopsies. Oxidative stress and NF-?B/IKK ? signaling were increased in calpainopathic muscle and may contribute to increased protein ubiquitinylation and muscle protein loss. Preventing oxidative stress or inhibition of NF-?B signaling could be considered for treatment of LGMD 2A. PMID:23846623

Rajakumar, Dhanarajan; Alexander, Mathew; Oommen, Anna

2013-07-12

44

Ubiquitin-Proteasome-dependent Degradation of a Mitofusin, a Critical Regulator of Mitochondrial Fusion  

PubMed Central

The mitochondrion is a dynamic membranous network whose morphology is conditioned by the equilibrium between ongoing fusion and fission of mitochondrial membranes. In the budding yeast, Saccharomyces cerevisiae, the transmembrane GTPase Fzo1p controls fusion of mitochondrial outer membranes. Deletion or overexpression of Fzo1p have both been shown to alter the mitochondrial fusion process indicating that maintenance of steady-state levels of Fzo1p are required for efficient mitochondrial fusion. Cellular levels of Fzo1p are regulated through degradation of Fzo1p by the F-box protein Mdm30p. How Mdm30p promotes degradation of Fzo1p is currently unknown. We have now determined that during vegetative growth Mdm30p mediates ubiquitylation of Fzo1p and that degradation of Fzo1p is an ubiquitin-proteasome–dependent process. In vivo, Mdm30p associates through its F-box motif with other core components of Skp1-Cullin-F-box (SCF) ubiquitin ligases. We show that the resulting SCFMdm30p ligase promotes ubiquitylation of Fzo1p at mitochondria and its subsequent degradation by the 26S proteasome. These results provide the first demonstration that a cytosolic ubiquitin ligase targets a critical regulatory molecule at the mitochondrial outer membrane. This study provides a framework for developing an understanding of the function of Mdm30p-mediated Fzo1p degradation in the multistep process of mitochondrial fusion.

Cohen, Mickael M.J.; Leboucher, Guillaume P.; Livnat-Levanon, Nurit

2008-01-01

45

The ubiquitin-proteasome system: A novel target for anticancer and anti-inflammatory drug research  

Microsoft Academic Search

The ubiquitin-proteasome system is responsible for the degradation of most intracellular proteins, including those that control\\u000a cell cycle progression, apoptosis, signal transduction and the NF-?B transcriptional pathway. Aberrations in the ubiquitin-proteasome\\u000a system underlie the pathogenesis of many human diseases, so both the ubiquitin-conjugating system and the 20S proteasome are\\u000a important targets for drug discovery. This article presents a few of

Halina Ostrowska

2008-01-01

46

Vitamin D Deficiency-Induced Muscle Wasting Occurs through the Ubiquitin Proteasome Pathway and Is Partially Corrected by Calcium in Male Rats.  

PubMed

Vitamin D deficiency leads to muscle wasting in both animals and humans. A vitamin D-deficient rat model was created using Sprague Dawley male rats. We studied the involvement of the ubiquitin proteasome and other proteolytic pathways in vitamin D deficiency-induced muscle atrophy. To delineate the effect of hypocalcemia that accompanies D deficiency, a group of deficient rats was supplemented with high calcium alone. Total protein degradation in muscle was assessed by release of tyrosine; proteasomal, lysosomal, and calpain enzyme activities were studied using specific substrates by fluorometry, and E2 enzyme expression was assessed by Western blot analysis. Muscle histology was done by myosin ATPase staining method, whereas 3-methylhistidine in the urine was estimated using HPLC. Muscle gene expression was measured by semiquantitative RT-PCR. Total protein degradation in muscle and the level of 3-methylhistidine in urine were increased in the deficient group compared with the control group. Proteasomal enzyme activities, expression of the E2 ubiquitin conjugating enzyme, and ubiquitin conjugates were increased in the deficient group compared with controls. On the other hand, lysosomal and calpain activities were not altered. Type II fiber area, a marker for muscle atrophy, was decreased in the deficient muscle compared with control muscle. Muscle atrophy marker genes and proteasomal subunit genes were up-regulated, whereas myogenic genes were down-regulated in D-deficient muscle. From the results it appears that the ubiquitin proteasome pathway is the major pathway involved in vitamin D deficiency-induced muscle protein degradation and that calcium supplementation alone in the absence of vitamin D partially corrects the changes. PMID:23928374

Bhat, Mehrajuddin; Kalam, Ramesh; Qadri, Syed Syh; Madabushi, Seshacharyulu; Ismail, Ayesha

2013-08-08

47

Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle.  

PubMed Central

Previous studies provided evidence that sepsis-induced muscle proteolysis in experimental animals is caused by increased ubiquitin-proteasome-dependent protein breakdown. It is not known if a similar mechanism accounts for muscle proteolysis in patients with sepsis. We determined mRNA levels for ubiquitin and the 20 S proteasome subunit HC3 by Northern blot analysis in muscle tissue from septic (n = 7) and non-septic (n = 11) patients. Plasma and muscle amino acid concentrations and concentrations in urine of 3-methylhistidine (3-MH), creatinine, and cortisol were measured at the time of surgery to assess the catabolic state of the patients. A three- to fourfold increase in mRNA levels for ubiquitin and HC3 was noted in muscle tissue from the septic patients concomitant with increased muscle levels of phenylalanine and 3-MH and reduced levels of glutamine. Total plasma amino acids were decreased by approximately 30% in the septic patients. The 3-MH/creatinine ratio in urine was almost doubled in septic patients. The cortisol levels in urine were higher in septic than in control patients but this difference did not reach statistical significance. The results suggest that sepsis is associated with increased mRNAs of the ubiquitin-proteasome pathway in human skeletal muscle.

Tiao, G; Hobler, S; Wang, J J; Meyer, T A; Luchette, F A; Fischer, J E; Hasselgren, P O

1997-01-01

48

Glycogen synthase kinase-3beta and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells.  

PubMed

Cyclin D2 plays an important role in regulation of hematopoietic cell proliferation by cytokines and is implicated in oncogenesis of various hematopoietic malignancies. However, mechanisms regulating cyclin D2 stability and its expression level have remained to be known. Here, we demonstrate that interleukin-3 signaling stabilizes cyclin D2 by inhibition of glycogen synthase kinase-3beta (GSK3beta) through Janus kinase2-dependent activation of phosphatidylinositol 3'-kinase (PI3K)/Akt signaling pathway in hematopoietic 32Dcl3 cells. On the other hand, osmotic stress was shown to induce a rapid proteasomal degradation of cyclin D2, which was mediated by activation of p38. GSK3beta and p38 was demonstrated to phosphorylate cyclin D2 on Thr280 in vitro, while a cyclin D2 mutant with this residue substituted with Ala was found to be resistant to ubiquitination and proteasome-dependent degradation in 32Dcl3 cells. Inhibition of the PI3K pathway or induction of osmotic stress also caused a rapid proteasomal degradation of cyclin D2 in primary leukemic or myeloma cells. These results indicate that cyclin D2 expression in normal and malignant hematopoietic cells is regulated by ubiquitin/proteasome-dependent degradation that is triggered by Thr280 phosphorylation by GSK3beta or p38, which is induced by inhibition of the PI3K pathway or by osmotic stress, respectively. PMID:17486076

Kida, A; Kakihana, K; Kotani, S; Kurosu, T; Miura, O

2007-05-07

49

Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex  

PubMed Central

The cellular mechanisms supporting plasticity during memory consolidation have been a subject of considerable interest. De novo protein and mRNA synthesis in several brain areas are critical, and more recently protein degradation, mediated by the ubiquitin-proteasome system (UPS), has been shown to be important. Previous work clearly establishes a relationship between protein synthesis and protein degradation in the amygdala, but it is unclear whether cortical mechanisms of memory consolidation are similar to those in the amygdala. Recent work demonstrating a critical role for prefrontal cortex (PFC) in the acquisition and consolidation of fear memory allows us to address this question. Here we use a PFC-dependent fear conditioning protocol to determine whether UPS mediated protein degradation is necessary for memory consolidation in PFC. Groups of rats were trained with auditory delay or trace fear conditioning and sacrificed 60 min after training. PFC tissue was then analyzed to quantify the amount of polyubiquibated protein. Other animals were trained with similar procedures but were infused with either a proteasome inhibitor (clasto-lactacystin ?-lactone) or a translation inhibitor (anisomycin) in the PFC immediately after training. Our results show increased UPS-mediated protein degradation in the PFC following trace but not delay fear conditioning. Additionally, post-training proteasome or translation inhibition significantly impaired trace but not delay fear memory when tested the next day. Our results further support the idea that the PFC is critical for trace but not delay fear conditioning and highlight the role of UPS-mediated degradation as critical for synaptic plasticity.

Reis, David S.; Jarome, Timothy J.; Helmstetter, Fred J.

2013-01-01

50

Roles for the Ubiquitin-Proteasome Pathway in Protein Quality Control and Signaling in the Retina: Implications in the Pathogenesis of Age-Related Macular Degeneration  

PubMed Central

The accumulation of damaged or postsynthetically modified proteins and dysregulation of inflammatory responses and angiogenesis in the retina/RPE are thought be etiologically related to formation of drusen and choroidal neovascularization (CNV), hallmarks of age-related macular degeneration (AMD). The ubiquitin proteasome pathway (UPP) plays crucial roles in protein quality control, cell cycle control and signal transduction. Selective degradation of aberrant proteins by the UPP is essential for timely removal of potentially cytotoxic damaged or otherwise abnormal proteins. Proper function of the UPP is thought to be required for cellular function. In contrast, age- or stress induced- impairment the UPP or insufficient UPP capacity may contribute to the accumulation of abnormal proteins, cytotoxicity in the retina, and AMD. Crucial roles for the UPP in eye development, regulation of signal transduction, and antioxidant responses are also established. Insufficient UPP capacity in retina and RPE can result in dysregulation of signal transduction, abnormal inflammatory responses and CNV. There are also interactions between the UPP and lysosomal proteolytic pathways (LPP). Means that modulate the proteolytic capacity are making their way into new generation of pharmacotherapies for delaying age-related diseases and may augment the benefits of adequate nutrition, with regard to diminishing the burden of AMD.

Shang, Fu; Taylor, Allen

2012-01-01

51

Blocking Plasmodium falciparum Development via Dual Inhibition of Hemoglobin Degradation and the Ubiquitin Proteasome System by MG132  

PubMed Central

Among key potential drug target proteolytic systems in the malaria parasite Plasmodium falciparum are falcipains, a family of hemoglobin-degrading cysteine proteases, and the ubiquitin proteasomal system (UPS), which has fundamental importance in cellular protein turnover. Inhibition of falcipains blocks parasite development, primarily due to inhibition of hemoglobin degradation that serves as a source of amino acids for parasite growth. Falcipains prefer P2 leucine in substrates and peptides, and their peptidyl inhibitors with leucine at the P2 position show potent antimalarial activity. The peptidyl inhibitor MG132 (Z-Leu-Leu-Leu-CHO) is a widely used proteasome inhibitor, which also has P2 leucine, and has also been shown to inhibit parasite development. However, the antimalarial targets of MG132 are unclear. We investigated whether MG132 blocks malaria parasite development by inhibiting hemoglobin degradation and/or by targeting the UPS. P. falciparum was cultured with inhibitors of the UPS (MG132, epoxomicin, and lactacystin) or falcipains (E64), and parasites were assessed for morphologies, extent of hemoglobin degradation, and accumulation of ubiquitinated proteins. MG132, like E64 and unlike epoxomicin or lactacystin, blocked parasite development, with enlargement of the food vacuole and accumulation of undegraded hemoglobin, indicating inhibition of hemoglobin degradation by MG132, most likely due to inhibition of hemoglobin-degrading falcipain cysteine proteases. Parasites cultured with epoxomicin or MG132 accumulated ubiquitinated proteins to a significantly greater extent than untreated or E64-treated parasites, indicating that MG132 inhibits the parasite UPS as well. Consistent with these findings, MG132 inhibited both cysteine protease and UPS activities present in soluble parasite extracts, and it strongly inhibited recombinant falcipains. MG132 was highly selective for inhibition of P. falciparum (IC50 0.0476 µM) compared to human peripheral blood mononuclear cells (IC50 10.8 µM). Thus, MG132 inhibits two distinct proteolytic systems in P. falciparum, and it may serve as a lead molecule for development of dual-target inhibitors of malaria parasites.

Kolla, Venkata Karunakar; Legac, Jennifer; Singhal, Neha; Navale, Rahul; Rosenthal, Philip J.; Sijwali, Puran Singh

2013-01-01

52

Merg1a K+ channel induces skeletal muscle atrophy by activating the ubiquitin proteasome pathway  

Microsoft Academic Search

Skeletal muscle atrophy results from an imbalance in protein degradation and protein synthesis and occurs in response to injury, various disease states, disuse, and normal aging. Current treatments for this debilitating condition are inadequate. More informa- tion about mechanisms involved in the onset and pro- gression of muscle atrophy is necessary for develop- ment of more effective therapies. Here we

Xun Wang; Gregory H. Hockerman; Henry W. Green III; Charles F. Babbs; Sulma I. Mohammad; David Gerrard; Mickey A. Latour; Barry London; Kevin M. Hannon; Amber L. Pond

2006-01-01

53

Roles of the Ubiquitin/Proteasome Pathway in Pollen Tube Growth with Emphasis on MG132-Induced Alterations in Ultrastructure, Cytoskeleton, and Cell Wall Components1[W  

PubMed Central

The ubiquitin/proteasome pathway represents one of the most important proteolytic systems in eukaryotes and has been proposed as being involved in pollen tube growth, but the mechanism of this involvement is still unclear. Here, we report that proteasome inhibitors MG132 and epoxomicin significantly prevented Picea wilsonii pollen tube development and markedly altered tube morphology in a dose- and time-dependent manner, while hardly similar effects were detected when cysteine-protease inhibitor E-64 was used. Fluorogenic kinetic assays using fluorogenic substrate sLLVY-AMC confirmed MG132-induced inhibition of proteasome activity. The inhibitor-induced accumulation of ubiquitinated proteins (UbPs) was also observed using immunoblotting. Transmission electron microscopy revealed that MG132 induces endoplasmic reticulum (ER)-derived cytoplasmic vacuolization. Immunogold-labeling analysis demonstrated a significant accumulation of UbPs in degraded cytosol and dilated ER in MG132-treated pollen tubes. Fluorescence labeling with fluorescein isothiocyanate-phalloidin and ?-tubulin antibody revealed that MG132 disrupts the organization of F-actin and microtubules and consequently affects cytoplasmic streaming in pollen tubes. However, tip-focused Ca2+ gradient, albeit reduced, seemingly persists after MG132 treatment. Finally, fluorescence labeling with antipectin antibodies and calcofluor indicated that MG132 treatment induces a sharp decline in pectins and cellulose. This result was confirmed by Fourier transform infrared analysis, thus demonstrating for the first time the inhibitor-induced weakening of tube walls. Taken together, these findings suggest that MG132 treatment promotes the accumulation of UbPs in pollen tubes, which induces ER-derived cytoplasmic vacuolization and depolymerization of cytoskeleton and consequently strongly affects the deposition of cell wall components, providing a mechanistic framework for the functions of proteasome in the tip growth of pollen tubes.

Sheng, Xianyong; Hu, Zhenghai; Lu, Hongfei; Wang, Xiaohua; Baluska, Frantisek; Samaj, Jozef; Lin, Jinxing

2006-01-01

54

Rad23 links DNA repair to the ubiquitin/proteasome pathway.  

PubMed

Rad23 is an evolutionarily conserved protein that is important for nucleotide excision repair. A regulatory role has been proposed for Rad23 because rad23 mutants are sensitive to ultraviolet light but are still capable of incising damaged DNA. Here we show that Rad23 interacts with the 26S proteasome through an amino-terminal ubiquitin-like domain (UbL[R23]). The carboxy terminus of Rad23 binds to the Rad4 DNA repair protein and creates a link between the DNA repair and proteasome pathways. The ultraviolet sensitivity caused by deletion of the UbL(R23) domain may therefore arise from its inability to interact with the proteasome. The fusion proteins glutathione S-transferase (GST)-Rad23 and Rad4-haemagglutinin (HA), and the proteasome subunits Cim3 and Cim5, cofractionate through consecutive chromatography steps. The ubiquitin-like domain of human Rad23 (UbL[HRB]) also interacts with the human proteasome. These results demonstrate that ubiquitin-like domains (UbLs) represent a new class of proteasome-interacting motifs. PMID:9490418

Schauber, C; Chen, L; Tongaonkar, P; Vega, I; Lambertson, D; Potts, W; Madura, K

1998-02-12

55

The Ubiquitin Proteasome System in Neurodegenerative Diseases  

Microsoft Academic Search

The ubiquitin-proteasome system targets numerous cellular proteins for degradation. In addition, modifications by ubiquitin-like proteins as well as proteins containing ubiquitin-interacting and -associated motifs modulate many others. This tightly controlled process involves multiple specific and general enzymes of the system as well as many modifying and ancillary proteins. Thus, it is not surprising that ubiquitin-mediated degradation\\/processing\\/modification regulates a broad array

Aaron Ciechanover; Patrik Brundin

2003-01-01

56

Metabolic control of G1-S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system.  

PubMed

Cell cycle progression is precisely regulated by diverse extrinsic and intrinsic cellular factors. Previous genetic analysis in Drosophila melanogaster has shown that disruption of the mitochondrial electron transport chain activates a G1-S checkpoint as a result of a control of cyclin E by p53. This regulation does not involve activation of the p27 homologue dacapo in flies. We demonstrate that regulation of cyclin E is not at the level of transcription or translation. Rather, attenuated mitochondrial activity leads to transcriptional upregulation of the F-box protein archipelago, the Fbxw7 homologue in flies. We establish that archipelago and the proteasomal machinery contribute to degradation of cyclin E in response to mitochondrial dysfunction. Our work provides in vivo genetic evidence for p53-mediated integration of metabolic stress signals, which modulate the activity of the ubiquitin-proteasome system to degrade cyclin E protein and thereby impose cell cycle arrest. PMID:20176921

Mandal, Sudip; Freije, William A; Guptan, Preeta; Banerjee, Utpal

2010-02-22

57

Destabilization of YopE by the ubiquitin-proteasome pathway fine-tunes Yop delivery into host cells and facilitates systemic spread of Yersinia enterocolitica in host lymphoid tissue.  

PubMed

Pathogenic Yersinia species inject a panel of Yop virulence proteins by type III protein secretion into host cells to modulate cellular defense responses. This enables the survival and dissemination of the bacteria in the host lymphoid tissue. We have previously shown that YopE of the Y. enterocolitica serogroup O8 is degraded in the host cell through the ubiquitin-proteasome pathway. YopE normally manipulates rearrangements of the actin cytoskeleton and triggers phagocytosis resistance. To shed light into the physiological role of YopE inactivation, we mutagenized the lysine polyubiquitin acceptor sites of YopE in the Y. enterocolitica serogroup O8 virulence plasmid. The resulting mutant strain escaped polyubiquitination and degradation of YopE and displayed increased intracellular YopE levels, which was accompanied by a pronounced cytotoxic effect on infected cells. Despite its intensified activity on cultured cells, the Yersinia mutant with stabilized YopE showed reduced dissemination into liver and spleen following enteral infection of mice. Furthermore, the accumulation of degradation-resistant YopE was accompanied by the diminished delivery of YopP and YopH into cultured, Yersinia-infected cells. A role of YopE in the regulation of Yop translocation has already been described. Our results imply that the inactivation of YopE by the proteasome could be a tool to ensure intermediate intracellular YopE levels, which may effectuate optimized Yop injection into host cells. In this regard, Y. enterocolitica O8 appears to exploit the host ubiquitin proteasome system to destabilize YopE and to fine-tune the activities of the Yop virulence arsenal on the infected host organism. PMID:21149597

Gaus, Kristin; Hentschke, Moritz; Czymmeck, Nicole; Novikova, Lena; Trülzsch, Konrad; Valentin-Weigand, Peter; Aepfelbacher, Martin; Ruckdeschel, Klaus

2010-12-13

58

Role of ubiquitin-proteasome in protein quality control and signaling: implication in the pathogenesis of eye diseases  

Technology Transfer Automated Retrieval System (TEKTRAN)

The ubiquitin–proteasome pathway (UPP) plays important roles in many cellular functions, such as protein quality control, cell cycle control, and signal transduction. The selective degradation of aberrant proteins by the UPP is essential for the timely removal of potential cytotoxic damaged or other...

59

Ubiquitin-Proteasome System as a Modulator of Cell Fate  

PubMed Central

Summary The ubiquitin/ proteasome system is the major non-lysosymal system for degrading proteins in the cell; the work leading to its discovery was awarded the Nobel Prize in Chemistry in 2004. In addition to small ubiquitin-like modifiers (e.g. Sumo and Nedd8), ubiquitin is involved in the complex regulation of the levels and function of many proteins and signaling pathways involved in determining cell fate. The cell death regulatory proteins, such as Bcl-2 family proteins and caspases are targeted for degradation by the ubiquitin proteasome system (UPS). In addition to mediating the degradation of proteins, the UPS regulates function and translocation of proteins, many of which play a role in the determination of cell fate. For example the UPS can regulate the activity of transcription factors, such as P53, NF-?B and HIF-1?, which control the expression of protein mediators of cell death. Aberrant UPS function has been reported in multiple neuropathologies including Parkinson's diseases and ischemia. With the number of ubiquitin conjugating and de-conjugating enzymes reaching close to the levels of protein kinases and phosphatases, it is clear that ubiquitination is an important biological regulatory step for proteins.

Thompson, Simon; Loftus, Liam; Ashley, Michelle; Meller, Robert

2008-01-01

60

Functional Annotation of Small Noncoding RNAs Target Genes Provides Evidence for a Deregulated Ubiquitin-Proteasome Pathway in Spinocerebellar Ataxia Type 1  

PubMed Central

Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by the expansion of CAG repeats in the ataxin 1 (ATXN1) gene. In affected cerebellar neurons of patients, mutant ATXN1 accumulates in ubiquitin-positive nuclear inclusions, indicating that protein misfolding is involved in SCA1 pathogenesis. In this study, we functionally annotated the target genes of the small noncoding RNAs (ncRNAs) that were selectively activated in the affected brain compartments. The primary targets of these RNAs, which exhibited a significant enrichment in the cerebellum and cortex of SCA1 patients, were members of the ubiquitin-proteasome system. Thus, we identified and functionally annotated a plausible regulatory pathway that may serve as a potential target to modulate the outcome of neurodegenerative diseases.

Persengiev, Stephan; Kondova, Ivanela; Bontrop, Ronald E.

2012-01-01

61

Role for the Ubiquitin-Proteasome System in the Vacuolar Degradation of Ste6p, the a-Factor Transporter in Saccharomyces cerevisiae  

PubMed Central

Ste6p, the a-factor transporter in Saccharomyces cerevisiae, is a multispanning membrane protein with 12 transmembrane spans and two cytosolic ATP binding domains. Ste6p belongs to the ATP binding cassette (ABC) superfamily and provides an excellent model for examining the intracellular trafficking of a complex polytopic membrane protein in yeast. Previous studies have shown that Ste6p undergoes constitutive endocytosis from the plasma membrane, followed by delivery to the vacuole, where it is degraded in a Pep4p-dependent manner, even though only a small portion of Ste6p is exposed to the vacuolar lumen where the Pep4p-dependent proteases reside. Ste6p is known to be ubiquitinated, a modification that may facilitate its endocytosis. In the present study, we further investigated the intracellular trafficking of Ste6p, focusing on the role of the ubiquitin-proteasome machinery in the metabolic degradation of Ste6p. We demonstrate by pulse-chase analysis that the degradation of Ste6p is impaired in mutants that exhibit defects in the activity of the proteasome (doa4 and pre1,2). Likewise, by immunofluorescence, we observe that Ste6p accumulates in the vacuole in the doa4 mutant, as it does in the vacuolar protease-deficient pep4 mutant. One model consistent with our results is that the degradation of Ste6p, the bulk of which is exposed to the cytosol, requires the activity of both the cytosolic proteasomal degradative machinery and the vacuolar lumenal proteases, acting in a synergistic fashion. Alternatively, we discuss a second model whereby the ubiquitin-proteasome system may indirectly influence the Pep4p-dependent vacuolar degradation of Ste6p. This study establishes that Ste6p is distinctive in that two independent degradative systems (the vacuolar Pep4p-dependent proteases and the cytosolic proteasome) are both involved, either directly or indirectly, in the metabolic degradation of a single substrate.

Loayza, Diego; Michaelis, Susan

1998-01-01

62

Molecular Genetics of the Ubiquitin-Proteasome System: Lessons from Yeast  

Microsoft Academic Search

\\u000a Our studies with the yeast Saccharomyces cerevisiae have uncovered a number of general principles governing substrate selectivity and proteolysis by the ubiquitin-proteasome\\u000a system. The initial work focused on the degradation of a transcription factor, the MAT?2 repressor, but the pathways uncovered\\u000a have a much broader range of targets. At least two distinct ubiquitination mechanisms contribute to ?2 turnover. One of them\\u000a depends on

M. Hochstrasser; M. Deng; A. R. Kusmierczyk; X. Li; S. G. Kreft; T. Ravid; M. Funakoshi; M. Kunjappu; Y. Xie

63

The Cytoplasmic Hsp70 Chaperone Machinery Subjects Misfolded and Endoplasmic Reticulum Import-incompetent Proteins to Degradation via the Ubiquitin-Proteasome System  

PubMed Central

The mechanism of protein quality control and elimination of misfolded proteins in the cytoplasm is poorly understood. We studied the involvement of cytoplasmic factors required for degradation of two endoplasmic reticulum (ER)-import–defective mutated derivatives of carboxypeptidase yscY (?ssCPY* and ?ssCPY*-GFP) and also examined the requirements for degradation of the corresponding wild-type enzyme made ER-import incompetent by removal of its signal sequence (?ssCPY). All these protein species are rapidly degraded via the ubiquitin–proteasome system. Degradation requires the ubiquitin-conjugating enzymes Ubc4p and Ubc5p, the cytoplasmic Hsp70 Ssa chaperone machinery, and the Hsp70 cochaperone Ydj1p. Neither the Hsp90 chaperones nor Hsp104 or the small heat-shock proteins Hsp26 and Hsp42 are involved in the degradation process. Elimination of a GFP fusion (GFP-cODC), containing the C-terminal 37 amino acids of ornithine decarboxylase (cODC) directing this enzyme to the proteasome, is independent of Ssa1p function. Fusion of ?ssCPY* to GFP-cODC to form ?ssCPY*-GFP-cODC reimposes a dependency on the Ssa1p chaperone for degradation. Evidently, the misfolded protein domain dictates the route of protein elimination. These data and our further results give evidence that the Ssa1p-Ydj1p machinery recognizes misfolded protein domains, keeps misfolded proteins soluble, solubilizes precipitated protein material, and escorts and delivers misfolded proteins in the ubiquitinated state to the proteasome for degradation.

Park, Sae-Hun; Bolender, Natalia; Eisele, Frederik; Kostova, Zlatka; Takeuchi, Junko; Coffino, Philip

2007-01-01

64

A transgenic mouse model of the ubiquitin\\/proteasome system  

Microsoft Academic Search

Impairment of the ubiquitin\\/proteasome system has been proposed to play a role in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although recent studies confirmed that some disease-related proteins block proteasomal degradation, and despite the existence of excellent animal models of both diseases, in vivo data about the system are lacking. We have developed a model for in vivo analysis

Kristina Lindsten; Victoria Menéndez-Benito; Maria G Masucci; Nico P Dantuma

2003-01-01

65

Meiotic regulation of the CDK activator RINGO\\/Speedy by ubiquitin-proteasome-mediated processing and degradation  

Microsoft Academic Search

Xenopus RINGO\\/Speedy (XRINGO) is a potent inducer of oocyte meiotic maturation that can directly activate Cdk1 and Cdk2. Here, we show that endogenous XRINGO protein accumulates transiently during meiosis I entry and then is downregulated. This tight regulation of XRINGO expression is the consequence of two interconnected mechanisms: processing and degradation. XRINGO processing involves recognition of at least three distinct

Andrea Vögtlin; Ana Castro; Ingvar Ferby; Giorgia Salvagiotto; Ze'ev Ronai; Thierry Lorca; Gustavo J. Gutierrez; Angel R. Nebreda

2006-01-01

66

Meiotic regulation of the CDK activator RINGO/Speedy by ubiquitin-proteasome-mediated processing and degradation.  

PubMed

Xenopus RINGO/Speedy (XRINGO) is a potent inducer of oocyte meiotic maturation that can directly activate Cdk1 and Cdk2. Here, we show that endogenous XRINGO protein accumulates transiently during meiosis I entry and then is downregulated. This tight regulation of XRINGO expression is the consequence of two interconnected mechanisms: processing and degradation. XRINGO processing involves recognition of at least three distinct phosphorylated recognition motifs by the SCF(betaTrCP) ubiquitin ligase, followed by proteasome-mediated limited degradation, resulting in an amino-terminal XRINGO fragment. XRINGO processing is directly stimulated by several kinases, including protein kinase A and glycogen synthase kinase-3beta, and may contribute to the maintenance of G2 arrest. On the other hand, XRINGO degradation after meiosis I is mediated by the ubiquitin ligase Siah-2, which probably requires phosphorylation of XRINGO on Ser 243 and may be important for the omission of S phase at the meiosis-I-meiosis-II transition in Xenopus oocytes. PMID:16964245

Gutierrez, Gustavo J; Vögtlin, Andrea; Castro, Ana; Ferby, Ingvar; Salvagiotto, Giorgia; Ronai, Ze'ev; Lorca, Thierry; Nebreda, Angel R

2006-09-10

67

Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome???  

PubMed Central

Skeletal muscle adapts its mass as consequence of physical activity, metabolism and hormones. Catabolic conditions or inactivity induce signaling pathways that regulate the process of muscle loss. Muscle atrophy in adult tissue occurs when protein degradation rates exceed protein synthesis. Two major protein degradation pathways, the ubiquitin-proteasome and the autophagy-lysosome systems, are activated during muscle atrophy and variably contribute to the loss of muscle mass. These degradation systems are controlled by a transcription dependent program that modulates the expression of rate-limiting enzymes of these proteolytic systems. The transcription factors FoxO, which are negatively regulated by Insulin-Akt pathway, and NF-?B, which is activated by inflammatory cytokines, were the first to be identified as critical for the atrophy process. In the last years a variety of pathways and transcription factors have been found to be involved in regulation of atrophy. This review will focus on the last progress in ubiquitin-proteasome and autophagy-lysosome systems and their involvement in muscle atrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

Sandri, Marco

2013-01-01

68

Maintenance of the ubiquitin-proteasome system activity correlates with visible skin benefits.  

PubMed

Researches on longevity and anti-ageing molecules have clearly evidenced the potential to increase lifespan of the cells. These recent scientific data raise interests and questions on the capacity of the cells to live longer and maintain their fundamental mechanisms of protection, reparation or degradation of abnormal proteins to maintain their capital of healthy and functional cellular activity. In this concern, this study was focused on the ubiquitin-proteasome system as an essential cellular tool to maintain the pool of functionally active proteins allowing renewal of proteins and degradation of damaged proteins. As the proteasome keeps the 'cells health capital', it should be particularly interesting to associate the maintenance of the proteasome activity with increasing longevity. Indeed, although oxidative stress damage increases with ageing leading to collagen and cellular membrane alterations, it also leads to a reduction in the proteasome activity which is critical for the cells. The aim of this study was to better understand the cellular role of the proteasome and to provide new data showing the skin beneficial effects in activating the overall system of ubiquitination and proteasomal degradation. For this purpose, in vitro, ex vivo and in vivo experiments were performed to evaluate the effects of maintaining the ubiquitin-proteasome activity in basal and stress conditions on young versus aged cells. Experiments have included evaluation of a newly developed dimerized tripeptide targeting specifically the ubiquitin-proteasome pathway. Our results have demonstrated that maintenance of this essential mechanism that participates in abnormal protein elimination and protein renewal allows maintaining cellular integrity that correlates with visible skin benefits. PMID:20572889

Imbert, I; Gondran, C; Oberto, G; Cucumel, K; Dal Farra, C; Domloge, N

2010-06-21

69

The ubiquitin–proteasome system postsynaptically regulates glutamatergic synaptic function  

Microsoft Academic Search

The ubiquitin–proteasome system (UPS) actively controls protein dynamics and local abundance via regulated protein degradation. This study investigates UPS' roles in the regulation of postsynaptic function and molecular composition in the Drosophila neuromuscular junction (NMJ) genetic system. To specifically impair UPS function postsynaptically, the UAS\\/GAL4 transgenic method was employed to drive postsynaptic expression of proteasome ?2 and ?6 subunit mutant

Kevin F. Haas; Stephanie L. H. Miller; David B. Friedman; Kendal Broadie

2007-01-01

70

Targeting the ubiquitin-proteasome system for cancer therapy  

PubMed Central

Introduction The ubiquitin–proteasome system (UPS) degrades 80 – 90% of intracellular proteins. Cancer cells take advantage of the UPS for their increased growth and decreased apoptotic cell death. Thus, the components that make up the UPS represent a diverse group of potential anti-cancer targets. The success of the first-in-class proteasome inhibitor bortezomib not only proved that the proteasome is a feasible and valuable anti-cancer target, but also inspired researchers to extensively explore other potential targets of this pathway. Areas covered This review provides a broad overview of the UPS and its role in supporting cancer development and progression, especially in aspects of p53 inactivation, p27 turnover and NF-?B activation. Also, efforts toward the development of small molecule inhibitors (SMIs) targeting different steps in this pathway for cancer treatment are reviewed and discussed. Expert opinion Whereas some of the targets in the UPS, such as the 20S pro-teasome, Nedd8 activating enzyme and HDM2, have been well-established and validated, there remains a large pool of candidates waiting to be investigated. Development of SMIs targeting the UPS has been largely facilitated by state-of-the-art technologies such as high-throughput screening and computer-assisted drug design, both of which require a better understanding of the targets of interest.

Shen, Min; Schmitt, Sara; Buac, Daniela; Dou, Q Ping

2013-01-01

71

Lack of muscle recovery after immobilization in old rats does not result from a defect in normalization of the ubiquitin-proteasome and the caspase-dependent apoptotic pathways.  

PubMed

Immobilization periods increase with age because of decreased mobility and/or because of increased pathological episodes that require bed-rest. Then, sarcopaenia might be partially explained by an impaired recovery of skeletal muscle mass after a catabolic state due to an imbalance of muscle protein metabolism, apoptosis and cellular regeneration. Mechanisms involved during muscle recovery have been little studied and in elderly they remain almost unknown. We show, in rats, that a short immobilization period during ageing initiated muscle atrophy that was indeed not recovered after 40 days. Immobilization was associated with an activation of both the ubiquitin-proteasome and the mitochondria-associated apoptotic pathways and the inflammatory and redox processes, and a decrease of cellular regeneration. We show that the lack of muscle recovery during ageing is not due to a defect in proteolysis or apoptosis down-regulation. These observations lead us to hypothesize that muscle protein synthesis activation after immobilization was altered during ageing. PMID:21115641

Magne, Hugues; Savary-Auzeloux, Isabelle; Vazeille, Emilie; Claustre, Agnès; Attaix, Didier; Anne, Listrat; Véronique, Santé-Lhoutellier; Philippe, Gatellier; Dardevet, Dominique; Combaret, Lydie

2010-11-29

72

Lack of muscle recovery after immobilization in old rats does not result from a defect in normalization of the ubiquitin-proteasome and the caspase-dependent apoptotic pathways  

PubMed Central

Immobilization periods increase with age because of decreased mobility and/or increased pathological episodes that require bed-rest. Sarcopaenia might be partially explained by an impaired recovery of skeletal muscle mass after a catabolic state due to an imbalance of muscle protein metabolism, apoptosis and cellular regeneration. Mechanisms involved in muscle recovery have been poorly investigated, and remain almost unknown in the elderly. This study aimed at studying the regulation of the capsase-dependent apoptotic and the ubiquitin–proteasome-dependent proteolytic pathways during immobilization and subsequent recovery during ageing. Old rats (22–24-months old) were subjected to unilateral hindlimb casting for 8 days (I8) and allowed to recover for 10 to 40 days (R10 to R40). Immobilized gastrocnemius muscles atrophied by 21%, and did not recover even at R40. Apoptotic index, amount of polyubiquitinated conjugates, proteasome chymotrypsin- and trypsin-like, apoptosome-linked caspase-9, -3, and -8 activities increased at I8. Conversely, the amount of the myogenic factor myf-5 decreased at I8. These changes paralleled the increase of intramuscular inflammation and oxidative stress. All these parameters normalized as soon as R10. The XIAP/Smac-DIABLO protein ratio decreased by half in immobilized muscles and remained low during recovery. Surprisingly, the non-immobilized leg also atrophied from R20, concomitantly with a decreased XIAP/Smac-DIABLO protein ratio. Altogether, this suggests that the impaired recovery following immobilization in ageing does not result from a lack of normalization of the caspase-dependent apoptotic and the ubiquitin–proteasome-dependent pathways, and also that immobilization could induce a general muscle loss and then contribute to the development of sarcopaenia in elderly.

Magne, Hugues; Savary-Auzeloux, Isabelle; Vazeille, Emilie; Claustre, Agnes; Attaix, Didier; Anne, Listrat; Veronique, Sante-Lhoutellier; Philippe, Gatellier; Dardevet, Dominique; Combaret, Lydie

2011-01-01

73

Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system.  

PubMed Central

Using a synthetic lethality screen we found that the Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system. Yeast cells harboring sit4 mutations and an impaired proteasome (due to pre1-1 pre4-1 mutations) exhibited defective growth on minimal medium. Nearly identical synthetic effects were found when sit4 mutations were combined with defects of the Rad6/Ubc2- and Cdc34/Ubc3-dependent ubiquitination pathways. Under synthetic lethal conditions, sit4 pre or sit4 ubc mutants formed strongly enlarged unbudded cells with a DNA content of 1N, indicating a defect in the maintenance of cell integrity during starvation-induced G(1) arrest. Sit4-related synthetic effects could be cured by high osmotic pressure or by the addition of certain amino acids to the growth medium. These results suggest a concerted function of the Sit4 phosphatase and the ubiquitin-proteasome system in osmoregulation and in the sensing of nutrients. Further analysis showed that Sit4 is not a target of proteasome-dependent protein degradation. We could also show that Sit4 does not contribute to regulation of proteasome activity. These data suggest that both Sit4 phosphatase and the proteasome act on a common target protein.

Singer, Thorsten; Haefner, Stefan; Hoffmann, Michael; Fischer, Michael; Ilyina, Julia; Hilt, Wolfgang

2003-01-01

74

Degradation of the Met Tyrosine Kinase Receptor by the Ubiquitin-Proteasome Pathway  

Microsoft Academic Search

The Met tyrosine kinase receptor is a widely expressed molecule which mediates pleiotropic cellular re- sponses following activation by its ligand, hepatocyte growth factor\\/scatter factor (HGF\\/SF). In this commu- nicationwedemonstratethatsignificantMetdegradationisinducedbyHGF\\/SFandthatthisdegradationcan be blocked by lactacystin, an inhibitor of proteasome activity. We also show that Met is rapidly polyubiquiti- nated in response to ligand and that polyubiquitinated Met molecules, which are normally

MICHAEL JEFFERS; GREGORY A. TAYLOR; K. MICHAEL WEIDNER; SATOSHI OMURA; ANDGEORGE F. VANDE WOUDE; Max Delbruck

1997-01-01

75

The ubiquitin-proteasome system regulates chloroplast biogenesis  

PubMed Central

In a recently published work, we identified the first chloroplast-localized E3 ligase, and showed that it degrades TOC translocon proteins by the ubiquitin-proteasome system (UPS). This regulation was found to be critical for plastid developmental transitions, such as the conversion of etioplasts to chloroplasts. Here we discuss the importance of SP1 for plants under different circumstances, and speculate about SP1 function and its possible application in agriculture. We anticipate that further work in this area may reveal additional roles of the UPS system, through action on other chloroplast OEPs with different roles in plastid biogenesis and function.

Huang, Weihua; Ling, Qihua; Jarvis, Paul

2013-01-01

76

Role of the ubiquitin proteasome system in regulating skin pigmentation.  

PubMed

Pigmentation of the skin, hair and eyes is regulated by tyrosinase, the critical rate-limiting enzyme in melanin synthesis by melanocytes. Tyrosinase is degraded endogenously, at least in part, by the ubiquitin proteasome system (UPS). Several types of inherited hypopigmentary diseases, such as oculocutaneous albinism and Hermansky-Pudlak syndrome, involve the aberrant processing and/or trafficking of tyrosinase and its subsequent degradation which can occur due to the quality-control machinery. Studies on carbohydrate modifications have revealed that tyrosinase in the endoplasmic reticulum (ER) is proteolyzed via ER-associated protein degradation and that tyrosinase degradation can also occur following its complete maturation in the Golgi. Among intrinsic factors that regulate the UPS, fatty acids have been shown to modulate tyrosinase degradation in contrasting manners through increased or decreased amounts of ubiquitinated tyrosinase that leads to its accelerated or decelerated degradation by proteasomes. PMID:20057953

Ando, Hideya; Ichihashi, Masamitsu; Hearing, Vincent J

2009-11-20

77

Roles and potential therapeutic targets of the ubiquitin proteasome system in muscle wasting  

Microsoft Academic Search

Muscle wasting, characterized by the loss of protein mass in myofibers, is in most cases largely due to the activation of intracellular protein degradation by the ubiquitin proteasome system (UPS). During the last decade, mechanisms contributing to this activation have been unraveled and key mediators of this process identified. Even though much remains to be understood, the available information already

David Nury; Christine Doucet; Olivier Coux

2007-01-01

78

Application and Analysis of the GFP u Family of Ubiquitin?Proteasome System Reporters  

Microsoft Academic Search

The relevance of the ubiquitin proteasome system (UPS) to disease and fundamental cellular processes has generated a demand for methods to monitor the activity of this system in living cells and organisms. Here we describe the GFPu family of UPS reporters. These reporters are constitutively degraded, ubiquitin?dependent proteasome substrates that can be used to monitor UPS function in the living

Neil F. Bence; Eric J. Bennett; Ron R. Kopito

2005-01-01

79

Transcription alterations of members of the ubiquitin–proteasome network in prostate carcinoma  

Microsoft Academic Search

The purpose of this work was to investigate the role of the ubiquitin–proteasome network (UPN) in prostate cancer (PCA) and to elicit potential markers for this disease. The UPN represents a key factor in the maintenance of cellular homoeostasis as a result of its fundamental function in the regulation of intracellular protein degradation. Members of this network have a role

O J C Hellwinkel; L E Asong; J-P Rogmann; H Sültmann; C Wagner; T Schlomm; C Eichelberg; OJC Hellwinkel

2011-01-01

80

MURF2B, a Novel LC3-Binding Protein, Participates with MURF2A in the Switch between Autophagy and Ubiquitin Proteasome System during Differentiation of C2C12 Muscle Cells  

PubMed Central

The ubiquitin proteasome system and macroautophagy are proteolytic pathways essential in the maintenance of cellular homeostasis during differentiation and remodelling of skeletal muscle. In both pathways, proteins to be degraded are tagged with polyubiquitin. In skeletal muscles, the MURF2 proteins display E3 ubiquitin ligase structure suggesting that they may covalently attach ubiquitin polypeptides to still unknown target proteins. So far only MURF2A isoforms were studied and shown to interact with p62/SQSTM1, a protein implicated in macroautophagic and ubiquitin proteasome system degradations. Here, we analyzed the MURF2B and MURF2A proteins and show that the ratio of the isoforms changes during differentiation of muscle C2C12 cells and that the shift of the isoforms expression follows the sequential activation of autophagic or proteasomal degradation. We also show that MURF2B has a functional domain needed for its interaction with LC3, a protein needed for autophagic vesicles formation. Using specific MURF2 RNAi cells we observed that MURF2A and MURF2B are both needed for the formation of autophagosomes and that in the absence of MURF2B, the cells expressing MURF2A display an activated ubiquitin proteasome system implicated in the degradation of p62/SQSTM1 by UPS. Altogether, our results indicate that MURF2A and MURF2B proteins could participate in the molecular switch between the two ubiquitin degradative pathways.

Pizon, Veronique; Rybina, Sofia; Gerbal, Fabien; Delort, Florence; Vicart, Patrick; Baldacci, Giuseppe; Karsenti, Eric

2013-01-01

81

MURF2B, a Novel LC3-Binding Protein, Participates with MURF2A in the Switch between Autophagy and Ubiquitin Proteasome System during Differentiation of C2C12 Muscle Cells.  

PubMed

The ubiquitin proteasome system and macroautophagy are proteolytic pathways essential in the maintenance of cellular homeostasis during differentiation and remodelling of skeletal muscle. In both pathways, proteins to be degraded are tagged with polyubiquitin. In skeletal muscles, the MURF2 proteins display E3 ubiquitin ligase structure suggesting that they may covalently attach ubiquitin polypeptides to still unknown target proteins. So far only MURF2A isoforms were studied and shown to interact with p62/SQSTM1, a protein implicated in macroautophagic and ubiquitin proteasome system degradations. Here, we analyzed the MURF2B and MURF2A proteins and show that the ratio of the isoforms changes during differentiation of muscle C2C12 cells and that the shift of the isoforms expression follows the sequential activation of autophagic or proteasomal degradation. We also show that MURF2B has a functional domain needed for its interaction with LC3, a protein needed for autophagic vesicles formation. Using specific MURF2 RNAi cells we observed that MURF2A and MURF2B are both needed for the formation of autophagosomes and that in the absence of MURF2B, the cells expressing MURF2A display an activated ubiquitin proteasome system implicated in the degradation of p62/SQSTM1 by UPS. Altogether, our results indicate that MURF2A and MURF2B proteins could participate in the molecular switch between the two ubiquitin degradative pathways. PMID:24124537

Pizon, Véronique; Rybina, Sofia; Gerbal, Fabien; Delort, Florence; Vicart, Patrick; Baldacci, Giuseppe; Karsenti, Eric

2013-10-04

82

Activation of the Ubiquitin Proteasome System in Doxorubicin Cardiomyopathy  

PubMed Central

Doxorubicin (Dox) is a very potent anti-cancer agent but its usage is limited by its dose-dependent irreversible cardiotoxicity. Despite intensive research efforts, the mechanism of Dox cardiotoxicity remains to be poorly understood and consequently the means available for clinicians to prevent or effectively manage Dox cardiotoxicity are very limited. Recent studies have excitingly revealed that a therapeutic dose of Dox can activate ubiquitin-proteasome system (UPS) mediated proteolysis in cardiomyocytes and that the UPS-mediated degradation of a number of pivotal cardiac transcription factors and/or survival factors is enhanced by Dox treatment. These suggest that the Dox induced UPS activation may represent a new mechanism underlying Dox cardiotoxicity. Notably, recent experimental studies suggest that proteasome activation promotes cardiac remodeling during hypertension. This review surveys the current literature on the impact of Dox on the UPS and the potential mechanisms by which UPS activation may compromise the heart during Dox therapy.

Ranek, Mark J.; Wang, Xuejun

2010-01-01

83

Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle.  

PubMed

Administration of ?2-agonists triggers skeletal muscle anabolism and hypertrophy. We investigated the time course of the molecular events responsible for rat skeletal muscle hypertrophy in response to 1, 3 and 10 days of formoterol administration (i.p. 2000?g/kg/day). A marked hypertrophy of rat tibialis anterior muscle culminated at day 10. Phosphorylation of Akt, ribosomal protein S6, 4E-BP1 and ERK1/2 was increased at day 3, but returned to control level at day 10. This could lead to a transient increase in protein translation and could explain previous studies that reported increase in protein synthesis following ?2-agonist administration. Formoterol administration was also associated with a significant reduction in MAFbx/atrogin-1 mRNA level (day 3), suggesting that formoterol can also affect protein degradation of MAFbx/atrogin1 targeted substrates, including MyoD and eukaryotic initiation factor-3f (eIF3-f). Surprisingly, mRNA level of autophagy-related genes, light chain 3 beta (LC3b) and gamma-aminobutyric acid receptor-associated protein-like 1 (Gabarapl1), as well as lysosomal hydrolases, cathepsin B and cathepsin L, was significantly and transiently increased after 1 and/or 3 days, suggesting that autophagosome formation would be increased in response to formoterol administration. However, this has to be relativized since the mRNA level of Unc-51-like kinase1 (Ulk1), BCL2/adenovirus E1B interacting protein3 (Bnip3), and transcription factor EB (TFEB), as well as the protein content of Ulk1, Atg13, Atg5-Atg12 complex and p62/Sqstm1 remained unchanged or was even decreased in response to formoterol administration. These results demonstrate that the effects of formoterol are mediated, in part, through the activation of Akt-mTOR pathway and that other signaling pathways become more important in the regulation of skeletal muscle mass with chronic administration of ?2-agonists. PMID:23916784

Joassard, Olivier Roger; Amirouche, Adel; Gallot, Yann Simon; Desgeorges, Marine Maud; Castells, Josiane; Durieux, Anne-Cécile; Berthon, Phanélie; Freyssenet, Damien Gilles

2013-08-02

84

Neuroprotective effects of valproic acid against hemin toxicity: possible involvement of the down-regulation of heme oxygenase-1 by regulating ubiquitin-proteasomal pathway.  

PubMed

During hemorrhagic stroke induced by intracerebral hemorrhage (ICH), brain injury occurs from the deleterious actions of hemoglobin byproducts; induction of heme oxygenase-1 (HO-1) also plays a critical role in the neurotoxicity in ICH. Valproic acid (VPA), which is a commonly used drug in the treatment of epilepsy, has been reported to have neuroprotective effects against various neuronal insults including ischemic stroke. We investigated the effect of VPA on HO-1-mediated neurotoxicity in an experimental model of ICH. We investigated the effects of VPA on HO-1 protein in primary cortical neurons: (1) the expression levels of HO-1 mRNA and protein measured by RT-PCR and Western blotting; (2) the cell viability and ROS generation by MTT reduction assay and ROS measurement; (3) the signal pathway regulated by VPA using IP-Western blotting; (4) the effects of VPA on hemin-induced cell death by hemin microinjection and immunohistochemistry in vivo. VPA treatment partially blocked cell death induced by hemin, which is released from hemoglobin during ICH, both in rat primary cortical neurons and rat brain. Treatment of VPA significantly decreased the expression of HO-1 protein both in vitro and in vivo. Hemin treatment induced HO-1 protein expression and this was partially blocked by pretreatment with VPA, which might be mediated by increased ubiquitination and degradation of HO-1 via ERK1/2 and JNK activation in primary cortical neurons. Our results indicate that VPA inhibits hemin toxicity by downregulating HO-1 protein expression, and provide a therapeutic strategy to attenuate intracerebral hemorrhagic injury. PMID:23298644

Kwon, Kyoung Ja; Kim, Jung Nam; Kim, Min Kyeong; Kim, Su Young; Cho, Kyu Suk; Jeon, Se Jin; Kim, Hahn Young; Ryu, Jong Hoon; Han, Sun-Young; Cheong, Jae Hoon; Ignarro, Louis J; Han, Seol-Heui; Shin, Chan Young

2013-01-05

85

Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system.  

PubMed

The RING-type E3 ligase, Keep on Going (KEG), is required for early seedling establishment in Arabidopsis thaliana. Post-germination, KEG negatively regulates abscisic acid (ABA) signalling by targeting Abscisic Acid Insensitive 5 (ABI5) for ubiquitination and subsequent degradation. Previous reports suggest that the role of KEG during early seedling development is not limited to regulation of ABI5 abundance. Using a yeast two-hybrid screen, this study identified Calcineurin B-like Interacting Protein Kinase (CIPK) 26 as a KEG-interacting protein. In vitro pull-down and in planta bimolecular fluorescence complementation assays confirmed the interactions between CIPK26 and KEG. In planta experiments demonstrated that CIPK26 was ubiquitinated and degraded via the 26S proteasome. It was also found that turnover of CIPK26 was increased when KEG protein levels were elevated, suggesting that the RING-type E3 ligase is involved in targeting CIPK26 for degradation. CIPK26 was found to interact with the ABA signalling components ABI1, ABI2, and ABI5. In addition, CIPK26 was capable of phosphorylating ABI5 in vitro. Consistent with a role in ABA signalling, overexpression of CIPK26 increased the sensitivity of germinating seeds to the inhibitory effects of ABA. The data presented in this report suggest that KEG mediates the proteasomal degradation of CIPK26 and that CIPK26 is part of the ABA signalling network. PMID:23658427

Lyzenga, Wendy J; Liu, Hongxia; Schofield, Andrew; Muise-Hennessey, Alexandria; Stone, Sophia L

2013-05-08

86

The intersecting roles of endoplasmic reticulum stress, ubiquitin-?proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease.  

PubMed

Protein misfolding in the endoplasmic reticulum (ER) leads to ER stress. The unfolded protein response and ER-associated degradation (ERAD) interact in a coordinated manner with the ubiquitin-proteasome system and autophagy to alleviate protein misfolding or its consequences. The intersecting actions of these processes are evident in normal podocyte physiology, and in proteinuric glomerular diseases, including experimental membranous nephropathy, focal segmental sclerosis, and diabetic nephropathy. There is some evidence for the induction of ER stress, changes in the ubiquitin-proteasome system, and presence of autophagy in human glomerulopathies. Various therapeutic approaches to the unfolded protein response, ERAD, and the ubiquitin-proteasome system have corrected experimental glomerular diseases involving protein misfolding, and could potentially be developed as therapies in humans. PMID:23254900

Cybulsky, Andrey V

2012-12-19

87

The role of allostery in the ubiquitin-proteasome system.  

PubMed

The ubiquitin-proteasome system (UPS) is involved in many cellular processes including protein degradation. Degradation of a protein via this system involves two successive steps: ubiquitination and degradation. Ubiquitination tags the target protein with ubiquitin-like proteins (UBLs), such as ubiquitin, small ubiquitin-like modifier (SUMO) and NEDD8, via a cascade involving three enzymes: activating enzyme E1, conjugating enzyme E2 and E3 ubiquitin ligases. The proteasomes recognize the UBL-tagged substrate proteins and degrade them. Accumulating evidence indicates that allostery is a central player in the regulation of ubiquitination, as well as deubiquitination and degradation. Here, we provide an overview of the key mechanistic roles played by allostery in all steps of these processes, and highlight allosteric drugs targeting them. Throughout the review, we emphasize the crucial mechanistic role played by linkers in allosterically controlling the UPS action by biasing the sampling of the conformational space, which facilitate the catalytic reactions of the ubiquitination and degradation. Finally, we propose that allostery may similarly play key roles in the regulation of molecular machines in the cell, and as such allosteric drugs can be expected to be increasingly exploited in therapeutic regimes. PMID:23234564

Liu, Jin; Nussinov, Ruth

2012-12-13

88

The ubiquitin–proteasome machinery is essential for nuclear translocation of incoming minute virus of mice  

Microsoft Academic Search

Minute virus of mice (MVM) infection is disrupted by proteasome inhibitors. Here, we show that inhibition of the ubiquitin–proteasome pathway did not affect viral entry and had influence neither on the natural proteolytic cleavage of VP2 to VP3 nor on the externalization of the N terminal of VP1. In both MG132-treated and untreated cells, MVM particles accumulated progressively in the

Carlos Ros; Christoph Kempf

2004-01-01

89

Ligand-switchable Substrates for a Ubiquitin-Proteasome System*  

PubMed Central

Cellular maintenance of protein homeostasis is essential for normal cellular function. The ubiquitin-proteasome system (UPS) plays a central role in processing cellular proteins destined for degradation, but little is currently known about how misfolded cytosolic proteins are recognized by protein quality control machinery and targeted to the UPS for degradation in mammalian cells. Destabilizing domains (DDs) are small protein domains that are unstable and degraded in the absence of ligand, but whose stability is rescued by binding to a high affinity cell-permeable ligand. In the work presented here, we investigate the biophysical properties and cellular fates of a panel of FKBP12 mutants displaying a range of stabilities when expressed in mammalian cells. Our findings correlate observed cellular instability to both the propensity of the protein domain to unfold in vitro and the extent of ubiquitination of the protein in the non-permissive (ligand-free) state. We propose a model in which removal of stabilizing ligand causes the DD to unfold and be rapidly ubiquitinated by the UPS for degradation at the proteasome. The conditional nature of DD stability allows a rapid and non-perturbing switch from stable protein to unstable UPS substrate unlike other methods currently used to interrogate protein quality control, providing tunable control of degradation rates.

Egeler, Emily L.; Urner, Lorenz M.; Rakhit, Rishi; Liu, Corey W.; Wandless, Thomas J.

2011-01-01

90

The Role of the Ubiquitin Proteasome System in Ischemia and Ischemic Tolerance  

PubMed Central

Ubiquitin modification targets a protein for rapid degradation by the proteasome. However, poly-ubiquitination of proteins can result in multiple functions depending on the topology of the ubiquitin chain. Therefore ubiquitin signaling offers a more complex and versatile biology compared to many other post translational modifications. One area of potential for the application of this knowledge is the field of ischemia-induced brain damage, as occurs following a stroke. The ubiquitin proteasome system may exert a dual role on neuronal outcome following ischemia. Harmful ischemia results in an overload of the ubiquitin proteasome system, and blocking the proteasome reduces brain infarction following ischemia. However, the rapid and selective degradation of proteins following brief ischemia results in endogenous protection against ischemia. Therefore further understanding of the molecular signaling mechanisms which regulate the ubiquitin proteasome system may reveal novel therapeutic targets to reduce brain damage when ischemia is predicted, or to reduce the activation of the cell death mechanisms and the inflammatory response following stroke. The aim of this review is to discuss some of the recent advances in the understanding of protein ubiquitination and its implications for novel stroke therapies.

Meller, Robert

2010-01-01

91

A novel transgenic mouse model reveals deregulation of the ubiquitin-proteasome system in the heart by doxorubicin  

Microsoft Academic Search

Ubiquitin-proteasome system (UPS) mediated proteolysis is responsible for the degradation of majority of cellular proteins, thereby playing essential roles in maintaining cellular homeostasis and regulating a number of cellular functions. UPS dysfunction was implicated in the pathogenesis of numerous disorders, including neurodegenerative disease, muscular dystrophy, and a subset of cardiomyopathies. However, monitoring in vivo functional changes of the UPS remains

Asangi R. K. Kumarapeli; Kathleen M. Horak; Joseph W. Glasford; Jie Li; Quanhai Chen; Jinbao Liu; Hanqiao Zheng; Xuejun Wang

2005-01-01

92

Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease  

PubMed Central

Proteolysis by the ubiquitin-proteasome pathway (UPP) is now widely recognized as a molecular mechanism controlling myriad normal functions in the nervous system. Also, this pathway is intimately linked to many diseases and disorders of the brain. Among the diseases connected to the UPP are neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases. Perturbation in the UPP is also believed to play a causative role in mental disorders such as Angelman syndrome. The pathology of neurodegenerative diseases is characterized by abnormal deposition of insoluble protein aggregates or inclusion bodies within neurons. The ubiquitinated protein aggregates are believed to result from dysfunction of the UPP or from structural changes in the protein substrates which prevent their recognition and degradation by the UPP. An early effect of abnormal UPP in diseases of the nervous system is likely to be impairment of synaptic function. Here we discuss the UPP and its physiological roles in the nervous system and how alterations in the UPP relate to development of nervous system diseases.

Hegde, Ashok N.; Upadhya, Sudarshan C.

2010-01-01

93

Measuring activity in the ubiquitin-proteasome system: from large scale discoveries to single cells analysis.  

PubMed

The ubiquitin-proteasome system (UPS) is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins in addition to performing essential roles in DNA repair, cell cycle regulation, cell migration, and the immune response. While traditional biochemical techniques have proven useful in the identification of key proteins involved in this pathway, the implementation of novel reporters responsible for measuring enzymatic activity of the UPS has provided valuable insight into the effectiveness of therapeutics and role of the UPS in various human diseases such as multiple myeloma and Huntington's disease. These reporters, usually consisting of a recognition sequence fused to an analytical handle, are designed to specifically evaluate enzymatic activity of certain members of the UPS including the proteasome, E3 ubiquitin ligases, and deubiquitinating enzymes. This review highlights the more commonly used reporters employed in a variety of scenarios ranging from high-throughput screening of novel inhibitors to single cell microscopy techniques measuring E3 ligase or proteasome activity. Finally, a recent study is presented highlighting the development of a novel degron-based substrate designed to overcome the limitations of current reporting techniques in measuring E3 ligase and proteasome activity in patient samples. PMID:23686610

Melvin, Adam T; Woss, Gregery S; Park, Jessica H; Waters, Marcey L; Allbritton, Nancy L

2013-09-01

94

Ubiquitin Proteasome Dysfunction in Human Hypertrophic and Dilated Cardiomyopathies  

PubMed Central

Background The ubiquitin proteasome system (UPS) maintains a dynamic equilibrium of proteins and prevents accumulation of damaged and misfolded proteins, yet its role in human cardiac dysfunction is not well understood. The present study evaluated UPS function in human heart failure and hypertrophic cardiomyopathy (HCM). Methods and Results Proteasome function was studied in human nonfailing donor (NF) hearts, in explanted failing hearts (F), and in myectomy samples from HCM patients. Proteasome proteolytic activities were markedly reduced in F and HCM hearts vs NF hearts (P<0.01). This activity was partially restored after mechanical unloading in F hearts (P<0.01) and was significantly lower in HCM hearts with pathogenic sarcomere mutations than in those lacking these mutations (P<0.05). There were no changes in the protein content of UPS subunits (i.e. 11S, 20S, and 19S) or in active site labeling of the 20S proteolytic subunit ?-5 among groups to explain decreased UPS activity in HCM and F hearts. Examination of protein oxidation revealed that total protein carbonyls and 4-hydroxynonenated proteins, and oxidative modification to 19S ATPase subunit Rpt 5, were increased in F hearts vs NF hearts. Conclusions Proteasome activity in HCM and F human hearts is impaired in the absence of changes in proteasome protein content or availability of proteolytic active sites. These data provide strong evidence that post-translational modifications to the proteasome may account for defective protein degradation in human cardiomyopathies.

Predmore, Jaime M.; Wang, Ping; Davis, Frank; Bartolone, Sarah; Westfall, Margaret V.; Dyke, David B.; Pagani, Francis; Powell, Saul R.; Day, Sharlene M.

2010-01-01

95

Transcription alterations of members of the ubiquitin-proteasome network in prostate carcinoma.  

PubMed

The purpose of this work was to investigate the role of the ubiquitin-proteasome network (UPN) in prostate cancer (PCA) and to elicit potential markers for this disease. The UPN represents a key factor in the maintenance of cellular homoeostasis as a result of its fundamental function in the regulation of intracellular protein degradation. Members of this network have a role in the biology of haematological and solid tumours. Tumour cells and normal epithelial cells from 22 prostatectomy specimens were isolated by laser microdissection. Prostate biopsy samples from healthy individuals served for technical calibration and as controls. Transcript levels of eight selected genes with E3 ubiquitin ligase activity (labelling target proteins for proteasome degradation) and two genes belonging to the proteasome-multienzyme complex itself were analysed by quantitative real-time RT-PCR. The proteasome genes PSMC4 and PSMB5 and the E3 ubiquitin ligase NEDD4L were significantly and coherently upregulated in PCA cells compared with the corresponding adjacent normal prostate tissue. Transcription of the E3 ubiquitin ligase SMURF2 was significantly higher in organ-confined tumours (pT2) compared with non-organ-confined cancers (pT3). The results indicate a role for PSMC4 and PSMB5 and the E3 ubiquitin ligase NEDD4L in prostate tumourigenesis, whereas SMURF2 downregulation could be associated with clinical progression. NEDD4L and SMURF2 both target transforming growth factor (TGF)-? for degradation. This reflects the pleiotropic role of the TGF-? signalling pathway acting as a tumour suppressor in normal and pre-cancerous cells, but having oncogenic properties in progressing cancer. Further studies have to elucidate whether these alterations could represent clinically relevant PCA-diagnostic and progression markers. PMID:21102547

Hellwinkel, O J C; Asong, L E; Rogmann, J-P; Sültmann, H; Wagner, C; Schlomm, T; Eichelberg, C

2010-11-23

96

Failure of the ubiquitin–proteasome system in Parkinson's disease  

Microsoft Academic Search

Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by degeneration of dopamine-containing neurons in the midbrain. In cases of familial PD, mutations that lead to failure of the ubiquitin–proteasome system (UPS) have been identified. These genetic abnormalities do not occur in sporadic PD, but we propose that impairment of the UPS could also contribute to neurodegeneration in this disorder.

Kevin St P. McNaught; C. Warren Olanow; Barry Halliwell; Ole Isacson; Peter Jenner

2001-01-01

97

The shaping of invasive glioma phenotype by the ubiquitin-proteasome system.  

PubMed

Abstract Protein degradation is an indispensable process for cells which is often deregulated in various diseases, including malignant conditions. Depending on the specific cell type and functions of expressed proteins, this aberration may have different effects on the determination of malignant phenotypes. A discrete, inherent feature of malignant glioma is its profound invasive and migratory potential, regulated by the expression of signaling and effector proteins, many of which are also subjected to post-translational regulation by the ubiquitin-proteasome system (UPS). Here we provide an overview of this connection, focusing on important pro-invasive protein signals targeted by the UPS. PMID:24004256

Vlachostergios, Panagiotis J; Voutsadakis, Ioannis A; Papandreou, Christos N

2013-09-05

98

Application and analysis of the GFPu family of ubiquitin-proteasome system reporters.  

PubMed

The relevance of the ubiquitin proteasome system (UPS) to disease and fundamental cellular processes has generated a demand for methods to monitor the activity of this system in living cells and organisms. Here we describe the GFP(u) family of UPS reporters. These reporters are constitutively degraded, ubiquitin-dependent proteasome substrates that can be used to monitor UPS function in the living cell. The GFP(u) reporter family consists of three variants that can report on global, nuclear, and cytoplasmic UPS function. This article focuses on the properties and design of these reporters and highlights appropriate techniques and applications for their use. PMID:16338377

Bence, Neil F; Bennett, Eric J; Kopito, Ron R

2005-01-01

99

Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system.  

PubMed

Certain types of human papillomaviruses have been etiologically associated with malignant lesions, most notably with cervical cancer. The major oncoproteins of these cancer-associated viruses are encoded by the viral E6 and E7 genes. Thorough characterization of these oncoproteins and their interaction with cellular proteins has shown that both E6 and E7 exploit the ubiquitin-proteasome system to degrade and, thus, to functionally inactivate negative cell-regulatory proteins including members of the p110(RB) family and p53. This act of piracy is assumed to contribute to both the efficient propagation of HPVs and HPV-induced carcinogenesis. PMID:12507557

Scheffner, Martin; Whitaker, Noel J

2003-02-01

100

TRIM11 binds to and destabilizes a key component of the activator-mediated cofactor complex (ARC105) through the ubiquitin-proteasome system.  

PubMed

TRIM11 is a member of the tripartite-motif-containing protein family and is known to destabilize humanin, an inhibitor of Alzheimer-like neuronal insults. In this study, we demonstrate that TRIM11 interacts with activator-recruited cofactor 105-kDa component (ARC105) that mediates chromatin-directed transcription activation and is a key regulatory factor for transforming growth factor beta (TGFbeta) signaling. Co-expression of TRIM11 increased ARC105 degradation but a proteasome inhibitor suppressed this. Co-expression of TRIM11 and ARC105 also increased ubiquitination of ARC105. In addition, TRIM11 suppressed ARC105-mediated transcriptional activation induced with TGFbeta in a reporter assay. These results suggest that TRIM11, with the ubiquitin-proteasome pathway, regulates ARC105 function in TGFbeta signaling. PMID:16904669

Ishikawa, Hideaki; Tachikawa, Hiroyuki; Miura, Yutaka; Takahashi, Nobuhiro

2006-08-04

101

Ubiquitination and the ubiquitin - proteasome system in the pathogenesis and treatment of squamous head and neck carcinoma.  

PubMed

Squamous carcinomas of the head and neck area are carcinomas that were traditionally associated with alcohol and tobacco abuse. More recently, a pathogenic relationship of oncogenic human papilloma viruses (HPV) with head and neck cancer of the oropharynx and the base of the tongue has been revealed. Two proteins of HPV, E6 and E7, are involved in neoplastic transformation not only in the head and neck but in other locations, where these epitheliotropic viruses cause carcinomas, such as the uterine cervix and the anal region. The E6 viral protein associates with cellular E3 ubiquitin ligase E6-AP and promotes degradation of tumour suppressor p53 by the proteasome. This molecular event reveals the important role that the ubiquitin-proteasome system (UPS) plays in the pathogenesis of head and neck cancer. The role of this system in head and neck carcinogenesis is not restricted to the destruction of p53 but extends to most, if not all, signaling pathways that regulate carcinogenesis in this location. These roles are reviewed here and implications for treatment are discussed. PMID:24023278

Voutsadakis, Ioannis A

2013-09-01

102

Sent to Destroy: The Ubiquitin Proteasome System Regulates Cell Signaling and Protein Quality Control in Cardiovascular Development and Disease  

PubMed Central

The ubiquitin proteasome system (UPS) plays a crucial role in biological processes integral to the development of the cardiovascular system and cardiovascular diseases. The UPS prototypically recognizes specific protein substrates and places polyubiquitin chains on them for subsequent destruction by the proteasome. This system is in place to degrade not only misfolded and damaged proteins, but is essential also in regulating a host of cell signaling pathways involved in proliferation, adaptation to stress, regulation of cell size, and cell death. During the development of the cardiovascular system, the UPS regulates cell signaling by modifying transcription factors, receptors, and structural proteins. Later, in the event of cardiovascular diseases as diverse as atherosclerosis, cardiac hypertrophy, and ischemia reperfusion injury, ubiquitin ligases and the proteasome are implicated in protecting and exacerbating clinical outcomes. However, when misfolded and damaged proteins are ubiquitinated by the UPS, their destruction by the proteasome is not always possible due to their aggregated confirmations. Recent studies have discovered how these ubiquitinated misfolded proteins can be destroyed by alternative “specific” mechanisms. The cytosolic receptors p62, NBR, and HDAC6 recognize aggregated ubiquitinated proteins and target them for autophagy in the process of “selective autophagy”. Even the ubiquitination of multiple proteins within whole organelles that drive the more general macro-autophagy may be due, in part, to similar ubiquitin-driven mechanisms. In summary, the cross-talk between the UPS and autophagy highlight the pivotal and diverse roles the UPS plays in maintaining protein quality control and regulating cardiovascular development and disease.

Willis, Monte S.; Townley-Tilson, W.H. Davin; Kang, Eunice Y.; Homeister, Jonathon W.; Patterson, Cam

2010-01-01

103

Patented small molecule inhibitors in the ubiquitin proteasome system  

PubMed Central

Deregulation of the ubiquitin proteasome system (UPS) has been implicated in the pathogenesis of many human diseases, including cancer and neurodegenerative disorders. The recent approval of the proteasome inhibitor Velcade® (bortezomib) for the treatment of multiple myeloma and mantle cell lymphoma establishes this system as a valid target for cancer treatment. We review here new patented proteasome inhibitors and patented small molecule inhibitors targeting more specific UPS components, such as E3 ubiquitin ligases and deubiquitylating enzymes. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).

Guedat, Philippe; Colland, Frederic

2007-01-01

104

Live-Cell Imaging of Ubiquitin-Proteasome System Function  

PubMed Central

The role of the ubiquitin–proteasome system (UPS) in maintaining protein homeostasis has generated a demand for assays that quantify UPS function in the presence of chemical and protein UPS inhibitors. Here, we describe protocols that measure changes in UPS reporter levels in response to changes in the expression level, localization, or aggregation state of a second protein. We utilize cell lines stably expressing fluorescent UPS substrates that are transfected with a second protein tagged with a compatible fluorophore. We describe protocols to correlate levels of UPS substrates with changes in the levels or properties of the transfected protein.

Hipp, Mark S.; Bersuker, Kirill; Kopito, Ron R.

2013-01-01

105

Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system.  

PubMed

Development of chloroplasts and other plastids depends on the import of thousands of nucleus-encoded proteins from the cytosol. Import is initiated by TOC (translocon at the outer envelope of chloroplasts) complexes in the plastid outer membrane that incorporate multiple, client-specific receptors. Modulation of import is thought to control the plastid's proteome, developmental fate, and functions. Using forward genetics, we identified Arabidopsis SP1, which encodes a RING-type ubiquitin E3 ligase of the chloroplast outer membrane. The SP1 protein associated with TOC complexes and mediated ubiquitination of TOC components, promoting their degradation. Mutant sp1 plants performed developmental transitions that involve plastid proteome changes inefficiently, indicating a requirement for reorganization of the TOC machinery. Thus, the ubiquitin-proteasome system acts on plastids to control their development. PMID:23118188

Ling, Qihua; Huang, Weihua; Baldwin, Amy; Jarvis, Paul

2012-11-01

106

A Role for the Ubiquitin-Proteasome System in Activity-Dependent Presynaptic Silencing  

PubMed Central

Chronic changes in electrical excitability profoundly affect synaptic transmission throughout the lifetime of a neuron. We have previously explored persistent presynaptic silencing, a form of synaptic depression at glutamate synapses produced by ongoing neuronal activity and by strong depolarization. Here we investigate the involvement of the ubiquitin-proteasome system (UPS) in the modulation of presynaptic function. We found that proteasome inhibition prevented the induction of persistent presynaptic silencing. Specifically, application of the proteasome inhibitor, MG-132, prevented decreases in the size of the readily releasable pool of vesicles and in the percentage of active synapses. Presynaptic silencing was accompanied by decreases in levels of the priming proteins, Munc13-1 and Rim1. Importantly, overexpression of Rim1? prevented the induction of persistent presynaptic silencing. Furthermore, strong depolarization itself increased proteasome enzymatic activity measured in cell lysates. These results suggest that modulation of the UPS by electrical activity contributes to persistent presynaptic silencing by promoting the degradation of key presynaptic proteins.

Jiang, Xiaoping; Litkowski, Patricia E.; Taylor, Amanda A.; Lin, Ying; Snider, B. Joy; Moulder, Krista L.

2010-01-01

107

Gambogic acid is cytotoxic to cancer cells through inhibition of the ubiquitin-proteasome system.  

PubMed

Gambogic acid (GA), displays cytotoxicity towards a wide variety of tumor cells and has been shown to affect many important cell-signaling pathways. In the present work, we investigated the mechanism of action of GA by analysis of drug-induced changes in gene expression profiles and identified GA and the derivative dihydro GA as possible inhibitors of the ubiquitin-proteasome system (UPS). Both GA and dihydro GA inhibited proteasome function in cells resulting in the accumulation of polyubiquitin complexes. In vitro experiments showed that both GA and dihydro GA inhibited 20S chymotrypsin activity and the inhibitory effects of GA and dihydro GA on proteasome function corresponded with apoptosis induction and cell death. In conclusion, our results show that GA and dihydro GA exert their cytotoxic activity through inhibition of the UPS, specifically by acting as inhibitors of the chymotrypsin activity of the 20S proteasome. PMID:23179339

Felth, Jenny; Lesiak-Mieczkowska, Karolina; D'Arcy, Padraig; Haglund, Caroline; Gullbo, Joachim; Larsson, Rolf; Linder, Stig; Bohlin, Lars; Fryknäs, Mårten; Rickardson, Linda

2012-11-20

108

The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective  

PubMed Central

Protein quality control (PQC) depends on elegant collaboration between molecular chaperones and targeted proteolysis in the cell. The latter is primarily carried out by the ubiquitin-proteasome system, but recent advances in this area of research suggest a supplementary role for the autophagy-lysosomal pathway in PQC-related proteolysis. The (patho)physiological significance of PQC in the heart is best illustrated in cardiac proteinopathy, which belongs to a family of cardiac diseases caused by expression of aggregation-prone proteins in cardiomyocytes. Cardiac proteasome functional insufficiency (PFI) is best studied in desmin-related cardiomyopathy, a bona fide cardiac proteinopathy. Emerging evidence suggests that many common forms of cardiomyopathy may belong to proteinopathy. This review focuses on examining current evidence, as it relates to the hypothesis that PFI impairs PQC in cardiomyocytes and contributes to the progression of cardiac proteinopathies to heart failure.

Su, Huabo; Wang, Xuejun

2010-01-01

109

Regulation of ubiquitin–proteasome system, caspase enzyme activities, and extracellular proteinases in rat soleus muscle in response to unloading  

Microsoft Academic Search

In the present study, we determined the impact of 5 and 10 days of muscle deconditioning induced by hindlimb suspension (HS)\\u000a on the ubiquitin–proteasome system of protein degradation and caspase enzyme activities in rat soleus muscles. A second goal\\u000a was to determine whether activities of matrix metalloproteinase-2\\/9 (MMP-2\\/9) and urokinase-type\\/tissue-type plasminogen activator\\u000a (PAs) were responsive to HS. As expected, HS led

P. Berthon; S. Duguez; F. B. Favier; A. Amirouche; L. Feasson; L. Vico; C. Denis; D. Freyssenet

2007-01-01

110

PROTEIN PHOSPHORYLATION AS A POSSIBLE TRIGGER FOR DEGRADATION OF METABOLIC ENZYMES  

Technology Transfer Automated Retrieval System (TEKTRAN)

The phosphorylation of a protein can affect its enzymatic activity, localization or interaction with other proteins. In addition, recent results suggest that phosphorylation of metabolic enzymes at certain sites might be a trigger for degradation via the ubiquitin/proteasome pathway. Recent result...

111

PROTEIN DEGRADATION PATHWAYS IN PARKINSON'S DISEASE - CURSE OR BLESSING  

PubMed Central

Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson’s disease. Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson’s disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like ?-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson’s disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of ?-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson’s disease.

Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J.

2012-01-01

112

Protein degradation pathways in Parkinson's disease: curse or blessing.  

PubMed

Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like ?-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of ?-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease. PMID:22744791

Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J

2012-06-29

113

Plant Development: Regulation by Protein Degradation  

NSDL National Science Digital Library

Many aspects of eukaryotic development depend on regulated protein degradation by the ubiquitin-proteasome pathway. This highly conserved pathway promotes covalent attachment of ubiquitin to protein substrates through the sequential action of three enzymes called a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-protein ligase (E3). Most ubiquitinated proteins are then targeted for degradation by the 26S proteasome. Recent studies have also shown that the ubiquitin-related protein RUB/Nedd8 and the proteasome-related COP9 signalosome complex cooperate with the ubiquitin-proteasome pathway to promote protein degradation. Most of these components are conserved in all three eukaryotic kingdoms. However, the known targets of the pathway in plants, and the developmental processes they regulate, are specific to the plant kingdom.

Hanjo Hellmann (University of Texas;Molecular Cell and Developmental Biology); Mark Estelle (University of Texas;Molecular Cell and Developmental Biology)

2002-08-02

114

The ubiquitin-proteasome system regulates membrane fusion of yeast vacuoles  

PubMed Central

Ubiquitination is known to regulate early stages of intracellular vesicular transport, without proteasomal involvement. We now show that, in yeast, ubiquitination regulates a late-stage, membrane fusion, with proteasomal involvement. A known proteasome mutant had a vacuolar fragmentation phenotype in vivo often associated with vacuolar membrane fusion defects, suggesting a proteasomal role in fusion. Inhibiting vacuolar proteasomes interfered with membrane fusion in vitro, showing that fusion cannot occur without proteasomal degradation. If so, one would expect to find ubiquitinated proteins on vacuolar membranes. We found a small number of these, identified the most prevalent one as Ypt7 and mapped its two major ubiquitination sites. Ubiquitinated Ypt7 was linked to the degradation event that is necessary for fusion: vacuolar Ypt7 and vacuolar proteasomes were interdependent, ubiquitinated Ypt7 became a proteasomal substrate during fusion, and proteasome inhibitors reduced fusion to greater degree when we decreased Ypt7 ubiquitination. The strongest model holds that fusion cannot proceed without proteasomal degradation of ubiquitinated Ypt7. As Ypt7 is one of many Rab GTPases, ubiquitin–proteasome regulation may be involved in membrane fusion elsewhere.

Kleijnen, Maurits F; Kirkpatrick, Donald S; Gygi, Steven P

2007-01-01

115

The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation.  

PubMed

Numerous studies have supported the idea that de novo protein synthesis is critical for synaptic plasticity and normal long-term memory formation. This requirement for protein synthesis has been shown for several different types of fear memories, exists in multiple brain regions and circuits, and is necessary for different stages of memory creation and storage. However, evidence has recently begun to accumulate suggesting that protein degradation through the ubiquitin-proteasome system is an equally important regulator of memory formation. Here we review those recent findings on protein degradation and memory formation and stability and propose a model explaining how protein degradation may be contributing to various aspects of memory and synaptic plasticity. We conclude that protein degradation may be the major factor regulating many of the molecular processes that we know are important for fear memory formation and stability in the mammalian brain. PMID:23623827

Jarome, Timothy J; Helmstetter, Fred J

2013-04-25

116

Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact  

PubMed Central

Muscle wasting in chronic kidney disease (CKD) and other catabolic diseases (e.g. sepsis, diabetes, cancer) can occur despite adequate nutritional intake. It is now known that complications of these various disorders, including acidosis, insulin resistance, inflammation, and increased glucocorticoid and angiotensin II production, all activate the ubiquitin–proteasome system (UPS) to degrade muscle proteins. The initial step in this process is activation of caspase-3 to cleave the myofibril into its components (actin, myosin, troponin, and tropomyosin). Caspase-3 is required because the UPS minimally degrades the myofibril but rapidly degrades its component proteins. Caspase-3 activity is easily detected because it leaves a characteristic 14kD actin fragment in muscle samples. Preliminary evidence from several experimental models of catabolic diseases, as well as from studies in patients, indicates that this fragment could be a useful biomarker because it correlates well with the degree of muscle degradation in dialysis patients and in other catabolic conditions.

Rajan, Vik R.

2007-01-01

117

An Extract of Artemisia dracunculus L. Inhibits Ubiquitin-Proteasome Activity and Preserves Skeletal Muscle Mass in a Murine Model of Diabetes  

PubMed Central

Impaired insulin signaling is a key feature of type 2 diabetes and is associated with increased ubiquitin-proteasome-dependent protein degradation in skeletal muscle. An extract of Artemisia dracunculus L. (termed PMI5011) improves insulin action by increasing insulin signaling in skeletal muscle. We sought to determine if the effect of PMI5011 on insulin signaling extends to regulation of the ubiquitin-proteasome system. C2C12 myotubes and the KK-Ay murine model of type 2 diabetes were used to evaluate the effect of PMI5011 on steady-state levels of ubiquitylation, proteasome activity and expression of Atrogin-1 and MuRF-1, muscle-specific ubiquitin ligases that are upregulated with impaired insulin signaling. Our results show that PMI5011 inhibits proteasome activity and steady-state ubiquitylation levels in vitro and in vivo. The effect of PMI5011 is mediated by PI3K/Akt signaling and correlates with decreased expression of Atrogin-1 and MuRF-1. Under in vitro conditions of hormonal or fatty acid-induced insulin resistance, PMI5011 improves insulin signaling and reduces Atrogin-1 and MuRF-1 protein levels. In the KK-Ay murine model of type 2 diabetes, skeletal muscle ubiquitylation and proteasome activity is inhibited and Atrogin-1 and MuRF-1 expression is decreased by PMI5011. PMI5011-mediated changes in the ubiquitin-proteasome system in vivo correlate with increased phosphorylation of Akt and FoxO3a and increased myofiber size. The changes in Atrogin-1 and MuRF-1 expression, ubiquitin-proteasome activity and myofiber size modulated by PMI5011 in the presence of insulin resistance indicate the botanical extract PMI5011 may have therapeutic potential in the preservation of muscle mass in type 2 diabetes.

Kirk-Ballard, Heather; Wang, Zhong Q.; Acharya, Priyanka; Zhang, Xian H.; Yu, Yongmei; Kilroy, Gail; Ribnicky, David; Cefalu, William T.; Floyd, Z. Elizabeth

2013-01-01

118

Appraising the Roles of CBLL1 and the Ubiquitin/Proteasome System for Flavivirus Entry and Replication?  

PubMed Central

The ubiquitin ligase CBLL1 (also known as HAKAI) has been proposed to be a critical cellular factor exploited by West Nile virus (WNV) for productive infection. CBLL1 has emerged as a major hit in a recent RNA interference screen designed to identify cellular factors required for the early stages of the WNV life cycle. Follow-up experiments showed that HeLa cells knocked down for CBLL1 by a small interfering RNA (siRNA) failed to internalize WNV particles and resisted infection. Furthermore, depletion of a free-ubiquitin pool by the proteasome inhibitor MG132 abolished WNV endocytosis, suggesting that CBLL1 acts in concert with the ubiquitin proteasome system to mediate virus internalization. Here, we examined the effect of CBLL1 knockdown and proteasome inhibitors on infection by WNV and other flaviviruses. We identified new siRNAs that repress the CBLL1 protein and strongly inhibit the endocytosis of Listeria monocytogenes, a bacterial pathogen known to require CBLL1 to invade host cells. Strikingly, however, we detected efficient WNV, dengue virus, and yellow fever virus infection of human cells, despite potent downregulation of CBLL1 by RNA interference. In addition, we found that the proteasome inhibitors MG132 and lactacystin did not affect WNV internalization but strongly repressed flavivirus RNA translation and replication. Together, these data do not support a requirement for CBLL1 during flavivirus entry and rather suggest an essential role of the ubiquitin/proteasome pathway for flavivirus genome amplification.

Fernandez-Garcia, Maria-Dolores; Meertens, Laurent; Bonazzi, Matteo; Cossart, Pascale; Arenzana-Seisdedos, Fernando; Amara, Ali

2011-01-01

119

Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication.  

PubMed

The ubiquitin ligase CBLL1 (also known as HAKAI) has been proposed to be a critical cellular factor exploited by West Nile virus (WNV) for productive infection. CBLL1 has emerged as a major hit in a recent RNA interference screen designed to identify cellular factors required for the early stages of the WNV life cycle. Follow-up experiments showed that HeLa cells knocked down for CBLL1 by a small interfering RNA (siRNA) failed to internalize WNV particles and resisted infection. Furthermore, depletion of a free-ubiquitin pool by the proteasome inhibitor MG132 abolished WNV endocytosis, suggesting that CBLL1 acts in concert with the ubiquitin proteasome system to mediate virus internalization. Here, we examined the effect of CBLL1 knockdown and proteasome inhibitors on infection by WNV and other flaviviruses. We identified new siRNAs that repress the CBLL1 protein and strongly inhibit the endocytosis of Listeria monocytogenes, a bacterial pathogen known to require CBLL1 to invade host cells. Strikingly, however, we detected efficient WNV, dengue virus, and yellow fever virus infection of human cells, despite potent downregulation of CBLL1 by RNA interference. In addition, we found that the proteasome inhibitors MG132 and lactacystin did not affect WNV internalization but strongly repressed flavivirus RNA translation and replication. Together, these data do not support a requirement for CBLL1 during flavivirus entry and rather suggest an essential role of the ubiquitin/proteasome pathway for flavivirus genome amplification. PMID:21191016

Fernandez-Garcia, Maria-Dolores; Meertens, Laurent; Bonazzi, Matteo; Cossart, Pascale; Arenzana-Seisdedos, Fernando; Amara, Ali

2010-12-29

120

The Ubiquitin-Proteasome System and Cardiovascular Disease  

PubMed Central

Over the past decade, the role of the ubiquitin–proteasome system (UPS) has been the subject of numerous studies to elucidate its role in cardiovascular physiology and pathophysiology. There have been many advances in this field including the use of proteomics to achieve a better understanding of how the cardiac proteasome is regulated. Moreover, improved methods for the assessment of UPS function and the development of genetic models to study the role of the UPS have led to the realization that often the function of this system deviates from the norm in many cardiovascular pathologies. Hence, dysfunction has been described in atherosclerosis, familial cardiac proteinopathies, idiopathic dilated cardiomyopathies, and myocardial ischemia. This has led to numerous studies of the ubiquitin protein (E3) ligases and their roles in cardiac physiology and pathophysiology. This has also led to the controversial proposition of treating atherosclerosis, cardiac hypertrophy, and myocardial ischemia with proteasome inhibitors. Furthering our knowledge of this system may help in the development of new UPS-based therapeutic modalities for mitigation of cardiovascular disease.

Powell, Saul R.; Herrmann, Joerg; Lerman, Amir; Patterson, Cam; Wang, Xuejun

2013-01-01

121

Conditional Transgenic System for Mouse Aurora A Kinase: Degradation by the Ubiquitin Proteasome Pathway Controls the Level of the Transgenic Protein  

Microsoft Academic Search

Aurora A is a mitotic kinase that localizes to centrosomes. Expression of this protein is normally limited to the mitotic stage (G2-M) of the cell cycle, whereas human cancer cells frequently exhibit overexpression of Aurora A protein regardless of the cell cycle stage. In the present study, Aurora A transgenic mouse lines were generated with a new conditional expression system

Tomokazu Fukuda; Yuji Mishina; Michael P. Walker; Richard P. DiAugustine

2005-01-01

122

Piperlongumine induces inhibition of the ubiquitin-proteasome system in cancer cells.  

PubMed

Piperlongumine, a natural product from the plant Piperlongum, has demonstrated selective cytotoxicity to tumor cells and to show anti-tumor activity in animal models [1]. Cytotoxicity of piperlongumine has been attributed to increase in reactive oxygen species (ROS) in cancer cells. We here report that piperlongumine is an inhibitor of the ubiquitin-proteasome system (UPS). Exposure of tumor cells to piperlongumine resulted in accumulation of a reporter substrate known to be rapidly degraded by the proteasome, and of accumulation of ubiquitin conjugated proteins. However, no inhibition of 20S proteolytic activity or 19S deubiquitinating activity was observed at concentrations inducing cytotoxicity. Consistent with previous reports, piperlongumine induced strong ROS activation which correlated closely with UPS inhibition and cytotoxicity. Proteasomal blocking could not be mimicked by agents that induce oxidative stress. Our results suggest that the anti-cancer activity of piperlongumine involves inhibition of the UPS at a pre-proteasomal step, prior to deubiquitination of malfolded protein substrates at the proteasome, and that the previously reported induction of ROS is a consequence of this inhibition. PMID:23318177

Jarvius, Malin; Fryknäs, Mårten; D'Arcy, Pädraig; Sun, Chao; Rickardson, Linda; Gullbo, Joachim; Haglund, Caroline; Nygren, Peter; Linder, Stig; Larsson, Rolf

2013-01-11

123

Single Neuron Ubiquitin-Proteasome Dynamics Accompanying Inclusion Body Formation in Huntington Disease*S?  

PubMed Central

The accumulation of mutant protein in intracellular aggregates is a common feature of neurodegenerative disease. In Huntington disease, mutant huntingtin leads to inclusion body (IB) formation and neuronal toxicity. Impairment of the ubiquitin-proteasome system (UPS) has been implicated in IB formation and Huntington disease pathogenesis. However, IBs form asynchronously in only a subset of cells with mutant huntingtin, and the relationship between IB formation and UPS function has been difficult to elucidate. Here, we applied single-cell longitudinal acquisition and analysis to monitor mutant huntingtin IB formation, UPS function, and neuronal toxicity. We found that proteasome inhibition is toxic to striatal neurons in a dose-dependent fashion. Before IB formation, the UPS is more impaired in neurons that go on to form IBs than in those that do not. After forming IBs, impairment is lower in neurons with IBs than in those without. These findings suggest IBs are a protective cellular response to mutant protein mediated in part by improving intracellular protein degradation.

Mitra, Siddhartha; Tsvetkov, Andrey S.; Finkbeiner, Steven

2009-01-01

124

Peroxisome Proliferator-Activated Receptor Gamma and Regulations by the Ubiquitin-Proteasome System in Pancreatic Cancer  

PubMed Central

Pancreatic cancer is one of the most lethal forms of human cancer. Although progress in oncology has improved outcomes in many forms of cancer, little progress has been made in pancreatic carcinoma and the prognosis of this malignancy remains grim. Several molecular abnormalities often present in pancreatic cancer have been defined and include mutations in K-ras, p53, p16, and DPC4 genes. Nuclear receptor Peroxisome Proliferator-Activated Receptor gamma (PPAR?) has a role in many carcinomas and has been found to be overexpressed in pancreatic cancer. It plays generally a tumor suppressor role antagonizing proteins promoting carcinogenesis such as NF-?B and TGF?. Regulation of pathways involved in pancreatic carcinogenesis is effectuated by the Ubiquitin Proteasome System (UPS). This paper will examine PPAR? in pancreatic cancer, the regulation of this nuclear receptor by the UPS, and their relationship to other pathways important in pancreatic carcinogenesis.

Stravodimou, Athina; Mazzoccoli, Gianluigi; Voutsadakis, Ioannis A.

2012-01-01

125

Misfolded BiP is degraded by a proteasome-independent endoplasmic-reticulum-associated degradation pathway  

PubMed Central

Misfolded proteins are removed from the ER (endoplasmic reticulum) by retrotranslocation to the cytosol and degradation by the ubiquitin–proteasome system in a process designated ERAD (ER-associated degradation). Analysing the turnover of a misfolded form of the ER-resident chaperone BiP (heavy-chain binding protein) (BiP?A), we found that the degradation of BiP?A did not follow this general ERAD pathway. In transfected cells, BiP?A was degraded, although proteasome-dependent ERAD was inactivated either by proteasome inhibitors or by ATP depletion. In semi-permeabilized cells, which did not support the degradation of the proteasomal substrate ?1-antitrypsin, the degradation of BiP?A was still functional, excluding the Golgi apparatus or lysosomes as the degradative compartment. The degradation of BiP?A was recapitulated in biosynthetically loaded brain microsomes and in an extract of luminal ER proteins. In contrast with proteasome-dependent ERAD, degradation fragments were detectable inside the microsomes and in the extract, and the degradation was prevented by a serine protease inhibitor. These results show that the degradation of BiP?A was initiated in the ER lumen by a serine protease, and support the view that proteasome-independent ERAD pathways exist.

2004-01-01

126

The Smad pathway in transforming growth factor-? signaling  

Microsoft Academic Search

The Smad pathway is involved in transforming growth factor-? (TGF-?) signal transduction. The Smad complex binds with the\\u000a promoter of target gene to modulate gene transcription. Various transcriptional coactivators and corepressors associate directly\\u000a with Smads for appropriate binding of Smads to target promoters and regulation of Smads transcriptional activities. The ultimate\\u000a degradation of Smads mediated by the ubiquitin-proteasome pathway (UPP)

Haiyan Lin; Hongmei Wang; Cheng Zhu

2003-01-01

127

Impairment of the ubiquitin-proteasome system in desminopathy mouse hearts  

Microsoft Academic Search

Protein misfolding and aberrant aggregation are associated with many severe disorders, such as neural degenerative diseases, desmin-related myopathy (DRM), and congestive heart failure. Intrasarcoplasmic amyloidosis and increased ubiquitinated proteins are observed in human failing hearts. The pathogenic roles of these derangements in the heart remain unknown. The ubiquitin-proteasome system (UPS) plays a central role in intracellular proteolysis and regulates critical

Jinbao Liu; Quanhai Chen; Wei Huang; Kathleen M. Horak; Hanqiao Zheng; Ruben Mestril; Xuejun Wang

2005-01-01

128

The Short-Lived Mat 2 Transcriptional Repressor Is Protected from Degradation In Vivo by Interactions with Its Corepressors Tup1 and Ssn6  

Microsoft Academic Search

The Mat 2( 2) protein is a transcriptional repressor necessary for the proper expression of cell type- specific genes in Saccharomyces cerevisiae. Like many transcription factors, 2 is rapidly degraded in vivo by the ubiquitin-proteasome pathway. At least two different ubiquitin-dependent pathways target 2 for destruc- tion, one of which recognizes the well-characterized Deg1 degradation determinant near the N terminus

J. D. Laney; Erika F. Mobley; Mark Hochstrasser

2006-01-01

129

Pesticides that inhibit the ubiquitin-proteasome system: Effect measure modification by genetic variation in SKP1 in Parkinson?s disease.  

PubMed

Cytoplasmic inclusions known as Lewy bodies, a hallmark of Parkinson's disease (PD) pathology, may protect against cytotoxic proteins. Since the ubiquitin-proteasome system (UPS) degrades cytotoxic proteins, dysfunction in the UPS may contribute to PD etiology. Our goal in this study was to screen pesticides for proteasome inhibition and investigate (i) whether ambient exposures to pesticides that inhibit the UPS increase PD risk and (ii) whether genetic variation in candidate genes of the UPS pathway modify those increased risks. We assessed 26S UPS activity in SK-N-MC(u) cells by fluorescence. We recruited idiopathic PD cases (n=360) and population-based controls (n=816) from three counties in California with considerable commercial agriculture. We determined ambient pesticide exposure by our validated GIS-based model utilizing residential and workplace address histories. We limited effect measure modification assessment to Caucasians (287 cases, 453 controls). Eleven of 28 pesticides we screened inhibited 26S UPS activity at 10µM. Benomyl, cyanazine, dieldrin, endosulfan, metam, propargite, triflumizole, and ziram were associated with increased PD risk. We estimated an odds ratio of 2.14 (95% CI: 1.42, 3.22) for subjects with ambient exposure to any UPS-inhibiting pesticide at both residential and workplace addresses; this association was modified by genetic variation in the s-phase kinase-associated protein 1 gene (SKP1; interaction p-value=0.005). Our results provide evidence that UPS-inhibiting pesticides play a role in the etiology of PD and suggest that genetic variation in candidate genes involved in the UPS pathway might exacerbate the toxic effects of pesticide exposures. PMID:23988235

Rhodes, Shannon L; Fitzmaurice, Arthur G; Cockburn, Myles; Bronstein, Jeff M; Sinsheimer, Janet S; Ritz, Beate

2013-08-27

130

Chimeric molecules facilitate the degradation of androgen receptors and repress the growth of LNCaP cells  

Microsoft Academic Search

Post-translational degradation of protein plays an important role in cell life. We employed chimeric molecules (dihydrotestosterone-based proteolysis-targeting chimeric molecule [DHT-PROTAC]) to facilitate androgen receptor (AR) degradation via the ubiquitin–proteasome pathway (UPP) and to investigate the role of AR in cell proliferation and viability in androgen-sensitive prostate cancer cells. Western blot analysis and immunohistochemistry were applied to analyse AR levels in

Yue-Qing Tang; Bang-Min Han; Xin-Quan Yao; Yan Hong; Yan Wang; Fu-Jun Zhao; Sheng-Qiang Yu; Xiao-Wen Sun; Shu-Jie Xia

2009-01-01

131

Iron-dependent degradation of IRP2 requires its C-terminal region and IRP structural integrity  

Microsoft Academic Search

BACKGROUND: Iron regulatory protein 2 (IRP2), a post-transcriptional regulator of cellular iron metabolism, undergoes iron-dependent degradation via the ubiquitin-proteasome pathway. A stretch of 73 amino acids within the N-terminal domain 1 of the protein was reported to function as an iron sensor. However, mutants lacking this fragment remain sensitive to degradation in iron-replete cells. RESULTS: To identify elements within IRP2

Jian Wang; Guohua Chen; Julie Lee; Kostas Pantopoulos

2008-01-01

132

The Doa4 Deubiquitinating Enzyme Is Functionally Linked to the Vacuolar Protein-sorting and Endocytic Pathways  

Microsoft Academic Search

The Saccharomyces cerevisiae DOA4 gene encodes a deubiquitinating enzyme that is required for rapid degradation of ubiquitin-proteasome pathway substrates. Both genetic and biochemical data suggest that Doa4 acts in this pathway by facilitating ubiquitin recycling from ubiquitinated intermediates targeted to the proteasome. Here we describe the isolation of 12 spontaneous extragenic suppressors of the doa4-1 mutation; these involve seven different

Alexander Y. Amerik; Jonathan Nowak; Sowmya Swaminathan; Mark Hochstrasser

2000-01-01

133

Degradation of the Saccharomyces cerevisiae Mating-Type Regulator ?1: Genetic Dissection of Cis-determinants and Trans-acting Pathways  

PubMed Central

Mating phenotype in the yeast Saccharomyces cerevisiae is a dynamic trait, and efficient transitions between alternate haploid cell types allow the organism to access the advantageous diploid form. Mating identity is determined by cell type-specific transcriptional regulators, but these factors must be rapidly removed upon mating-type switching to allow the master regulators of the alternate state to establish a new gene expression program. Targeted proteolysis by the ubiquitin–proteasome system is a commonly employed strategy to quickly disassemble regulatory networks, and yeast use this approach to evoke efficient switching from the ? to the a phenotype by ensuring the rapid removal of the ?2 transcriptional repressor. Transition to the a cell phenotype, however, also requires the inactivation of the ?1 transcriptional activator, but the mechanism by which this occurs is currently unknown. Here, we report a central role for the ubiquitin–proteasome system in ?1 inactivation. The ?1 protein is constitutively short lived and targeted for rapid turnover by multiple ubiquitin-conjugation pathways. Intriguingly, the ?-domain, a conserved region of unknown function, acts as a degradation signal for a pathway defined by the SUMO-targeted ligase Slx5–Slx8, which has also been implicated in the rapid destruction of ?2. Our observations suggest coordinate regulation in the turnover of two master regulatory transcription factors ensures a rapid mating-type switch.

Nixon, Christina E.; Wilcox, Alexander J.; Laney, Jeffrey D.

2010-01-01

134

Alpha-synuclein's degradation in vivo  

PubMed Central

Progressive accumulation of ?-synuclein is key to the pathology of many neurodegenerative diseases, including Parkinson disease and dementia with Lewy bodies. Increased intracellular levels of ?-synuclein may be caused by enhanced expression or alterations in protein degradation pathways. Here we review our recent study showing that the ubiquitin-proteasome system and the autophagy-lysosomal pathway are differentially involved in ?-synuclein's degradation in vivo. We discuss the key findings obtained with our novel in vivo approach and also present a model for the progression of protein aggregation and dysfunctional degradation in Parkinson disease.

Ebrahimi-Fakhari, Darius

2012-01-01

135

RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor2a  

Microsoft Academic Search

Hypoxia-inducible factors (HIFs) are critical tran- scription factors that mediate cell survival during reduced oxygen conditions (hypoxia). At regular oxygen conditions (normoxia), HIF-1a and HIF-2a are continuously synthesized in cells and degraded via the ubiquitin-proteasome pathway. During hypoxia, these proteins are stabilized and translocate to the nucleus to activate transcription of target genes that enable cell survival at reduced oxygen

Martijn van Hagen; Sharareh S. Abolvardi; Alfred C. O. Vertegaal

136

Mechanism of the Attenuation of Proteolysis-Inducing Factor Stimulated Protein Degradation in Muscle by -Hydroxy--Methylbutyrate  

Microsoft Academic Search

The leucine metabolite -hydroxy--methylbutyrate (HMB) prevents muscle protein degradation in cancer-induced weight loss through atten- uation of the ubiquitin-proteasome proteolytic pathway. To investigate the mechanism of this effect, the action of HMB on protein breakdown and intracellular signaling leading to increased proteasome expression by the tumor factor proteolysis-inducing factor (PIF) has been studied in vitro using murine myotubes as a

Helen J. Smith; Stacey M. Wyke; Michael J. Tisdale

2004-01-01

137

Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases  

PubMed Central

A number of neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and polyglutamine diseases, are characterized by the age-dependent formation of intracellular protein aggregates and neurodegeneration. Although there is some debate surrounding the role of these aggregates in neurotoxicity, the formation of aggregates is known to reflect the accumulation of misfolded and toxic proteins. The degradation of misfolded proteins occurs mainly via the ubiquitin–proteasome and autophagy pathways. In neuronal cells, polyglutamine protein inclusions are present predominantly in the nucleus, which is not accessible to autophagy. It remains unclear how the ubiquitin–proteasomal and autophagy pathways remove misfolded proteins in the different subcellular regions of neurons, where disease proteins become misfolded and aggregated in an age-dependent manner. Here we discuss the key findings to date about the roles of the ubiquitin–proteasome system and autophagy in polyglutamine diseases. Understanding how these two pathways function to clear mutant polyglutamine proteins will further the development of effective treatments for polyglutamine and other neurodegenerative diseases.

Li, Xiang; Li, He; Li, Xiao-Jiang

2008-01-01

138

Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients  

PubMed Central

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset progressive muscle disorder caused by a poly-alanine expansion mutation in the Poly(A) Binding Protein Nuclear 1 (PABPN1). The molecular mechanisms that regulate disease onset and progression are largely unknown. In order to identify molecular pathways that are consistently associated with OPMD, we performed an integrated high-throughput transcriptome study in affected muscles of OPMD animal models and patients. The ubiquitin-proteasome system (UPS) was found to be the most consistently and significantly OPMD-deregulated pathway across species. We could correlate the association of the UPS OPMD-deregulated genes with stages of disease progression. The expression trend of a subset of these genes is age-associated and therefore, marks the late onset of the disease, and a second group with expression trends relating to disease-progression. We demonstrate a correlation between expression trends and entrapment into PABPN1 insoluble aggregates of OPMD-deregulated E3 ligases. We also show that manipulations of proteasome and immunoproteasome activity specifically affect the accumulation and aggregation of mutant PABPN1. We suggest that the natural decrease in proteasome expression and its activity during muscle aging contributes to the onset of the disease.

2011-01-01

139

Hepatitis E Virus Replication Requires an Active Ubiquitin-Proteasome System  

PubMed Central

The mechanism of hepatitis E virus (HEV) replication remains largely unknown. Here we demonstrate that HEV replication requires an active ubiquitin-proteasome system and that proteasome inhibitors affect HEV replication, possibly by inhibition of viral transcription or/and translation without a significant effect on cellular translation. Overexpression of ubiquitin in inhibitor-treated cells partially reverses the inhibitor effect on HEV replication. The results suggest that HEV replication requires interactions with proteasome machinery, which could be a potential therapeutic target against HEV.

Karpe, Yogesh A.

2012-01-01

140

The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases  

PubMed Central

Summary The ubiquitin proteasome system is a potent regulatory mechanism used to control protein stability in numerous cellular processes, including neural development. Many neurodegenerative diseases are featured by the accumulation of UPS-associated proteins, suggesting the UPS dysfunction may be crucial for pathogenesis. Recent experiments have highlighted the UPS as a key player during synaptic development. Here we summarize recent discoveries centered on the role of the UPS in synapse remodeling and draw attention to the potential link between the synaptic UPS dysfunction and the pathology of neurodegenerative diseases.

Ding, Mei; Shen, Kang

2011-01-01

141

The Ubiquitin-Proteasome System of Saccharomyces cerevisiae  

PubMed Central

Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.

Finley, Daniel; Ulrich, Helle D.; Sommer, Thomas; Kaiser, Peter

2012-01-01

142

Regulating Mitochondrial Outer Membrane Proteins by Ubiquitination and Proteasomal Degradation  

PubMed Central

Mitochondrial outer membrane proteins have been found to be ubiquitinated and degraded by the proteasome. This process shares at least one component of the ERAD pathway of ER membrane protein degradation, the AAA ATPase cdc48/p97/VCP, thought to extract integral membrane proteins from the lipid bilayer and chaperone them to the proteasome. Proteasomal degradation of the outer mitochondrial membrane protein Mcl-1 regulates apoptosis whereas Parkin-mediated ubiquitination and degradation of Mitofusins can inhibit mitochondrial fusion and promote mitophagy. The breadth of outer mitochondrial membrane ubiquitin/proteasome substrates and the physiological relevance of their turnover is only beginning to be understood.

Karbowski, Mariusz; Youle, Richard J.

2011-01-01

143

The RING domain of cIAP1 mediates the degradation of RING-bearing inhibitor of apoptosis proteins by distinct pathways.  

PubMed

The Inhibitor of Apoptosis proteins (IAPs) are key repressors of apoptosis. Several IAP proteins contain a RING domain that functions as an E3 ubiquitin ligase involved in the ubiquitin-proteasome pathway. Here we investigated the interplay of ubiquitin-proteasome pathway and RING-mediated IAP turnover. We found that the CARD-RING domain of cIAP1 (cIAP1-CR) is capable of down-regulating protein levels of RING-bearing IAPs such as cIAP1, cIAP2, XIAP, and Livin, while sparing NAIP and Survivin, which do not possess a RING domain. To determine whether polyubiquitination was required, we tested the ability of cIAP1-CR to degrade IAPs under conditions that impair ubiquitination modifications. Remarkably, although the ablation of E1 ubiquitin-activating enzyme prevented cIAP1-CR-mediated down-regulation of cIAP1 and cIAP2, there was no impact on degradation of XIAP and Livin. XIAP mutants that were not ubiquitinated in vivo were readily down-regulated by cIAP1-CR. Moreover, XIAP degradation in response to cisplatin and doxorubicin was largely prevented in cIAP1-silenced cells, despite cIAP2 up-regulation. The knockdown of cIAP1 and cIAP2 partially blunted Fas ligand-mediated down-regulation of XIAP and protected cells from cell death. Together, these results show that the E3 ligase RING domain of cIAP1 targets RING-bearing IAPs for proteasomal degradation by ubiquitin-dependent and -independent pathways. PMID:18434593

Cheung, Herman H; Plenchette, Stéphanie; Kern, Chris J; Mahoney, Douglas J; Korneluk, Robert G

2008-04-23

144

plantsUPS: a database of plants' Ubiquitin Proteasome System  

PubMed Central

Background The ubiquitin 26S/proteasome system (UPS), a serial cascade process of protein ubiquitination and degradation, is the last step for most cellular proteins. There are many genes involved in this system, but are not identified in many species. The accumulating availability of genomic sequence data is generating more demands in data management and analysis. Genomics data of plants such as Populus trichocarpa, Medicago truncatula, Glycine max and others are now publicly accessible. It is time to integrate information on classes of genes for complex protein systems such as UPS. Results We developed a database of higher plants' UPS, named 'plantsUPS'. Both automated search and manual curation were performed in identifying candidate genes. Extensive annotations referring to each gene were generated, including basic gene characterization, protein features, GO (gene ontology) assignment, microarray probe set annotation and expression data, as well as cross-links among different organisms. A chromosome distribution map, multi-sequence alignment, and phylogenetic trees for each species or gene family were also created. A user-friendly web interface and regular updates make plantsUPS valuable to researchers in related fields. Conclusion The plantsUPS enables the exploration and comparative analysis of UPS in higher plants. It now archives > 8000 genes from seven plant species distributed in 11 UPS-involved gene families. The plantsUPS is freely available now to all users at .

Du, Zhou; Zhou, Xin; Li, Li; Su, Zhen

2009-01-01

145

Narrative Review: Protein Degradation and Human Diseases: The Ubiquitin Connection  

NSDL National Science Digital Library

Physiology in Medicine review article. When researchers discovered the organelle lysosome, they assumed that cellular proteins were degraded within it. However, several independent lines of evidence strongly suggested that intracellular proteolysis was largely nonlysosomal. It is now recognized that degradation of intracellular proteins by the ubiquitin proteasome system (UPS) is involved in the regulation of a broad array of cellular processes,drugs that target the degradation pathways of a single or a few proteins without affecting other proteins. It seems that pharmacologic manipulation of the UPS might alter the outcome of many diseases, especially malignant conditions and possibly neurodegenerative and chronic inflammatory diseases.

MD/PhD Eyal Reinstein (Tel-Aviv University Deparrment of Internal Medicine); MD/PhD Aaron Ciechanover (Technion-Israel Institute of Technology)

2006-11-07

146

Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation  

PubMed Central

The ubiquitin–proteasome pathway of protein degradation is one of the major mechanisms that are involved in the maintenance of the proper levels of cellular proteins. The regulation of proteasomal degradation thus ensures proper cell functions. The family of proteins containing ubiquitin-like (UbL) and ubiquitin-associated (UBA) domains has been implicated in proteasomal degradation. UbL–UBA domain containing proteins associate with substrates destined for degradation as well as with subunits of the proteasome, thus regulating the proper turnover of proteins.

Lau, Alan F.

2009-01-01

147

Non-canonical ?-catenin degradation mediates reactive oxygen species-induced epidermal cell death  

PubMed Central

?-catenin is constantly degraded through the ubiquitin-proteasomal pathway. We here report that a different type of ?-catenin degradation is causally involved in epidermal cell death. We observed that reactive oxygen species (ROS) caused ?-catenin degradation in the epidermal cells through a caspase-dependent mechanism, which results in disruption of cell adhesion. Disruption of cell adhesion increased ROS and activated caspases. Upregulation of the intact ?-catenin blocked ROS accumulation and caspase activation. These results indicate that a feed-forward loop consisting of ROS, caspases activation and ?-catenin degradation induces epidermal cell death.

Omori, Emily; Matsumoto, Kunihiro; Ninomiya-Tsuji, Jun

2011-01-01

148

Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment  

PubMed Central

Aggregation-prone proteins have been suggested to overwhelm and impair the ubiquitin/proteasome system (UPS) in polyglutamine (polyQ) disorders, such as Huntington's disease (HD). Overexpression of an N-terminal fragment of mutant huntingtin (N-mutHtt), an aggregation-prone polyQ protein responsible for HD, obstructs the UPS in cellular models. Furthermore, based on the accumulation of polyubiquitin conjugates in brains of R6/2 mice, which express human N-mutHtt and are one of the most severe polyQ disorder models, it has been proposed that UPS dysfunction is a consistent feature of this pathology, occurring in both in vitro and in vivo models. Here, we have exploited transgenic mice that ubiquitously express a ubiquitin fusion degradation proteasome substrate to directly assess the functionality of the UPS in R6/2 mice or the slower onset R6/1 mice. Although expression of N-mutHtt caused a general inhibition of the UPS in PC12 cells, we did not observe an increase in the levels of proteasome reporter substrate in the brains of R6/2 and R6/1 mice. We show that the increase in ubiquitin conjugates in R6/2 mice can be primarily attributed to an accumulation of large ubiquitin conjugates that are different from the conjugates observed upon UPS inhibition. Together our data show that polyubiquitylated proteins accumulate in R6/2 brain despite a largely operative UPS, and suggest that neurons are able to avoid or compensate for the inhibitory effects of N-mutHtt.

Maynard, Christa J.; Bottcher, Claudia; Ortega, Zaira; Smith, Ruben; Florea, Bogdan I.; Diaz-Hernandez, Miguel; Brundin, Patrik; Overkleeft, Hermen S.; Li, Jia-Yi; Lucas, Jose J.; Dantuma, Nico P.

2009-01-01

149

In situ dynamically monitoring the proteolytic function of the ubiquitin-proteasome system in cultured cardiac myocytes.  

PubMed

The ubiquitin-proteasome system (UPS) is responsible for turnover of most cellular proteins in eukaryotes. Protein degradation by the UPS serves quality control and regulatory functions. Proteasome inhibition showed great promise in effectively treating cancer and restenosis. UPS dysfunction in cardiac hypertrophy and failure has recently been suspected but remains to be investigated. A system capable of monitoring dynamic changes in proteolytic function of the UPS in cardiac myocytes in situ would no doubt benefit significantly efforts to decipher the pathogenic significance of UPS dysfunction in the heart and to evaluate the effect of proteasome inhibition on cardiac myocytes. We successfully established such a system in cultured cardiac myocytes by delivering and expressing a modified green fluorescence protein (GFPu) gene using recombinant adenoviruses. GFPu contains a ubiquitination signal sequence fused to the COOH terminus. Fluorescence microscopy and Western blots revealed that protein abundance of modified green fluorescent protein (GFPu), but not wild-type green fluorescent protein, in cultured cardiac myocytes was incrementally increased when function of the proteasomes was inhibited in various degrees by specific inhibitors. The increase in GFPu protein levels and fluorescence intensity is paralleled by a decrease in the in vitro peptidase activity of the proteasomes. Our results demonstrate that GFPu can be used as a surrogate marker to monitor dynamic changes in proteolytic function of the UPS in cardiac myocytes in situ. Application of this novel system reveals that moderate levels of H2O2, a reactive oxygen species generator, impair proteolytic function of the UPS in cultured cardiac myocytes. PMID:15105173

Dong, Xin; Liu, Jinbao; Zheng, Hanqiao; Glasford, Joseph W; Huang, Wei; Chen, Quan Hai; Harden, Niels R; Li, Faqian; Gerdes, A Martin; Wang, Xuejun

2004-04-22

150

The ubiquitin-proteasome system plays an important role during various stages of the coronavirus infection cycle.  

PubMed

The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2alpha. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection. PMID:20484504

Raaben, Matthijs; Posthuma, Clara C; Verheije, Monique H; te Lintelo, Eddie G; Kikkert, Marjolein; Drijfhout, Jan W; Snijder, Eric J; Rottier, Peter J M; de Haan, Cornelis A M

2010-05-19

151

Inhibition of the Ubiquitin-Proteasome System Affects Influenza A Virus Infection at a Postfusion Step?  

PubMed Central

We have demonstrated that influenza A virus (IAV) RNA synthesis depends on the ubiquitin-proteasome system. IAV replication was reduced both by proteasome inhibitors and in E36ts20 cells, which contain the thermolabile ubiquitin-activating enzyme E1. While virus entry was not affected in E36ts20 cells, the proteasome inhibitor MG132 retained viral particles in the cytoplasm. Addition-removal experiments of MG132 in combination with bafilomycin A1, a well-established inhibitor of IAV entry and fusion, showed that MG132 affected IAV infection at a postfusion step. This was confirmed by the lack of inhibition of IAV entry by proteasome inhibitors in a virus-like particle fusion assay.

Widjaja, Ivy; de Vries, Erik; Tscherne, Donna M.; Garcia-Sastre, Adolfo; Rottier, Peter J. M.; de Haan, Cornelis A. M.

2010-01-01

152

Regulation of hematopoietic stem cell fate by the ubiquitin proteasome system  

PubMed Central

Hematopoietic stem cells (HSCs) residing in the bone marrow generate mature blood cells throughout the life of the organism. This is accomplished by careful regulation of HSC activity to balance quiescence, self-renewal and differentiation. Studies of the molecular mechanisms governing HSC maintenance have mostly focused on the role of signaling and transcriptional processes. However, it has recently been demonstrated that protein regulation via the ubiquitin proteasome system (UPS) is crucial for normal HSC function. The loss of which can lead to transformation and leukemogenesis. The effective use of a general and reversible inhibitor of the UPS, Bortezomib, in treating mantle cell lymphoma and multiple myeloma demonstrated that targeting the UPS has therapeutic potential. Thus, understanding the emerging field of how the UPS regulates HSC activity may lead to novel targets for therapy of leukemia.

Crusio, Kelly M.; Reavie, Linsey B.; Aifantis, Iannis

2013-01-01

153

Regulation of hematopoietic stem cell fate by the ubiquitin proteasome system.  

PubMed

Hematopoietic stem cells (HSCs) residing in the bone marrow generate mature blood cells throughout the life of the organism. This is accomplished by careful regulation of HSC activity to balance quiescence, self-renewal and differentiation. Studies of the molecular mechanisms governing HSC maintenance have mostly focused on the role of signaling and transcriptional processes. However, it has recently been demonstrated that protein regulation via the ubiquitin proteasome system (UPS) is crucial for normal HSC function; the loss of which can lead to transformation and leukemogenesis. The effective use of a general and reversible inhibitor of the UPS, bortezomib, in treating mantle cell lymphoma and multiple myeloma has demonstrated that targeting the UPS has therapeutic potential. Thus, understanding the emerging field of how the UPS regulates HSC activity may lead to novel targets for therapy of leukemia. PMID:22349458

Moran-Crusio, Kelly; Reavie, Linsey B; Aifantis, Iannis

2012-02-18

154

Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice  

PubMed Central

Huntington's disease (HD) is caused by the expansion of a polyglutamine tract in the N-terminal region of huntingtin (htt) and is characterized by selective neurodegeneration. In addition to forming nuclear aggregates, mutant htt accumulates in neuronal processes as well as synapses and affects synaptic function. However, the mechanism for the synaptic toxicity of mutant htt remains to be investigated. We targeted fluorescent reporters for the ubiquitin–proteasome system (UPS) to presynaptic or postsynaptic terminals of neurons. Using these reporters and biochemical assays of isolated synaptosomes, we found that mutant htt decreases synaptic UPS activity in cultured neurons and in HD mouse brains that express N-terminal or full-length mutant htt. Given that the UPS is a key regulator of synaptic plasticity and function, our findings offer insight into the selective neuronal dysfunction seen in HD and also establish a method to measure synaptic UPS activity in other neurological disease models.

Wang, Jianjun; Wang, Chuan-En; Orr, Adam; Tydlacka, Suzanne; Li, Shi-Hua; Li, Xiao-Jiang

2008-01-01

155

A Double-Edged Sword Role for Ubiquitin-Proteasome System in Brain Stem Cardiovascular Regulation During Experimental Brain Death  

PubMed Central

Background Brain stem cardiovascular regulatory dysfunction during brain death is underpinned by an upregulation of nitric oxide synthase II (NOS II) in rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from blood pressure of comatose patients that disappears before brain death ensues. Furthermore, the ubiquitin-proteasome system (UPS) may be involved in the synthesis and degradation of NOS II. We assessed the hypothesis that the UPS participates in brain stem cardiovascular regulation during brain death by engaging in both synthesis and degradation of NOS II in RVLM. Methodology/Principal Findings In a clinically relevant experimental model of brain death using Sprague-Dawley rats, pretreatment by microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) antagonized the hypotension and reduction in the life-and-death signal elicited by intravenous administration of Escherichia coli lipopolysaccharide (LPS). On the other hand, pretreatment with an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1) potentiated the elicited hypotension and blunted the prevalence of the life-and-death signal. Real-time polymerase chain reaction, Western blot, electrophoresis mobility shift assay, chromatin immunoprecipitation and co-immunoprecipitation experiments further showed that the proteasome inhibitors antagonized the augmented nuclear presence of NF-?B or binding between NF-?B and nos II promoter and blunted the reduced cytosolic presence of phosphorylated I?B. The already impeded NOS II protein expression by proteasome inhibitor II was further reduced after gene-knockdown of NF-?B in RVLM. In animals pretreated with UCH-L1 inhibitor and died before significant increase in nos II mRNA occurred, NOS II protein expression in RVLM was considerably elevated. Conclusions/Significance We conclude that UPS participates in the defunct and maintained brain stem cardiovascular regulation during experimental brain death by engaging in both synthesis and degradation of NOS II at RVLM. Our results provide information on new therapeutic initiatives against this fatal eventuality.

Wu, Carol H. Y.; Chan, Julie Y. H.; Chan, Samuel H. H.; Chang, Alice Y. W.

2011-01-01

156

The Ubiquitin-Proteasome System in Huntington's Disease: Are Proteasomes Impaired, Initiators of Disease, or Coming to the Rescue?  

PubMed Central

Huntington's disease is a progressive neurodegenerative disease, caused by a polyglutamine expansion in the huntingtin protein. A prominent hallmark of the disease is the presence of intracellular aggregates initiated by N-terminal huntingtin fragments containing the polyglutamine repeat, which recruit components of the ubiquitin-proteasome system. While it is commonly thought that proteasomes are irreversibly sequestered into these aggregates leading to impairment of the ubiquitin-proteasome system, the data on proteasomal impairment in Huntington's disease is contradictory. In addition, it has been suggested that proteasomes are unable to actually cleave polyglutamine sequences in vitro, thereby releasing aggregation-prone polyglutamine peptides in cells. Here, we discuss how the proteasome is involved in the various stages of polyglutamine aggregation in Huntington's disease, and how alterations in activity may improve clearance of mutant huntingtin fragments.

Schipper-Krom, Sabine; Juenemann, Katrin; Reits, Eric A. J.

2012-01-01

157

A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome.  

PubMed

The ubiquitin proteasome system (UPS) degrades abnormal proteins and most unneeded normal proteins, thereby playing a critical role in protein homeostasis in the cell. Proteasome inhibition is effective in treating certain forms of cancer, while UPS dysfunction is increasingly implicated in the pathogenesis of many severe and yet common diseases. It has been previously shown that doxorubicin (Dox) enhances the degradation of a UPS surrogate substrate in mouse hearts. To address the underlying mechanism, in the present study, we report that 1) Dox not only enhances the degradation of an exogenous UPS reporter (GFPu) but also antagonizes the proteasome inhibitor-induced accumulation of endogenous substrates (e.g., beta-catenin and c-Jun) of the UPS in cultured NIH 3T3 cells and cardiomyocytes; 2) Dox facilitates the in vitro degradation of GFPu and c-Jun by the reconstituted UPS via the enhancement of proteasomal function; 3) Dox at a therapeutically relevant dose directly stimulates the peptidase activities of purified 20S proteasomes; and 4) Dox increases, whereas proteasome inhibition decreases, E3 ligase COOH-terminus of heat shock protein cognate 70 in 3T3 cells via a posttranscriptional mechanism. These new findings suggest that Dox activates the UPS by acting directly on both the ubiquitination apparatus and proteasome. PMID:18978187

Liu, Jinbao; Zheng, Hanqiao; Tang, Mingxin; Ryu, Youn-Chul; Wang, Xuejun

2008-10-31

158

A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome  

PubMed Central

The ubiquitin proteasome system (UPS) degrades abnormal proteins and most unneeded normal proteins, thereby playing a critical role in protein homeostasis in the cell. Proteasome inhibition is effective in treating certain forms of cancer, while UPS dysfunction is increasingly implicated in the pathogenesis of many severe and yet common diseases. It has been previously shown that doxorubicin (Dox) enhances the degradation of a UPS surrogate substrate in mouse hearts. To address the underlying mechanism, in the present study, we report that 1) Dox not only enhances the degradation of an exogenous UPS reporter (GFPu) but also antagonizes the proteasome inhibitor-induced accumulation of endogenous substrates (e.g., ?-catenin and c-Jun) of the UPS in cultured NIH 3T3 cells and cardiomyocytes; 2) Dox facilitates the in vitro degradation of GFPu and c-Jun by the reconstituted UPS via the enhancement of proteasomal function; 3) Dox at a therapeutically relevant dose directly stimulates the peptidase activities of purified 20S proteasomes; and 4) Dox increases, whereas proteasome inhibition decreases, E3 ligase COOH-terminus of heat shock protein cognate 70 in 3T3 cells via a posttranscriptional mechanism. These new findings suggest that Dox activates the UPS by acting directly on both the ubiquitination apparatus and proteasome.

Liu, Jinbao; Zheng, Hanqiao; Tang, Mingxin; Ryu, Youn-Chul; Wang, Xuejun

2008-01-01

159

Inhibition of VCAM-1 expression in endothelial cells by CORM-3: the role of the ubiquitin-proteasome system, p38, and mitochondrial respiration.  

PubMed

Carbon monoxide (CO) abrogates TNF-?-mediated inflammatory responses in endothelial cells, yet the underlying mechanism thereof is still elusive. We have previously shown that the anti-inflammatory effect of CO-releasing molecule-3 (CORM-3) is not completely mediated via deactivation of the NF-?B pathway. In this study, we sought to explore other potential mechanisms by which CORM-3 downregulates VCAM-1 expression on TNF-?-stimulated HUVECs. By genome-wide gene expression profiling and pathway analysis we studied the relevance of particular pathways for the anti-inflammatory effect of CORM-3. In CORM-3-stimulated HUVECs significant changes in expression were found for genes implicated in the proteasome and porphyrin pathways. Although proteasome activities were increased by CORM-3, proteasome inhibitors did not abolish the effect of CORM-3. Likewise, heme oxygenase-1 inhibitors did not abrogate the ability of CORM-3 to downregulate VCAM-1 expression. Interestingly, CORM-3 inhibited MAPK p38, and the p38 inhibitor SB203580 downregulated VCAM-1 expression. However, downregulation of VCAM-1 by CORM-3 occurred only at concentrations that partly inhibit ATP production and sodium azide and oligomycin paralleled the effect of CORM-3 in this regard. Our results indicate that CORM-3-induced downregulation of VCAM-1 is mediated via p38 inhibition and mitochondrial respiration, whereas the ubiquitin-proteasome system seems not to be involved. PMID:22210380

Bergstraesser, Claudia; Hoeger, Simone; Song, Hui; Ermantraut, Linda; Hottenrot, Maxi; Czymai, Tobias; Schmidt, Marc; Goebeler, Matthias; Ponelies, Norbert; Stich, Carsten; Loesel, Ralf; Molema, Grietje; Seelen, Marc; van Son, Willem; Yard, Benito A; Rafat, Neysan

2011-12-21

160

Essential role of ubiquitin-proteasome system in normal regulation of insulin secretion.  

PubMed

Insulin secretion from pancreatic beta-cells occurs by sequential cellular processes, including glucose metabolism, electrical activity, Ca2+ entry, and regulated exocytosis. Abnormalities in any of these functions can impair insulin secretion. In the present study, we demonstrate that inhibition of proteasome activity severely reduces insulin secretion in the mouse pancreatic beta-cell line MIN6-m9. Although no significant effects on glucose metabolism including ATP production were found in the presence of proteasome inhibitors, both glucose- and KCl-induced Ca2+ entry were drastically reduced. As Ca2+-ionophore-induced insulin secretion was unaffected by proteasome inhibition, a defect in Ca2+ entry through voltage-dependent calcium channels (VDCCs) is the likely cause of the impaired insulin secretion. We found that the pore-forming alpha-subunit of VDCCs undergoes ubiquitination, which does not decrease but slightly increases expression of the alpha-subunit protein at the plasma membrane. However, electrophysiological analysis revealed that treatment with proteasome inhibitors results in a severe reduction in VDCC activity in MIN6-m9 cells, indicating that VDCC function is suppressed by proteasome inhibition. Furthermore, insulin secretion in isolated mouse pancreatic islets was also decreased by proteasome inhibition. These results demonstrate that the ubiquitin-proteasome system plays a critical role in insulin secretion by maintaining normal function of VDCCs. PMID:16543239

Kawaguchi, Miho; Minami, Kohtaro; Nagashima, Kazuaki; Seino, Susumu

2006-03-16

161

Studying protein degradation pathways in vivo using a cranial window-based approach  

PubMed Central

Understanding how specific proteins are degraded by neurons in living animals is a fundamental question with relevance to many neurodegenerative diseases. Dysfunction in the ubiquitin-proteasome system (UPS) specifically has been implicated in several important neurodegenerative diseases including Alzheimer’s Disease, Parkinson’s Disease, and amyotrophic lateral sclerosis. Research in this area has been limited by the fact that many inhibitors of the UPS given systemically do not cross the blood-brain barrier (BBB) in appreciable levels. This limits the ability to easily test in vivo specific hypotheses generated in reduced systems, like brain slice or dissociated cell culture, about whether the UPS may degrade a particular protein of interest. Although several techniques including intracerebral application via direct syringe injection, catheter-pump systems and drug-eluting beads are available to introduce BBB-impermeant drugs into brain they each have certain limitations and new approaches could provide further insights into this problem. In order to test the role of the UPS in protein degradation in vivo we have developed a strategy to treat mouse cortex with the UPS inhibitor clasto-lactacystin betalactone (CLBL) via a “cranial window” and recover the treated tissue for immunoblot analysis. This approach can be used in several different cranial window configurations including single window and double hemi-window arrangements that are tailored for different applications. We have also developed two different strategies for recovering treated cortical tissue including a vibratome/Laser Capture Microscopy (LCM)-based and a vibratome only-based approach, each with its own specific advantages. We have documented UPS inhibition >600 µm deep into the cortex with this strategy. This set of techniques in the living mammalian brain is complementary to previously developed approaches and extends the repertoire of tools that can be used to the study protein degradation pathways relevant to neurodegenerative disease.

Unni, Vivek K.; Ebrahimi-Fakhari, Darius; Vanderburg, Charles R.; McLean, Pamela J.; Hyman, Bradley T.

2011-01-01

162

Cytokine-induced oxidative stress in cardiac inflammation and heart failure--how the ubiquitin proteasome system targets this vicious cycle  

PubMed Central

The ubiquitin proteasome system (UPS) is critical for the regulation of many intracellular processes necessary for cell function and survival. The absolute requirement of the UPS for the maintenance of protein homeostasis and thereby for the regulation of protein quality control is reflected by the fact that deviation of proteasome function from the norm was reported in cardiovascular pathologies. Inflammation is a major factor contributing to cardiac pathology. Herein, cytokines induce protein translation and the production of free radicals, thereby challenging the cellular protein equilibrium. Here, we discuss current knowledge on the mechanisms of UPS-functional adaptation in response to oxidative stress in cardiac inflammation. The increasing pool of oxidant-damaged degradation-prone proteins in cardiac pathology accounts for the need for enhanced protein turnover by the UPS. This process is accomplished by an up-regulation of the ubiquitylation machinery and the induction of immunoproteasomes. Thereby, the inflamed heart muscle is cleared from accumulating misfolded proteins. Current advances on immunoproteasome-specific inhibitors in this field question the impact of the proteasome as a therapeutic target in heart failure.

Voigt, Antje; Rahnefeld, Anna; Kloetzel, Peter M.; Kruger, Elke

2013-01-01

163

Ubiquitin-proteasome system impairment and MPTP-induced oxidative stress in the brain of C57BL/6 wild-type and GSTP knockout mice.  

PubMed

The ubiquitin-proteasome system (UPS) is the primary proteolytic complex responsible for the elimination of damaged and misfolded intracellular proteins, often formed upon oxidative stress. Parkinson's disease (PD) is neuropathologically characterized by selective death of dopaminergic neurons in the substantia nigra (SN) and accumulation of intracytoplasmic inclusions of aggregated proteins. Along with mitochondrial dysfunction and oxidative stress, defects in the UPS have been implicated in PD. Glutathione S-transferase pi (GSTP) is a phase II detoxifying enzyme displaying important defensive roles against the accumulation of reactive metabolites that potentiate the aggression of SN neuronal cells, by regulating several processes including S-glutathionylation, modulation of glutathione levels and control of kinase-catalytic activities. In this work we used C57BL/6 wild-type and GSTP knockout mice to elucidate the effect of both MPTP and MG132 in the UPS function and to clarify if the absence of GSTP alters the response of this pathway to the neurotoxin and proteasome inhibitor insults. Our results demonstrate that different components of the UPS have different susceptibilities to oxidative stress. Importantly, when compared to the wild-type, GSTP knockout mice display decreased ubiquitination capacity and overall increased susceptibility to UPS damage and inactivation upon MPTP-induced oxidative stress. PMID:23129554

Carvalho, Andreia Neves; Marques, Carla; Rodrigues, Elsa; Henderson, Colin J; Wolf, C Roland; Pereira, Paulo; Gama, Maria João

2012-11-06

164

Stressing the Ubiquitin-Proteasome System without 20S Proteolytic Inhibition Selectively Kills Cervical Cancer Cells  

PubMed Central

Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate, and for specific signaling pathways, notably HPV E6-targeted degradation of p53 and PDZ proteins. Natural compounds with antioxidant properties including flavonoids and triterpenoids hold promise as anticancer agents by interfering with ubiquitin-dependent protein degradation. An increasing body of evidence indicates that their ?-? unsaturated carbonyl system is the molecular determinant for inhibition of ubiquitin-mediated protein degradation up-stream of the catalytic sites of the 20S proteasome. Herein we report the identification and characterization of a new class of chalcone-based, potent and cell permeable chemical inhibitors of ubiquitin-dependent protein degradation, and a lead compound RAMB1. RAMB1 inhibits ubiquitin-dependent protein degradation without compromising the catalytic activities of the 20S proteasome, a mechanism distinct from that of Bortezomib. Treatment of cervical cancer cells with RAMB1 triggers unfolded protein responses, including aggresome formation and Hsp90 stabilization, and increases p53 steady state levels. RAMB1 treatment results in activation of lysosomal-dependent degradation pathways as a mechanism to compensate for increasing levels of poly-ubiquitin enriched toxic aggregates. Importantly, RAMB1 synergistically triggers cell death of cervical cancer cells when combined with the lysosome inhibitor Chloroquine.

Anchoori, Ravi K.; Khan, Saeed R.; Sueblinvong, Thanasak; Felthauser, Alicia; Iizuka, Yoshie; Gavioli, Riccardo; Destro, Federica; Isaksson Vogel, Rachel; Peng, Shiwen; Roden, Richard B. S.; Bazzaro, Martina

2011-01-01

165

The Mammalian Endoplasmic Reticulum-Associated Degradation System  

PubMed Central

The endoplasmic reticulum (ER) is the site of synthesis for nearly one-third of the eukaryotic proteome and is accordingly endowed with specialized machinery to ensure that proteins deployed to the distal secretory pathway are correctly folded and assembled into native oligomeric complexes. Proteins failing to meet this conformational standard are degraded by ER-associated degradation (ERAD), a complex process through which folding-defective proteins are selected and ultimately degraded by the ubiquitin-proteasome system. ERAD proceeds through four tightly coupled steps involving substrate selection, dislocation across the ER membrane, covalent conjugation with polyubiquitin, and proteasomal degradation. The ERAD machinery shows a modular organization with central ER membrane-embedded ubiquitin ligases linking components responsible for recognition in the ER lumen to the ubiquitin-proteasome system in the cytoplasm. The core ERAD machinery is highly conserved among eukaryotes and much of our basic understanding of ERAD organization has been derived from genetic and biochemical studies of yeast. In this article we discuss how the core ERAD machinery is organized in mammalian cells.

Olzmann, James A.; Kopito, Ron R.; Christianson, John C.

2013-01-01

166

The ubiquitin-proteasome reporter GFPu does not accumulate in neurons of the R6/2 transgenic mouse model of Huntington's disease.  

PubMed

Impairment of the ubiquitin-proteasome system (UPS) has long been considered an attractive hypothesis to explain the selective dysfunction and death of neurons in polyglutamine disorders such as Huntington's disease (HD). The fact that inclusion bodies in HD mouse models and patient brains are rich in ubiquitin and proteasome components suggests that the UPS may be hindered directly or indirectly by inclusion bodies or their misfolded monomeric or oligomeric precursors. However, studies into UPS function in various polyglutamine disease models have yielded conflicting results, suggesting mutant polyglutamine tracts may exert different effects on the UPS depending on protein context, expression level, subcellular localisation and cell-type. To investigate UPS function in a well-characterised mouse model of HD, we have crossed R6/2 HD mice with transgenic UPS reporter mice expressing the GFPu construct. The GFPu construct comprises GFP fused to a constitutive degradation signal (CL-1) that promotes its rapid degradation under conditions of a healthy UPS. Using a combination of immunoblot analysis, fluorescence and immunofluorescence microscopy studies, we found that steady-state GFPu levels were not detectably different between R6/2 and non-R6/2 brain. We observed no correlation between inclusion body formation and GFPu accumulation, suggesting no direct relationship between protein aggregation and global UPS inhibition in R6/2 mice. These findings suggest that while certain branches of the UPS can be impaired by mutant polyglutamine proteins, such proteins do not necessarily cause total blockade of UPS-dependent degradation. It is therefore likely that the relationship between mutant polyglutamine proteins and the UPS is more complex than originally anticipated. PMID:19352500

Bett, John S; Cook, Casey; Petrucelli, Leonard; Bates, Gillian P

2009-04-08

167

The Ubiquitin-Proteasome Reporter GFPu Does Not Accumulate in Neurons of the R6/2 Transgenic Mouse Model of Huntington's Disease  

PubMed Central

Impairment of the ubiquitin-proteasome system (UPS) has long been considered an attractive hypothesis to explain the selective dysfunction and death of neurons in polyglutamine disorders such as Huntington's disease (HD). The fact that inclusion bodies in HD mouse models and patient brains are rich in ubiquitin and proteasome components suggests that the UPS may be hindered directly or indirectly by inclusion bodies or their misfolded monomeric or oligomeric precursors. However, studies into UPS function in various polyglutamine disease models have yielded conflicting results, suggesting mutant polyglutamine tracts may exert different effects on the UPS depending on protein context, expression level, subcellular localisation and cell-type. To investigate UPS function in a well-characterised mouse model of HD, we have crossed R6/2 HD mice with transgenic UPS reporter mice expressing the GFPu construct. The GFPu construct comprises GFP fused to a constitutive degradation signal (CL-1) that promotes its rapid degradation under conditions of a healthy UPS. Using a combination of immunoblot analysis, fluorescence and immunofluorescence microscopy studies, we found that steady-state GFPu levels were not detectably different between R6/2 and non-R6/2 brain. We observed no correlation between inclusion body formation and GFPu accumulation, suggesting no direct relationship between protein aggregation and global UPS inhibition in R6/2 mice. These findings suggest that while certain branches of the UPS can be impaired by mutant polyglutamine proteins, such proteins do not necessarily cause total blockade of UPS-dependent degradation. It is therefore likely that the relationship between mutant polyglutamine proteins and the UPS is more complex than originally anticipated.

Bett, John S.; Cook, Casey; Petrucelli, Leonard; Bates, Gillian P.

2009-01-01

168

Glycoprotein misfolding in the endoplasmic reticulum: identification of released oligosaccharides reveals a second ER-associated degradation pathway for Golgi-retrieved proteins.  

PubMed

Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process whereby misfolded proteins are removed from the endoplasmic reticulum (ER) for subsequent degradation by the ubiquitin/proteasome system. In the present work, analysis of the released, free oligosaccharides (FOS) derived from all glycoproteins undergoing ERAD, has allowed a global estimation of the mechanisms of this pathway rather than following model proteins through degradative routes. Examining the FOS produced in endomannosidase-compromised cells following ?-glucosidase inhibition has revealed a mechanism for clearing Golgi-retrieved glycoproteins that have failed to enter the ER quality control cycle. The Glc3Man7GlcNAc2 FOS species has been shown to be produced in the ER lumen by a mechanism involving a peptide: N-glycanase-like activity, and its production was sensitive to disruption of Golgi-ER trafficking. The detection of this oligosaccharide was unaffected by the overexpression of EDEM1 or cytosolic mannosidase, both of which increased the production of previously characterised cytosolically localised FOS. The lumenal FOS identified are therefore distinct in their production and regulation compared to FOS produced by the conventional route of misfolded glycoproteins directly removed from the ER. The production of such lumenal FOS is indicative of a novel degradative route for cellular glycoproteins that may exist under certain conditions. PMID:23503623

Alonzi, Dominic S; Kukushkin, Nikolay V; Allman, Sarah A; Hakki, Zalihe; Williams, Spencer J; Pierce, Lorna; Dwek, Raymond A; Butters, Terry D

2013-03-16

169

?-Cell Dysfunctional ERAD/Ubiquitin/Proteasome System in Type 2 Diabetes Mediated by Islet Amyloid Polypeptide-Induced UCH-L1 Deficiency  

PubMed Central

OBJECTIVE The islet in type 2 diabetes is characterized by ?-cell apoptosis, ?-cell endoplasmic reticulum stress, and islet amyloid deposits derived from islet amyloid polypeptide (IAPP). Toxic oligomers of IAPP form intracellularly in ?-cells in humans with type 2 diabetes, suggesting impaired clearance of misfolded proteins. In this study, we investigated whether human-IAPP (h-IAPP) disrupts the endoplasmic reticulum–associated degradation/ubiquitin/proteasome system. RESEARCH DESIGN AND METHODS We used pancreatic tissue from humans with and without type 2 diabetes, isolated islets from h-IAPP transgenic rats, isolated human islets, and INS 832/13 cells transduced with adenoviruses expressing either h-IAPP or a comparable expression of rodent-IAPP. Immunofluorescence and Western blotting were used to detect polyubiquitinated proteins and ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) protein levels. Proteasome activity was measured in isolated rat and human islets. UCH-L1 was knocked down by small-interfering RNA in INS 832/13 cells and apoptosis was evaluated. RESULTS We report accumulation of polyubiquinated proteins and UCH-L1 deficiency in ?-cells of humans with type 2 diabetes. These findings were reproduced by expression of oligomeric h-IAPP but not soluble rat-IAPP. Downregulation of UCH-L1 expression and activity to reproduce that caused by h-IAPP in ?-cells induced endoplasmic reticulum stress leading to apoptosis. CONCLUSIONS Our results indicate that defective protein degradation in ?-cells in type 2 diabetes can, at least in part, be attributed to misfolded h-IAPP leading to UCH-L1 deficiency, which in turn further compromises ?-cell viability.

Costes, Safia; Huang, Chang-jiang; Gurlo, Tatyana; Daval, Marie; Matveyenko, Aleksey V.; Rizza, Robert A.; Butler, Alexandra E.; Butler, Peter C.

2011-01-01

170

The Ubiquitin-Proteasome Reporter GFPu Does Not Accumulate in Neurons of the R6\\/2 Transgenic Mouse Model of Huntington's Disease  

Microsoft Academic Search

Impairment of the ubiquitin-proteasome system (UPS) has long been considered an attractive hypothesis to explain the selective dysfunction and death of neurons in polyglutamine disorders such as Huntington's disease (HD). The fact that inclusion bodies in HD mouse models and patient brains are rich in ubiquitin and proteasome components suggests that the UPS may be hindered directly or indirectly by

John S. Bett; Casey Cook; Leonard Petrucelli; Gillian P. Bates

2009-01-01

171

Proteasomal ATPases are associated with rDNA: The ubiquitin proteasome system plays a direct role in RNA polymerase I transcription  

Microsoft Academic Search

Significant amount of data have accumulated in the last several years pointing to the essential role of the ubiquitin proteasome system in the regulation of RNA polymerase II transcription; however, its involvement in RNA polymerase I transcription has remained largely unexplored. In this study, we demonstrate that proteasome activity is required for pre-rRNA synthesis. We can detect the association of

Károly Fátyol; Ingrid Grummt

2008-01-01

172

Ankylosing spondylitis monocytes show upregulation of proteins involved in inflammation and the ubiquitin proteasome pathway  

Microsoft Academic Search

Objectives:To determine if peripheral blood monocytes from patients with ankylosing spondylitis (AS) differed in protein expression compared to rheumatoid arthritis (RA) and healthy controls (HC).Methods:Monocyte protein expression was characterised by 2D gel electrophoresis and by label-free quantitative expression profiling, using nano-ultra performance liquid chromatography coupled to electrospray ionisation mass spectrometry (ESI-MSE, where E refers to low\\/high collision energy switching). Data

C Wright; M Edelmann; K diGleria; S Kollnberger; H Kramer; S McGowan; K McHugh; S Taylor; B Kessler; P Bowness

2009-01-01

173

Anorexia–Cachexia syndrome in cancer: implications of the ubiquitin–proteasome pathway  

Microsoft Academic Search

Introduction  Malnutrition is a common problem in cancer patients. Its incidence varies according to disease stage (between 15 and 90%) and is considered a possible prognostic factor for therapeutic response and survival. It is also one of the causes contributing to the increase in morbidity and mortality in patients. Tumor cachexia is defined as a nutritional defect caused by tumor growth

Carlos Camps; Vega Iranzo; Roy M. Bremnes; Rafael Sirera

2006-01-01

174

Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions.  

PubMed

Relatively small genomes and high replication rates allow viruses and bacteria to accumulate mutations. This continuously presents the host immune system with new challenges. On the other side of the trenches, an increasingly well-adjusted host immune response, shaped by coevolutionary history, makes a pathogen's life a rather complicated endeavor. It is, therefore, no surprise that pathogens either escape detection or modulate the host immune response, often by redirecting normal cellular pathways to their advantage. For the purpose of this chapter, we focus mainly on the manipulation of the class I and class II major histocompatibility complex (MHC) antigen presentation pathways and the ubiquitin (Ub)-proteasome system by both viral and bacterial pathogens. First, we describe the general features of antigen presentation pathways and the Ub-proteasome system and then address how they are manipulated by pathogens. We discuss the many human cytomegalovirus (HCMV)-encoded immunomodulatory genes that interfere with antigen presentation (immunoevasins) and focus on the HCMV immunoevasins US2 and US11, which induce the degradation of class I MHC heavy chains by the proteasome by catalyzing their export from the endoplasmic reticulum (ER)-membrane into the cytosol, a process termed ER dislocation. US2- and US11-mediated subversion of ER dislocation ensures proteasomal degradation of class I MHC molecules and presumably allows HCMV to avoid recognition by cytotoxic T cells, whilst providing insight into general aspects of ER-associated degradation (ERAD) which is used by eukaryotic cells to purge their ER of defective proteins. We discuss the similarities and differences between the distinct pathways co-opted by US2 and US11 for dislocation and degradation of human class I MHC molecules and also a putatively distinct pathway utilized by the murine herpes virus (MHV)-68 mK3 immunoevasin for ER dislocation of murine class I MHC. We speculate on the implications of the three pathogen-exploited dislocation pathways to cellular ER quality control. Moreover, we discuss the ubiquitin (Ub)-proteasome system and its position at the core of antigen presentation as proteolysis and intracellular trafficking rely heavily on Ub-dependent processes. We add a few examples of manipulation of the Ub-proteasome system by pathogens in the context of the immune system and such diverse aspects of the host-pathogen relationship as virus budding, bacterial chromosome integration, and programmed cell death, to name a few. Finally, we speculate on newly found pathogen-encoded deubiquitinating enzymes (DUBs) and their putative roles in modulation of host-pathogen interactions. PMID:17145306

Loureiro, Joana; Ploegh, Hidde L

2006-01-01

175

Impairment of ubiquitin-proteasome system by E334K cMyBPC modifies channel proteins, leading to electrophysiological dysfunction.  

PubMed

Cardiac arrhythmogenesis is regulated by channel proteins whose protein levels are in turn regulated by the ubiquitin-proteasome system (UPS). We have previously reported on UPS impairment induced by E334K cardiac myosin-binding protein C (cMyBPC), which causes hypertrophic cardiomyopathy (HCM) accompanied by arrhythmia. We hypothesized that UPS impairment induced by E334K cMyBPC causes accumulation of cardiac channel proteins, leading to electrophysiological dysfunction. Wild-type or E334K cMyBPC was overexpressed in HL-1 cells and primary cultured neonatal rat cardiac myocytes. The expression of E334K cMyBPC suppressed cellular proteasome activities. The protein levels of K(v)1.5, Na(v)1.5, Hcn4, Ca(v)3.2, Ca(v)1.2, Serca, RyR2, and Ncx1 were significantly higher in cells expressing E334K cMyBPC than in wild type. They further increased in cells pretreated with MG132 and had longer protein decays. The channel proteins retained the correct localization. Cells expressing E334K cMyBPC exhibited higher Ca(2+) transients and longer action potential durations (APDs), accompanied by afterdepolarizations and higher apoptosis. Those augments of APD and Ca(2+) transients were recapitulated by a simulation model. Although a Ca(2+) antagonist, azelnidipine, neither protected E334K cMyBPC from degradation nor affected E334K cMyBPC incorporation into the sarcomere, it normalized the APD and Ca(2+) transients and partially reversed the levels of those proteins regulating apoptosis, thereby attenuating apoptosis. In conclusion, UPS impairment caused by E334K cMyBPC may modify the levels of channel proteins, leading to electrophysiological dysfunction. Therefore, UPS impairment due to a mutant cMyBPC may partly contribute to the observed clinical arrhythmias in HCM patients. PMID:21939669

Bahrudin, Udin; Morikawa, Kumi; Takeuchi, Ayako; Kurata, Yasutaka; Miake, Junichiro; Mizuta, Einosuke; Adachi, Kaori; Higaki, Katsumi; Yamamoto, Yasutaka; Shirayoshi, Yasuaki; Yoshida, Akio; Kato, Masahiko; Yamamoto, Kazuhiro; Nanba, Eiji; Morisaki, Hiroko; Morisaki, Takayuki; Matsuoka, Satoshi; Ninomiya, Haruaki; Hisatome, Ichiro

2011-09-12

176

Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle.  

PubMed

Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3. PMID:19837877

Gonçalves, Dawit A P; Lira, Eduardo C; Baviera, Amanda M; Cao, Peirang; Zanon, Neusa M; Arany, Zoltan; Bedard, Nathalie; Tanksale, Preeti; Wing, Simon S; Lecker, Stewart H; Kettelhut, Isis C; Navegantes, Luiz C C

2009-10-16

177

BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways.  

PubMed

Simultaneous inhibition of the two major constitutive protein quality control (PQC) pathways, that is, the ubiquitin-proteasome system (UPS) and the aggresome-autophagy system, has been suggested as a promising strategy to trigger cell death in cancer cells. However, we observed that one third of rhabdomyosarcoma (RMS) cells survives parallel inhibition of the UPS by Bortezomib and the aggresome-autophagy pathway by the cytoplasmic histone deacetylase 6 inhibitor ST80, and is able to regrow upon drug removal, thus pointing to the induction of compensatory pathways. Here, we identify Bcl-2-associated athanogene 3 (BAG3) as a critical mediator of inducible resistance in surviving cells after concomitant blockage of constitutive PQC pathways by mitigating ST80/Bortezomib-triggered proteotoxicity via selective autophagy. ST80/Bortezomib cotreatment upregulates BAG3 mRNA and protein levels in surviving cells in addition to triggering the accumulation of insoluble protein aggregates. Intriguingly, knockdown of BAG3 by RNA interference severely impairs clearance of protein aggregates, significantly increases cell death and reduces long-term survival and clonogenic growth during recovery after ST80/Bortezomib cotreatment. Similarly, inhibition of autophagy by inducible autophagy-related protein 7 knockdown prevents removal of protein aggregates and cell regrowth during recovery after ST80/Bortezomib cotreatment. Also, the inhibition of lysosomal degradation using the V-ATPase pump inhibitor Bafilomycin A1 enhances accumulation of protein aggregates, and completely abolishes regrowth after Bortezomib/ST80-induced proteotoxic stress. By identifying BAG3 as a key mediator of inducible resistance by mitigating proteotoxicity via selective autophagy after inhibition of constitutive PQC systems, our study provides new insights into the regulation of PQC pathways in cancer cells and identifies new targets for therapeutic intervention.Oncogene advance online publication, 6 May 2013; doi:10.1038/onc.2013.110. PMID:23644654

Rapino, F; Jung, M; Fulda, S

2013-05-06

178

Bee venom effects on ubiquitin proteasome system in hSOD1G85R-expressing NSC34 motor neuron cells  

PubMed Central

Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from a progressive loss of motor neurons. Familial ALS (fALS) is caused by missense mutations in Cu, Zn-superoxide dismutase 1 (SOD1) that frequently result in the accumulation of mutant protein aggregates that are associated with impairments in the ubiquitin-proteasome system (UPS). UPS impairment has been implicated in many neurological disorders. Bee venom (BV) extracted from honey bees has been used as a traditional medicine for treating inflammatory diseases and has been shown to attenuate the neuroinflammatory events that occur in a symptomatic ALS animal model. Methods NSC34 cells were transiently transfected with a WT or G85R hSOD1-GFP construct for 24 hrs and then stimulated with 2.5 ?g/ml BV for 24 hrs. To determine whether a SOD1 mutation affects UPS function in NSC34 cells, we examined proteasome activity and performed western blotting and immunofluorescence using specific antibodies, such as anti-misfolded SOD1, anti-ubiquitin, anti-GRP78, anti-LC3, and anti-ISG15 antibodies. Results We found that GFP-hSOD1G85R overexpression induced SOD1 inclusions and reduced proteasome activity compared with the overexpression of GFP alone in NSC34 motor neuronal cells. In addition, we also observed that BV treatment restored proteasome activity and reduced the accumulation of ubiquitinated and misfolded SOD1 in GFP-hSOD1G85R-overexpressing NSC34 motor neuronal cells. However, BV treatment did not activate the autophagic pathway in these cells. Conclusion Our findings suggest that BV may rescue the impairment of the UPS in ALS models.

2013-01-01

179

Signal transducer and activator of transcription 3 (STAT3) degradation by proteasome controls a developmental switch in neurotrophin dependence.  

PubMed

Neonatal brains develop through a program that eliminates about half of the neurons. During this period, neurons depend on neurotrophins for their survival. Recently, we reported that, at the conclusion of the naturally occurring death period, neurons become neurotrophin-independent and, further, that this developmental switch is achieved by the emergence of a second survival pathway mediated by signal transducer and activator of transcription 3 (STAT3). Here I show that calcineurin plays a key role in controlling the developmental switch in mouse hippocampal neurons. Calcineurin promotes the degradation of STAT3 via the ubiquitin-proteasome pathway. Inhibition of calcineurin acutely increases total levels of STAT3 as well as its activated forms, resulting in decreased levels of the tumor suppressor p53 and its proapoptotic target, Bax. In vivo and in vitro, calcineurin regulates levels of STAT3 and neurotrophin dependence. TMF/ARA 160 (TATA element modulatory factor/androgen receptor co-activator 160), the key mediator of STAT3 ubiquitination, is required for calcineurin-dependent STAT3 degradation. Thus, these results show that the ubiquitin-proteasome pathway controls the critical developmental switch of neurotrophin dependence in the newborn hippocampus. PMID:23733189

Murase, Sachiko

2013-06-03

180

Proteasomal degradation from internal sites favors partial proteolysis via remote domain stabilization  

PubMed Central

The ubiquitin-proteasome system controls the concentrations of hundreds of regulatory proteins and removes misfolded and damaged proteins in eukaryotic cells. The proteasome recognizes ubiquitinated proteins and then engages its substrates at unstructured initiation regions. After initiation, it proceeds along the polypeptide chain, unraveling folded domains sequentially and degrading the protein completely. In vivo the proteasome can, and likely often does, initiate degradation at internal sites within its substrates but it is not known how this affects the outcome of the degradation reaction. Here we find that domains flanking the initiation region can protect each other against degradation without interacting directly. The magnitude of this effect is related to the stability of both domains and can be tuned from complete degradation to complete protection of one domain. Partial proteasomal degradation has been observed in the cell in three signaling pathways and is associated with internal initiation. Thus, the basic biochemical mechanism of remote stabilization of protein domains is important in proteasome biology.

Kraut, Daniel A.; Matouschek, Andreas

2011-01-01

181

Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway.  

PubMed

Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27's ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4's impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin-proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein. PMID:23155000

Ahner, Annette; Gong, Xiaoyan; Schmidt, Bela Z; Peters, Kathryn W; Rabeh, Wael M; Thibodeau, Patrick H; Lukacs, Gergely L; Frizzell, Raymond A

2012-11-14

182

RNF170 Protein, an Endoplasmic Reticulum Membrane Ubiquitin Ligase, Mediates Inositol 1,4,5-Trisphosphate Receptor Ubiquitination and Degradation*  

PubMed Central

Inositol 1,4,5-trisphosphate (IP3) receptors are endoplasmic reticulum membrane calcium channels that, upon activation, are degraded via the ubiquitin-proteasome pathway. While searching for novel mediators of IP3 receptor processing, we discovered that RNF170, an uncharacterized RING domain-containing protein, associates rapidly with activated IP3 receptors. RNF170 is predicted to have three membrane-spanning helices, is localized to the ER membrane, and possesses ubiquitin ligase activity. Depletion of endogenous RNF170 by RNA interference inhibited stimulus-induced IP3 receptor ubiquitination, and degradation and overexpression of a catalytically inactive RNF170 mutant suppressed stimulus-induced IP3 receptor processing. A substantial proportion of RNF170 is constitutively associated with the erlin1/2 (SPFH1/2) complex, which has been shown previously to bind to IP3 receptors immediately after their activation. Depletion of RNF170 did not affect the binding of the erlin1/2 complex to stimulated IP3 receptors, whereas erlin1/2 complex depletion inhibited RNF170 binding. These results suggest a model in which the erlin1/2 complex recruits RNF170 to activated IP3 receptors where it mediates IP3 receptor ubiquitination. Thus, RNF170 plays an essential role in IP3 receptor processing via the ubiquitin-proteasome pathway.

Lu, Justine P.; Wang, Yuan; Sliter, Danielle A.; Pearce, Margaret M. P.; Wojcikiewicz, Richard J. H.

2011-01-01

183

The F-box Protein FBXO25 Promotes the Proteasome-dependent Degradation of ELK-1 Protein.  

PubMed

FBXO25 is one of the 69 known human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of SKP1, Rbx1, Cullin1, and F-box protein (SCF1) that are involved in targeting proteins for degradation across the ubiquitin proteasome system. However, the substrates of most SCF E3 ligases remain unknown. Here, we applied an in chip ubiquitination screen using a human protein microarray to uncover putative substrates for the FBXO25 protein. Among several novel putative targets identified, the c-fos protooncogene regulator ELK-1 was characterized as the first endogenous substrate for SCF1(FBXO25) E3 ligase. FBXO25 interacted with and mediated the ubiquitination and proteasomal degradation of ELK-1 in HEK293T cells. In addition, FBXO25 overexpression suppressed induction of two ELK-1 target genes, c-fos and egr-1, in response to phorbol 12-myristate 13-acetate. Together, our findings show that FBXO25 mediates ELK-1 degradation through the ubiquitin proteasome system and thereby plays a role in regulating the activation of ELK-1 pathway in response to mitogens. PMID:23940030

Teixeira, Felipe R; Manfiolli, Adriana O; Soares, Cláudia S; Baqui, Munira M A; Koide, Tie; Gomes, Marcelo D

2013-08-12

184

The Synaptic Accumulation of Hyperphosphorylated Tau Oligomers in Alzheimer Disease Is Associated With Dysfunction of the Ubiquitin-Proteasome System  

PubMed Central

In Alzheimer disease (AD), deposition of neurofibrillary tangles and loss of synapses in the neocortex and limbic system each correlate strongly with cognitive impairment. Tangles are composed of misfolded hyperphosphorylated tau proteins; however, the link between tau abnormalities and synaptic dysfunction remains unclear. We examined the location of tau in control and AD cortices using biochemical and morphologic methods. We found that, in addition to its well-described axonal localization, normal tau is present at both presynaptic and postsynaptic terminals in control human brains. In AD, tau becomes hyperphosphorylated and misfolded at both presynaptic and postsynaptic terminals, and this abnormally posttranslationally modified tau is enriched in synaptoneurosomal fractions. Synaptic tau seems to be hyperphosphorylated and ubiquitinated, and forms stable oligomers resistant to SDS denaturation. The accumulation of hyperphosphorylated tau oligomers at human AD synapses is associated with increased ubiquitinated substrates and increased proteasome components, consistent with dysfunction of the ubiquitin-proteasome system. Our findings suggest that synaptic hyperphosphorylated tau oligomers may be an important mediator of the proteotoxicity that disrupts synapses in AD.

Tai, Hwan-Ching; Serrano-Pozo, Alberto; Hashimoto, Tadafumi; Frosch, Matthew P.; Spires-Jones, Tara L.; Hyman, Bradley T.

2013-01-01

185

Oxidative stress regulates the ubiquitin-proteasome system and immunoproteasome functioning in a mouse model of X-adrenoleukodystrophy.  

PubMed

Oxidative damage is a pivotal aetiopathogenic factor in X-linked adrenoleukodystrophy. This is a neurometabolic disease characterized by the accumulation of very-long-chain fatty acids owing to the loss of function of the peroxisomal transporter Abcd1. Here, we used the X-linked adrenoleukodystrophy mouse model and patient's fibroblasts to detect malfunctioning of the ubiquitin-proteasome system resulting from the accumulation of oxidatively modified proteins, some involved in bioenergetic metabolism. Furthermore, the immunoproteasome machinery appears upregulated in response to oxidative stress, in the absence of overt inflammation. i-Proteasomes are recruited to mitochondria when fibroblasts are exposed to an excess of very-long-chain fatty acids in response to oxidative stress. Antioxidant treatment regulates proteasome expression, prevents i-proteasome induction and translocation of i-proteasomes to mitochondria. Our findings support a key role of i-proteasomes in quality control in mitochondria during oxidative damage in X-linked adrenoleukodystrophy, and perhaps in other neurodegenerative conditions with similar pathogeneses. PMID:23436506

Launay, Nathalie; Ruiz, Montserrat; Fourcade, Stéphane; Schlüter, Agatha; Guilera, Cristina; Ferrer, Isidre; Knecht, Erwin; Pujol, Aurora

2013-03-01

186

An Essential Postsynaptic Role for the Ubiquitin Proteasome System in Slow Homeostatic Synaptic Plasticity in Cultured Hippocampal Neurons  

PubMed Central

Chronic increases or decreases in neuronal activity initiate compensatory changes in synaptic strength that emerge slowly over a 12–24 hr period, but the mechanisms underlying this slow homeostatic response remain poorly understood. Here, we show an essential role for the ubiquitin proteasome system (UPS) in slow homeostatic plasticity induced by chronic changes in network activity. In cultured hippocampal neurons, UPS inhibitors drive a slow increase in miniature excitatory postsynaptic current (mEPSC) amplitude and synaptic AMPA receptor subunit GluA1 and GluA2 expression that both mirrors and occludes the changes produced by chronic suppression of network activity with tetrodotoxin (TTX). These non-additive effects were similarly observed under conditions of chronic hyperactivation of network activity with bicuculline – the increase in mEPSC amplitude and GluA1/2 expression with chronic UPS inhibition persists during network hyperactivation, which scales synaptic strength and AMPA receptor expression in the opposite direction when UPS activity is intact. Finally, cell-autonomous UPS inhibition (via expression of the ubiquitin chain elongation mutant, UbK48R) enhances mEPSC amplitude in a manner that mimics and occludes changes in network activity, demonstrating a postsynaptic role for the UPS in slow homeostatic plasticity. Taken together, our results suggest that the UPS acts as an integration point for translating sustained changes in network activity into appropriate incremental compensatory changes at synapses.

Jakawich, Sonya K.; Neely, Ryan M.; Djakovic, Stevan N.; Patrick, Gentry N.; Sutton, Michael A.

2010-01-01

187

The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system.  

PubMed

In Alzheimer disease (AD), deposition of neurofibrillary tangles and loss of synapses in the neocortex and limbic system each correlate strongly with cognitive impairment. Tangles are composed of misfolded hyperphosphorylated tau proteins; however, the link between tau abnormalities and synaptic dysfunction remains unclear. We examined the location of tau in control and AD cortices using biochemical and morphologic methods. We found that, in addition to its well-described axonal localization, normal tau is present at both presynaptic and postsynaptic terminals in control human brains. In AD, tau becomes hyperphosphorylated and misfolded at both presynaptic and postsynaptic terminals, and this abnormally posttranslationally modified tau is enriched in synaptoneurosomal fractions. Synaptic tau seems to be hyperphosphorylated and ubiquitinated, and forms stable oligomers resistant to SDS denaturation. The accumulation of hyperphosphorylated tau oligomers at human AD synapses is associated with increased ubiquitinated substrates and increased proteasome components, consistent with dysfunction of the ubiquitin-proteasome system. Our findings suggest that synaptic hyperphosphorylated tau oligomers may be an important mediator of the proteotoxicity that disrupts synapses in AD. PMID:22867711

Tai, Hwan-Ching; Serrano-Pozo, Alberto; Hashimoto, Tadafumi; Frosch, Matthew P; Spires-Jones, Tara L; Hyman, Bradley T

2012-08-04

188

Protein Degradation and the Stress Response  

PubMed Central

Environmental stresses are manifold and so are the responses they elicit. This is particularly true for higher eukaryotes where various tissues and cell types are differentially affected by the insult. Type and scope of the stress response can therefore differ greatly among cell types. Given the importance of the Ubiquitin Proteasome System (UPS) for most cellular processes, it comes as no surprise that the UPR plays a pivotal role in counteracting the effects of stressors. Here we outline contributions of the UPS to stress sensing, signaling, and response pathways. We make no claim to comprehensiveness but choose selected examples to illustrate concepts and mechanisms by which protein modification with ubiquitin and proteasomal degradation of key regulators ensures cellular integrity during stress situations.

Flick, Karin; Kaiser, Peter

2012-01-01

189

Characteristics of the turnover of uncoupling protein 3 by the ubiquitin proteasome system in isolated mitochondria  

PubMed Central

Uncoupling protein 3 (UCP3) is implicated in mild uncoupling and the regulation of mitochondrial ROS production. We previously showed that UCP3 turns over rapidly in C2C12 myoblasts, with a half-life of 0.5–4 h, and that turnover can be reconstituted in vitro. We show here that rapid degradation of UCP3 in vitro in isolated brown adipose tissue mitochondria required the 26S proteasome, ubiquitin, ATP, succinate to generate a high membrane potential, and a pH of 7.4 or less. Ubiquitin containing lysine-48 was both necessary and sufficient to support UCP3 degradation, implying a requirement for polyubiquitylation through this residue. The 20S proteasome did not support degradation. UCP3 degradation was prevented by simultaneously blocking matrix ATP generation and import, showing that ATP in the mitochondrial matrix was required. Degradation did not appear to require a transmembrane pH gradient, but was very sensitive to membrane potential: degradation was halved when membrane potential decreased 10–20 mV from its resting value, and was not significant below about 120 mV. We propose that matrix ATP and a high membrane potential are needed for UCP3 to be polyubiquitylated through lysine-48 of ubiquitin and exported to the cytosolic 26S proteasome, where it is de-ubiquitylated and degraded.

Mookerjee, Shona A.; Brand, Martin D.

2011-01-01

190

Human Cytomegalovirus UL76 Elicits Novel Aggresome Formation via Interaction with S5a of the Ubiquitin Proteasome System.  

PubMed

HCMV UL76 is a member of a conserved Herpesviridae protein family (Herpes_UL24) that is involved in viral production, latency, and reactivation. UL76 presents as globular aggresomes in the nuclei of transiently transfected cells. Bioinformatic analyses predict that UL76 has a propensity for aggregation and targets cellular proteins implicated in protein folding and ubiquitin-proteasome systems (UPS). Furthermore, fluorescence recovery after photobleaching experiments suggests that UL76 reduces protein mobility in the aggresome, which indicates that UL76 elicits the aggregation of misfolded proteins. Moreover, in the absence of other viral proteins, UL76 interacts with S5a, which is a major receptor of polyubiquitinated proteins for UPS proteolysis via its conserved region and the von Willebrand factor type A (VWA) domain of S5a. We demonstrate that UL76 sequesters polyubiquitinated proteins and S5a to nuclear aggresomes in biological proximity. After knockdown of endogenous S5a by RNA interference techniques, the UL76 level was only minimally affected in transiently expressing cells. However, a significant reduction in the number of cells containing UL76 nuclear aggresomes was observed, which suggests that S5a may play a key role in aggresome formation. Moreover, we show that UL76 interacts with S5a in the late phase of viral infection and that knockdown of S5a hinders the development of both the replication compartment and the aggresome. In this study, we demonstrate that UL76 induces a novel nuclear aggresome, likely by subverting S5a of the UPS. Given that UL76 belongs to a conserved family, this underlying mechanism may be shared by all members of the Herpesviridae. PMID:23966401

Lin, Shin-Rung; Jiang, Meei Jyh; Wang, Hung-Hsueh; Hu, Cheng-Hui; Hsu, Ming-Shan; Hsi, Edward; Duh, Chang-Yih; Wang, Shang-Kwei

2013-08-21

191

Heat Shock Protein 70 Inhibits HIV-1 Vif-mediated Ubiquitination and Degradation of APOBEC3G*  

PubMed Central

The cytidine deaminase APOBEC3G, which is incorporated into nascent virus particles, possesses potent antiviral activity and restricts Vif-deficient HIV-1 replication at the reverse transcription step through deamination-dependent and -independent effects. HIV-1 Vif counteracts the antiviral activity of APOBEC3G by inducing APOBEC3G polyubiquitination and its subsequent proteasomal degradation. In this study, we show that overexpression of heat shock protein 70 (HSP70) blocked the degradation of APOBEC3G in the ubiquitin-proteasome pathway by HIV-1 Vif, rendering the viral particles non-infectious. In addition, siRNA targeted knock-down of HSP70 expression enhanced the Vif-mediated degradation of APOBEC3G. A co-immunoprecipitation study revealed that overexpression of HSP70 inhibited APOBEC3G binding to HIV-1 Vif. Thus, we provide evidence for a host protein-mediated suppression of HIV-1 replication in an APOBEC3G-dependent manner.

Sugiyama, Ryuichi; Nishitsuji, Hironori; Furukawa, Ayako; Katahira, Masato; Habu, Yuichiro; Takeuchi, Hiroaki; Ryo, Akihide; Takaku, Hiroshi

2011-01-01

192

A System-Based Comparison of Gene Expression Reveals Alterations in Oxidative Stress, Disruption of Ubiquitin-Proteasome System and Altered Cell Cycle Regulation after Exposure to Cadmium and Methylmercury in Mouse Embryonic Fibroblast  

PubMed Central

Environmental and occupational exposures to heavy metals such as methylmercury (MeHg) and cadmium (Cd) pose significant health risks to humans, including neurotoxicity. The underlying mechanisms of their toxicity, however, remain to be fully characterized. Our previous studies with Cd and MeHg have demonstrated that the perturbation of the ubiquitin-proteasome system (UPS) was associated with metal-induced cytotoxicity and apoptosis. We conducted a microarray-based gene expression analysis to compare metal-altered gene expression patterns with a classical proteasome inhibitor, MG132 (0.5?M), to determine whether the disruption of the UPS is a critical mechanism of metal-induced toxicity. We treated mouse embryonic fibroblast cells at doses of MeHg (2.5?M) and Cd (5.0?M) for 24 h. The doses selected were based on the neutral red–based cell viability assay where initial statistically significant decreases in variability were detected. Following normalization of the array data, we employed multilevel analysis tools to explore the data, including group comparisons, cluster analysis, gene annotations analysis (gene ontology analysis), and pathway analysis using GenMAPP and Ingenuity Pathway Analysis (IPA). Using these integrated approaches, we identified significant gene expression changes across treatments within the UPS (Uchl1 and Ube2c), antioxidant and phase II enzymes (Gsta2, Gsta4, and Noq1), and genes involved in cell cycle regulation pathways (ccnb1, cdc2a, and cdc25c). Furthermore, pathway analysis revealed significant alterations in genes implicated in Parkinson’s disease pathogenesis following metal exposure. This study suggests that these pathways play a critical role in the development of adverse effects associated with metal exposures.

Yu, Xiaozhong; Robinson, Joshua F.; Sidhu, Jaspreet S.; Hong, Sungwoo; Faustman, Elaine M.

2010-01-01

193

The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process  

PubMed Central

In response to hormonal stimuli, a cascade of hierarchical post-translational modifications of nuclear receptors are required for the correct expression of target genes. Here, we show that the transcription factor TFIIH, via its cdk7 kinase, phosphorylates the androgen receptor (AR) at position AR/S515. Strikingly, this phosphorylation is a key step for an accurate transactivation that includes the cyclic recruitment of the transcription machinery, the MDM2 E3 ligase, the subsequent ubiquitination of AR at the promoter of target genes and its degradation by the proteasome machinery. Impaired phosphorylation disrupts the transactivation, as observed in cells either overexpressing the non-phosphorylated AR/S515A, isolated from xeroderma pigmentosum patient (bearing a mutation in XPD subunit of TFIIH), or in which cdk7 kinase was silenced. Indeed, besides affecting the cyclic recruitment of the transcription machinery, the AR phosphorylation defect favourizes to the recruitment of the E3 ligase CHIP instead of MDM2, at the PSA promoter, that will further attract the proteasome machinery. These observations illustrate how the TFIIH phosphorylation might participate to the transactivation by regulating the nuclear receptors turnover.

Chymkowitch, Pierre; Le May, Nicolas; Charneau, Pierre; Compe, Emmanuel; Egly, Jean-Marc

2011-01-01

194

Synaptic protein degradation as a mechanism in memory reorganization.  

PubMed

An accumulating body of evidence shows that reactivated long-term memory undergoes a dynamic process called reconsolidation, in which de novo protein synthesis is required to maintain the memory. These findings open up a new dimension in the field of memory research. However, few studies have shown how once-consolidated memory becomes labile. The authors' recent findings have demonstrated that pre-existing long-term memory becomes unstable via the ubiquitin/ proteasome-dependent protein degradation pathway and that this labile state is required for the reorganization of fear memory. Here, the authors review this finding and focus on the labile state that is critical for the reorganization of memory triggered after memory retrieval. PMID:19264729

Kaang, Bong-Kiun; Lee, Sue-Hyun; Kim, Hyoung

2009-03-04

195

Inhibition of the Ubiquitin-Proteasome System Induces Stress Granule Formation  

PubMed Central

The inhibition of the ubiquitin-dependent proteasome system (UPS) via specific drugs is one type of approach used to combat cancer. Although it has been suggested that UPS inhibition prevents the rapid decay of AU-rich element (ARE)-containing messages, very little is known about the cellular mechanisms leading to this effect. Here we establish a link between the inhibition of UPS activity, the formation of cytoplasmic stress granules (SGs), and mRNA metabolism. The assembly of the SGs requires the phosphorylation of the translation initiation factor eIF2? by a mechanism involving the stress kinase GCN2. On prolonged UPS inhibition and despite the maintenance of eIF2? phosphorylation, SGs disassemble and translation recovers in an Hsp72 protein-dependent manner. The formation of these SGs coincides with the disassembly of processing bodies (PBs), known as mRNA decay entities. As soon as the SGs assemble, they recruit ARE-containing messages such as p21cip1 mRNA, which are stabilized under these conditions. Hence, our findings suggest that SGs could be considered as one of the players that mediate the early response of the cell to proteasome inhibitors by interfering temporarily with mRNA decay pathways.

Mazroui, Rachid; Di Marco, Sergio; Kaufman, Randal J.

2007-01-01

196

Histone deacetylase inhibitors prevent the degradation and restore the activity of glucocerebrosidase in Gaucher disease  

PubMed Central

Gaucher disease (GD) is caused by a spectrum of genetic mutations within the gene encoding the lysosomal enzyme glucocerebrosidase (GCase). These mutations often lead to misfolded proteins that are recognized by the unfolded protein response system and are degraded through the ubiquitin–proteasome pathway. Modulating this pathway with histone deacetylase inhibitors (HDACis) has been shown to improve protein stability in other disease settings. To identify the mechanisms involved in the regulation of GCase and determine the effects of HDACis on protein stability, we investigated the most prevalent mutations for nonneuronopathic (N370S) and neuronopathic (L444P) GD in cultured fibroblasts derived from GD patients and HeLa cells transfected with these mutations. The half-lives of mutant GCase proteins correspond to decreases in protein levels and enzymatic activity. GCase was found to bind to Hsp70, which directed the protein to TCP1 for proper folding, and to Hsp90, which directed the protein to the ubiquitin–proteasome pathway. Using a known HDACi (SAHA) and a unique small-molecule HDACi (LB-205), GCase levels increased rescuing enzymatic activity in mutant cells. The increase in the quantity of protein can be attributed to increases in protein half-life that correspond primarily with a decrease in degradation rather than an increase in chaperoned folding. HDACis reduce binding to Hsp90 and prevent subsequent ubiquitination and proteasomal degradation without affecting binding to Hsp70 or TCP1. These findings provide insight into the pathogenesis of GD and indicate a potent therapeutic potential of HDAC inhibitors for the treatment of GD and other human protein misfolding disorders.

Lu, Jie; Yang, Chunzhang; Chen, Masako; Ye, Donald Y.; Lonser, Russell R.; Brady, Roscoe O.; Zhuang, Zhengping

2011-01-01

197

L166P MUTANT DJ-1, CAUSATIVE FOR RECESSIVE PARKINSON'S DISEASE IS DEGRADED THROUGH THE UBIQUITIN-PROTEASOME SYSTEM  

EPA Science Inventory

Abstract Mutations in a gene on chromosome 1, DJ-1, have been reported recently to be associated with recessive, early-onset Parkinson's disease. Whilst one mutation is a large deletion that is predicted to produce an effective knockout of the gene, the second is a point ...

198

Stability of the Human Papillomavirus Type 18 E2 Protein Is Regulated by a Proteasome Degradation Pathway through Its Amino-Terminal Transactivation Domain  

PubMed Central

The E2 proteins of papillomaviruses regulate both viral transcription and DNA replication. The human papillomavirus type 18 (HPV18) E2 protein has been shown to repress transcription of the oncogenic E6 and E7 genes, inducing growth arrest in HeLa cells. Using HPV18 E2 fused to the green fluorescent protein (GFP), we showed that this protein was short-lived in transfected HeLa cells. Real-time microscopy experiments indicated that the E2-dependent signal increased for roughly 24 h after transfection and then rapidly disappeared, indicating that E2 was unstable in HeLa cells and could confer instability to GFP. Similar studies done with a protein lacking the transactivation domain indicated that this truncation strongly stabilizes the E2 protein. In vitro, full-length E2 or the transactivation domain alone was efficiently ubiquitinated, whereas deletion of the transactivation domain strongly decreased the ubiquitination of the E2 protein. Proteasome inhibition in cells expressing E2 increased its half-life about sevenfold, which was comparable to the half-life of the amino-terminally truncated protein. These characteristics of E2 instability were independent of the E2-mediated G1 growth arrest in HeLa cells, as they were reproduced in MCF7 cells, where E2 does not affect the cell cycle. Altogether, these experiments showed that the HPV18 E2 protein was degraded by the ubiquitin-proteasome pathway through its amino-terminal transactivation domain. Tight regulation of the stability of the HPV 18 E2 protein may be essential to avoid accumulation of a potent transcriptional repressor and antiproliferative agent during the viral vegetative cycle.

Bellanger, Sophie; Demeret, Caroline; Goyat, Sylvain; Thierry, Francoise

2001-01-01

199

Smurf2-mediated ubiquitination and degradation of Id1 regulates p16 expression during senescence.  

PubMed

The inhibitor of differentiation or DNA binding (Id) family of transcription regulators plays an important role in cell proliferation, differentiation, and senescence. However, regulation of Id expression during these processes is poorly understood. Id proteins are known to undergo rapid turnover mediated by the ubiquitin-proteasome pathway. Anaphase-promoting complex has been shown to ubiquitinate Id2, but E3 ubiquitin ligase(s) that ubiquitinate other Id family members are not known. Here, we report for the first time the identification of Smurf2 as the E3 ligase that ubiquitinates Id1 and Id3. Smurf2-mediated ubiquitination and consequent degradation of Id1 or Id3 plays an important role in the regulation of Id expression in senescent cells. Furthermore, we found that Id1 is the mediator through which Smurf2 regulates p16 expression, providing a mechanistic link between Smurf2 and p16 expression during senescence. PMID:21933340

Kong, Yahui; Cui, Hang; Zhang, Hong

2011-10-07

200

Distinct effects of methamphetamine on autophagy-lysosome and ubiquitin-proteasome systems in HL-1 cultured mouse atrial cardiomyocytes.  

PubMed

The aim of this study is to investigate the molecular mechanism underling the cardiotoxicity of methamphetamine, a psychostimulant drug that is currently abused in the world. A mouse atrial cardiac cell line, HL-1, which retains phenotypes of cardiac cells and serves as a useful model for examining cardiac pathophysiology, was used for this purpose. During treatment with 1mM methamphetamine (MAP) for 3-48h, massive but transient cytoplasmic vacuolization (3-12h) followed by an intracellular accumulation of granules (24-48h) was observed under light microscopy. The vacuoles were surrounded by the lysosome membrane marker LAMP1, while the granules colocalized with the autophagy markers LC3 and p62 as well as ubiquitinated proteins. Western blot analysis showed that LC3 was activated during MAP administration, although p62 was not degraded but rather accumulated. Concordant with p62 accumulation, the nuclear translocation of an anti-oxidative transcription factor, Nrf2, and the subsequent induction of its target gene, HO-1, was observed, suggesting an impairment of autophagic protein degradation and the subsequent activation of the p62/Nrf2/HO-1 pathway. In addition, proteomic analysis revealed a reduction in myosin heavy chain (MHC) protein levels during MAP administration. The ubiquitination of MHC and the induction of the muscle sarcomere protein-specific E3 ubiquitin ligases MuRF1 and atrogin-1 were proved by immunoprecipitation and quantitative real-time PCR, respectively. Taken together, the vacuolization of lysosomes and the subsequent accumulation of autophagosomes indicate an impairment of autophagic protein degradation during MAP administration; on the other hand, the ubiquitination and subsequent degradation of MHC indicate the proper progression of proteasomal degradation. PMID:23933405

Funakoshi-Hirose, Izumi; Aki, Toshihiko; Unuma, Kana; Funakoshi, Takeshi; Noritake, Kanako; Uemura, Koichi

2013-08-07

201

6-Thioguanine Reactivates Epigenetically Silenced Genes in Acute Lymphoblastic Leukemia Cells by Facilitating Proteasome-mediated Degradation of DNMT1  

PubMed Central

Thiopurines including 6-thioguanine (SG), 6-mercaptopurine and azathioprine are effective anticancer agents with remarkable success in clinical practice, especially in effective treatment of acute lymphoblastic leukemia (ALL). SG is understood to act as a DNA hypomethylating agent in ALL cells, however, the underlying mechanism leading to global cytosine demethylation remains unclear. Here we report that SG treatment results in reactivation of epigenetically silenced genes in T leukemia cells. Bisulfite genomic sequencing revealed that SG treatment universally elicited demethylation in the promoters and/or first exons of the genes that were reactivated. SG treatment also attenuated the expression of histone lysine-specific demethylase 1 (LSD1), thereby stimulating lysine methylation of the DNA methylase DNMT1 and triggering its degradation via the ubiquitin-proteasomal pathway. Taken together, our findings reveal a previously uncharacterized but vital mechanistic link between SG treatment and DNA hypomethylation.

Yuan, Bifeng; Zhang, Jing; Wang, Hongxia; Xiong, Lei; Cai, Qian; Wang, Tina; Jacobsen, Steven; Pradhan, Sriharsa; Wang, Yinsheng

2011-01-01

202

The protein degradation response of Saccharomyces cerevisiae to classical DNA-damaging agents.  

PubMed

Genome wide experiments indicate both proteasome- and vacuole-mediated protein degradation modulate sensitivity to classical DNA-damaging agents. Here, we show that global protein degradation is significantly increased upon methyl methanesulfonate (MMS) exposure. In addition, global protein degradation is similarly increased upon exposure to 4-nitroquinoline-N-oxide (4NQO) and UV and, to a lesser extent, tert-butyl hydroperoxide. The proteasomal inhibitor MG132 decreases both MMS-induced and 4NQO-induced protein degradation, while addition of the vacuolar inhibitor phenylmethanesulfonyl fluoride does not. The addition of both inhibitors grossly inhibits cell growth upon MMS exposure over and above the growth inhibition induced by MMS alone. The MMS-induced protein degradation response remains unchanged in several ubiquitin-proteasome and vacuolar mutants, presumably because these mutants are not totally deficient in either essential pathway. Furthermore, MMS-induced protein degradation is independent of Mec1, Mag1, Rad23, and Rad6, suggesting that the protein degradation response is not transduced through the classical Mec1 DNA damage response pathway or through repair intermediates generated by the base excision, nucleotide excision, or postreplication-DNA repair pathways. These results identify the regulation of protein degradation as an important factor in the recovery of cells from toxicity induced by classical DNA-damaging agents. PMID:18020423

Burgis, Nicholas E; Samson, Leona D

2007-11-20

203

Degradation of Activated Protein Kinases by Ubiquitination  

PubMed Central

Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.

Lu, Zhimin; Hunter, Tony

2009-01-01

204

Photovoltaic lifetime and degradation science statistical pathway development: acrylic degradation  

NASA Astrophysics Data System (ADS)

In order to optimize and extend the life of photovoltaics (PV) modules, scienti c and mechanistic statistical analytics must be performed on a large sample of materials, components and systems. Statistically signi - cant relationships were investigated between di erent mechanistically based variables to develop a statistical pathway diagram for the degradation of acrylic that is important in concentrating photovoltaics. The statisti- cally signi cant relationships were investigated using lifetime and degradation science using a domain knowledge semi-supervised generalized structural equation modeling (semi-gSEM. Predictive analytics and prognostics are informed from the statistical pathway diagram in order to predictively understand the lifetime of PV modules in di erent stress conditions and help with these critical lifetime technologies.

Bruckman, Laura S.; Wheeler, Nicholas R.; Kidd, Ian V.; Sun, Jiayang; French, Roger H.

2013-09-01

205

Degradation pathways of ampicillin in alkaline solutions.  

PubMed

Ampicillin trihydrate, sodium salt, in aqueous solution has a pH of about 8. No complete degradation pathway has been proposed to explain the degradation of ampicillin under alkaline conditions and the information available explains the formation of only certain products. The present work was carried out with the aim of providing this information. The formation of degradation products of ampicillin trihydrate, sodium salt, produced in aqueous solutions (pH 12 and 37 degrees C) have been studied as an accelerated form of the possible degradation that may occur in aqueous solutions at pH 8. Some of the degradation products formed under these conditions were then obtained either by synthesis or by degradation of ampicillin sodium followed by isolation using semi-preparative HPLC. These compounds were characterized by 1H NMR spectroscopy. The information obtained from the experiments by HPLC and NMR spectroscopy made it possible to propose a degradation pathway for ampicillin under the conditions described above. 5R-penicilloic acid is the first degradation product of ampicillin and subsequently undergoes epimerization at C-5 to form the 5S isomer via the imine tautomer. Mechanisms for the formation of compounds previously believed to form only under acidic conditions are proposed, i.e. ampicillin penilloic acid and 2-hydroxy-3-phenylpyrazine. The formation of ampicillin polymers was detected in dilute solutions (1% w/v) within a few hours of dissolution. The presence of ampicillin penicillenic acid and ampicillin penamaldic acid was detected by 1H NMR and their main spectroscopic features determined. PMID:9306250

Robinson-Fuentes, V A; Jefferies, T M; Branch, S K

1997-09-01

206

Proteasome Inhibitors Block a Late Step in Lysosomal Transport of Selected Membrane but not Soluble Proteins  

Microsoft Academic Search

The ubiquitin-proteasome pathway acts as a regulator of the endocytosis of selected membrane proteins. Recent evidence suggests that it may also function in the intracellular trafficking of membrane proteins. In this study, several models were used to address the role of the ubiquitin- proteasome pathway in sorting of internalized proteins to the lysosome. We found that lysosomal degradation of ligands,

Peter van Kerkhof; Cristina M. Alves dos Santos; Martin Sachse; Judith Klumperman; Guojun Bu; Ger J. Strous

2001-01-01

207

Involvement of the Ubiquitin\\/Proteasome System in Sorting of the Interleukin 2 Receptor b Chain to Late Endocytic Compartments  

Microsoft Academic Search

Down-regulation of cell surface growth factor receptors plays a key role in the tight control of cellular responses. Recent reports suggest that the ubiquitin system, in addition to participating in degradation by the proteasome of cytosolic and nuclear proteins, might also be involved in the down-regulation of various membrane receptors. We have previously characterized a signal in the cytosolic part

Anna Rocca; Christophe Lamaze; Agathe Subtil; Alice Dautry-Varsat

2001-01-01

208

Effect of inhibition of the Ubiquitin-Proteasome System and Hsp90 on growth and survival of Rhabdomyosarcoma cells in vitro  

PubMed Central

Background The ubiquitin-proteasome system (UPS) and the heat shock response (HSR) are two critical regulators of cell homeostasis, as their inhibition affects growth and survival of normal cells, as well as stress response and invasiveness of cancer cells. We evaluated the effects of the proteasome inhibitor Bortezomib and of 17-DMAG, a competitive inhibitor of Hsp90, in rhabdomyosarcoma (RMS) cells, and analyzed the efficacy of single-agent exposures with combination treatments. Methods To assess cytotoxicity induced by Bortezomib and 17-DMAG in RMS cells, viability was measured by MTT assay after 24, 48 and 72 hours. Western blotting and immunofluorescence analyses were carried out to elucidate the mechanisms of action. Apoptosis was measured by FACS with Annexin-V-FITC and Propidium Iodide. Results Bortezomib and 17-DMAG, when combined at single low-toxic concentrations, enhanced growth inhibition of RMS cells, with signs of autophagy that included intensive cytoplasmic vacuolization and conversion of cytosolic LC3-I protein to its autophagosome-associated form. Treatment with lysosomal inhibitor chloroquine facilitates apoptosis, whereas stimulation of autophagy by rapamycin prevents LC3-I conversion and cell death, suggesting that autophagy is a resistance mechanism in RMS cells exposed to proteotoxic drugs. However, combination treatment also causes caspase-dependent apoptosis, PARP cleavage and Annexin V staining, as simultaneous inhibition of both UPS and HSR systems limits cytoprotective autophagy, exacerbating stress resulting from accumulation of misfolded proteins. Conclusion The combination of proteasome inhibitor Bortezomib with Hsp90 inhibitor 17-DMAG, appears to have important therapeutic advantages in the treatment of RMS cells compared with single-agent exposure, because compensatory survival mechanisms that occur as side effects of treatment may be prevented.

2012-01-01

209

Differential Activities of the Ubiquitin-Proteasome System in Neurons versus Glia May Account for the Preferential Accumulation of Misfolded Proteins in Neurons  

PubMed Central

A variety of neurological disorders and polyglutamine (polyQ) diseases are caused by misfolded proteins. The common feature of these diseases is late-onset cellular degeneration that selectively affects neurons in distinct brain regions. polyQ diseases, including Huntington’s disease (HD), present a clear case of selective neurodegeneration caused by polyQ expansion-induced protein misfolding, which also leads to predominant inclusions in neuronal nuclei. It remains unclear how these ubiquitously expressed disease proteins selectively kill neurons. In HD, mutant huntingtin accumulates in both neurons and glia, but more neuronal cells display huntingtin aggregates. These aggregates colocalize with components of the ubiquitin-proteasome system (UPS), which plays a critical role in clearing misfolded proteins. Using fluorescent reporters that reflect cellular UPS activity, we found that UPS activity in cultured neurons and glia decreases in a time-dependent manner. Importantly, UPS activity is lower in neurons than in glia and also lower in the nucleus than the cytoplasm. By expressing the UPS reporters in glia and neurons in the mouse brain, we also observed an age-dependent decrease in UPS activity, which is more pronounced in neurons than glial cells. Although brain UPS activities were similar between wild-type and HD 150Q knock-in mice, inhibiting the UPS markedly increases the accumulation of mutant htt in cultured glial cells. These findings suggest that the lower neuronal UPS activity may account for the preferential accumulation of misfolded proteins in neurons, as well as their selective vulnerability.

Tydlacka, Suzanne; Wang, Chuan-En; Wang, Xuejun; Li, Shihua; Li, Xiao-Jiang

2008-01-01

210

Ste6p Mutants Defective in Exit from the Endoplasmic Reticulum (ER) Reveal Aspects of an ER Quality Control Pathway in Saccharomyces cerevisiae  

PubMed Central

We are studying the intracellular trafficking of the multispanning membrane protein Ste6p, the a-factor transporter in Saccharomyces cerevisiae and a member of the ATP-binding cassette superfamily of proteins. In the present study, we have used Ste6p as model for studying the process of endoplasmic reticulum (ER) quality control, about which relatively little is known in yeast. We have identified three mutant forms of Ste6p that are aberrantly ER retained, as determined by immunofluorescence and subcellular fractionation. By pulse-chase metabolic labeling, we demonstrate that these mutants define two distinct classes. The single member of Class I, Ste6–166p, is highly unstable. We show that its degradation involves the ubiquitin–proteasome system, as indicated by its in vivo stabilization in certain ubiquitin–proteasome mutants or when cells are treated with the proteasome inhibitor drug MG132. The two Class II mutant proteins, Ste6–13p and Ste6–90p, are hyperstable relative to wild-type Ste6p and accumulate in the ER membrane. This represents the first report of a single protein in yeast for which distinct mutant forms can be channeled to different outcomes by the ER quality control system. We propose that these two classes of ER-retained Ste6p mutants may define distinct checkpoint steps in a linear pathway of ER quality control in yeast. In addition, a screen for high-copy suppressors of the mating defect of one of the ER-retained ste6 mutants has identified a proteasome subunit, Hrd2p/p97, previously implicated in the regulated degradation of wild-type hydroxymethylglutaryl-CoA reductase in the ER membrane.

Loayza, Diego; Tam, Amy; Schmidt, Walter K.; Michaelis, Susan

1998-01-01

211

4-Hydroxy-2-Nonenal-Modified Glyceraldehyde-3-Phosphate Dehydrogenase Is Degraded by Cathepsin G in Rat Neutrophils  

PubMed Central

Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal, a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that 4-hydroxy-2-nonenal-modified proteins are degraded by the ubiquitin-proteasome pathway or, in some cases, by the lysosomal pathway. However, our previous studies using U937 cells showed that 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase is degraded by cathepsin G. In the present study, we isolated the 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase-degrading enzyme from rat neutrophils to an active protein fraction of 28?kDa. Using the specific antibody, the 28?kDa protein was identified as cathepsin G. Moreover, the degradation activity was inhibited by cathepsin G inhibitors. These results suggest that cathepsin G plays a crucial role in the degradation of 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase.

Tsuchiya, Yukihiro; Okada, Go; Kobayashi, Shigeki; Chikuma, Toshiyuki; Hojo, Hiroshi

2011-01-01

212

Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients  

Microsoft Academic Search

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset progressive muscle disorder caused by a poly-alanine expansion mutation\\u000a in the Poly(A) Binding Protein Nuclear 1 (PABPN1). The molecular mechanisms that regulate disease onset and progression are\\u000a largely unknown. In order to identify molecular pathways that are consistently associated with OPMD, we performed an integrated\\u000a high-throughput transcriptome study in affected muscles of OPMD

Seyed Yahya Anvar; Peter AC ’t Hoen; Andrea Venema; Barbara van der Sluijs; Baziel van Engelen; Marc Snoeck; John Vissing; Capucine Trollet; George Dickson; Aymeric Chartier; Martine Simonelig; Gert-Jan B van Ommen; Silvere M van der Maarel; Vered Raz

2011-01-01

213

Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins.  

PubMed

Accumulation of misfolded oxidant-damaged proteins is characteristic of many diseases and aging. To understand how cells handle postsynthetically damaged proteins, we studied in Saccharomyces cerevisiae the effects on overall protein degradation of shifting from 30 to 38 degrees C, exposure to reactive oxygen species generators (paraquat or cadmium), or lack of superoxide dismutases. Degradation rates of long-lived proteins (i.e., most cell proteins) were not affected by these insults, even when there was widespread oxidative damage to proteins. However, exposure to 38 degrees C, paraquat, cadmium, or deletion of SOD1 enhanced two- to threefold the degradation of newly synthesized proteins. By 1 h after synthesis, their degradation was not affected by these treatments. Degradation of these damaged cytosolic proteins requires the ubiquitin-proteasome pathway, including the E2s UBC4/UBC5, proteasomal subunit RPN10, and the CDC48-UfD1-NPL4 complex. In yeast lacking these components, the nondegraded polypeptides accumulate as aggregates. Thus, many cytosolic proteins proceed through a prolonged "fragile period" during which they are sensitive to degradation induced by superoxide radicals or increased temperatures. PMID:18725537

Medicherla, Balasubrahmanyam; Goldberg, Alfred L

2008-08-25

214

p38 Regulates Pigmentation via Proteasomal Degradation of Tyrosinase*  

PubMed Central

The synthesis of melanin pigments, or melanogenesis, is regulated by the balance of a variety of signal transduction pathways. Among these pathways, p38 MAPK signaling was found to be involved in stress-induced melanogenesis and to be activated by ?-melanocyte-stimulating hormone (?-MSH) and ultraviolet irradiation. Previous studies have shown that ?-MSH-stimulated melanogenesis can be inhibited by blocking p38 MAPK activity with SB203580, a pyridinyl imidazole compound. Consistent with this, we observed that pyridinyl imidazoles (SB203580 and SB202190) inhibited both basal and ?-MSH-induced melanogenesis in B16 melanoma cells. However, SB202474, which has no ability to inhibit p38 MAPK activity and is usually used as a negative control compound in p38 MAPK studies, also suppressed melanin synthesis induction. Furthermore, the independence of the p38 kinase pathway from the repression of melanogenesis by pyridinyl imidazole compounds was also confirmed by small interfering RNA experiments. Interfering with p38 MAPK expression surprisingly stimulated melanogenesis and tyrosinase family protein expression. Although the molecular mechanism(s) by which p38 promotes the degradation of melanogenic enzymes remain to be determined, the involvement of the ubiquitin-proteasome pathway was demonstrated by co-treatment with the proteasome-specific inhibitor MG132 and the relative decrease in the ubiquitination of tyrosinase in cells transfected with p38-specific small interfering RNA.

Bellei, Barbara; Maresca, Vittoria; Flori, Enrica; Pitisci, Angela; Larue, Lionel; Picardo, Mauro

2010-01-01

215

Determination of relative protein degradation activity at different life stages in rainbow trout (Oncorhynchus mykiss).  

PubMed

Rainbow trout were reared from 5 g to approximately 400 g on a diet formulated to supply the required protein from either fishmeal or plant proteins. The fish were sampled at every weight doubling and liver and muscle samples were obtained. From these tissue samples RNA and protein were isolated and analyzed for the expression of a number of muscle regulatory and protein degradation genes and enzymatic activity for proteins involved in the caspase, calpain, and ubiquitin-proteasome pathways for protein proteolysis. Only MyoD2 showed significant differences in expression between the two diets, while no significant changes over the course of the experiment were determined for MyoD2 or the other muscle factors. For the degradation genes significant changes in expression were determined for calpain1 and calpastatin. Calpastatin also showed a significant increase in expression over the course of the experiment in the muscle of fish fed a fishmeal diet and significant decrease in expression in the liver of fish fed the fishmeal based diet. Differences in proteasome enzyme activity were found between diets in the liver and muscle of fish and for caspase-3 activity in muscle. Significant changes in activity over the course of the experiment were noted for proteasome and calpain activity in the liver and muscle. These findings suggest that diets replacing fishmeal with plant material can have some effects on protein turnover in muscle and that some degradation pathways are differentially regulated during the growth of rainbow trout. PMID:19038357

Overturf, Ken; Gaylord, T Gibson

2008-11-06

216

The E3 ubiquitin ligase specificity subunit ASB2? targets filamins for proteasomal degradation by interacting with the filamin actin-binding domain.  

PubMed

Filamins are an important family of actin-binding and crosslinking proteins that mediate remodeling of the actin cytoskeleton and maintain extracellular matrix connections by anchoring transmembrane proteins to actin filaments and linking them to intracellular signaling cascades. We recently found that filamins are targeted for proteasomal degradation by the E3 ubiquitin ligase specificity subunit ASB? and that acute degradation of filamins through this ubiquitin-proteasome pathway correlates with cell differentiation. Specifically, in myeloid leukemia cells retinoic-acid-induced expression of ASB2? triggers filamin degradation and recapitulates early events crucial for cell differentiation. ASB2? is thought to link substrates to the ubiquitin transferase machinery; however, the mechanism by which ASB2? interacts with filamin to induce degradation remained unknown. Here, we use cell-based and biochemical assays to show that the subcellular localization of ASB2? to actin-rich structures is dependent on filamin and that the actin-binding domain (ABD) of filamin mediates the interaction with ASB2?. Furthermore, we show that the ABD is necessary and sufficient for ASB2?-mediated filamin degradation. We propose that ASB2? exerts its effect by binding the ABD and mediating its polyubiquitylation, so targeting filamins for degradation. These studies provide the molecular basis for ASB2?-mediated filamin degradation and unravel an important mechanism by which filamin levels can be acutely regulated. PMID:21750192

Razinia, Ziba; Baldassarre, Massimiliano; Bouaouina, Mohamed; Lamsoul, Isabelle; Lutz, Pierre G; Calderwood, David A

2011-07-12

217

SIRT2 interferes with autophagy-mediated degradation of protein aggregates in neuronal cells under proteasome inhibition.  

PubMed

Abnormal protein aggregates have been suggested as a common pathogenesis of many neurodegenerative diseases. Two well-known protein degradation pathways are responsible for protein homeostasis by balancing protein biosynthesis and degradative processes: the ubiquitin-proteasome system (UPS) and autophagy-lysosomal system. UPS serves as the primary route for degradation of short-lived proteins, but large-size protein aggregates cannot be degraded by UPS. Autophagy is a unique cellular process that facilitates degradation of bulky protein aggregates by lysosome. Recent studies have demonstrated that autophagy plays a crucial role in the pathogenesis of neurodegenerative diseases characterized by abnormal protein accumulation, suggesting that regulation of autophagy may be a valuable therapeutic strategy for the treatment of various neurodegenerative diseases. Sirtuin-2 (SIRT2) is a class III histone deacetylase that is expressed abundantly in aging brain tissue. Here, we report that SIRT2 increases protein accumulation in murine cholinergic SN56 cells and human neuroblastoma SH-SY5Y cells under proteasome inhibition. Overexpression of SIRT2 inhibits lysosome-mediated autophagic turnover by interfering with aggresome formation and also makes cells more vulnerable to accumulated protein-mediated cytotoxicity by MG132 and amyloid beta. Moreover, MG132-induced accumulation of ubiquitinated proteins and p62 as well as cytotoxicity are attenuated in siRNA-mediated SIRT2-silencing cells. Taken together, these results suggest that regulation of SIRT2 could be a good therapeutic target for a range of neurodegenerative diseases by regulating autophagic flux. PMID:22819792

Gal, Jiyeong; Bang, Yeojin; Choi, Hyun Jin

2012-07-20

218

Gibberellin Metabolism, Perception and Signaling Pathways in Arabidopsis  

PubMed Central

Bioactive gibberellins (GAs) are diterpene phytohormones that modulate growth and development throughout the whole life cycle of the plant. Arabidopsis genes encoding most GA biosynthesis and catabolism enzymes, as well as GA receptors (GIBBERELLIN INSENSITIVE DWARF1, GID1) and early GA signaling components have been identified. Expression studies on the GA biosynthesis genes are beginning to reveal the potential sites of GA biosynthesis during plant development. Biochemical and genetic analyses demonstrate that GA de-represses its signaling pathway by binding to GID1s, which induce degradation of GA signaling repressors (DELLAs) via an ubiquitin-proteasome pathway. To modulate plant growth and development, the GA pathway is also regulated by endogenous signals (other hormones) and environmental cues (such as light, temperature and salt stress). In many cases, these internal and external cues directly affect GA metabolism and bioactive GA levels, and indirectly alter DELLA accumulation and GA responses. Importantly, direct negative interaction between DELLA and PIF3 and PIF4 (2 phytochrome interacting transcription factors) appears to integrate the effects of light and GA on hypocotyl elongation.

Sun, Tai-ping

2008-01-01

219

The proteasome and the degradation of oxidized proteins: Part I--structure of proteasomes?  

PubMed Central

The main machinery responsible for cellular protein maintenance is the ubiquitin-proteasomal system, with its core particle the 20S proteasome. The main task of the system is a fast and efficient degradation of proteins not needed anymore in cellular metabolism. For this aim a complex system of regulators evolved, modifying the function of the 20S core proteasome. Here we summarize shortly the structure of the 20S proteasome as well as its associated regulator proteins.

Jung, Tobias; Grune, Tilman

2013-01-01

220

Degradation pathways of cyclic alkanes in Rhodococcus sp. NDKK48  

Microsoft Academic Search

The degradation pathways for cyclic alkanes ( c-alkanes) in Rhodococcus sp. NDKK48 were investigated. Strain NDKK48 used dodecylcyclohexane as a sole carbon and energy source, and five metabolites in the dodecylcyclohexane degradation pathway were detected by gas-chromatography\\/mass spectra. The metabolites were identified as cyclohexanecarboxylic acid, cyclohexylacetic acid, 1-cyclohexene-1-acetic acid, 4-dodecylcyclohexanol, and 4-dodecylcyclohexanone. The strain degrades dodecylcyclohexane via a ring oxidation

D. Koma; Y. Sakashita; K. Kubota; Y. Fujii; F. Hasumi; S. Y. Chung; M. Kubo

2004-01-01

221

von Hippel-Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step  

PubMed Central

HIV-1 integrase, the viral enzyme responsible for provirus integration into the host genome, can be actively degraded by the ubiquitin–proteasome pathway. Here, we identify von Hippel–Lindau binding protein 1(VBP1), a subunit of the prefoldin chaperone, as an integrase cellular binding protein that bridges interaction between integrase and the cullin2 (Cul2)-based von Hippel–Lindau (VHL) ubiquitin ligase. We demonstrate that VBP1 and Cul2/VHL are required for proper HIV-1 expression at a step between integrase-dependent proviral integration into the host genome and transcription of viral genes. Using both an siRNA approach and Cul2/VHL mutant cells, we show that VBP1 and the Cul2/VHL ligase cooperate in the efficient polyubiquitylation of integrase and its subsequent proteasome-mediated degradation. Results presented here support a role for integrase degradation by the prefoldin–VHL–proteasome pathway in the integration–transcription transition of the viral replication cycle.

Mousnier, Aurelie; Kubat, Nicole; Massias-Simon, Aurelie; Segeral, Emmanuel; Rain, Jean-Christophe; Benarous, Richard; Emiliani, Stephane; Dargemont, Catherine

2007-01-01

222

The Human T-Cell Leukemia Virus Type 1 Oncoprotein Tax Controls Forkhead Box O4 Activity through Degradation by the Proteasome?  

PubMed Central

Activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway by the viral Tax oncoprotein plays a pivotal role in clonal expansion of human T-cell leukemia virus type 1 (HTLV-1)-infected cells. As the Forkhead box O (FoxO) tumor suppressors act as downstream effectors of PI3K/Akt, they represent good candidate targets whose dysregulation by Tax might be involved in HTLV-1-mediated activation and transformation of infected cells. In this report, we provide evidence showing that Tax induces a dose-dependent degradation of FoxO4 by the ubiquitin-proteasome pathway. Consistent with that, we demonstrate that Tax expression increases the interaction between FoxO4 and Mdm2 E3 ligase, leading to a strong FoxO4 polyubiquitination. These processes require the phosphorylation of FoxO4 by Akt, since a mutant of FoxO4 with mutations on its three Akt phosphorylation sites appears to be resistant to Tax-mediated degradation and ubiquitination. In addition, we show that Tax expression is associated with degradation and phosphorylation of endogenous FoxO4 in Jurkat T cells. Finally, we demonstrate that Tax represses FoxO4 transcriptional activity. Our study demonstrates that Tax can control FoxO4 protein stability and transcriptional activity and provides new insight into the subversion of cell signaling pathways during HTLV-1 infection.

Oteiza, Alexandra; Mechti, Nadir

2011-01-01

223

Degradation of Postsynaptic Scaffold GKAP and Regulation of Dendritic Spine Morphology by the TRIM3 Ubiquitin Ligase in Rat Hippocampal Neurons  

Microsoft Academic Search

Changes in neuronal activity modify the structure of dendritic spines and alter the function and protein composition of synapses. Regulated degradation of postsynaptic density (PSD) proteins by the ubiquitin-proteasome system is believed to play an important role in activity-dependent synaptic remodeling. Stimulating neuronal activity in vitro and in vivo induces the ubiquitination and degradation of GKAP\\/SAPAP and Shank, major scaffold

Albert Y. Hung; Clifford C. Sung; Ilana L. Brito; Morgan Sheng; Fabien Tell

2010-01-01

224

Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif.  

PubMed

The degradation is critical to activation and deactivation of regulatory proteins involved in signaling pathways to cell growth, differentiation, stress responses and physiological cell death. Proteins carry domains and sequence motifs that function as prerequisite for their proteolysis by either individual proteases or the 26S multicomplex proteasomes. Two models for entry of substrates into the proteasomes have been considered. In one model, it is proposed that the ubiquitin chain attached to the protein serves as recognition element to drag them into the 19S regulatory particle, which promotes the unfolding required to its access into the 20S catalytic chamber. In second model, it is proposed that an unstructured tail located at amino or carboxyl terminus directly track proteins into the 26S/20S proteasomes. Caspases are cysteinyl aspartate proteases that control diverse signaling pathways, promoting the cleavage at one or two sites of hundreds of structural and regulatory protein substrates. Caspase cleavage sites are commonly found within PEST motifs, which are segments rich in proline (P), glutamic acid (D), aspartic acid (E) and serine (S) or threonine (T) residues. Considering that N- and C- terminal peptide carrying PEST motifs form disordered loops in the globular proteins after caspase cleavage, it is postulated here that these exposed termini serve as unstructured initiation site, coupling caspase cleavage and ubiquitin-proteasome dependent and independent degradation of short-lived proteins. This could explain the inherent susceptibility to proteolysis among proteins containing PEST motif. PMID:18537676

Belizario, José E; Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João Marcelo

2008-06-01

225

Stress-Induced Phosphorylation and Proteasomal Degradation of Mitofusin 2 Facilitates Mitochondrial Fragmentation and Apoptosis  

PubMed Central

SUMMARY Mitochondria play central roles in integrating pro- and anti-apoptotic stimuli and JNK is well-known to have roles in activating apoptotic pathways. We establish a critical link between stress-induced JNK activation, mitofusin 2, which is an essential component of the mitochondrial outer membrane fusion apparatus, and the ubiquitin-proteasome system (UPS). JNK phosphorylation of mitofusin 2 in response to cellular stress leads to recruitment of the ubiquitin ligase (E3) Huwe1/Mule/ARF-BP1/HectH9/E3Histone/Lasu1 to mitofusin 2, with the BH3 domain of Huwe1 implicated in this interaction. This results in ubiquitin-mediated proteasomal degradation of mitofusin 2, leading to mitochondrial fragmentation and enhanced apoptotic cell death. The stability of a non-phosphorylatable mitofusin 2 mutant is unaffected by stress and protective against apoptosis. Conversely, a mitofusin 2 phosphomimic is more rapidly degraded without cellular stress. These findings demonstrate how proximal signaling events can influence both mitochondrial dynamics and apoptosis through phosphorylation-stimulated degradation of the mitochondrial fusion machinery.

Leboucher, Guillaume P.; Tsai, Yien Che; Yang, Mei; Shaw, Kristin C.; Zhou, Ming; Veenstra, Timothy D.; Glickman, Michael H.; Weissman, Allan M.

2012-01-01

226

Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins.  

PubMed

Misfolded proteins in the endoplasmic reticulum (ER) are identified and degraded by the ER-associated degradation pathway (ERAD), a component of ER quality control. In ERAD, misfolded proteins are removed from the ER by retrotranslocation into the cytosol where they are degraded by the ubiquitin-proteasome system. The identity of the specific protein components responsible for retrotranslocation remains controversial, with the potential candidates being Sec61p, Der1p, and Doa10. We show that the cytoplasmic N-terminal domain of a short-lived transmembrane ERAD substrate is exposed to the lumen of the ER during the degradation process. The addition of N-linked glycan to the N terminus of the substrate is prevented by mutation of a specific cysteine residue of Sec61p, as well as a specific cysteine residue of the substrate protein. We show that the substrate protein forms a disulfide-linked complex to Sec61p, suggesting that at least part of the retrotranslocation process involves Sec61p. PMID:18573918

Scott, Daniel C; Schekman, Randy

2008-06-23

227

The immunoproteasomes regulate LPS-induced TRIF/TRAM signaling pathway in murine macrophages.  

PubMed

We have proposed the novel concept that the macrophage ubiquitin-proteasome pathway functions as a key regulator of Lipopolysaccharide (LPS)-induced inflammation signaling. These findings suggest that proteasome-associated protease subunits X, Y, and Z are replaced by LMP subunits after LPS treatment of RAW 264.7 cells. The objective here was to determine the contribution of selective LMP proteasomal subunits to LPS-induced nitric oxide (NO) and TNF-? production in primary murine macrophages. Accordingly, thioglycollate-elicited macrophages from LMP7, LMP2, LMP10 (MECL-1), and LMP7/MECL-1 double knockout mice were stimulated in vitro with LPS, and were found to generate markedly reduced NO levels compared to wild-type (WT) mice, whereas TNF-? levels responses were essentially unaltered relative to wild-type responses. The recent studies suggest that the TRIF/TRAM pathway is defective in LMP knockouts which may explain why iNOS/NO are not robustly induced in LPS-treated macrophages from knockouts. Treating these macrophages with IFN-? and LPS, however, reverses this defect, leading to robust NO induction. TNF-? is induced by LPS in the LMP knockout macrophages because I?B and IRAK are degraded normally via the MyD88 pathway. Collectively, these findings strongly support the concept that LMP7/MECL-1 proteasomes subunits actively function to regulate LPS-induced NO production by affecting the TRIF/TRAM pathway. PMID:21455681

Reis, Julia; Hassan, Ferdaus; Guan, Xiu Qin; Shen, Jing; Monaco, John J; Papasian, Christopher J; Qureshi, Asaf A; Van Way, Charles W; Vogel, Stefanie N; Morrison, David C; Qureshi, Nilofer

2011-06-01

228

Inhibition of Protein Deubiquitination by PR-619 Activates the Autophagic Pathway in OLN-t40 Oligodendroglial Cells.  

PubMed

Protein aggregate formation may be the result of an impairment of the protein quality control system, e.g., the ubiquitin proteasome system (UPS) and the lysosomal autophagic pathway. For proteasomal degradation, proteins need to be covalently modified by ubiquitin and deubiquitinated before the substrates are proteolytically degraded. Deubiquitination is performed by a large family of proteases, the deubiquitinating enzymes (DUBs). DUBs display a variety of functions and their inhibition may have pathological consequences. Using the broad specificity DUB inhibitor PR-619 we previously have shown that DUB inhibition leads to an overload of ubiquitinated proteins, to protein aggregate formation and subsequent inhibition of the UPS. This study was undertaken to investigate whether PR-619 modulates autophagic functions to possibly compensate the failure of the proteasomal system. Using the oligodendroglial cell line OLN-t40 and a new oligodendroglial cell line stably expressing GFP-LC3, we show that DUB inhibition leads to the activation of autophagy and to the recruitment of LC3 and of the ubiquitin binding protein p62 to the forming aggresomes without impairing the autophagic flux. Furthermore, PR-619 induced the transport of lysosomes to the forming aggregates in a process requiring an intact microtubule network. Further stimulation of autophagy by rapamycin did not prevent PR-619 aggregate formation but rather exerted cytotoxic effects. Hence, inhibition of DUBs by PR-619 activated the autophagic pathway supporting the hypothesis that the UPS and the autophagy-lysosomal pathway are closely linked together. PMID:23686611

Seiberlich, Veronika; Borchert, Janika; Zhukareva, Victoria; Richter-Landsberg, Christiane

2013-09-01

229

The N-end rule pathway: emerging functions and molecular principles of substrate recognition  

Microsoft Academic Search

The N-end rule defines the protein-destabilizing activity of a given amino-terminal residue and its post-translational modification. Since its discovery 25 years ago, the pathway involved in the N-end rule has been thought to target only a limited set of specific substrates of the ubiquitin–proteasome system. Recent studies have provided insights into the components, substrates, functions and structural basis of substrate

Shashikanth M. Sriram; Bo Yeon Kim; Yong Tae Kwon

2011-01-01

230

Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina: implications in the pathogenesis of age-related macular degeneration  

Technology Transfer Automated Retrieval System (TEKTRAN)

The accumulation of damaged or postsynthetically modified proteins and dysregulation of inflammatory responses and angiogenesis in the retina/RPE are thought be etiologically related to formation of drusen and choroidal neovascularization (CNV), hallmarks of age-related macular degeneration (AMD). T...

231

Retinoic acid attenuates promyelocytic leukemia protein-induced cell death in breast cancer cells by activation of the ubiquitin–proteasome pathway  

Microsoft Academic Search

All-trans-retinoic acid and the tumor suppressor promyelocytic leukemia protein (PML) are potent regulators of the growth of cancer cells. This study investigates the individual and combined effects of PML, when overexpressed by the recombinant PML adenovirus, and all-trans-retinoic acid on the proliferation of human estrogen-receptor negative SKBR-3 and estrogen-receptor positive MCF-7 breast cancer cell lines. All-trans-retinoic acid caused a significant

Se-Hee Son; Eunsil Yu; Yeonsun Ahn; Eun Kyung Choi; Heuiran Lee; Jene Choi

2007-01-01

232

Effects of doxorubicin cancer therapy on autophagy and the ubiquitin-proteasome system in long-term cultured adult rat cardiomyocytes.  

PubMed

The clinical use of anthracyclines in cancer therapy is limited by dose-dependent cardiotoxicity that involves cardiomyocyte injury and death. We have tested the hypothesis that anthracyclines affect protein degradation pathways in adult cardiomyocytes. To this aim, we assessed the effects of doxorubicin (Doxo) on apoptosis, autophagy and the proteasome/ubiquitin system in long-term cultured adult rat cardiomyocytes. Accumulation of poly-ubiquitinated proteins, increase of cathepsin-D-positive lysosomes and myofibrillar degradation were observed in Doxo-treated cardiomyocytes. Chymotrypsin-like activity of the proteasome was initially increased and then inhibited by Doxo over a time-course of 48 h. Proteasome 20S proteins were down-regulated by higher doses of Doxo. The expression of MURF-1, an ubiquitin-ligase specifically targeting myofibrillar proteins, was suppressed by Doxo at all concentrations measured. Microtubule-associated protein 1 light chain 3B (LC3)-positive punctae and both LC3-I and -II proteins were induced by Doxo in a dose-dependent manner, as confirmed by using lentiviral expression of green fluorescence protein bound to LC3 and live imaging. The lysosomotropic drug chloroquine led to autophagosome accumulation, which increased with concomitant Doxo treatment indicating enhanced autophagic flux. We conclude that Doxo causes a downregulation of the protein degradation machinery of cardiomyocytes with a resulting accumulation of poly-ubiquitinated proteins and autophagosomes. Although autophagy is initially stimulated as a compensatory response to cytotoxic stress, it is followed by apoptosis and necrosis at higher doses and longer exposure times. This mechanism might contribute to the late cardiotoxicity of anthracyclines by accelerated aging of the postmitotic adult cardiomyocytes and to the susceptibility of the aging heart to anthracycline cancer therapy. PMID:22864983

Dimitrakis, Polychronis; Romay-Ogando, Maria-Iris; Timolati, Francesco; Suter, Thomas M; Zuppinger, Christian

2012-08-04

233

The Fbw7/Human CDC4 Tumor Suppressor Targets Proproliferative Factor KLF5 for Ubiquitination and Degradation through Multiple Phosphodegron Motifs*  

PubMed Central

The proproliferative transcription factor KLF5 plays an important role in promoting cell proliferation and tumorigenesis. KLF5 is a short-lived protein that can be rapidly degraded through the ubiquitin-proteasome pathway in cancer cells. However, the mechanisms regulating protein stability remain poorly understood. In this study, the tumor suppressor Fbw7, a component of the SCF complex (SCFFbw7) E3 ubiquitin ligase, specifically promoted the degradation and ubiquitination of KLF5 but had little effect on the stability of KLF4. Fbw7 interacted with KLF5 in a CDC4 phosphodegron (CPD)-dependent manner. Three CPDs were found in the KLF5 protein. Simultaneous mutation of these CPDs significantly abolished Fbw7-mediated ubiquitination and degradation. Furthermore, Fbw7 deficiency dramatically delayed KLF5 turnover and led to the accumulation of KLF5 protein in cancer cells. Glycogen synthase kinase-3? could phosphorylate and promote Fbw7-mediated KLF5 degradation. More importantly, Fbw7 negatively regulated the biological activity of KLF5 in gene regulation and cell proliferation. Taken together, these data indicate that Fbw7 is a key negative regulator controlling KLF5-mediated cell proliferation and suggest an additional mechanism linking the loss of Fbw7 function to tumorigenesis.

Liu, Ning; Li, Hui; Li, Shuangxi; Shen, Mingyue; Xiao, Ning; Chen, Yunfei; Wang, Yan; Wang, Weichao; Wang, Rui; Wang, Qian; Sun, Jianhua; Wang, Ping

2010-01-01

234

NIRF, a novel ubiquitin ligase, interacts with hepatitis B virus core protein and promotes its degradation.  

PubMed

Hepatitis B virus (HBV) core protein (HBc) is a major component of viral nucleocapsid and a multifunctional protein involved in viral maturation and release. It is unstable and present in cells at low level because of K96 lysine residue, which is a ubiquitin acceptor site. Np95/ICBP90-like RING finger protein (NIRF) has auto-ubiquitination activity which is the hallmark of a ubiquitin ligase. In the present study, ubiquitin ligase, NIRF, binds to HBc and leads to the proteasome-mediated degradation of HBc in vivo. NIRF down-regulates HBc protein level, resulting in the decrease of the amount of HBV particles in supernatant of HepG2.2.15 cells. However knockdown of NIRF significantly increases endogenous HBc protein level, leading to HBV release. The results reveal that NIRF interacts with HBc and promotes the degradation of HBc in vivo. The pathway of NIRF-mediated ubiquitin-proteasome affects the release of HBV particles by controlling the amounts of HBc. It indicates that NIRF may participate in the maturation of HBV. PMID:22072112

Qian, Guanhua; Jin, Fangmin; Chang, Lei; Yang, Yan; Peng, Huimin; Duan, Changzhu

2011-11-10

235

Parkin Promotes Degradation of the Mitochondrial Pro-Apoptotic ARTS Protein  

PubMed Central

Parkinson’s disease (PD) is associated with excessive cell death causing selective loss of dopaminergic neurons. Dysfunction of the Ubiquitin Proteasome System (UPS) is associated with the pathophysiology of PD. Mutations in Parkin which impair its E3-ligase activity play a major role in the pathogenesis of inherited PD. ARTS (Sept4_i2) is a mitochondrial protein, which initiates caspase activation upstream of cytochrome c release in the mitochondrial apoptotic pathway. Here we show that Parkin serves as an E3-ubiquitin ligase to restrict the levels of ARTS through UPS-mediated degradation. Though Parkin binds equally to ARTS and Sept4_i1 (H5/PNUTL2), the non-apoptotic splice variant of Sept4, Parkin ubiquitinates and degrades only ARTS. Thus, the effect of Parkin on ARTS is specific and probably related to its pro-apoptotic function. High levels of ARTS are sufficient to promote apoptosis in cultured neuronal cells, and rat brains treated with 6-OHDA reveal high levels of ARTS. However, over-expression of Parkin can protect cells from ARTS-induced apoptosis. Furthermore, Parkin loss-of-function experiments reveal that reduction of Parkin causes increased levels of ARTS and apoptosis. We propose that in brain cells in which the E3-ligase activity of Parkin is compromised, ARTS levels increase and facilitate apoptosis. Thus, ARTS is a novel substrate of Parkin. These observations link Parkin directly to a pro-apoptotic protein and reveal a novel connection between Parkin, apoptosis, and PD.

Kemeny, Stav; Dery, Dikla; Loboda, Yelena; Rovner, Marshall; Lev, Tali; Zuri, Dotan; Finberg, John P. M.; Larisch, Sarit

2012-01-01

236

Geldanamycin-induced degradation of Chk1 is mediated by proteasome  

SciTech Connect

Checkpoint kinase 1 (Chk1) is a cell cycle regulator and a heat shock protein 90 (Hsp90) client. It is essential for cell proliferation and survival. In this report, we analyzed the mechanisms of Chk1 regulation in U87MG glioblastoma cells using Geldanamycin (GA), which interferes with the function of Hsp90. GA reduced Chk1 protein level but not its mRNA level in glioblastoma cells. Co-treatment with GA and cycloheximide (CHX), a protein synthesis inhibitor, induced a decrease of half-life of the Chk1 protein to 3 h and resulted in Chk1 down-regulation. CHX alone induced only 32% reduction of Chk1 protein even after 24 h. These findings indicated that reduction of Chk1 by GA was due to destabilization and degradation of the protein. In addition, GA-induced down-regulation of Chk1 was reversed by MG132, a specific proteasome inhibitor. And it was revealed that Chk1 was ubiquitinated by GA. These results have indicated that degradation of Chk1 by GA was mediated by the ubiquitin-proteasome pathway in U87MG glioblastoma cells.

Nomura, M. [Department of Neurosurgery, Yokohama Sakae Kyosai Hospital, Yokohama (Japan); Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa (Japan); E-mail: nomura413jp@yahoo.co.jp; Nomura, N. [Department of Ophthalmology, Kanazawa Social Insurance Hospital, Kanazawa (Japan); Yamashita, J. [Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa (Japan)

2005-09-30

237

Superoxide-mediated proteasomal degradation of Bcl-2 determines cell susceptibility to Cr(VI)-induced apoptosis  

PubMed Central

Hexavalent chromium [Cr(VI)] compounds are redox cycling environmental carcinogens that induce apoptosis as the primary mode of cell death. Defects in apoptosis regulatory mechanisms contribute to carcinogenesis induced by Cr(VI). Activation of apoptosis signaling pathways is tightly linked with the generation of reactive oxygen species (ROS). Likewise, ROS have been implicated in the regulation of Cr(VI)-induced apoptosis and carcinogenicity; however, its role in Cr(VI)-induced apoptosis and the underlying mechanism are largely unknown. We report that ROS, specifically superoxide anion (·O2?), mediates Cr(VI)-induced apoptosis of human lung epithelial H460 cells. H460 ?0 cells that lack mitochondrial DNA demonstrated a significant decrease in ROS production and apoptotic response to Cr(VI), indicating the involvement of mitochondrial ROS in Cr(VI)-induced apoptosis. In agreement with this observation, we found that Cr(VI) induces apoptosis mainly through the mitochondrial death pathway via caspase-9 activation, which is negatively regulated by the antiapoptotic protein Bcl-2. Furthermore, ·O2? induced apoptosis in response to Cr(VI) exposure by downregulating and degrading Bcl-2 protein through the ubiquitin–proteasomal pathway. This study reveals a novel mechanism linking ·O2? with Bcl-2 stability and provides a new dimension to ROS-mediated Bcl-2 downregulation and apoptosis induction.

Azad, Neelam; Iyer, Anand Krishnan V.; Manosroi, Aranya; Wang, Liying; Rojanasakul, Yon

2008-01-01

238

Understanding Degradation Pathways in Organic Photovoltaics (Poster)  

SciTech Connect

Organic Photovoltaics (OPVs) recently attained power conversion efficiencies that are of interest for commercial production. Consequently, one of the most important unsolved issues facing a new industry is understanding what governs lifetime in organic devices and discovering solutions to mitigate degradation mechanisms. Historically, the active organic components are considered vulnerable to photo-oxidation and represent the primary degradation channel. However, we present several (shelf life and light soaking) studies pointing the relative stability of the active layers and instabilities in commonly used electrode materials. We show that engineering of the hole/electron layer at the electrode can lead to environmentally stable devices even without encapsulation.

Lloyd, M. T.; Olson, D. C.; Garcia, A.; Kauvar, I.; Kopidakis, N.; Reese, M. O.; Berry, J. J.; Ginley, D. S.

2011-02-01

239

The PHD Domain of MEKK1 Acts as an E3 Ubiquitin Ligase and Mediates Ubiquitination and Degradation of ERK1\\/2  

Microsoft Academic Search

ERK1\\/2 MAP kinases are important regulators in cellular signaling, whose activity is normally reversibly regulated by threonine-tyrosine phosphorylation. In contrast, we have found that stress-induced ERK1\\/2 activity is downregulated by ubiquitin\\/proteasome-mediated degradation of ERK1\\/2. The PHD domain of MEKK1, a RING finger-like structure, exhibited E3 ubiquitin ligase activity toward ERK2 in vitro and in vivo. Moreover, both MEKK1 kinase activity

Zhimin Lu; Shuichan Xu; Claudio Joazeiro; Melanie H Cobb; Tony Hunter

2002-01-01

240

Evolution of Efficient Pathways for Degradation of Anthropogenic Chemicals  

PubMed Central

Anthropogenic compounds used as pesticides, solvents, and explosives often persist in the environment and can cause toxicity to humans and wildlife. The persistence of anthropogenic compounds is due to their recent introduction into the environment; microbes in soil and water have had relatively little time to evolve efficient mechanisms for degradation of these novel compounds. Some anthropogenic compounds are easily degraded, while others are degraded very slowly or only partially, leading to accumulation of toxic products. This review examines the factors that affect the ability of microbes to degrade anthropogenic compounds and the mechanisms by which novel pathways emerge in nature. New approaches for engineering microbes with enhanced degradative abilities include assembly of pathways using enzymes from multiple organisms, directed evolution of inefficient enzymes, and genome shuffling to improve microbial fitness under the challenging conditions posed by contaminated environments.

Copley, Shelley D.

2010-01-01

241

Binding-induced folding of prokaryotic ubiquitin-like protein on the mycobacterium proteasomal ATPase targets substrates for degradation  

SciTech Connect

Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

Wang, T.; Li, H.; Darwin, K. H.

2010-11-01

242

Binding-induced Folding of Prokaryotic Ubiquitin-like Protein on the Mycobacterium Proteasomal ATPase Targets Substrates for Degradation  

SciTech Connect

Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

T Wang; K Heran Darwin; H Li

2011-12-31

243

Genome-wide RNAi screen and in vivo protein aggregation reporters identify degradation of damaged proteins as an essential hypertonic stress response  

PubMed Central

The damaging effects of hypertonic stress on cellular proteins are poorly defined, and almost nothing is known about the pathways that detect and repair hypertonicity-induced protein damage. To begin addressing these problems, we screened ?19,000 Caenorhabditis elegans genes by RNA interference (RNAi) feeding and identified 40 that are essential for survival during acute hypertonic stress. Half (20 of 40) of these genes encode proteins that function to detect, transport, and degrade damaged proteins, including components of the ubiquitin-proteasome system, endosomal sorting complexes, and lysosomes. High-molecular-weight ubiquitin conjugates increase during hypertonic stress, suggesting a global change in the ubiquitinylation state of endogenous proteins. Using a polyglutamine-containing fluorescent reporter, we demonstrate that cell shrinkage induces rapid protein aggregation in vivo and that many of the genes that are essential for survival during hypertonic stress function to prevent accumulation of aggregated proteins. High levels of urea, a strong protein denaturant, do not cause aggregation, suggesting that factors such as macromolecular crowding also contribute to protein aggregate formation during cell shrinkage. Acclimation of C. elegans to mild hypertonicity dramatically increases the osmotic threshold for protein aggregation, demonstrating that protein aggregation-inhibiting pathways are activated by osmotic stress. Our studies demonstrate that hypertonic stress induces protein damage in vivo and that detection and degradation of damaged proteins are essential mechanisms for survival under hypertonic conditions.

Choe, Keith P.; Strange, Kevin

2008-01-01

244

Crosstalk of EDA-A2/XEDAR in the p53 signaling pathway.  

PubMed

We recently identified X-linked ectodermal dysplasia receptor (XEDAR, also known as TNFRSF27 or EDA2R) as a direct p53 target that was frequently downregulated in colorectal cancer tissues due to its epigenetic alterations or through the p53 gene mutations. However, the role of the posttranslational regulation of XEDAR protein in colorectal carcinogenesis was not well clarified thus far. Here, we report that the extracellular NH(2) terminus of XEDAR protein was cleaved by a metalloproteinase and released into culture media. The remaining COOH-terminal membrane-anchored fragment was rapidly degraded through the ubiquitin-proteasome pathway. Interestingly, ectopic p53 expression also transactivated an XEDAR ligand, EDA-A2, together with XEDAR. Moreover, EDA-A2 blocked the cleavage of XEDAR and subsequently inhibited cell growth. We also found a missense mutation of the XEDAR gene in NCI-H716 colorectal cancer cells, which caused the translocation of XEDAR protein from cell membrane to cytoplasm. This mutation attenuated the growth-suppressive effect of XEDAR, indicating that membrane localization is critical for physiologic XEDAR function. Thus, our findings clearly revealed the crucial role of EDA-A2/XEDAR interaction in the p53-signaling pathway. PMID:20501644

Tanikawa, Chizu; Ri, Cui; Kumar, Vinod; Nakamura, Yusuke; Matsuda, Koichi

2010-05-25

245

RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2alpha.  

PubMed

Hypoxia-inducible factors (HIFs) are critical transcription factors that mediate cell survival during reduced oxygen conditions (hypoxia). At regular oxygen conditions (normoxia), HIF-1alpha and HIF-2alpha are continuously synthesized in cells and degraded via the ubiquitin-proteasome pathway. During hypoxia, these proteins are stabilized and translocate to the nucleus to activate transcription of target genes that enable cell survival at reduced oxygen levels. HIF proteins are tightly regulated via post-translational modifications including phosphorylation, acetylation, prolyl-hydroxylation and ubiquitination. Here we show for the first time that exogenous and endogenous HIF-2alpha are also regulated via the ubiquitin-like modifier small ubiquitin-like modifiers (SUMO). Using mutational analysis, we found that K394, which is situated in the sumoylation consensus site LKEE, is the major SUMO acceptor site in HIF-2alpha. Functionally, sumoylation reduced the transcriptional activity of HIF-2alpha. Similar to HIF-1alpha, HIF-2alpha is regulated by the SUMO protease SENP1. The proteasome inhibitor MG132 strongly stabilized SUMO-2-conjugated HIF-2alpha during hypoxia but did not affect the total level of HIF-2alpha. The ubiquitin E3 ligases von Hippel-Lindau and RNF4 control the levels of sumoylated HIF-2alpha, indicating that sumoylated HIF-2alpha is degraded via SUMO-targeted ubiquitin ligases. PMID:20026589

van Hagen, Martijn; Overmeer, René M; Abolvardi, Sharareh S; Vertegaal, Alfred C O

2009-12-21

246

A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery  

PubMed Central

Ubiquitination of membrane-associated proteins can direct their proteasome-mediated degradation or activation at the endoplasmic reticulum (ER), as well as their endocytosis and intracellular sorting. However, the full spectrum of ubiquitinated membrane proteins has not been determined. Here we combined proteomic analysis with yeast genetics to identify 211 ubiquitinated membrane-associated proteins in Saccharomyces cerevisiae and map >30 precise sites of ubiquitination. Major classes of identified ubiquitinated proteins include ER-resident membrane proteins, plasma membrane-localized permeases, receptors, and enzymes, and surprisingly, components of the actin cytoskeleton. By determining the differential abundance of ubiquitinated proteins in yeast mutated for NPL4 and UBC7, which are major components of ER-associated degradation (ERAD), we furthermore were able to classify 83 of these identified ubiquitinated membrane proteins as potential endogenous substrates of the ERAD pathway. These substrates are highly enriched for proteins that localize to or transit through the ER. Interestingly, we also identified novel membrane-bound transcription factors that may be subject to ubiquitin/proteasome-mediated cleavage and activation at the ER membrane.

Hitchcock, Amy L.; Auld, Kathryn; Gygi, Steven P.; Silver, Pamela A.

2003-01-01

247

Photocatalytic degradation pathway of methylene blue in water  

Microsoft Academic Search

The TiO2\\/UV photocatalytic degradation of methylene blue (MB) has been investigated in aqueous heterogeneous suspensions. In addition to a prompt removal of the color, TiO2\\/UV-based photocatalysis was simultaneously able to oxidize the dye, with an almost complete mineralization of carbon and of nitrogen and sulfur heteroatoms into CO2, NH4+, NO3? and SO42?, respectively. A detailed degradation pathway has been determined

Ammar Houas; Hinda Lachheb; Mohamed Ksibi; Elimame Elaloui; Chantal Guillard; Jean-Marie Herrmann

2001-01-01

248

Degradation pathways of PCB upon gamma irradiation.  

PubMed Central

In order to understand the modifications of the chromatographic profile of Aroclor 1260 upon gamma irradiation, a total of 14 pure polychlorinated biphenyl (PCB) congeners were separately irradiated in solution. Dechlorination was observed, and the generated products were investigated by gas chromatography and mass spectrometry. Degradation proceeds more rapidly in methanol/water mixture than in petroleum ether, but the relative amount of ortho-dechlorinated congeners formed upon irradiation was smaller in the former solvent. Ortho chlorines are preferentially lost in petroleum ether except when they are involved in a 2.5 (or 3.6) substitution pattern, in which case para dechlorination becomes predominant. The precursors of some toxicologically important congeners such as congeners 77, 118, 167, and 189 have been identified. These data are useful to rationalize the modifications of the chromatographic profile of PCB complex mixture upon gamma irradiation.

Lepine, F; Masse, R

1990-01-01

249

Regulation of NF-?B by ubiquitination and degradation of the I?Bs.  

PubMed

The nuclear factor-?B (NF-?B) signaling pathway is a busy ground for the action of the ubiquitin-proteasome system; many of the signaling steps are coordinated by protein ubiquitination. The end point of this pathway is to induce transcription, and to this end, there is a need to overcome a major obstacle, a set of inhibitors (I?Bs) that bind NF-?B and prohibit either the nuclear entry or the DNA binding of the transcription factor. Two major signaling steps are required for the elimination of the inhibitors: activation of the I?B kinase (IKK) and degradation of the phosphorylated inhibitors. IKK activation and I?B degradation involve different ubiquitination modes; the latter is mediated by a specific E3 ubiquitin ligase SCF(?-TrCP) . The F-box component of this E3, ?-TrCP, recognizes the I?B degron formed following phosphorylation by IKK and thus couples I?B phosphorylation to ubiquitination. SCF(?-TrCP) -mediated I?B ubiquitination and degradation is a very efficient process, often resulting in complete degradation of the key inhibitor I?B? within a few minutes of cell stimulation. In vivo ablation of ?-TrCP results in accumulation of all the I?Bs and complete NF-?B inhibition. As many details of I?B-?-TrCP interaction have been worked out, the development of ?-TrCP inhibitors might be a feasible therapeutic approach for NF-?B-associated human disease. However, we may still need to advance our understanding of the mechanism of I?B degradation as well as of the diverse functions of ?-TrCP in vivo. PMID:22435548

Kanarek, Naama; Ben-Neriah, Yinon

2012-03-01

250

The Type II Hsp40 Sis1 Cooperates with Hsp70 and the E3 Ligase Ubr1 to Promote Degradation of Terminally Misfolded Cytosolic Protein  

PubMed Central

Mechanisms for cooperation between the cytosolic Hsp70 system and the ubiquitin proteasome system during protein triage are not clear. Herein, we identify new mechanisms for selection of misfolded cytosolic proteins for degradation via defining functional interactions between specific cytosolic Hsp70/Hsp40 pairs and quality control ubiquitin ligases. These studies revolved around the use of S. cerevisiae to elucidate the degradation pathway of a terminally misfolded reporter protein, short-lived GFP (slGFP). The Type I Hsp40 Ydj1 acts with Hsp70 to suppress slGFP aggregation. In contrast, the Type II Hsp40 Sis1 is required for proteasomal degradation of slGFP. Sis1 and Hsp70 operate sequentially with the quality control E3 ubiquitin ligase Ubr1 to target slGFP for degradation. Compromise of Sis1 or Ubr1 function leads slGFP to accumulate in a Triton X-100-soluble state with slGFP degradation intermediates being concentrated into perinuclear and peripheral puncta. Interestingly, when Sis1 activity is low the slGFP that is concentrated into puncta can be liberated from puncta and subsequently degraded. Conversely, in the absence of Ubr1, slGFP and the puncta that contain slGFP are relatively stable. Ubr1 mediates proteasomal degradation of slGFP that is released from cytosolic protein handling centers. Pathways for proteasomal degradation of misfolded cytosolic proteins involve functional interplay between Type II Hsp40/Hsp70 chaperone pairs, PQC E3 ligases, and storage depots for misfolded proteins.

Summers, Daniel W.; Wolfe, Katie J.; Ren, Hong Yu; Cyr, Douglas M.

2013-01-01

251

ORGANOPHOSPHATE PESTICIDE DEGRADATION PATHWAYS DURING DRINKING WATER TREATMENT  

EPA Science Inventory

Free chlorine has been found to react with organophosphate (OP) pesticides resulting in the more toxic oxon products. We will discuss OP pesticide degradation pathways and modeling in the presence of chlorine and chloramines, as well as present a relationship between structure a...

252

Pathways and Analytical Tools in Degradation Studies of Organic Pollutants  

Microsoft Academic Search

All chemical compounds may undergo a variety of processes resulting from chemical, biological, or photochemical reactions. Depending on the environmental compartment in which organic compounds are present (e.g., soil, benthic sediments, surfacewaters, and groundwaters), they can undergo slow changes resulting from different chemical, physical, biological, or photochemical processes. In this study, different degradation pathways for selected persistent organic pollutants under

Dagmara Dabrowska; Agata Kot-Wasik; Jacek Namie?nik

2005-01-01

253

Bacterial pathways for degradation of nitroaromatics.  

PubMed

The last one hundred years have seen a massive expansion in the chemicals industry; however, with this progress came the concomitant pollution of the environment with a significant range of xenobiotics.Nitroaromatic compounds form one such category of novel environmental contaminants and are produced through a large number of industrial processes, most notably the pesticides, dyes and explosives industries. Whilst singly nitrated aromatic compounds are usually mineralised in the environment, multiply nitrated aromatics, such as the explosive 2,4,6-trinitrotoluene (TNT), are recalcitrant and highly toxic. The predominant route of biological transformation of aromatic compounds is oxidation; however, the presence of three electron-withdrawing nitro-groups around the ring prevents oxidation, rendering such compounds resistant to biodegradation. The subsequent accumulation of these contaminants has stimulated much research leading to the isolation of bacteria that possess, to varying extents, the ability to remediate explosives and other nitroaromatic pollutants.The extreme environments created by these toxic substances accelerate the evolutionary process and examples of bacteria that have conscripted metabolic enzymes for novel remediatory pathways are included. This Highlight ends with a discussion of the future of nitroaromatic bioremediation including engineering plants to express bacterial enzymes for use in bioremediation programs. PMID:17119634

Symons, Zoe C; Bruce, Neil C

2006-10-06

254

Stabilization of RNT-1 Protein, Runt-related Transcription Factor (RUNX) Protein Homolog of Caenorhabditis elegans, by Oxidative Stress through Mitogen-activated Protein Kinase Pathway*  

PubMed Central

RUNX proteins are evolutionarily conserved transcription factors known to be involved in various developmental processes. Here we report a new role for a RUNX protein: a role in stress response. We show that RNT-1, the Caenorhabditis elegans RUNX homolog, is constantly produced and degraded by the ubiquitination-proteasome pathway in the intestine of the nematode. RNT-1 was rapidly stabilized by oxidative stress, and the rnt-1-mutant animals were more sensitive to oxidative stress, indicating that rapid RNT-1 stabilization is a defense response against the oxidative stress. The MAP kinase pathway is required for RNT-1 stabilization, and RNT-1 was phosphorylated by SEK-1/PMK-1 in vitro. ChIP-sequencing analysis revealed a feedback loop mechanism of the MAP kinase pathway by the VHP-1 phosphatase in the RNT-1-mediated oxidative stress response. We propose that rnt-1 is regulated at the protein level for its role in the immediate response to environmental challenges in the intestine.

Lee, Kiho; Shim, Jiwon; Bae, Jaebum; Kim, Young-Joon; Lee, Junho

2012-01-01

255

Monitoring pathways of ?-glucan degradation by enzyme mixtures in situ.  

PubMed

The degradation of ?-glucans from cereal cell walls is related to health benefits of whole grain foodstuffs and is a prominent cost in the production of bioethanol and in improving the filterability of malt-based beverages. Detailed assays of ?-glucan degradation pathways by enzyme mixtures therefore promise to support the analysis of physiological and the optimization of technological processes. Physiological and biotechnological processes tend to occur in complex mixtures of catalysts and substrates and the development of advanced methodologies for mixture analysis has been attracting a great deal of attention. In situ detection of processes that involve carbohydrate synthesis and degradation encompasses the challenge of detecting monomer identities and linkage patterns, as well as enzymatic stereochemistry and specificity while resolving chemically similar reactants, challenges that are complicated in the additional detection of intermediate degradation steps. In the current study, we show that nuclear magnetic resonance (NMR) spectroscopy near the highest available spectrometer fields permits detailed real-time assays of the degradation of polymeric barley (1?3),(1?4)-?-glucan by commercial enzyme mixtures. Up to six different intermediates can be resolved and structurally assigned within a 0.07 ppm chemical shift range using the anomeric 1H chemical signal in ?-(1?3) glycosidic linkages as a structural reporter. More than 16 different glucopyranosyl spin systems are assigned to structural motifs in degradation fragments. The time course of intermediate emergence permits deciphering cleavage pathways and stereochemistry for up to four different enzyme catalyzed steps in situ. PMID:23333948

Petersen, Bent O; Olsen, Ole; Beeren, Sophie R; Hindsgaul, Ole; Meier, Sebastian

2012-12-20

256

Vacuole import and degradation pathway: Insights into a specialized autophagy pathway  

PubMed Central

Glucose deprivation induces the synthesis of pivotal gluconeogenic enzymes such as fructose-1,6-bisphosphatase, malate dehydrogenase, phosphoenolpyruvate carboxykinase and isocitrate lyase in Saccharomyces cerevisiae. However, following glucose replenishment, these gluconeogenic enzymes are inactivated and degraded. Studies have characterized the mechanisms by which these enzymes are inactivated in response to glucose. The site of degradation of these proteins has also been ascertained to be dependent on the duration of starvation. Glucose replenishment of short-term starved cells results in these proteins being degraded in the proteasome. In contrast, addition of glucose to cells starved for a prolonged period results in these proteins being degraded in the vacuole. In the vacuole dependent pathway, these proteins are sequestered in specialized vesicles termed vacuole import and degradation (Vid). These vesicles converge with the endocytic pathway and deliver their cargo to the vacuole for degradation. Recent studies have identified that internalization, as mediated by actin polymerization, is essential for delivery of cargo proteins to the vacuole for degradation. In addition, components of the target of rapamycin complex 1 interact with cargo proteins during glucose starvation. Furthermore, Tor1p dissociates from cargo proteins following glucose replenishment. Future studies will be needed to elaborate on the importance of internalization at the plasma membrane and the subsequent import of cargo proteins into Vid vesicles in the vacuole dependent degradation pathway.

Alibhoy, Abbas A; Chiang, Hui-Ling

2011-01-01

257

Just One Position-Independent Lysine Residue Can Direct MelanA into Proteasomal Degradation following N-Terminal Fusion of Ubiquitin  

PubMed Central

N-terminal stable in frame fusion of ubiquitin (Ub) has been shown to target the fusion protein for proteasomal degradation. This pathway, called the Ub fusion degradation (UFD), might also elevate MHC class I (MHC-I) antigen presentation of specific antigens. The UFD, mainly studied on cytosolic proteins, has been described to be mediated by polyubiquitination of specific lysine residues within the fused Ub moiety. Using the well characterized melanoma-specific antigen MelanA as a model protein, we analyzed the requirements of the UFD for ubiquitination and proteasomal degradation of a transmembrane protein. Here we show that fusion of the non-cleavable UbG76V variant to the N-terminus of MelanA results in rapid proteasomal degradation via the endoplasmic reticulum-associated degradation (ERAD) pathway and, consequently, leads to an increased MHC-I antigen presentation. While lysine residues within Ub are dispensable for these effects, the presence of one single lysine residue, irrespectively of its location along the fusion protein, is sufficient to induce degradation of MelanA. These results show that the ubiquitination, ER to cytosol relocation and proteasomal degradation of a transmembrane protein can be increased by N-terminal fusion of Ub at the presence of at least one, position independent lysine residue. These findings are in contrast to the conventional wisdom concerning the UFD and indicate a new concept to target a protein into the ubiquitin-proteasome system (UPS) and thus for enhanced MHC-I antigen presentation, and might open up new possibilities in the development of tumor vaccines.

Setz, Christian; Friedrich, Melanie; Hahn, Sabine; Dorrie, Jan; Schaft, Niels; Schuler, Gerold; Schubert, Ulrich

2013-01-01

258

Oligomerization with wt ?A- and ?B-Crystallins Reduces Proteasome-Mediated Degradation of C-Terminally Truncated ?A-Crystallin  

PubMed Central

Purpose. We previously demonstrated that the ubiquitin-proteasome pathway (UPP) is a general protein quality control system that selectively degrades damaged or abnormal lens proteins, including C-terminally truncated ?A-crystallin. The objective of this work was to determine the effects of wt ?A- and ?B-crystallins on the degradation of C-terminally truncated ?A-crystallin (?A1–162) and vice versa. Methods. Recombinant wt ?A, ?B, and ?A1–162 were expressed in Escherichia coli and purified to homogeneity by chromatography. Subunit exchange and oligomerization were detected by fluorescence resonance energy transfer (FRET), multiangle-light scattering and coprecipitation assays. Protein substrates were labeled with 125I and lens epithelial cell lysates were used as the source of the UPP for degradation assays. Results. FRET, multiangle light scattering, and coprecipitation assays showed that ?A1–162 exchanged subunits with wt ?A- or wt ?B- crystallin to form hetero-oligomers. ?A1–162 was more susceptible than wt ?A-crystallin to degradation by the UPP. When mixed with wt ?A-crystallin at 1:1 or 1:4 (?A1–162 : wt) ratios to form hetero-oligomers, the degradation of ?A1–162 was significantly decreased. Conversely, formation of hetero-oligomers with ?A1–162 enhanced the degradation of wt ?A-crystallin. The presence of ?A1–162, but not wt ?A-crystallin, decreased the degradation of wt ?B-crystallin. Conclusions. ?A1–162 forms hetero-oligomers with wt ?A- and ?B-crystallins. Oligomerization with wt ?A- or ?B-crystallins reduces the susceptibility of ?A1–162 to degradation by the UPP. In addition, the presence of ?A1–162 in the hetero-oligomers also affects the degradation of wt ?A- and ?B-crystallins.

Wu, Mingxing; Zhang, Xinyu; Bian, Qingning; Taylor, Allen; Liang, Jack J.; Ding, Linlin; Horwitz, Joseph; Shang, Fu

2012-01-01

259

Role and Function of the 26S Proteasome in Proliferation and Apoptosis  

Microsoft Academic Search

The 26S proteasome constitutes the central proteolytic machinery of the highly conserved ubiquitin\\/proteasome system, the cell’s major tool for extralysosomal protein degradation. Recently, a plethora of cell proteins implicated in the regulation of basic cellular processes, such as proliferation, differentiation, cell cycling, and apoptosis have been discovered to undergo processing and functional limitation by entering the ubiquitin\\/proteasome pathway with the

Cord Naujokat; Stephan Hoffmann

2002-01-01

260

Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth.  

PubMed

Human glioblastoma is the most frequent and aggressive form of brain tumour in the adult population. Proteolytic turnover of tumour suppressors by the ubiquitin-proteasome system is a mechanism that tumour cells can adopt to sustain their growth and invasiveness. However, the identity of ubiquitin-proteasome targets and regulators in glioblastoma are still unknown. Here we report that the RING ligase praja2 ubiquitylates and degrades Mob, a core component of NDR/LATS kinase and a positive regulator of the tumour-suppressor Hippo cascade. Degradation of Mob through the ubiquitin-proteasome system attenuates the Hippo cascade and sustains glioblastoma growth in vivo. Accordingly, accumulation of praja2 during the transition from low- to high-grade glioma is associated with significant downregulation of the Hippo pathway. These findings identify praja2 as a novel upstream regulator of the Hippo cascade, linking the ubiquitin proteasome system to deregulated glioblastoma growth. PMID:23652010

Lignitto, Luca; Arcella, Antonietta; Sepe, Maria; Rinaldi, Laura; Delle Donne, Rossella; Gallo, Adriana; Stefan, Eduard; Bachmann, Verena A; Oliva, Maria A; Tiziana Storlazzi, Clelia; L'Abbate, Alberto; Brunetti, Arturo; Gargiulo, Sara; Gramanzini, Matteo; Insabato, Luigi; Garbi, Corrado; Gottesman, Max E; Feliciello, Antonio

2013-01-01

261

Hydroxide Degradation Pathways for Substituted Trimethylammonium Cations: A DFT Study  

SciTech Connect

Substituted trimethylammonium cations serve as small molecule analogues for tetherable cations in anion exchange membranes. In turn, these membranes serve as the basis for alkaline membrane fuel cells by allowing facile conduction of hydroxide. As these cations are susceptible to hydroxide attack, they degrade over time and greatly limit the lifetime of the fuel cell. In this research, we performed density functional theory calculations to investigate the degradation pathways of substituted trimethylammonium cations to probe the relative durability of cation tethering strategies in alkyl and aromatic tethers. Our results show that significant changes in calculated energy barriers occur when substitution groups change. Specifically, we have found that, when available, the Hofmann elimination pathway is the most vulnerable pathway for degradation; however, this barrier is also found to depend on the carbon chain length and number of hydrogens susceptible to Hofmann elimination. S{sub N}2 barriers were also investigated for both methyl groups and substitution groups. The reported findings give important insight into potential tethering strategies for trimethylammonium cations in anion exchange membranes.

Long, H.; Kim, K.; Pivovar, B. S.

2012-05-03

262

Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway.  

PubMed Central

The human malaria parasite, Plasmodium falciparum, degrades nearly all its host cell hemoglobin during a short segment of its intraerythrocytic development. This massive catabolic process occurs in an acidic organelle, the digestive vacuole. Aspartic and cysteine proteases have been implicated in this pathway. We have isolated three vacuolar proteases that account for most of the globin-degrading activity of the digestive vacuole. One is the previously described aspartic hemoglobinase that initiates hemoglobin degradation. A second aspartic protease is capable of cleaving hemoglobin with an overlapping specificity, but seems to prefer acid-denatured globin. The third is a cysteine protease that does not recognize native hemoglobin but readily cleaves denatured globin. It is synergistic with the aspartic hemoglobinase, both by in vitro assay of hemoglobin degradation, and by isobologram analysis of protease inhibitor-treated parasites in culture. The cysteine protease is highly sensitive to chloroquine-heme complex, suggesting a possible mechanism of 4-aminoquinoline antimalarial action. The data suggest an ordered pathway of hemoglobin catabolism that presents an excellent target for chemotherapy. Images

Gluzman, I Y; Francis, S E; Oksman, A; Smith, C E; Duffin, K L; Goldberg, D E

1994-01-01

263

c-Jun N-terminal kinase contributes to aberrant retinoid signaling in lung cancer cells by phosphorylating and inducing proteasomal degradation of retinoic acid receptor alpha.  

PubMed

Retinoic acid (RA) is the ligand for nuclear RA receptors (RARs and RXRs) and is crucial for normal epithelial cell growth and differentiation. During malignant transformation, human bronchial epithelial cells acquire a block in retinoid signaling caused in part by a transcriptional defect in RARs. Here, we show that activation of c-Jun N-terminal kinase (JNK) contributes to RAR dysfunction by phosphorylating RARalpha and inducing degradation through the ubiquitin-proteasomal pathway. Analysis of RARalpha mutants and phosphopeptide mapping revealed that RARalpha residues Thr181, Ser445, and Ser461 are phosphorylated by JNK. Mutation of these residues to alanines prevented efficient ubiquitination of RARalpha and increased the stability of the protein. We investigated the importance of RARalpha phosphorylation by JNK as a mediator of retinoid resistance in lung cancer. Mice that develop lung cancer from activation of a latent K-ras oncogene had high intratumoral JNK activity and low RARalpha levels and were resistant to treatment with an RAR ligand. JNK inhibition in a human lung cancer cell line enhanced RARalpha levels, ligand-induced activity of RXR-RAR dimers, and growth inhibition by RA. These findings point to JNK as a key mediator of aberrant retinoid signaling in lung cancer cells. PMID:15657432

Srinivas, Harish; Juroske, Denise M; Kalyankrishna, Shailaja; Cody, Dianna D; Price, Roger E; Xu, Xiao-Chun; Narayanan, Ramesh; Weigel, Nancy L; Kurie, Jonathan M

2005-02-01

264

Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling.  

PubMed

Smads are important intracellular signaling effectors for transforming growth factor-beta (TGF-beta) and related factors. Proper TGF-beta signaling requires precise control of Smad functions. In this study, we have identified a novel HECT class ubiquitin E3 ligase, designated Smurf2, that negatively regulates Smad2 signaling. In both yeast two-hybrid and in vitro binding assays, we found that Smurf2 could interact with receptor-activated Smads (R-Smads), including Smad1, Smad2, and Smad3 but not Smad4. Ectopic expression of Smurf2 was sufficient to reduce the steady-state levels of Smad1 and Smad2 but not Smad3 or Smad4. Significantly, Smurf2 displayed preference to Smad2 as its target for degradation. Furthermore, Smurf2 exhibited higher binding affinity to activated Smad2 upon TGF-beta stimulation. The ability of Smurf2 to promote Smad2 destruction required the HECT catalytic activity of Smurf2 and depended on the proteasome-dependent pathway. Consistent with these results, Smurf2 potently reduced the transcriptional activity of Smad2. These data suggest that a ubiquitin/proteasome-dependent mechanism is important for proper regulation of TGF-beta signaling. PMID:11016919

Lin, X; Liang, M; Feng, X H

2000-11-24

265

Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes.  

PubMed

The transcription factor c-Fos is a short-lived cellular protein. The levels of the protein fluctuate significantly and abruptly during changing pathophysiological conditions. Thus, it is clear that degradation of the protein plays an important role in its tightly regulated activity. We examined the involvement of the ubiquitin pathway in c-Fos breakdown. Using a mutant cell line, ts20, that harbors a thermolabile ubiquitin-activating enzyme, E1, we demonstrate that impaired function of the ubiquitin system stabilizes c-Fos in vivo. In vitro, we reconstituted a cell-free system and demonstrated that the protein is multiply ubiquitinated. The adducts serve as essential intermediates for degradation by the 26S proteasome. We show that both conjugation and degradation are significantly stimulated by c-Jun, with which c-Fos forms the active heterodimeric transcriptional activator AP-1. Analysis of the enzymatic cascade involved in the conjugation process reveals that the ubiquitin-carrier protein E2-F1 and its human homolog UbcH5, which target the tumor suppressor p53 for degradation, are also involved in c-Fos recognition. The E2 enzyme acts along with a novel species of ubiquitin-protein ligase, E3. This enzyme is distinct from other known E3s, including E3 alpha/UBR1, E3 beta, and E6-AP. We have purified the novel enzyme approximately 350-fold and demonstrated that it is a homodimer with an apparent molecular mass of approximately 280 kDa. It contains a sulfhydryl group that is essential for its activity, presumably for anchoring activated ubiquitin as an intermediate thioester prior to its transfer to the substrate. Taken together, our in vivo and in vitro studies strongly suggest that c-Fos is degraded in the cell by the ubiquitin-proteasome proteolytic pathway in a process that requires a novel recognition enzyme. PMID:8524278

Stancovski, I; Gonen, H; Orian, A; Schwartz, A L; Ciechanover, A

1995-12-01

266

Pathways for degradation of lignin in bacteria and fungi.  

PubMed

Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the ?-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria. PMID:21918777

Bugg, Timothy D H; Ahmad, Mark; Hardiman, Elizabeth M; Rahmanpour, Rahman

2011-09-15

267

Pathways of chemical degradation of polypeptide antibiotic bacitracin.  

PubMed

We described the main pathways of bacitracin (Bc) decomposition, chromatographically set the position of its major degradation products and evaluated microbiological activity of isolated components of Bc and its degradation products. All processes of Bc decomposition under stress and accelerated test conditions were monitored with HPLC, performed mainly on a new type reversed-phase (RP-18e) monolithic silica column (Chromolith) enabling fast separation times and some of them also on conventional HPLC columns. Diode array detection, preparative HPLC and FAB mass spectrometry were used for identification of individual Bc components. We found that the major decomposition mechanism in water solutions of Bc is oxidation, and in alkaline solutions, deamidation. In oxidation process the components B1, B2 and B3 and A are oxidized into their corresponding oxidative products H1, H2, H3 and F respectively by the same mechanism. A detailed study of oxidative degradation products revealed that HPLC separation with an acid mobile phase caused splitting of peaks of components H2, H3 and F into two peaks but the peak of component H1 did not split due to its special structural properties. For the component A we confirmed gradual formation of desamido product through an intermediate. We found oxidative degradation products of Bc to be relatively stable, and desamido degradation products to be rather unstable. The estimation of kinetics of Bc decomposition was presented with a semi-quantitative model. Microbiological activity of individual isolated active components of Bc was established and the negligible antimicrobial activity of the degradation products was confirmed. PMID:17077508

Pavli, Viljem; Kmetec, Vojko

2006-11-01

268

Thermally induced degradation of aliphatic glucosinolates: identification of intermediary breakdown products and proposed degradation pathways.  

PubMed

In Brassica vegetables, heating processes lead to thermally induced degradation of glucosinolates (GSLs), resulting in the formation of nitriles and isothiocyanates (ITCs). To date, the mechanism is not yet satisfyingly elucidated. Thermally induced degradation of the model GSL sinigrin was studied in dry as well as aqueous medium at different pH values and temperatures. The influence of the presence of iron ions and plant matrix (broccoli sprouts powder) on the degradation was studied as well. Next to the degradation of the GSL, the formation of nitrile and ITC and the release of sugar derivatives were investigated. Because d-glucose and ITC are main thermal breakdown products under aqueous conditions, hydrolysis seems to be the initial step in the degradation pathway during cooking. In contrast, under dry conditions, the desulfo-sinigrin was identified as a main intermediary thermal breakdown product for the first time. Further, degradation of the desulfo-GSL results in the release of d-thioglucose and the corresponding nitrile. Iron(II) ions and plant matrix influence the thermal stability of the GSL and favor the formation of nitriles. PMID:22958137

Hanschen, Franziska S; Bauer, Anna; Mewis, Inga; Keil, Claudia; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W

2012-09-19

269

Methane Fermentation of Ferulate and Benzoate: Anaerobic Degradation Pathways  

PubMed Central

The anaerobic biodegradation of ferulate and benzoate in stabilized methanogenic consortia was examined in detail. Up to 99% of the ferulate and 98% of the benzoate were converted to carbon dioxide and methane. Methanogenesis was inhibited with 2-bromoethanesulfonic acid, which reduced the gas production and enhanced the buildup of intermediates. Use of high-performance liquid chromatography and two gas chromatographic procedures yielded identification of the following compounds: caffeate, p-hydroxycinnamate, cinnamate, phenylpropionate, phenylacetate, benzoate, and toluene during ferulate degradation; and benzene, cyclohexane, methylcyclohexane, cyclohexanecarboxylate, cyclohexanone, 1-methylcyclohexanone, pimelate, adipate, succinate, lactate, heptanoate, caproate, isocaproate, valerate, butyrate, isobutyrate, propionate, and acetate during the degradation of either benzoate or ferulate. Based on the identification of the above compounds, more complete reductive pathways for ferulate and benzoate are proposed.

Grbic-Galic, D.; Young, L. Y.

1985-01-01

270

Regulation of membrane protein degradation by starvation-response pathways  

PubMed Central

The multivesicular body (MVB) pathway delivers membrane proteins to the lumen of the vacuole/lysosome for degradation. The resulting amino acids are transported to the cytoplasm for reuse in protein synthesis. Our study shows that this amino acid recycling system plays an essential role in the adaptation of cells to starvation. Cells respond to amino acid starvation by up-regulating both endocytosis and the MVB pathway, thereby providing amino acids through increased protein turnover. Our data suggest that increased Rsp5-dependent ubiquitination of membrane proteins and a drop in Ist1 levels, a negative regulator of ESCRT activity, cause this response. Furthermore, we found that TORC1 and a second, unknown nutrient-sensing system are responsible for the starvation-induced protein turnover. Together, the data indicate that protein synthesis and turnover are linked by a common regulatory system that ensures adaptation and survival under nutrient-stress conditions.

Jones, Charles B.; Ott, Elizabeth M.; Keener, Justin M.; Curtiss, Matt; Sandrin, Virginie; Babst, Markus

2011-01-01

271

A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation.  

PubMed

The ubiquitin-proteasome system is a central mechanism for controlled proteolysis that regulates numerous cellular processes in eukaryotes. As such, defects in this system can contribute to disease pathogenesis. In this pathway, E3 ubiquitin ligases provide platforms for binding specific substrates, thereby coordinating their ubiquitylation and subsequent degradation by the proteasome. Despite the identification of many E3 ubiquitin ligases, the identities of their specific substrates are still largely unresolved. The ankyrin repeat-containing protein with a suppressor of cytokine signaling box 2 (ASB2) gene that we initially identified as a retinoic acid-response gene in acute promyelocytic leukemia cells encodes the specificity subunit of an E3 ubiquitin ligase complex that is involved in hematopoietic cell differentiation. We have recently identified filamin A and filamin B as the first ASB2 targets and shown that ASB2 triggers ubiquitylation and proteasome-mediated degradation of these proteins. Here a global quantitative proteomics strategy is provided to identify substrates of E3 ubiquitin ligases targeted to proteasomal degradation. Indeed we used label-free methods for quantifying proteins identified by shotgun proteomics in extracts of cells expressing wild-type ASB2 or an E3 ubiquitin ligase-defective mutant of ASB2 under the control of an inducible promoter. Measurements of spectral count and mass spectrometric signal intensity demonstrated a drastic decrease of filamin A and filamin B in myeloid leukemia cells expressing wild-type ASB2 compared with cells expressing an E3 ubiquitin ligase-defective mutant of ASB2. Altogether we provide an original strategy that enables identification of E3 ubiquitin ligase substrates that have to be degraded. PMID:19376791

Burande, Clara F; Heuzé, Mélina L; Lamsoul, Isabelle; Monsarrat, Bernard; Uttenweiler-Joseph, Sandrine; Lutz, Pierre G

2009-04-17

272

The trans-anethole degradation pathway in an Arthrobacter sp.  

PubMed

A bacterial strain (TA13) capable of utilizing t-anethole as the sole carbon source was isolated from soil. The strain was identified as Arthrobacter aurescens based on its 16 S rRNA gene sequence. Key steps of the degradation pathway of t-anethole were identified by the use of t-anethole-blocked mutants and specific inducible enzymatic activities. In addition to t-anethole, strain TA13 is capable of utilizing anisic acid, anisaldehyde, and anisic alcohol as the sole carbon source. t-Anethole-blocked mutants were obtained following mutagenesis and penicillin enrichment. Some of these blocked mutants, accumulated in the presence of t-anethole quantitative amounts of t-anethole-diol, anisic acid, and 4,6-dicarboxy-2-pyrone and traces of anisic alcohol and anisaldehyde. Enzymatic activities induced by t-anethole included: 4-methoxybenzoate O-demethylase, p-hydroxybenzoate 3-hydroxylase, and protocatechuate-4,5-dioxygenase. These findings indicate that t-anethole is metabolized to protocatechuic acid through t-anethole-diol, anisaldehyde, anisic acid, and p-hydroxybenzoic acid. The protocatechuic acid is then cleaved by protocatechuate-4,5-dioxygenase to yield 2-hydroxy-4-carboxy muconate-semialdehyde. Results from inducible uptake ability and enzymatic assays indicate that at least three regulatory units are involved in the t-anethole degradation pathway. These findings provide new routes for environmental friendly production processes of valuable aromatic chemicals via bioconversion of phenylpropenoids. PMID:11805095

Shimoni, Eyal; Baasov, Timor; Ravid, Uzi; Shoham, Yuval

2002-01-22

273

Degradation of Ionic Pathway in PEM Fuel Cell Cathode  

SciTech Connect

The degradation of the ionic pathway throughout the catalyst layer in proton exchange membrane fuel cells was studied under an accelerated stress test of catalyst support (potential hold at 1.2 V). Electrochemical behaviors of the cathode based on graphitic mesoporous carbon supported Pt catalyst were examined using electrochemical impedance spectroscopy and cyclic voltammetry. Impedance data were plotted and expressed in the complex capacitance form to determine useful parameters in the transmission line model: the double-layer capacitance, peak frequency, and ionic resistance. Electrochemical surface area and hydrogen crossover current through the membrane were estimated from cyclic voltammogram, while cathode Faradaic resistance was compared with ionic resistance as a function of test time. It was observed that during an accelerated stress test of catalyst support, graphitic mesoporous carbon becomes hydrophilic which increases interfacial area between the ionomer and the catalyst up to 100 h. However, the ionic resistance in the catalyst layer drastically increases after 100 h with further carbon support oxidation. The underlying mechanism has been studied and it was found that significant degradation of ionic pathway throughout the catalyst layer due to catalyst support corrosion induces uneven hydration and mechanical stress in the ionomer.

Park, Seh Kyu; Shao, Yuyan; Wan, Haiying; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Wang, Yong

2011-11-12

274

Proteolytically cleaved MLL subunits are susceptible to distinct degradation pathways  

PubMed Central

The mixed lineage leukemia (MLL) proto-oncogenic protein is a histone-lysine N-methyltransferase that is produced by proteolytic cleavage and self-association of the respective functionally distinct subunits (MLLN and MLLC) to form a holocomplex involved in epigenetic transcriptional regulation. On the basis of studies in Drosophila it has been suggested that the separated subunits might also have distinct functions. In this study, we used a genetically engineered mouse line that lacked MLLC to show that the MLLN–MLLC holocomplex is responsible for MLL functions in various developmental processes. The stability of MLLN is dependent on its intramolecular interaction with MLLC, which is mediated through the first and fourth plant homeodomain (PHD) fingers (PHD1 and PHD4) and the phenylalanine/tyrosine-rich (FYRN) domain of MLLN. Free MLLN is destroyed by a mechanism that targets the FYRN domain, whereas free MLLC is exported to the cytoplasm and degraded by the proteasome. PHD1 is encoded by an alternatively spliced exon that is occasionally deleted in T-cell leukemia, and its absence produces an MLL mutant protein that is deficient for holocomplex formation. Therefore, this should be a loss-of-function mutant allele, suggesting that the known tumor suppression role of MLL may also apply to the T-cell lineage. Our data demonstrate that the dissociated MLL subunits are subjected to distinct degradation pathways and thus not likely to have separate functions unless the degradation mechanisms are inhibited.

Yokoyama, Akihiko; Ficara, Francesca; Murphy, Mark J.; Meisel, Christian; Naresh, Alpana; Kitabayashi, Issay; Cleary, Michael L.

2011-01-01

275

Cadmium-induced Activation of Stress Signaling Pathways, Disruption of Ubiquitin-dependent Protein Degradation and Apoptosis in Primary Rat Sertoli Cell-Gonocyte Cocultures  

PubMed Central

Cadmium (Cd) is a ubiquitous environmental pollutant that has been associated with male reproductive toxicity in both humans and animal models. The underlying mechanism of this response, however, is still uncharacterized. To address this issue, we employed a recently developed and optimized three-dimensional primary Sertoli cell-gonocyte coculture system and examined the time- and dose-dependent effects of Cd on morphological alterations, cell viability, activation of stress signaling pathway proteins, and the disruption of the ubiquitin proteasome system (UPS). Our results demonstrated that Cd exposure lead to time- and dose-dependent morphological changes that are associated with the induction of apoptosis. In response to Cd, we also saw a disruption of the UPS as evaluated through the accumulation of high–molecular weight polyubiquitinated proteins (HMW-polyUb) as well as alterations in proteasome activity. Robust activation of cellular stress response, measured through the increased phosphorylation of stress-activated protein kinase/c-jun N-terminal kinase and p38, paralleled the accumulation of HMW-polyUb. In addition, p53, a key regulatory protein, was upregulated and underwent increased ubiquitination in response to Cd. To further characterize the role of the UPS in Cd cellular response, we compared the above changes with two classic proteasomal inhibitors, lactacystin, and MG132. The stress response and the accumulation of HWM-polyUb induced by Cd were consistent with the response seen with MG132 but not with lactacystin. In addition, Cd treatment resulted in a dose- and time-dependent effect on proteasome activity, but the overall Cd-induced proteasomal inhibition was unique as compared to MG132 and lactacystin. Taken together, our studies further characterize Cd-induced in vitro testicular toxicity and highlight the potential role of the UPS in this response.

Yu, Xiaozhong; Hong, Sungwoo; Faustman, Elaine M.

2008-01-01

276

Cadmium-induced activation of stress signaling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte cocultures.  

PubMed

Cadmium (Cd) is a ubiquitous environmental pollutant that has been associated with male reproductive toxicity in both humans and animal models. The underlying mechanism of this response, however, is still uncharacterized. To address this issue, we employed a recently developed and optimized three-dimensional primary Sertoli cell-gonocyte coculture system and examined the time- and dose-dependent effects of Cd on morphological alterations, cell viability, activation of stress signaling pathway proteins, and the disruption of the ubiquitin proteasome system (UPS). Our results demonstrated that Cd exposure lead to time- and dose-dependent morphological changes that are associated with the induction of apoptosis. In response to Cd, we also saw a disruption of the UPS as evaluated through the accumulation of high-molecular weight polyubiquitinated proteins (HMW-polyUb) as well as alterations in proteasome activity. Robust activation of cellular stress response, measured through the increased phosphorylation of stress-activated protein kinase/c-jun N-terminal kinase and p38, paralleled the accumulation of HMW-polyUb. In addition, p53, a key regulatory protein, was upregulated and underwent increased ubiquitination in response to Cd. To further characterize the role of the UPS in Cd cellular response, we compared the above changes with two classic proteasomal inhibitors, lactacystin, and MG132. The stress response and the accumulation of HWM-polyUb induced by Cd were consistent with the response seen with MG132 but not with lactacystin. In addition, Cd treatment resulted in a dose- and time-dependent effect on proteasome activity, but the overall Cd-induced proteasomal inhibition was unique as compared to MG132 and lactacystin. Taken together, our studies further characterize Cd-induced in vitro testicular toxicity and highlight the potential role of the UPS in this response. PMID:18463101

Yu, Xiaozhong; Hong, Sungwoo; Faustman, Elaine M

2008-05-06

277

Large protein complexes retained in the ER are dislocated by non-COPII vesicles and degraded by selective autophagy.  

PubMed

Multisubunit protein complexes are assembled in the endoplasmic reticulum (ER). Existing pools of single subunits and assembly intermediates ensure the efficient and rapid formation of complete complexes. While being kinetically beneficial, surplus components must be eliminated to prevent potentially harmful accumulation in the ER. Surplus single chains are cleared by the ubiquitin-proteasome system. However, the fate of not secreted assembly intermediates of multisubunit proteins remains elusive. Here we show by high-resolution double-label confocal immunofluorescence and immunogold electron microscopy that naturally occurring surplus fibrinogen A?-? assembly intermediates in HepG2 cells are dislocated together with EDEM1 from the ER to the cytoplasm in ER-derived vesicles not corresponding to COPII-coated vesicles originating from the transitional ER. This route corresponds to the novel ER exit path we have previously identified for EDEM1 (Zuber et al. Proc Natl Acad Sci USA 104:4407-4412, 2007). In the cytoplasm, detergent-insoluble aggregates of fibrinogen A?-? dimers develop that are targeted by the selective autophagy cargo receptors p62/SQSTM1 and NBR1. These aggregates are degraded by selective autophagy as directly demonstrated by high-resolution microscopy as well as biochemical analysis and inhibition of autophagy by siRNA and kinase inhibitors. Our findings demonstrate that different pathways exist in parallel for ER-to-cytoplasm dislocation and subsequent proteolytic degradation of large luminal protein complexes and of surplus luminal single-chain proteins. This implies that ER-associated protein degradation (ERAD) has a broader function in ER proteostasis and is not limited to the elimination of misfolded glycoproteins. PMID:23338832

Le Fourn, Valerie; Park, Sujin; Jang, Insook; Gaplovska-Kysela, Katarina; Guhl, Bruno; Lee, Yangsin; Cho, Jin Won; Zuber, Christian; Roth, Jürgen

2013-01-22

278

Neuromuscular abundance of RB1CC1 contributes to the non-proliferating enlarged cell phenotype through both RB1 maintenance and TSC1 degradation.  

PubMed

RB1-inducible coiled-coil 1 (RB1CC1) is a novel tumor suppressor implicated in the regulation of RB1 expression. It is abundant in post-mitotic neuromuscular cells, which are matured and enlarged, but scarce in smaller leukocytes, indicating an association between RB1CC1 status and cell size. To clarify whether RB1CC1 is involved in cell size control, we investigated the contribution of RB1CC1 to the TSC-mTOR pathway, which plays an important role in the control through translational regulation. RNAi-mediated knockdown of RB1CC1 reduced the activation of mTOR and S6K as well as the size of HEK293 and C2C12 cells. Such knockdown also suppressed RB1 expression and the population of G1-phase cells. Exogenous expression of RB1CC1 maintained S6K activity and cell size, and decreased TSC1/hamartin contents under nutritionally starved conditions, which usually inhibit the mTOR-S6K pathway. Furthermore, RB1CC1 interfered with and degraded TSC1 through the ubiquitin-proteasomal pathway. A lentiviral RNAi for RB1CC1 reduced the size of mouse leg muscles. These findings suggest that RB1CC1 is required to maintain both RB1 expression and mTOR activity. The activity of mTOR was supported by RB1CC1 through TSC1 degradation. RB1CC1 preserved cell size without cell cycle progression especially in neuromuscular tissues, and the abundance contributed to the non-proliferating enlarged cell phenotype. PMID:16865226

Chano, Tokuhiro; Saji, Masashi; Inoue, Hirokazu; Minami, Kahori; Kobayashi, Toshiyuki; Hino, Okio; Okabe, Hidetoshi

2006-09-01

279

Proteolysis in illness-associated skeletal muscle atrophy: from pathways to networks.  

PubMed

Improvements in health in the past decades have resulted in increased numbers of the elderly in both developed and developing regions of the world. Advances in therapy have also increased the prevalence of patients with chronic and degenerative diseases. Muscle wasting, a feature of most chronic diseases, is prominent in the elderly and contributes to both morbidity and mortality. A major research goal has been to identify the proteolytic system(s) that is responsible for the degradation of proteins that occurs in muscle atrophy. Findings over the past 20 years have clearly confirmed an important role of the ubiquitin proteasome system in mediating muscle proteolysis, particularly that of myofibrillar proteins. However, recent observations have provided evidence that autophagy, calpains and caspases also contribute to the turnover of muscle proteins in catabolic states, and furthermore, that these diverse proteolytic systems interact with each other at various levels. Importantly, a number of intracellular signaling pathways such as the IGF1/AKT, myostatin/Smad, PGC1, cytokine/NF?B, and AMPK pathways are now known to interact and can regulate some of these proteolytic systems in a coordinated manner. A number of loss of function studies have identified promising therapeutic approaches to the prevention and treatment of wasting. However, additional biomarkers and other approaches to improve early identification of patients who would benefit from such treatment need to be developed. The current data suggests a network of interacting proteolytic and signaling pathways in muscle. Future studies are needed to improve understanding of the nature and control of these interactions and how they work to preserve muscle function under various states of growth and atrophy. PMID:21699435

Wing, Simon S; Lecker, Stewart H; Jagoe, R Thomas

2011-06-24

280

Integrated control of protein degradation in C. elegans muscle  

PubMed Central

Protein degradation is a fundamental cellular process, the genomic control of which is incompletely understood. The advent of transgene-coded reporter proteins has enabled the development of C. elegans into a model for studying this problem. The regulation of muscle protein degradation is surprisingly complex, integrating multiple signals from hypodermis, intestine, neurons and muscle itself. Within the muscle, degradation is executed by separately regulated autophagy-lysosomal, ubiquitin-proteasome and calpain-mediated systems. The signal-transduction mechanisms, in some instances, involve modules previously identified for their roles in developmental processes, repurposed in terminally differentiated muscle to regulate the activities of pre-formed proteins. Here we review the genes, and mechanisms, which appear to coordinately control protein degradation within C. elegans muscle. We also consider these mechanisms in the context of development, physiology, pathophysiology and disease models.

Lehmann, Susann; Shephard, Freya; Jacobson, Lewis A.; Szewczyk, Nathaniel J.

2012-01-01

281

Hepatitis C virus activates the mTOR/S6K1 signaling pathway in inhibiting IRS-1 function for insulin resistance.  

PubMed

Hepatitis C virus (HCV) infection significantly increases the prevalence of type 2 diabetes mellitus (T2DM). Insulin receptor substrate 1 (IRS-1) plays a key role in insulin signaling, thus enabling metabolic regulation in mammalian cells. We have previously shown that HCV infection modulates phosphorylation of Akt, a downstream target of IRS-1. In this study, we further examined the status of total IRS-1 and the downstream regulation of the Akt pathway in understanding mTOR/S6K1 signaling using HCV genotype 2a (clone JFH1)-infected hepatocytes. Inhibition of IRS-1 expression was observed in HCV-infected hepatocytes compared to that in a mock-infected control. The status of the tuberous sclerosis complex (TSC-1/TSC-2) was significantly decreased after HCV infection of human hepatocytes, showing a modulation of the downstream Akt pathway. Subsequent study indicated an increased level of Rheb and mTOR expression in HCV-infected hepatocytes. Interestingly, the phosphoS6K1 level was higher in HCV-infected hepatocytes, suggesting a novel mechanism for IRS-1 inhibition. Ectopic expression of TSC-1/TSC-2 significantly recovered the IRS-1 protein expression level in HCV-infected hepatocytes. Further analyses indicated that HCV core protein plays a significant role in modulating the mTOR/S6K1 signaling pathway. Proteasome inhibitor MG 132 recovered IRS-1 and TSC1/2 expression, suggesting that degradation occurred via the ubiquitin proteasome pathway. A functional consequence of IRS-1 inhibition was reflected in a decrease in GLUT4 protein expression and upregulation of the gluconeogenic enzyme PCK2 in HCV-infected hepatocytes. Together, these observations suggested that HCV infection activates the mTOR/S6K1 pathway in inhibiting IRS-1 function and perturbs glucose metabolism via downregulation of GLUT4 and upregulation of PCK2 for insulin resistance. PMID:22457523

Bose, Sandip K; Shrivastava, Shubham; Meyer, Keith; Ray, Ratna B; Ray, Ranjit

2012-03-28

282

Rice ROOT ARCHITECTURE ASSOCIATED1 Binds the Proteasome Subunit RPT4 and Is Degraded in a D-Box and Proteasome-Dependent Manner1[W][OA  

PubMed Central

Root growth is mainly determined by cell division and subsequent elongation in the root apical area. Components regulating cell division in root meristematic cells are largely unknown. Previous studies have identified rice (Oryza sativa) ROOT ARCHITECTURE ASSOCIATED1 (OsRAA1) as a regulator in root development. Yet, the function of OsRAA1 at the cellular and molecular levels is unclear. Here, we show that OsRAA1-overexpressed transgenic rice showed reduced primary root growth, increased numbers of cells in metaphase, and reduced numbers of cells in anaphase, which suggests that OsRAA1 is responsible for limiting root growth by inhibiting the onset of anaphase. The expression of OsRAA1 in fission yeast also induced metaphase arrest, which is consistent with the fact that OsRAA1 functions through a conserved mechanism of cell cycle regulation. Moreover, a colocalization assay has shown that OsRAA1 is expressed predominantly at spindles during cell division. Yeast two-hybrid and pull-down assays, as well as a bimolecular fluorescence complementation assay, all have revealed that OsRAA1 interacts with a rice homolog of REGULATORY PARTICLE TRIPLE-A ATPASE4, a component that is involved in the ubiquitin pathway. Treating transgenic rice with specific inhibitors of the 26S proteasome blocked the degradation of OsRAA1 and increased the number of cells in metaphase. Mutation of a putative ubiquitination-targeting D-box (RGSLDLISL) in OsRAA1 interrupted the destruction of OsRAA1 in transgenic yeast. These results suggest that ubiquitination and proteasomic proteolysis are involved in OsRAA1 degradation, which is essential for the onset of anaphase, and that OsRAA1 may modulate root development mediated by the ubiquitin-proteasome pathway as a novel regulatory factor of the cell cycle.

Han, Ye; Cao, Hong; Jiang, Jiafu; Xu, Yunyuan; Du, Jizhou; Wang, Xin; Yuan, Ming; Wang, Zhiyong; Xu, Zhihong; Chong, Kang

2008-01-01

283

Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation  

PubMed Central

Background n-Butanol and isobutanol produced from biomass-derived sugars are promising renewable transport fuels and solvents. Saccharomyces cerevisiae has been engineered for butanol production, but its high butanol sensitivity poses an upper limit to product titers that can be reached by further pathway engineering. A better understanding of the molecular basis of butanol stress and tolerance of S. cerevisiae is important for achieving improved tolerance. Results By combining a screening of the haploid S. cerevisiae knock-out library, gene overexpression, and genome analysis of evolutionary engineered n-butanol-tolerant strains, we established that protein degradation plays an essential role in tolerance. Strains deleted in genes involved in the ubiquitin-proteasome system and in vacuolar degradation of damaged proteins showed hypersensitivity to n-butanol. Overexpression of YLR224W, encoding the subunit responsible for the recognition of damaged proteins of an ubiquitin ligase complex, resulted in a strain with a higher n-butanol tolerance. Two independently evolved n-butanol-tolerant strains carried different mutations in both RPN4 and RTG1, which encode transcription factors involved in the expression of proteasome and peroxisomal genes, respectively. Introduction of these mutated alleles in the reference strain increased butanol tolerance, confirming their relevance in the higher tolerance phenotype. The evolved strains, in addition to n-butanol, were also more tolerant to 2-butanol, isobutanol and 1-propanol, indicating a common molecular basis for sensitivity and tolerance to C3 and C4 alcohols. Conclusions This study shows that maintenance of protein integrity plays an essential role in butanol tolerance and demonstrates new promising targets to engineer S. cerevisiae for improved tolerance.

2013-01-01

284

Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonaspseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway)  

Microsoft Academic Search

Nitrobenzene is degraded by Pseudomonas pseudoalcaligenes JS45 via 2-aminophenol to 2-aminomuconic semialdehyde, which is further degraded to pyruvate and acetaldehyde. Comamonas sp. JS765 degrades nitrobenzene via catechol to 2-hydroxymuconic semialdehyde. In this study we examined and compared the\\u000a late steps of degradation of nitrobenzene by these two microorganisms in order to reveal the biochemical relationships of\\u000a the two pathways and

Zhongqi He; J. C. Spain

1999-01-01

285

Acetylation of drosha on the N-terminus inhibits its degradation by ubiquitination.  

PubMed

The RNase III enzyme Drosha initiates microRNA (miRNA) biogenesis in the nucleus by cleaving primary miRNA transcripts into shorter precursor molecules that are subsequently exported into the cytoplasm for further processing. While numerous disease states appear to be associated with aberrant expression of Drosha, the molecular mechanisms that regulate its protein levels are largely unknown. Here, we report that ubiquitination and acetylation regulate Drosha protein levels oppositely. Deacetylase inhibitors trichostatin A (TSA) and nicotinamide (NIA) increase Drosha protein level as measured by western blot but have no effects on its mRNA level in HEK293T cells. TSA increases miRNA-143 production in a miRNA sensor assay and in a qPCR analysis in HEK293T cells. Treatment of AGS and HEK293T cells with proteasome inhibitors MG132 or Omuralide increases Drosha protein levels. Furthermore, the N-terminal, but not the C-terminal Drosha can be acetylated by multiple acetyl transferases including p300, CBP and GCN5. Acetylation of Drosha competes with its ubquitination, inhibiting the degradation induced by the ubiquitin-proteasome pathway, thereby increasing Drosha protein levels. Infection of the gastric mucosa AGS cells by H. pylori, the gastric cancer associated carcinogen, leads to the ubiquitination and reduction of Drosha protein levels. H. pylori infection of AGS cells has no significant effects on Drosha mRNA levels. Our findings establish a central mechanism of protein homeostasis as playing a critical role in miRNA biogenesis. PMID:24009686

Tang, Xiaoli; Wen, Sicheng; Zheng, Dong; Tucker, Lynne; Cao, Lulu; Pantazatos, Dennis; Moss, Steven F; Ramratnam, Bharat

2013-08-29

286

SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation.  

PubMed

Posttranslational modification of proteins by lysine acetylation regulates many biological processes ranging from signal transduction to chromatin compaction. Here we identify the acetyl-transferases CBP/p300, Tip60 and PCAF as new substrates for the ubiquitin E3 ligases SIAH1 and SIAH2. While CBP/p300 can undergo ubiquitin/proteasome-dependent degradation by SIAH1 and SIAH2, the two other acetyl-transferases are exclusively degraded by SIAH2. Accordingly, SIAH-deficient cells show enhanced protein acetylation, thus revealing SIAH proteins as indirect regulators of the cellular acetylation status. Functional experiments show that Tip60/PCAF-mediated acetylation of the tumor suppressor p53 is antagonized by the p53 target gene SIAH2 which mediates ubiquitin/proteasome-mediated degradation of both acetyl-transferases and consequently diminishes p53 acetylation and transcriptional activity. The p53 kinase HIPK2 mediates hierarchical phosphorylation of SIAH2 at 5 sites, which further boosts its activity as a ubiquitin E3 ligase for several substrates and therefore dampens the late p53 response. PMID:23044042

Grishina, Inna; Debus, Katherina; García-Limones, Carmen; Schneider, Constanze; Shresta, Amit; García, Carlos; Calzado, Marco A; Schmitz, M Lienhard

2012-10-06

287

Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata  

Microsoft Academic Search

In Rhodopseudomonas capsulata the enzymes of the Entner-Doudoroff pathway and the Embden-Meyerhof pathway have been examined. Fructose-grown cells contained inducible activities of phosphoenolpyruvate-fructosephospho-transferase and 1-phosphofructokinase and only low levels of fructokinase and 6-phosphofructokinase. Although fructose-grown cells contained, in addition, all the enzymes of the Entner-Doudoroff pathway together with fructose-1,6-diphosphatase and phosphoglucose isomerase, the Entner-Doudoroff pathway was not operative in fructose

R. Conrad; H. G. Schlegel

1977-01-01

288

Isolation of an isocarbophos-degrading strain of Arthrobacter sp. scl-2 and identification of the degradation pathway.  

PubMed

Isocarbophos is a widely used organophosphorus insecticide that has caused environmental pollution in many areas. However, degradation of isocarbophos by pure cultures has not been extensively studied, and the degradation pathway has not been determined. In this paper, a highly effective isocarbophos-degrading strain, scl-2, was isolated from isocarbophos-polluted soil. Strain scl-2 was preliminarily identified as Arthrobacter sp. based on its morphological, physiological, and biochemical properties, as well as 16S rDNA analysis. Strain scl-2 could utilize isocarbophos as its sole source of carbon and phosphorus for growth. One hundred mg/l isocarbophos could be degraded to a nondetectable level in 18 h by scl-2 in cell culture, and isofenphos-methyl, profenofos, and phosmet could also be degraded. During the degradation of isocarbophos, the metabolites isopropyl salicylate, salicylate, and gentisate were detected and identified based on MS/MS analysis and their retention times in HPLC. Transformation of gentisate to pyruvate and fumarate via maleylpyruvate and fumarylpyruvate was detected by assaying for the activities of gentisate 1,2- dioxygenase (GDO) and maleylpyruvate isomerase. Therefore, we have identified the degradation pathway of isocarbophos in Arthrobacter sp. scl-2 for the first time. This study highlights an important potential use of the strain scl-2 for the cleanup of environmental contamination by isocarbophos and presents a mechanism of isocarbophos metabolism. PMID:19996699

Rong, Li; Guo, Xinqiang; Chen, Kai; Zhu, Jianchun; Li, Shunpeng; Jiang, Jiandong

2009-11-01

289

The proteasome pathway destabilizes Yersinia outer protein E and represses its antihost cell activities.  

PubMed

Pathogenic Yersinia spp. neutralize host defense mechanisms by engaging a type III protein secretion system that translocates several Yersinia outer proteins (Yops) into the host cell. Although the modulation of the cellular responses by individual Yops has been intensively studied, little is known about the fate of the translocated Yops inside the cell. In this study, we investigated involvement of the proteasome, the major nonlysosomal proteolytic system in eukaryotic cells, in Yop destabilization and repression. Our data show that inhibition of the proteasome in Yersinia enterocolitica-infected cells selectively stabilized the level of YopE, but not of YopH or YopP. In addition, YopE was found to be modified by ubiquitination. This suggests that the cytotoxin YopE is physiologically subjected to degradation via the ubiquitin-proteasome pathway inside the host cell. Importantly, the increased levels of YopE upon proteasome inhibition were associated with decreased activity of its cellular target Rac. Thus, the GTPase-down-regulating function of YopE is enhanced when the proteasome is inhibited. The stabilization of YopE by proteasome inhibitor treatment furthermore led to aggravation of the cytotoxic YopE effects on the actin cytoskeleton and on host cell morphology. Together, these data show that the host cell proteasome functions to destabilize and inactivate the Yersinia effector protein YopE. This implies the proteasome as integral part of the cellular host immune response against the immunomodulatory activities of a translocated bacterial virulence protein. PMID:16670318

Ruckdeschel, Klaus; Pfaffinger, Gudrun; Trülzsch, Konrad; Zenner, Gerhardt; Richter, Kathleen; Heesemann, Jürgen; Aepfelbacher, Martin

2006-05-15

290

Supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway and down regulates the E3 ligase MuRF1 in skeletal muscle of rats  

PubMed Central

Background Recently, it has been shown that carnitine down-regulates genes involved in the ubiquitin-proteasome system (UPS) in muscle of pigs and rats. The mechanisms underlying this observation are yet unknown. Based on the previous finding that carnitine increases plasma IGF-1 concentration, we investigated the hypothesis that carnitine down-regulates genes of the UPS by modulation of the of the IGF-1/PI3K/Akt signalling pathway which is an important regulator of UPS activity in muscle. Methods Male Sprague–Dawley rats, aged four weeks, were fed either a control diet with a low native carnitine concentration or the same diet supplemented with carnitine (1250 mg/kg diet) for four weeks. Components of the UPS and IGF-1/PI3K/Akt signalling pathway in skeletal muscle were examined. Results Rats fed the diet supplemented with carnitine had lower mRNA and protein levels of MuRF1, the most important E3 ubiquitin ligase in muscle, decreased concentrations of ubiquitin-protein conjugates in skeletal muscle and higher IGF-1 concentration in plasma than control rats (P < 0.05). Moreover, in skeletal muscle of rats fed the diet supplemented with carnitine there was an activation of the PI3K/Akt signalling pathway, as indicated by increased protein levels of phosphorylated (activated) Akt1 (P < 0.05). Conclusion The present study shows that supplementation of carnitine markedly decreases the expression of MuRF1 and concentrations of ubiquitinated proteins in skeletal muscle of rats, indicating a diminished degradation of myofibrillar proteins by the UPS. The study moreover shows that supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway which in turn might contribute to the observed down-regulation of MuRF1 and muscle protein ubiquitination.

2013-01-01

291

Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.  

PubMed

Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation. PMID:19122240

Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

2009-01-04

292

Enzymatic Pathway for the Bacterial Degradation of the Cyanobacterial Cyclic Peptide Toxin Microcystin LR  

Microsoft Academic Search

An isolated bacterium, identified as a new Sphingomonas species, was demonstrated to contain a novel enzymatic pathway which acted on microcystin LR, the most common cyanobacterial cyclic peptide toxin. Degradation of microcystin LR was mediated by at least three intracellular hydrolytic enzymes. The use of classicproteaseinhibitorsallowed(i)theclassificationoftheseenzymesintogeneralproteasefamiliesand(ii) the in vitro accumulation of otherwise transient microcystin LR degradation products. The initial site

DAVID G. BOURNE; GARY J. JONES; ROBERT L. BLAKELEY; ALUN JONES; ANDREW P. NEGRI; ANDPETER RIDDLES

1996-01-01

293

Kinin-degrading pathways in the human heart.  

PubMed

In experimental animals, kinins protect the myocardium from ischemia-reperfusion injuries and reduce left ventricular hypertrophy and progression of heart failure. This suggests that in humans, also, the presence of an intact kinin system is critical for the prevention of heart failure. In addition to the kinin-generating system, the concentration of kinins, and consequently the extent of their actions, is regulated by their degradation. In the vascular bed of the human heart, bradykinin (BK) is degraded by angiotensin-converting enzyme (ACE). In contrast, in the interstitium of the human heart, BK is degraded by neutral endopeptidase (NEP). For potentiating the beneficial effects of BK, one strategy is elevation of the BK concentration by inhibition of BK-degrading enzymes. An even more effective form of pharmacological control of BK elevation than inhibition of ACE alone might be the combined inhibition of ACE and NEP. PMID:11150728

Kokkonen, J O; Lindstedt, K A; Kuoppala, A; Kovanen, P T

2000-01-01

294

Regulation of the TGF? signalling pathway by ubiquitin-mediated degradation  

Microsoft Academic Search

The transforming growth factor-? (TGF?) superfamily controls a plethora of biological responses, and alterations in its signalling pathway are associated with a range of human diseases, including cancer. TGF? superfamily ligands signal through a heteromeric complex of Ser\\/Thr kinase receptors that propagate the signal to the Smad family of intracellular proteins. The ubiquitin-mediated proteasomal degradation pathway is an evolutionary conserved

Luisa Izzi; Liliana Attisano

2004-01-01

295

Cleaning up our own backyard: developing new catabolic pathways to degrade pollutants  

Microsoft Academic Search

Microbial-based strategies for pollution control require metabolic pathways by which man-made compounds may be degraded. Recombination-based mutagenesis and selection procedures may be able to mimic the evolution of catabolic pathways and generate enzymes with novel specificities.

Jeremy Minshull

1995-01-01

296

ORGANOPHOSPHORUS PESTICIDE DEGRADATION PATHWAYS DURING DRINKING WATER TREATMENT  

EPA Science Inventory

The objective of this work was to investigate organophosphorus (OP) pesticide transformation pathways as a class in the presence of aqueous chlorine. Seven priority OP pesticides were examined for their reactivity with aqueous chlorine: chlorpyrifos (CP), parathion (PA), diazino...

297

Proteasome Inhibitors: A Novel Class of Potent and Effective Antitumor Agents  

Microsoft Academic Search

The ubiquitin-proteasome pathway plays a critical role in the regulated degradation of proteins involved in cell cycle control and tumor growth. Dysregulating the degradation of such proteins should have profound effects on tumor growth and cause cells to undergo apoptosis. To test this hypothesis, we developed a novel series of proteasome inhibitors, exem- plified by PS-341, which we describe here.

Julian Adams; Vito J. Palombella; Edward A. Sausville; Jill Johnson; Antonia Destree; Douglas D. Lazarus; Jochen Maas; Christine S. Pien; Samuel Prakash; Peter J. Elliott

1999-01-01

298

Proteasome inhibitors: valuable new tools for cell biologists  

Microsoft Academic Search

Proteasomes are major sites for protein degradation in eukaryotic cells. The recent identification of selective proteasome inhibitors has allowed a definition of the roles of the ubiquitin–proteasome pathway in various cellular processes, such as antigen presentation and the degradation of regulatory or membrane proteins. This review describes the actions of these inhibitors, how they can be used to investigate cellular

Do Hee Lee; Alfred L Goldberg

1998-01-01

299

Isolation of phylogenetically diverse nonylphenol ethoxylate-degrading bacteria and characterization of their corresponding biotransformation pathways.  

PubMed

Most nonylphenol ethoxylate (NPEO)-degrading isolates have been assigned to gamma-Proteobacteria, which is different from the results acquired by using molecular ecological techniques. To better understand the environmental fate of NPEOs, bacterial isolation strategy characterized by the use of gellan gum as a gelling reagent and a low concentration of target carbon source were used to isolate phylogenetically diverse NPEO-degrading bacteria from activated sludge, and the biotransformation pathways of the isolates were investigated. Eight NPEO-degrading isolates with high diversity were acquired, which were distributed among seven different genera: Pseudomonas, Sphingomonas, Sphingobium, Cupriavidus, Ralstonia, Achromobacter and Staphylococcus. The latter five genera have never been reported to be able to degrade NPEOs. Three biotransformation pathways of NPEOs were observed in the eight stains. Six strains belonging to alpha, beta and gamma classes of Proteobacteria and Firmicutes phylum degraded NPEOs by initially shortening the EO chain and then oxidizing the terminal alcohol of the shortened NPEOs to the corresponding nonylphenoxy carboxylates (NPECs), which could explain most of the reported observations for the degradation of NPEOs in environment. An isolate (NP42a) belonging to the genus Sphingomonas degraded NPEOs through a non-oxidative pathway, with nonylphenol monoethoxylate (NP(1)EO) as the dominant product. Another isolate (NP47a) belonging to the genus Ralstonia degraded NPEOs by oxidizing the EO chain directly without the formation of short chain products. PMID:20457466

Gu, Xin; Zhang, Yu; Zhang, Jing; Yang, Min; Tamaki, Hideyuki; Kamagata, Yoichi; Li, Dong

2010-05-10

300

Evolution of efficient pathways for degradation of anthropogenic chemicals  

Microsoft Academic Search

Anthropogenic compounds used as pesticides, solvents and explosives often persist in the environment and can cause toxicity to humans and wildlife. The persistence of anthropogenic compounds is due to their recent introduction into the environment; microbes in soil and water have had relatively little time to evolve efficient mechanisms for degradation of these new compounds. Some anthropogenic compounds are easily

Shelley D Copley

2009-01-01

301

Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells.  

PubMed

Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIP(L)), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIP(L) in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIP(L) protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIP(L) was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIP(L). These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIP(L) ubiquitination and proteolysis, as mutant c-FLIP(L) lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIP(L) by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases. PMID:23559011

Song, X; Kim, S-Y; Zhou, Z; Lagasse, E; Kwon, Y T; Lee, Y J

2013-04-04

302

Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells  

PubMed Central

Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIPL), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIPL in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIPL protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIPL was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIPL. These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIPL ubiquitination and proteolysis, as mutant c-FLIPL lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIPL by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases.

Song, X; Kim, S-Y; Zhou, Z; Lagasse, E; Kwon, Y T; Lee, Y J

2013-01-01

303

Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation.  

PubMed

The transforming growth factor-beta (TGFbeta) superfamily controls a plethora of biological responses, and alterations in its signalling pathway are associated with a range of human diseases, including cancer. TGFbeta superfamily ligands signal through a heteromeric complex of Ser/Thr kinase receptors that propagate the signal to the Smad family of intracellular proteins. The ubiquitin-mediated proteasomal degradation pathway is an evolutionary conserved cascade that tightly regulates TGFbeta superfamily signalling. Both the size of the Smad pool in unstimulated cells and Smad protein levels subsequent to the activation of the pathway are controlled by ubiquitination. E3 ligases are components of the ubiquitin-degradation complex that specifically recognize targeted proteins and the E3 ligases, Smad ubiquitination-related factor 1 (Smurf1), Smurf2 and SCF/Roc1 have been implicated in Smad degradation. The Smurfs are of particular importance to TGFbeta signalling, as Smads also function as adapters that recruit the Smurfs to various pathway components including the TGFbeta receptor complex and the transcriptional repressor, SnoN, and thereby regulate the degradation of these Smad-associating proteins. Thus, by controlling the level of Smads as well as positive and negative regulators of the pathway, Smurfs provide for complex and fine control of signalling output. Finally, growing evidence demonstrates that ubiquitination and proteasomal degradation is also implicated in the turnover of tumor-derived Smad mutants and may thus contribute to disease progression. PMID:15021894

Izzi, Luisa; Attisano, Liliana

2004-03-15

304

Transcriptomic Analysis Reveals a Bifurcated Terephthalate Degradation Pathway in Rhodococcus sp. Strain RHA1?  

PubMed Central

Phthalate isomers and their esters are important pollutants whose biodegradation is not well understood. Rhodococcus sp. strain RHA1 is notable for its ability to degrade a wide range of aromatic compounds. RHA1 was previously shown to degrade phthalate (PTH) and to have genes putatively encoding terephthalate (TPA) degradation. Transcriptomic analysis of 8,213 genes indicated that 150 were up-regulated during growth on PTH and that 521 were up-regulated during growth on TPA. Distinct ring cleavage dioxygenase systems were differentially expressed during growth on PTH and TPA. Genes encoding the protocatechuate (PCA) pathway were induced on both substrates, while genes encoding the catechol branch of the PCA pathway were additionally induced only on TPA. Accordingly, protocatechuate-3,4-dioxygenase activity was induced in cells grown on both substrates, while catechol-1,2-dioxygenase activity was induced only in cells grown on TPA. Knockout analysis indicated that pcaL, encoding 3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase, was required for growth on both substrates but that pcaB, encoding ?-carboxy-cis,cis-muconate lactonizing enzyme, was required for growth on PTH only. These results indicate that PTH is degraded solely via the PCA pathway, whereas TPA is degraded via a bifurcated pathway that additionally includes the catechol branch of the PCA pathway.

Hara, Hirofumi; Eltis, Lindsay D.; Davies, Julian E.; Mohn, William W.

2007-01-01

305

PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS  

EPA Science Inventory

Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

306

Pathway for degradation of 2-chloro-4-nitrophenol in Arthrobacter sp. SJCon.  

PubMed

Degradation of 2-Chloro-4-nitrophenol (2C4NP) was studied by Arthrobacter sp. SJCon, isolated from the soil of a pesticide contaminated site. This strain utilized 2C4NP as sole source of carbon and energy and degraded 2C4NP with stoichiometric release of nitrite and chloride ions. A metabolite was detected during the study of 2C4NP degradation and identified as chlorohydroquinone (CHQ) by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS). Inhibition study using 2,2'-dipyridyl showed that CHQ is a terminal aromatic compound in degradation pathway of 2C4NP. CHQ dioxygenase activity was observed in the crude extract of 2C4NP induced cells of the strain SJCon that suggested the cleavage of the CHQ to maleylacetate (MA). Our study clearly showed that Arthrobacter sp. SJCon degraded 2C4NP via formation of CHQ that further cleaved to MA by CHQ dioxygenase. This mechanism of degradation of 2C4NP differs from previously reported degradation pathways of 2C4NP. PMID:21960016

Arora, Pankaj Kumar; Jain, Rakesh Kumar

2011-09-30

307

Regulation of Ubiquitination-Mediated Protein Degradation by Survival Kinases in Cancer  

PubMed Central

The ubiquitin–proteasome system is essential for multiple physiological processes via selective degradation of target proteins and has been shown to plays a critical role in human cancer. Activation of oncogenic factors and inhibition of tumor suppressors have been shown to be essential for cancer development, and protein ubiquitination has been linked to the regulation of oncogenic factors and tumor suppressors. Three kinases, AKT, extracellular signal-regulated kinase, and I?B kinase, we refer to as oncokinases, are activated in multiple human cancers. We and others have identified several key downstream targets that are commonly regulated by these oncokinases, some of which are regulated directly or indirectly via ubiquitin-mediated proteasome degradation, including FOXO3, ?-catenin, myeloid cell leukemia-1, and Snail. In this review, we summarize these findings from our and other groups and discuss potential future studies and applications in the clinic.

Yamaguchi, Hirohito; Hsu, Jennifer L.; Hung, Mien-Chie

2011-01-01

308

Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.  

PubMed

A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO?/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. PMID:23811633

Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

2013-06-06

309

Degradation of endocytosed gap junctions by autophagosomal and endo-/lysosomal pathways: a perspective  

PubMed Central

Gap junctions (GJs) are composed of tens to many thousands of double-membrane spanning GJ channels that cluster together to form densely packed channel arrays (termed GJ plaques) in apposing plasma membranes of neighboring cells. In addition to providing direct intercellular communication (GJIC, their hallmark function), GJs, based on their characteristic double-membrane-spanning configuration, likely also significantly contribute to physical cell-to-cell adhesion. Clearly, modulation (up-/down-regulation) of GJIC and of physical cell-to-cell adhesion is as vitally important as the basic ability of GJ formation itself. Others and we have previously described that GJs can be removed from the plasma membrane via the internalization of entire GJ plaques (or portions thereof) in a cellular process that resembles clathrin-mediated endocytosis. GJ endocytosis results in the formation of double-membrane vesicles (termed annular gap junctions [AGJs] or connexosomes) in the cytoplasm of one of the coupled cells. Four recent independent studies, consistent with earlier ultrastructural analyses, demonstrate the degradation of endocytosed AGJ vesicles via autophagy. However, in TPA-treated cells others report degradation of AGJs via the endo-/lysosomal degradation pathway. Here we summarize evidence that supports the concept that autophagy serves as the cellular default pathway for the degradation of internalized GJs. Furthermore, we highlight and discuss structural criteria that seem required for an alternate degradation via the endo-/lysosomal pathway.

Falk, Matthias M.; Fong, John T.; Kells, Rachael M.; O'Laughlin, Michael C.; Kowal, Tia J.; Thevenin, Anastasia F.

2012-01-01

310

Roles of protein ubiquitination and degradation kinetics in biological oscillations.  

PubMed

Protein ubiquitination and degradation play important roles in many biological functions and are associated with many human diseases. It is well known that for biochemical oscillations to occur, proper degradation rates of the participating proteins are needed. In most mathematical models of biochemical reactions, linear degradation kinetics has been used. However, the degradation kinetics in real systems may be nonlinear, and how nonlinear degradation kinetics affects biological oscillations are not well understood. In this study, we first develop a biochemical reaction model of protein ubiquitination and degradation and calculate the degradation rate against the concentration of the free substrate. We show that the protein degradation kinetics mainly follows the Michaelis-Menten formulation with a time delay caused by ubiquitination and deubiquitination. We then study analytically how the Michaelis-Menten degradation kinetics affects the instabilities that lead to oscillations using three generic oscillation models: 1) a positive feedback mediated oscillator; 2) a positive-plus-negative feedback mediated oscillator; and 3) a negative feedback mediated oscillator. In all three cases, nonlinear degradation kinetics promotes oscillations, especially for the negative feedback mediated oscillator, resulting in much larger oscillation amplitudes and slower frequencies than those observed with linear kinetics. However, the time delay due to protein ubiquitination and deubiquitination generally suppresses oscillations, reducing the amplitude and increasing the frequency of the oscillations. These theoretical analyses provide mechanistic insights into the effects of specific proteins in the ubiquitination-proteasome system on biological oscillations. PMID:22506034

Xu, Lida; Qu, Zhilin

2012-04-10

311

Proteasome Inhibition Enhances the Induction and Impairs the Maintenance of Late-Phase Long-Term Potentiation  

ERIC Educational Resources Information Center

|Protein degradation by the ubiquitin-proteasome pathway plays important roles in synaptic plasticity, but the molecular mechanisms by which proteolysis regulates synaptic strength are not well understood. We investigated the role of the proteasome in hippocampal late-phase long-term potentiation (L-LTP), a model for enduring synaptic plasticity.…

Dong, Chenghai; Upadhya, Sudarshan C.; Ding, Lan; Smith, Thuy K.; Hegde, Ashok N.

2008-01-01

312

EXPRESSION OF K6W-UBIQUITIN IN LENS EPITHELIAL CELLS LEADS TO UP-REGULATION OF A BROAD SPECTRUM OF MOLECULAR CHAPERONES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Purpose: Accumulation and precipitation of abnormal proteins are associated with many age-related diseases. The ubiquitin-proteasome pathway (UPP) is one of the protein quality control mechanisms that selectively degrade damaged or obsolete proteins. The other arm of the protein quality control me...

313

Distinct expression patterns of the E3 ligase SIAH-1 and its partner Kid\\/KIF22 in normal tissues and in the breast tumoral processes  

Microsoft Academic Search

SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human

Heriberto Bruzzoni-Giovanelli; Plinio Fernandez; Lucía Veiga; Marie-Pierre Podgorniak; Darren J Powell; Marco M Candeias; Samia Mourah; Fabien Calvo; Mónica Marín

2010-01-01

314

Proteasome inhibition: a new anti-inflammatory strategy  

Microsoft Academic Search

The ubiquitin-proteasome pathway has a central role in the selective degradation of intracellular proteins. Among the key proteins modulated by the proteasome are those involved in the control of inflammatory processes, cell cycle regulation, and gene expression. Consequently proteasome inhibition is a potential treatment option for cancer and inflammatory conditions. Thus far, proof of principle has been obtained from studies

Peter J. Elliott; Thomas Matthias Zollner; Wolf-Henning Boehncke

2003-01-01

315

Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis  

PubMed Central

The 13 Fanconi anemia (FA) proteins cooperate in a common DNA repair pathway. Eight of these proteins are assembled into a multisubunit E3 ligase called the FA core complex. During S phase, the FA core complex is loaded by the FANCM protein into chromatin where it monoubiquitinates its substrates. In mitosis, the FA core complex is released from FANCM by an unknown mechanism. Here we show that FANCM is hyperphosphorylated and degraded during mitosis. ?-TRCP and Plk1 are the key regulators of FANCM degradation. Nondegradable mutant forms of FANCM retain the FA core complex in the chromatin and disrupt the FA pathway. Our data provide a novel mechanism for the cell cycle-dependent regulation of the FA pathway.

Kee, Younghoon; Kim, Jung Min; D'Andrea, Alan

2009-01-01

316

Mechanism and pathways of chlorfenapyr photocatalytic degradation in aqueous suspension of TiO2.  

PubMed

The light-induced degradation of chlorfenapyr under UV was investigated in aqueous solutions containing TiO2 as photocatalyst. The photocatalytic degradation of chlorfenapyr followed pseudo-first-order degradation kinetics (Ct = C0e(-kt)). The study focused on the identification of possible intermediate products during the degradation, using gas chromatography mass-spectrometry (GC-MS) and 1HNMR. Six aromatic intermediates were identified by several techniques during the treatment and some of them were further confirmed by matching authentic standards. Structure analysis of the degradation products suggested two degradation pathways: (1) The aliphatic ether group was cleaved from chlorfenapyr to form pyrrole-alph-carboxylic acid, then the pyrrole group was broken to form 4-chloroglycine; (2) Chlorfenapyr was debrominated and the aliphatic ether group was cleaved from the pyrrole group, which was further broken to form 4-chlorophenylglycine. The glycine was degraded into 4-chlorobenzoic acids, which was further broken into inorganic ions and CO2. PMID:16749708

Cao, Yongsong; Yi, Lei; Huang, Lu; Hou, Ying; Lu, Yitong

2006-05-15

317

Phagocytic Receptor CED-1 Initiates a Signaling Pathway for Degrading Engulfed Apoptotic Cells  

PubMed Central

Apoptotic cells in animals are engulfed by phagocytic cells and subsequently degraded inside phagosomes. To study the mechanisms controlling the degradation of apoptotic cells, we developed time-lapse imaging protocols in developing Caenorhabditis elegans embryos and established the temporal order of multiple events during engulfment and phagosome maturation. These include sequential enrichment on phagocytic membranes of phagocytic receptor cell death abnormal 1 (CED-1), large GTPase dynamin (DYN-1), phosphatidylinositol 3-phosphate (PI(3)P), and the small GTPase RAB-7, as well as the incorporation of endosomes and lysosomes to phagosomes. Two parallel genetic pathways are known to control the engulfment of apoptotic cells in C. elegans. We found that null mutations in each pathway not only delay or block engulfment, but also delay the degradation of engulfed apoptotic cells. One of the pathways, composed of CED-1, the adaptor protein CED-6, and DYN-1, controls the rate of enrichment of PI(3)P and RAB-7 on phagosomal surfaces and the formation of phagolysosomes. We further identified an essential role of RAB-7 in promoting the recruitment and fusion of lysosomes to phagosomes. We propose that RAB-7 functions as a downstream effector of the CED-1 pathway to mediate phagolysosome formation. Our work suggests that phagocytic receptors, which were thought to act specifically in initiating engulfment, also control phagosome maturation through the sequential activation of multiple effectors such as dynamin, PI(3)P, and Rab GTPases.

Yu, Xiaomeng; Lu, Nan; Zhou, Zheng

2008-01-01

318

Pathways for 3-chloro- and 4-chlorobenzoate degradation in Pseudomonas aeruginosa 3mT.  

PubMed

A bacterial isolate, Pseudomonas aeruginosa 3mT exhibited the ability to degrade high concentrations of 3-chlorobenzoate (3-CBA, 8 g l(-1)) and 4-chlorobenzoate (4-CBA 12 g l(-1)) (Ajithkumar 1998). In this study, by delineating the initial biochemical steps involved in the degradation of these compounds, we investigated how this strain can do so well. Resting cells, permeabilised cells as well as cell-free extracts failed to dechlorinate both 3-CBA and 4-CBA under anaerobic conditions, whereas the former two readily degraded both compounds under aerobic conditions. Accumulation of any intermediary metabolite was not observed during growth as well as reaction with resting cells under highly aerated conditions. However, on modification of reaction conditions, 3-chlorocatechol (3-CC) and 4-chlorocatechol (4-CC) accumulated in 3-CBA and 4-CBA flasks, respectively. Fairly high titres of pyrocatechase II (chlorocatechol 1,2-dioxygenase) activity were obtained in extracts of cells grown on 3-CBA and 4-CBA. Meta-pyrocatechase (catechol 2,3-dioxygenase) activity against 4-CC and catechol, but not against 3-CC, was also detected in low titres. Accumulation of small amounts of 2-chloro-5-hydroxy muconic semialdehyde, the meta-cleavage product of 4-CC, was detected in the medium, when 4-CBA concentration was 4 mM or greater, indicating the presence of a minor meta-pathway in strain 3mT. However, 3-CBA exclusively, and more than 99% of 4-CBA were degraded through the formation of the respective chlorocatechol, via a modified ortho-pathway. This defies the traditional view that the microbes that follow chlorocatechol pathways are not very good degraders of chlorobenzoates. 4-Hydroxybenzoate was readily (and 3-hydroxybenzoate to a lesser extent) degraded by the strain, through the formation of protocatechuate and gentisate, respectively, as intermediary dihydroxy metabolites. PMID:11432583

Ajithkumar, P V; Kunhi, A A

2000-01-01

319

Selective destruction of abnormal proteins by ubiquitin-mediated protein quality control degradation  

PubMed Central

Misfolded proteins are continuously produced in the cell and present an escalating detriment to cellular physiology if not managed effectively. As such, all organisms have evolved mechanisms to address misfolded proteins. One primary way eukaryotic cells handle the complication of misfolded proteins is by destroying them through the ubiquitin-proteasome system. To do this, eukaryotes possess specialized ubiquitin-protein ligases that have the capacity to recognize misfolded proteins over normally folded proteins. The strategies used by these Protein Quality Control (PQC) ligases to target the wide variety of misfolded proteins in the cell will likely be different than those used by ubiquitin-protein ligases that function in regulated degradation to target normally folded proteins. In this review, we highlight what is known about how misfolded proteins are recognized by PQC ubiquitin-protein ligases.

Fredrickson, Eric K.; Gardner, Richard G.

2012-01-01

320

Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: identification of new intermediates  

Microsoft Academic Search

We have earlier reported a novel reductive pathway for o-nitrobenzoate (ONB) degradation (at 0.5 mM) in Arthrobacter protophormiae RKJ100, which proceeds via the formation of o-hydroxylaminobenzoate (HABA) and anthranilate (AA). During growth of this organism at 40 times higher concentration (20 mM) of ONB, 3-hydroxyanthranilate (HAA) was identified as an intermediate by thin layer chromatography, gas chromatography and high performance

Gunjan Pandey; Debarati Paul; Rakesh K Jain

2003-01-01

321

A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells  

Microsoft Academic Search

The stability of c-Myc is regulated by multiple Ras effector pathways. Phosphorylation at Ser 62 stabilizes c-Myc, whereas subsequent phosphorylation at Thr 58 is required for its degradation. Here we show that Ser 62 is dephosphorylated by protein phosphatase 2A (PP2A) before ubiquitination of c-Myc, and that PP2A activity is regulated by the Pin1 prolyl isomerase. Furthermore, the absence of

Elizabeth Yeh; Melissa Cunningham; Hugh Arnold; Dawn Chasse; Teresa Monteith; Giovanni Ivaldi; William C. Hahn; P. Todd Stukenberg; Shirish Shenolikar; Takafumi Uchida; Christopher M. Counter; Joseph R. Nevins; Anthony R. Means; Rosalie Sears

2004-01-01

322

Phenylacetate Catabolism in Rhodococcus sp. Strain RHA1: a Central Pathway for Degradation of Aromatic Compounds  

PubMed Central

In gram-negative bacteria, a pathway for aerobic degradation of phenylacetic acid (PAA) that proceeds via phenylacetyl-coenzyme A (CoA) and hydrolytic ring fission plays a central role in the degradation of a range of aromatic compounds. In contrast, the PAA pathway and its role are not well characterized in gram-positive bacteria. A cluster including 13 paa genes encoding enzymes orthologous to those of gram-negative bacteria was identified on the chromosome of Rhodococcus sp. strain RHA1. These genes were transcribed during growth on PAA, with 11 of the genes apparently in an operon yielding a single transcript. Quantitative proteomic analyses revealed that at least 146 proteins were more than twice as abundant in PAA-grown cells of RHA1 than in pyruvate-grown cells. Of these proteins, 29 were identified, including 8 encoded by the paa genes. Knockout mutagenesis indicated that paaN, encoding a putative ring-opening enzyme, was essential for growth on PAA. However, paaF, encoding phenylacetyl-CoA ligase, and paaR, encoding a putative regulator, were not essential. paaN was also essential for growth of RHA1 on phenylacetaldehyde, phenylpyruvate, 4-phenylbutyrate, 2-phenylethanol, 2-phenylethylamine, and l-phenylalanine. In contrast, growth on 3-hydroxyphenylacetate, ethylbenzene, and styrene was unaffected. These results suggest that the range of substrates degraded via the PAA pathway in RHA1 is somewhat limited relative to the range in previously characterized gram-negative bacteria.

Navarro-Llorens, Juana Maria; Patrauchan, Marianna A.; Stewart, Gordon R.; Davies, Julian E.; Eltis, Lindsay D.; Mohn, William W.

2005-01-01

323

Mendel's green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway  

PubMed Central

Mutants that retain greenness of leaves during senescence are known as “stay-green” mutants. The most famous stay-green mutant is Mendel's green cotyledon pea, one of the mutants used in determining the law of genetics. Pea plants homozygous for this recessive mutation (known as i at present) retain greenness of the cotyledon during seed maturation and of leaves during senescence. We found tight linkage between the I locus and stay-green gene originally found in rice, SGR. Molecular analysis of three i alleles including one with no SGR expression confirmed that the I gene encodes SGR in pea. Functional analysis of sgr mutants in pea and rice further revealed that leaf functionality is lowered despite a high chlorophyll a (Chl a) and chlorophyll b (Chl b) content in the late stage of senescence, suggesting that SGR is primarily involved in Chl degradation. Consistent with this observation, a wide range of Chl–protein complexes, but not the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit, were shown to be more stable in sgr than wild-type plants. The expression of OsCHL and NYC1, which encode the first enzymes in the degrading pathways of Chl a and Chl b, respectively, was not affected by sgr in rice. The results suggest that SGR might be involved in activation of the Chl-degrading pathway during leaf senescence through translational or posttranslational regulation of Chl-degrading enzymes.

Sato, Yutaka; Morita, Ryouhei; Nishimura, Minoru; Yamaguchi, Hiroyasu; Kusaba, Makoto

2007-01-01

324

Secretion of intact proteins and peptide fragments by lysosomal pathways of protein degradation  

SciTech Connect

We report that degradation of proteins microinjected into human fibroblasts is accompanied by release into the culture medium of peptide fragments and intact proteins as well as single amino acids. For the nine proteins and polypeptides microinjected, acid-precipitable radioactivity, i.e. peptide fragments and/or intact proteins, ranged from 10 to 67% of the total released radioactivity. Peptide fragments and/or intact protein accounted for 60% of the radioactivity released into the medium by cells microinjected with ribonuclease A. Two major radiolabeled peptide fragments were found, and one was of an appropriate size to function as an antigen in antigen-presenting cells. The peptides released from microinjected ribonuclease A were derived from lysosomal pathways of proteolysis based on several lines of evidence. Previous studies have shown that microinjected ribonuclease A is degraded to single amino acids entirely within lysosomes. We show that release of free amino acids and peptide fragments and/or intact protein was equivalently stimulated by serum deprivation and equivalently inhibited by NH4Cl. We also show that lysosomal degradation of endocytosed (3H)ribonuclease A was accompanied by the release of two peptide fragments similar in size and charge to those from microinjected ({sup 3}H)ribonuclease A. These findings demonstrate that degradation within lysosomes occurs in a manner that spares specific peptides; they also suggest a previously unsuspected pathway by which cells can secrete cytosol-derived polypeptides.

Isenman, L.D.; Dice, J.F. (Tufts Univ. School of Medicine, Boston, MA (USA))

1989-12-25

325

SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways  

PubMed Central

The FERM-like domain–containing sorting nexins of the SNX17/SNX27/SNX31 family have been proposed to mediate retrieval of transmembrane proteins from the lysosomal pathway. In this paper, we describe a stable isotope labeling with amino acids in culture–based quantitative proteomic approach that allows an unbiased, global identification of transmembrane cargoes that are rescued from lysosomal degradation by SNX17. This screen revealed that several integrins required SNX17 for their stability, as depletion of SNX17 led to a loss of ?1 and ?5 integrins and associated a subunits from HeLa cells as a result of increased lysosomal degradation. SNX17 bound to the membrane distal NPXY motif in ? integrin cytoplasmic tails, thereby preventing lysosomal degradation of ? integrins and their associated a subunits. Furthermore, SNX17-dependent retrieval of integrins did not depend on the retromer complex. Consistent with an effect on integrin recycling, depletion of SNX17 also caused alterations in cell migration. Our data provide mechanistic insight into the retrieval of internalized integrins from the lysosomal degradation pathway, a prerequisite for subsequent recycling of these matrix receptors.

Steinberg, Florian; Heesom, Kate J.; Bass, Mark D.

2012-01-01

326

Origin of a mixed brominated ethene groundwater plume: contaminant degradation pathways and reactions.  

PubMed

On the basis of a combination of laboratory microcosm experiments, column sorption experiments, and the current spatial distribution of groundwater concentrations, the origin of a mixed brominated ethene groundwater plume and its degradation pathway were hypothesized. The contaminant groundwater plume was detected downgradient of a former mineral processing facility, and consisted of tribromoethene (TriBE), cis-1,2-dibromoethene (c-DBE), trans-1,2-dibromoethene (t-DBE), and vinyl bromide (VB). The combined laboratory and field data provided strong evidence that the origin of the mixed brominated ethene plume was a result of dissolution of the dense non-aqueous-phase liquid 1,1,2,2-tetrabromoethane (TBA) atthe presumed source zone, which degraded rapidly (half-life of 0.2 days) to form TriBE in near stoichiometric amounts. TriBE then degraded (half-life of 96 days) to form c-DBE, t-DBE, and VB via a reductive debromination degradation pathway. Slow degradation of c-DBE (half-life >220 days), t-DBE (half-life 220 days), and VB (half-life >220 days) coupled with their low retardation coefficients (1.2, 1.2, and 1.0 respectively) resulted in the formation of an extensive mixed brominated ethene contaminant plume. Without this clearer understanding of the mechanism for TBA degradation, the origin of the mixed brominated ethene groundwater contamination could have been misinterpreted, and inappropriate and ineffective source zone and groundwater remediation techniques could be applied. PMID:17593741

Patterson, Bradley M; Cohen, Elizabeth; Prommer, Henning; Thomas, David G; Rhodes, Stuart; McKinley, Allan J

2007-02-15

327

Rhodococcus erythropolis DCL14 Contains a Novel Degradation Pathway for Limonene  

PubMed Central

Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (?)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the ?-oxidation pathway.

van der Werf, Mariet J.; Swarts, Henk J.; de Bont, Jan A. M.

1999-01-01

328

A Novel Sucrose Synthase Pathway for Sucrose Degradation in Cultured Sycamore Cells 1  

PubMed Central

Enzymes of sucrose degradation and glycolysis in cultured sycamore (Acer pseudoplatanus L.) cells were assayed and characterized in crude extracts and after partial purification, in an attempt to identify pathways for sucrose catabolism. Desalted cell extracts contained similar activities (20-40 nanomoles per milligram protein per minute) of sucrose synthase, neutral invertase, glucokinase, fructokinase, phosphofructokinase, and UDPglucose pyrophosphorylase (assayed with 2 micromolar pyrophosphate (PPi). PPi-linked phosphofructokinase activity was virtually dependent upon fructose 2,6-bisphosphate, and the maximum activity exceeded that of ATP-linked phosphofructokinase. Hexokinase activity, with glucose as substrate, was highly specific for ATP, whereas fructokinase activity was relatively nonspecific. At 1 millimolar nucleoside triphosphate, fructokinase activity decreased in the order: UTP > ATP > CTP > GTP. We propose two pathways for sucrose degradation. One involves invertase action, followed by classical glycolysis of hexose sugars, and the other is a novel pathway initiated by sucrose synthase. The Km for sucrose of sucrose synthase was severalfold lower than that of neutral invertase (15 versus 65 millimolar), which may determine carbon partitioning between the two pathways. The sucrose synthase pathway proposed involves cycling of uridylates and PPi. UDPglucose pyrophosphorylase, which is shown to be an effective `PPi-scavenger,' would consume PPi and form UTP. The UTP could be then utilized in the UTP-linked fructokinase reaction, thereby forming UDP for sucrose synthase. The source of PPi is postulated to arise from the back reaction of PPi-linked phosphofructokinase. Sycamore cells contained a substantial endogenous pool of PPi (about 3 nanomoles per gram fresh weight, roughly 1/10 the amount of ATP in these cells), and sufficient fructose 2,6-bisphosphate (0.09 nanomole per gram fresh weight) to activate the PPi-linked phosphofructokinase. Possible regulation and energetic differences between the sucrose synthase and invertase pathways are discussed.

Huber, Steven C.; Akazawa, Takashi

1986-01-01

329

Ubiquitin-fusion degradation pathway: A new strategy for inducing CD8 cells specific for mycobacterial HSP65  

SciTech Connect

The ubiquitin-proteasome system (UPS) plays an indispensable role in inducing MHC class I-restricted CD8{sup +} T cells. In this study, we exploited UPS to induce CD8{sup +} T cells specific for mycobacterial HSP65 (mHSP65), one of the leading vaccine candidates against infection with Mycobacterium tuberculosis. A chimeric DNA termed pU-HSP65 encoding a fusion protein between murine ubiquitin and mHSP65 was constructed, and C57BL/6 (B6) mice were immunized with the DNA using gene gun bombardment. Mice immunized with the chimeric DNA acquired potent resistance against challenge with the syngeneic B16F1 melanoma cells transfected with the mHSP65 gene (HSP65/B16F1), compared with those immunized with DNA encoding only mHSP65. Splenocytes from the former group of mice showed a higher grade of cytotoxic activity against HSP65/B16F1 cells and contained a larger number of granzyme B- or IFN-{gamma}-producing CD8{sup +} T cells compared with those from the latter group of mice.

Shen Jianying; Hisaeda, Hajime; Chou Bin [Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Yu Qingsheng [Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tu Liping [Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Himeno, Kunisuke [Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)], E-mail: himeno@parasite.med.kyushu-u.ac.jp

2008-01-25

330

Involvement of two latex-clearing proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans strain VH2.  

PubMed

The increasing production of synthetic and natural poly(cis-1,4-isoprene) rubber leads to huge challenges in waste management. Only a few bacteria are known to degrade rubber, and little is known about the mechanism of microbial rubber degradation. The genome of Gordonia polyisoprenivorans strain VH2, which is one of the most effective rubber-degrading bacteria, was sequenced and annotated to elucidate the degradation pathway and other features of this actinomycete. The genome consists of a circular chromosome of 5,669,805 bp and a circular plasmid of 174,494 bp with average GC contents of 67.0% and 65.7%, respectively. It contains 5,110 putative protein-coding sequences, including many candidate genes responsible for rubber degradation and other biotechnically relevant pathways. Furthermore, we detected two homologues of a latex-clearing protein, which is supposed to be a key enzyme in rubber degradation. The deletion of these two genes for the first time revealed clear evidence that latex-clearing protein is essential for the microbial utilization of rubber. Based on the genome sequence, we predict a pathway for the microbial degradation of rubber which is supported by previous and current data on transposon mutagenesis, deletion mutants, applied comparative genomics, and literature search. PMID:22327575

Hiessl, Sebastian; Schuldes, Jörg; Thürmer, Andrea; Halbsguth, Tobias; Bröker, Daniel; Angelov, Angel; Liebl, Wolfgang; Daniel, Rolf; Steinbüchel, Alexander

2012-02-10

331

Uridine-Ribohydrolase Is a Key Regulator in the Uridine Degradation Pathway of Arabidopsis[W  

PubMed Central

Nucleoside degradation and salvage are important metabolic pathways but hardly understood in plants. Recent work on human pathogenic protozoans like Leishmania and Trypanosoma substantiates an essential function of nucleosidase activity. Plant nucleosidases are related to those from protozoans and connect the pathways of nucleoside degradation and salvage. Here, we describe the cloning of such an enzyme from Arabidopsis thaliana, Uridine-Ribohydrolase 1 (URH1) and the characterization by complementation of a yeast mutant. Furthermore, URH1 was synthesized as a recombinant protein in Escherichia coli. The pure recombinant protein exhibited highest hydrolase activity for uridine, followed by inosine and adenosine, the corresponding Km values were 0.8, 1.4, and 0.7 mM, respectively. In addition, URH1 was able to cleave the cytokinin derivative isopentenyladenine-riboside. Promoter ?-glucuronidase fusion studies revealed that URH1 is mainly transcribed in the vascular cells of roots and in root tips, guard cells, and pollen. Mutants expressing the Arabidopsis enzyme or the homolog from rice (Oryza sativa) exhibit resistance toward toxic fluorouridine, fluorouracil, and fluoroorotic acid, providing clear evidence for a pivotal function of URH1 as regulative in pyrimidine degradation. Moreover, mutants with increased and decreased nucleosidase activity are delayed in germination, indicating that this enzyme activity must be well balanced in the early phase of plant development.

Jung, Benjamin; Florchinger, Martin; Kunz, Hans-Henning; Traub, Michaela; Wartenberg, Ruth; Jeblick, Wolfgang; Neuhaus, H. Ekkehard; Mohlmann, Torsten

2009-01-01

332

Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation  

PubMed Central

p53 protein turnover through the ubiquitination pathway is a vital mechanism in the regulation of its transcriptional activity; however, little is known about p53 turnover through proteasome-independent pathway(s). The digestive organ expansion factor (Def) protein is essential for the development of digestive organs. In zebrafish, loss of function of def selectively upregulates the expression of p53 response genes, which raises a question as to what is the relationship between Def and p53. We report here that Def is a nucleolar protein and that loss of function of def leads to the upregulation of p53 protein, which surprisingly accumulates in the nucleoli. Our extensive studies have demonstrated that Def can mediate the degradation of p53 protein and that this process is independent of the proteasome pathway, but dependent on the activity of Calpain3, a cysteine protease. Our findings define a novel nucleolar pathway that regulates the turnover function of p53, which will advance our understanding of p53's role in organogenesis and tumorigenesis.

Tao, Ting; Shi, Hui; Guan, Yihong; Huang, Delai; Chen, Ye; Lane, David P; Chen, Jun; Peng, Jinrong

2013-01-01

333

Reactions Involved in the Lower Pathway for Degradation of 4Nitrotoluene by Mycobacterium Strain HL 4NT1  

Microsoft Academic Search

In spite of the variety of initial reactions, the aerobic biodegradation of aromatic compounds generally yields dihydroxy intermediates for ring cleavage. Recent investigation of the degradation of nitroaromatic compounds revealed that some nitroaromatic compounds are initially converted to 2-aminophenol rather than dihydroxy intermediates by a number of microorganisms. The complete pathway for the metabolism of 2-aminophenol during the degradation of

ZHONGQI HE; JIM C. SPAIN

2000-01-01

334

Organelle interactions and possible degradation pathways visualized in high-pressure frozen algal cells.  

PubMed

Summary Organelle interactions, although essential for both anabolic and catabolic pathways in plant cells have not been examined in detail so far. In the present study the structure of different organelle-organelle, organelle-vesicle and organelle-membrane interactions were investigated in growing and nongrowing cells of the green alga Micrasterias denticulata by use of high pressure freeze fixation and energy filtering transmission electron microscopy. It became clear that contacts between mitochondria always occur by formation of a cone-shaped protuberance of one of the mitochondria which penetrates into its fusion partner. In the same way, structural interactions between mitochondria and mucilage vesicles and between microbodies and mucilage vesicles are achieved. Lytic compartments contact mitochondria or mucilage vesicles again by forming protuberances and by extending their contents into the respective compartment. Detached portions of mitochondria are found inside lytic compartments as a consequence of such interactions. Mitochondria found in contact with the plasma membrane reveal structural disintegration. Our study shows that interactions of organelles and vesicles are frequent events in Micrasterias cells of different ages. The interactive contacts between lytic compartments and organelles or vesicles suggest a degradation pathway different from autophagy processes described in the literature. Both the interactions between vesicles and organelles and the degradation pathways occur independently from cytoskeleton function as demonstrated by use of cytochalasin D and the microtubule inhibitor amiprophos-methyl. PMID:16159344

Aichinger, N; Lütz-Meindl, U

2005-08-01

335

The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway.  

PubMed

The final step of cytoplasmic mRNA degradation proceeds in either a 5'-3' direction catalysed by Xrn1 or in a 3'-5' direction catalysed by the exosome. Dis3/Rrp44, an RNase II family protein, is the catalytic subunit of the exosome. In humans, there are three paralogues of this enzyme: DIS3, DIS3L, and DIS3L2. In this work, we identified a novel Schizosaccharomyces pombe exonuclease belonging to the conserved family of human DIS3L2 and plant SOV. Dis3L2 does not interact with the exosome components and localizes in the cytoplasm and in cytoplasmic foci, which are docked to P-bodies. Deletion of dis3l2(+) is synthetically lethal with xrn1?, while deletion of dis3l2(+) in an lsm1? background results in the accumulation of transcripts and slower mRNA degradation rates. Accumulated transcripts show enhanced uridylation and in vitro Dis3L2 displays a preference for uridylated substrates. Altogether, our results suggest that in S. pombe, and possibly in most other eukaryotes, Dis3L2 is an important factor in mRNA degradation. Therefore, this novel 3'-5' RNA decay pathway represents an alternative to degradation by Xrn1 and the exosome. PMID:23503588

Malecki, Michal; Viegas, Sandra C; Carneiro, Tiago; Golik, Pawel; Dressaire, Clémentine; Ferreira, Miguel G; Arraiano, Cecília M

2013-03-15

336

Experimental design optimization for electrochemical removal of gentamicin: toxicity evaluation and degradation pathway.  

PubMed

Electrochemical degradation of gentamicin was achieved using a laboratory scale electrochemical reactor by optimizing pH, current density and treatment time. A two step statistical optimization was performed as per factorial design and center composite design (CCD). A Pareto chart was used for selecting statistically significant effects and an analysis of variance (ANOVA) table indicated significant curvature. Thus adding additional experimental runs improved the model fitting through a second order model. Maximum degradation was predicted at a pH of 6.7, 70 A m(-2) and 45 min. The experimental data fitted well through a reduced quadratic model with R(2) equal to 0.945. The toxicity of degradation products as determined by disc diffusion assay employing Pseudomonas aeruginosa strain was found to be reduced by 55%. The degradation pathway of gentamicin was studied using mass spectral (MS) analysis. Pure gentamicin showed a molecular ion peak at m/z 478 ([M + 1](+)), and after addition of NaCl as electrolyte, the mass peak was observed at m/z 523. After 15 min of electrochemical treatment, a new peak appeared at m/z 316 due to the loss of one pyran moiety. After 45 min of electrochemical treatment, another peak appeared at m/z of 478 due to loss of two Na(+) from gentamicin. PMID:23656945

Dhuria, Radhey S; Bhatti, Rajbir; Bhatti, Manpreet S; Singh, Palwinder; Whitcomb, Patrick J; Thukral, Ashwani K

2013-01-01

337

Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR.  

PubMed Central

An isolated bacterium, identified as a new Sphingomonas species, was demonstrated to contain a novel enzymatic pathway which acted on microcystin LR, the most common cyanobacterial cyclic peptide toxin. Degradation of microcystin LR was mediated by at least three intracellular hydrolytic enzymes. The use of classic protease inhibitors allowed (i) the classification of these enzymes into general protease families and (ii) the in vitro accumulation of otherwise transient microcystin LR degradation products. The initial site of hydrolytic cleavage of the parent cyclic peptide by an enzyme that we designate microcystinase is at the 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-deca-4,6-dienoic acid (Adda)-Arg peptide bond. Two intermediates of microcystin LR enzymatic degradation have been identified; one is linearized (acyclo-) microcystin LR, NH2-Adda-Glu(iso)-methyldehydroalanine-Ala-Leu-beta-methylas partate-Arg-OH, and the other is the tetrapeptide NH2-Adda-Glu(iso)-methyldehydroalanine-Ala-OH. The intermediate degradation products were less active than the parent cyclic peptide; the observed 50% inhibitory concentrations for crude chicken brain protein phosphatase were 0.6 nM for microcystin LR, 95 nM for linear LR, and 12 nM for the tetrapeptide. These linear peptides were nontoxic to mice at doses up to 250 micrograms/kg. Ring opening of the potent hepatotoxin microcystin LR by bacterial microcystinase effectively renders the compound nontoxic by dramatically reducing the interaction with the target protein phosphatase.

Bourne, D G; Jones, G J; Blakeley, R L; Jones, A; Negri, A P; Riddles, P

1996-01-01

338

Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway.  

PubMed

Tip60 is an essential acetyltransferase required for acetylation of nucleosomal histones and other nonhistone proteins. Tip60 acetylates the p53 tumor suppressor at lysine 120 (K120), a modification essential for p53-dependent induction of PUMA and apoptosis. It is known that Tip60 is turned over in cells by the ubiquitin-proteasome system. However, the deubiquitinase activity for stabilizing Tip60 is unknown. Here we show that USP7 interacts with and deubiquitinates Tip60 both in vitro and in vivo. USP7 deubiquitinase activity is required for the stabilization of Tip60 in order to operate an effective p53-dependent apoptotic pathway in response to genotoxic stress. Inhibiting USP7 with the small-molecule inhibitor P22077 attenuates the p53-dependent apoptotic pathway by destabilizing Tip60. P22077, however, is still cytotoxic, and this is partly due to destabilization of Tip60. PMID:23775119

Dar, Ashraf; Shibata, Etsuko; Dutta, Anindya

2013-06-17

339

Molecular characterization of the Akt-TOR signaling pathway in rainbow trout: potential role in muscle growth/degradation  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Akt-TOR signaling pathway plays a key role in cellular metabolism and muscle growth. Hormone, nutrition and stress factors affect the Akt-TOR pathway by regulating gene transcription, protein synthesis and degradation. In addition, we previously showed that energetic demands elevate during vit...

340

The Branched-Chain Dodecylbenzene Sulfonate Degradation Pathway of Pseudomonas aeruginosa W51D Involves a Novel Route for Degradation of the Surfactant Lateral Alkyl Chain  

PubMed Central

Pseudomonas aeruginosa W51D is able to grow by using branched-chain dodecylbenzene sulfonates (B-DBS) or the terpenic alcohol citronellol as a sole source of carbon. A mutant derived from this strain (W51M1) is unable to degrade citronellol but still grows on B-DBS, showing that the citronellol degradation route is not the main pathway involved in the degradation of the surfactant alkyl moiety. The structures of the main B-DBS isomers and of some intermediates were identified by gas chromatography-mass spectrometric analysis, and a possible catabolic route is proposed.

Campos-Garcia, Jesus; Esteve, Abraham; Vazquez-Duhalt, Rafael; Ramos, Juan Luis; Soberon-Chavez, Gloria

1999-01-01

341

Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse.  

PubMed

Lysine-oxoglutarate reductase and saccharopine dehydrogenase are enzymic activities that catalyse the first two steps of lysine degradation through the saccharopine pathway in upper eukaryotes. This paper describes the isolation and characterization of a cDNA clone encoding a bifunctional enzyme bearing domains corresponding to these two enzymic activities. We partly purified those activities from mouse liver and showed for the first time that both a bifunctional lysine-oxoglutarate reductase/saccharopine dehydrogenase and a monofunctional saccharopine dehydrogenase are likely to be present in this organ. Northern analyses indicate the existence of two mRNA species in liver and kidney. The longest molecule, 3.4 kb in size, corresponds to the isolated cDNA and encodes the bifunctional enzyme. The 2.4 kb short transcript probably codes for the monofunctional dehydrogenase. Sequence analyses show that the bifunctional enzyme is likely to be a mitochondrial protein. Furthermore, enzymic and expression analyses suggest that lysine-oxoglutarate reductase/saccharopine dehydrogenase levels increase in livers of mice under starvation. Lysine-injected mice also show an increase in lysine-oxoglutarate reductase and saccharopine dehydrogenase levels. PMID:10567240

Papes, F; Kemper, E L; Cord-Neto, G; Langone, F; Arruda, P

1999-12-01

342

Kinetics and reaction pathways of formaldehyde degradation using the UV-fenton method.  

PubMed

This study was based on the purpose of investigating the reaction rules of formaldehyde (HCHO) as an intermediate product in the degradation of many other organic wastewaters. The process conditions of UV-Fenton method for the degradation of the low concentrations of HCHO were studied in a batch photochemical reactor. The results showed that, when the original HCHO concentration was 30 mg/L, at an operating temperature of 23 degrees C, pH = 3, an H202 dosage of 68 mg/L, and an H2O2-to-Fe2+ mole ratio (H2O2:Fe2+) of 5, 91.89% of the HCHO was removed after 30 minutes. The degradation of HCHO in the UV-Fenton system was basically in accordance with the exponential decay. The kinetic study results showed that the reaction orders of HCHO, Fe2+, and H2O2 in the system were 1.054, 0.510, and 0.728, respectively, and the activation energy (Ea) was 9.85 kJ/mol. The comparison of UV/H2O2, Fenton, and UV-Fenton systems for the degradation of HCHO, and the results of iron catalyst tests showed that the mechanism of UV-Fenton on the degradation of HCHO was through a synergistic effect of Fe2+ and UV light to catalyze the decomposition of H2O2. The introduction of UV irradiation to the Fenton system largely increased the degradation rate of HCHO, mainly as a result of the accelerating effect on the formation of the Fe2+/Fe3+ cycle. The reaction products were analyzed by gas chromatography-mass spectrometry and a chemical oxygen demand (COD) analyzer. The effluent gases also were analyzed by gas chromatography. Based on those results, the reaction pathways of HCHO in the UV-Fenton system were proposed. The qualitative and quantitative analysis of the reaction products and the COD showed that the main intermediate product of the reaction was formic acid, and the further oxidation of it was the rate-limiting step for the degradation of HCHO. PMID:21657193

Liu, Xiangxuan; Liang, Jiantao; Wang, Xuanjun

2011-05-01

343

Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway.  

PubMed

The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (KM=0.014mM) and maximum rate (Vmax=11.2?mol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria. PMID:23906496

Foster, Alexander; Barnes, Nicole; Speight, Robert; Keane, Mark A

2013-07-30

344

A heme-degradation pathway in a blood-sucking insect  

PubMed Central

Hematophagous insects are vectors of diseases that affect hundreds of millions of people worldwide. A common physiological event in the life of these insects is the hydrolysis of host hemoglobin in the digestive tract, leading to a massive release of heme, a known prooxidant molecule. Diverse organisms, from bacteria to plants, express the enzyme heme oxygenase, which catalyzes the oxidative degradation of heme to biliverdin (BV) IX, CO, and iron. Here, we show that the kissing bug Rhodnius prolixus, a vector of Chagas' disease, has a unique heme-degradation pathway wherein heme is first modified by addition of two cysteinylglycine residues before cleavage of the porphyrin ring, followed by trimming of the dipeptides. Furthermore, in contrast to most known heme oxygenases, which generate BV IX?, in this insect, the end product of heme detoxification is a dicysteinyl-BV IX?. Based on these results, we propose a heme metabolizing pathway that includes the identified intermediates produced during modification and cleavage of the heme porphyrin ring.

Paiva-Silva, Gabriela O.; Cruz-Oliveira, Christine; Nakayasu, Ernesto S.; Maya-Monteiro, Clarissa M.; Dunkov, Boris C.; Masuda, Hatisaburo; Almeida, Igor C.; Oliveira, Pedro L.

2006-01-01

345

Degradation Pathway for Eplerenone by Validated Stability Indicating UP-LC Method  

PubMed Central

Degradation pathway for eplerenone is established as per ICH recommendations by validated and stability-indicating reverse phase liquid chromatographic method. Eplerenone is subjected to stress conditions of acid, base, oxidation, and thermal and photolysis. Significant degradation is observed in acid and base stress conditions. Four impurities are studied and the major degradant (RRT about 0.31) was identified by LC-MS and spectral analysis. The stress samples are assayed against a qualified reference standard and the mass balance is found close to 99.5%. Efficient chromatographic separation is achieved on a Waters symmetry C18 stationary phase with simple mobile phase combination delivered in gradient mode and quantification is carried at 240?nm at a flow rate of 1.0?mL?min?1. In the developed LC method the resolution between eplerenone and four potential impurities (imp-1, imp-2, imp-3, and imp-4) is found to be greater than 4.0. Regression analysis shows an r value (correlation coefficient) of greater than 0.999 for eplerenone and four potential impurities. This method is capable to detect the impurities of eplerenone at a level of 0.020% with respect to test concentration of 1.0?mg?mL?1 for a 20??L injection volume. The developed UPLC method is validated with respect to specificity, linearity and range, accuracy, precision, and robustness for impurities and assay determination.

Sudhakar Babu, Kondru; Madireddy, Venkataramanna; Indukuri, Venkata Somaraju

2012-01-01

346

Autophagy-lysosomal pathway is involved in lipid degradation in rat liver.  

PubMed

We present data supporting the hypothesis that the lysosomal-autophagy pathway is involved in the degradation of intracellular triacylglycerols in the liver. In primary hepatocytes cultivated in the absence of exogenous fatty acids (FFA), both inhibition of autophagy flux (asparagine) or lysosomal activity (chloroquine) decreased secretion of VLDL (very low density lipoproteins) and formation of FFA oxidative products while the stimulation of autophagy by rapamycine increased some of these parameters. Effect of rapamycine was completely abolished by inactivation of lysosomes. Similarly, when autophagic activity was influenced by cultivating the hepatocytes in "starving" (amino-acid poor medium) or "fed" (serum-supplemented medium) conditions, VLDL secretion and FFA oxidation mirrored the changes in autophagy being higher in starvation and lower in fed state. Autophagy inhibition as well as lysosomal inactivation depressed FFA and DAG (diacylglycerol) formation in liver slices in vitro. In vivo, intensity of lysosomal lipid degradation depends on the formation of autophagolysosomes, i.e. structures bringing the substrate for degradation and lysosomal enzymes into contact. We demonstrated that lysosomal lipase (LAL) activity in liver autophagolysosomal fraction was up-regulated in fasting and down-regulated in fed state together with the increased translocation of LAL and LAMP2 proteins from lysosomal pool to this fraction. Changes in autophagy intensity (LC3-II/LC3-I ratio) followed a similar pattern. PMID:22480422

Skop, V; Cahová, M; Papá?ková, Z; Pálení?ková, E; Da?ková, H; Baranowski, M; Zabielski, P; Zdychová, J; Zídková, J; Kazdová, L

2012-04-05

347

Identification of Genes and Pathways Related to Phenol Degradation in Metagenomic Libraries from Petroleum Refinery Wastewater  

PubMed Central

Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system.

Silva, Cynthia C.; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; De Paula, Sergio O.; Silva, Livia C. F.; Vidigal, Pedro M. P.; Vicentini, Renato; Sousa, Maira P.; Torres, Ana Paula R.; Santiago, Vania M. J.; Oliveira, Valeria M.

2013-01-01

348

Dexamethasone-induced selenoprotein S degradation is required for adipogenesis.  

PubMed

Although adipogenesis is associated with induction of endoplasmic reticulum (ER) stress, the role of selenoprotein S (SEPS1), an ER resident selenoprotein known to regulate ER stress and ER-associated protein degradation, is unknown. We found an inverse relationship between SEPS1 level in adipose tissue and adiposity in mice. While SEPS1 expression was increased during adipogenesis, a markedly reduced SEPS1 protein level was found in the early phase of adipogenesis due to dexamethasone (DEX)-induced proteosomal degradation of SEPS1. Overexpression of SEPS1 in the early phase of cell differentiation resulted in impairment of adipogenesis with reduced levels of CCAAT/enhancer binding protein ? and other adipocyte marker genes during the course of adipogenesis. Conversely, knockdown of SEPS1 resulted in the promotion of adipogenesis. Additionally, altered SEPS1 expression was associated with changes in expression of ER stress marker genes in the early phase of adipogenesis, and ubiquitin-proteasome system (UPS)-related ubiquitination and proteasome function. Our study reveals that SEPS1 is a novel anti-adipogenic selenoprotein that modulates ER stress- and UPS-dependent adipogenesis. Our results also identifies a novel function of DEX in the regulation of adipogenesis through induction of SEPS1 degradation. Taken together, DEX-dependent degradation of SEPS1 in the early phase of adipogenesis is necessary for initiating ER stress- and UPS-dependent maturation of adipocytes. PMID:23687306

Kim, Choon Young; Kim, Kee-Hong

2013-05-18

349

Intracellular degradation of the transport-impaired human PiZ alpha 1-antitrypsin variant. Biochemical mapping of the degradative event among compartments of the secretory pathway.  

PubMed

The naturally occurring PiZ and Pi NullHong Kong variants of the human secretory protein alpha 1-antitrypsin (AAT) are retained within an early compartment of the secretory pathway. Intracellular degradation of these transport-impaired secretory proteins is initiated 30-45 min following their synthesis and translocation into the endoplasmic reticulum (ER). Interestingly, the overall rate of degradation of the retained mutant protein is significantly accelerated when all subcellular compartments are buffered at pH 6. In contrast, degradation is virtually abolished when intravesicular compartments are buffered at pH 8. However, despite this pH sensitivity neither lysosomotrophic amines, leupeptin, or leucine methyl ester have an apparent effect on the intracellular removal of the PiZ variant. The inability of a variety of inhibitors of ER-to-Golgi protein trafficking to hinder the degradative process suggests that degradation of the PiZ variant occurs prior to its delivery to the Golgi complex. To biochemically map the subcellular site of the degradation of the retained mutant protein, a recombinant truncated PiZ variant containing the tetrapeptide KDEL at its carboxyl terminus (a signal for sorting luminal proteins from a post-ER compartment back to the ER) was expressed in cells. Attachment of this ER-recycling signal to the recombinant protein prevented its intracellular degradation. These findings indicate that degradation of the PiZ variant occurs following its export from the ER. PMID:2380201

Le, A; Graham, K S; Sifers, R N

1990-08-15

350

Estimating the Contribution of Individual Degradation Pathways to Overall Biodegradation in Aquifers Based on Compound-Specific Stable Isotope Analysis  

NASA Astrophysics Data System (ADS)

In order to design optimal remediation strategies at field sites contaminated with organic contaminants, the identification of microbial degradation pathways contributing most to overall biodegradation is highly desirable. This task can be difficult if redox conditions vary along an aquifer, leading to different pathways contributing to degradation at distinct locations along groundwater travel paths. In order to provide an estimate for the contribution of individual degradation pathways to overall biodegradation under such conditions, we evaluate the potential of compound-specific stable isotope analysis, which has been established as a viable tool for detecting in situ biodegradation as well as for the identification of single dominant degradation pathways. Based on the stable isotope signatures of two elements, we mathematically derive an estimate for the local and total share of two pathways on overall biodegradation. For the total share, lower and upper limits are provided by assuming that both pathways are either simultaneously active along the flow path in constant ratio, or that both pathways are active in a strictly consecutive manner. To validate the method and assess its applicability under field conditions, the derived concept is applied to simulated data obtained from reactive transport simulations using GeoSysBRNS in zero, one, and two spatial dimensions. A generic benzene plume/degradation scenario is considered with aerobic and anaerobic degradation as exemplary degradation pathways and implementing the concurrent fractionation with respect to carbon and hydrogen. Estimates are very accurate for the zero- and one-dimensional simulations. In the two-dimensional case, estimates for pathway specific contributions to overall biodegradation are most accurate along the center of the plume, but loose accuracy towards the fringe, where transversal mixing processes are shown not only to affect contaminant concentration but also associated stable isotope signatures. Total estimates can be significantly improved if additional observation points are available along the flow path. The novel method complements current stable isotope based assessment methods to quantify and identify biodegradation by a means to attribute biodegradation to distinct degradation pathways at field sites with varying redox condition.

Centler, Dr.; Thullner, Dr.

2012-04-01

351

Bacterial degradation of benzoate: cross-regulation between aerobic and anaerobic pathways.  

PubMed

We have studied for the first time the transcriptional regulatory circuit that controls the expression of the box genes encoding the aerobic hybrid pathway used to assimilate benzoate via coenzyme A (CoA) derivatives in bacteria. The promoters responsible for the expression of the box cluster in the ?-proteobacterium Azoarcus sp., their cognate transcriptional repressor, the BoxR protein, and the inducer molecule (benzoyl-CoA) have been characterized. The BoxR protein shows a significant sequence identity to the BzdR transcriptional repressor that controls the bzd genes involved in the anaerobic degradation of benzoate. Because the boxR gene is present in all box clusters so far identified in bacteria, the BoxR/benzoyl-CoA regulatory system appears to be a widespread strategy to control this aerobic hybrid pathway. Interestingly, the paralogous BoxR and BzdR regulators act synergistically to control the expression of the box and bzd genes. This cross-regulation between anaerobic and aerobic pathways for the catabolism of aromatic compounds has never been shown before, and it may reflect a biological strategy to increase the cell fitness in organisms that survive in environments subject to changing oxygen concentrations. PMID:22303008

Valderrama, J Andrés; Durante-Rodríguez, Gonzalo; Blázquez, Blas; García, José Luis; Carmona, Manuel; Díaz, Eduardo

2012-02-02

352

Opine utilization by Agrobacterium spp.: octopine-type Ti plasmids encode two pathways for mannopinic acid degradation.  

PubMed Central

Octopine-type strains of Agrobacterium tumefaciens degrade the opine mannopinic acid through a specific pathway which involves cleavage of the molecule at the C--N bond between the amino acid and the sugar moieties. Mannose was identified as a product of the reaction. This pathway was inducible by mannopinic and agropinic acids, but not by mannopine or agropine, the two other mannityl opines. The transport system for this pathway appeared to be specific for mannopinic acid. A second, nonspecific pathway for mannopinic acid degradation was also identified. This involved some of the catabolic functions associated with the metabolism of mannopine and agropine. This second pathway was inducible by mannopine and agropine but not by mannopinic or agropinic acids. The transport system for this pathway appeared to have a broad specificity. Transposon Tn5 insertion mutants affected in the specific catabolic pathway were isolated and analyzed. These mutants continued to catabolize mannopine and agropine. Both mapped to a region of the Ti plasmid previously shown to be associated with the catabolism of mannopinic acid. Restriction enzyme analysis of the Ti plasmid from strain 89.10, an octopine strain that is naturally unable to utilize mannopinic acid, showed a deletion in this same region encoding the specific mannopinic acid degradation pathway. Analysis of recombinant clones showed that the second, nonspecific pathway was encoded in a region of the Ti plasmid associated with mannopine and agropine catabolism. This region shared no structural overlap with the segment of the plasmid encoding the specific mannopinic acid degradative pathway. Images

Dessaux, Y; Guyon, P; Petit, A; Tempe, J; Demarez, M; Legrain, C; Tate, M E; Farrand, S K

1988-01-01

353

O(2)- and H(2)O(2)-dependent verdoheme degradation by heme oxygenase: reaction mechanisms and potential physiological roles of the dual pathway degradation.  

PubMed

Heme oxygenase (HO) catalyzes the catabolism of heme to biliverdin, CO, and a free iron through three successive oxygenation steps. The third oxygenation, oxidative degradation of verdoheme to biliverdin, has been the least understood step despite its importance in regulating HO activity. We have examined in detail the degradation of a synthetic verdoheme IXalpha complexed with rat HO-1. Our findings include: 1) HO degrades verdoheme through a dual pathway using either O(2) or H(2)O(2); 2) the verdoheme reactivity with O(2) is the lowest among the three O(2) reactions in the HO catalysis, and the newly found H(2)O(2) pathway is approximately 40-fold faster than the O(2)-dependent verdoheme degradation; 3) both reactions are initiated by the binding of O(2) or H(2)O(2) to allow the first direct observation of degradation intermediates of verdoheme; and 4) Asp(140) in HO-1 is critical for the verdoheme degradation regardless of the oxygen source. On the basis of these findings, we propose that the HO enzyme activates O(2) and H(2)O(2) on the verdoheme iron with the aid of a nearby water molecule linked with Asp(140). These mechanisms are similar to the well established mechanism of the first oxygenation, meso-hydroxylation of heme, and thus, HO can utilize a common architecture to promote the first and third oxygenation steps of the heme catabolism. In addition, our results infer the possible involvement of the H(2)O(2)-dependent verdoheme degradation in vivo, and potential roles of the dual pathway reaction of HO against oxidative stress are proposed. PMID:16115896

Matsui, Toshitaka; Nakajima, Aya; Fujii, Hiroshi; Matera, Kathryn Mansfield; Migita, Catharina T; Yoshida, Tadashi; Ikeda-Saito, Masao

2005-08-22

354

Molecular pathways to neurodegeneration  

Microsoft Academic Search

The molecular bases underlying the pathogenesis of neurodegenerative diseases are gradually being disclosed. One problem that investigators face is distinguishing primary from secondary events. Rare, inherited mutations causing familial forms of these disorders have provided important insights into the molecular networks implicated in disease pathogenesis. Increasing evidence indicates that accumulation of aberrant or misfolded proteins, protofibril formation, ubiquitin-proteasome system dysfunction,

Robert Schwarzenbacher; Ella Bossy-Wetzel; Stuart A Lipton

2004-01-01

355

How the ubiquitin–proteasome system controls transcription  

Microsoft Academic Search

Gene transcription and ubiquitin-mediated proteolysis are two processes that have seemingly nothing in common: transcription is the first step in the life of any protein and proteolysis the last. Despite the disparate nature of these processes, a growing body of evidence indicates that ubiquitin and the proteasome are intimately involved in gene control. Here, we discuss the deep mechanistic connections

Masafumi Muratani; William P. Tansey

2003-01-01

356

Activation of the ubiquitin-proteasome system in doxorubicin cardiomyopathy  

Microsoft Academic Search

Doxorubicin (Dox) is a very potent anticancer agent, but its use is limited by its dose-dependent, irreversible cardiotoxicity.\\u000a Despite intensive research efforts, the mechanism of Dox cardiotoxicity remains poorly understood, so very limited means are\\u000a available for its prevention or effective management. Recent studies have revealed that a therapeutic dose of Dox can activate\\u000a proteolysis in cardiomyocytes that is mediated

Mark J. Ranek; Xuejun Wang

2009-01-01

357

Photocatalytic degradation of pesticide pyridaben in suspension of TiO 2: identification of intermediates and degradation pathways  

Microsoft Academic Search

Photocatalytic degradation of pyridaben under UV irradiation has been investigated in acetonitrile\\/water solution containing TiO2 particles. The primary degradation of the pollutant followed the Langmuir–Hinshelwood model with kinetic constant k, 4.3×10?5mol\\/lmin and equilibrium adsorption constant K, 3.1×103l\\/mol. Eight kinds of degradation products (DPs) were identified by GC–MS in the process of reaction and some of them were further confirmed by

Xinle Zhu; Xiaogang Feng; Chunwei Yuan; Xiaomei Cao; Jinheng Li

2004-01-01

358

Novel Pathway of Toluene Catabolism in the Trichloroethylene-Degrading Bacterium G4  

PubMed Central

o-Cresol and 3-methylcatechol were identified as successive transitory intermediates of toluene catabolism by the trichloroethylene-degrading bacterium G4. The absence of a toluene dihydrodiol intermediate or toluene dioxygenase and toluene dihydrodiol dehydrogenase activities suggested that G4 catabolizes toluene by a unique pathway. Formation of a hybrid species of 18O- and 16O-labeled 3-methylcatechol from toluene in an atmosphere of 18O2 and 16O2 established that G4 catabolizes toluene by successive monooxygenations at the ortho and meta positions. Detection of trace amounts of 4-methylcatechol from toluene catabolism suggested that the initial hydroxylation of toluene was not exclusively at the ortho position. Further catabolism of 3-methylcatechol was found to proceed via catechol-2,3-dioxygenase and hydroxymuconic semialdehyde hydrolase activities.

Shields, Malcolm S.; Montgomery, Stacy O.; Chapman, Peter J.; Cuskey, Stephen M.; Pritchard, P. H.

1989-01-01

359

Novel pathway of salicylate degradation by Streptomyces sp. strain WA46.  

PubMed

A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gene cluster in a plasmid library of WA46 chromosomal DNA. The nucleotide sequence of a 13.5-kb insert in recombinant plasmid pWD1 (which was sufficient for the complete degradation of salicylate) showed that nine putative open reading frames (ORFs) (sdgABCDEFGHR) were involved. Plasmid pWD1 derivatives disrupted in each putative gene were transformed into Streptomyces lividans TK64. Disruption of either sdgA or sdgC blocked salicylate degradation; constructs lacking sdgD accumulated gentisate. Cell extracts from Escherichia coli DH5 alpha transformants harboring pUC19 that expressed each of the sdg ORFs showed that conversions of salicylate to salicylyl-coenzyme A (CoA) and salicylyl-CoA to gentisyl-CoA required SdgA and SdgC, respectively. SdgA required CoA and ATP as cofactors, while NADH was required for SdgC activity; SdgC was identified as salicylyl-CoA 5-hydroxylase. Gentisyl-CoA underwent spontaneous cleavage to gentisate and CoA. SdgA behaved as a salicylyl-CoA ligase despite showing amino acid sequence similarity to an AMP-ligase. SdgD was identified as a GDO. These results suggest that Streptomyces sp. strain WA46 degrades salicylate by a novel pathway via a CoA derivative. Two-dimensional polyacrylamide gel electrophoresis and reverse transcriptase-PCR studies indicated that salicylate induced expression of the sdg cluster. PMID:15006746

Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

2004-03-01

360

Unusual starch degradation pathway via cyclodextrins in the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324.  

PubMed

The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, alpha-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly beta-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway. PMID:17921308

Labes, Antje; Schönheit, Peter

2007-10-05

361

The histamine degradative uptake pathway in human vascular endothelial cells and skin fibroblasts is dependent on extracellular Na+ and Cl-  

SciTech Connect

We have previously reported that human vascular endothelial cells and skin fibroblasts carry out degradation of (3H)histamine by a mechanism involving two successive enzymatic steps: imidazole ring tele-methylation by the cells' endogenous methyltransferase and subsequent amine oxidation by an exogenous diamine oxidase. Both histamine and the exogenous second enzyme in the pathway associate with the cells via separate binding sites or receptors. The enzymatic degradation process results in cellular accumulation of the proximal and distal metabolites tele-methylhistamine and 1-methyl-4-imidazoleacetic acid (MIAA). We have now demonstrated that this two-stage histamine degradative pathway is dependent on Na+ and Cl- in the extracellular environment. Accumulation of (3H) histamine-derived products is partially inhibited under conditions of Na+ deprivation and more substantially when Cl- is also withdrawn. The individual tele-methylation and amine oxidation enzymatic reactions themselves are unaffected or actually facilitated under these conditions. This indicates that it is the cellular mechanism for uptake coupled to the degradative pathway which reflects the cation and anion dependency. Restoration of degradative uptake displays a biphasic Na+ concentration curve, suggesting that the uptake process may be driven by multiple components. These findings indicate a role for both inward Na+ and Cl- ion movement in this cellular degradative uptake mechanism.

Haddock, R.C.; Mack, P.; Leal, S.; Baenziger, N.L. (Washington Univ. School of Medicine, St. Louis, MO (USA))

1990-08-25

362

Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6.  

PubMed

Pseudomonas sp. strains C4, C5 and C6 degrade carbaryl (1-naphthyl N-methylcarbamate) via 1-naphthol, 1,2-dihydroxynaphthalene, salicylate and gentisate. Carbon source-dependent metabolic studies suggest that enzymes responsible for carbaryl degradation are probably organized into 'upper' (carbaryl to salicylate), 'middle' (salicylate to gentisate) and 'lower' (gentisate to TCA cycle) pathway. Carbaryl and 1-naphthol were found to induce all carbaryl pathway enzymes, while salicylate and gentisate induce middle and lower pathway enzymes. The strains were found to harbor plasmid(s), and carbaryl degradation property was found to be stable. Genes encoding enzymes of the degradative pathway such as 1-naphthol 2-hydroxylase, salicylaldehyde dehydrogenase, salicylate 5-hydroxylase and gentisate 1,2-dioxygenase were amplified from chromosomal DNA of these strains. The gene-specific PCR products were sequenced from strain C6, and phylogenetic tree was constructed. Southern hybridization and PCR analysis using gel eluted DNA as template supported the presence of pathway genes onto the chromosome and not on the plasmid(s). PMID:23728496

Singh, Randhir; Trivedi, Vikas D; Phale, Prashant S

2013-06-02

363

M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway.  

PubMed

Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase-dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor-associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537

Madsen, Daniel H; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S; Brenner, David A; Burgdorf, Sven; Engelholm, Lars H; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto; Bugge, Thomas H

2013-09-09

364

A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida.  

PubMed

The biochemistry of nicotinic acid (NA) degradation is known but the transcriptional control of the genes involved is still poorly studied. We report here the transcriptional regulatory circuit of the nic genes responsible for the aerobic degradation of NA in Pseudomonas putida KT2440. The three NA-inducible catabolic operons, i.e. nicAB, encoding the upper pathway that converts NA into 6-hydroxynicotinic acid (6HNA), and the nicCDEFTP and nicXR operons, responsible for channelling 6HNA to the central metabolism, are driven by the Pa, Pc and Px promoters respectively. The nicR regulatory gene encodes a MarR-like protein that represses the activity of the divergent Pc and Px promoters being 6HNA the inducer molecule. A new gene, nicS, that is associated to the nicAB genes in the genomes of different ?- and ?-Proteobacteria, encodes a TetR-like regulator that represses the activity of Pa in the absence of the NA/6HNA inducers. The NA regulatory circuit in P. putida has evolved an additional repression loop based on the NicR-dependent cross regulation of the nicS gene, thus assuring a tight transcriptional control of the catabolic genes that may prevent depletion of this vitamin B3 when needed for the synthesis of essential cofactors. PMID:21450002

Jiménez, José Ignacio; Juárez, Javier F; García, José Luis; Díaz, Eduardo

2011-03-30

365

Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans.  

PubMed

Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed. PMID:23667704

Lee, I Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H N; Blundell, Ross; Lui, Edmund Y L; Morrow, Carl A; Fraser, James A

2013-05-07

366

Pathways for degrading TNT by Thu-Z: a Pantoea sp. strain.  

PubMed

2,4,6-Trinitrotoluene (TNT), an extensively used and versatile explosive, is harmful in soil and water. In the present study, four bacterial strains capable of degrading TNT have been isolated from contaminated sites and named as Thu-A, Thu-B, Thu-C, and Thu-Z. Thu-Z, which gave the highest degradation efficiency compared to the others, was assigned to the genus Pantoea according to its 16S rRNA gene. Similarities in both biochemical properties and morphology suggested that Thu-Z was a Pantoea sp. strain. Thu-Z was proved to be capable of using TNT as a sole nitrogen source by cleaving NO(2) from the nitroaromatic ring by direct aromatic ring reduction. Under nitrogen-limited conditions, 96.6 %?N of TNT was consumed by Thu-Z for growth, which was determined in terms of NaNO(2). Trace nitro reduction metabolites such as 2,4-diamino-6-nitrotoluene (24Dam) and 2,6-diamino-4-nitrotoluene (26Dam) were identified in the presence of (NH(4))(2)SO(4). On the other hand, 4,4',6,6'-tetranitro-2,2'-azoxytoluene (22Azo) and 2,2',6,6'-tetranitro-4,4'-azoxytoluene (44Azo) were detected in the absence of (NH(4))(2)SO(4). These indicated the existence of a dual pathway for Thu-Z, while the direct aromatic ring reduction was predominant. Addition of a nitrogen source ((NH(4))(2)SO(4)) after inoculation stimulated the growth of Thu-Z and accelerated TNT degradation. PMID:23076565

Zou, Liangdong; Lu, Diannan; Liu, Zheng

2012-10-18

367

Characterization of the Complete Uric Acid Degradation Pathway in the Fungal Pathogen Cryptococcus neoformans  

PubMed Central

Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed.

Lee, I. Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H. N.; Blundell, Ross; Lui, Edmund Y. L.; Morrow, Carl A.; Fraser, James A.

2013-01-01

368

Polyol pathway mediates enhanced degradation of extracellular matrix via p38 MAPK activation in intervertebral disc of diabetic rats.  

PubMed

The aim of this study was to determine the significance of diabetes on degradation of intervertebral disc (IVD) extracellular matrix. Diabetic rats showed a significant increase in glucose and sorbitol contents in the IVD. The levels of aldose reductase, p38 and metalloproteinases, and degradation of metalloproteinase-derived aggrecan and type II collagen were increased, while tissue inhibitors of metalloproteinases levels were decreased in the IVD of diabetic rats. These changes were markedly affected by inhibition of aldose reductase or p38. Diabetes might contribute to enhanced matrix degradation in the IVD and the polyol pathway might mediate this process via p38 activation. PMID:23215968

Cheng, Xiaofei; Ni, Bin; Zhang, Zhaohuan; Liu, Qi; Wang, Liping; Ding, Yu; Hu, Ying

2013-01-18

369

Reactions Involved in the Lower Pathway for Degradation of 4-Nitrotoluene by Mycobacterium Strain HL 4-NT-1  

PubMed Central

In spite of the variety of initial reactions, the aerobic biodegradation of aromatic compounds generally yields dihydroxy intermediates for ring cleavage. Recent investigation of the degradation of nitroaromatic compounds revealed that some nitroaromatic compounds are initially converted to 2-aminophenol rather than dihydroxy intermediates by a number of microorganisms. The complete pathway for the metabolism of 2-aminophenol during the degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 has been elucidated previously. The pathway is parallel to the catechol extradiol ring cleavage pathway, except that 2-aminophenol is the ring cleavage substrate. Here we report the elucidation of the pathway of 2-amino-4-methylphenol (6-amino-m-cresol) metabolism during the degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1 and the comparison of the substrate specificities of the relevant enzymes in strains JS45 and HL 4-NT-1. The results indicate that the 2-aminophenol ring cleavage pathway in strain JS45 is not unique but is representative of the pathways of metabolism of other o-aminophenolic compounds.

He, Zhongqi; Spain, Jim C.

2000-01-01

370

Sepsis stimulates release of myofilaments in skeletal muscle by a calcium-dependent mechanism  

Microsoft Academic Search

Sepsis is associated with a pronounced catabolic response in skeletal muscle, mainly reflect- ing degradation of the myofibrillar proteins actin and myosin. Recent studies suggest that sepsis-in- duced muscle proteolysis may reflect ubiquitin-pro- teasome-dependent protein breakdown. An appar- ently conflicting observation is that the ubiquitin- proteasome pathway does not degrade intact myofibrils. Thus, it is possible that actin and myosin

ARTHUR B. WILLIAMS; GABRIELLE M. DECOURTEN-MYERS; JOSEF E. FISCHER; GUANGJU LUO; XIAOYAN SUN; PER-OLOF HASSELGREN

371

Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy  

Microsoft Academic Search

Perinuclear aggresome formation is a key mechanism to dispose of misfolded proteins that exceed the degradative capacity of ubiquitin-proteasome and autophagy-lysosome systems. Functional blockade of either degradative system leads to an enhanced aggresome formation. The tuberous sclerosis complex-Ras homologue enriched in brain-mammalian target of rapamycin (TSC-Rheb-mTOR) pathway is known to play a central role in modulating protein synthesis and autophagy.

Xiaoming Zhou; Tsuneo Ikenoue; Xiaowei Chen; Li Li; Ken Inoki; Kun-Liang Guan

2009-01-01

372

Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO2-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways.  

PubMed

This study investigates the efficiency of the photocatalytic degradation of metoprolol tartrate (MET), a widely used ?(1)-blocker, in TiO(2) suspensions of Wackherr's "Oxyde de titane standard" and Degussa P25. The study encompasses transformation kinetics and efficiency, identification of intermediates and reaction pathways. In the investigated range of initial concentrations (0.01-0.1 mM), the photocatalytic degradation of MET in the first stage of the reaction followed approximately a pseudo-first order kinetics. The TiO(2) Wackherr induced a significantly faster MET degradation compared to TiO(2) Degussa P25 when relatively high substrate concentrations were used. By examining the effect of ethanol as a scavenger of hydroxyl radicals (OH), it was shown that the reaction with OH played the main role in the photocatalytic degradation of MET. After 240 min of irradiation the reaction intermediates were almost completely mineralized to CO(2) and H(2)O, while the nitrogen was predominantly present as NH(4)(+). Reaction intermediates were studied in detail and a number of them were identified using LC-MS/MS (ESI+), which allowed the proposal of a tentative pathway for the photocatalytic transformation of MET as a function of the TiO(2) specimen. PMID:22035693

Abramovi?, Biljana; Kler, Sanja; Soji?, Daniela; Lauševi?, Mila; Radovi?, Tanja; Vione, Davide

2011-10-08

373

Prediction of CL20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction  

Microsoft Academic Search

Highest occupied and lowest unoccupied molecular orbital energies, formation energies, bond lengths and FTIR spectra all suggest competing CL-20 degradation mechanisms. This second of two studies investigates recalcitrant, toxic, aromatic CL-20 intermediates that absorb from 370 to 430?nm. Our earlier study (Struct. Chem., 15, 2004) revealed that these intermediates were formed at high OH concentrations via the chemically preferred pathway

M. Qasim; H. Fredrickson; P. Honea; J. Furey; J. Leszczynski; S. Okovytyy; J. Szecsody; Y. Kholod

2005-01-01

374

The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway  

SciTech Connect

Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria.

Copley, Shelley D. [University of Colorado; Rokicki, Joseph [University of Colorado; Turner, Pernilla [University of Colorado; Daligault, Hajnalka E. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL

2012-01-01

375

Virus-induced multiple gene silencing to study redundant metabolic pathways in plants: silencing the starch degradation pathway in Nicotiana benthamiana.  

PubMed

Virus-induced gene silencing (VIGS) is a rapid technique that allows for specific and reproducible post-transcriptional degradation of targeted mRNA. The method has been proven efficient for suppression of expression of many single enzymes. The metabolic networks of plants, however, often contain isoenzymes and gene families that are able to compensate for a mutation and mask the development of a silencing phenotype. Here, we show the application of multiple gene VIGS repression for the study of these redundant biological pathways. Several genes in the starch degradation pathway [disproportionating enzyme 1; (DPE1), disproportionating enzyme 2 (DPE2), and GWD] were silenced. The functionally distinct DPE enzymes are present in alternate routes for sugar export to the cytoplasm and result in an increase in starch production when silenced individually. Simultaneous silencing of DPE1 and DPE2 in Nicotiana benthamiana resulted in a near complete suppression in starch and accumulation of malto-oligosaccharides. PMID:22345045

George, Gavin M; Bauer, Rolene; Blennow, Andreas; Kossmann, Jens; Lloyd, James R

2012-03-07

376

Degraded iota-carrageenan can induce apoptosis in human osteosarcoma cells via the Wnt/?-catenin signaling pathway.  

PubMed

Osteosarcoma (OS) is a high-grade malignant bone tumor. Therefore, using both in vitro and in vivo assays, the effects of degraded iota-Carrageenan (?-CGN) on a human osteosarcoma cell line, HOS, were examined. Degraded ?-CGN was observed to induce apoptosis and G(1) phase arrest in HOS cells. Moreover, degraded ?-CGN suppressed tumor growth in established xenograft tumor models. Accordingly, the survival rate of these mice was significantly higher than that of mice bearing tumors treated with native ?-CGN or PBS. In addition, the formation of intratumoral microvessels was inhibited following treatment with degraded ?-CGN. In Western blot assays, degraded ?-CGN was found to inhibit the Wnt/?-catenin signaling pathway. Overall, these studies demonstrate the antitumor activity of degraded ?-CGN toward the OS cell line, HOS. Moreover, valuable insight into the mechanisms mediated by degraded ?-CGN was obtained, potentially leading to the identification of novel treatments for OS. However, additional studies are needed to confirm these results in other cell types, particularly in human umbilical vein endothelial cells. PMID:23368922

Jin, Zhe; Han, Ya-Xin; Han, Xiao-Rui

2013-01-01

377

Dietary arginine degradation is a major pathway in ureagenesis in juvenile turbot (Psetta maxima).  

PubMed

Recent studies indicate that urea excretion is responsive to protein intake and that turbot, Psetta maxima, appear to differ from other species by their urea excretion pattern and levels. This study was undertaken to evaluate the influence of dietary nitrogen and arginine on ureagenesis and excretion in turbot. Juvenile turbot (29 g) were fed semi-purified diets containing graded levels of nitrogen (0-8% dry matter) and arginine (0-3% dry matter) for 6 weeks. Growth data showed that turbot have high dietary nitrogen (123 mg/kg metabolic body weight/day) and very low dietary arginine (9.3 mg/kg metabolic body weight/day) requirements for maintenance. Requirements for unit body protein accretion were 0.31 g and 0.15 g for nitrogen and arginine respectively. Post-prandial plasma urea levels and urea excretion rates showed that urea production was significantly (P<0.05) influenced by dietary arginine levels. While hepatic arginase (EC 3.5.3.1) activity increased significantly (P<0.05) with increasing dietary arginine levels, activities of other enzymes of the ornithine urea cycle were very low. Our data strongly suggest that the ornithine urea cycle is not active in the turbot liver and that dietary arginine degradation is a major pathway of ureagenesis in turbot. PMID:12020647

Gouillou-Coustans, M F; Fournier, V; Métailler, R; Vachot, C; Desbruyères, E; Huelvan, C; Moriceau, J; Le Delliou, H; Kaushik, S J

2002-06-01

378

TRAF3 negatively regulates calcineurin-NFAT pathway by targeting calcineurin B subunit for degradation.  

PubMed

Calcineurin (CN) is the only serine/threonine specific protein phosphatase regulated by Ca(2+) /calmodulin (CaM), which is composed of catalytic A subunit (CNA) and regulatory B subunit (CNB). Tumor necrosis factor (TNF) receptor associated factor 3 (TRAF3) is an essential component in the Toll like receptors and TNF receptors (TNFRs) pathways. The TRAF domain of TRAF3 interacts with a large range of proteins, which share consensus sequences known as TRAF interacting motifs (TIMs). By sequence alignment, we identified two potential TIMs in CNB. However, the relation between TRAF3 and CN has not been reported before. To explore this, we highly expressed the former insoluble TRAF domain of TRAF3 in soluble form by using CaM fusion system for the first time. We demonstrated that the TRAF domain of TRAF3 interacted with CNB. On further investigation, over-expression of TRAF3 inhibited endogenous CN's activity, which decreased NFAT reporter activity and IL-2 production. Knock-down of TRAF3 partially enhanced CN's activity. The possible mechanism was that TRAF3 functioned as ubiquitin E3 ligase for CN and promoted its degradation. PMID:22715070

Wang, Xinyu; Huang, Yi; Li, Li; Wei, Qun

2012-06-20

379

Quantum chemical prediction of redox reactivity and degradation pathways for aqueous phase contaminants: an example with HMPA.  

PubMed

Models used to predict the fate of aqueous phase contaminants are often limited by their inability to address the widely varying redox conditions in natural and engineered systems. Here, we present a novel approach based on quantum chemical calculations that identifies the thermodynamic conditions necessary for redox-promoted degradation and predicts potential degradation pathways. Hexamethylphosphoramide (HMPA), a widely used solvent and potential groundwater contaminant, is used as a test case. Its oxidation is estimated to require at least iron-reducing conditions at low to neutral pH and nitrate-reducing conditions at high pH. Furthermore, the transformation of HMPA by permanganate is predicted to proceed through sequential N-demethylation. Experimental validation based on LC/TOF-MS analysis confirms the predicted pathways of HMPA oxidation by permanganate to phosphoramide via the formation of less methylated as well as singly and multiply oxygenated reaction intermediates. Pathways predicted to be thermodynamically or kinetically unfavorable are similarly absent in the experimental studies. Our newly developed methodology will enable scientists and engineers to estimate the favorability of contaminant degradation at a specific field site, suitable approaches to enhance degradation, and the persistence of a contaminant and its reaction intermediates. PMID:20608732

Blotevogel, Jens; Borch, Thomas; Desyaterik, Yury; Mayeno, Arthur N; Sale, Tom C

2010-08-01

380

Endocytosis and ligand dissociation and degradation mediated by the hepatic galactosyl receptor occur via two different pathways  

SciTech Connect

Isolated rat hepatocytes express two distinct populations of surface Galactosyl receptor activity, measured by the binding of /sup 125/I-asialo-orosomucoid (ASOR), which they designate State 1 and State 2. Freshly isolated cells express only state 1 receptors. Cells equilibrated at 37/sup 0/C also express State 2 receptors, which represent 50-80% of the total surface activity. In the absence of ligand, State 2 receptor activity is reversibly decreased by metabolic energy poisons, low temperature and microtubule drugs, whereas State 1 receptor activity is unaffected. Endocytosis of /sup 125/I-ASOR by State 1 receptors is followed by a slow dissociation of /sup 125/I-ASOR from receptor but the immediate release of acid soluble degradation products. In contrast, State 2 receptors mediate endocytosis which involves a rapid dissociation step but a 20 min lag, prior to the release of degradation products. Both pathways follow first order kinetics and are functional under steady state conditions indicating coordinated receptor recycling. Degradation mediated by both pathways is inhibited by leupeptin and chloroquine. The State 1 and 2 pathways can be further differentiated by the greater sensitivity of the latter to microtubule drugs. These results suggest that there are either structurally different native receptors or that identical receptors are directed into two different functional pathways, for example by interaction with different types of coated pits.

Weigel, P.H.; Clarke, B.L.; Oka, J.A.

1986-05-01

381

Inhibition of proteasomal degradation by the Gly-Ala repeat of Epstein-Barr virus is influenced by the length of the repeat and the strength of the degradation signal  

PubMed Central

The Gly-Ala repeat (GAr) of the Epstein–Barr virus nuclear antigen-1 is a transferable element that inhibits in cis ubiquitin/proteasome-dependent proteolysis. We have investigated this inhibitory activity by using green fluorescent protein-based reporters that have been targeted for proteolysis by N end rule or ubiquitin-fusion degradation signals, resulting in various degrees of destabilization. Degradation of the green fluorescent protein substrates was inhibited on insertion of a 25-aa GAr, but strongly destabilized reporters were protected only partially. Protection could be enhanced by increasing the length of the repeat. However, reporters containing the Ub-R and ubiquitin-fusion degradation signals were degraded even in the presence of a 239-aa GAr. In accordance, insertion of a powerful degradation signal relieved the blockade of proteasomal degradation in Epstein–Barr virus nuclear antigen-1. Our findings suggest that the turnover of natural substrates may be finely tuned by GAr-like sequences that counteract targeting signals for proteasomal destruction.

Dantuma, Nico P.; Heessen, Stijn; Lindsten, Kristina; Jellne, Marianne; Masucci, Maria G.

2000-01-01

382

Androgens upregulate Cdc25C protein by inhibiting its proteasomal and lysosomal degradation pathways.  

PubMed

Cdc25C is a cell cycle protein of the dual specificity phosphatase family essential for activating the cdk1/Cyclin B1 complex in cells entering into mitosis. Since altered cell cycle is a hallmark of human cancers, we investigated androgen regulation of Cdc25C protein in human prostate cancer (PCa) cells, including androgen-sensitive (AS) LNCaP C-33 cells and androgen-independent (AI) LNCaP C-81 as well as PC-3 cells. In the regular culture condition containing fetal bovine serum (FBS), Cdc25C protein levels were similar in these PCa cells. In a steroid-reduced condition, Cdc25C protein was greatly decreased in AS C-33 cells but not AI C-81 or PC-3 cells. In androgen-treated C-33 cells, the Cdc25C protein level was greatly elevated, following a dose- and a time-dependent manner, correlating with increased cell proliferation. This androgen effect was blocked by Casodex, an androgen receptor blocker. Nevertheless, epidermal growth factor (EGF), a growth stimulator of PCa cells, could only increase Cdc25C protein level by about 1.5-fold. Altered expression of Cdc25C in C-33 cells and PC-3 cells by cDNA and/or shRNA transfection is associated with the corresponding changes of cell growth and Cyclin B1 protein level. Actinomycin D and cycloheximide could only partially block androgen-induced Cdc25C protein level. Treatments with both proteasomal and lysosomal inhibitors resulted in elevated Cdc25C protein levels. Immunoprecipitation revealed that androgens reduced the ubiquitination of Cdc25C proteins. These results show for the first time that Cdc25C protein plays a role in regulating PCa cell growth, and androgen treatments, but not EGF, greatly increase Cdc25C protein levels in AS PCa cells, which is in part by decreasing its degradation. These results can lead to advanced PCa therapy via up-regulating the degradation pathways of Cdc25C protein. PMID:23637932

Chou, Yu-Wei; Zhang, Li; Muniyan, Sakthivel; Ahmad, Humera; Kumar, Satyendra; Alam, Syed Mahfuzul; Lin, Ming-Fong

2013-04-18

383

Adaptation of Pseudomonas sp. Strain 7-6 to Quaternary Ammonium Compounds and Their Degradation via Dual Pathways?  

PubMed Central

Pseudomonas sp. strain 7-6, isolated from active sludge obtained from a wastewater facility, utilized a quaternary ammonium surfactant, n-dodecyltrimethylammonium chloride (DTAC), as its sole carbon, nitrogen, and energy source. When initially grown in the presence of 10 mM DTAC medium, the isolate was unable to degrade DTAC. The strain was cultivated in gradually increasing concentrations of the surfactant until continuous exposure led to high tolerance and biodegradation of the compound. Based on the identification of five metabolites by gas chromatography-mass spectrometry analysis, two possible pathways for DTAC metabolism were proposed. In pathway 1, DTAC is converted to lauric acid via n-dodecanal with the release of trimethylamine; in pathway 2, DTAC is converted to lauric acid via n-dodecyldimethylamine and then n-dodecanal with the release of dimethylamine. Among the identified metabolites, the strain precultivated on DTAC medium could utilize n-dodecanal and lauric acid as sole carbon sources and trimethylamine and dimethylamine as sole nitrogen sources, but it could not efficiently utilize n-dodecyldimethylamine. These results indicated pathway 1 is the main pathway for the degradation of DTAC.

Takenaka, Shinji; Tonoki, Takashi; Taira, Kazuya; Murakami, Shuichiro; Aoki, Kenji

2007-01-01

384

Rabring7 Degrades c-Myc through Complex Formation with MM-1  

PubMed Central

We have reported that a novel c-Myc-binding protein, MM-1, repressed E-box-dependent transcription and transforming activities of c-Myc and that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. MM-1 also binds to the ubiquitin-proteasome system, leading to degradation of c-Myc. In this study, we identified Rabring7, a Rab7-binding and RING finger-containing protein, as an MM-1-binding protein, and we found that Rabring7 mono-ubiquitinated MM-1 in the cytoplasm without degradation of MM-1. Rabring7 was also found to bind to c-Myc and to ubiquitinate c-Myc in a threonine 58-dependent manner. When c-Myc was co-transfected with MM-1 and Rabring7, c-Myc was degraded. Furthermore, it was found that c-Myc was stabilized in MM-1-knockdown cells even when Rabring7 was transfected and that Rabring7 was bound to and co-localized with MM-1 and c-Myc after MM-1 and Rabring7 had been translocated from the cytoplasm to the nucleus. These results suggest that Rabring7 stimulates c-Myc degradation via mono-ubiquitination of MM-1.

Torii, Ayako; Tashiro, Erika; Miyazawa, Makoto; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M. M.

2012-01-01

385

Hepatitis C virus targets the interferon-? JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes.  

PubMed

JAK/STAT signalling is essential for anti-viral immunity, making IFN-? an obvious anti-viral therapeutic. However, many HCV+ patients fail treatment, indicating that the virus blocks successful IFN-? signalling. We found that STAT1 and STAT3 proteins, key components of the IFN-? signalling pathway were reduced in immune cells and hepatocytes from HCV infected patients, and upon HCV expression in Huh7 hepatocytes. However, STAT1 and STAT3 mRNA levels were normal. Mechanistic analysis revealed that in the presence of HCV, STAT3 protein was preferentially ubiquitinated, and degradation was blocked by the proteasomal inhibitor MG132. These findings show that HCV inhibits IFN-? responses in a broad spectrum of cells via proteasomal degradation of JAK/STAT pathway components. PMID:23587486

Stevenson, Nigel J; Bourke, Nollaig M; Ryan, Elizabeth J; Binder, Marco; Fanning, Liam; Johnston, James A; Hegarty, John E; Long, Aideen; O'Farrelly, Cliona

2013-04-12

386

The RNA Degradation Pathway Regulates the Function of GAS5 a Non-Coding RNA in Mammalian Cells  

PubMed Central

Studies of various mRNAs have revealed that changes in the abundance of transcripts, through mRNA degradation, act as a critical step in the control of various biological pathways. Similarly, the regulation of non-coding RNA (ncRNA) levels is also considered to be important for their biological functions; however, far less is known about the mechanisms and biological importance of ncRNA turnover for the regulation of ncRNA functions. The growth arrest-specific 5 (GAS5) ncRNA accumulates during growth arrest induced by serum starvation and its transcript is degraded by the well characterized nonsense-mediated RNA decay (NMD) pathway. Historically, NMD was discovered as a RNA quality control system to eliminate aberrant transcripts; however, accumulating evidence shows that NMD also regulates the abundance of physiological transcripts. Interestingly, the GAS5 transcript has the ability to bind the glucocorticoid receptor (GR), resulting in the inhibition of its ligand-dependent association with DNA. The GR binds the promoters of various glucocorticoid-responsive genes, including apoptosis-related genes. In this study, we examined whether the RNA degradation pathway can regulate this function of GAS5. We measured the steady-state abundance and the decay rate of GAS5 in UPF1-depleted human cells using the 5?-bromo-uridine immunoprecipitation chase (BRIC) method, an inhibitor-free method for directly measuring RNA stability. We found that levels of the GAS5 transcript were elevated owing to prolonged decay rates in response to UPF1 depletion, and consequently the apoptosis-related genes, cIAP2 and SGK1, were down-regulated. In addition, serum starvation also increased the transcript levels of GAS5 because of prolonged decay rates, and conversely decreased levels of cIAP2 and SGK1 mRNA. Taken together, we found that the RNA degradation pathway can regulate the function of the GAS5 ncRNA in mammalian cells.

Tani, Hidenori; Torimura, Masaki; Akimitsu, Nobuyoshi

2013-01-01

387

Listeriolysin O Secreted by Listeria monocytogenes into the Host Cell Cytosol Is Degraded by the N-End Rule Pathway  

Microsoft Academic Search

The intracellular pathogen Listeria monocytogenes escapes from a phagosomal compartment into the cytosol by secreting the pore-forming cytolysin listeriolysin O (LLO). During the proliferation of L. monocytogenes bacteria in the mammalian cell cytosol, the secreted LLO is targeted for degradation by the ubiquitin system. We report here that LLO is a substrate of the ubiquitin-dependent N-end rule pathway, which recognizes

Pamela Schnupf; Jianmin Zhou; Alexander Varshavsky; Daniel A. Portnoy

2007-01-01

388

The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP  

Microsoft Academic Search

Man-made polychlorinated phenols such as pentachlorophenol (PCP) have been used extensively since the 1920s as preservatives\\u000a to prevent fungal attack on wood. During this time, they have become serious environmental contaminants. Despite the recent\\u000a introduction of PCP in the environment on an evolutionary time scale, PCP-degrading bacteria are present in soils worldwide.\\u000a The initial enzyme in the PCP catabolic pathway

Ronald L. Crawford; Carina M. Jung; Janice L. Strap

2007-01-01

389

Molecular and enzymatic analysis of the “aldoxime–nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9  

Microsoft Academic Search

A gene cluster responsible for aldoxime metabolism in the glutaronitrile degrader Pseudomonas sp. K-9 was analyzed genetically and enzymatically. The cluster was composed of genes coding for aldoxime dehydratase (Oxd),\\u000a nitrile hydratase (NHase), NHase activator, amidase, acyl-CoA ligase, and some regulatory and functionally unknown proteins,\\u000a which were similar to proteins appearing in the “aldoxime–nitrile pathway” gene cluster from strains having

Yasuo Kato; Yasuhisa Asano

2006-01-01

390