Science.gov

Sample records for ultra-wideband uwb pulse

  1. Ultra Wideband (UWB) communication vulnerability for security applications.

    SciTech Connect

    Cooley, H. Timothy

    2010-07-01

    RF toxicity and Information Warfare (IW) are becoming omnipresent posing threats to the protection of nuclear assets, and within theatres of hostility or combat where tactical operation of wireless communication without detection and interception is important and sometimes critical for survival. As a result, a requirement for deployment of many security systems is a highly secure wireless technology manifesting stealth or covert operation suitable for either permanent or tactical deployment where operation without detection or interruption is important The possible use of ultra wideband (UWB) spectrum technology as an alternative physical medium for wireless network communication offers many advantages over conventional narrowband and spread spectrum wireless communication. UWB also known as fast-frequency chirp is nonsinusoidal and sends information directly by transmitting sub-nanosecond pulses without the use of mixing baseband information upon a sinusoidal carrier. Thus UWB sends information using radar-like impulses by spreading its energy thinly over a vast spectrum and can operate at extremely low-power transmission within the noise floor where other forms of RF find it difficult or impossible to operate. As a result UWB offers low probability of detection (LPD), low probability of interception (LPI) as well as anti-jamming (AJ) properties in signal space. This paper analyzes and compares the vulnerability of UWB to narrowband and spread spectrum wireless network communication.

  2. Penetration of Ultra-wideband (UWB) Communication Signals Through Walls

    NASA Astrophysics Data System (ADS)

    Buccella, Concettina; Feliziani, Mauro; Manzi, Giuliano

    Ultra-wideband (UWB) radio propagation is investigated to evaluate the signal attenuation due to walls of common materials widely used in indoor environment as glass, wood and dry wall. This study is carried out by experimental and analytical techniques. Time domain measurements of the shielding effect produced by panels of dispersive materials are presented. The experimental set-up for UWB applications is also described. A procedure based on the transmission line (TL) theory applied to shielding problems is developed to calculate the field attenuation in frequency domain and the transient results are then obtained by the Inverse Fast Fourier Transform (IFFT). The analytical and the experimental results are finally compared.

  3. A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao

    2016-01-01

    A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.

  4. Ultra-wideband short-pulse radar with range accuracy for short range detection

    SciTech Connect

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  5. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide.

    PubMed

    Tan, Kang; Marpaung, David; Pant, Ravi; Gao, Feng; Li, Enbang; Wang, Jian; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Sun, Junqiang; Eggleton, Benjamin J

    2013-01-28

    We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As₂S₃ chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems. PMID:23389181

  6. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 3; Ultra Wideband (UWB) Technology

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB

  7. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  8. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  9. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1996-06-04

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, {+-}UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 21 figs.

  10. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1994-09-06

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, [+-] UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 16 figs.

  11. Photonic generation of ultra-wideband pulses using a fiber delay interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Xinliang; Zhang, Yin; Xu, Enming

    2011-11-01

    We demonstrate a novel scheme to generate ultra wideband (UWB) doublet pulses by inputting a dark return-to-zero (RZ) signal into a fiber delay interferometer (FDI). When a dark RZ pulse train with a repetition rate of 0.625 GHz and a pulse width of 120 ps was inputted into a FDI with a free spectrum range (FSR) of 0.16 nm (~20 GHz, according time delay is ~50 ps) and an extinction ratio (ER) of 9 dB, by adjusting the control temperature of the FDI, the phase difference of the input light on the both fiber arms of the FDI is changed and controlled, UWB doublet pulse is directly generated at the output port of the FDI. The system parameters effects on the output signal were also discussed. Moreover, we numerically demonstrated that, by carefully optimizing system parameters, UWB quadruplet pulses also can be generated. This scheme has some distinct advantages including easy integration, convenient tuning, good stability, and so on. Presented method also accords with the general features in future applied UWB system, namely, single optical source input, simple configuration and passive device.

  12. Photonic generation of ultra-wideband pulses using a fiber delay interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Xinliang; Zhang, Yin; Xu, Enming

    2012-02-01

    We demonstrate a novel scheme to generate ultra wideband (UWB) doublet pulses by inputting a dark return-to-zero (RZ) signal into a fiber delay interferometer (FDI). When a dark RZ pulse train with a repetition rate of 0.625 GHz and a pulse width of 120 ps was inputted into a FDI with a free spectrum range (FSR) of 0.16 nm (~20 GHz, according time delay is ~50 ps) and an extinction ratio (ER) of 9 dB, by adjusting the control temperature of the FDI, the phase difference of the input light on the both fiber arms of the FDI is changed and controlled, UWB doublet pulse is directly generated at the output port of the FDI. The system parameters effects on the output signal were also discussed. Moreover, we numerically demonstrated that, by carefully optimizing system parameters, UWB quadruplet pulses also can be generated. This scheme has some distinct advantages including easy integration, convenient tuning, good stability, and so on. Presented method also accords with the general features in future applied UWB system, namely, single optical source input, simple configuration and passive device.

  13. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum. PMID:23853267

  14. Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications

    NASA Astrophysics Data System (ADS)

    de Abreu, Giuseppe Thadeu Freitas; Mitchell, Craig John; Kohno, Ryuji

    2005-12-01

    The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR) communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf), the decomposition yields an equivalent distribution of [InlineEquation not available: see fulltext.]-by-[InlineEquation not available: see fulltext.] matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM-) UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN).

  15. Ultra-wideband Communications

    SciTech Connect

    Waltjen, K; Romero, C; Azevedo, S; Dowla, F; Spiridon, A; Benzel, D; Haugen, P

    2004-02-06

    Many applications in wireless communications often require short-range systems capable of rapidly collecting data and transmitting it reliably. Commercial communication systems operate in fixed frequency bands and are easily detectable and are prone to jamming by the enemy, among other shortcomings. The new ultra-wideband (UWB) communications system in the 3.1 to 10 GHz band is of significant interest to a number of Lawrence Livermore National Laboratory (LLNL) programs including the Nonproliferation, Arms Control, and International Security (NAI) Directorate. Ultra-Wideband (UWB) technology has received a significant degree of attention from communications industry since the Federal Communications Commission (FCC) rulings in February 2002. According to FCC, UWB signals have fractional bandwidth (B{sub f}) of 20% or larger at -10 dB cut-off frequencies, with minimum bandwidth of 500 MHz. Unlike traditional communication systems, UWB systems modulate carrier-less, short-duration (picosec to nanosec) pulses to transmit and receive information. A number of programmatic problems at LLNL, particularly in the NAI and other national security Directorates, require collecting information from multiple sensors distributed over a local area. The information must be collected covertly and by wireless means. The sensors produce data using low power devices and the communication link must operate in severe multipath environments over tens of meters; often the links must be channelized to handle multiple sensors. The communications links between these sensors is a critical issue in the development of LLNL programs to demonstrate distributed sensor network performance in real-time. In summary, such systems must be robust; have a low probability of detection and intercept; employ low-power, small-size hardware; and interface easily with other systems for analysis or to establish long-distance links. The purpose of this work was to develop a new UWB radio-frequency (RF

  16. Adiabatic and fast passage ultra-wideband inversion in pulsed EPR

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar

    2013-05-01

    We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128 ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5 nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64 ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small.

  17. Sensing through the wall imaging using the Army Research Lab ultra-wideband synchronous impulse reconstruction (UWB SIRE) radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam; Ressler, Marc; Sichina, Jeffrey

    2008-04-01

    The U.S. Army Research Laboratory (ARL), as part of a mission and customer funded exploratory program, has developed a new low-frequency, ultra-wideband (UWB) synthetic aperture radar (SAR). The radar is capable of penetrating enclosed areas (buildings) and generating SAR imagery. This supports the U.S. Army's need for intelligence on the configuration, content, and human presence inside these enclosed areas. The radar system is mounted on a ground based vehicle traveling along the road and is configured with an array of antennas pointing toward the enclosed areas of interest. This paper will describe an experiment conducted recently at Aberdeen Proving Ground (APG), Maryland. In this paper we briefly describe the UWB SIRE radar and the test setup in the experiment. We will also describe the signal processing and the image techniques used to produce the SAR imagery. Finally, we will present SAR imagery of the building and its internal structure from different viewing directions.

  18. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

    PubMed Central

    Kocur, Dušan; Švecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  19. Millimeter wave band ultra wideband transmitter MMIC

    NASA Astrophysics Data System (ADS)

    Ling, Jin; Rolland, Nathalie

    2015-09-01

    This paper presents a new millimeter-wave (MMW) ultra wideband (UWB) transmitter MMIC which has been developed in an OMMIC 0.1 μm GaAs PHEMT foundry process (ft = 100 GHz) for 22-29 GHz vehicular radar systems. The transmitter is composed of an MMW negative resistance oscillator (NRO), a power amplifier (PA), and two UWB pulse generators (PGs). In order to convert the UWB pulse signal to MMW frequency and reduce the total power consumption, the MMW NRO is driven by one of the UWB pulse generators and the power amplifier is triggered by another UWB pulse generator. The main advantages of this transmitter are: new design, simple architecture, high-precision distance measurements, infinite ON/OFF switch ratio, and low power consumption. The total power consumption of the transmitter MMIC is 218 mW with a peak output power of 5.5 dBm at 27 GHz.

  20. Waveform generation for ultra-wideband radar system

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiao-Feng

    1993-12-01

    In the current literature, ultra-wideband (UWB) waveforms are said to possess several potential advantages such as penetration of foliage, walls and ground, as well as target identification and detection of stealth targets. Due to the potential advantages of UWB waveforms, UWB power sources are currently being developed. This thesis investigates the Fourier synthesis method of waveform generation which is to be used with ultra-wideband radar. The major advantages of this method over traditional methods are that accurate control of pulse shapes and pulse repetition intervals (PRI) can be generated. In this thesis, the Fourier method is extended to generation of binary coded waveforms for UWB systems. The generation of such codes is important as it allows for the use of longer coded pulses. These coded pulses contain more energy and improve signal to noise ratio (SNR) while still retaining the range resolution and other benefits of smaller pulse widths.

  1. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion.

  2. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  3. Low data rate ultra wideband ECG monitoring system.

    PubMed

    Keong, Ho Chee; Yuce, Mehmet R

    2008-01-01

    This paper presents a successfully implemented wireless electrocardiograph monitoring using low data rate ultra wideband (UWB) transmission. Low data rate ultra wideband is currently under consideration for the newly formed wireless body area network (WBAN) group (IEEE802.15.6) to develop a standard for wireless vital sign monitoring. Maximizing the transmission power of the transmitter and reducing the stringent requirements and complexity of the receiver have always been the key considerations for an UWB transceiver. Multiple pulses per bit has been sent in our low data rate UWB prototype system to increase the transmitter power, to reduce the complexity of the receiver and to ease the requirement on the receiver's analog to digital converter. Non-coherent technique has been used for the demodulation of UWB signals at the receiver that reduces the receiver complexity further. PMID:19163442

  4. 100 GHz ultra-wideband (UWB) fiber-to-the-antenna (FTTA) system for in-building and in-home networks.

    PubMed

    Chow, C W; Kuo, F M; Shi, J W; Yeh, C H; Wu, Y F; Wang, C H; Li, Y T; Pan, C L

    2010-01-18

    Fiber-to-the-antenna (FTTA) system can be a cost-effective technique for distributing high frequency signals from the head-end office to a number of remote antenna units via passive optical splitter and propagating through low-loss and low-cost optical fibers. Here, we experimentally demonstrate an optical ultra-wideband (UWB) - impulse radio (IR) FTTA system for in-building and in-home applications. The optical UWB-IR wireless link is operated in the W-band (75 GHz - 110 GHz) using our developed near-ballistic unitraveling-carrier photodiode based photonic transmitter (PT) and a 10 GHz mode-locked laser. 2.5 Gb/s UWB-IR FTTA systems with 1,024 high split-ratio and transmission over 300 m optical fiber are demonstrated using direct PT modulation. PMID:20173867

  5. Ultra-wideband directional sampler

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.

  6. Ultra-wideband directional sampler

    DOEpatents

    McEwan, T.E.

    1996-05-14

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in ``real time``, and the other two ports operate at a slow millisecond-speed, in ``equivalent time``. A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus. 3 figs.

  7. Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband

    DOEpatents

    Nekoogar, Faranak; Dowla, Farid U.

    2012-01-24

    The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.

  8. Self Organization of Wireless Sensor Networks Using Ultra-Wideband Radios

    SciTech Connect

    Nekoogar, F; Dowla, F; Spiridon, A

    2004-07-19

    Ultra-wideband (UWB) technology has proven to be useful in short range, high data rate, robust, and low power communications. These features can make UWB systems ideal candidates for reliable data communications between nodes of a wireless sensor network (WSN). However, the low powered UWB pulses can be significantly degraded by channel noise, inter-node interference, and intentional jamming. In this paper we present a novel interference suppression technique for UWB based WSNs that promises self-organization in terms of power conservation, scalability, and channel estimation for the entire distributed network.

  9. Obstacle avoidance and concealed target detection using the Army Research Lab ultra-wideband synchronous impulse reconstruction (UWB SIRE) forward imaging radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam; Wong, David; Ressler, Marc; Koenig, Francois; Stanton, Brian; Smith, Gregory; Sichina, Jeffrey; Kappra, Karl

    2007-04-01

    The U.S. Army Research Laboratory (ARL), as part of a mission and customer funded exploratory program, has developed a new low-frequency, ultra-wideband (UWB) synthetic aperture radar (SAR) for forward imaging to support the Army's vision of an autonomous navigation system for robotic ground vehicles. These unmanned vehicles, equipped with an array of imaging sensors, will be tasked to help detect man-made obstacles such as concealed targets, enemy minefields, and booby traps, as well as other natural obstacles such as ditches, and bodies of water. The ability of UWB radar technology to help detect concealed objects has been documented in the past and could provide an important obstacle avoidance capability for autonomous navigation systems, which would improve the speed and maneuverability of these vehicles and consequently increase the survivability of the U. S. forces on the battlefield. One of the primary features of the radar is the ability to collect and process data at combat pace in an affordable, compact, and lightweight package. To achieve this, the radar is based on the synchronous impulse reconstruction (SIRE) technique where several relatively slow and inexpensive analog-to-digital (A/D) converters are used to sample the wide bandwidth of the radar signals. We conducted an experiment this winter at Aberdeen Proving Ground (APG) to support the phenomenological studies of the backscatter from positive and negative obstacles for autonomous robotic vehicle navigation, as well as the detection of concealed targets of interest to the Army. In this paper, we briefly describe the UWB SIRE radar and the test setup in the experiment. We will also describe the signal processing and the forward imaging techniques used in the experiment. Finally, we will present imagery of man-made obstacles such as barriers, concertina wires, and mines.

  10. Hemispheric ultra-wideband antenna.

    SciTech Connect

    Brocato, Robert Wesley

    2006-04-01

    This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

  11. UWB doublet signal generation and modulation based on DFB laser under optical pulses injection

    NASA Astrophysics Data System (ADS)

    Chen, Dalei; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zhou, Hua; Zhao, Jiyong; Huang, Long; Zhu, Huatao; Wang, Peng

    2016-05-01

    In this paper, a novel scheme to generate ultra-wideband (UWB) doublet signals based on the cross-gain modulation (XGM) effect in the DFB lasers is proposed and experimentally demonstrated, the modulation and transmission of the generated UWB doublet signals are also researched. In the proposed system, a gain-switched laser (GSL) is used as a master laser (ML) and the optical pulses from the ML are optically injected into two paralleled DFB lasers, which are used as slave lasers (SL). Then the outputs from the SLs are detected by a balanced photodiode (BPD) to generate the Bi-phased UWB signals. By properly setting the system parameters, UWB signals with various modulation formats such as on-off keying (OOK), pulse amplitude modulation (PAM) as well as the phase-shift keying (PSK) can be generated. In addition, fiber transmission of the modulated UWB signals is also experimentally investigated.

  12. Remote Monitoring and Tracking of UF6 Cylinders Using Long-Range Passive Ultra-wideband (UWB) RFID Tags

    SciTech Connect

    Nekoogar, F; Dowla, F

    2007-06-06

    An IAEA Technical Meeting on Techniques for IAEA Verification of Enrichment Activities identified 'smart tags' as a technology that should be assessed for tracking and locating UF6 cylinders. Although there is vast commercial industry working on RFID systems, the vulnerabilities of commercial products are only beginning to emerge. Most of the commercially off-the-shelf (COTS) RFID systems operate in very narrow frequency bands, making them vulnerable to detection, jamming and tampering and also presenting difficulties when used around metals (i.e. UF6 cylinders). Commercial passive RFID tags have short range, while active RFID tags that provide long ranges have limited lifetimes. There are also some concerns with the introduction of strong (narrowband) radio frequency signals around radioactive and nuclear materials. Considering the shortcomings of commercial RFID systems, in their current form, they do not offer a promising solution for continuous monitoring and tracking of UF6 cylinders. In this paper, we identify the key challenges faced by commercial RFID systems for monitoring UF6 cylinders, and introduce an ultra-wideband approach for tag/reader communications that addresses most of the identified challenges for IAEA safeguards applications.

  13. Ultra-Wideband Angle-of-Arrival Tracking Systems

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Gross, Julia; Ni, Jianjun; Dusl, John

    2010-01-01

    Systems that measure the angles of arrival of ultra-wideband (UWB) radio signals and perform triangulation by use of those angles in order to locate the sources of those signals are undergoing development. These systems were originally intended for use in tracking UWB-transmitter-equipped astronauts and mobile robots on the surfaces of remote planets during early stages of exploration, before satellite-based navigation systems become operational. On Earth, these systems could be adapted to such uses as tracking UWB-transmitter-equipped firefighters inside buildings or in outdoor wildfire areas obscured by smoke. The same characteristics that have made UWB radio advantageous for fine resolution ranging, covert communication, and ground-penetrating radar applications in military and law-enforcement settings also contribute to its attractiveness for the present tracking applications. In particular, the waveform shape and the short duration of UWB pulses make it possible to attain the high temporal resolution (of the order of picoseconds) needed to measure angles of arrival with sufficient precision, and the low power spectral density of UWB pulses enables UWB radio communication systems to operate in proximity to other radio communication systems with little or no perceptible mutual interference.

  14. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled. PMID:19333263

  15. UWB transmitter

    SciTech Connect

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-01-15

    An ultra-wideband (UWB) dual impulse transmitter is made up of a trigger edge selection circuit actuated by a single trigger input pulse; a first step recovery diode (SRD) based pulser connected to the trigger edge selection circuit to generate a first impulse output; and a second step recovery diode (SRD) based pulser connected to the trigger edge selection circuit in parallel to the first pulser to generate a second impulse output having a selected delay from the first impulse output.

  16. Optimal waveforms design for ultra-wideband impulse radio sensors.

    PubMed

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations. PMID:22163511

  17. Optimal Waveforms Design for Ultra-Wideband Impulse Radio Sensors

    PubMed Central

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations. PMID:22163511

  18. Pulse Interval Modulation for Ultra-High Speed IR-UWB Communications Systems

    NASA Astrophysics Data System (ADS)

    Herceg, Marijan; Švedek, Tomislav; Matić, Tomislav

    2010-12-01

    This paper analyzes performances of the Pulse Interval Modulation (PIM) scheme for impulse radio ultra-wideband (IR-UWB) communication systems. Due to the PIM anisochronous nature, a tap delay line (TDL) coded division multiple access (CDMA) scheme based on strict optical orthogonal codes (SOOC) is proposed. This scheme is suitable for multiuser high-speed data asynchronous transmission applications because the average symbol length is shorter than in Pulse Position Modulation (PPM) schemes and it needs only chip synchronization. The error probability over the additive white Gaussian noise (AWGN) channel is derived in the single- and multi-user environment and compared with other modulation schemes.

  19. All-optical UWB doublet pulses generation by using a delay interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Xu, En-Ming

    2013-06-01

    We demonstrated a simple scheme to generate ultra wideband (UWB) doublet pulses by inputting a dark return-to-zero (RZ) signal into a fiber delay interferometer (FDI). An 0.625-Gbit/s dark-RZ pulse train where the pulse width is 120 ps was inputted into a FDI where the free spectral range (FSR) is 0.16 nm (˜20 GHz, according time delay is ˜50 ps) and the extinction ratio (ER) is 9 dB, and the phase difference of the two fiber arms was changed and controlled by adjusting the operation temperature of the FDI, by do so, UWB doublet pulses were directly generated at an output port of the FDI. The system parameter effects on the output UWB pulses were discussed. Moreover, we also numerically demonstrated that the UWB quadruplet pulses can be generated in the same set by optimizing system parameters. This scheme has some distinct advantages including easy integration, convenient tuning, good stability, and so on. Presented method also accords with the general features in future applied UWB-Over-Fiber communication system, such as, single optical source input, simple configuration and passive device.

  20. Rapid Synchronization of Ultra-Wideband Transmitted-Reference Receivers

    SciTech Connect

    Nekoogar, F; Dowla, F; Spiridon, A

    2004-05-21

    Time synchronization is a major challenge and a rich area of study in ultra-wideband (UWB) communication systems. Transmitted-reference (TR) receivers avoid the stringent synchronization requirements that exist in conventional pulse detection schemes. However, the performance of such receivers is highly sensitive to precise timing acquisition and tracking of integration window that defines the limits of the finite integrator prior to final decision block. In this paper we propose a novel rapid synchronization technique that allows us to extract the timing information very accurately in UWB-TR receivers in the presence of a variety of channel noise and interference. The principles of the method are presented and the BER performance of a synchronized UWB-TR receiver is investigated in the presence of a range of values for timing jitter by computer simulations. Our studies show that the proposed synchronization technique greatly improves the performance of UWB-TR receivers in the presence of jitter and AWGN with modest increase in complexity.

  1. Narrowband interference mitigation in body surface to external communication in UWB body area networks using first-order Hermite pulse

    NASA Astrophysics Data System (ADS)

    Rout, Deepak Kumar; Das, Susmita

    2016-06-01

    Ultra wideband (UWB) is the most preferred candidate for body area networks (BAN). The higher data rate and lower multipath fading makes it highly suitable for the design of BAN. However, narrowband interference (NBI) may significantly degrade the performance of UWB. The paper presents an effective method of NBI mitigation for UWB BAN. The method uses modified Hermite pulse (MHP) in lieu of Gaussian and other pulse shapes. The spectral characteristics of the MHP make them immune to interference. The performance has been tested in various body postures in the CM4 channel model of the BAN, and further validated by transmitting medical signals like electrocardiography and MRI. The results show that MHP pulse is highly immune to NBI.

  2. Nonlinear self-reflection of intense ultra-wideband femtosecond pulses in optical fiber

    NASA Astrophysics Data System (ADS)

    Konev, Leonid S.; Shpolyanskiy, Yuri A.

    2013-05-01

    We simulated propagation of few-cycle femtosecond pulses in fused silica fiber based on the set of first-order equations for forward and backward waves that generalizes widely used equation of unidirectional approximation. Appearance of a weak reflected field in conditions default to the unidirectional approach is observed numerically. It arises from nonmatched initial field distribution with the nonlinear medium response. Besides additional field propagating forward along with the input pulse is revealed. The analytical solution of a simplified set of equations valid over distances of a few wavelengths confirms generation of reflected and forward-propagating parts of the backward wave. It allowed us to find matched conditions when the reflected field is eliminated and estimate the amplitude of backward wave via medium properties. The amplitude has the order of the nonlinear contribution to the refractive index divided by the linear refractive index. It is small for the fused silica so the conclusions obtained in the unidirectional approach are valid. The backward wave should be proportionally higher in media with stronger nonlinear response. We did not observe in simulations additional self-reflection not related to non-matched boundary conditions.

  3. Spotforming with an Array of Ultra-Wideband Radio Transmitters

    SciTech Connect

    Dowla, F; Spiridon, A

    2003-09-29

    Ultra-wideband (UWB) array signal processing has the distinct advantage in that it is possible to illuminate or focus on ''spots'' at distant points in space, as opposed to just illuminating or steering at certain directions for narrowband array processing. The term ''spotforming'' is used to emphasize the property that point-focusing techniques with UWB waveforms can be viewed as a generalization of the well-known narrowband beamforming techniques. Because methods in spotforming can lead to powerful applications for UWB systems, in this paper we derive, simulate and experimentally verify UWB spot size as a function of frequency, bandwidth and array aperture.

  4. Spotforming with an array of ultra-wideband radio transmitters

    SciTech Connect

    Dowla, F; Spiridon, A

    2004-02-05

    Ultra-wideband (UWB) array signal processing has the distinct advantage in that it is possible to illuminate or focus on ''spots'' at distant points in space, as opposed to just illuminating or steering at certain directions for narrowband array processing. The term ''spotforming'' is used to emphasize the property that point-focusing techniques with UWB waveforms can be viewed as a generalization of the well-known narrowband beamforming techniques. Because methods in spotforming can lead to powerful applications for UWB systems, in this paper we derive, simulate and experimentally verify UWB spot size as a function of frequency, bandwidth and array aperture.

  5. Ultra-wideband communication system prototype using orthogonal frequency coded SAW correlators.

    PubMed

    Gallagher, Daniel R; Kozlovski, Nikolai Y; Malocha, Donald C

    2013-03-01

    This paper presents preliminary ultra-wideband (UWB) communication system results utilizing orthogonal frequency coded SAW correlators. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for spread-spectrum UWB. The use of OFC spectrally spreads a PN sequence beyond that of CDMA; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach, but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are typically needed in the intermediate frequency (IF) section in the transmitter and receiver, and greatly reduces the signal processing requirements. Development and results of an experimental prototype system with center frequency of 250 MHz are presented. The prototype system is configured using modular RF components and benchtop pulse generator and frequency source. The SAW correlation filters used in the test setup were designed using 7 chip frequencies within the transducer. The fractional bandwidth of approximately 29% was implemented to exceed the defined UWB specification. Discussion of the filter design and results are presented and are compared with packaged device measurements. A prototype UWB system using OFC SAW correlators is demonstrated in wired and wireless configurations. OFC-coded SAW filters are used for generation of a transmitted spread-spectrum UWB and matched filter correlated reception. Autocorrelation and cross-correlation system outputs are compared. The results demonstrate the feasibility of UWB SAW correlators for use in UWB communication transceivers. PMID:23475929

  6. Ultra Wideband Electromagnetic Phantoms for Antennas and Propagation Studies

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hironobu; Zhou, Jian; Kobayashi, Takehiko

    Ultra wideband (UWB) technologies are expected to be used in ultra-high-speed wireless personal area networks (WPAN) and wireless body area networks (WBAN). UWB human electromagnetic phantoms are useful for performance evaluation of antennas mounted in the vicinity of a human body and channel assessment when a human body blocks a propagation path. Publications on UWB phantoms, however, have been limited so far. This paper describes the development of liquid UWB phantom material (aqueous solution of sucrose) and UWB arm and torso phantoms. The UWB phantoms are not intended to evaluate a specific absorption rate (SAR) in a human body, because UWB devices are supposed to transmit at very low power and thus should pose no human hazard.

  7. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    SciTech Connect

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  8. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum. PMID:26233121

  9. Ultra-wideband radios for time-of-flight-ranging and network position estimation

    DOEpatents

    Hertzog, Claudia A.; Dowla, Farid U.; Dallum, Gregory E.; Romero, Carlos E.

    2011-06-14

    This invention provides a novel high-accuracy indoor ranging device that uses ultra-wideband (UWB) RF pulsing with low-power and low-cost electronics. A unique of the present invention is that it exploits multiple measurements in time and space for very accurate ranging. The wideband radio signals utilized herein are particularly suited to ranging in harsh RF environments because they allow signal reconstruction in spite of multipath propagation distortion. Furthermore, the ranging and positioning techniques discussed herein directly address many of the known technical challenges encountered in UWB localization regarding synchronization and sampling. In the method developed, noisy, corrupted signals can be recovered by repeating range measurements across a channel, and the distance measurements are combined from many locations surrounding the target in a way that minimizes the range biases associated to indirect flight paths and through-wall propagation delays.

  10. Measurement of the transient shielding effectiveness of enclosures using UWB pulses inside an open TEM waveguide

    NASA Astrophysics Data System (ADS)

    Herlemann, H.; Koch, M.

    2007-06-01

    Recently, new definitions of shielding effectiveness (SE) for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005). Numerical results were shown for closed as well as for non closed cylindrical shields. In the present work, a measurement procedure is introduced using ultra wideband (UWB) electromagnetic field pulses. The procedure provides a quick way to determine the transient shielding effectiveness of an enclosure without performing time consuming frequency domain measurements. For demonstration, a cylindrical enclosure made of conductive textile is examined. The field pulses are generated inside an open TEM-waveguide. From the measurement of the transient electric and magnetic fields with and without the shield in place, the electric and magnetic shielding effectiveness of the shielding material as well as the transient shielding effectiveness of the enclosure are derived.

  11. FDTD simulation tools for UWB antenna analysis.

    SciTech Connect

    Brocato, Robert Wesley

    2005-02-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  12. FDTD simulation tools for UWB antenna analysis.

    SciTech Connect

    Brocato, Robert Wesley

    2004-12-01

    This paper describes the development of a set of software tools useful for analyzing ultra-wideband (UWB) antennas and structures. These tools are used to perform finite difference time domain (FDTD) simulation of a conical antenna with continuous wave (CW) and UWB pulsed excitations. The antenna is analyzed using spherical coordinate-based FDTD equations that are derived from first principles. The simulation results for CW excitation are compared to simulation and measured results from published sources; the results for UWB excitation are new.

  13. A concept for hip prosthesis identification using ultra wideband radar.

    PubMed

    Lui, Hoi-Shun; Shuley, Nicholas; Crozier, Stuart

    2004-01-01

    Ultra wideband (UWB) radar has been extensively investigated both theoretically and practically for the identification buried artifacts. Ground probe radar (GPR) concentrates on the identification of lightly buried land mines, unexploded ordnance (UXO) and archeological targets. The same technology is proposed in a similar context for the rapid identification of in vivo implanted metallic prostheses. The technique is based on resonance based target identification and the paper investigates UWB scattering from a metallic hip prosthesis in free space as a first step in the identification process. PMID:17271965

  14. UCom: Ultra-wideband Communications in Harsh Propagation Environments

    SciTech Connect

    Nekoogar, F

    2007-03-14

    LLNL has developed an ultra-wideband (UWB) system that provides unique, through-the-wall wireless communications in heavy metallic and heavy concrete indoor channels. LLNL's UWB system is the only available wireless communications system that performs successfully and reliably in facilities where conventional narrowband communications usually fail due to destructive reflections from multiple surfaces. These environments include: cargo ships and reinforced, heavy concrete buildings. LLNL's revolutionary system has applications for the military, as well as commercial indoor communications in multistory buildings, and cluttered industrial structures.

  15. UWB dual burst transmit driver

    SciTech Connect

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Zumstein, James M.; Vigars, Mark L.; Romero, Carlos E.

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  16. Development of Ultra-Wideband Pulsers at the University of Texas at Dallas

    NASA Astrophysics Data System (ADS)

    Davanloo, Farzin; Collins, Carl B.; Agee, Forrest J.

    The generic concept for ultra-fast pulsers at the University of Texas at Dallas (UTD) employs a Blumlein based pulse forming system commutated by a fast switching device. Characterization studies of these pulsers have been extensively performed. The pulser design has been adapted to enable it to reliably produce powers as great as 100 MW, in nanosecond pulses with rise times on the order of 200 ps. These devices have compact line geometries and are commutated by an avalanche GaAs photoconductive semiconductor switch (PCSS) triggered with a low power laser diode array. Significant lifetime improvements for PCSS have been achieved by advanced switch treatments with amorphic diamond coatings also developed at UTD. This report presents the progress in the development of these pulsers for the ultra-wideband (UWB) applications.

  17. Daredevil: ultra-wideband radar sensing for small UGVs

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian

    2007-04-01

    We are developing an ultra wideband (UWB) radar sensor payload for the man-portable iRobot PackBot UGV. Our goal is to develop a sensor array that will allow the PackBot to navigate autonomously through foliage (such as tall grass) while avoiding obstacles and building a map of the terrain. We plan to use UWB radars in conjunction with other sensors such as LIDAR and vision. We propose an algorithm for using polarimetric (dual-polarization) radar arrays to classify radar returns as either vertically-aligned foliage or solid objects based on their differential reflectivity, a function of their aspect ratio. We have conducted preliminary experiments to measure the ability of UWB radars to detect solid objects through foliage. Our initial results indicate that UWB radars are very effective at penetrating sparse foliage, but less effective at penetrating dense foliage.

  18. All-optical UWB signal generation and multicasting using a nonlinear optical loop mirror.

    PubMed

    Huang, Tianye; Li, Jia; Sun, Junqiang; Chen, Lawrence R

    2011-08-15

    An all-optical scheme for ultra-wideband (UWB) signal generation (positive and negative monocycle and doublet pulses) and multicasting using a nonlinear optical loop mirror (NOLM) is proposed and demonstrated. Five UWB signals (1 monocycle and 4 doublet pulses) are generated simultaneously from a single Gaussian optical pulse. The fractional bandwidths of the monocycle pulses are approximately 100% while those of the doublet pulses range from 100% to 133%. The UWB signals are then modulated using a 2(15)-1 pseudorandom bit sequence (PRBS) and error-free performance for each multicast channel is obtained. PMID:21934951

  19. All-optical UWB signal generation and multicasting using a nonlinear optical loop mirror

    NASA Astrophysics Data System (ADS)

    Huang, Tianye; Li, Jia; Sun, Junqiang; Chen, Lawrence R.

    2011-08-01

    An all-optical scheme for ultra-wideband (UWB) signal generation (positive and negative monocycle and doublet pulses) and multicasting using a nonlinear optical loop mirror (NOLM) is proposed and demonstrated. Five UWB signals (1 monocycle and 4 doublet pulses) are generated simultaneously from a single Gaussian optical pulse. The fractional bandwidths of the monocycle pulses are approximately 100% while those of the doublet pulses range from 100% to 133%. The UWB signals are then modulated using a 215 - 1 pseudorandom bit sequence (PRBS) and error-free performance for each multicast channel is obtained.

  20. Photonics-assistant spectra shaping of ultra-wideband signals for dynamic spectrum access in cognitive network

    NASA Astrophysics Data System (ADS)

    Zheng, Jianyu; Zhu, Ninghua; Wang, Lixian; Wang, Hui; Du, Yuanxin; Liu, Jianguo

    2012-11-01

    The dynamic control for the spectra of the Ultra-wideband (UWB) signals, which is the key for implementing the dynamic spectrum access in the cognitive radio, is still a challenge due to the limited processing speed of the electronic devices. In this paper, we have summarized our recent work about controlling the spectrum shape of the UWB signals in optical domain, in addition to reviewing the other groups' related research work. The experiment setups and results based on nonlinear dynamics of the optoelectronic oscillator and transfer response of the phase or polarization-to-intensity convertor will be described in detail respectively, in which the controllable frequency suppress for the optical UWB signals at specific frequency positions were implemented. Particularly, the UWB pulse with the special shape, which corresponds to the 5-GHz band-rejection in frequency domain, was generated in order to avoid the interference between UWB and Wireless Fidelity system in practice. In addition, the UWB signals whose center frequency could be continuously tuned and converted up to the frequency range of millimeter wave were generated by utilizing the polarization modulator based optical switch. The areas for future development and the challenge of implementing these techniques for the applications in practice will also be discussed.

  1. Towards sparse characterisation of on-body ultra-wideband wireless channels.

    PubMed

    Yang, Xiaodong; Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-06-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409

  2. Towards sparse characterisation of on-body ultra-wideband wireless channels

    PubMed Central

    Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram

    2015-01-01

    With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409

  3. Analysis of a multi-access scheme and asynchronous transmit-only UWB for wireless body area networks.

    PubMed

    Keong, Ho Chee; Yuce, Mehmet R

    2009-01-01

    Ultra Wideband (UWB) has many favorable factors for use in a wireless body area network application. The major drawback is the high power consumption of an UWB receiver. One solution to address this problem is to use a transmit-only UWB sensor node. In this paper, we propose a multi-access scheme that is suitable for asynchronous transmit-only UWB wireless body area networks (UWB-WBAN). Each sensor attached on the patient under monitoring is assigned a unique number of UWB pulses per data bit. The number of UWB pulses assigned to the sensors is optimized to improve the bit error rate and system reliability. Simulation shows that through careful selection of the number of pulses for the sensors, it is possible to maintain almost similar bit error probability, regardless of the distance from the receiver. PMID:19964453

  4. Three-dimensional confocal imaging for breast cancer detection using CMOS Gaussian monocycle pulse transmitter and 4 × 4 ultra wideband antenna array with impedance matching layer

    NASA Astrophysics Data System (ADS)

    Sugitani, Takumi; Kubota, Shinichi; Hafiz, Mohiuddin; Xiao, Xia; Kikkawa, Takamaro

    2014-01-01

    A time-domain reflectometry breast cancer detection system was developed, which was composed of a Gaussian monocycle pulse (GMP) transmitter circuit fabricated by complementary metal oxide semiconductor (CMOS) 65 nm technology and an ultra wide-band (UWB) planar slot antenna array. The center frequency and bandwidth of the antenna were 6 and 9.2 GHz, respectively. The GMP train having the pulse width of 160 ps was generated by the 65 nm CMOS logic circuit with a core area of 0.0017 mm2 and was emitted by the 4 × 4 planar slot antenna array. The fabricated planar 4 × 4 antenna array with the matching layer could resolve the two separate 5 × 5 × 5 mm3 breast tumor phantoms, which were located at the depth of 22 mm with the spacing of 8 mm.

  5. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  6. Orthogonal frequency coded filters for use in ultra-wideband communication systems.

    PubMed

    Gallagher, Daniel R; Malocha, Donald C; Puccio, Derek; Saldanha, Nancy

    2008-03-01

    The use of ultra-short pulses, producing very wide bandwidths and low spectral power density, are the widely accepted approach for ultra-wideband (UWB) communication systems. This approach is simple and can be implemented with current digital signal processing technologies. However, surface acoustic wave (SAW) devices have the capability of producing complex signals with wide bandwidths and relatively high frequency operation. This approach, using SAW based correlators, eliminates many of the costly components that are needed in the IF block in the transmitter and receiver, and reduces many of the signal processing requirements. This work presents the development of SAW correlators using orthogonal frequency coding (OFC) for use in UWB spread spectrum communication systems. OFC and pseudonoise (PN) coding provide a means for UWB spreading of data. The use of OFC spectrally spreads a PN sequence beyond that of code division multiple access (CDMA) because of the increased bandwidth providing an improvement in processing gain. The transceiver approach is still very similar to that of a CDMA but provides greater code diversity. Experimental results of a SAW filter designed with OFC transducers are presented. The SAW correlation filter was designed using seven contiguous chip frequencies within the transducer. SAW correlators with a 29% fractional bandwidth were fabricated on lithium niobate (LiNbO3) having a center frequency of 250 MHz. A coupling-of-modes (COM) model is used to predict the SAW filter response experimentally and is compared to the measured data. Good correlation between the predicted COM responses and the measured device data is obtained. Discussion of the design, analysis, and measurements are presented. The experimental matched filter results are shown for the OFC device and are compared to the ideal correlation. The results demonstrate the OFC SAW device concept for UWB communication transceivers. PMID:18407859

  7. Ultra-wideband 4 × 4 Phased Array Containing Exponentially Tapered Slot Antennas and a True-Time Delay Phase Shifter at UHF

    NASA Astrophysics Data System (ADS)

    Schmitz, J.; Jung, M.; Bonney, J.; Caspary, R.; Schüür, J.; Schöbel, J.

    For angular scanning a true-time array is developed for UHF ultra-wideband (UWB) applications in time and/or frequency domain. It is based on a 4 × 4 array with antipodal exponentially tapered slot antennas (ETSA, Vivaldi) and a 3-bit phase shifter. Distances of antenna elements are designed to be compromise between gain, scanning angle, side/grating lobe levels. The uniform spaced and fed array maximizes the overall gain. After defining the antenna shape, corrugations are introduced to improve antenna matching and gain pattern. Nine equally spaced beam positions for a 90° scanning angle are induced by an optimized 3-bit phase shifter on high permittivity substrate, while 4 bits are usually needed. Parasitic resonances are avoided by using PIN diodes in single pole double throw configuration. All components and the complete array system are simulated and verified in frequency domain with good agreement. Adaptation to UWB pulses is possible.

  8. Survey of Ultra-wideband Radar

    NASA Astrophysics Data System (ADS)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  9. SCRF spectral mask compliant ultra-wideband signal generation approaches for RoF systems

    NASA Astrophysics Data System (ADS)

    Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert K.; Vinogradova, Irina L.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmiyarov, Arsen A.; Zainullin, Airat R.

    2016-03-01

    Ultra-wideband (UWB) signal generation approach for Radio-over-Fiber (RoF) systems is proposed in the paper. Impulse-radio ultra-wideband (IR-UWB) transmission technology experimental realization comply with State Committee on Radio Frequency (SCRF) regulations is offered in the paper. Three separate IR-UWB signals with carrier frequencies 4,5 GHz, 7 GHz and 9,5 GHz are generated. Such frequencies were chosen because of SCRF spectral mask "windows". The frequencies 4,5 GHz, 7 GHz and 9,5 GHz are the central frequencies of these "windows". To assess the performance of proposed system bit error rate (BER) measurements were taken. UWB signal generation schemes and received IR-UWB signal are shown in the figures. The correlation between BER and received optical power is given in the paper. In the case of UWB signal photonic generation approach the correlation between BER and received optical power for different SMF fiber lengths is given.

  10. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  11. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  12. Photonic Generation of Dual-Band Power-Efficient Millimeter-Wave UWB Signals

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhou, Hua

    2015-05-01

    Ultra-wideband (UWB) technology has attracted great interest because it can provide a promising solution of future radar and short-range broadband wireless communications. The generation of millimeter-wave UWB signals using photonic approaches can reduce the high cost of the millimeter-wave electrical circuits. Moreover, it is well compatible with fiber transmission, which can effectively extend its signal coverage. In this paper, a novel approach to the photonic generation of millimeter-wave UWB signals with dual-band operation consideration is proposed. The proposed scheme can simultaneously generate millimeter-wave UWB signals in both 24 GHz and 60 GHz millimeter band, and can efficiently exploit the spectrum limit allowed by the FCC mask by using the linear combination pulse design concept. A model describing the proposed system is developed and the generation of 24/60 GHz millimeter-wave UWB signals is demonstrated via computer simulations.

  13. Method of remote powering and detecting multiple UWB passive tags in an RFID system

    SciTech Connect

    Dowla, Farid U.; Nekoogar, Faranak; Benzel, David M.; Dallum, Gregory E.; Spiridon, Alex

    2012-05-29

    A new Radio Frequency Identification (RFID), tracking, powering apparatus/system and method using coded Ultra-wideband (UWB) signaling is introduced. The proposed hardware and techniques disclosed herein utilize a plurality of passive UWB transponders in a field of an RFID-radar system. The radar system itself enables multiple passive tags to be remotely powered (activated) at about the same time frame via predetermined frequency UWB pulsed formats. Once such tags are in an activated state, an UWB radar transmits specific "interrogating codes" to put predetermined tags in an awakened status. Such predetermined tags can then communicate by a unique "response code" so as to be detected by an UWB system using radar methods.

  14. Augmented reality using ultra-wideband radar imagery

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam; Koenig, Francois; Sherbondy, Kelly

    2011-06-01

    The U.S. Army Research Laboratory (ARL) has been investigating the utility of ultra-wideband (UWB) synthetic aperture radar (SAR) technology for detecting concealed targets in various applications. We have designed and built a vehicle-based, low-frequency UWB SAR radar for proof-of-concept demonstration in detecting obstacles for autonomous navigation, detecting concealed targets (mines, etc.), and mapping internal building structures to locate enemy activity. Although the low-frequency UWB radar technology offers valuable information to complement other technologies due to its penetration capability, it is very difficult to comprehend the radar imagery and correlate the detection list from the radar with the objects in the real world. Using augmented reality (AR) technology, we can superimpose the information from the radar onto the video image of the real world in real-time. Using this, Soldiers would view the environment and the superimposed graphics (SAR imagery, detection locations, digital map, etc.) via a standard display or a head-mounted display. The superimposed information would be constantly changed and adjusted for every perspective and movement of the user. ARL has been collaborating with ITT Industries to implement an AR system that integrates the video data captured from the real world and the information from the UWB radar. ARL conducted an experiment and demonstrated the real-time geo-registration of the two independent data streams. The integration of the AR sub-system into the radar system is underway. This paper presents the integration of the AR and SAR systems. It shows results that include the real-time embedding of the SAR imagery and other information into the video data stream.

  15. Ultra-wideband radar sensors and networks

    DOEpatents

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  16. Software-Defined Ultra-wideband Radio Communications: A New RF Technology for Emergency Response Applications

    SciTech Connect

    Nekoogar, F; Dowla, F

    2009-10-19

    Reliable wireless communication links for local-area (short-range) and regional (long-range) reach capabilities are crucial for emergency response to disasters. Lack of a dependable communication system can result in disruptions in the situational awareness between the local responders in the field and the emergency command and control centers. To date, all wireless communications systems such as cell phones and walkie-talkies use narrowband radio frequency (RF) signaling for data communication. However, the hostile radio propagation environment caused by collapsed structures and rubble in various disaster sites results in significant degradation and attenuation of narrowband RF signals, which ends up in frequent communication breakdowns. To address the challenges of reliable radio communication in disaster fields, we propose an approach to use ultra-wideband (UWB) or wideband RF waveforms for implementation on Software Defined Radio (SDR) platforms. Ultra-wideband communications has been proven by many research groups to be effective in addressing many of the limitations faced by conventional narrowband radio technologies. In addition, LLNL's radio and wireless team have shown significant success in field deployment of various UWB communications system for harsh environments based on LLNL's patented UWB modulation and equalization techniques. Furthermore, using software defined radio platform for UWB communications offers a great deal of flexibility in operational parameters and helps the radio system to dynamically adapt itself to its environment for optimal performance.

  17. Ultra-wideband miniaturized microstrip patch antennas for wireless communications: Design guidelines and modeling

    NASA Astrophysics Data System (ADS)

    Dandu, Varun Kumar

    The number of wireless communication applications continue to increase steadily, leading to competition for currently allocated frequency bands. Capacity issues in form of data rate and latency have always been a bottleneck for broadband wireless-communication usage. New communication systems like ultra-wideband (UWB) require larger bandwidth than what is normally utilized with traditional antenna techniques. The interest for compact consumer electronics is growing in the meantime, creating a demand on efficient and low profile antennas which can be integrated on a printed circuit board. The main objective of this thesis is to study, design, analyze and implement UWB low profile microstrip patch antenna that satisfy UWB technology requirements. Some methods to extend the bandwidth and other antenna parameters associated with wideband usages are studied. Several techniques are used for optimal UWB bandwidth performance of the UWB microstrip patch antenna. The performance parameters such as VSWR, Gain and radiation pattern of the UWB microstrip patch antenna is extensively investigated with simulations using FEKO. A set of simple design guidelines is proposed to provide approximate rules that result in optimum "first-pass" designs of probe-fed, miniaturized, low profile, microstrip UWB antennas using different bandwidth-enhancement techniques to satisfy UWB bandwidth that require minimal tuning.

  18. UWB delay and multiply receiver

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-09-10

    An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.

  19. UTag: Long-range Ultra-wideband Passive Radio Frequency Tags

    SciTech Connect

    Dowla, F

    2007-03-14

    Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

  20. A compact ultra wideband antenna with WiMax band rejection for energy scavenging

    NASA Astrophysics Data System (ADS)

    Jalil, Y. E.; Kasi, B.; Chakrabarty, C. K.

    2013-06-01

    Radio Frequency (RF) energy harvesting has been rapidly advancing as a promising alternative to existing energy scavenging system. A well designed broadband antenna such as ultra-wideband (UWB) antenna can be used as one of the major components in an RF energy scavenging system. This paper presents a compact UWB antenna showing good impedance matching over a bandwidth of 2.8 to 11 GHz, suiTable for broadband RF energy scavenging. Nevertheless, the antenna usage in wireless communication has a limitation due to the problem of interference between UWB system and other narrowband systems. Thus, the proposed antenna is successfully designed with a single band-notched at the targeted WiMAX operating band of 3.3 to 3.6 GHz.

  1. Ultra-Wideband Radars for Measurements over Land and Sea Ice

    NASA Astrophysics Data System (ADS)

    Gogineni, S.; Hale, R.; Miller, H. G.; Yan, S.; Rodriguez-Morales, F.; Leuschen, C.; Wang, Z.; Gomez-Garcia, D.; Binder, T.; Steinhage, D.; Gehrmann, M.; Braaten, D. A.

    2015-12-01

    We developed two ultra-wideband (UWB) radars for measurements over the ice sheets in Greenland and Antarctica and sea ice. One of the UWB radars operates over a 150-600 MHz frequency range with a large, cross-track 24-element array. It is designed to sound ice, image the ice-bed interface, and map internal layers with fine resolution. The 24-element array consists of three 8-element sub-arrays. One of these sub-arrays is mounted under the fuselage of a BT-67 aircraft; the other two are mounted under the wings. The polarization of each antenna element can be individually reconfigured depending on the target of interest. The measured inflight VSWR is less than 2 over the operating range. The fuselage sub-array is used both for transmission and reception, and the wing-mounted sub-arrays are used for reception. The transmitter consists of an 8-channel digital waveform generator to synthesize chirped pulses of selectable pulse width, duration, and bandwidth. It also consists of drivers and power amplifiers to increase the power level of each individual channel to about 1 kW and a fast high-power transmit/receive switch. Each receiver consists of a limiter, switches, low-noise and driver amplifiers, and filters to shape and amplify received signals to the level required for digitization. The digital sub-section consists of timing and control sub-systems and 24 14-bit A/D converters to digitize received signals at a rate of 1.6 GSPS. The radar performance is evaluated using an optical delay line to simulate returns from about 2 km thick ice, and the measured radar loop sensitivity is about 215 dB. The other UWB microwave radar operates over a 2-18 GHz frequency range in Frequency-Modulated Continuous Wave (FM-CW) mode. It is designed to sound more than 1 m of snow over sea ice and map internal layers to a depth about 25-40 m in polar firn and ice. We operated the microwave radar over snow-covered sea ice and mapped snow as thin as 5 cm and as thick as 60 cm. We mapped

  2. Signal processing techniques for stepped frequency ultra-wideband radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam

    2014-05-01

    The U.S. Army Research Laboratory (ARL) has developed the impulse-based, ground vehicle-based, forward-looking ultra-wideband (UWB), synthetic aperture radar (SAR) to detect concealed targets. Although the impulse-based architecture offers its own advantages, one of the important challenges is that when using this architecture it is very difficult to transmit a radar signal with an arbitrary bandwidth and shape. This feature is crucial for the radar to be compliant with the local frequency authority. In addition, being able to transmit signals with an arbitrary spectral shape is an important step in creating the next generation of smart (cognitive) radars. Therefore, we have designed a next-generation prototype radar to take advantage of the stepped frequency architecture. The design and building of the radar hardware is underway. In this paper, we study the radar transmit and acquisition scheme; the trade-offs between SAR image performance and various key radar parameters; and data reconstruction techniques for radar signals with an arbitrary spectrum. This study demonstrates performance, provides some guidelines for the radar design, and serves as a foundation for the signal and image processing stage.

  3. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    PubMed

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible. PMID:24663829

  4. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  5. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, T.E.

    1998-05-19

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna. 8 figs.

  6. Suppression of radio frequency inteference (RFI) for synchronous impulse reconstruction ultra-wideband radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam; Soumekh, Mehrdad

    2005-05-01

    This paper is concerned with the issues associated with the suppression of radio frequency interference (RFI) for a synchronous impulse reconstruction (SIRE) ultra-wideband (UWB) synthetic aperture radar (SAR) that is currently being designed and built at the Army Research Laboratory. In this effort, we are developing the next version of the UWB radar that can employ inexpensive A/D converters to digitize wideband signals using the equivalent time sampling technique. In this presentation, we provide an analytical model for the signature of the RFI sources that are measured via an equivalent time sampling scheme. This formulation reveals spectral as well as temporal properties of the measured RFI signals that would aid a user in developing sniff (passive) data collection strategies for constructing adaptive digital signal processing methods for suppressing RFI sources.

  7. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  8. Ultra-wideband Propagation Loss Around a Human Body in Various Surrounding Environments

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Kobayashi, T.

    Ultra-wideband (UWB) technologies have been anticipated for use in wireless body area networks (WBAN) because of their low power consumption and anti-multipath capabilities. This chapter presents the UWB (3.1-10.6 GHz) propagation loss in WBAN scenarios between on-body antennas in three different surrounding environments. The measurements were performed in a 3-m radio anechoic chamber, a classroom, and a small room. The propagation paths were roughly divided into line-of-sight (LOS) and non-LOS (NLOS) ones. Small rooms, particularly NLOS, yielded higher reception power than larger rooms. This was attributed to the ample multipath from the nearby floor, walls, and ceiling. The UWB maximum propagation losses in three surrounding environments were smaller than ones of CW (6.85 GHz). This is because nulls caused by interference were cancelled out by the ultra-wide bandwidth. The propagation losses of low-band (3.4-4.8 GHz) and high-band (7.25-10.25 GHz) UWB were also evaluated. In WBAN scenarios, the low-band yielded lower propagation loss than the high-band and approximately the same loss as the full-band UWB (3.1-10.6 GHz).

  9. 47 CFR 15.521 - Technical requirements applicable to all UWB devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements applicable to all UWB devices. 15.521 Section 15.521 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.521 Technical requirements applicable to all UWB devices. (a) UWB devices may not be employed for...

  10. 47 CFR 15.519 - Technical requirements for hand held UWB systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for hand held UWB... DEVICES Ultra-Wideband Operation § 15.519 Technical requirements for hand held UWB systems. (a) UWB devices operating under the provisions of this section must be hand held, i.e., they are relatively...

  11. 47 CFR 15.519 - Technical requirements for hand held UWB systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for hand held UWB... DEVICES Ultra-Wideband Operation § 15.519 Technical requirements for hand held UWB systems. (a) UWB devices operating under the provisions of this section must be hand held, i.e., they are relatively...

  12. 47 CFR 15.519 - Technical requirements for hand held UWB systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for hand held UWB... DEVICES Ultra-Wideband Operation § 15.519 Technical requirements for hand held UWB systems. (a) UWB devices operating under the provisions of this section must be hand held, i.e., they are relatively...

  13. 47 CFR 15.519 - Technical requirements for hand held UWB systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for hand held UWB... DEVICES Ultra-Wideband Operation § 15.519 Technical requirements for hand held UWB systems. (a) UWB devices operating under the provisions of this section must be hand held, i.e., they are relatively...

  14. 47 CFR 15.519 - Technical requirements for hand held UWB systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for hand held UWB... DEVICES Ultra-Wideband Operation § 15.519 Technical requirements for hand held UWB systems. (a) UWB devices operating under the provisions of this section must be hand held, i.e., they are relatively...

  15. 47 CFR 15.521 - Technical requirements applicable to all UWB devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements applicable to all UWB devices. 15.521 Section 15.521 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.521 Technical requirements applicable to all UWB devices. (a) UWB devices may not be employed for...

  16. Multi-pulse multi-delay (MPMD) multiple access modulation for UWB

    DOEpatents

    Dowla, Farid U.; Nekoogar, Faranak

    2007-03-20

    A new modulation scheme in UWB communications is introduced. This modulation technique utilizes multiple orthogonal transmitted-reference pulses for UWB channelization. The proposed UWB receiver samples the second order statistical function at both zero and non-zero lags and matches the samples to stored second order statistical functions, thus sampling and matching the shape of second order statistical functions rather than just the shape of the received pulses.

  17. Generalized equivalent circuit model for ultra wideband antenna structure with double steps for energy scavenging

    NASA Astrophysics Data System (ADS)

    >Oon Kheng Heong, Goh Chin; Chakrabarty, Chandan Kumar; >Goh Tian Hock,

    2013-06-01

    There are various types of UWB antennas can be used to scavenge energy from the air and one of them is the printed disc monopole antenna. One of the new challenges imposed on ultra wideband is the design of a generalized antenna circuit model. It is developed in order to extract the inductance and capacitance values of the UWB antennas. In this research work, the developed circuit model can be used to represent the rectangular printed disc monopole antenna with double steps. The antenna structure is simulated with CST Microwave Studio, while the circuit model is simulated with AWR Microwave Office. In order to ensure the simulation result from the circuit model is accurate, the circuit model is also simulated using Mathlab program. The developed circuit model is found to be able to depict the actual UWB antenna. Energy harvesting from environmental wirelessly is an emerging method, which forms a promising alternative to existing energy scavenging system. The developed UWB can be used to scavenge wideband energy from electromagnetic wave present in the environment.

  18. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    PubMed

    Kim, Nammoon; Kim, Youngok

    2011-01-01

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme. PMID:21970578

  19. Real-time kinematic surveying using tightly-coupled GPS and ultra-wideband ranging

    NASA Astrophysics Data System (ADS)

    Macgougan, Glenn D.

    Ultra-wideband (UWB) ranging radios, an emerging technology that offers precise, short distance, range measurements are investigated as a method to augment carrier-phase GPS positioning. This thesis begins with a discussion of radio-frequency based methods of augmenting high precision GPS and proposes to utilize UWB ranging technology in a tightly-coupled GPS and UWB position estimation filter. This thesis then provides an overview of UWB in the context of ranging applications and assesses the precision and accuracy of UWB ranging from both a theoretical perspective and a practical perspective using real data. Two types of commercially available UWB ranging radios are introduced which are used in testing. Actual ranging accuracy is assessed from line-of-sight testing in benign signal conditions and in outdoor testing with line-of-sight obstructions and strong reflection sources. A tightly-coupled GPS and UWB real-time kinematic (RTK) estimation method is developed and the performance of the system is evaluated in static and kinematic testing. The results of static testing show that the integrated solution provides better accuracy, better ability to resolve integer ambiguities and enhanced fixed ambiguity solution availability compared with GPS alone. The results of kinematic testing demonstrate that UWB errors can be successfully estimated in a real-time filter. In static and kinematic testing in a degraded GPS environment created by artificially inducing a 40° satellite elevation mask, subdecimetre accuracy was maintained. The tightly-coupled system is also tested to survey several external corner points of an eight story building. The tightly-coupled solution is compared to GPS-only, UWB-only, and loosely-coupled solutions. Sub-metre level solutions are maintained using tight-coupling in conditions where the solutions from the other three approaches are either unavailable or unreliable. The thesis also provides a novel and efficient method for deploying UWB

  20. The Parkes Ultra-Wideband Receiver

    NASA Astrophysics Data System (ADS)

    Manchester, Richard N.

    2015-08-01

    An ultra-wideband receiver system for the Parkes 64-m radio telescope covering the frequency range 0.7 - 4.0 GHz is currently under construction. Its main applications will be to pulsar studies, but it will also be used for spectral-line and continuum background polarisation studies and VLBI. A new feed design with remarkably constant beam properties across the band and excellent polarisation performance will be used. We plan to directly digitise the RF signals in the focus cabin and transmit the digital data via optical fibre to a versatile signal processing system using FPGA processors and a GPU cluster located in the telescope tower. With the relatively low radio frequency and very wide band, dealing with radio frequency interference is a critical issue. We have undertaken surveys of the RFI environment at Parkes and are developing several complementary techniques for mitigating the effects on data quality of both broad-band transients and quasi-stationary narrow-band signals.

  1. Multi-GHz bandpass, high-repetition rate single channel mobile diagnostic system for ultra-wideband applications

    NASA Astrophysics Data System (ADS)

    Miner, Lynn M.; Voss, Donald E.

    1993-01-01

    Characterizing radiated ultra-wideband (UWB) signals poses challenges due to requirements for (1) multi-GHz bandpass recording of the signal's leading edge; (2) GHz-bandpass recording of long record lengths (10s-100s of ns); and (3) determining shot-to-shot reproducibility at rep-rates exceeding 10 kHz. The System Verification Apparatus (SVA) is a novel diagnostic system which can measure 60-ps rise-time signals on a single-shot basis, while monitoring pulse-to-pulse variation. The fully-integrated SVA includes a broadband sensor, signal and trigger conditioning electronics, multiple parallel digitizers with deep local storge, and automated software for acquiring, archiving, and analyzing waveform data with rapid (secs-minute) turnaround time. The instruments are housed in a portable 100-dB shielded aluminum enclosure. The SVA utilizes a 6-GHz bandpass free-field D-dot sensor to measure the incident electric field. Three separate digitizers together meet the requirements of high bandwidth, long record length, and high repetition rate. A 6-GHz bandpass scan converter digitizer captures the leading edge (few ns) of the radiated signal. 1-GHz and 600 MHz bandwidth solid-state digitizers supporting long record lengths (greater than 2 micrometers) record the balance of the signal, which typically contains negligible content above 1 GHz. These solid-state digitizers can store greater than 900 waveforms locally at rep-rates exceeding 65 Hz and 100 kHz, respectively. Data management and instrument control use an 80486-based PC, operating in a user-friendly Windows environment. All waveform and system configuration data are automatically stored in a built-in database. A fiber-optic link, up to 2 km long, provides electromagnetic isolation of the computer.

  2. Ultra-wideband electronics, design methods, algorithms, and systems for dielectric spectroscopy of isolated B16 tumor cells in liquid medium

    NASA Astrophysics Data System (ADS)

    Maxwell, Erick N.

    Quantifying and characterizing isolated tumor cells (ITCs) is of interest in surgical pathology and cytology for its potential to provide data for cancer staging, classification, and treatment. Although the independent prognostic significance of circulating ITCs has not been proven, their presence is gaining clinical relevance as an indicator. However, researchers have not established an optimal method for detecting ITCs. Consequently, this Ph.D. dissertation is concerned with the development and evaluation of dielectric spectroscopy as a low-cost method for cell characterization and quantification. In support of this goal, ultra-wideband (UWB), microwave pulse generator circuits, coaxial transmission line fixtures, permittivity extraction algorithms, and dielectric spectroscopy measurement systems were developed for evaluating the capacity to quantify B16-F10 tumor cells in suspension. First, this research addressed challenges in developing tunable UWB circuits for pulse generation. In time-domain dielectric spectroscopy, a tunable UWB pulse generator facilitates exploration of microscopic dielectric mechanisms, which contribute to dispersion characteristics. Conventional approaches to tunable pulse generator design have resulted in complex circuit topologies and unsymmetrical waveform morphologies. In this research, a new design approach for low-complexity, tunable, sub-nanosecond and UWB pulse generator was developed. This approach was applied to the development of a novel generator that produces symmetrical waveforms (patent pending 60/597,746). Next, this research addressed problems with transmission-reflection (T/R) measurement of cell suspensions. In T/R measurement, coaxial transmission line fixtures have historically required an elaborate sample holder for containing liquids, resulting in high cost and complexity. Furthermore, the algorithms used to extract T/R dielectric properties have suffered from myriad problems including local minima and

  3. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOEpatents

    Warhus, J.P.; Mast, J.E.

    1998-11-10

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 11 figs.

  4. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOEpatents

    Warhus, John P.; Mast, Jeffrey E.

    1998-01-01

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  5. A UWB wireless capsule endoscopy device.

    PubMed

    Thotahewa, Kasun M S; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2014-01-01

    Wireless capsule endoscopy (WCE) presents many advantages over traditional wired endoscopic methods. The performance of WCE devices can be improved using high-frequency communication systems such as Impulse Radio-Ultra-Wideband (IR-UWB) to enable a high data rate transmission with low-power consumption. This paper presents the hardware implementation and experimental evaluation of a WCE device that uses IR-UWB signals in the frequency range of 3.5 GHz to 4.5 GHz to transmit image data from inside the body to a receiver placed outside the body. Key components of the IR-UWB transmitter, such as the narrow pulse generator and up-conversion based RF section are described in detail. This design employs a narrowband receiver in the WCE device to receive a control signal externally in order to control and improve the data transmission from the device in the body. The design and performance of a wideband implantable antenna that operates in the aforementioned frequency range is also described. The operation of the WCE device is demonstrated through a proof-of-concept experiment using meat. PMID:25571601

  6. Technical note: a novel approach to the detection of estrus in dairy cows using ultra-wideband technology.

    PubMed

    Homer, E M; Gao, Y; Meng, X; Dodson, A; Webb, R; Garnsworthy, P C

    2013-10-01

    Detection of estrus is a key determinant of profitability of dairy herds, but estrus is increasingly difficult to observe in the modern dairy cow with shorter duration and less-intense estrus. Concurrent with the unfavorable correlation between milk yield and fertility, estrus-detection rates have declined to less than 50%. We tested ultra-wideband (UWB) radio technology (Thales Research & Technology Ltd., Reading, UK) for proof of concept that estrus could be detected in dairy cows (two 1-wk-long trials; n=16 cows, 8 in each test). The 3-dimensional positions of 12 cows with synchronized estrous cycles and 4 pregnant control cows were monitored continuously using UWB mobile units operating within a network of 8 base units for a period of 7d. In the study, 10 cows exhibited estrus as confirmed by visual observation, activity monitoring, and milk progesterone concentrations. Automated software was developed for analysis of UWB data to detect cows in estrus and report the onset of estrus in real time. The UWB technology accurately detected 9 out of 10 cows in estrus. In addition, UWB technology accurately confirmed all 6 cows not in estrus. In conclusion, UWB technology can accurately detect estrus and hence we have demonstrated proof of concept for a novel technology that has significant potential to improve estrus-detection rates. PMID:23910546

  7. Matching layer for path loss reduction in ultra wideband implant communications.

    PubMed

    Chavez-Santiago, Raul; Khaleghi, Ali; Balasingham, Ilangko

    2014-01-01

    Real-time monitoring of various physiological signals is of utmost importance for the treatment of chronic conditions. Radio technology can enable real-time sensing and collection of physiological data to facilitate timely medication and early pre-hospital management of patients. This can be realized with the aid of implantable biomedical sensors with the capability to transmit wirelessly the collected information to an external unit for display and analysis. Currently, commercial wireless medical implantable sensors operate in frequencies below 1 GHz with narrowband signals. Recently, it has been demonstrated that ultra wideband (UWB) signals could be also used for the radio interface of these devices. However, establishing an implant communication link in the allocated UWB spectrum of 3.1-10.6 GHz is challenging. The attenuation of UWB signals propagating through biological tissues at these frequencies is high. Part of these path losses are caused by the impedance mismatch between the two propagation environments (i.e., air and biological tissues) that constitute an implant communication link. This mismatch results in inefficient power transmission of the radio waves. In this paper we propose the use of a layer of dielectric material that can be applied on the patient's skin. The permittivity value of this matching layer has to be chosen such that wave coupling is maximized. Through numerical simulations we determined the appropriate permittivity value of a matching layer for UWB implant communication links in the human thorax for 1-6 GHz. Path loss reduction of up to 10 dB can be obtained in this frequency band. These results can help improve the use of UWB signals for other in-body biomedical devices like the wireless capsule endoscope (WCE). PMID:25571604

  8. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  9. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  10. Ultra-wideband transparent 90° polarization conversion metasurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Hongya; Ma, Hua; Wang, Jiafu; Qu, Shaobo; Pang, Yongqiang; Yan, Mingbao; Li, Yongfeng

    2016-04-01

    We propose to realize ultra-wideband transparent 90° polarization conversion metasurfaces by combining multiple plasmon resonances and Fabry-Perot-like resonances. An ultra-wideband polarization conversion metasurface is designed using a double-head arrow structure and metal gratings. It has been demonstrated that the bandwidth can be broadened greatly based on multiple plasmon resonances, while the efficiency can be enhanced strongly based on Fabry-Perot-like resonances. The both simulated and measured results show that the bandwidth of cross-polarized transmission is very wide, with a 1:6 3 dB bandwidth. The experimental results agree well with simulation ones.

  11. Principle and experimental results of ultra-wideband noise radar imaging of a cylindrical conducting object using diffraction tomography

    NASA Astrophysics Data System (ADS)

    Shin, Hee Jung; Asmuth, Mark A.; Narayanan, Ram M.; Rangaswamy, Muralidhar

    2015-05-01

    In this paper, the principle, simulation, and experiment results of tomographic imaging of a cylindrical conducting object using random noise waveforms are presented. Theoretical analysis of scattering and the image reconstruction technique are developed based on physical optics approximation and Fourier diffraction tomography, respectively. The bistatic radar system is designed to transmit band-limited ultra-wideband (UWB) random noise waveforms at a fixed position, and a linear scanner allows a single receiving antenna to move along a horizontal axis for backward scattering measurement in the frequency range from 3-5 GHz. The reconstructed tomographic image of the rotating cylindrical conducting object based on experimental results are seen to be in good agreement with the simulation results, which demonstrates the capability of UWB noise radar for complete two-dimensional tomographic image reconstruction of a cylindrical conducting object.

  12. A Novel Picosecond Pulse Generation Circuit Based on SRD and NLTL.

    PubMed

    Zhou, Jianming; Lu, Qiuyuan; Liu, Fan; Li, Yinqiao

    2016-01-01

    Because of the importance of ultra-wideband (UWB) radar in various applications, short pulse generation in UWB systems has attracted a lot of attention in recent years. In order to shorten the pulse, nonlinear transmission line (NLTL) is imported, which expands the application of step recovery diode (SRD) for pulse generation. Detailed analysis and equations for this SRD and NLTL-based pulse generation are provided and verified by simulation and experimental results. Factors that could cause pulse waveform distortions are also analyzed. The generator circuit presented in this paper generates 130ps and 3.3V pulse, which can be used in UWB radar systems that require sub-nanosecond pulses. PMID:26919290

  13. A Novel Picosecond Pulse Generation Circuit Based on SRD and NLTL

    PubMed Central

    Zhou, Jianming; Lu, Qiuyuan; Liu, Fan; Li, Yinqiao

    2016-01-01

    Because of the importance of ultra-wideband (UWB) radar in various applications, short pulse generation in UWB systems has attracted a lot of attention in recent years. In order to shorten the pulse, nonlinear transmission line (NLTL) is imported, which expands the application of step recovery diode (SRD) for pulse generation. Detailed analysis and equations for this SRD and NLTL-based pulse generation are provided and verified by simulation and experimental results. Factors that could cause pulse waveform distortions are also analyzed. The generator circuit presented in this paper generates 130ps and 3.3V pulse, which can be used in UWB radar systems that require sub-nanosecond pulses. PMID:26919290

  14. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    PubMed Central

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied. PMID:22163498

  15. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    NASA Astrophysics Data System (ADS)

    Meena, M. L.; Parmar, Girish; Kumar, Mithilesh

    2016-03-01

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  16. Cooperative Localization Bounds for Indoor Ultra-Wideband Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Alsindi, Nayef; Pahlavan, Kaveh

    2007-12-01

    In recent years there has been growing interest in ad-hoc and wireless sensor networks (WSNs) for a variety of indoor applications. Localization information in these networks is an enabling technology and in some applications it is the main sought after parameter. The cooperative localization performance of WSNs is constrained by the behavior of the utilized ranging technology in dense cluttered indoor environments. Recently, ultra-wideband (UWB) Time-of-Arrival (TOA) based ranging has exhibited potential due to its large bandwidth and high time resolution. The performance of its ranging and cooperative localization capabilities in dense indoor multipath environments, however, needs to be further investigated. Of main concern is the high probability of non-line of sight (NLOS) and Direct Path (DP) blockage between sensor nodes which biases the TOA estimation and degrades the localization performance. In this paper, based on empirical models of UWB TOA-based Outdoor-to-Indoor (OTI) and Indoor-to-Indoor (ITI) ranging, we derive and analyze cooperative localization bounds for WSNs in different indoor multipath environments: residential, manufacturing floor, old office and modern office buildings. First, we highlight the need for cooperative localization in indoor applications. Then we provide comprehensive analysis of the factors affecting localization accuracy such as network and ranging model parameters.

  17. Imaging of Ultra-Wideband Georadar Data

    NASA Astrophysics Data System (ADS)

    ferguson, Robert; Yedlin, Matthew; Pichot, Christian; Dauvignac, Jean-Yves; Fortino, Nicolas; Gaffet, Stéphane

    2013-04-01

    We present a methodology for georadar acquisition and processing that returns superior images of the subsurface for low cost. Georadar data were acquired in March 2011 in the anti-blast tunnel within the Inter-Disciplinary Underground Science & Technology Laboratory at the Laboratoire Souterrain a Bas Bruit (LSBB, http://lsbb.oca.eu), Rustrel, France. The georadar data from LSBB were acquired with an exponentially tapered slot antenna (ETSA) of the Vivaldi type. The ETSA is connected to an Agilent vector network analyzer and it operates between 150 MHz to 2 GHz with a noise floor of -120 dB. One of the most interesting technical aspects of the recordings is the use of both a conventional bistatic recording geometry (the source / receiver offset is about 65 cm) and what we will call a monostatic recording geometry where the emitting antenna is also the receiving antenna. The monostatic (reflection) data and bistatic (transmission) data are recorded complex numbers and each recorded number is a stack of monochromatic wave measurements. This system is reported to have a number of outstanding attributes including long depth of resolution due to it's wide bandwidth. Compared to other systems it has a greater dynamic range plus low distortion, and this is achieved with low-noise, low-loss cables and shielding with ultra-wideband absorbers. The resulting monostatic georadargrams are a true, zero-offset recording geometry, and so zero-offset migration (imaging that is based on the exploding reflector concept) returns a high accuracy image for low cost. To restore reflection attenuation due to the low Q factor associated with georadar, we apply nonstationary, Gabor-domain deconvolution. We find that amplitude attenuation is restored and phase distortion is corrected. The improved accuracy of our methodology is established first through direct comparison of our Gabor-deconvolved data with conventional, stationary deconvolution where we find that the nonstationary result is

  18. Performance Evaluation of a UWB-RFID System for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Phan, Chan T.; Arndt, D.; Ngo, P.; Gross, J.; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    This talk presents a brief overview of the ultra-wideband (UWB) RFID system with emphasis on the performance evaluation of a commercially available UWB-RFID system. There are many RFID systems available today, but many provide just basic identification for auditing and inventory tracking. For applications that require high precision real time tracking, UWB technology has been shown to be a viable solution. The use of extremely short bursts of RF pulses offers high immunity to interference from other RF systems, precise tracking due to sub-nanosecond time resolution, and robust performance in multipath environments. The UWB-RFID system Sapphire DART (Digital Active RFID & Tracking) will be introduced in this talk. Laboratory testing using Sapphire DART is performed to evaluate its capability such as coverage area, accuracy, ease of operation, and robustness. Performance evaluation of this system in an operational environment (a receiving warehouse) for inventory tracking is also conducted. Concepts of using the UWB-RFID technology to track astronauts and assets are being proposed for space exploration.

  19. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    PubMed

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-08-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of <;1m is first shown with bit-error rates (BER) <; 10(-3). Further, IR-UWB wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz. PMID:26737929

  20. Iterative Frequency-Domain Channel Estimation and Equalization for Ultra-Wideband Systems with Short Cyclic Prefix

    NASA Astrophysics Data System (ADS)

    Bahçeci, Salim; Koca, Mutlu

    2010-12-01

    In impulse radio ultra-wideband (IR-UWB) systems where the channel lengths are on the order of a few hundred taps, conventional use of frequency-domain (FD) processing for channel estimation and equalization may not be feasible because the need to add a cyclic prefix (CP) to each block causes a significant reduction in the spectral efficiency. On the other hand, using no or short CP causes the interblock interference (IBI) and thus degradation in the receiver performance. Therefore, in order to utilize FD receiver processing UWB systems without a significant loss in the spectral efficiency and the performance, IBI cancellation mechanisms are needed in both the channel estimation and equalization operations. For this reason, in this paper, we consider the joint FD channel estimation and equalization for IR-UWB systems with short cyclic prefix (CP) and propose a novel iterative receiver employing soft IBI estimation and cancellation within both its FD channel estimator and FD equalizer components. We show by simulation results that the proposed FD receiver attains performances close to that of the full CP case in both line-of-sight (LOS) and non-line-of-sight (NLOS) UWB channels after only a few iterations.

  1. Focus of attention for millimeter and ultra wideband synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Yen, Li-Kang

    The major goal of this research is to develop efficient detectors for Synthetic Aperture Radar (SAR) images, exploiting the reflectivity characteristics of targets in different radar types. Target detection is a signal processing problem whereby one attempts to detect a stationary target embedded in background clutter while minimizing the false alarm probability. In radar signal processing, the better resolution provided by the Millimeter Wave (MMW) SAR enhances the detectability of small targets. As radar technology evolves, the newly developed Ultra Wideband (UWB) SAR provides better penetration capabilities to locate concealed targets in foliage. In this thesis we demonstrate that local intensity kernel tests can be formulated based on the generalized likelihood ratio test (GLRT), while preserving constant false alarm rate (CFAR) characteristics. Both the widely used two-parameter CFAR and the g -CFAR can be viewed as special cases of the local intensity tests with different intensity kernels. It is demonstrated that the first-order Gamma kernel is a good approximation for the principal eigenvector of the projected radial intensity of targets, which provides the optimal matching intensity kernel. This also explains the better performance of the g -CFAR detector over the two parameter CFAR detector. We also developed different CFAR subspace detectors for UWB images, utilizing a Laguerre function subspace. The driven response produced by natural clutter degrades the performance of these subspace detectors. In addition to the driven response, the distinguishing feature of metallic targets in UWB is the resonance response. Therefore, we further propose a two-stage detection scheme: g -CFAR detector followed by the quadratic Laguerre discriminator (QLD). We evaluate every detector and discriminator using ROC curves in a large area (about 2 km2) of imagery. The combined g -CFAR and quadratic Laguerre discriminator improve the simple Laguerre subspace detector more

  2. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  3. Complex Permittivity of Planar Building Materials Measured With an Ultra-Wideband Free-Field Antenna Measurement System

    PubMed Central

    Davis, Ben; Grosvenor, Chriss; Johnk, Robert; Novotny, David; Baker-Jarvis, James; Janezic, Michael

    2007-01-01

    Building materials are often incorporated into complex, multilayer macrostructures that are simply not amenable to measurements using coax or waveguide sample holders. In response to this, we developed an ultra-wideband (UWB) free-field measurement system. This measurement system uses a ground-plane-based system and two TEM half-horn antennas to transmit and receive the RF signal. The material samples are placed between the antennas, and reflection and transmission measurements made. Digital signal processing techniques are then applied to minimize environmental and systematic effects. The processed data are compared to a plane-wave model to extract the material properties with optimization software based on genetic algorithms. PMID:27110455

  4. A Hybrid TDOA/RSS Localization Algorithm Based on UWB Ranging in Underground Mines

    NASA Astrophysics Data System (ADS)

    Zhu, Daixian; Yi, Kechu

    Ultra-Wideband technology is regarded by many as one of the future key technologies in communications and positioning. In this paper a TDOA/RSS hybrid positioning algorithm is described for accurate underground mine localization of a sensor in a network of known beacons. The sensor measures the range to the beacons using an Ultra-Wideband (UWB) signal and uses statistical inference to correct for the error due to multipath and NLOS in underground mine. It shows that a TDOA/RSS algorithm can be used to improved positioning accuracy over beacon measurement. Simulation results show perfect performance with UWB ranging and TDOA/RSS hybrid localization algorithm.

  5. Amplify-and-Forward Cooperative Diversity for Green UWB-Based WBSNs

    PubMed Central

    2013-01-01

    This paper proposes a novel green cooperative diversity technique based on suboptimal template-based ultra-wideband (UWB) wireless body sensor networks (WBSNs) using amplify-and-forward (AF) relays. In addition, it analyzes the bit-error-rate (BER) performance of the proposed nodes. The analysis is based on the moment-generating function (MGF) of the total signal-to-noise ratio (SNR) at the destination. It also provides an approximate value for the total SNR. The analysis studies the performance of equally correlated binary pulse position modulation (EC-BPPM) assuming the sinusoidal and square suboptimal template pulses. Numerical results are provided for the performance evaluation of optimal and suboptimal template-based nodes with and without relay cooperation. Results show that one relay node provides ~23 dB performance enhancement at 1e − 3 BER, which mitigates the effect of the nondesirable non-line-of-sight (NLOS) links in WBSNs. PMID:24307880

  6. Amplify-and-forward cooperative diversity for green UWB-based WBSNs.

    PubMed

    Shaban, Heba; Abou El-Nasr, Mohamad

    2013-01-01

    This paper proposes a novel green cooperative diversity technique based on suboptimal template-based ultra-wideband (UWB) wireless body sensor networks (WBSNs) using amplify-and-forward (AF) relays. In addition, it analyzes the bit-error-rate (BER) performance of the proposed nodes. The analysis is based on the moment-generating function (MGF) of the total signal-to-noise ratio (SNR) at the destination. It also provides an approximate value for the total SNR. The analysis studies the performance of equally correlated binary pulse position modulation (EC-BPPM) assuming the sinusoidal and square suboptimal template pulses. Numerical results are provided for the performance evaluation of optimal and suboptimal template-based nodes with and without relay cooperation. Results show that one relay node provides ~23 dB performance enhancement at 1e - 3 BER, which mitigates the effect of the nondesirable non-line-of-sight (NLOS) links in WBSNs. PMID:24307880

  7. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  8. Remote Sensing of Snow-covered Sea Ice with Ultra-wideband Airborne Radars

    NASA Astrophysics Data System (ADS)

    Yan, S.; Gogineni, P. S.; Gomez-Garcia, D.; Leuschen, C.; Hale, R.; Rodriguez-Morales, F.; Paden, J. D.; Li, J.

    2015-12-01

    The extent and thickness of sea ice and snow play a critical role in the Earth's climate system. Both sea ice and snow have high albedo and control the heat exchange between the atmosphere and ocean and atmosphere and land. In terms of hydrology, the presence of sea ice and snow modulates the flow and the salinity of ocean water. This in turn can modify the weather patterns around the globe. Understanding the formation, coverage and the properties of sea ice and snow are important for both short-term and long-term climate modeling. The advancements in high-frequency electronics and digital signal processing enabled the development of ultra-wideband radars by the Center for Remote Sensing of Ice Sheets (CReSIS) for airborne measurements of snow and ice properties over large areas. CReSIS recently developed and deployed two ultra-wideband airborne radars, namely the Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I) and the Snow Radar. The MCoRDS/I is designed to operate over the frequency range of 180-450 MHz for sounding land ice and imaging its ice-bed interface. We also took advantage of the deployment to explore the potential of UWB MCoRDS/I in sounding sea ice and collected data on flight lines flown as part of NASA Operation IceBridge mission during Spring 2015. Preliminary results show we sounded sea ice under favorable conditions. We will perform detailed processing and analysis of data over the next few months and we will compare results obtained are compared with existing altimetry-derived data products. The new snow radar, on the other hand, operating from 2 to 18 GHz, was deployed on the NRL Twin Otter aircraft in Barrow, AK. It was shown to have a vertical resolution of down to 1.5 cm which opens up the potential for thin snow measurement on both sea ice and land. Both of these new radars will be further optimized for future airborne missions to demonstrate their capabilities for sea ice and snow measurements. We will also show new technical

  9. Performance of Multiple Pulse Multiple Delay Modulated UWB Signals in a Multiple Access Indoor Wireless Channel

    SciTech Connect

    Nekoogar, F

    2003-06-12

    In this paper, the performance of a two user UWB multiple access (UWB-MA) system based on multiple-pulse multiple-delay (MPMD) modulation scheme in an indoor wireless channel is evaluated by computer simulations. The indoor multipath propagation channel model used in this study is based on the modified statistical Saleh-Valenzuela model proposed by Foerester and Li from Intel. The simulation results indicate that the multipath performance of MPMD modulated signals in a multiple access system outperforms the nonmultipath case as the number of autocorrelation function (ACF) sampling points increases for each user. This is an unusual but important result, since MPMD receiver exploits multipath phenomenon in indoor wireless channels to increase the BER performance, hence the transmission rate in a UWB-MA system.

  10. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  11. Response to FCC 98-208 notice of inquiry in the matter of revision of part 15 of the commission's rules regarding ultra-wideband transmission systems

    SciTech Connect

    Morey, R M

    1998-12-08

    In general, Micropower Impulse Radar (MIR) depends on Ultra-Wideband (UWB) transmission systems. UWB technology can supply innovative new systems and products that have an obvious value for radar and communications uses. Important applications include bridge-deck inspection systems, ground penetrating radar, mine detection, and precise distance resolution for such things as liquid level measurement. Most of these UWB inspection and measurement methods have some unique qualities, which need to be pursued. Therefore, in considering changes to Part 15 the FCC needs to take into account the unique features of UWB technology. MIR is applicable to two general types of UWB systems: radar systems and communications systems. Currently LLNL and its licensees are focusing on radar or radar type systems. LLNL is evaluating MIR for specialized communication systems. MIR is a relatively low power technology. Therefore, MIR systems seem to have a low potential for causing harmful interference to other users of the spectrum since the transmitted signal is spread over a wide bandwidth, which results in a relatively low spectral power density.

  12. UWB Tracking Software Development

    NASA Technical Reports Server (NTRS)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  13. Radiated Emission of Breath Monitoring System Based on UWB Pulses in Spacecraft Modules

    NASA Astrophysics Data System (ADS)

    Russo, P.; Mariani Primiani, V.; De Leo, A.; Cerri, G.

    2012-05-01

    The paper describes some EMC aspects related to a UWB radar for monitoring astronauts breathing activity. Compliance to EMC space standards forces some design aspects, in particular the peak voltage and the pulse waveform. Moreover some simulations were carried out to consider realistic operating condition. In the first case the interference towards a victim wifi circuit was analyzed, in the second case the effect of the environment on the radiated pulse was studied.

  14. An approach to remove the clutter and detect the target for ultra-wideband through-wall imaging

    NASA Astrophysics Data System (ADS)

    Chandra, R.; Gaikwad, Abhay N.; Singh, Dharmendra; Nigam, M. J.

    2008-12-01

    Through-wall imaging (TWI) is important from the point of view of rescue operations and surveillance. Several researchers have been working in this field but have still not obtained any concrete results. TWI using narrow band radar faces the problem of low resolution whereas ultra-wideband (UWB) radar provides better resolution, classification and low loss for the imaging signals. TWI faces many challenges in collecting the scattered electromagnetic fields from objects located behind the wall and also in processing the data in order to detect, locate and image the object. One of the important factors for achieving a high-quality image is to use clutter reduction techniques so that clutter as well as false target detection can be minimized. Therefore, in this paper, an attempt has been made to develop a clutter reduction technique for TWI in the UWB range for target detection. For this purpose, an experiment has been carried out with a TWI system in the UWB range for determination of the target position and size along with the development of the signal processing technique to minimize the clutter. A singular value decomposition (SVD) algorithm has been applied for clutter reduction. Encouraging results have been obtained from a metallic target behind a plywood wall of thickness 12 mm and a brick wall of thickness 110 mm. Application of the SVD approach provides a powerful technique for minimizing clutter and false detection for the TWI system in the UWB range. The position of the target behind the wall is predicted quite accurately by taking into account the propagation speed of waves through-walls. The approximate size of the target is also predicted successfully.

  15. Novel Compact Ultra-Wideband Bandpass Filter by Application of Short-Circuited Stubs and Stepped-Impedance-Resonator

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Ping; Ma, Zhewang; Anada, Tetsuo

    To realize the compact ultra-wideband (UWB) bandpass filters, a novel filter prototype with two short-circuited stubs loaded at both sides of a stepped-impedance resonator (SIR) via the parallel coupled lines is proposed based on a distributed filter synthesis theory. The equivalent circuit of this filter is established, while the corresponding 7-pole Chebyshev-type transfer function is derived for filter synthesis. Then, a distributed-circuit-based technique was presented to synthesize the elements' values of this filter. As an example, a FCC UWB filter with the fractional bandwidth (FWB) @ -10dB up to 110% was designed using the proposed prototype and then re-modeled by commercial microwave circuit simulator to verify the correctness and accuracy of the synthesis theory. Furthermore, in terms of EM simulator, the filter was further-optimized and experimentally-realized by using microstrip line. Good agreements between the measurement results and theoretical ones validate the effectiveness of our technique. In addition, compared with the conventional SIR-type UWB filter without short-circuited stubs, the new one significantly improves the selectivity and out-of-band characteristics (especially in lower one -45dB@1-2GHz) to satisfy the FCC's spectrum mask. The designed filter also exhibits very compact size, quite low insertion loss, steep skirts, flat group delay and the easily-fabricatable structure (the coupling gap dimension in this filter is 0.15mm) as well. Moreover, it should be noted that, in terms of the presented design technique, the proposed filter prototype can be also used to easily realize the UWB filters with other FBW even greater than 110%.

  16. Three-Dimensional Planetary Surface Tracking Based on a Simple Ultra-Wideband Impulse-Radio Infrastructure

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Ni, David; Ngo, Phong

    2010-01-01

    Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.

  17. Macro-motion detection using ultra-wideband impulse radar.

    PubMed

    Xin Li; Dengyu Qiao; Ye Li

    2014-01-01

    Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented. PMID:25570432

  18. Ultra-wideband Location Authentication for Item Tracking

    SciTech Connect

    Rowe, Nathan C; Kuhn, Michael J; Stinson, Brad J; Holland, Stephen A

    2012-01-01

    International safeguards is increasingly utilizing unattended and remote monitoring methods to improve inspector efficiency and the timeliness of diversion detection. Item identification and tracking has been proposed as one unattended remote monitoring method, and a number of radio-frequency (RF) technologies have been proposed. When utilizing location information for verification purposes, strong assurance of the authenticity of the reported location is required, but most commercial RF systems are vulnerable to a variety of spoofing and relay attacks. ORNL has developed a distance bounding method that uses ultra-wideband technology to provide strong assurance of item location. This distance bounding approach can be coupled with strong symmetric key authentication methods to provide a fully authenticable tracking system that is resistant to both spoofing and relay attacks. This paper will discuss the overall problems associated with RF tracking including the common spoofing and relay attack scenarios, the ORNL distance bounding approach for authenticating location, and the potential applications for this technology.

  19. Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization

    NASA Astrophysics Data System (ADS)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2016-09-01

    A simple pulse shape randomization scheme is considered in this paper for improving the performance of ultra wide band (UWB) communication systems using On Off Keying (OOK) or pulse position modulation (PPM) formats. The advantage of the proposed scheme, which can be either employed for impulse radio (IR) or for carrier-based systems, is first theoretically studied based on closed-form derivations of power spectral densities. Then, we investigate an application to an IR-UWB over optical fiber system, by utilizing the 4th and 5th orders of Gaussian derivatives. Our approach proves to be effective for 1 Gbps-PPM and 2 Gbps-OOK transmissions, with an advantage in terms of power efficiency for short distances. We also examine the performance for a system employing an in-line Semiconductor Optical Amplifier (SOA) with the view to achieve a reach extension, while limiting the cost and system complexity.

  20. Ultra-wideband Radar Methods and Techniques of Medical Sensing and Imaging

    SciTech Connect

    Paulson, C N; Chang, J T; Romero, C E; Watson, J; Pearce, F J; Levin, N

    2005-10-07

    Ultra-wideband radar holds great promise for a variety of medical applications. We have demonstrated the feasibility of using ultra-wideband sensors for detection of internal injuries, monitoring of respiratory and cardiac functions, and continuous non-contact imaging of the human body. Sensors are low-power, portable, and do not require physical contact with the patient. They are ideal for use by emergency responders to make rapid diagnosis and triage decisions. In the hospital, vital signs monitoring and imaging application could improve patient outcomes. In this paper we present an overview of ultra-wideband radar technology, discuss key design tradeoffs, and give examples of ongoing research in applying ultra-wideband technology to the medical field.

  1. Optical frequency up-conversion of UWB monocycle pulse based on pulsed-pump fiber optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Li, Jia; Liang, Yu; Xu, Xing; Cheung, Kim K. Y.; Wong, Kenneth K. Y.

    2009-11-01

    We propose a method to realize frequency up-conversion of UWB monocycle pulse using pulsed-pump fiber optical parametric amplifier (OPA). The spectrum of the amplified signal contains many discrete frequency components which are separated by the modulation frequency of the pump. Each frequency components contain the same spectral information as that of the original signal. By selecting the first-order or higher-order frequency components of the amplified signal and beating in the photodetector, up-converted signal at different frequencies are obtained. We demonstrate frequency up-conversion of baseband UWB monocycle pulse from 3-GHz to 19-GHz in the experiment and frequency up-conversion of pseudo-random binary sequence (PRBS) signal from 3-GHz to 60-GHz in the simulation.

  2. The propagation and scattering characteristics of a forest as measured by coherent ultra-wideband foliage penetration

    NASA Astrophysics Data System (ADS)

    Gwynne, John Scott

    Coherent polarimetric synthetic aperture radar (SAR) measurements of a central Ohio forest have been collected, and it is the objective of this research to document and analyze the results. The foliage data presented in this dissertation are unique in several aspects. Primarily, the data are Ultra-Wideband (UWB) in that the bandwidth (200-1600MHz) divided by center frequency is at least 25% and are of a wavelength selected to penetrate the forest canopy. Data of this bandwidth or resolution offer the opportunity to see for the first time at these frequencies scattering components such as branches, tree trunks, and ground-tree interaction terms. Secondly, coherent apertures were collected by precisely moving the antennas within a well-known coordinate system leading to absolute phase calibration and to the generation of fully coherent SAR imagery. Much of the past work performed on foliage propagation and scattering does not include phase information which is crucial for predicting the performance of radars of this type. The underlying goals of this research are to identify the fundamental scattering mechanisms associated with the forest backscatter at these frequencies and to assess UWB usage for the concealed target detection and identification problems. To this end, methods are developed to analyze the above measurements and extract modeling parameters such as the propagation loss, phase defect, and backscatter per unit area (sigmasp{o}). The analysis of these data provide the insight needed to statistically model the forest in both forward scatter and backscatter and to determine the ability of these UWB frequencies to penetrate the forest canopy.

  3. All-optical binary phase-coded UWB signal generation for multi-user UWB communications.

    PubMed

    Dong, Jianji; Yu, Yuan; Zhang, Yin; Li, Xiang; Huang, Dexiu; Zhang, Xinliang

    2011-05-23

    An all-optical incoherent scheme for generation of binary phase-coded ultra-wideband (UWB) signals is proposed and experimentally demonstrated. The binary phase coding is performed based on all-optical phase modulation in a semiconductor optical amplifier (SOA) and phase modulation to intensity modulation (PM-IM) conversion in a fiber delay interferometer (DI) that serves as a multichannel frequency discriminator. By locating the phase-modulated light waves at the positive and negative slopes of the DI transmission spectra, binary phase encoded UWB codes (0 and π) are generated. We also experimentally demonstrate a bipolar UWB coding system with a code length of 4, operating at 1.25 Gb/s. And the decoding is analyzed as well. Our proposed system has potential application in future high-speed UWB impulse radio over optical fiber access networks. PMID:21643312

  4. Studies of scattering, reflectivity, and transmitivity in WBAN channel: feasibility of using UWB.

    PubMed

    Kabir, Md Humaun; Ashrafuzzaman, Kazi; Chowdhury, M Sanaullah; Kwak, Kyung Sup

    2010-01-01

    The Wireless Personal Area Network (WPAN) is one of the fledging paradigms that the next generation of wireless systems is sprouting towards. Among them, a more specific category is the Wireless Body Area Network (WBAN) used for health monitoring. On the other hand, Ultra-Wideband (UWB) comes with a number of desirable features at the physical layer for wireless communications. One big challenge in adoption of UWB in WBAN is the fact that signals get attenuated exponentially. Due to the intrinsic structural complexity in human body, electromagnetic waves show a profound variation during propagation through it. The reflection and transmission coefficients of human body are highly dependent upon the dielectric constants as well as upon the frequency. The difference in structural materials such as fat, muscles and blood essentially makes electromagnetic wave attenuation to be different along the way. Thus, a complete characterization of body channel is a challenging task. The connection between attenuation and frequency of the signal makes the investigation of UWB in WBAN an interesting proposition. In this paper, we study analytically the impact of body channels on electromagnetic signal propagation with reference to UWB. In the process, scattering, reflectivity and transmitivity have been addressed with analysis of approximate layer-wise modeling, and with numerical depictions. Pulses with Gaussian profile have been employed in our analysis. It shows that, under reasonable practical approximations, the human body channel can be modeled in layers so as to have the effects of total reflections or total transmissions in certain frequency bands. This could help decide such design issues as antenna characteristics of implant devices for WBAN employing UWB. PMID:22219673

  5. UWB Tracking System Design for Free-Flyers

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John

    2004-01-01

    This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.

  6. The GIMLI: A Compact High-Power UWB Radiation Source

    NASA Astrophysics Data System (ADS)

    Delmote, P.; Martin, B.

    This chapter presents the design and performances of a compact, general-purpose, high-power ultra-wideband (UWB) source named GIMLI. The system was designed for dual use, homeland security and military applications. It is powered by a compact, coaxial 12-stage Marx generator with a rise time lower than 25 ns and an operating voltage up to 360 kV. A fast monocycle pulse is sharpened using a pulse former (MPF). The shaper stage comprises a switching module including a peaking and a grounding multi-channel spark gap under a N2 pressure of 6 MPa. The module is followed by a monopulse-to-monocycle converter based on a coaxial Blumlein pulse forming line. The bipolar signal measured at the output of the MPF has a duration shorter than 2 ns with a rise time of 250 ps. The peak-to-peak output voltage is 250 kV on a 50 Ω resistive load. Repetitive operation of the MPF has been experienced with a 200 Hz Tesla transformer developed by the CEA (Commissariat à l'Energie Atomique). Electromagnetic energy is focused by a dedicated antenna. The designed antenna is a TEM half-horn with two ridges which improve the low-frequency focusing. High-power radiation tests show that the field measured at a distance of 9 m from the TEM Horn-antenna is higher than 120 kV/m.

  7. UWB Technology and Applications on Space Exploration

    NASA Technical Reports Server (NTRS)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  8. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances †

    PubMed Central

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  9. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    PubMed

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  10. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  11. UWB multi-burst transmit driver for averaging receivers

    DOEpatents

    Dallum, Gregory E

    2012-11-20

    A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

  12. Principles and Limitations of Ultra-Wideband FM Communications Systems

    NASA Astrophysics Data System (ADS)

    Gerrits, John F. M.; Kouwenhoven, Michiel H. L.; van der Meer, Paul R.; Farserotu, John R.; Long, John R.

    2005-12-01

    This paper presents a novel UWB communications system using double FM: a low-modulation index digital FSK followed by a high-modulation index analog FM to create a constant-envelope UWB signal. FDMA techniques at the subcarrier level are exploited to accommodate multiple users. The system is intended for low (1-10 kbps) and medium (100-1000 kbps) bit rate, and short-range WPAN systems. A wideband delay-line FM demodulator that is not preceded by any limiting amplifier constitutes the key component of the UWBFM receiver. This unusual approach permits multiple users to share the same RF bandwidth. Multipath, however, may limit the useful subcarrier bandwidth to one octave. This paper addresses the performance with AWGN and multipath, the resistance to narrowband interference, as well as the simultaneous detection of multiple FM signals at the same carrier frequency. SPICE and Matlab simulation results illustrate the principles and limitations of this new technology. A hardware demonstrator has been realized and has allowed the confirmation of theory with practical results.

  13. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    NASA Astrophysics Data System (ADS)

    Djidel, S.; Bouamar, M.; Khedrouche, D.

    2016-04-01

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  14. Millimeter-wave silicon-based ultra-wideband automotive radar transceivers

    NASA Astrophysics Data System (ADS)

    Jain, Vipul

    Since the invention of the integrated circuit, the semiconductor industry has revolutionized the world in ways no one had ever anticipated. With the advent of silicon technologies, consumer electronics became light-weight and affordable and paved the way for an Information-Communication-Entertainment age. While silicon almost completely replaced compound semiconductors from these markets, it has been unable to compete in areas with more stringent requirements due to technology limitations. One of these areas is automotive radar sensors, which will enable next-generation collision-warning systems in automobiles. A low-cost implementation is absolutely essential for widespread use of these systems, which leads us to the subject of this dissertation---silicon-based solutions for automotive radars. This dissertation presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors. The first CMOS 22-29-GHz pulse-radar receiver front-end for ultra-wideband radars is presented. The chip includes a low noise amplifier, I/Q mixers, quadrature voltage-controlled oscillators, pulse formers and variable-gain amplifiers. Fabricated in 0.18-mum CMOS, the receiver achieves a conversion gain of 35-38.1 dB and a noise figure of 5.5-7.4 dB. Integration of multi-mode multi-band transceivers on a single chip will enable next-generation low-cost automotive radar sensors. Two highly-integrated silicon ICs are designed in a 0.18-mum BiCMOS technology. These designs are also the first reported demonstrations of mm-wave circuits with high-speed digital circuits on the same chip. The first mm-wave dual-band frequency synthesizer and transceiver, operating in the 24-GHz and 77-GHz bands, are demonstrated. All

  15. Accurate TOA-Based UWB Localization System in Coal Mine Based on WSN

    NASA Astrophysics Data System (ADS)

    Cheng, Guangliang

    Over the last years, there has been a great deal of interest in Ultra Wideband (UWB) wireless communication and Wireless Sensor Networks(WSN), especially following the proposing of the internet of things by the MIT (Massachusetts Institute of Technology) in 1999, hich is also result in an increasing research on UWB and WSN applications. This article mainly introduced the accurate UWB Localization System based on WSN in coal mine. Firstly, we briefly introduced UWB and WSN Localization technology. Secondly, the advantages and disadvantages of the previous personnel localization technology in coal mine was analyzed and contrasted, and then the suitable personnel localization system in coal mine based on UWB signal and TOA estimate positioning scheme are presented. At last the rationality and feasibility of this scheme was proved through the simulation results.

  16. Ultra-Wideband Tapered Slot Antenna Arrays with Parallel-Plate Waveguides

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Satoshi; Miyashita, Hiroaki; Takahashi, Toru; Otsuka, Masataka; Konishi, Yoshihiko

    Owing to their ultra-wideband characteristics, tapered slot antennas (TSAs) are used as element antennas in wideband phased arrays. However, when the size of a TSA is reduced in order to prevent the generation of a grating lobe during wide-angle beam scanning, the original ultra-wideband characteristics are degraded because of increased reflections from the ends of the tapered slot aperture. To overcome this difficulty, we propose a new antenna structure in which parallel-plate waveguides are added to the TSA. The advantage of this new structure is that the reflection characteristics of individual antenna elements are not degraded even if the width of the antenna aperture is very small, i.e., approximately one-half the wavelength of the highest operating frequency. In this study, we propose a procedure for designing the new antenna through numerical simulations by using the FDTD method. In addition, we verify the performance of the antenna array by experiments.

  17. Breast tumor detection using UWB circular-SAR tomographic microwave imaging.

    PubMed

    Oloumi, Daniel; Boulanger, Pierre; Kordzadeh, Atefeh; Rambabu, Karumudi

    2015-08-01

    This paper describes the possibility of detecting tumors in human breast using ultra-wideband (UWB) circular synthetic aperture radar (CSAR). CSAR is a subset of SAR which is a radar imaging technique using a circular data acquisition pattern. Tomographic image reconstruction is done using a time domain global back projection technique adapted to CSAR. Experiments are conducted on a breast phantoms made of pork fat emulating normal and cancerous conditions. Preliminary experimental results show that microwave imaging of a breast phantom using UWB-CSAR is a simple and low-cost method, efficiently capable of detecting the presence of tumors. PMID:26737919

  18. Ultra-Wideband Vivaldi Antenna Array for High Resolution Subsurface Imaging

    NASA Astrophysics Data System (ADS)

    Yedlin, M. J.; Cresp, A.; Pichot, C.; Aliferis, I.; Dauvignac, J.; Fortino, N.; Gaffet, S.

    2008-05-01

    Use of ultra-wideband electromagnetic waves to image the subsurface yields enhanced resolution, provided sources, antennas and recording equipment can be developed and calibrated over the complete bandwidth of interest. We present a demonstration of the latest microwave transmission and recording technology to obtain high-resolution images. Our transmitter and receiver electronics are embodied in the vector network analyzer (PNA series) from Agilent, an eight-port vector network analyzer that records amplitude and phase. The analyzer is connected through a microwave multiplexer and microwave switch to an 8 element, balanced, antipodal Vivaldi antenna array, which can transmit or receive data over a bandwidth from 1.3 to 20 GHz. The bandwidth of the integrated system is determined by the bandwidth of the microwave switch, from DC to 18GHz, which interfaces the multiplexer to the PNA. The capabilities of a microwave multiplexer are employed to collect multi-channel data, by using one channel for transmission and reception on all 8 channels. The demonstration of this integrated system will be focussed on scattering from a single conducting cylinder as well as two cylinders, a dielectric and conducting cylinder, spaced at different intervals. The increased bandwidth, over that obtained in conventional GPR recording will result in pulses that have little ringing, allowing the detection of deeper reflections and eliminating any post-processing distortions that arise from deconvolving the traditional oscillatory waveform. Although the demonstration will be presented in the GHz bandwidth, suitable for imaging over a length scale to 1m, this integrated system will scale to lower bandwidths and can operate from 100 MHz to 3 GHz, with a resultant penetration depth of 10 to 20 m depending on the subsurface properties. Given the electronic constraints of the switch and the PNA, this scaling is simply achieved by enlarging the Vivaldi antenna dimensions. The advantage of using

  19. UWB Tracking Algorithms: AOA and TDOA

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, D.; Ngo, P.; Gross, J.; Refford, Melinda

    2006-01-01

    Ultra-Wideband (UWB) tracking prototype systems are currently under development at NASA Johnson Space Center for various applications on space exploration. For long range applications, a two-cluster Angle of Arrival (AOA) tracking method is employed for implementation of the tracking system; for close-in applications, a Time Difference of Arrival (TDOA) positioning methodology is exploited. Both AOA and TDOA are chosen to utilize the achievable fine time resolution of UWB signals. This talk presents a brief introduction to AOA and TDOA methodologies. The theoretical analysis of these two algorithms reveal the affecting parameters impact on the tracking resolution. For the AOA algorithm, simulations show that a tracking resolution less than 0.5% of the range can be achieved with the current achievable time resolution of UWB signals. For the TDOA algorithm used in close-in applications, simulations show that the (sub-inch) high tracking resolution is achieved with a chosen tracking baseline configuration. The analytical and simulated results provide insightful guidance for the UWB tracking system design.

  20. Performance comparison between UWB-IR and MB-OFDM with transmit diversity in implant communications.

    PubMed

    Shimizu, Yuto; Furukawa, Tomofumi; Anzai, Daisuke; Wang, Jianqing

    2015-01-01

    An ultra wideband (UWB) technology is a potential candidate for implant body area networks (BANs), where wireless communications are established between inside and outside of a human body. The UWB can accomplish higher data rate than the other frequency band for the implant communication. However, due to its high frequencies, the UWB signals suffer from quite large attenuation in the implant communication link, which makes it difficult to achieve reliable communications. For achieving reliable communication, it is well known that a spatial diversity technique is efficient without any frequency extension. In our previous works, we developed a transmit polarization diversity antenna for the UWB implant communication. However, optimal UWB modulation scheme for transmit diversity were rarely discussed. In this paper, in order to investigate the optimal UWB modulation schemes for implant communication with transmit diversity, we compare the communication performances of UWB-impulse radio (UWB-IR) and multiband-orthogonal frequency division multiplexing (MB-OFDM). For this purpose, we first analyze the propagation characteristics in the implant UWB channel, which ranges from 3.4 GHz to 4.8 GHz, using a finite difference time domain (FDTD) numerical analysis technique. Then, we evaluate and discuss the communication performances of both modulation schemes for the transmit polarization diversity from the viewpoint of the BER and the required transmit power. PMID:26737529

  1. An iterative procedure for ultra-wideband imagery of space objects from distributed multi-band radar data

    NASA Astrophysics Data System (ADS)

    Xu, Xiaojian; He, Feiyang

    2014-09-01

    A novel technique is proposed for ultra-wideband imagery of space objects from distributed multi-band radar data. The complex exponential (CE) model is used for representation of ultra-wideband radar signals, where an iterative procedure is developed for optimized model parameter estimation. A subband coherent processing technique is developed which combines the de-noising cross-correlation (DNCC) algorithm with statistical method to obtain the phase and amplitude incoherent parameters (ICP) between subbands. Ultra-wideband data fusion via two-dimensional gapped-data state space approach (2-D GSSA) is then applied to multiple subband signals for supper-resolution imagery. Experiments using computational electromagnetic data from the method of moment (MoM) as well as anechoic chamber measurement data are used to validate the proposed technique and demonstrate its applications.

  2. Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces

    NASA Astrophysics Data System (ADS)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Feng, Mingde; Pang, Yongqiang; Xia, Song; Xu, Zhuo; Qu, Shaobo

    2016-07-01

    In this letter, we propose the synthesis topology optimization method of designing ultra-wideband polarization conversion metasurface for linearly polarized waves. The general design principle of polarization conversion metasurfaces is derived theoretically. Symmetry-based coding, with shorter coding length and better optimization efficiency, is then proposed. As an example, a topological metasurface is demonstrated with an ultra-wideband polarization conversion property. The results of both simulations and experiments show that the metasurface can convert linearly polarized waves into cross-polarized waves in 8.0-30.0 GHz, obtaining the property of ultra-wideband polarization conversion based on metasurfaces, and hence validating the synthesis design method. The proposed method combines the merits of topology optimization and symmetry-based coding method, which provides an efficient tool for the design of high-performance polarization conversion metasurfaces.

  3. Distance bounded energy detecting ultra-wideband impulse radio secure protocol.

    PubMed

    Hedin, Daniel S; Kollmann, Daniel T; Gibson, Paul L; Riehle, Timothy H; Seifert, Gregory J

    2014-01-01

    We present a demonstration of a novel protocol for secure transmissions on a Ultra-wideband impulse radio that includes distance bounding. Distance bounding requires radios to be within a certain radius to communicate. This new protocol can be used in body area networks for medical devices where security is imperative. Many current wireless medical devices were not designed with security as a priority including devices that can be life threatening if controlled by a hacker. This protocol provides multiple levels of security including encryption and a distance bounding test to prevent long distance attacks. PMID:25571513

  4. Detection, estimation, and discrimination of frequency diverse targets in ultra-wideband synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.

    New ultra-wideband radar imaging systems developed for ground-penetrating and foliage-penetrating applications are a departure from traditional, higher frequency radar systems. The assumption that targets are ideal point scatterers with impulsive responses is no longer acceptable. Target responses are frequency dependent and thus spread in time. The research outlined in this dissertation addresses target detection, estimation, and discrimination issues involved with processing frequency-dependent scattering returns. Frequency dependence is exploited in prescreening algorithms, new imaging algorithms and processing techniques to estimate time-domain target responses, and discrimination techniques based upon multiuser communications approaches. We present results and discuss the contributions of these studies.

  5. Ultra-Wideband GPR Imaging of the Vaucluse Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Dauvignac, J.; Fortino, N.; Sénéchal, G.; Cresp, A.; Yedlin, M.; Gaffet, S.; Rousset, D.; Pichot, C.

    2008-12-01

    In this paper, we present the validation of an Ultra Wide band measurement system which is the first experimental step of the French MAXWELL Research Project devoted to the survey of the karst aquifer located in the Vaucluse in Provence. This radar system employs Exponentially Tapered Slot Antennas (ETSA), with a usable bandwidth from 100 MHz to 2.5 GHz. The antenna is driven by a .01- 26.5 GHz Agilent vector network analyzer (VNA), with a noise floor of -120dB under test conditions and a noise floor of -100 dB in a field setting. A synthetic pulse is applied to the antenna by using a classical step frequency sweeping. The recorded amplitudes and phases of the reflection coefficient (S11 parameter) are filtered and inverse Fourier transformed to obtain the time-domain data. In principal, due to the flat radiation characteristic of the frequency generator, appropriate synthetic pulses can be generated for analysis. The advantages of this approach are mainly, 1) a large depth resolution due to increased bandwidth, 2) a wider dynamic range for detection of weak late underground echoes, 3) a low signal distortion due to absence of pulse deconvolution post-processing. The foregoing system was deployed inside a tunnel in the Low-Noise Underground Laboratory (LSBB) located in Rustrel (France) which allows the use of low power radiation. Minimization of noise interference was accomplished by : 1) using low noise and low-loss cables, 2) using a PVC structure covered with absorbers to shield the ETSA from unwanted tunnel wall reflections and from radiation from the vector network analyzer, 3) an effective calibration of long cables to the antenna connector with careful cable unwinding to reduce phase errors, 4) a power level fixed at 8 dBm in the frequency band of interest to avoid distortion in the mixer of the VNA. Monostatic or multistatic data, were collected by moving manually the antennas along the PVC frame, in 5 cm increments over a length of 6 m. Both parallel and

  6. Ultra wideband photonic control of an adaptive phased array antenna

    NASA Astrophysics Data System (ADS)

    Cox, Joseph L.; Zmuda, Henry; Li, Jian; Sforza, Pasquale M.

    2006-05-01

    This paper presents a new concept for a photonic implementation of a time reversed RF antenna array beamforming system. The process does not require analog to digital conversion to implement and is therefore particularly suited for high bandwidth applications. Significantly, propagation distortion due to atmospheric effects, clutter, etc. is automatically accounted for with the time reversal process. The approach utilizes the reflection of an initial interrogation signal from off an extended target to precisely time match the radiating elements of the array so as to re-radiate signals precisely back to the target's location. The backscattered signal(s) from the desired location is captured by each antenna and used to modulate a pulsed laser. An electrooptic switch acts as a time gate to eliminate any unwanted signals such as those reflected from other targets whose range is different from that of the desired location resulting in a spatial null at that location. A chromatic dispersion processor is used to extract the exact array parameters of the received signal location. Hence, other than an approximate knowledge of the steering direction needed only to approximately establish the time gating, no knowledge of the target position is required, and hence no knowledge of the array element time delay is required. Target motion and/or array element jitter is automatically accounted for. This paper presents the preliminary study of the photonic processor, analytical justification, and simulated results. The technology has a broad range of applications including aerospace and defense and in medical imaging.

  7. Fuzzy neighborhood filters for UWB range radios in multipath environments

    NASA Astrophysics Data System (ADS)

    Cheok, Ka C.; Hudas, Gregory R.; Overholt, James L.

    2008-04-01

    An ultra-wideband (UWB) inter-radio ranging technology with measurement resolution of +/-0.5 ft and range up to 0.5 kilometer under certain FCC regulation was recently introduced. However, measurement data are extremely erroneous due to stochastic variables in the device and multipath radio wave reflections. This paper presents fuzzy logic tuned double tracking filters as a solution to remove misinformation in the data. The 1st tracker locates the overall center of the data in the presence of the large sporadic noise. A fuzzy logic admits only neighborhood data to a 2nd tracker which takes care of smaller deviation noise. The fuzzy neighborhood filter approach has been successfully applied to clean up the UWB radio ranges. Experimental results are shown.

  8. A Dual Polarized Ultra-Wideband Slot Antenna Using Stepped Microstrip Feed Structure

    NASA Astrophysics Data System (ADS)

    Ram Krishna, R. V. S.; Kumar, Raj

    2015-11-01

    In this paper, a printed slot antenna for ultra-wideband dual polarization is proposed and experimentally demonstrated. The slot is L-shape and its two arms are individually microstrip fed for producing the orthogonal polarizations. The slot arms and the microstrip feed lines are step sectioned for wideband impedance matching. For isolation purpose, a slant narrow metallic stub is inserted at the junction of the slot arms. The antenna has an impedance bandwidth of 118% (3.1-12 GHz) and isolation of around 20 dB over most of the band. The radiation patterns are nearly omnidirectional with a peak gain varying from 3 to 6 dBi. For assessing the diversity performance of the antenna, the envelope correlation coefficients are computed from the simulated and measured S-parameters and found to be within acceptable limits. With a compact, single substrate design, the antenna is expected to be useful for printed circuit ultra wideband applications requiring dual polarization features.

  9. 30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.

    PubMed

    Ebrazeh, Ali; Mohseni, Pedram

    2015-06-01

    This paper reports an energy-efficient, impulse radio ultra wideband (IR-UWB) wireless link operating in 3-5 GHz for data telemetry over centimeter-to-meter range distances at rates extended to tens of Mbps. The link comprises an all-digital, integrated transmitter (TX) fabricated in 90 nm 1P/9M CMOS that incorporates a waveform-synthesis pulse generator and a timing generator for on-off-keying (OOK) pulse modulation and phase scrambling. The link also incorporates an energy-detection receiver (RX) realized with commercial off-the-shelf (COTS) components that performs radio-frequency (RF) filtering, amplification, logarithmic power detection for data demodulation and automatic level control for robust operation in the presence of distance variations. Employing a miniaturized, UWB, chip antenna for the TX and RX, wireless transmission of pseudo-random binary sequence (PRBS) data at rates up to 50 Mbps over 10 cm-1 m is shown. Further, employing a high-gain horn antenna for the RX, wireless transmission of PRBS data at rates up to 67 Mbps over 50 cm-4 m is shown with a TX energy consumption of 30 pJ/b (i.e., power consumption of 2 mW) from 1.2 V. The measured bit error rate (BER) in both cases is < 10(-7) . Results from wireless recording of the background current of a carbon-fiber microelectrode (CFM) in one fast-scan cyclic voltammetry (FSCV) scan using the IR-UWB link are also included, exhibiting excellent match with those obtained from a conventional frequency-shift-keyed (FSK) link at ~433 MHz. PMID:25134088

  10. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  11. Induced Mitogenic Activity in AML-12 Mouse Hepatocytes Exposed to Low-dose Ultra-Wideband Electromagnetic Radiation

    PubMed Central

    Dorsey, W. C.; Ford, B. D.; Roane, L.; Haynie, D. T.; Tchounwou, P. B.

    2005-01-01

    Ultra–wideband (UWB) technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR) could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM) cell. Cells were exposed to UWBR for 2 h at a temperature of 23°C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5–20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8–24 h post exposure. UWBR exerted a statistically significant (p < 0.05) dose-dependent response in cell viability in both serum-treated and serum free medium (SFM) -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma. PMID:16705798

  12. The New Vector Fitting Approach to Multiple Convex Obstacles Modeling for UWB Propagation Channels

    NASA Astrophysics Data System (ADS)

    Górniak, P.; Bandurski, W.

    This chapter presents the new approach to time-domain modeling of UWB channels containing multiple convex obstacles. Vector fitting (VF) algorithm (rational approximation) was used for deriving the closed form impulse response of multiple diffraction ray creeping on a cascade of convex obstacles. VF algorithm was performed with respect to new generalized variables proportional to frequency but including geometrical parameters of the obstacles also. The limits of approximation domain for vector fitting algorithm follow the range of ultra-wideband (UWB) channel parameters that can be met in practical UWB channel scenarios. Finally, the closed form impulse response of a creeping UTD ray was obtained. As the result we obtained impulse response of the channel as a function of normalized, with respect to geometrical parameters of the obstacles, time. It permits for calculation of channel responses for various objects without changing the body of a rational function. In that way the presented approach is general, simple, and effective.

  13. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction

    NASA Astrophysics Data System (ADS)

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-01

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  14. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction

    PubMed Central

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-01-01

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking. PMID:26864084

  15. Statistical-physical model for foliage clutter in ultra-wideband synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Chellappa, Rama

    2003-01-01

    Analyzing foliage-penetrating (FOPEN) ultra-wideband synthetic aperture radar (SAR) images is a challenging problem owing to the noisy and impulsive nature of foliage clutter. Indeed, many target-detection algorithms for FOPEN SAR data are characterized by high false-alarm rates. In this work, a statistical-physical model for foliage clutter is proposed that explains the presence of outliers in the data and suggests the use of symmetric alpha-stable (SαS) distributions for accurate clutter modeling. Furthermore, with the use of general assumptions of the noise sources and propagation conditions, the proposed model relates the parameters of the SαS model to physical parameters such as the attenuation coefficient and foliage density.

  16. Statistical-physical model for foliage clutter in ultra-wideband synthetic aperture radar images.

    PubMed

    Banerjee, Amit; Chellappa, Rama

    2003-01-01

    Analyzing foliage-penetrating (FOPEN) ultra-wideband synthetic aperture radar (SAR) images is a challenging problem owing to the noisy and impulsive nature of foliage clutter. Indeed, many target-detection algorithms for FOPEN SAR data are characterized by high false-alarm rates. In this work, a statistical-physical model for foliage clutter is proposed that explains the presence of outliers in the data and suggests the use of symmetric alpha-stable (SalphaS) distributions for accurate clutter modeling. Furthermore, with the use of general assumptions of the noise sources and propagation conditions, the proposed model relates the parameters of the SalphaS model to physical parameters such as the attenuation coefficient and foliage density. PMID:12542316

  17. Ultra-wideband and high-efficiency polarization rotator based on metasurface

    NASA Astrophysics Data System (ADS)

    Jia, Yongtao; Liu, Ying; Zhang, Wenbo; Gong, Shuxi

    2016-08-01

    An ultra-wideband and high-efficiency polarization rotator based on a metasurface is proposed in this paper. The unit cell of the proposed polarization rotator consists of two pairs of L-shaped metallic patches printed on a substrate, which is backed by a metallic ground and covered by a superstrate. The superstrate is composed of a dielectric layer and a pair of L-shaped metallic patches printed on the dielectric layer. The proposed polarization rotator can rotate the polarization of linearly polarized electromagnetic (EM) wave to its orthogonal counterpart after reflection when the incident EM wave is y-/x-polarized. Simulated results show that the polarization rotator can perform 90° polarization rotation with very high efficiency at seven different frequencies and achieve a polarization conversion ratio higher than 0.9 in the frequency range of 7.8-34.7 GHz at normal incidence. Good agreement between the experimental results and simulated ones has been obtained.

  18. Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna.

    PubMed

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a tapered slot antenna capable of ultra-wideband communication was designed. In the proposed antenna, rectangular slits were inserted to enhance the bandwidth and reduce the area of the antenna. The rectangular slit-inserted tapered slot antenna operated at a bandwidth of 8.45 GHz, and the bandwidth improved upon the basic tapered slot antenna by 4.72 GHz. The radiation pattern of the antenna was suitable for location recognition in a certain direction owing to an appropriate 3 dB beam width. The antenna gain was analyzed within the proposed bandwidth, and the highest gain characteristic at 7.55 dBi was exhibited at a 5-GHz band. The simulation and measurement results of the proposed tapered slot antenna were similar. PMID:27610306

  19. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    PubMed

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-01-01

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking. PMID:26864084

  20. Design and performance of an ultra-wideband stepped-frequency radar with precise frequency control for landmine and IED detection

    NASA Astrophysics Data System (ADS)

    Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) has developed an impulse-based vehicle-mounted forward-looking ultra- wideband (UWB) radar for imaging buried landmines and improvised explosive devices (IEDs). However, there is no control of the radiated spectrum in this system. As part of ARL's Partnerships in Research Transition (PIRT) program, the above deficiency is addressed by the design of a Stepped-Frequency Radar (SFR) which allows for precise control over the radiated spectrum, while still maintaining an effective ultra-wide bandwidth. The SFR utilizes a frequency synthesizer which can be configured to excise prohibited and interfering frequency bands and also implement frequency-hopping capabilities. The SFR is designed to be a forward-looking ground- penetrating (FLGPR) Radar utilizing a uniform linear array of sixteen (16) Vivaldi notch receive antennas and two (2) Quad-ridge horn transmit antennas. While a preliminary SFR consisting of four (4) receive channels has been designed, this paper describes major improvements to the system, and an analysis of expected system performance. The 4-channel system will be used to validate the SFR design which will eventually be augmented in to the full 16-channel system. The SFR has an operating frequency band which ranges from 300 - 2000 MHz, and a minimum frequency step-size of 1 MHz. The radar system is capable of illuminating range swaths that have maximum extents of 30 to 150 meters (programmable). The transmitter has the ability to produce approximately -2 dBm/MHz average power over the entire operating frequency range. The SFR will be used to determine the practicality of detecting and classifying buried and concealed landmines and IEDs from safe stand-off distances.

  1. All-optical UWB pulse generation and pulse shape modulation by using dual-in dual-out Mach-Zehnder Modulator

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Xu, Kun; Li, Jianqiang; Huang, Hao; Zhang, Ye; Wu, Jian; Hong, Xiaobin; Lin, Jingtong

    2008-11-01

    In this paper, a novel method to generate both monocycle and doublet UWB pulses is demonstrated, where pulse shape modulation(PSM) can be easily implemented. Only two wavelengths and two modulators (one dual-in dual-out modulator) are applied to achieve PSM. The data driving the first modulator is set to be 250Mbit/s 107-1 pseudo-random bit sequence (PRBS). The 1GHz pulse pattern is synchronised with the data. The electrical spectrum of the signals processes the centre frequency of 4GHz and -10dB bandwidth of 5.9GHz. The fractional bandwidth is about 147.5%, which matches the FCC standard.

  2. Effect of the antenna-body distance on the on-ext and on-on channel link path gain in UWB WBAN applications.

    PubMed

    Tuovinen, T; Kumpuniemi, T; Hamalainen, M; Yekeh Yazdandoost, K; Iinatti, J

    2013-01-01

    This paper investigates the effect of the operation distance (i.e., practical use) between an antenna and a human body on wireless body area network (WBAN) channel path gain. Different use cases in WBAN on-external (ext) and on-on links with different antenna-body distances for ultra wideband (UWB) technology are considered. These studies are carried out with two types of planar UWB antennas in the vicinity of a real human body. Corresponding scenarios are repeated by computer simulations, and differences between these environs (i.e., challenges in the modelling of the measurement situation) are analysed and discussed. PMID:24109919

  3. UWB Tracking System Design for Lunar/Mars Exploration

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia

    2006-01-01

    This paper describes a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as high data rate, fine time resolution, low power spectral density, and multipath immunity. A two-cluster prototype design using commercially available UWB products is proposed to implement the Angle Of Arrival (AOA) tracking methodology in this research effort. An AOA technique using the Time Difference Of Arrival (TDOA) information is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. After the UWB radio at each cluster is used to obtain the TDOA estimates from the UWB signal sent from the target, the TDOA data is converted to AOA data to find the angle of arrival, assuming this is a far field application. Since the distance between two clusters is known, the target position is computed by a simple triangulation. Simulations show that the average tracking error at a range of 610 meters is 2.7595 meters, less than 0.5% of the tracking range. Outdoor tests to track the SCOUT vehicle (The Science Crew Operations and Utility Testbed) near the Meteor Crater, Flagstaff, Arizona were performed on September 12-13, 2005. The tracking performance was obtained with less than 1% tracking error at ranges up to 2000 feet. No RF interference with on-board GPS, video, voice and telemetry systems was detected. Outdoor tests demonstrated the UWB tracking capability.

  4. UWB communication receiver feedback loop

    DOEpatents

    Spiridon, Alex; Benzel, Dave; Dowla, Farid U.; Nekoogar, Faranak; Rosenbury, Erwin T.

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  5. UWB Two-Cluster AOA Tracking Prototype System Design

    NASA Technical Reports Server (NTRS)

    Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda

    2006-01-01

    This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.

  6. Body Area Networks performance analysis using UWB.

    PubMed

    Fatehy, Mohammed; Kohno, Ryuji

    2013-01-01

    The successful realization of a Wireless Body Area Network (WBAN) using Ultra Wideband (UWB) technology supports different medical and consumer electronics (CE) applications but stand in a need for an innovative solution to meet the different requirements of these applications. Previously, we proposed to use adaptive processing gain (PG) to fulfill the different QoS requirements of these WBAN applications. In this paper, interference occurred between two different BANs in a UWB-based system has been analyzed in terms of acceptable ratio of overlapping between these BANs' PG providing the required QoS for each BAN. The first BAN employed for a healthcare device (e.g. EEG, ECG, etc.) with a relatively longer spreading sequence is used and the second customized for entertainment application (e.g. wireless headset, wireless game pad, etc.) where a shorter spreading code is assigned. Considering bandwidth utilization and difference in the employed spreading sequence, the acceptable ratio of overlapping between these BANs should fall between 0.05 and 0.5 in order to optimize the used spreading sequence and in the meantime satisfying the required QoS for these applications. PMID:24109913

  7. Self organization of wireless sensor networks using ultra-wideband radios

    DOEpatents

    Dowla, Farid U.; Nekoogar, Franak; Spiridon, Alex

    2009-06-16

    A novel UWB communications method and system that provides self-organization for wireless sensor networks is introduced. The self-organization is in terms of scalability, power conservation, channel estimation, and node synchronization in wireless sensor networks. The UWB receiver in the present invention adds two new tasks to conventional TR receivers. The two additional units are SNR enhancing unit and timing acquisition and tracking unit.

  8. Deceptive jamming for countering UWB-SAR based on Doppler frequency phase template of false target

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Tang, Bin

    2016-04-01

    A false target deceptive jamming method for countering ultra-wideband synthetic aperture radar (UWB-SAR) is proposed in this paper, which is based on dechirp processing to intercepted UWB-SAR signal and inverse dechirp to jamming signal. The jammer quadrature down-converts and dechirps the intercepted UWB-SAR signal using a linear frequency modulation (LFM) signal oscillator, which could reduce the bandwidth and sample rate of analog-to-digital converter. Then, the jammer utilises the azimuth direction Doppler frequency phase between the false target and the jammer, and backward reflection coefficient template to modulate the phase of the intercepted UWB-SAR signal, and then delayed the modulated phase and also modulated the range direction Doppler frequency phase to the that. Finally, the jammer uses LFM signal oscillator to up-convert the narrowband jamming signal in order to recover the bandwidth of the signal. Parameter errors analysis and simulation results have shown that the detected parameters and motion characteristic errors reduce the resolution and offset the expected position of the false target, but it still could obtain an expected false target image. Theoretical analysis and simulation results indicated that the jamming signal proposed in this paper could produce a false target in the UWB-SAR image, which provide a feasible method for countering UWB-SAR in real time.

  9. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    NASA Astrophysics Data System (ADS)

    Xiao, Binggang; Kong, Sheng; Xiao, Sanshui

    2016-09-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satellite communication interference simultaneously. Both the cutoff frequency and the notch frequency are sensitive to the structure parameters, and the cut-off frequency can reach 20 GHz. An adiabatic transition relying on gradient hole-size and flaring ground is designed to effectively couple energy into spoof SPP waveguide. The result shows its cut-off frequency of 17.4 GHz with the insertion loss better than 3 dB during the whole pass-band, while having more than 20 dB rejections at 5.36 GHz and 9.32 GHz with 10 dB fractional bandwidth 1.07% and 0.74% respectively to avoid the existing WLAN and satellite communication signals. Due to planar structures proposed here, it is easy to integrate in the microwave integrated systems, which can play an important role in the microwave communication circuit and system.

  10. Conformal and Spectrally Agile Ultra Wideband Phased Array Antenna for Communication and Sensing

    NASA Technical Reports Server (NTRS)

    Novak, M.; Alwan, Elias; Miranda, Felix; Volakis, John

    2015-01-01

    There is a continuing need for reducing size and weight of satellite systems, and is also strong interest to increase the functional role of small- and nano-satellites (for instance SmallSats and CubeSats). To this end, a family of arrays is presented, demonstrating ultra-wideband operation across the numerous satellite communications and sensing frequencies up to the Ku-, Ka-, and Millimeter-Wave bands. An example design is demonstrated to operate from 3.5-18.5 GHz with VSWR2 at broadside, and validated through fabrication of an 8 x 8 prototype. This design is optimized for low cost, using Printed Circuit Board (PCB) fabrication. With the same fabrication technology, scaling is shown to be feasible up to a 9-49 GHz band. Further designs are discussed, which extend this wideband operation beyond the Ka-band, for instance from 20-80 GHz. Finally we will discuss recent efforts in the direct integration of such arrays with digital beamforming back-ends. It will be shown that using a novel on-site coding architecture, orders of magnitude reduction in hardware size, power, and cost is accomplished in this transceiver.

  11. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  12. Accurate Permittivity Measurements for Microwave Imaging via Ultra-Wideband Removal of Spurious Reflectors

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties. PMID:22163668

  13. Lensless, ultra-wideband fiber optic rotary joint for biomedical applications.

    PubMed

    Kim, Wihan; Chen, Xi; Jo, Javier A; Applegate, Brian E

    2016-05-01

    The demands of optical fiber-based biomedical applications can, in many cases, outstrip the capabilities of lens-based commercially available fiber optic rotary joints. In some circumstances, it is necessary to use very broad spectral bandwidths (near UV to short-wave IR) and specialized optical fibers, such as double-clad fiber, and have the capacity to accommodate high rotational velocities. The broad spectrum, stretching down into the UV, presents two problems: (1) adequate chromatic correction in the lenses across the entire bandwidth and (2) strong UV absorption by the fluids used to lubricate the rotary joint. To accommodate these types of applications, we have developed an ultra-wideband lensless fiber optic rotary joint based on the principle that when two optical fibers are coaligned and placed in contact (or very close), the optical losses at the junction are very low. The advances demonstrated here enable excellent performance (<0.2  dB insertion loss), even down into the UV and spanning a wavelength range of at least 355-1360 nm with single-mode, multimode, and double-clad fibers. We also demonstrate excellent performance, ∼0.38  dB insertion loss, at rotational velocities up to 8800 rpm (146 Hz). To the best of our knowledge, this is the first demonstration of this type of rotary joint capable of such a wide bandwidth and high rotational velocities. PMID:27128052

  14. A Novel Triangular Shaped UWB Fractal Antenna Using Circular Slot

    NASA Astrophysics Data System (ADS)

    Shahu, Babu Lal; Pal, Srikanta; Chattoraj, Neela

    2016-03-01

    The article presents the design of triangular shaped fractal based antenna with circular slot for ultra wideband (UWB) application. The antenna is fed using microstrip line and has overall dimension of 24×24×1.6 mm3. The proposed antenna is covering the wide frequency bandwidth of 2.99-11.16 GHz and is achieved using simple fractal based triangular-circular geometries and asymmetrical ground plane. The antenna is designed and parametrical studies are performed using method of moment (MOM) based Full Wave Electromagnetic (EM) software Simulator Zeland IE3D. The prototype of proposed antenna is fabricated and tested to compare the simulated and measured results of various antenna parameters. The antenna has good impedance bandwidth, nearly constant gain and stable radiation pattern. Measured return loss shows fair agreement with simulated one. Also measured group delay variation obtained is less than 1.0 ns, which proves good time domain behavior of the proposed antenna.

  15. Improved Resolution and Reduced Clutter in Ultra-Wideband Microwave Imaging Using Cross-Correlated Back Projection: Experimental and Numerical Results

    PubMed Central

    Jacobsen, S.; Birkelund, Y.

    2010-01-01

    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40–50%. PMID:21331362

  16. Ultra-Wideband Time-Difference-of-Arrival Two-Point-Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2009-01-01

    A UWB TDOA Two-Point-Tracking System has been conceived and developed at JSC. This system can provide sub-inch tracking capability of two points on one target. This capability can be applied to guide a docking process in a 2D space. Lab tests demonstrate the feasibility of this technology.

  17. Novel Dual-band Slot Antenna Design for Bluetooth and UWB Applications

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Yan; Shao, Wei; Wang, Bing-Zhong; Ma, Xiao-Liang

    2014-05-01

    A novel technique to introduce an additional low frequency band to compact ultra wideband (UWB) slot antennas is proposed in this paper. To get an additional Bluetooth band, a parasitic strip is mounted on the back side of the slot edge. Because of the interaction of the strip and the slot edge, the Bluetooth band can be obtained while a notch band between the Bluetooth band and UWB band also appears. Two types of feeding, coplanar waveguide and microstrip line, are investigated. The proposed antennas are both fabricated on a low-cost FR4 substrate and have compact size (24 mm × 28 mm × 1 mm). The good agreement between measured and simulated results verifies our design.

  18. Provision of IR-UWB wireless and baseband wired services over a WDM-PON.

    PubMed

    Pan, Shilong; Yao, Jianping

    2011-12-12

    A simple scheme to simultaneously generate an on-off keying or bi-phase modulation (BPM) impulse radio ultra wideband (IR-UWB) signal and a baseband wired signal in the optical domain using a dual-drive modulator is proposed and demonstrated. Although the two signals have spectral overlap in the optical spectrum, they are located at different frequency bands when converted to electrical signals at a photodetector (PD), which can be well separated by an electrical filter. An experiment is carried out. Eye diagrams, electrical spectra and BER measurements show that the co-channel interference between the UWB and the wired signals is small for a single-channel 36-km fiber link to provide 1.25-Gb/s UWB wireless and 1.25-Gb/s baseband wired services. The inter-channel interference is also small and negligible when the link is operated together with two other 1.25 Gb/s baseband wired links, which demonstrates that a conventional WDM-PON can be upgraded to provide additional UWB services without affecting the existing services by modifying the modulators in the center office and inserting UWB antennas in the optical network units. PMID:22274021

  19. A Hybrid TOA-Fingerprinting Based Localization of Mobile Nodes Using UWB Signaling for Non Line-Of-Sight Conditions

    PubMed Central

    Kabir, Md. Humayun; Kohno, Ryuji

    2012-01-01

    Recently, Impulse Radio Ultra Wideband (IR-UWB) signaling has become popular for providing precise location accuracy for mobile and wireless sensor node localization in the indoor environment due to its large bandwidth and high time resolution while providing ultra-high transmission capacity. However, the Non-line-of-sight (NLOS) error mitigation has considerable importance in localization of wireless nodes. In order to mitigate NLOS errors in indoor localization this paper proposes and investigates a novel approach which creates a hybrid combination of channel impulse response (CIR)-based fingerprinting (FP) positioning and an iterative Time of Arrival (TOA) real time positioning method using Ultra Wideband (UWB) signaling. Besides, to reduce the calculation complexities in FP method, this paper also introduces a unique idea for the arrangement of reference nodes (or tags) to create a fingerprinting database. The simulation results confirm that the proposed hybrid method yields better positioning accuracies and is much more robust in NLOS error mitigation than TOA only and FP only and a conventional iterative positioning method. PMID:23112651

  20. A hybrid TOA-fingerprinting based localization of mobile nodes using UWB signaling for Non-line-of-sight conditions.

    PubMed

    Kabir, Md Humayun; Kohno, Ryuji

    2012-01-01

    Recently, Impulse Radio Ultra Wideband (IR-UWB) signaling has become popular for providing precise location accuracy for mobile and wireless sensor node localization in the indoor environment due to its large bandwidth and high time resolution while providing ultra-high transmission capacity. However, the Non-line-of-sight (NLOS) error mitigation has considerable importance in localization of wireless nodes. In order to mitigate NLOS errors in indoor localization this paper proposes and investigates a novel approach which creates a hybrid combination of channel impulse response (CIR)-based fingerprinting (FP) positioning and an iterative Time of Arrival (TOA) real time positioning method using Ultra Wideband (UWB) signaling. Besides, to reduce the calculation complexities in FP method, this paper also introduces a unique idea for the arrangement of reference nodes (or tags) to create a fingerprinting database. The simulation results confirm that the proposed hybrid method yields better positioning accuracies and is much more robust in NLOS error mitigation than TOA only and FP only and a conventional iterative positioning method. PMID:23112651

  1. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.

    PubMed

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations. PMID:26773526

  2. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation

    NASA Astrophysics Data System (ADS)

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations.

  3. On IEEE 802.15.6 IR-UWB receivers - simulations for DBPSK modulation.

    PubMed

    Niemelä, Ville; Hämäläinen, Matti; Iinatti, Jari

    2013-01-01

    In 2002, Federal Communications Commission (FCC) was the first in defining regulations for ultra wideband (UWB) communications followed by Europe and Japan some years later. Focusing on impulse radio (IR) UWB, in 2007 was the time for the first published standard targeting in personal area networks, released by the IEEE. The second IEEE released standard including UWB definitions is targeted for wireless body area networks (WBAN) and was published in 2012. As the wireless communications has been and will be passing through almost any levels in society, the natural step with WBAN is using it in different medical, healthcare and wellbeing applications. The arguments for these are related to the modern lifestyle, in which people have increasingly more free time and are more interested in taking care of their health and wellbeing. Another challenge is the population composition, i.e., aging in developed countries which call for new solutions and procedures, particularly from cost wise. In this paper, we are evaluating UWB receivers based on the IEEE 802.15.6 physical layer definitions and capable of detecting differentially encoded modulation. The evaluation is performed using two different WBAN channel models. PMID:24110027

  4. ASIC Implementation of Highly Reliable IR-UWB Transceiver for Industrial Automation

    NASA Astrophysics Data System (ADS)

    Olonbayar, Sonom; Fischer, Gunter; Kreiser, Dan; Martynenko, Denys; Klymenko, Oleksiy; Kraemer, Rolf; Grass, Eckhard

    2016-07-01

    An in-depth treatment of impulse an radio ultra-wideband (IR-UWB) wireless system is provided reviewing theoretical background, proceeding with detailed implementation procedure, and finally giving simulation and test results. This is the first research and prototyping work to be published in the field of IR-UWB that operates in the 6-8 GHz band. The aim of this work is to implement an IR-UWB wireless system for industrial automation that is robust and reliable. To achieve this, an analogue bandwidth of 250 MHz and digital baseband processing at the clock frequency 499.2 MHz were realized in a 250 nm BiCMOS process, integrating the complete system into a single chip. Simulation and measurement results confirm that the implemented IR-UWB transceiver is operational across four frequency channels in the band 6-8 GHz each supporting three data rates 850 kb/s, 6.81 Mb/s and 27.24 Mb/s.

  5. Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves.

    PubMed

    Zhou, Yong Jin; Yang, Bao Jia

    2015-05-10

    Although subwavelength planar terahertz (THz) plasmonic devices can be implemented based on planar spoof surface plasmons (SPs), they still suffer from a little high propagation loss. Here the dispersion and propagation characteristics of the spoof plasmonic waveguide composed of double metal strips corrugated with dumbbell shaped grooves have been investigated. It has been found that much lower propagation loss and longer propagation length can be achieved based on the waveguide compared with the conventional spoof plasmonic waveguide with rectangular grooves. Moreover, the waveguide can implement a decrease in size of about 22%. An ultra-wideband THz plasmonic filter for planar circuits has been demonstrated based on the proposed waveguide. The experimental verification at the microwave frequency has been conducted by scaling up the geometry size of the filter. PMID:25967512

  6. Ultra Wideband Polarization-Selective Conversions of Electromagnetic Waves by Metasurface under Large-Range Incident Angles.

    PubMed

    Yin, Jia Yuan; Wan, Xiang; Zhang, Qian; Cui, Tie Jun

    2015-01-01

    We propose an ultra-wideband polarization-conversion metasurface with polarization selective and incident-angle insensitive characteristics using anchor-shaped units through multiple resonances. The broadband characteristic is optimized by the genetic optimization algorithm, from which the anchor-shaped unit cell generates five resonances, resulting in expansion of the operating frequency range. Owing to the structural feature of the proposed metasurface, only x- and y-polarized incident waves can reach high-efficiency polarization conversions, realizing the polarization-selective property. The proposed metasurface is also insensitive to the angle of incident waves, which indicates a promising future in modern communication systems. We fabricate and measure the proposed metasurface, and both the simulated and measured results show ultra-wide bandwidth for the x- and y-polarized incident waves. PMID:26202495

  7. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    SciTech Connect

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W

    2013-10-31

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  8. A Tightly-Coupled GPS/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communication.

    PubMed

    Wang, Jian; Gao, Yang; Li, Zengke; Meng, Xiaolin; Hancock, Craig M

    2016-01-01

    This paper investigates a tightly-coupled Global Position System (GPS)/Ultra-Wideband (UWB)/Inertial Navigation System (INS) cooperative positioning scheme using a Robust Kalman Filter (RKF) supported by V2I communication. The scheme proposes a method that uses range measurements of UWB units transmitted among the terminals as augmentation inputs of the observations. The UWB range inputs are used to reform the GPS observation equations that consist of pseudo-range and Doppler measurements and the updated observation equation is processed in a tightly-coupled GPS/UWB/INS integrated positioning equation using an adaptive Robust Kalman Filter. The result of the trial conducted on the roof of the Nottingham Geospatial Institute (NGI) at the University of Nottingham shows that the integrated solution provides better accuracy and improves the availability of the system in GPS denied environments. RKF can eliminate the effects of gross errors. Additionally, the internal and external reliabilities of the system are enhanced when the UWB observables received from the moving terminals are involved in the positioning algorithm. PMID:27355947

  9. A Tightly-Coupled GPS/INS/UWB Cooperative Positioning Sensors System Supported by V2I Communication

    PubMed Central

    Wang, Jian; Gao, Yang; Li, Zengke; Meng, Xiaolin; Hancock, Craig M.

    2016-01-01

    This paper investigates a tightly-coupled Global Position System (GPS)/Ultra-Wideband (UWB)/Inertial Navigation System (INS) cooperative positioning scheme using a Robust Kalman Filter (RKF) supported by V2I communication. The scheme proposes a method that uses range measurements of UWB units transmitted among the terminals as augmentation inputs of the observations. The UWB range inputs are used to reform the GPS observation equations that consist of pseudo-range and Doppler measurements and the updated observation equation is processed in a tightly-coupled GPS/UWB/INS integrated positioning equation using an adaptive Robust Kalman Filter. The result of the trial conducted on the roof of the Nottingham Geospatial Institute (NGI) at the University of Nottingham shows that the integrated solution provides better accuracy and improves the availability of the system in GPS denied environments. RKF can eliminate the effects of gross errors. Additionally, the internal and external reliabilities of the system are enhanced when the UWB observables received from the moving terminals are involved in the positioning algorithm. PMID:27355947

  10. A comprehensive study of channel estimation for WBAN-based healthcare systems: feasibility of using multiband UWB.

    PubMed

    Islam, S M Riazul; Kwak, Kyung Sup

    2012-06-01

    Wireless personal area network (WPAN) is an emerging in wireless technology for short range indoor and outdoor communication applications. A more specific category of WPAN is the wireless body area network (WBAN) used for health monitoring. On the other hand, multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) comes with a number of desirable features at the physical layer for wireless communications, for example, very high data rate. One big challenge in adoption of multiband UWB in WBAN is the fact that channel estimation becomes difficult under the constraint of extremely low transmission power. Moreover, the heterogeneous environment of WBAN causes a dense multipath wireless channel. Therefore, effective channel estimation is required in the receiver of WBAN-based healthcare system that uses multiband UWB. In this paper, we first outline the MB-OFDM UWB system. Then, we present an overview of channel estimation techniques proposed/investigated for multiband UWB communications with emphasis on their strengths and weaknesses. Useful suggestions are given to overcome the weaknesses so that these methods can be particularly useful for WBAN channels. Also, we analyze the comparative performances of the techniques using computer simulation in order to find the energy-efficient channel estimation methods for WBAN-based healthcare systems. PMID:21046206

  11. A magnetometer-free indoor human localization based on loosely coupled IMU/UWB fusion.

    PubMed

    Zihajehzadeh, Shaghayegh; Yoon, Paul K; Park, Edward J

    2015-01-01

    The magnetic distortions in indoor environment affects the accuracy of yaw angle estimation using magnetometer. Thus, the accuracy of indoor localization based on inertial-magnetic sensors will be affected as well. To address this issue, this paper proposes a magnetometer-free solution for indoor human localization and yaw angle estimation. The proposed algorithm fuses a wearable inertial sensor consisting of MEMS-based accelerometer and gyroscope with a portable ultra-wideband (UWB) localization system in a cascaded two-step filter consisting of a tilt Kalman filter and a localization Kalman filter. By benchmarking against an optical motion capture system, the experimental results show that the proposed algorithm can accurately track position and velocity as well as the yaw angle without using magnetometer. PMID:26736958

  12. UWB-WBAN sensor node design.

    PubMed

    Keong, Ho Chee; Yuce, M R

    2011-01-01

    In this paper, we discuss the hardware development of a UWB sensor node for wireless body area networks. A few unique UWB pulse generation techniques have been discussed. The sensor node transmits multiple pulses per bit to increase the average power of the transmitted signal in order to improve the bit-error rate (BER) performance. The multiple-pulse per bit technique is also used as the coding scheme to identify the individual sensor nodes when more than one sensor forms a network. The sensors nodes are able to transmit body signals up to 2 m with a BER lower than 10(-5). PMID:22254770

  13. TDM-PON compatible generation of 10 Gbps NRZ and 1.25 Gbps UWB signals by a single light source.

    PubMed

    Malekizandi, Mohammadreza; Le, Quang Trung; Emsia, Ali; Briggmann, Dieter; Chipouline, Arkadi; Küppers, Franko

    2016-07-25

    A novel and cost-efficient technique is presented to generate non-return-to-zero (NRZ) and ultra-wideband (UWB) signals in different time slots of time division multiplexing-passive optical network (TDM-PON) by using a single chirped controlled semiconductor laser associated with an optical bandpass filter. In this technique, the chirp of the laser is controlled by different bias burst amplitudes (BBA) for different time slots. Through the proper selection of the burst amplitudes, 10 Gbps NRZ and 1.25 Gbps UWB signals are generated in different time slots. Principle of operation is discussed, the complete chirp behavior of the laser is experimentally investigated, data transmission of the generated signals is demonstrated and bit-error-rate (BER) level of 10-9 is achieved. PMID:27464153

  14. A novel through-wall respiration detection algorithm using UWB radar.

    PubMed

    Li, Xin; Qiao, Dengyu; Li, Ye; Dai, Huhe

    2013-01-01

    Through-wall respiration detection using Ultra-wideband (UWB) impulse radar can be applied to the post-disaster rescue, e.g., searching living persons trapped in ruined buildings after an earthquake. Since strong interference signals always exist in the real-life scenarios, such as static clutter, noise, etc., while the respiratory signal is very weak, the signal to noise and clutter ratio (SNCR) is quite low. Therefore, through-wall respiration detection using UWB impulse radar under low SNCR is a challenging work in the research field of searching survivors after disaster. In this paper, an improved UWB respiratory signal model is built up based on an even power of cosine function for the first time. This model is used to reveal the harmonic structure of respiratory signal, based on which a novel high-performance respiration detection algorithm is proposed. This novel algorithm is assessed by experimental verification and simulation and shows about a 1.5dB improvement of SNR and SNCR. PMID:24109862

  15. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications.

    PubMed

    Sam, Somarith; Lim, Sungjoon

    2013-04-01

    This paper presents the modeling, design, fabrication, and measurement of an ultra-wideband tunable twoport resonator in which the substrate-integrated waveguide, complementary split-ring resonators (CSRRs), and varactors are embedded on the same planar platform. The tuning of the passband frequency is generated by a simple single dc voltage of 0 to 36 V, which is applied to each varactor on the CSRRs. Different capacitance values and resonant frequencies are produced while a nearly constant absolute bandwidth is maintained. The resonant frequency is varied between 0.83 and 1.58 GHz and has a wide tuning ratio of 90%. PMID:23549526

  16. A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks.

    PubMed

    Lim, Hooi Been; Baumann, Dirk; Li, Er-Ping

    2011-03-01

    Wireless body area network (WBAN) is a new enabling system with promising applications in areas such as remote health monitoring and interpersonal communication. Reliable and optimum design of a WBAN system relies on a good understanding and in-depth studies of the wave propagation around a human body. However, the human body is a very complex structure and is computationally demanding to model. This paper aims to investigate the effects of the numerical model's structure complexity and feature details on the simulation results. Depending on the application, a simplified numerical model that meets desired simulation accuracy can be employed for efficient simulations. Measurements of ultra wideband (UWB) signal propagation along a human arm are performed and compared to the simulation results obtained with numerical arm models of different complexity levels. The influence of the arm shape and size, as well as tissue composition and complexity is investigated. PMID:21062677

  17. A Wireless FSCV Monitoring IC With Analog Background Subtraction and UWB Telemetry.

    PubMed

    Dorta-Quiñones, Carlos I; Wang, Xiao Y; Dokania, Rajeev K; Gailey, Alycia; Lindau, Manfred; Apsel, Alyssa B

    2016-04-01

    A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5- mm(2) chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 μA and 15 μA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pA(rms) and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm(2), weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 μM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV. PMID:26057983

  18. A Wireless FSCV Monitoring IC with Analog Background Subtraction and UWB Telemetry

    PubMed Central

    Dorta-Quiñones, Carlos I.; Wang, Xiao Y.; Dokania, Rajeev K.; Gailey, Alycia; Lindau, Manfred; Apsel, Alyssa B.

    2015-01-01

    A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5-mm2 chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 μA and 15 μA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pArms and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm2, weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 μM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV. PMID:26057983

  19. Path loss variation of on-body UWB channel in the frequency bands of IEEE 802.15.6 standard.

    PubMed

    Goswami, Dayananda; Sarma, Kanak C; Mahanta, Anil

    2016-06-01

    The wireless body area network (WBAN) has gaining tremendous attention among researchers and academicians for its envisioned applications in healthcare service. Ultra wideband (UWB) radio technology is considered as excellent air interface for communication among body area network devices. Characterisation and modelling of channel parameters are utmost prerequisite for the development of reliable communication system. The path loss of on-body UWB channel for each frequency band defined in IEEE 802.15.6 standard is experimentally determined. The parameters of path loss model are statistically determined by analysing measurement data. Both the line-of-sight and non-line-of-sight channel conditions are considered in the measurement. Variations of parameter values with the size of human body are analysed along with the variation of parameter values with the surrounding environments. It is observed that the parameters of the path loss model vary with the frequency band as well as with the body size and surrounding environment. The derived parameter values are specific to the particular frequency bands of IEEE 802.15.6 standard, which will be useful for the development of efficient UWB WBAN system. PMID:27382482

  20. Hybrid UWB and WiMAX radio-over-multi-mode fibre for in-building optical networks

    NASA Astrophysics Data System (ADS)

    Perez, J.; Llorente, R.

    2014-01-01

    In this paper the use of hybrid WiMedia-defined ultra-wideband (UWB) and IEEE 802.16d WiMAX radio-over-fibre is proposed and experimentally demonstrated for multi-mode based in-building optical networks with the advantage of great immunity to optical transmission impairments. In the proposed approach, spectral coexistence of both signals must be achieved with negligible mutual interference. The experimental study performed addressed an indoor configuration with 50 μm multi-mode fibres (MMF) and 850 nm vertical-cavity surface-emitting laser (VCSEL) transmitters. The results indicate that the impact of the wireless convergence in radio-over-multi-mode fibre (RoMMF) is significant for UWB transmissions, mainly due to MMF dispersion and electrooptical (EO) devices with limited bandwidth. On the other hand, WiMAX transmission is feasible for a 300 m MMF and 30 m wireless link in the presence of UWB, with -31 dBm WiMAX EVM.

  1. Ultra-wideband ladder filters using zero-th shear mode plate wave in ultrathin LiNbO3 plate with apodized interdigital transducers

    NASA Astrophysics Data System (ADS)

    Kadota, Michio; Tanaka, Shuji

    2016-07-01

    There are two kinds of plate waves propagating in a thin plate, Lamb and shear horizontal (SH) waves. The former has a velocity higher than 15,000 m/s when the plate is very thin. On the contrary, 0th SH (SH0) mode plate wave in an ultrathin LiNbO3 plate has an electro-mechanical coupling factor larger than 50%. Authors fabricated an ultra-wideband T-type ladder filter with a relative bandwidth (BW) of 41% using the SH0 mode plate wave. Although the BW of the filter fully covers the digital TV band in Japan, it does not have sufficient margin at the lower and higher end of BW. Besides, periodic small ripples due to transverse mode in pass-band of the filter were observed. In this study π-type ladder filters were fabricated by changing the pitch ratio of interdigital transducer (IDT) of parallel and series arm resonators (PR(IDT)) to control the BW, and by apodizing IDTs to improve the periodic small ripples due to transverse mode. Ultra-wideband filters without periodic small transverse mode with ultrawide bandwidth from 41 to 49% were fabricated. The BWs fully cover ultrawide digital television bands in Japan and U.S.A. These filters with an ultrawide BW and a steep characteristic show the possibility to be applied to a reported cognitive radio system and other communication systems requiring an ultrawide BW.

  2. A Bayesian Retrieval of Greenland Ice Sheet Internal Temperature from Ultra-wideband Software-defined Microwave Radiometer (UWBRAD) Measurements

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J.

    2015-12-01

    The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Bayesian framework was designed to retrieve the ice sheet internal temperature from UWBRAD brightness temperature (Tb) measurements for the Greenland air-borne demonstration scheduled for summer 2016. Several parameters would affect the ice sheet physical temperature. And the effective surface temperature, geothermal heat flux and the variance of upper layer ice density were treated as unknown random variables within the retrieval framework. Synthetic brightness temperature were calculated by the snow radiation transfer models as a function of ice temperature, ice density, and an estimate of snow grain size in the upper layers. A incoherent model-the Microwave Emission Model of Layered Snowpacks (MEMLS) and a coherent model were used respectively to estimate the influence of coherent effect. The inputs of the radiation transfer model were generated from a 1-D heat-flow equation developed by Robin and a exponential fit of ice density variation from Borehole measurement. The simulated Tb was corrupted with white noise and served as UWBRAD observation in retrieval. A look-up table was developed between the parameters and the corresponding Tb. In the Bayesian retrieval process, each parameter was defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach was applied to make the unknown parameters randomly walk in the parameter space. Experiment results were examined for science goals on three levels: estimation of the 10-m firn temperature, the average temperature integrated with depth, and the entire temperature profile. The 10-m temperature was estimated to within 0.77 K, with a bias of 0.6 K, across the 47 locations on the ice sheet; the 10-m "synthetic true

  3. Intruder detection and tracking using UWB technology

    NASA Astrophysics Data System (ADS)

    Schiavone, Guy A.; Wahid, Parveen; Palaniappan, Ravishankar; Tracy, Judd; Vandoorn, Eric; Micikevicius, Paulis; Hughes, Charles

    2004-08-01

    UWB communication is essentially the transmission and receiving of ultra short electromagnetic energy pulses. Short pulses mean wide bandwidths, often greatly exceeding 25% of the nominal center frequency. Modern UWB radio is characterized by very low power transmission (in the range of tens of microwatts) and wide bandwidths (greater than a gigahertz). One of the major applications of Ultra-wide band technology has been for detection and tracking of intruders in different environments. Based on some of our previous work [1,2] we developed a hybrid Ray-tracing/FDTD technique to study the indoor and outdoor propagation of UWB signals. The basic goal of this paper is to describe the experimental and simulation studies that were conducted to locate and track an intruder inside a UWB sensor web system. The sensor was developed using the Time Domain P-200 device and the software was developed using MATLAB. Return scans from UWB devices are analyzed to determine the noise floor and the signal strength. Using the noise floor level a threshold level is set above which the alarm will be triggered to determine the presence of an intruder. The probability of false alarm (PFA) is also determined using the Signal-to-Noise ratio and the threshold. We vary the PFA to lower the false alarm to a minimum level. We also determine the noise statistics of the system using Non-parametric Kolmogorov-Smirnov (KS) test. Using this basic UWB sensor web system we will try to determine the physical dimensions of the intruder and also track multiple intruders on the system.

  4. A Study on Performance Enhancement of Packet Detection in MB-OFDM UWB Systems

    NASA Astrophysics Data System (ADS)

    Kang, Kyu-Min

    This paper presents a high performance and hardware efficient packet detection structure, which employs a cross correlator for the M-sample time delayed correlation operation and a signal power calculator using the received input samples less than or equal to a zero-padded suffix of length M. We investigate the detailed characteristics of the proposed packet detector. In this paper, the performance of a class of packet detection algorithms in the ultra-wideband (UWB) channel environments is also studied. The best packet detection algorithm for the multi-band orthogonal frequency division multiplexing (MB-OFDM) UWB transmission is determined through analysis and extensive simulations. The results of analysis show that the proposed packet detection structure has advantages in the hardware complexity as well as performance when compared with the existing packet detection structures. In order to effectively conduct the packet detection before the automatic gain control (AGC) mode, we investigate the effects of both a frequency offset and the initial gain level of a variable gain amplifier (VGA) on the performance of the packet detection. We also suggest a VGA gain control technique to enhance the performance of packet detection.

  5. Foliage penetration data collections and investigations utilizing the P-3 UWB SAR

    NASA Astrophysics Data System (ADS)

    Toups, Michael F.; Bessette, Loretta A.; Binder, Bradley T.

    1996-06-01

    To quantify the agility of a synthetic aperture radar (SAR) system using an automatic target recognition (ATR) system to detect targets obscured by foliage, an ultra-wideband, UHF- band, polarimetric SAR was constructed by ERIM under ARPA funding and installed on a Navy P-3 aircraft controlled by the Naval Air Warfare Center. The system was implemented as an upgrade to the existing X-, L-, and C-band SAR system already on this aircraft. A series of experiments funded by ARPA and Wright Laboratory were undertaken in 1995 to investigate foliage penetration (FOPEN). In this paper, the data and ground truth collected and their utility for investigations of FOPEN phenomenology and ATR algorithms will be presented. These data are being placed into a database for distribution to ATR algorithm developers. The characteristics of the P-3 UWB SAR will be discussed. The image formation technique used will be presented, along with the RFI suppression techniques used. Of particular interest will be the technique used for the required motion compensation. Results from recent investigations using the P-3 UWB SAR data will be discussed.

  6. A Novel Compact UWB Monopole Antenna with Bluetooth and Triple Notch Band

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhou, Zhi-Li; Hong, Jing-Song

    2013-01-01

    A novel technique to add an extra Bluetooth band and triple notch bands simultaneously to a compact ultra-wideband (UWB) monopole antenna is presented. This scissors-shaped UWB antenna, covering 2.9 GHz-12.5 GHz, is fed by a special microstrip line. To create an extra Bluetooth band centered at 2.45 GHz, an arc-shaped stub is attached to the high concentrated current area right of the feed line and a rectangular slot is etched in the radiation patch. Besides, a notch band for WLAN (5.6 GHz-6.15 GHz) is also obtained. In addition, by connecting two asymmetric stubs to the feed line, two other notch bands in 3.28 GHz-3.8 GHz for WiMAX and 7.1 GHz-7.76 GHz for downlink of X-band satellite communication systems are achieved. The proposed antenna with compact size of 20 mm × 26 mm is fabricated and measured, showing stable antenna gain and good omni-directional radiation patterns in H-plane.

  7. Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

    NASA Astrophysics Data System (ADS)

    Jiangwei, Yin; Ning, Li; Renliang, Zheng; Wei, Li; Junyan, Ren

    2009-05-01

    This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18 μm RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38 × 0.28 mm2. The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.

  8. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    PubMed

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1-10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  9. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    PubMed Central

    Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  10. Joint estimation of TOA and DOA in IR-UWB system using a successive propagator method

    NASA Astrophysics Data System (ADS)

    Wang, Fangqiu; Zhang, Xiaofei; Wang, Chenghua; Zhou, Shengkui

    2015-10-01

    Impulse radio ultra-wideband (IR-UWB) ranging and positioning require accurate estimation of time-of-arrival (TOA) and direction-of-arrival (DOA). With receiver of two antennas, both of the TOA and DOA parameters can be estimated via two-dimensional (2D) propagator method (PM), in which the 2D spectral peak searching, however, renders much higher computational complexity. This paper proposes a successive PM algorithm for joint TOA and DOA estimation in IR-UWB system to avoid 2D spectral peak searching. The proposed algorithm firstly gets the initial TOA estimates in the two antennas from the propagation matrix, then utilises successively one-dimensional (1D) local searches to achieve the estimation of TOAs in the two antennas, and finally obtains the DOA estimates via the difference in the TOAs between the two antennas. The proposed algorithm, which only requires 1D local searches, can avoid the high computational cost in 2D-PM algorithm. Furthermore, the proposed algorithm can obtain automatically paired parameters and has better joint TOA and DOA estimation performance than conventional PM algorithm, estimation of signal parameters via rotational invariance techniques algorithm and matrix pencil algorithm. Meanwhile, it has very close parameter estimation to that of 2D-PM algorithm. We have also derived the mean square error of TOA and DOA estimation of the proposed algorithm and the Cramer-Rao bound of TOA and DOA estimation in this paper. The simulation results verify the usefulness of the proposed algorithm.

  11. A CPW-Fed Circular Wide-Slot UWB Antenna with Wide Tunable and Flexible Reconfigurable Dual Notch Bands

    PubMed Central

    Li, Yingsong; Li, Wenxing; Ye, Qiubo

    2013-01-01

    A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8–5.9 GHz and 7.7–9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications. PMID:24222733

  12. A multiuser detector based on artificial bee colony algorithm for DS-UWB systems.

    PubMed

    Yin, Zhendong; Liu, Xiaohui; Wu, Zhilu

    2013-01-01

    Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity. PMID:23983638

  13. Meander-line-based inhomogeneous anisotropic artificial material for gain enhancement of UWB Vivaldi antenna

    NASA Astrophysics Data System (ADS)

    Pandey, Gaurav Kumar; Singh, Hari Shankar; Meshram, Manoj Kumar

    2016-02-01

    An inhomogeneous anisotropic (IA) artificial material (AM) is proposed having epsilon-near-zero (ENZ) characteristics and effective refractive index >1, simultaneously, in the same direction. Further, the proposed IA-AM is utilized for the gain enhancement of Vivaldi antenna for ultra-wideband (UWB) applications. The IA-AM consists of two types of compact meandered line-based anisotropic artificial material with ENZ characteristics in two adjacent narrow bands of 5.5-8.5 and 8-11.5 GHz. However, the non-resonant behavior of the artificial material in other direction appears with high refractive index property in broadband region. The combination of both the unit cells with broadband ENZ and high refractive index property is used to improve the gain of the Vivaldi antenna in broadband. The proposed IA-AM-loaded Vivaldi antenna exhibits a gain enhancement of up to 2 dBi compared to the original antenna in the operating frequency band of 3.1-12 GHz with | S 11| < -10 dB. The proposed antenna shows nearly stable unidirectional radiation patterns with high directivity and nearly flat group delay.

  14. Time-lapse imaging of human heart motion with switched array UWB radar.

    PubMed

    Brovoll, Sverre; Berger, Tor; Paichard, Yoann; Aardal, Øyvind; Lande, Tor Sverre; Hamran, Svein-Erik

    2014-10-01

    Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart. PMID:25350945

  15. Flexible, Polarization-Diverse UWB Antennas for Implantable Neural Recording Systems.

    PubMed

    Bahrami, Hadi; Mirbozorgi, S Abdollah; Ameli, Reza; Rusch, Leslie A; Gosselin, Benoit

    2016-02-01

    Implanted antennas for implant-to-air data communications must be composed of material compatible with biological tissues. We design single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2-11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1-10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Our miniaturized flexible antennas are 12 mm×12 mm and 10 mm×9 mm for single- and dual-polarizations, respectively. Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity. PMID:25794394

  16. Ultra-wideband ladder filter using SH(0) plate wave in thin LiNbO(3) plate and its application to tunable filter.

    PubMed

    Kadota, Michio; Tanaka, Shuji

    2015-05-01

    A cognitive radio terminal using vacant frequency bands of digital TV (DTV) channels, i.e., TV white space, strongly requires a compact tunable filter covering a wide frequency range of the DTV band (470 to 710 MHz in Japan). In this study, a T-type ladder filter using ultra-wideband shear horizontal mode plate wave resonators was fabricated, and a low peak insertion loss of 0.8 dB and an ultra-large 6 dB bandwidth of 240 MHz (41%) were measured in the DTV band. In addition, bandpass filters with different center frequencies of 502 and 653 MHz at 6 dB attenuation were numerically synthesized based on the same T-type ladder filter in conjunction with band rejection filters with different frequencies. The results suggest that the combination of the wideband T-type ladder filter and the band rejection filters connected with variable capacitors enables a tunable filter with large tunability of frequency and bandwidth as well as large rejection at the adjacent channels of an available TV white space. PMID:25965686

  17. High speed Radix-4 soft-decision Viterbi decoder for MB-OFDM UWB system

    NASA Astrophysics Data System (ADS)

    Liang, Guixuan; Portilla, Jorge; Riesgo, Teresa

    2013-05-01

    In this paper, a 64 state soft decision Viterbi Decoder (VD) system by using a high speed radix-4 Add Compare Select (ACS) architecture is presented. The proposed VD system can support different data rate (from 53.5 Mbps to 480 Mbps) for Multiband Orthogonal Frequency-division Multiplexing (MB-OFDM) Ultra-Wideband (UWB) system when implemented onto the FPGA board. The proposed VD employs efficient two steps Radix 4 architecture, which is responsible of calculating two steps of 64 state Radix 4 Branch Metrics (BM) within one clock cycle. The branch metrics are calculated using a uniform distance measurement algorithm, which equals to the symbol itself when compared to logic-0 and equal to its one's complement when compared to logic-1. By employing the modified Modulo Normalization algorithm, it is possible to use only a 10- bit memory block to restore each of the 64 state metrics, with the advantage of avoiding errors caused by overflow during the updating process for state metrics, and simplifying the comparator circuit of the ACS unit. The Two Pointer Even Algorithm, which is considered to be very simple and more hardware-efficient than the register exchange algorithm, is used for tracing back the survivor sequence and output the decoded data stream. 3-bit soft decision input sequences are used for gathering the experimental results. The sampling frequency of the MBOFDM UWB system is 528 MHz, by using the proposed two steps Radix 4 VD architecture we can process 4 input signals in parallel within one clock cycle, therefore only 132 MHz operating frequency is needed for the proposed VD system. This will dramatically reduce the dynamic power consumption for hardware implementation. Final results of the implementation show that the proposed VD architecture can support a maximum working frequency of 152.5 MHz on Xilinx XUPV5-LX110T Evaluation Platform.

  18. UWB channel estimation using new generating TR transceivers

    DOEpatents

    Nekoogar, Faranak; Dowla, Farid U.; Spiridon, Alex; Haugen, Peter C.; Benzel, Dave M.

    2011-06-28

    The present invention presents a simple and novel channel estimation scheme for UWB communication systems. As disclosed herein, the present invention maximizes the extraction of information by incorporating a new generation of transmitted-reference (Tr) transceivers that utilize a single reference pulse(s) or a preamble of reference pulses to provide improved channel estimation while offering higher Bit Error Rate (BER) performance and data rates without diluting the transmitter power.

  19. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    NASA Technical Reports Server (NTRS)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  20. Experimental results for a photonic time reversal processor for the adaptive control of an ultra wideband phased array antenna

    NASA Astrophysics Data System (ADS)

    Zmuda, Henry; Fanto, Michael; McEwen, Thomas

    2008-04-01

    This paper describes a new concept for a photonic implementation of a time reversed RF antenna array beamforming system. The process does not require analog to digital conversion to implement and is therefore particularly suited for high bandwidth applications. Significantly, propagation distortion due to atmospheric effects, clutter, etc. is automatically accounted for with the time reversal process. The approach utilizes the reflection of an initial interrogation signal from off an extended target to precisely time match the radiating elements of the array so as to re-radiate signals precisely back to the target's location. The backscattered signal(s) from the desired location is captured by each antenna and used to modulate a pulsed laser. An electrooptic switch acts as a time gate to eliminate any unwanted signals such as those reflected from other targets whose range is different from that of the desired location resulting in a spatial null at that location. A chromatic dispersion processor is used to extract the exact array parameters of the received signal location. Hence, other than an approximate knowledge of the steering direction needed only to approximately establish the time gating, no knowledge of the target position is required, and hence no knowledge of the array element time delay is required. Target motion and/or array element jitter is automatically accounted for. Presented here are experimental results that demonstrate the ability of a photonic processor to perform the time-reversal operation on ultra-short electronic pulses.

  1. Adaptive modulation and intra-symbol frequency-domain averaging scheme for multiband OFDM UWB over fiber system

    NASA Astrophysics Data System (ADS)

    He, Jing; Li, Teng; Wen, Xuejie; Deng, Rui; Chen, Ming; Chen, Lin

    2016-01-01

    To overcome the unbalanced error bit distribution among subcarriers caused by inter-subcarriers mixing interference (ISMI) and frequency selective fading (FSF), an adaptive modulation scheme based on 64/16/4QAM modulation is proposed and experimentally investigated in the intensity-modulation direct-detection (IM/DD) multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over fiber system. After 50 km standard single mode fiber (SSMF) transmission, at the bit error ratio (BER) of 1×10-3, the experimental results show that the power penalty of the IM/DD MB-OFDM UWBoF system with 64/16/4QAM adaptive modulation scheme is about 3.6 dB, compared to that with the 64QAM modulation scheme. Moreover, the receiver sensitivity has been improved about 0.52 dB when the intra-symbol frequency-domain averaging (ISFA) algorithm is employed in the IM/DD MB-OFDM UWBoF system based on the 64/16/4QAM adaptive modulation scheme. Meanwhile, after 50 km SSMF transmission, there is a negligible power penalty in the adaptively modulated IM/DD MB-OFDM UWBoF system, compared to the optical back-to-back case.

  2. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model.

    PubMed

    Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao

    2016-02-01

    This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period. PMID:25667357

  3. FIR Filter of DS-CDMA UWB Modem Transmitter

    NASA Astrophysics Data System (ADS)

    Kang, Kyu-Min; Cho, Sang-In; Won, Hui-Chul; Choi, Sang-Sung

    This letter presents low-complexity digital pulse shaping filter structures of a direct sequence code division multiple access (DS-CDMA) ultra wide-band (UWB) modem transmitter with a ternary spreading code. The proposed finite impulse response (FIR) filter structures using a look-up table (LUT) have the effect of saving the amount of memory by about 50% to 80% in comparison to the conventional FIR filter structures, and consequently are suitable for a high-speed parallel data process.

  4. Comparison between Coherent and Noncoherent Receivers for UWB Communications

    NASA Astrophysics Data System (ADS)

    Durisi, Giuseppe; Benedetto, Sergio

    2005-12-01

    We present a comparison between coherent and noncoherent UWB receivers, under a realistic propagation environment, that takes into account also the effect of path-dependent pulse distortion. As far as coherent receivers are concerned, both maximal ratio combining (MRC) and equal gain combining (EGC) techniques are analyzed, considering a limited number of estimated paths. Furthermore, two classical noncoherent schemes, a differential detector, and a transmitted-reference receiver, together with two iterative solutions, recently proposed in the literature, are considered. Finally, we extend the multisymbol approach to the UWB case and we propose a decision-feedback receiver that reduces the complexity of the previous strategy, thus still maintaining good performance. While traditional noncoherent receivers exhibit performance loss, if compared to coherent detectors, the iterative and the decision-feedback ones are able to guarantee error probability close to the one obtained employing an ideal RAKE, without requiring channel estimation, in the presence of static indoor channel and limited multiuser interference.

  5. 47 CFR 15.507 - Marketing of UWB equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible...

  6. 47 CFR 15.507 - Marketing of UWB equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible...

  7. 47 CFR 15.507 - Marketing of UWB equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible...

  8. 47 CFR 15.507 - Marketing of UWB equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible...

  9. 47 CFR 15.507 - Marketing of UWB equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Marketing of UWB equipment. 15.507 Section 15... Operation § 15.507 Marketing of UWB equipment. In some cases, the operation of UWB devices is limited to... state or local government. The marketing of UWB devices must be directed solely to parties eligible...

  10. Accuracy of an UWB-based position tracking system used for time-motion analyses in game sports.

    PubMed

    Leser, Roland; Schleindlhuber, Armin; Lyons, Keith; Baca, Arnold

    2014-01-01

    The main aim of this study was to determine the accuracy of the ultra-wideband (UWB)-based positioning system Ubisense, which is used for time-motion analysis in sports. Furthermore, some alternatives for positioning the system's transponders on the atheletes, as well as the accuracy depending on the location of measurement, were tested. Therefore, in a pre-study, some basic issues were examined (measurement assumptions and consistency and location of the system's transponder used for position detection), and position measurements at the borders and in the centre of a basketball field were performed. In the main study, 13 male basketball players (15.8 years ± 0.6; 187.9 height ± 3.4; 77.5 weight ± 3.7), equipped with a Ubisense transponder mounted on top of their heads, handled a trundle wheel during simulated match play. The players with the trundle wheel participated passively in the match by following one of the ten competing players. The distance measurements of the trundle wheel were used as reference values and compared to the Ubisense distance estimations. Best results were found with the measurements of a single mounted transponder on top of the athlete's heads. No differences were detectable in the accuracy between measurements in the centre and at the borders of the basketball field. The (Ubisense) system's difference to the (trundle wheel) reference was 3.45 ± 1.99%, resulting in 95% limits of agreement of -0.46-7.35%. The study indicates the examined system's sufficient accuracy for time-motion analysis in basketball. PMID:24512176

  11. UWB Dual-Polarized Antenna for HPEM Sources

    NASA Astrophysics Data System (ADS)

    Schmitz, J.; Camp, M.; Jung, M.; Adamiuk, G.; Scherr, S.; Zwick, T.

    A novel dual-polarized exponential tapered slot antenna for high power electromagnetic (HPEM) sources is designed and verified. This antipodal version of an ultra-wideband Vivaldi antenna offers compact sizes and sustains high input power of about 40 kV. Gains of about 8 dBi can be achieved. Both antenna planes are isolated with more than 20 dB.

  12. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor

    NASA Astrophysics Data System (ADS)

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S. V.

    2016-01-01

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  13. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor.

    PubMed

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S V

    2016-01-01

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper. PMID:26827337

  14. A DS-UWB Cognitive Radio System Based on Bridge Function Smart Codes

    NASA Astrophysics Data System (ADS)

    Xu, Yafei; Hong, Sheng; Zhao, Guodong; Zhang, Fengyuan; di, Jinshan; Zhang, Qishan

    This paper proposes a direct-sequence UWB Gaussian pulse of cognitive radio systems based on bridge function smart sequence matrix and the Gaussian pulse. As the system uses the spreading sequence code, that is the bridge function smart code sequence, the zero correlation zones (ZCZs) which the bridge function sequences' auto-correlation functions had, could reduce multipath fading of the pulse interference. The Modulated channel signal was sent into the IEEE 802.15.3a UWB channel. We analysis the ZCZs's inhibition to the interference multipath interference (MPI), as one of the main system sources interferences. The simulation in SIMULINK/MATLAB is described in detail. The result shows the system has better performance by comparison with that employing Walsh sequence square matrix, and it was verified by the formula in principle.

  15. Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications

    SciTech Connect

    ISLAM,N.E.; SCHAMILOGLU,E.; MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; JOSHI,R.P.

    2000-05-30

    The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of {approximately} 10{sup 4} shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10{sup 8} shots for electro-optic drivers. Much effort is currently

  16. Non-Invasive UWB Sensing of Astronauts' Breathing Activity

    PubMed Central

    Baldi, Marco; Cerri, Graziano; Chiaraluce, Franco; Eusebi, Lorenzo; Russo, Paola

    2015-01-01

    The use of a UWB system for sensing breathing activity of astronauts must account for many critical issues specific to the space environment. The aim of this paper is twofold. The first concerns the definition of design constraints about the pulse amplitude and waveform to transmit, as well as the immunity requirements of the receiver. The second issue concerns the assessment of the procedures and the characteristics of the algorithms to use for signal processing to retrieve the breathing frequency and respiration waveform. The algorithm has to work correctly in the presence of surrounding electromagnetic noise due to other sources in the environment. The highly reflecting walls increase the difficulty of the problem and the hostile scenario has to be accurately characterized. Examples of signal processing techniques able to recover breathing frequency in significant and realistic situations are shown and discussed. PMID:25558995

  17. On Integration and Validation of a Very Low Complexity ATC UWB System for Muscle Force Transmission.

    PubMed

    Sapienza, Stefano; Crepaldi, Marco; Motto Ros, Paolo; Bonanno, Alberto; Demarchi, Danilo

    2016-04-01

    The thresholding of Surface ElectroMyoGraphic (sEMG) signals, i.e., Average Threshold Crossing (ATC) technique, reduces the amount of data to be processed enabling circuit complexity reduction and low power consumption. This paper investigates the lowest level of complexity reachable by an ATC system through measurements and in-vivo experiments with an embedded prototype for wireless force transmission, based on asynchronous Impulse-Radio Ultra Wide Band (IR-UWB). The prototype is composed by the acquisition unit, a wearable PCB 23 × 34 mm, which includes a full custom IC integrating a UWB transmitter (chip active silicon area 0.016 mm(2), 1 mW power consumption), and the receiver. The system is completely asynchronous, it acquires a differential sEMG signal, generates the ATC events and triggers a 3.3 GHz IR-UWB transmission. ATC robustness relaxes filters constraints: two passive first order filters have been implemented, bandwidth from 10 Hz up to 1 kHz. Energy needed for the single pulse generation is 30 pJ while the whole PCB consumes 5.65 mW. The pulses radiated by the acquisition unit TX are received by a short-range and low complexity threshold-based 130 nm CMOS IR-UWB receiver with an Ultra Low Power (ULP) baseband unit capable of robustly receiving generic quasi-digital pulse sequences. The acquisition unit have been tested with 10 series of in vivo isometric and isotonic contractions, while the transmission channel with over-the-air and cable measurements obtained with a couple of planar monopole antennas and an integrated 0.004 mm(2) transmitter, the same used for the acquisition unit, with realistic channel conditions. The entire system, acquisition unit and receiver, consumes 15.49 mW. PMID:26011867

  18. 1000-1400-nm partially mode-locked pulse from a simple all-fiber cavity.

    PubMed

    Wei, Xiaoming; Xu, Yiqing; Wong, Kenneth K Y

    2015-07-01

    We demonstrate a partially mode-locked pulse laser delivering ultra-wideband optical spectrum, i.e., 1000-1400 nm at 30 dB, from a simple all-fiber short cavity with all-normal dispersion. Examined by both real-time temporal and spectral analyzers, the partially mode-locked pulse exhibits double-scale noise-like characteristics-the fast L-shaped mode-locked pulse modulated by slow free-running Q-switched envelopes. Moreover, the statistical analysis as a function of its optical bandwidth shows that the spectral tuning does not compromise the temporal stability, but affects the pulsing periodicity. It is believed that the wide spectrum of knowledge obtained here would enrich the field of noise-like pulse, such as being beneficial to the rogue wave generation. PMID:26125353

  19. A Novel Low-Ringing Monocycle Picosecond Pulse Generator Based on Step Recovery Diode

    PubMed Central

    Zhou, Jianming; Yang, Xiao; Lu, Qiuyuan; Liu, Fan

    2015-01-01

    This paper presents a high-performance low-ringing ultra-wideband monocycle picosecond pulse generator, formed using a step recovery diode (SRD), simulated in ADS software and generated through experimentation. The pulse generator comprises three parts, a step recovery diode, a field-effect transistor and a Schottky diode, used to eliminate the positive and negative ringing of pulse. Simulated results validate the design. Measured results indicate an output waveform of 1.88 peak-to-peak amplitude and 307ps pulse duration with a minimal ringing of -22.5 dB, providing good symmetry and low level of ringing. A high degree of coordination between the simulated and measured results is achieved. PMID:26308450

  20. Image-based target detection with multispectral UWB OFDM radar

    NASA Astrophysics Data System (ADS)

    Bufler, Travis D.; Garmatyuk, Dmitriy S.

    2012-06-01

    This paper proposes an image-based automatic target detection algorithm to be used in clutter and sparse target environments. We intend to apply the algorithm to an ultra-wideband multispectral radar concept by means of employing multi-carrier waveforms based upon Orthogonal Frequency Division Multiplexing (OFDM) modulation. Individual sub-bands of an OFDM waveform can be processed separately to yield range and cross-range reconstruction of a target scene containing both targets and clutter. Target detection in resulting images will be performed and contrasted with the detection performance of a traditional fixed-waveform Synthetic Aperture Radar system. The target detection algorithm is implemented through the use of scalar and vector field operations performed on the images from the reconstructed target scene. We hypothesize that the use of vector operations and field analysis will allow for an adaptive approach to the detection of targets within clutter.

  1. Industrial WSN Based on IR-UWB and a Low-Latency MAC Protocol

    NASA Astrophysics Data System (ADS)

    Reinhold, Rafael; Underberg, Lisa; Wulf, Armin; Kays, Ruediger

    2016-07-01

    Wireless sensor networks for industrial communication require high reliability and low latency. As current wireless sensor networks do not entirely meet these requirements, novel system approaches need to be developed. Since ultra wideband communication systems seem to be a promising approach, this paper evaluates the performance of the IEEE 802.15.4 impulse-radio ultra-wideband physical layer and the IEEE 802.15.4 Low Latency Deterministic Network (LLDN) MAC for industrial applications. Novel approaches and system adaptions are proposed to meet the application requirements. In this regard, a synchronization approach based on circular average magnitude difference functions (CAMDF) and on a clean template (CT) is presented for the correlation receiver. An adapted MAC protocol titled aggregated low latency (ALL) MAC is proposed to significantly reduce the resulting latency. Based on the system proposals, a hardware prototype has been developed, which proves the feasibility of the system and visualizes the real-time performance of the MAC protocol.

  2. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    PubMed Central

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; Zito, Fabio; De Rossi, Danilo; Lanatà, Antonio

    2008-01-01

    A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported. PMID:18389068

  3. Band-notched reconfigurable CPW-fed UWB antenna

    NASA Astrophysics Data System (ADS)

    Majid, H. A.; Rahim, M. K. A.; Hamid, M. R.; Murad, N. A.; Samsuri, N. A.; Yusof, M. F. M.; Kamarudin, M. R.

    2016-04-01

    A reconfigurable band-notched CPW-fed UWB antenna using electromagnetic bandgap (EBG) structure is proposed. Two structures are positioned adjacent to the transmission line of the UWB antenna. The band-notched characteristic can be disabled by switching the state of switch place at the strip line. The EBG structure produces reconfigurable band notched at 4.0 GHz, which covers C-band satellite communication (3.625-4.2 GHz) systems. The proposed antenna is suitable for UWB systems, which requires reconfigurable band reject function.

  4. Breakdown Behavior of a Wireless Communication Network Under UWB Impact

    NASA Astrophysics Data System (ADS)

    Rohe, M.; Koch, M.

    Systems with high priority to safety and reliability such as monitoring systems on airports have to work properly. Fast information transmission, continuous access to databases, as well as the management of air traffic are most important for effective and safe operation. Sources of Intentional Electromagnetic Interference can be manufactured relatively easy using commercially available components by civilian persons with relevant expertise and can be used for sabotage or blackmail purposes. For analyzing the weak points of a system existing on airports, it is necessary to reproduce its setup. In this investigation a UHF transmitter of a wireless communication device is developed and its breakdown behavior to unipolar fast rise pulses (UWB) is determined. A breakdown is a non-permanent damage, but includes a type of upset, that requires manual reset or at least stops communications for some period of time. The transmitter consists of three main components connected by data cables: power supply, microcontroller, and loop antenna. The immunity tests are accomplished as a function of the electromagnetic field direction to the device using an open TEM waveguide.

  5. UWB technology for safety-oriented vehicular communications

    NASA Astrophysics Data System (ADS)

    Llorente, Roberto; Morant, Maria

    2016-03-01

    Ultra-Wide Band (UWB) technology for wireless multiple access communications are receiving great interest for the last five years due to its unique features such as spectrum coexistence with other wireless services, RF front-end simplicity (enabling potential low cost terminals), good radio wave propagation (robust against multi-path fading, material penetration) and high bitrate. Low-cost UWB technology can be employed to provide simultaneous communications and vehicular radar capabilities. In this paper, the application of vehicle-to-vehicle (C2C), infrastructure-to-vehicle (I2C), communication and vehicular radar (VRAD) based on UWB technology are proposed altogether the required fiber-optics infrastructure, with the advantage of being flexible, cost-effective, reliable, fast and secure. The experimental validation and comparison for the optical generation of UWB signals combined with radio-over-fiber transmission is also reported in this work applied to vehicular communications. Both impulse-radio (IR-UWB) and orthogonal frequency division multiplexing (OFDM-UWB) signals are generated and their performance are evaluated experimentally in the 3.1-10.6 GHz frequency range. Up-conversion in the 60 GHz wireless band is also herein reported.

  6. UWB radar technique for arc detection in coaxial cables and waveguides

    SciTech Connect

    Maggiora, R.; Salvador, S.

    2009-11-26

    As spread spectrum technology has revolutionized the communications industry, Ultra Wide Band (UWB) technology is dramatically improving radar performances. These advanced signal processing techniques have been adapted to coaxial cables and waveguides to provide new features and enhanced performance on arc detection. UWB signals constituted by a sequence of chips (properly chosen to reduce side lobes and to improve detection accuracy) are transmitted along the transmission lines at a specified Pulse Repetition Frequency (PRF) and their echoes are received by means of directional couplers. The core of the receiver is an ultra high-speed correlator implemented in a Digital Signal Processor (DSP). When a target (arc) is detected, its position and its 'radar cross section' are calculated to be able to provide the arc position along the transmission line and to be able to classify the type of detected arc. The 'background scattering' is routinely extracted from the received signal at any pulse. This permits to be resilient to the background structure of transmission lines (bends, junctions, windows, etc.). Thanks to the localization feature, segmentation is also possible for creating sensed and non-sensed zones (for example, to be insensitive to antenna load variations)

  7. Pulse

    MedlinePlus

    Heart rate; Heart beat ... The pulse can be measured at areas where an artery passes close to the skin. These areas include the: ... side of the foot Wrist To measure the pulse at the wrist, place the index and middle ...

  8. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... under the provisions of this section is limited to UWB transmitters employed solely for indoor operation.... (b) The UWB bandwidth of a UWB system operating under the provisions of this section must be... operating under the provisions of this section shall not exceed the emission levels......

  9. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... under the provisions of this section is limited to UWB transmitters employed solely for indoor operation.... (b) The UWB bandwidth of a UWB system operating under the provisions of this section must be... operating under the provisions of this section shall not exceed the emission levels......

  10. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... under the provisions of this section is limited to UWB transmitters employed solely for indoor operation.... (b) The UWB bandwidth of a UWB system operating under the provisions of this section must be... operating under the provisions of this section shall not exceed the emission levels......

  11. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... under the provisions of this section is limited to UWB transmitters employed solely for indoor operation.... (b) The UWB bandwidth of a UWB system operating under the provisions of this section must be... operating under the provisions of this section shall not exceed the emission levels......

  12. UWB and 60-GHz RF generation and transmission over WDM-PON based on bidirectional asymmetric polarization modulation and frequency multiplication

    NASA Astrophysics Data System (ADS)

    Liu, Weilin; Yao, Jianping

    2013-10-01

    A novel scheme to simultaneously provide UWB, 60-GHz millimeter-wave (mmW), and baseband services over a wavelength division multiplexing (WDM) passive optical network (PON) is proposed and demonstrated. In the proposed system, an OOK Gaussian pulse signal is modulated on the optical carrier and then converted to an OOK UWB impulse signal at an edge filter, a baseband signal and a 30-GHz signal are then modulated on the same optical carrier. By employing polarization multiplex technique, the UWB and baseband signal will have orthogonal polarization directions and the spectrum interference between the two signals is avoided. By suppressing the optical carrier, a frequencydoubled mmW signal at 60 GHz is generated by beating the two 1st order sidebands at a photodetector (PD). Error-free transmission of a UWB signal at 2.5 Gbps and a wired baseband signal at 2.5 and 5 Gbps over a 25-km single-mode fiber (SMF) is achieved. A frequency-doubled mmW signal at 60 GHz is also obtained.

  13. 2-Dimensional Imaging of Human Bodies with UWB Radar Using Approximately Uniform Walking Motion along a Straight Line with the SEABED Algorithm

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takuya; Sato, Toru

    UWB (Ultra Wide-Band) pulse radar is a promising candidate for surveillance systems designed to prevent crimes and terror-related activities. The high-speed SEABED (Shape Estimation Algorithm based on BST and Extraction of Directly scattered waves) imaging algorithm, is used in the application of UWB pulse radar in fields that require realtime operations. The SEABED algorithm assumes that omni-directional antennas are scanned to observe the scattered electric field in each location. However, for surveillance systems, antenna scanning is impractical because it restricts the setting places of the devices. In this paper, movement of a body is used to replace antenna scanning. The instantaneous velocity of any given motion is an unknown variable that changes as a function of time. A pair of antennas is used to analyze delay time to estimate the unknown motion. We propose a new algorithm to estimate the shape of a human body using data obtained from a human body passing stationary antennas.

  14. A Novel UWB Antenna with Dual Band-Notched Characteristics

    NASA Astrophysics Data System (ADS)

    Lin, Yongfan; Liang, Jiangang; Wu, Goucheng; Xu, Zhiyong; Niu, Xuebin

    2015-11-01

    In this article, started from analyzing the basic principle of band-notched characteristics, a feasibly method used for band-notched antenna is demonstrated and the equivalent circuit for this method is designed. A novel UWB antenna is designed. Based on this method, two stubs which can be equivalent to shorted stubs in parallel configuration are added to realize dual band-notched characteristics. Simulated and measured results all show that the UWB antenna yields an impendence bandwidth of 2.0-10.6 GHz by defining VSWR ≦ 2, and two obvious band-notched functions (3.27-3.83 GHz, 4.60-5.90 GHz) occur at the working bandwidth of WIMAX (3.3-3.7 GHz) and HiperLAN/2 (5.15-5.35 GHz, 5.47-5.725 GHz), so the electromagnetic interference between UWB application and WIMAX, HiperLAN/2 can be suppressed.

  15. Position Estimation of Tranceivers in Communication Networks

    SciTech Connect

    Kent, C A; Dowla, F U

    2003-10-13

    With the rapid development in wireless sensor networks, there is an important need for transceiver position estimation independent of Global Positioning Systems (GPS) [1,3]. While GPS might be useful for outdoor sensor nodes, it is not for indoor node localization. In this case, position estimation is possible through network range estimates from time-of-flight (TOF) measurements, a technique well suited to large bandwidth physical links, such as in ultra-wideband (UWB) communications. For example, in our UWB systems, with pulse duration less than 200 pico-seconds, range can easily be resolved to less than a foot. Assuming an encoded UWB or spread spectrum physical layer, we developed algorithms and simulation tools to test transceiver position localization. Simulations were designed to lend insight into system characteristics such as position error sensitivities to network geometry, to range estimation errors, and to number of sensor nodes.

  16. IR-UWB radio-over-fiber system components development

    NASA Astrophysics Data System (ADS)

    Sultanov, Albert K.; Vinogradova, Irina L.; Meshkov, Ivan K.; Grakhova, Elizaveta P.; Shmidt, Svyatoslav P.; Abdrakhmanova, Guzel I.; Tafur Monroy, Idelfonso

    2016-03-01

    The paper describes the application of IR-UWB technology for organizing the radio part of Radio-over-Fiber system. Four physical layer components are proposed and designed in the paper: three microstrip filters and UWB antenna. Firstly the effective SCRF mask was calculated to ensure electromagnetic compatibility with existing radio services. Then this mask was considered as a cost function for filters design. The simulation was made with Agilent Genesys™ and CST Microwave Studio. All the devices have shown good performance and could be implemented on one circuit board for reducing losses.

  17. Pulse

    MedlinePlus

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  18. [Focusing properties of picosecond electric pulses in non-invasive cancer treatment].

    PubMed

    Long, Zaiquan; Yao, Chenguo; Li, Chengxiang; Mi, Yan; Sun, Caixin

    2010-10-01

    In the light of optical theory, we advanc an ultra-wideband impulse radiating antenna (IRA) which is composed of an ellipsoidal reflector and a cone radiator. The high-intensity ultra-short electric pulses radiated by IRA can be transferred into the deep target in tissue non-invasively and be focused effectively. With the focused picosecond electric pulses, the organelles (mitochondria) transmembrane potential shall change to collapse under which the tumor cells will be targetly induced to apoptosis, so the method of non-invasive treatment of tumors would be achieved. Based on the time-domain electromagnetic field theory, the propagation characteristics of picosecond electric pulses were analyzed with and without the context of biological tissue, respectively. The results show that the impulse characteristics of input pulse were maintained and the picosecond electric pulses can keep high resolution in target areas. Meanwhile, because of the dispersive nature of medium, the pulse amplitude of the pulses will attenuate and the pulse width will be broadened. PMID:21089684

  19. Ultrawideband monocycle pulse generation based on polarization modulator and low speed electrical NRZ signal

    NASA Astrophysics Data System (ADS)

    Sun, Guodan; Zhang, Qiufang; Wang, Quan

    2015-07-01

    A novel ultrawideband (UWB) monocycle pulse generation system by modulating a polarization modulator (PolM) with a low speed electrical nonreturn-to-zero (NRZ) signal is proposed, which significantly reduce the bandwidth requirement of the driving signal. At each bit transition of the input NRZ signal, two polarity-reversed Gaussian pulses are generated. By properly setting the delay between these two Gaussian pulses, an optical UWB monocycle pulse can be generated. Biphase modulation (BPM) can be realized by electrically switching the polarization direction at the output of PolM, if an electrically tunable arbitrary wave plate (AWP) is employed.

  20. Photoinjector-driven chirped-pulsed free electron maser

    NASA Astrophysics Data System (ADS)

    Lesage, G. P.; Hartemann, F. V.; Feng, H. X. C.; Fochs, S. N.; Heritage, J. P.; Luhmann, N. C., Jr.; Perry, M. D.; Westenskow, G. A.

    1995-03-01

    An ultra-short pulse, millimeter-wave free electron maser experiment is currently underway at UC Davis and Lawrence Livermore National Laboratory. A 8.5 kG, 30 mm period helical wiggler is used to transversally accelerate a train of one hundred 5 MeV, 0.25 nC, 1 ps duration micro bunches synchronously energized by a 20 MW, X-band photocathode RF linac. The photocathode is irradiated by a burst-mode, UV laser system which produces up to 100 pulses at 207 nm, with an energy of 10 mJ/pulse, and a pulse duration of 200 fs, at a repetition rate of 2.142 GHz. This system includes a 400 fs jitter synchronously modelocked AlGaAs semiconductor laser oscillator which is amplified by an eight-pass Ti:Al2O3 chirped pulse laser amplifier. The output of this amplifier is subsequently frequency quadrupled into the UV. Because the electron micro bunches are shorter than the radiation wavelength, the system coherently synchrotron radiates and behaves essentially as a prebunched FEM. In addition, by operating in a waveguide structure at grazing, where the bunch axial velocity in the wiggler matches the group velocity of the electromagnetic waves, one obtains output radiation pulses which are extremely short, and have greatly enhanced peak power. The device operates in the TE(sub 12) mode of a cylindrical waveguide, and will produce up to 2 MW of coherent synchrotron radiation power at 140 GHz, in a 15 ps FWHM pulse. The -3 dB instantaneous interaction bandwidth extends from 125 GHz to 225 GHz. The output pulse is chirped over the full interaction bandwidth. One of the major potential applications of such a device is an ultra-wideband millimeter-wave radar.

  1. UWB EMI To Aircraft Radios: Field Evaluation on Operational Commercial Transport Airplanes. Volume 1

    NASA Technical Reports Server (NTRS)

    Oria, A. J. (Editor); Ely, Jay J.; Martin, Warren L.; Shaver, Timothy W.; Fuller, Gerald L.; Zimmerman, John; Fuschino, Robert L.; Larsen, William E.

    2005-01-01

    Ultrawideband (UWB) transmitters may soon be integrated into a wide variety of portable electronic devices (PEDs) that passengers routinely carry on board commercial airplanes. Airlines and the FAA will have difficulty controlling passenger use of UWB transmitters during flights with current airline policies and existing wireless product standards. The aeronautical community is concerned as to whether evolving FCC UWB rules are adequate to protect legacy and emerging aeronautical radio systems from electromagnetic interference (EMI) from emerging UWB products. To address these concerns, the NASA Office of Space Communications and Chief Spectrum Managers assembled a multidisciplinary team from NASA LaRC, NASA JPL, NASA ARC, FAA, United Airlines, Sky West Airlines, and Eagles Wings Inc. to carry out a comprehensive series of tests aimed at determining the nature and extent of any EMI to aeronautical communication and navigation systems from UWB devices meeting FCCapproved and proposed levels for unlicensed handheld transmitters.

  2. Ultrawideband synthetic vision sensor for airborne wire detection

    NASA Astrophysics Data System (ADS)

    Fontana, Robert J.; Larrick, J. F.; Cade, Jeffrey E.; Rivers, Eugene P., Jr.

    1998-07-01

    A low cost, miniature ultra wideband (UWB) radar has demonstrated the ability to detect suspended wires and other small obstacles at distances exceeding several hundred feet using an average output power of less than 10 microwatts. Originally developed as a high precision UWB radar altimeter for the Navy's Program Executive Office for Unmanned Aerial Vehicles and Cruise Missiles, an improved sensitivity version was recently developed for the Naval Surface Warfare Center (NSWC Dahlgren Division) as part of the Marine Corps Warfighting Laboratory's Hummingbird program for rotary wing platforms. Utilizing a short pulse waveform of approximately 2.5 nanoseconds in duration, the receiver processor exploits the leading edge of the radar return pulse to achieve range resolutions of less than one foot. The resultant 400 MHz bandwidth spectrum produces both a broad frequency excitation for enhanced detection, as well as a low probability of intercept and detection (LPI/D) signature for covert applications. This paper describes the design and development of the ultra wideband sensor, as well as performance results achieved during field testing at NSWC's Dahlgren, VA facility. These results are compared with those achieved with a high resolution EHF radar and a laser-based detection system.

  3. A low noise CMOS RF front-end for UWB 6-9 GHz applications

    NASA Astrophysics Data System (ADS)

    Feng, Zhou; Ting, Gao; Fei, Lan; Wei, Li; Ning, Li; Junyan, Ren

    2010-11-01

    An integrated fully differential ultra-wideband CMOS RF front-end for 6-9 GHz is presented. A resistive feedback low noise amplifier and a gain controllable IQ merged folded quadrature mixer are integrated as the RF front-end. The ESD protected chip is fabricated in a TSMC 0.13 μm RF CMOS process and achieves a maximum voltage gain of 23-26 dB and a minimum voltage gain of 16-19 dB, an averaged total noise figure of 3.3-4.6 dB while operating in the high gain mode and an in-band IIP3 of -12.6 dBm while in the low gain mode. This RF front-end consumes 17 mA from a 1.2 V supply voltage.

  4. Performance comparison of phenomenology-based features to generic features for false alarm reduction in UWB SAR imagery

    NASA Astrophysics Data System (ADS)

    Marble, Jay A.; Gorman, John D.

    1999-08-01

    A feature based approach is taken to reduce the occurrence of false alarms in foliage penetrating, ultra-wideband, synthetic aperture radar data. A set of 'generic' features is defined based on target size, shape, and pixel intensity. A second set of features is defined that contains generic features combined with features based on scattering phenomenology. Each set is combined using a quadratic polynomial discriminant (QPD), and performance is characterized by generating a receiver operating characteristic (ROC) curve. Results show that the feature set containing phenomenological features improves performance against both broadside and end-on targets. Performance against end-on targets, however, is especially pronounced.

  5. Design of a CPW-feed circularly polarized slot antenna with triangle embedded in half circular disc for UWB applications

    NASA Astrophysics Data System (ADS)

    Krishna, Ram; Kumar, Raj

    2013-01-01

    A compact (40 mm x 35 mm) coplanar waveguide (CPW) fed slot antenna for circular polarization is presented in this paper. The antenna is designed and fabricated for applications in the ultra-wideband domain of wireless communications where circular polarization is also required. The axial ratio (AR) bandwidth of the proposed antenna is 35.46% (5.8 GHz- 8.3 GHz), while the experimental impedance bandwidth is from 2.8 GHz - 8.6 GHz. The experimental results are very close to the simulated results. The antenna displays a stable radiation pattern and a moderately high gain of around 5 - 6 dB in the useful band.

  6. Ultrawide-band electromagnetic pulses induced hypotension in rats.

    PubMed

    Lu, S T; Mathur, S P; Akyel, Y; Lee, J C

    The ultrawide-band (UWB) electromagnetic pulses are used as a new modality in radar technology. Biological effects of extremely high peak E-field, fast rise time, ultrashort pulse width, and ultrawide band have not been investigated heretofore due to the lack of animal exposure facilities. A new biological effects database is needed to establish personnel protection guidelines for these new type of radiofrequency radiation. Functional indices of the cardiovascular system (heart rate, systolic, mean, and diastolic pressures) were selected to represent biological end points that may be susceptible to the UWB radiation. A noninvasive tail-cuff photoelectric sensor sphygmomanometer was used. Male Wistar-Kyoto rats were subjected to sham exposure, 0.5-kHz (93 kV/m, 180 ps rise time, 1.00 ns pulse width, whole-body averaged specific absorption rate, SAR = 70 mW/kg) or a 1-kHz (85 kV/m, 200 ps rise time, 1.03 ns pulse width, SAR = 121 mW/kg) UWB fields in a tapered parallel plate GTEM cell for 6 min. Cardiovascular functions were evaluated from 45 min to 4 weeks after exposures. Significant decrease in arterial blood pressures (hypotension) was found. In contrast, heart rate was not altered by these exposures. The UWB radiation-induced hypotension was a robust, consistent, and persistent effect. PMID:10073476

  7. Ultrawide-band electromagnetic pulses induced hypotension in rats.

    PubMed

    Lu, S T; Mathur, S P; Akyel, Y; Lee, J C

    1999-09-01

    The ultrawide-band (UWB) electromagnetic pulses are used as a new modality in radar technology. Biological effects of extremely high peak E-field, fast rise time, ultrashort pulse width, and ultrawide band have not been investigated heretofore due to the lack of animal exposure facilities. A new biological effects database is needed to establish personnel protection guidelines for these new type of radiofrequency radiation. Functional indices of the cardiovascular system (heart rate, systolic, mean, and diastolic pressures) were selected to represent biological end points that may be susceptible to the UWB radiation. A noninvasive tail-cuff photoelectric sensor sphygmomanometer was used. Male Wistar-Kyoto rats were subjected to sham exposure, 0.5-kHz (93 kV/m, 180 ps rise time, 1.00 ns pulse width, whole-body averaged specific absorption rate, SAR = 70 mW/kg) or a 1-kHz (85 kV/m, 200 ps rise time, 1.03 ns pulse width, SAR = 121 mW/kg) UWB fields in a tapered parallel plate GTEM cell for 6 min. Cardiovascular functions were evaluated from 45 min to 4 weeks after exposures. Significant decrease in arterial blood pressures (hypotension) was found. In contrast, heart rate was not altered by these exposures. The UWB radiation-induced hypotension was a robust, consistent, and persistent effect. PMID:10497968

  8. 72 FR 8132 - Ultra-Wideband Transmission Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2007-02-23

    ... labeling of digital television receivers and other consumer electronics receiving devices. Certain rules... October 27, 2000. This document announces the effective date of these published rules. DATES: The amendment to Sec. 15.525 (b) and (e) published at 68 FR 19746, April 22, 2003, became effective on April...

  9. Ultra-wideband, omni-directional, low distortion coaxial antenna

    SciTech Connect

    Eubanks, Travis Wayne; Gibson, Christopher Lawrence

    2015-01-06

    An antenna for producing an omni-directional pattern, and using all frequencies of a frequency range simultaneously, is provided with first and second electrically conductive elements disposed coaxially relative to a central axis. The first element has a first surface of revolution about the axis, the first surface of revolution tapering radially outwardly while extending axially away from the second element to terminate at a first axial end of the first element. The second element has a second surface of revolution about the axis, the second surface of revolution tapering radially outwardly while extending axially toward the first element to terminate at a first axial end of the second element. The first and second surfaces of revolution overlap one another radially and axially, and are mutually non-conformal.

  10. Photonics for microwave systems and ultra-wideband signal processing

    NASA Astrophysics Data System (ADS)

    Ng, W.

    2016-08-01

    The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.

  11. Dielectric ultra wideband optical E-field sensors

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Lotem, Haim; Zang, De Yu; Forber, Richard; Schultz, Stephen; Selfridge, Richard

    2006-05-01

    Aimed at test and evaluation needs on high power microwave (HPM) weapons, we describe new developments on miniature all-dielectric optical field sensors with flat RF sensing response from ~ MHz to 12 GHz, with negligible field perturbation, good sensitivity (~70 mV/(mH√z), and >100dB dynamic range. Present devices use a 20 mm long sensing region in an integrated optical (IO) waveguide Mach-Zehnder interferometer (MZI) using electrooptic (EO) polymer for the waveguide. The fiber-coupled optical transmitter/receiver utilizes common optical communication technology. The incident HPM RF field induces an instantaneous change in the index of refractive of the polymer that is converted into an optical intensity modulation in the MZI device. The poled EO polymer requires no electrodes nor metallic antennas that can distort the field under test. We characterized the frequency response and polarization sensitivity of the field sensor, and both agree well with modeling predictions. Common fabrication limitations result in devices with sensitivity to thermal drift. New sensor designs are being developed with remote bias control that also can provide self-calibration. To further reduce the sensor size and insertion loss, beneficial for array applications, an "in-fiber" field sensor is being developed. The core of a D-shaped fiber is partially removed and replaced with EO polymer. Such a device may use polarization modulation sensing, or be configured in similar MZI structures as the IO waveguide sensors.

  12. 75 FR 62476 - Ultra-Wideband Transmission Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ...'') in ET Docket No. 98-153, 70 FR 6771, February 9, 2005, that argues that the power level adopted for...-153, 67 FR 34852, May 16, 2002, amending part 15 of its rules to permit the marketing and the...&O'' and ``FNRPM'') in ET Docket No. 98-153, 68 FR 19746 and 68 FR 19773, April 22, 2003,...

  13. Hex-Sided Rounded Dipole Antenna (HSRDA) For UWB Applications

    NASA Astrophysics Data System (ADS)

    Singhal, Sarthak; Verma, Nand Kishor; Singh, Amit Kumar

    2016-03-01

    A hex-sided rounded dipole antenna (HSRDA) for UWB applications is presented. It is designed by the addition of semi-elliptical patch sections at the edges of a square bow-tie antenna. The antenna structure is fed by a modified microstrip feedline for better impedance matching. An impedance bandwidth of 2.9-11.4 GHz is achieved. The antenna structure has quasi omnidirectional radiation patterns and reasonable gain over the same frequency range. A good agreement between the experimental and simulation results is observed. The proposed antenna structure has miniaturized size for the same bandwidth as compared to already reported antenna structures.

  14. Distortion effects in a switch array UWB radar for time-lapse imaging of human heartbeats

    NASA Astrophysics Data System (ADS)

    Brovoll, Sverre; Berger, Tor; Aardal, Åyvind; Lande, Tor S.; Hamran, Svein-Erik

    2014-05-01

    Cardiovascular diseases (CVD) are a major cause of deaths all over the world. Microwave radar can be an alternative sensor for heart diagnostics and monitoring in modern healthcare that aids early detection of CVD symptoms. In this paper measurements from a switch array radar system are presented. This UWB system operates below 3 GHz and does time-lapse imaging of the beating heart inside the human body. The array consists of eight fat dipole elements. With a switch system, every possible sequence of transmit/receive element pairs can be selected to build a radar image from the recordings. To make the radar waves penetrate the human tissue, the antenna array is placed in contact with the body. Removal of the direct signal leakage through the antennas and body surface are done by high-pass (HP) filtering of the data prior to image processing. To analyze the results, measurements of moving spheres in air and simulations are carried out. We see that removal of the direct signal introduces amplitude distortion in the images. In addition, the effect of small target motion between the collection times of data from the individual elements is analyzed. With low pulse repetition frequency (PRF) this motion will distort the image. By using data from real measurements of heart motion in simulations, we analyze how the PRF and the antenna geometry influence this distortions.

  15. Numerical solution to the Bloch equations: paramagnetic solutions under wideband continuous radio frequency irradiation in a pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Jun; Ma, Hong; Yu, De; Zeng, Xiao-Hu

    2016-08-01

    A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic fields, and can dramatically improve the utilization of the pulsed field. The feasibility of WB-CW-NMR scheme is verified by numerically solving modified Bloch equations. In the numerical simulation, the applied magnetic field is a pulsed magnetic field up to 80 T, and the wideband continuous radio frequency (RF) excitation is a band-limited (0.68–3.40 GHz) white noise. Furthermore, the influences of some experimental parameters, such as relaxation time, applied magnetic field strength and wideband continuous RF power, on the WB-CW-NMR signal are analyzed briefly. Finally, a multi-channel system framework for transmitting and receiving ultra wideband signals is proposed, and the basic requirements of this experimental system are discussed. Meanwhile, the amplitude of the NMR signal, the level of noise and RF interference in WB-CW-NMR experiments are estimated, and a preliminary adaptive cancellation plan is given for detecting WB-CW-NMR signal from large background interference. Supported by National Natural Science Foundation of China (11475067), the Innovative Research Foundation of Huazhong University of Science and Technology (2015 ZDTD017) and the Experimental Apparatus Research Project of Wuhan Pulsed High Magnetic Field Center (2015KF17)

  16. Through-wall imaging and characterization of human activity using ultrawideband (UWB) random noise radar

    NASA Astrophysics Data System (ADS)

    Lai, Chieh-Ping; Narayanan, Ram M.

    2005-05-01

    Recent terrorist activities and law-enforcement situations involving hostage situations underscore the need for effective through-wall imaging. Current building interior imaging systems are based on short-pulse waveforms, which require specially designed antennas to subdue unwanted ringing. In addition, periodically transmitted pulses of energy are easily recognizable by the intelligent adversary who may employ appropriate countermeasures to confound detection. A coherent polarimetric random noise radar architecture is being developed based on UWB technology and software defined radio, which has great promise in its ability to covertly image obscured targets. The main advantages of the random noise radar lie in two aspects: first, random noise waveform has an ideal "thumbtack" ambiguity function, i.e., its down range and cross range resolution can be separately controlled, thus providing unambiguous high resolution imaging at any distance; second, random noise waveform is inherently low probability of intercept (LPI) and low probability of detection (LPD), i.e., it is immune from detection, jamming, and interference. Thus, it is an ideal candidate sensor for covert imaging of obscured regions in hostile environments. The coherency in the system can be exploited to field a fully-polarimetric system that can take advantage of polarization features in target recognition. Moving personnel can also be detected using Doppler processing. Simulation studies are used to analyze backscattered signals from the walls, and humans and other targets behind the walls. Real-time data processing shows human activity behind the wall and human target tracking. The high resolution provides excellent multipath and clutter rejection.

  17. Electromagnetic and thermal effects of IR-UWB wireless implant systems on the human head.

    PubMed

    Thotahewa, Kasun M S; Redouté, Jean-Michel; Yuce, Mehmet R

    2013-01-01

    The usage of implanted wireless transmitting devices inside the human body has become widely popular in recent years. Applications such as multi-channel neural recording systems require high data rates in the wireless transmission link. Because of the inherent advantages provided by Impulse-Radio Ultra Wide Band (IR-UWB) such as high data rate capability, low power consumption and small form factor, there has been an increased research interest in using IR-UWB for bio-medical implant applications. Hence it has become imperative to analyze the electromagnetic effects caused by the use of IR-UWB when it is operated in or near the human body. This paper reports the electromagnetic effects of head implantable transmitting devices operating based on Impulse Radio Ultra Wide Band (IR-UWB) wireless technology. Simulations illustrate the performance of an implantable UWB antenna tuned to operate at 4 GHz with an -10 dB bandwidth of approximately 1 GHz when it is implanted in a human head model. Specific Absorption Rate (SAR), Specific Absorption (SA) and temperature increase are analyzed to compare the compliance of the transmitting device with international safety regulations. PMID:24110902

  18. A 3.1-4.8 GHz CMOS receiver for MB-OFDM UWB

    NASA Astrophysics Data System (ADS)

    Guang, Yang; Wang, Yao; Jiangwei, Yin; Renliang, Zheng; Wei, Li; Ning, Li; Junyan, Ren

    2009-01-01

    An integrated fully differential ultra-wideband CMOS receiver for 3.1-4.8 GHz MB-OFDM systems is presented. A gain controllable low noise amplifier and a merged quadrature mixer are integrated as the RF front-end. Five order Gm-C type low pass filters and VGAs are also integrated for both I and Q IF paths in the receiver. The ESD protected chip is fabricated in a Jazz 0.18 μm RF CMOS process and achieves a maximum total voltage gain of 65 dB, an AGC range of 45 dB with about 6 dB/step, an averaged total noise figure of 6.4 to 8.8 dB over 3 bands and an in-band IIP3 of -5.1 dBm. The receiver occupies 2.3 mm2 and consumes 110 mA from a 1.8 V supply including test buffers and a digital module.

  19. An UWB antenna with metamaterial cladding in S/C-band

    NASA Astrophysics Data System (ADS)

    Jiang, Yan Nan; Cui Zhang, Wen; Wang, Jiao; Cao, Wei Ping; Lin, Yi Yu

    2016-01-01

    A compact and easy fabricated ultra-wideband antenna is proposed in this paper. It comprised of a monopole antenna and a single-side I-shaped structure (ISS) metamaterial (MM) cladding. The monopole itself resonates at 2.4 GHz and presents capacitive impedance at 4.8 GHz. The MM cladding resonates at the first frequency and acts as an inductive element at the second. The higher resonance frequency of 4.8 GHz can be efficiently produced without affecting the monopole resonance. By the ISS MM cladding, the impedance match bandwidth (i.e., |S11| ≤ -10 dB) of the proposed antenna is broadened to 1.98-5.80 GHz (a part of the S/C-band). In addition, the dynamic range of the main lobe directions is only about 17° and the gains are greater than 3.8 dBi over the entire band. The simulations and measurements are in a good agreement. Therefore, the proposed antenna is so charming for the extensive applications in wireless communication community. Contribution to the topical issue "Advanced Electromagnetics Symposium (AES 2014) - Elected submissions", edited by Adel Razek

  20. Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: present status.

    PubMed

    Zito, D; Pepe, D; Mincica, M; Zito, F; De Rossi, D; Lanata, A; Scilingo, E P; Tognetti, A

    2008-01-01

    The present status of the project aimed at the realization of an innovative wearable system-on-chip UWB radar for the cardiopulmonary monitoring is presented. The overall system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee low-power radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is summarized. With respect to the prior art, this paper reports the results of the experimental characterization of the intra-body channel loss, which has been carried out successfully in order to validate the theoretical model employed for the radar system analysis. Moreover, the main building blocks of the radar have been manufactured in 90 nm CMOS technology by ST-Microelectronics and the relevant performance are resulted in excellent agreement with those expected by post-layout simulations. PMID:19163907

  1. Smart container UWB sensor system for situational awareness of intrusion alarms

    DOEpatents

    Romero, Carlos E.; Haugen, Peter C.; Zumstein, James M.; Leach, Jr., Richard R.; Vigars, Mark L.

    2013-06-11

    An in-container monitoring sensor system is based on an UWB radar intrusion detector positioned in a container and having a range gate set to the farthest wall of the container from the detector. Multipath reflections within the container make every point on or in the container appear to be at the range gate, allowing intrusion detection anywhere in the container. The system also includes other sensors to provide false alarm discrimination, and may include other sensors to monitor other parameters, e.g. radiation. The sensor system also includes a control subsystem for controlling system operation. Communications and information extraction capability may also be included. A method of detecting intrusion into a container uses UWB radar, and may also include false alarm discrimination. A secure container has an UWB based monitoring system

  2. Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels

    DOE PAGESBeta

    Olama, Mohammed M.; Djouadi, Seddik M.; Li, Yanyan; Fathy, Aly

    2013-01-01

    Stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean-square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and nonresolvable multipath received signals are considered and represented as small-scaled Nakagami fading. Themore » proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method’s viability and the results are presented.« less

  3. Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels

    SciTech Connect

    Olama, Mohammed M; Djouadi, Seddik M; Li, Yanyan; Fathy, Aly

    2013-01-01

    In this paper, stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and non-resolvable multipath received signals are considered and represented as small-scaled Nakagami fading. The proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method s viability and the results are presented.

  4. Bistability and hysteresis in the emergence of pulses in microstrip Gunn-diode circuits

    SciTech Connect

    Yurchenko, V. B.; Yurchenko, L. V.

    2014-12-15

    We develop time-domain simulations of microwave and THz radiation sources built as arrays of active devices when the radiation wavelength is small as compared to spacing between electronic components. We pursue an approach when the system is represented by equations with time-delay feedback that could generate chaos and other forms of complicated dynamics. The approach simplifies simulations of ultra-wideband effects and exceeds capabilities of frequency-domain methods. As a model case, we simulated a microstrip circuit with Gunn diode and a remote resonator emitting the radiation towards infinity. We observed the emergence of either the continuous waves or the trains of high-frequency pulses depending on the bias conditions. We found bistability and hysteresis in the onset of different oscillation modes that depends on the way of driving the bias voltage into the domain of instability of the given system. The results would allow one to improve the design of THz radiation sources with time-delay coupling between components.

  5. Position Estimation of Transceivers in Communication Networks

    SciTech Connect

    Dowla, F; Kent, C

    2004-01-20

    With rapid developments in wireless sensor networks, there is a growing need for transceiver position estimation independent of GPS, which may not be available in indoor networks. Our approach is to use range estimates from time-of-flight (TOF) measurements, a technique well suited to large bandwidth physical links, such as in ultra-wideband (UWB) systems. In our UWB systems, pulse duration less than 200 psecs can easily be resolved to less than a foot. Assuming an encoded UWB physical layer, we first test positioning accuracy using simulations. We are interested in sensitivity to range errors and the required number of ranging nodes, and we show that in a high-precision environment, such as UWB, the optimal number of transmitters is four. Four transmitters with {+-}20ft. range error can locate a receiver to within one or two feet. We then implement these algorithms on an 802.11 wireless network and demonstrate the ability to locate a network access point to approximately 20 feet.

  6. Integrated navigation fusion strategy of INS/UWB for indoor carrier attitude angle and position synchronous tracking.

    PubMed

    Fan, Qigao; Wu, Yaheng; Hui, Jing; Wu, Lei; Yu, Zhenzhong; Zhou, Lijuan

    2014-01-01

    In some GPS failure conditions, positioning for mobile target is difficult. This paper proposed a new method based on INS/UWB for attitude angle and position synchronous tracking of indoor carrier. Firstly, error model of INS/UWB integrated system is built, including error equation of INS and UWB. And combined filtering model of INS/UWB is researched. Simulation results show that the two subsystems are complementary. Secondly, integrated navigation data fusion strategy of INS/UWB based on Kalman filtering theory is proposed. Simulation results show that FAKF method is better than the conventional Kalman filtering. Finally, an indoor experiment platform is established to verify the integrated navigation theory of INS/UWB, which is geared to the needs of coal mine working environment. Static and dynamic positioning results show that the INS/UWB integrated navigation system is stable and real-time, positioning precision meets the requirements of working condition and is better than any independent subsystem. PMID:25121111

  7. Integrated Navigation Fusion Strategy of INS/UWB for Indoor Carrier Attitude Angle and Position Synchronous Tracking

    PubMed Central

    Wu, Yaheng; Hui, Jing; Wu, Lei; Zhou, Lijuan

    2014-01-01

    In some GPS failure conditions, positioning for mobile target is difficult. This paper proposed a new method based on INS/UWB for attitude angle and position synchronous tracking of indoor carrier. Firstly, error model of INS/UWB integrated system is built, including error equation of INS and UWB. And combined filtering model of INS/UWB is researched. Simulation results show that the two subsystems are complementary. Secondly, integrated navigation data fusion strategy of INS/UWB based on Kalman filtering theory is proposed. Simulation results show that FAKF method is better than the conventional Kalman filtering. Finally, an indoor experiment platform is established to verify the integrated navigation theory of INS/UWB, which is geared to the needs of coal mine working environment. Static and dynamic positioning results show that the INS/UWB integrated navigation system is stable and real-time, positioning precision meets the requirements of working condition and is better than any independent subsystem. PMID:25121111

  8. 47 CFR 15.521 - Technical requirements applicable to all UWB devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements applicable to all UWB devices. 15.521 Section 15.521 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY... prohibition in § 2.201(f) and 15.5(d) of this chapter against Class B (damped wave) emissions does not...

  9. 47 CFR 15.521 - Technical requirements applicable to all UWB devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements applicable to all UWB devices. 15.521 Section 15.521 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY... prohibition in § 2.201(f) and 15.5(d) of this chapter against Class B (damped wave) emissions does not...

  10. 47 CFR 15.521 - Technical requirements applicable to all UWB devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements applicable to all UWB devices. 15.521 Section 15.521 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY... prohibition in § 2.201(f) and 15.5(d) of this chapter against Class B (damped wave) emissions does not...

  11. 47 CFR 15.517 - Technical requirements for indoor UWB systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emission limit, following the procedures described in § 15.521. (f) UWB systems operating under the... necessity to operate with a fixed indoor infrastructure, e.g., a transmitter that must be connected to the... considered to operate indoors provided the emissions are directed towards the ground. (5) A...

  12. An enantiomorphic blumlein impulse generator

    SciTech Connect

    Rinehart, L.F.; Buttram, M.T.; Crowe, W.R.; Clark, R.S.; Lundstrom, J.M.; Patterson, P.E.

    1992-01-01

    Working designs exist for 1 GW, 1 kHz ultra-wideband (UWB) sources (e.g. SNIPER). As these generators are pressed to higher peak powers and repetition rates, insulation, energy loss due to stray capacitance, and system efficiency (including power supplies and modulators) become critical issues. The EnantioMorphic (mirror image) BLumlein (EMBL) is a new type of vector inversion transmission line pulser which is designed to alleviate some of these problems. The design goals for EMBL are : >500 kV, {approximately}1 kHz rep-rate and <100 ps risetime in a 50 ohm geometry. In addition to the pulse forming line (PFL), EMBL also requires a high rep-rate modulator, primary switch, and peaking switch which will be described. Empirical design equations for peaking switch performance are included.

  13. An enantiomorphic blumlein impulse generator

    SciTech Connect

    Rinehart, L.F.; Buttram, M.T.; Crowe, W.R.; Clark, R.S.; Lundstrom, J.M.; Patterson, P.E.

    1992-07-01

    Working designs exist for 1 GW, 1 kHz ultra-wideband (UWB) sources (e.g. SNIPER). As these generators are pressed to higher peak powers and repetition rates, insulation, energy loss due to stray capacitance, and system efficiency (including power supplies and modulators) become critical issues. The EnantioMorphic (mirror image) BLumlein (EMBL) is a new type of vector inversion transmission line pulser which is designed to alleviate some of these problems. The design goals for EMBL are : >500 kV, {approximately}1 kHz rep-rate and <100 ps risetime in a 50 ohm geometry. In addition to the pulse forming line (PFL), EMBL also requires a high rep-rate modulator, primary switch, and peaking switch which will be described. Empirical design equations for peaking switch performance are included.

  14. Automatic target detection algorithm for foliage-penetrating ultrawideband SAR data using split spectral analysis

    NASA Astrophysics Data System (ADS)

    Damarla, Thyagaraju; Kapoor, Ravinder; Ressler, Marc A.

    1999-07-01

    We present an automatic target detection (ATD) algorithm for foliage penetrating (FOPEN) ultra-wideband (UWB) synthetic aperture radar (SAR) data using split spectral analysis. Split spectral analysis is commonly used in the ultrasonic, non-destructive evaluation of materials using wide band pulses for flaw detection. In this paper, we show the application of split spectral analysis for detecting obscured targets in foliage using UWB pulse returns to discriminate targets from foliage, the data spectrum is split into several bands, namely, 20 to 75, 75 to 150, ..., 825 to 900 MHz. An ATD algorithm is developed based on the relative energy levels in various bands, the number of bands containing significant energy (spread of energy), and chip size (number of crossrange and range bins). The algorithm is tested on the (FOPEN UWB SAR) data of foliage and vehicles obscured by foliage collected at Aberdeen Proving Ground, MD. The paper presents various split spectral parameters used in the algorithm and discusses the rationale for their use.

  15. Transient Scattering from Bodies of Revolution with Applications in Short-Pulse Reflector Antennas

    NASA Astrophysics Data System (ADS)

    Wang, Allen Tan-Sen

    This dissertation studies the transient scattering from bodies of revolution (BOR). The work presents two distinct integral formulations for analyzing a wide variety of BOR configurations, numerous scattering examples to better understand the transient scattering phenomena, and two reflector antennas geometries suitable for ultra-wideband radar applications. The March-on-Time (MOT) method and an Inverse Discrete Fourier Transform (IDFT) method are both examined and fully developed to determine their capabilities in analyzing a wide variety of BOR configurations. The IDFT approach is ultimately selected over the MOT for our particular applications. This method transforms the transient scattering problem into the frequency domain where a Moment Method formulation with entire-domain basis functions then determines the equivalent surface currents induced on the scatterer. Once the electromagnetic field radiated by these currents are computed in the frequency domain, they are returned back to the time domain using Fast-Fourier Transform (FFT) techniques. The IDFT analysis technique is used to examine the transient scattering behavior of representative scatterers. Many scatterer geometries are considered, among them perfect conductors, dielectric bodies, dielectric-coated conductors, and multi-body scatterers. The edge diffraction behavior of perfectly conducting scatterers, as well as the scattering characteristics of dielectric spheres made of different dielectric constants and lossy materials, are also studied. Other examples considered are metal scatterers coated with a layer of lossy dispersive material. The last part of this work pertains to the design of reflector antennas for short-pulse radiation. Its main objective is to present representative single- and dual -reflector antennas capable of radiating a collimated user -specified short pulse in the far-zone region. The double -Gaussian time pulse serves as the desired radiated waveform in this section of the

  16. 47 CFR 15.525 - Coordination requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Coordination requirements. 15.525 Section 15.525 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.525 Coordination requirements. (a) UWB imaging systems require coordination through the FCC before the equipment may be used....

  17. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  18. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  19. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  20. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  1. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  2. Fabrication of CPW-Fed Fractal Antenna for UWB Applications with Omni-Directional Patterns

    PubMed Central

    Sedghi, Tohid; Jalali, Mahdi; Aribi, Tohid

    2014-01-01

    Novel and compact CPW-fed antennas are proposed comprised of a fractal patch and modified ground-plane. The ground-plane is truncated at the center and includes dielectric notches at its side to enhance the antenna's impedance bandwidth. The dimensions of the notches effectively control the upper and lower band edges of the antenna. The optimized antenna operates across 2.95–12.81 GHz for S11 ≤ −10 dB. Omnidirectional radiation pattern is achieved over the full UWB frequency range. The miniaturized antenna has a total size of 14 × 18 × 1 mm3. The characteristics of the proposed antenna are suitable for UWB wireless communication requiring low profile antennas. PMID:24672314

  3. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  4. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    PubMed Central

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  5. A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

    PubMed Central

    Syed, Avez; Aldhaheri, Rabah W.

    2016-01-01

    A low-cost coplanar waveguide fed compact ultrawideband (UWB) antenna with band rejection characteristics for wireless local area network (WLAN) is proposed. The notch band characteristic is achieved by etching half wavelength C-shaped annular ring slot in the radiating patch. By properly choosing the radius and position of the slot, the notch band can be adjusted and controlled. With an overall size of 18.7 mm × 17.6 mm, the antenna turns out to be one of the smallest UWB antennas with band-notched characteristics. It has a wide fractional bandwidth of 130% (2.9–13.7 GHz) with VSWR < 2 and rejecting IEEE 802.11a and HIPERLAN/2 frequency band of 5.1–5.9 GHz. Stable omnidirectional radiation patterns in the H plane with an average gain of 4.4 dBi are obtained. The band-notch mechanism of the proposed antenna is examined by HFSS simulator. A good agreement is found between measured and simulated results indicating that the proposed antenna is well suited for integration into portable devices for UWB applications. PMID:27088125

  6. Measurement and positioning of moving array shape by IR-UWB

    NASA Astrophysics Data System (ADS)

    He, Hongkun; Shi, Haoshan

    2006-11-01

    Based on impulse radio ultra wide band (IR-UWB) technology, the measuring and positioning of moving array shape are discussed. Because there are no conditions of fixed receivers and clock synchronization in real outdoor or field surroundings, only choice is unusual asynchronous measurement method, therefore, the scheme of measuring and processing must be changed, though the current TOA (Time Of Arrival) method is used. The array shape and positions of moving objects are both required in the most situations. The direct approach is to increase the number of measuring point, and the positioning problem would be resolved by triangular surveying method. The solution is generic at first sight, but its sensitivity to time-of-arrival accuracy imposes the choice of impulse radio ultra wide band hard ware and soft ware in the very context. The algorithm scheme mitigates the impact of non-line of sight ranging errors on positioning accuracy without any additional protocol hook. More particularly, the realistic IR-UWB ranging error models we use take into account UWB channel effects, as well as relative clock drifts. By error analyzing and simulation under the proper operation model, results are provided to illustrate the relevance of such a solution.

  7. Low-frequency ultrawideband synthetic aperture radar: frequency subbanding for targets obscured by the ground

    NASA Astrophysics Data System (ADS)

    Happ, Lynn; Le, Francis; Ressler, Marc A.; Kappra, Karl A.

    1996-06-01

    The Army Research Laboratory (ARL) has been investigating the potential of ultra-wideband synthetic aperture radar (UWB SAR) technology to detect and classify targets concealed by subsurface targets and foliage. Our investigative approach is to collect high-quality precision data to support phenomenological investigations of electromagnetic wave propagation through dielectric media. These investigations, in turn, support the development of algorithms for automatic target recognition. In order to achieve these goals, ARL designed and built an impulse (very short pulse) radar to collect data at a variety of test sites to measure and analyze the responses from targets, clutter, and targets embedded in clutter. The UWB BoomSAR, mounted on a 150-foot-high mobile boom lift, collects the high-quality, precision data sets needed for understanding UWB SAR system requirements and foliage penetration and ground penetration phenomenology. The BoomSAR operates with over 1 gigahertz of bandwidth covering a spectrum from 40 MHz to 1 GHz and is fully polarimetric. This bandwidth contains low frequencies needed for ground penetration while also maintaining higher frequency coverage for high resolution imagery. This paper shows a GPEN target area from data collected at Yuma Proving Grounds, AZ in low- and high- frequency subbands.

  8. Numerical simulation of the coupling of ultra-wide band electromagnetic pulse into landmine by aperture

    NASA Astrophysics Data System (ADS)

    Gao, Zhen-Ru; Zhao, Hui-Chang; Yang, Li; Wang, Feng-Shan

    2015-09-01

    The modern landmine’s electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse (UWB-EMP). The finite-difference time-domain (FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface (MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage. Project supported by the Postdoctoral Science Foundation of China (Grant No. 2014M552610).

  9. Compact programmable ground-penetrating radar system for roadway and bridge deck characterization

    NASA Astrophysics Data System (ADS)

    Busuioc, Dan; Xia, Tian; Venkatachalam, Anbu; Huston, Dryver; Birken, Ralf; Wang, Ming

    2011-04-01

    A compact, high-performance, programmable Ground Penetrating Radar (GPR) system is described based on an impulse generator transmitter, a full waveform sampling single shot receiver, and high directivity antennas. The digital programmable pulse generator is developed for the transmitter circuit and both the pulse width and pulse shape are tunable to adjust for different modes of operation. It utilizes a step-recovery diode (SRD) and short-circuited microstrip lines to produce sub-nanosecond wide ultra-wideband (UWB) pulses. Sharp step signals are generated by periodic clock signals that are connected to the SRD's input node. Up to four variable width pulses (0.8, 1.0, 1.5, and 2.1 ns) are generated through a number of PIN switches controlling the selection of different microstrip lengths. A schottky diode is used as a rectifier at the output of the SRD in order to pass only the positive part of the Gaussian pulses while another group of short-circuit microstrips are used to generate amplitude-reversed Gaussian pulses. The addition of the two pulses results in a Gaussian monocycle pulse which is more energy efficient for emission. The pulse generator is connected to a number of UWB antennas. Primarily, a UWB Vivaldi antenna (500 MHz to 5 GHz) is used, but a number of other high-performance GPR-oriented antennas are investigated as well. All have linear phase characteristic, constant phase center, constant polarization and flat gain. A number of methods including resistive loading are used to decrease any resonances due to the antenna structure and unwanted reflections from the ground. The antennas exhibit good gain characteristics in the design bandwidth.

  10. Techniques for Clutter Suppression in the Presence of Body Movements during the Detection of Respiratory Activity through UWB Radars

    PubMed Central

    Lazaro, Antonio; Girbau, David; Villarino, Ramon

    2014-01-01

    This paper focuses on the feasibility of tracking the chest wall movement of a human subject during respiration from the waveforms recorded using an impulse-radio (IR) ultra-wideband radar. The paper describes the signal processing to estimate sleep apnea detection and breathing rate. Some techniques to solve several problems in these types of measurements, such as the clutter suppression, body movement and body orientation detection are described. Clutter suppression is achieved using a moving averaging filter to dynamically estimate it. The artifacts caused by body movements are removed using a threshold method before analyzing the breathing signal. The motion is detected using the time delay that maximizes the received signal after a clutter removing algorithm is applied. The periods in which the standard deviations of the time delay exceed a threshold are considered macro-movements and they are neglected. The sleep apnea intervals are detected when the breathing signal is below a threshold. The breathing rate is determined from the robust spectrum estimation based on Lomb periodogram algorithm. On the other hand the breathing signal amplitude depends on the body orientation respect to the antennas, and this could be a problem. In this case, in order to maximize the signal-to-noise ratio, multiple sensors are proposed to ensure that the backscattered signal can be detected by at least one sensor, regardless of the direction the human subject is facing. The feasibility of the system is compared with signals recorded by a microphone. PMID:24514883

  11. UWB Localization for NLOS under Indoor Multipath Channel: Scheme and TOA Estimation

    NASA Astrophysics Data System (ADS)

    Xiao, Zhu; Yi, Ke-Chu; Tian, Bin; Wang, Yong-Chao

    This letter proposes a UWB signaling localization scheme for indoor multipath channel. It demonstrates that the proposed method does not require LOS path (LP) and is suitable for severe non line-of-sight (NLOS) condition. A low-complexity TOA estimation algorithm, the strongest path (SP) detection by convolution, is designed, which is easier to implement than the LP detection since it dispenses with the process of threshold setting. Experiments under NLOS channels in IEEE.802.15.4a are conducted and the localization influences due to the algorithm parameters are discussed. The results prove the feasibility of the proposed localization scheme under the indoor multipath NLOS environment.

  12. Photonic generation of bipolar direct-sequence UWB signals based on optical spectral shaping and incoherent frequency-to-time conversion

    NASA Astrophysics Data System (ADS)

    Mu, Hongqian; Wang, Muguang; Ye, Jun; Jian, Shuisheng

    2016-06-01

    A novel technology to obtain binary phase-coded ultrawideband (UWB) signals for direct-sequence spread-spectrum communication systems is investigated by using a cost-effective incoherent source. The bipolar encoding is performed based on an all-fiber spectrum shaper composed of two FBG arrays to tailor the optical spectrum, and a section of single-mode fiber to achieve incoherent frequency-to-time conversion. We demonstrate a 1.325-Gb/s UWB encoding system by the use of binary spreading codes of 4-chip length via computer simulations. The proposed bipolar UWB encoding technology can be applied to high-speed UWB-over-fiber communication systems.

  13. A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

    PubMed Central

    Islam, M. M.; Faruque, M. R. I.; Islam, M. T.

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379

  14. Design of CPW fed printed slot antenna with circular polarization for UWB application

    NASA Astrophysics Data System (ADS)

    Choudhary, N.; Tiwari, A.; Jangid, K. G.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.

    2016-03-01

    This paper reports the design and performance of a CPW-fed circularized polarized elliptical slot antenna for UWB (ultra wide band) applications. The circular polarization is achieved by applying triangular stubs in the ground plane. The overall volume of this antenna is 40mm × 40 mm × 1.59 mm. The proposed antenna is simulated by applying CST Microwave Studio simulator. This elliptical patch slot antenna provides broad impedance bandwidth (3.1GHz to 10.6 GHz) with maximum gain 4.31dB at 4.45GHz. The simulated 3-dB axial ratio bandwidth is close to 2.51GHz (from 4.76GHz to 7.27GHz) which is 41.76% with respect to the central frequency 6.01GHz.

  15. A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.

    PubMed

    Islam, M M; Faruque, M R I; Islam, M T

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379

  16. The National Geoelectromagnetic Facility - an open access resource for ultra wideband electromagnetic geophysics (Invited)

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Urquhart, S.; Slater, M.

    2010-12-01

    At present, the US academic community has access to two national electromagnetic (EM) instrument pools that support long-period magnetotelluric (MT) equipment suitable for crust-mantle scale studies. The requirements of near surface geophysics, hydrology, glaciology, as well as the full range of crust and mantle investigations require development of new capabilities in data acquisition with broader frequency bandwidth than these existing units, increased instrument numbers, and concomitant developments in 3D/4D data interpretation. NSF Major Research Instrumentation support has been obtained to meet these requirements by developing an initial set of next-generation instruments as a National Geoelectromagnetic Facility (NGF), available to all PIs on a cost recovery basis, and operated by Oregon State University (OSU). In contrast to existing instruments with data acquisition systems specialized to operate within specific frequency bands and for specific electromagnetic methods, the NGF model "Zen/5" instruments being co-developed by OSU and Zonge Research and Engineering Organization are based on modular receivers with a flexible number of digital and analog input channels, designed to acquire EM data at dc, and from frequencies ranging from micro-Hz to MHz. These systems can be deployed in a compact, low power configuration for extended deployments (e.g. for crust-mantle scale experiments), or in a high frequency sampling mode for near surface work. The NGF is also acquiring controlled source EM transmitters, so that investigators may carry out magnetotelluric, audio-MT, radiofrequency-MT, as well as time-domain/transient EM and DC resistivity studies. The instruments are designed to simultaneously accommodate multiple electric field dipole sensors, magnetic fluxgates and induction coil sensors. Sample rates as high as 2.5 MHz with resolution between 24 and 32 bits, depending on sample rate, are specified to allow for high fidelity recording of waveforms. The NGF is accepting instrument use requests from investigators planning electromagnetic surveys via webform submission on its web site ngf.coas.oregonstate.edu. The site is also a port of entry to request access to the 46 long period magnetotelluric instruments also operated by OSU as national instrument pools. Cyberinfrastructure support is available to investigators, including field computers, EM data processing software, and access to a hybrid CPU-GPU parallel computing environment, currently configured with dual Intel Westmere hexacore CPUs and 960 NVidia Tesla and 1792 Nvidia Fermi GPU cores. The capabilities of the Zen/5 receivers will be presented, with examples of data acquired from a recent shallow water marine controlled source experiment conducted in coastal Oregon as part of an effort to locate a buried submarine pipeline, using a 1.1 KW 256 Hz signal source imposed on the pipeline from shore. A Zen/5 prototype instrument, modified for marine use through support by the Oregon Wave Energy Trust, demonstrated the marine capabilities of the NGF instrument design.

  17. Short range, ultra-wideband radar with high resolution swept range gate

    DOEpatents

    McEwan, T.E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.

  18. Ultra-wideband fiber optical parametric amplifier for spectrally-encoded microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoming; Tan, Sisi; Mussot, Arnaud; Kudlinski, Alexandre; Tsia, Kevin K.; Wong, Kenneth

    2016-03-01

    Fiber optical parametric amplifier (FOPA) has gained its popularity in the telecommunication systems at the 1.5-um window for its gain, bandwidth etc. Unfortunately, its practical application at the bio-favorable window, i.e. 1.0 um, still requires substantial efforts. Thus, here we report a versatile all-fiber optical parametric amplifier for life-science (OPALS) at 1.0 um as an add-on module for optical imaging system. The parametric gain fiber (photonic-crystal fiber (PCF), 110 m in length) is specially designed to reduce the longitudinal dispersion fluctuation, which yields a superior figure of merit, i.e. a total insertion loss of ~2.5 dB and a nonlinear coefficient of 34 /(W•km). Our OPALS delivers a superior performance in terms of gain (~158,000), bandwidth (>100 nm) and gain flatness (< 3-dB ripple). Experimentally, we show that: 1) a wavelength-varying quasi-monochrome pump achieves a 52-dB gain and 160-nm bandwidth, but at the expense of a larger gain-spectrum ripple, i.e. a bell-shaped; 2) the birefringence of the parametric gain medium, i.e. PCF in this case, can be utilized to improve the gain-spectrum flatness of OPALS by 10.5 dB, meanwhile a 100-nm bandwidth can be guaranteed; 3) the gain-spectrum flatness of OPALS can be further flattened by using a high-speed wavelength-sweeping pump, which exhibits a 110-nm flat gain spectrum with ripple less than 3 dB. Finally, we employ this versatile all-fiber OPALS as an add-on module to enhance the sensitivity of a spectrally-encoded microscope by 47 dB over an ultra-wide spectral range.

  19. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estim...

  20. Ultra-wideband RF/microwave MEMS switches for wireless communications

    NASA Astrophysics Data System (ADS)

    Jha, A. R.

    2006-03-01

    Microelectromechanical System (MEMS) switches offer outstanding performance over wide bandwidth, minimum weight, sue, and power consumption, and significantly improved reliability unmatched by any other electronic switches deploying GaAS FETs or GaAs PIN-diodes or GaAs HEMTs. These switches are best suited for applications that require high signal purity in terms of signal linearity, insertion loss, isolation, and power consumption. RF-MEMS switches offer reliability exceeding ten billion life cycles and low insertion loss and high isolation while operating over uh-wideband. Design parameters and fabrication aspects of RF-MEMS shunt and series switches are investigated, which will permit switch operation over 60 to 94 GHz range.

  1. Simulating ensembles of nonlinear continuous time dynamical systems via active ultra wideband wireless network

    NASA Astrophysics Data System (ADS)

    Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu.; Gerasimov, Mark Yu.; Itskov, Vadim V.

    2016-06-01

    The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.

  2. Graphene as a high impedance surface for ultra-wideband electromagnetic waves

    SciTech Connect

    Aldrigo, Martino; Costanzo, Alessandra; Dragoman, Mircea; Dragoman, Daniela

    2013-11-14

    The metals are regularly used as reflectors of electromagnetic fields emitted by antennas ranging from microwaves up to THz. To enhance the reflection and thus the gain of the antenna, metallic high impedance surfaces (HIS) are used. HIS is a planar array of continuous metallic periodic cell surfaces able to suppress surface waves, which cause multipath interference and backward radiation in a narrow bandwidth near the cell resonance. Also, the image currents are reduced, and therefore the antenna can be placed near the HIS. We demonstrate that graphene is acting as a HIS surface in a very large bandwidth, from microwave to THz, suppressing the radiation leakages better than a metal.

  3. Short range, ultra-wideband radar with high resolution swept range gate

    DOEpatents

    McEwan, Thomas E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.

  4. Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler

    NASA Astrophysics Data System (ADS)

    Tang, Heng-He; Ma, Tian-Jun; Liu, Pu-Kun

    2016-05-01

    Spoof surface plasmon polaritons (SSPPs) are promising for subwavelength waveguiding in the terahertz (THz) frequency range. However, they cannot be efficiently excited from spatial propagating or guided waves due to the mismatched momenta. In this paper, a THz coupler is designed to smoothly bridge SSPPs and guided (or propagating) waves. By using a tapered parallel-plate waveguide, the incident energies are efficiently compressed and coupled into a subwavelength gap. Then, the momenta differences are mitigated with a graded grating. The numerical simulations show that the relative bandwidth of the coupler reaches up to 127%, and the maximum coupling efficiency is 99%. More importantly, experiment results in the 0.22 THz-0.33 THz frequency range are also presented to verify the good performance of the coupler. The work provides a technical support for terahertz waveguiding.

  5. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    NASA Technical Reports Server (NTRS)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each pair of elements: three apertures coupling to the patch elements were placed along the two symmetry lines of the antenna element pair. Two apertures were used in tandem to excite two of the stacked patch elements for one polarization; the other was used to excite one element from one side and the other element from the other side, opposite in phase, taking care of the remaining polarization. The apertures narrow down to a small gap where they are excited by a crossing microstrip line to prevent any asymmetrical excitation of the two sides of the aperture gap, minimizing port-to-port coupling. Using patches that are non-planar leads to higher mechanical rigidity and smaller patch sizes to fit into the available space. Aperture coupling minimizes direct metal-to-metal connections. Using an aperture coupling feed mechanism results in a feed network for two antenna elements with a total of three feed points, plus one simple in-phase combiner to reduce it to two ports. It greatly reduces the complexity of the alternative, but more conventional, way of feeding a pair of two dual-polarized elements with high port isolation.

  6. A 10.6mm3 Fully-Integrated, Wireless Sensor Node with 8GHz UWB Transmitter

    PubMed Central

    Kim, Hyeongseok; Kim, Gyouho; Lee, Yoonmyung; Foo, Zhiyoong; Sylvester, Dennis; Blaauw, David; Wentzloff, David

    2015-01-01

    This paper presents a complete, autonomous, wireless temperature sensor, fully encapsulated in a 10.6mm3 volume. The sensor includes solar energy harvesting with an integrated 2 μAh battery, optical receiver for programming, microcontroller and memory, 8GHz UWB transmitter, and miniaturized custom antennas with a wireless range of 7 meters. Full, stand-alone operation was demonstrated for the first time for a system of this size and functionality. PMID:26855848

  7. Design of a Compact Hexagonal Monopole Antenna for Ultra—Wideband Applications

    NASA Astrophysics Data System (ADS)

    Shaalan, Abdo Abdelmonem; Ramadan, M. I.

    2010-08-01

    This paper presents two design compact hexagonal monopole antennas for ultra-wideband applications. The two antennas are fed by a single microstrip line . The Zeland IE3D version 12 is employed for analysis at the frequency band of 4 to 14 GHz which has approved as a commercial UWB band. The experimental and simulation results exhibit good agreement together for antenna 1. The proposed antenna1 is able to achieve an impedance bandwidth about 111%. The proposed antenna2 is able to achieve an impedance bandwidth about (31.58%) for lower frequency and (62.54%) for upper frequency bandwidth. A simulated frequency notched band ranging from 6.05 GHz to 7.33 GHz and a measured frequency notched band ranging from 6.22 GHz to 8.99 GHz are achieved and gives one narrow band of axial ratio (1.43%). The proposed antennas can be used in wireless ultra-wideband (UWB) communications.

  8. SEMICONDUCTOR INTEGRATED CIRCUITS: A 3.1-4.8 GHz transmitter with a high frequency divider in 0.18 μm CMOS for OFDM-UWB

    NASA Astrophysics Data System (ADS)

    Renliang, Zheng; Junyan, Ren; Wei, Li; Ning, Li

    2009-12-01

    A fully integrated low power RF transmitter for a WiMedia 3.1-4.8 GHz multiband orthogonal frequency division multiplexing ultra-wideband system is presented. With a separate transconductance stage, the quadrature up-conversion modulator achieves high linearity with low supply voltage. The co-design of different resonant frequencies of the modulator and the differential to single (D2S) converter ensures in-band gain flatness. By means of a series inductor peaking technique, the D2S converter obtains 9 dB more gain without extra power consumption. A divided-by-2 divider is used for carrier signal generation. The measurement results show an output power between -10.7 and -3.1 dBm with 7.6 dB control range, an OIP3 up to 12 dBm, a sideband rejection of 35 dBc and a carrier rejection of 30 dBc. The ESD protected chip is fabricated in the Jazz 0.18 μm RF CMOS process with an area of 1.74 mm2 and only consumes 32 mA current (at 1.8 V) including the test associated parts.

  9. Wearable system-on-a-chip UWB radar for health care and its application to the safety improvement of emergency operators.

    PubMed

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; De Rossi, Danilo; Lanatà, Antonio; Tognetti, Alessandro; Scilingo, Enzo Pasquale

    2007-01-01

    A new wearable system-on-a-chip UWB radar for health care systems is presented. The idea and its applications to the safety improvement of emergency operators are discussed. The system consists of a wearable wireless interface including a fully integrated UWB radar for the detection of the heart beat and breath rates, and a IEEE 802.15.4 ZigBee radio interface. The principle of operation of the UWB radar for the monitoring of the heart wall is explained hereinafter. The results obtained by the feasibility study regarding its implementation on a modern standard silicon technology (CMOS 90 nm) are reported, demonstrating (at simulation level) the effectiveness of such an approach and enabling the standard silicon technology for new generations of wireless sensors for heath care and safeguard wearable systems. PMID:18002540

  10. M-Sequence-Based Single-Chip UWB-Radar Sensor

    NASA Astrophysics Data System (ADS)

    Kmec, M.; Helbig, M.; Herrmann, R.; Rauschenbach, P.; Sachs, J.; Schilling, K.

    The article deals with a fully monolithically integrated single-chip M-sequence-based UWB-radar sensor, its architecture, selected design aspects and first measurement results performed on wafer and with packaged IC modules. The discussed chip is equipped with one transmitter and two receivers. The IC was designed and manufactured in commercially available high-performance 0.25 μm SiGe BiCMOS technology (f t = 110 GHz). Due to the combination of fast digital and broadband analogue system blocks in one chip, special emphasis has been placed on the electrical isolation of these functional structures. The manufactured IC is enclosed in a low-cost QFN (quad flat-pack no-leads) package and mounted on a PCB permitting the creation of MIMO-sensor arrays by cascading a number of modules. In spite of its relatively high complexity, the sensor head features a compact design (chip size of 2 × 1 mm2, QFN package size 5 × 5 mm2) and moderate power consumption (below 1 W at -3 V supply). The assembled transceiver chip can handle signals in the frequency range from near DC up to 18 GHz. This leads to an impulse response (IRF) of FWHD ≈ 50 ps (full width at half duration).

  11. SEMICONDUCTOR INTEGRATED CIRCUITS: A low-spurious fast-hopping MB-OFDM UWB synthesizer

    NASA Astrophysics Data System (ADS)

    Danfeng, Chen; Wei, Li; Ning, Li; Junyan, Ren

    2010-06-01

    A frequency synthesizer for the ultra-wide band (UWB) group #1 is proposed. The synthesizer uses a phase-locked loop (PLL) and single-sideband (SSB) mixers to generate the three center frequencies of the first band group by mixing 4224 MHz with ±264 MHz and 792 MHz, respectively. A novel multi-QSSB mixer is designed to combine the function of frequency selection and frequency conversion for low power and high linearity. The synthesizer is fabricated in Jazz 0.18-μm RF CMOS technology. The measured reference spur is as low as -69 dBc and the maximum spur is the LO leakage of -32 dBc. A low phase noise of -110 dBc/Hz @ 1 MHz offset and an integrated phase noise of 1.86° are achieved. The hopping time between different bands is less than 1.8 ns. The synthesizer consumes 30 mA from a 1.8 V supply.

  12. UWB Band-notched Adjustable Antenna Using Concentric Split-ring Slots Structure

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hong, J. S.

    2014-09-01

    In this paper, a kind of concentric split-ring slots structure is utilized to design a novel triple-band-notched UWB antenna. Firstly, a concentric split-ring slots structure that has a higher VSWR than that of a single slot at notch frequency is presented. What's more, the structure is very simple and feasible to obtain notched-band at different frequency by adjustment of the length of slot. Secondly, a triple-band-notched antenna, whose notched bands are at 3.52-3.81 GHz for WiMAX and 5.03-5.42 GHz and 5.73-56.17 GHz for WLAN, is designed by using this structure. At last, a compact size of 24 × 30 mm2 of the proposed antenna has been fabricated and measured and it is shown that the proposed antenna has a broadband matched impedance (3.05-14 GHz, VSWR < 2), relatively stable gain and good omnidirectional radiation patterns at low bands.

  13. Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems.

    PubMed

    Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang

    2015-01-01

    The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches. PMID:26007726

  14. Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems

    PubMed Central

    Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang

    2015-01-01

    The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches. PMID:26007726

  15. Efficient Management of Multiple Piconets in an MC-CDMA-Based UWB System

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Xue, Peng; Piao, Cheng Jie; Kim, Duk Kyung

    With multiple overlapped piconets, the IEEE 802.15.3 Medium Access Control (MAC) protocol uses a Parent/Child (P/C) or Parent/Neighbor (P/N) configuration to avoid inter-piconet interference. However, the throughput of a P/N or P/C configuration cannot exceed that of a single piconet. In the present paper we propose an efficient means of managing multiple piconets to cooperate with a Multi-Carrier Code Division Multiple Access (MC-CDMA) based UWB system. The proposed management approach uses an Intermediate Device (IDEV) to connect Piconet Coordinators (PNCs). A senior PNC adaptively arranges two simultaneous data transmission links with the proposed spreading matrices in each Channel Time Allocation (CTA) instead of a P/C or P/N configuration, which supports only a single link in each CTA. Simulation results demonstrate the proposed scheme can achieve a higher throughput with an acceptable compromise of link success probability in multiple overlapped piconets.

  16. Design and Performance Evaluation of a UWB Communication and Tracking System for Mini-AERCam

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2005-01-01

    be a passive component of the communication system which will need to operate in a time-varying multipath environment created as the robot camera moves over the ISS structure. In addition, due to many interference sources located on the ISS, SSO, LEO satellites and ground-based transmitters, selecting a frequency for the ISS and Mini-AERCam link which will coexist with all interferers poses a major design challenge. To meet all of these challenges, ultrawideband (UWB) radio technology is being studied for use in the Mini-AERCam communication and tracking subsystem. The research described in this report is focused on design and evaluation of passive tracking system algorithms based on UWB radio transmissions from mini-AERCam.

  17. A wideband 0.13 μm CMOS LC-VCO for IMT-advanced and UWB applications

    NASA Astrophysics Data System (ADS)

    Xin, Tang; Fengyi, Huang; Xusheng, Tang; Mingchi, Shao

    2013-01-01

    This paper presents an LC voltage controlled oscillator (VCO) in a dual-band frequency synthesizer for IMT-advanced and UWB applications. The switched current source, cross-coupled pair and noise filtering technique are adopted in this VCO design to improve the performance of the phase noise, power consumption, voltage amplitude, and tuning range. In order to achieve a wide tuning range, a reconfigurable LC tank with 4 bits switch control is adopted in the core circuit design. The size of the entire chip with pad is 1.11 × 0.98 mm2. The test results show that the current dissipation of the VCO at UWB and IMT-Advanced band is 3 mA and 4.5 mA in a 1.2 V supply. The tuning range of the designed VCO is 3.86-5.28 GHz and 3.14-3.88 GHz. The phase-noise at 1 MHz frequency offset from a 3.5 GHz and 4.2 GHz carrier is -123 dBc/Hz and -119 dBc/Hz, respectively.

  18. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...

  19. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  20. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  1. Pulsed power

    NASA Astrophysics Data System (ADS)

    Stone, David H.

    Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.

  2. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  3. Phase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio.

    PubMed

    Wang, Wen Ting; Liu, Jian Guo; Mei, Hai Kuo; Zhu, Ning Hua

    2016-01-11

    We propose and experimentally verify a novel approach to achieve phase-coherence orthogonally polarized optical single sideband (OSSB) modulation with a tunable optically carrier-to-sideband ratio (OCSR). In our scheme, the orthogonally polarized OSSB signal is achieved using a dual-polarization quadrature phase shift keying (DP-QPSK) modulator without an optical band-pass filter (OBPF). Therefore, the proposed method is wavelength independent. The DP-QPSK modulator includes two parallel QPSK modulators locating on its two arms. The upper QPSK modulator of the DP-QPSK modulator is driven by two quadrature sinusoidal microwave signals and works at the frequency shifting condition whose bias voltages are optimized to suppress the optical. The lower QPSK modulator of that works at the maximum transmission point and the optical carrier is not modulated. The OCSR is continuously tunable by simply adjusting the bias voltages of the lower modulator. The frequency shifting optical signal from the upper QPSK modulator and the optical carrier from the lower QPSK modulator are combined together at the output of the DP-QPSK modulator. The optical carrier and sideband are polarized orthogonally. The generated OSSB signals could be used to shift and code the phase of the microwave signal and generate ultra-wideband (UWB) microwave pulse. The proposed method is analyzed and experimental demonstrated. PMID:26832269

  4. Advanced signal processing method for ground penetrating radar feature detection and enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Venkatachalam, Anbu Selvam; Huston, Dryver; Xia, Tian

    2014-03-01

    This paper focuses on new signal processing algorithms customized for an air coupled Ultra-Wideband (UWB) Ground Penetrating Radar (GPR) system targeting highway pavements and bridge deck inspections. The GPR hardware consists of a high-voltage pulse generator, a high speed 8 GSps real time data acquisition unit, and a customized field-programmable gate array (FPGA) control element. In comparison to most existing GPR system with low survey speeds, this system can survey at normal highway speed (60 mph) with a high horizontal resolution of up to 10 scans per centimeter. Due to the complexity and uncertainty of subsurface media, the GPR signal processing is important but challenging. In this GPR system, an adaptive GPR signal processing algorithm using Curvelet Transform, 2D high pass filtering and exponential scaling is proposed to alleviate noise and clutter while the subsurface features are preserved and enhanced. First, Curvelet Transform is used to remove the environmental and systematic noises while maintain the range resolution of the B-Scan image. Then, mathematical models for cylinder-shaped object and clutter are built. A two-dimension (2D) filter based on these models removes clutter and enhances the hyperbola feature in a B-Scan image. Finally, an exponential scaling method is applied to compensate the signal attenuation in subsurface materials and to improve the desired signal feature. For performance test and validation, rebar detection experiments and subsurface feature inspection in laboratory and field configurations are performed.

  5. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  6. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications

    PubMed Central

    Islam, Mohammad Tariqul; Islam, Md. Moinul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721

  7. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications.

    PubMed

    Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721

  8. Flexible sixteen monopole antenna array for microwave breast cancer detection.

    PubMed

    Bahrami, H; Porter, E; Santorelli, A; Gosselin, B; Popovic, M; Rusch, L A

    2014-01-01

    Radar based microwave imaging (MI) has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues over a wide frequency band has been made possible by ultra-wideband (UWB) techniques. In this paper, a flexible, compact monopole antenna on a 100 μm Kapton polyimide is designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues over the 2-5GHz frequency range. The antenna parameters are optimized to obtain a good impedance match over the required frequency range. The designed antenna size is 18mm × 18mm. Further, a flexible conformal 4×4 ultra-wideband antenna array, in a format similar to that of a bra, was developed for a radar-based breast cancer detection system. PMID:25570813

  9. Pulse Voltammetry.

    ERIC Educational Resources Information Center

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  10. Pulse stretcher

    DOEpatents

    Horton, James A.

    1994-01-01

    Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).

  11. Design and optimization of an ultra-wideband and compact microwave antenna for radiometric monitoring of brain temperature

    PubMed Central

    Maccarini, Paolo F.; Salahi, Sara; Oliveira, Tiago R.; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Snow, Brent W.; Reudink, Doug; Stauffer, Paul R.

    2014-01-01

    We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using non-invasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography (CT) scans is used to establish design parameters for constructing an accurate layered 3D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1–1.6 GHz producing an average antenna efficiency of 50.3% from a 2 turn log-spiral antenna. The entire sensor package is contained in a lightweight and low profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference (EMI) shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4°C of measured brain phantom temperature when the brain phantom is lowered 10°C and then returned to original temperature (37°C) over a 4.6-hour experiment. The numerical and experimental results demonstrate that the optimized 2.5 cm log-spiral antenna is well suited for the non-invasive radiometric sensing of deep brain temperature. PMID:24759979

  12. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    PubMed Central

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  13. Ultra Wideband (0.5 – 16 kHz) MR Elastography for Robust Shear Viscoelasticity Model Identification

    PubMed Central

    Liu, Yifei; Yasar, Temel K.; Royston, Thomas J.

    2014-01-01

    Changes in the viscoelastic parameters of soft biological tissues often correlate with progression of disease, trauma or injury, and response to treatment. Identifying the most appropriate viscoelastic model, then estimating and monitoring the corresponding parameters of that model can improve insight into the underlying tissue structural changes. MR Elastography (MRE) provides a quantitative method of measuring tissue viscoelasticity. In a previous study of the authors [Mag. Res. Med. 70:479–89;2013. doi: 10.1002/mrm.24495], a silicone-based phantom material was examined over the frequency range of 200 Hz to 7.75 kHz using MRE, an unprecedented bandwidth at that time. Six viscoelastic models including four integer order models and two fractional order models, were fit to the wideband viscoelastic data (measured storage and loss moduli as a function of frequency). The “fractional Voigt” model (spring and springpot in parallel) exhibited the best fit and was even able to fit the entire frequency band well when it was identified based only on a small portion of the band. This paper is an extension of that study with a wider frequency range from 500 Hz to 16 kHz. Furthermore, more fractional order viscoelastic models are added to the comparison pool. It is found that added complexity of the viscoelastic model provides only marginal improvement over the “fractional Voigt” model. And, again, the fractional order models show significant improvement over integer order viscoelastic models that have as many or more fitting parameters. PMID:25419651

  14. Ultra wideband (0.5-16 kHz) MR elastography for robust shear viscoelasticity model identification

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Yasar, Temel K.; Royston, Thomas J.

    2014-12-01

    Changes in the viscoelastic parameters of soft biological tissues often correlate with progression of disease, trauma or injury, and response to treatment. Identifying the most appropriate viscoelastic model, then estimating and monitoring the corresponding parameters of that model can improve insight into the underlying tissue structural changes. MR Elastography (MRE) provides a quantitative method of measuring tissue viscoelasticity. In a previous study by the authors (Yasar et al 2013 Magn. Reson. Med. 70 479-89), a silicone-based phantom material was examined over the frequency range of 200 Hz-7.75 kHz using MRE, an unprecedented bandwidth at that time. Six viscoelastic models including four integer order models and two fractional order models, were fit to the wideband viscoelastic data (measured storage and loss moduli as a function of frequency). The ‘fractional Voigt’ model (spring and springpot in parallel) exhibited the best fit and was even able to fit the entire frequency band well when it was identified based only on a small portion of the band. This paper is an extension of that study with a wider frequency range from 500 Hz to 16 kHz. Furthermore, more fractional order viscoelastic models are added to the comparison pool. It is found that added complexity of the viscoelastic model provides only marginal improvement over the ‘fractional Voigt’ model. And, again, the fractional order models show significant improvement over integer order viscoelastic models that have as many or more fitting parameters.

  15. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  16. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  17. Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm.

    PubMed

    Xue, Guanghui; Zhang, Bin; Yin, Ke; Yang, Weiqiang; Hou, Jing

    2014-10-20

    We demonstrate an all-fiber tunable Tm/Ho-codoped laser operating in the 2 μm wavelength region. The wavelength tuning range of the Tm/Ho-codoped fiber laser (THFL) with 1-m length of Tm/Ho-codoped fiber (THDF) was from 1727 nm to 2030 nm. Efficient short wavelength operation and ultra-wide wavelength tuning range of 303 nm were both achieved. To the best of our knowledge, this is the broadest tuning range that has been reported for an all-fiber rare-earth-doped laser to date. By increasing the THDF length to 2 m, the obtainable wavelength of the THFL was further red-shifted to the range from 1768 nm to 2071 nm. The output power of the THFL was scaled up from 1810 nm to 2010 nm by using a stage of Tm/Ho-codoped fiber amplifier (THFA), which exhibited the maximum slope efficiency of 42.6% with output power of 408 mW at 1910 nm. PMID:25401631

  18. The Applications of Decision-Level Data Fusion Techniques in the Field of Multiuser Detection for DS-UWB Systems

    PubMed Central

    Gu, Yebo; Yang, Minglei; Shi, Zhenguo; Wu, Zhilu

    2015-01-01

    In this paper, the decision-level data fusion techniques are extended to the multiuser detection (MUD) field. Then two novel MUD algorithms, that is the chairman arbitrating decision-level fusion criterion (CA-DFC) based MUD algorithm and the veto logic decision-level fusion criterion (VL-DFC) based MUD algorithm, are proposed for DS-UWB communication systems. In CA-DFC based method, the chairman can make his arbitration among the preliminary decisions from sub-optimal detectors by his own rule. In the VL-DFC based method, the undetermined bits in these preliminary decisions are considered to construct a simplified solution space, and then the chairman can make his final decision within this space. Simulation results demonstrate that the performances of CA-DFC and VL-DFC based MUD algorithms are superior to those of other sub-optimal MUD algorithms, and even close to that of OMD. Moreover, both of these proposed algorithms have lower computational complexity than OMD, which reveals their efficiency. Compared with CA-DFC, VL-DFC based algorithm achieves a little improvement in its performance, at the cost of the increment in its computational complexity. Thus, they can be applied to different practical situations. PMID:26404273

  19. PULSE COUNTER

    DOEpatents

    Trumbo, D.E.

    1959-02-10

    A transistorized pulse-counting circuit adapted for use with nuclear radiation detecting detecting devices to provide a small, light weight portable counter is reported. The small size and low power requirements of the transistor are of particular value in this instance. The circuit provides an adjustable count scale with a single transistor which is triggered by the accumulated charge on a storage capacitor.

  20. Pulsed hydrojet

    DOEpatents

    Bohachevsky, I.O.; Torrey, M.D.

    1986-06-10

    An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.

  1. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Félix A.

    2015-01-01

    Satellite communication has largely been accomplished using reflector antennas. However, such antennas are inherently bulky, and rely on mechanical steering. For this reason, ultra-wideband (UWB) and beam forming arrays have received strong interest. These lower weight, size,and cost arrays can combine many satellite applicationsspread throughout the C–Ka bands (4–40 GHz).To this end, we seek to develop an UWB Tightly-Coupled Dipole Array (TCDA) with the following attributes: UWB band operation (3.5–18.5 GHz) with low loss; 45° or more scanning in all planes; Low-cost Printed Circuit Board (PCB) fabrication; Scalable to Ka-band and above.

  2. Channel models for wireless body area networks.

    PubMed

    Takizawa, Kenichi; Aoyagi, Akahiro; Takada, Jun-Ichi; Katayama, Norihiko; Yekeh, Kamya; Takehiko, Yazdandoost; Kohno, Kobayashi Ryuji

    2008-01-01

    Wireless patient monitoring using wearable sensors is a promising application. This paper provides stochastic channel models for wireless body area network (WBAN) on the human body. Parameters of the channel models are extracted from measured channel transfer functions (CTFs) in a hospital room. Measured frequency bands are selected so as to include permissible bands for WBAN; ultra wideband (UWB), the industry, science and medical (ISM) bands, and wireless medical telemetry system (WMTS) bands. As channel models, both a path loss model and a power delay profile (PDP) model are considered. But, even though path loss models are derived for the all frequency bands, PDP model is only for the UWB band due to the highly frequency selectiveness of UWB channels. The parameters extracted from the measurement results are summarized for each channel model. PMID:19162968

  3. Determination of the Path Loss from Passenger Electronic Devices to Radio Altimeter with Additional EMI Test

    NASA Astrophysics Data System (ADS)

    Schüür, J.; Nunes, R. R.

    2012-05-01

    Emitters of current and future wireless ultra wideband technology (UWB) inside the cabin should not interfere with any aircraft system. Especially the radio altimeter (RA) system using antennas mounted outside the fuselage is potentially sensitive to UWB devices in the frequency range between 4.1 and 4.8 GHz. The measurement of the interference path loss (IPL) to the RA is therefore of interest and is presented for different aircraft. The need of a high dynamic setup with low parasitic coupling in the IPL measurement is stressed. In addition, electromagnetic interference (EMI) tests with different transmitted signals are made, showing that the susceptibility of the RA system actually increases with UWB modulation.

  4. Low-Rank Matrix Recovery Approach for Clutter Rejection in Real-Time IR-UWB Radar-Based Moving Target Detection.

    PubMed

    Sabushimike, Donatien; Na, Seung You; Kim, Jin Young; Bui, Ngoc Nam; Seo, Kyung Sik; Kim, Gil Gyeom

    2016-01-01

    The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method. PMID:27598159

  5. Demonstration of negative signal delay with short-duration transient pulse

    NASA Astrophysics Data System (ADS)

    Ravelo, B.

    2011-07-01

    This paper introduces theoretic and experimental analyses of short-duration pulse propagation through a negative group delay (NGD) circuit. The basic analysis method of this electronic circuit operating in baseband and microwave frequencies is investigated. Then, its electrical fundamental characteristics vis-à-vis transient signals are developed. To validate the theoretic concept, planar hybrid devices with one- and two-stage NGD cells were designed, simulated, fabricated and tested. Transient analyses with ultra-wide band (UWB) pulse signals with different widths are realized. Then, experimental results in good agreement with the theoretical predictions were observed. Consequently, group delay going down under -2.5 ns is evidenced in baseband frequency up to 63 MHz with one-stage NGD cell. In time-domain, a Gaussian pulse in advance of about t0 = -1.5 ns or 20% of its half-height time-width was measured. This corresponds to a negative group velocity of about vg = L/t0 = -0.13c (L is the physical length of the tested device and c is light speed in the vacuum). More significant NGD value over 100-MHz bandwidth is stated with two-stage NGD cells. This results in a Gaussian pulse peak advance of about -5 ns (raising a group velocity of about vg = -0.12c) or 31% of its half-height time-width. Finally, some potential applications based on the NGD function are discussed.

  6. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  7. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  8. Measurement of EM Field Inside a Cruising Aircraft: Potential Problems for the Use of Mobile Phones on Board

    NASA Astrophysics Data System (ADS)

    Kohmura, A.; Picard, J.; Yonemoto, N.; Yamamoto, K.

    Electromagnetic (EM) emissions from portable electronic devices (PEDs) carried onboard aircraft can interfere with avionic systems. Several onboard systems using EM waves have been planned, such as mobile communications and UWB (ultra-wideband) entertainment services distribution. Manufacturers of this system develop schemes to avoid electromagnetic interference by the transmissions (emissions) of mobile phones with avionic systems; some local-specific problems still remain. The purpose of this chapter is to investigate to what extent non-GSM transmissions from the ground base stations reach inside a cruising aircraft. The EM field at the base station frequency bands is measured in a cruising small aircraft.

  9. Analysis of hyperbolic signatures from small discontinuities using an UWB ground-coupled radar: FDTD simulations and field experiments

    NASA Astrophysics Data System (ADS)

    Sagnard, Florence; Tebchrany, Elias; Baltazart, Vincent

    2013-04-01

    Ground penetrating radar (GPR) is a well-known non-destructive technique based on electromagnetic wave propagation that is able to detect by reflection or scattering of waves dielectric discontinuities in the underground. Our application is mainly concerned with civil engineering to perform supervision, inventory, and soil characterization. Because the air-coupled radar suffers from a significant reflection at the ground interface that reduces energy transfer of electromagnetic radiation in the sub-surface and penetration depth, we have developed an ultra-wide band (UWB) ground-coupled radar made of a pair of partially shielded compact planar bowtie slot antennas. As the antenna dimension (36*23 cm2) is close to the A4 sheet size, the maturity of the microstrip technology has allowed to design a particular geometry on the FR4 substrate (h=1.5 mm) which is able to operate at frequencies from 460 MHz to beyond 4 GHz in air. Contrary to a commercial GPR where details on antenna design are not available, it appears here possible to know and control the radiation characteristics and develop full-wave FDTD modeling that can represent field experiments for comparisons and analyses. The objective of this work is to improve, by means of a parametric study, the knowledge of physical phenomena involved in dielectric polarization when waves interact with buried discontinuities and particularly cracks, pipes, delaminations that can be distinguished by their shape, size, dielectric contrast with the surrounding medium, orientation relative to the electric field… Thus, we have first characterized by FDTD modeling and field measurements in a wet sand the radar link in two perpendicular polarizations (parallel and mirror) in the presence of a common soil (epsilon'=5.5, sigma=0.01 S/m) considering variable offsets. Afterwards, we have studied and analyzed the hyperbola signatures generated by the presence of buried canonical objects (pipes, strips) with several dielectric

  10. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  11. The Army Research Laboratory (ARL) synchronous impulse reconstruction (SIRE) forward-looking radar

    NASA Astrophysics Data System (ADS)

    Ressler, Marc; Nguyen, Lam; Koenig, Francois; Wong, David; Smith, Gregory

    2007-04-01

    The Army Research Laboratory (ARL) has designed and fabricated a forward-looking, impulse-based, ultra-wideband (UWB) imaging radar for detection of concealed targets. This system employs a physical array of 16 receive antennas to provide the necessary aperture for sufficient cross-range resolution in the forward-looking geometry. Each antenna feeds a base-band receiver/digitizer that integrates the data from a number of radar pulses before passing it on to the personal computer (PC) based operator's console and display. The innovative ARL receiver design uses commercially available integrated circuits to provide a low-cost, lightweight digitizing scheme with an effective sampling rate of approximately 8 GHz. The design is extensible to allow for growth in the number of channels used and improvements in integrated circuit performance to eventually meet the expected unmanned ground vehicle combat pace. Down-range resolution is provided by the bandwidth of the transmitted pulse which occupies 300-3000 MHz. Range coverage is designed to be 25 meters with an adjustable start point forward of the vehicle. Modeling studies have shown that a pair of transmitters situated at the two ends of the receive array provides best performance in cross-range resolution. Radar data is continuously collected so that a horizontal two-dimensional synthetic aperture is formed for 3-D image formation. This allows focusing of the data to yield estimates of target height as well as position to tag potential obstacles as being negative (e.g. holes, ditches) or positive (e.g. tree stumps). The forward motion also improves the cross range resolution to targets as their aspect changes.

  12. Alias-free processing of P-3 data

    NASA Astrophysics Data System (ADS)

    Genello, Gerald J., Jr.; Wicks, Michael C.; Soumekh, Mehrdad

    1999-08-01

    This paper is concerned with multidimensional signal processing and image formation with FOliage PENetrating (FOPEN) airborne radar data which were collected by a Navy P-3 ultra wideband (UWB) radar in 1995 [Raw]. A commonly- used assumption for the processing of the P-3 data is that the beamwidth angle of the radar is limited to 35 degrees [Bes], [Goo]; provided that this assumption is valid, the PRF of the P-3 SAR system yields alias-free data in the slow-time Doppler domain. However, controlled measurements with the P-3 radar have indicated a beamwidth which exceeds 35 degrees [Raw]. In this paper, we examine a method for processing of the P-3 data in which the incorrect assumption that its radar beamwidth angle is limited to 35 degrees is not imposed. In this approach, a SAR processing scheme which enables the user to extract the SAR signature of a specific target area (digital spotlighting) is used to ensure that the resultant reconstructed SAR image is not aliased [S94], [S95], [S99]. The images which are formed via this method with 8192 pulses are shown to be superior in quality to the images which are formed via the conventional P-3 processor with 16386 pulses which was developed at the MIT Lincoln Laboratory [Bes]. In the presentation, we also introduce a method for converting the P-3 deramped data into its alias- free baseband echoed data; the signature of the Radio Frequency Interference (RFI) signals in the two-dimensional spectral domain of the resultant data is examined.

  13. 480 Mbit/s UWB bi-directional radio over fiber CWDM PON using ultra-low cost and power VCSELs.

    PubMed

    Quinlan, Terence; Morant, Maria; Dudley, Sandra; Llorente, Roberto; Walker, Stuart

    2011-12-12

    Radio-over-fiber (RoF) schemes offer the possibility of permitting direct access to native format services for the domestic user. A low power requirement and cost effectiveness are crucial to both the service provider and the end user. Here, we present an ultra-low cost and power RoF scheme using direct modulation of commercially-available 1344 nm and 1547 nm VCSELs by band-group 1 UWB wireless signals (ECMA-368) at near broadcast power levels. As a result, greatly simplified electrical-optical-electrical conversion is accomplished. A successful demonstration over a transmission distance of 20.1 km is described using a SSMF, CWDM optical network. EVMs of better than -18.3 dB were achieved. PMID:22274019

  14. Long pulse production from short pulses

    DOEpatents

    Toeppen, J.S.

    1994-08-02

    A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.

  15. Long pulse production from short pulses

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).

  16. Exploring intense attosecond pulses

    NASA Astrophysics Data System (ADS)

    Charalambidis, D.; Tzallas, P.; Benis, E. P.; Skantzakis, E.; Maravelias, G.; Nikolopoulos, L. A. A.; Peralta Conde, A.; Tsakiris, G. D.

    2008-02-01

    After introducing the importance of non-linear processes in the extreme-ultra-violet (XUV) spectral regime to the attosecond (asec) pulse metrology and time domain applications, we present two successfully implemented techniques with excellent prospects in generating intense asec pulse trains and isolated asec pulses, respectively. For the generation of pulse trains two-color harmonic generation is exploited. The interferometric polarization gating technique appropriate for the generation of intense isolated asec pulses is discussed and compared to other relevant approaches.

  17. Multifunctional pulse sequence generator for pulse NMR

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng

    1988-06-01

    A new multifunctional pulse sequence generator has been designed and constructed. It can conveniently generate various pulse sequences used in nuclear-magnetic resonance (NMR) to measure the spin-lattice relaxation time T1, the spin-spin relaxation time T2, and the spin-locking relaxation time T1 ρ. It can also be used in pulse Fourier transform NMR and double resonance. The intervals of pulses can increase automatically with sequence repetitions and the generator can be used in two-dimensional spectrum measurement and spin-density imaging research. The sequences can be generated through four different triggering methods and there are two synchronous pulse outputs and fifteen auxiliary pulse outputs, so the generator can be conveniently interfaced with a computer or other instruments. The circuitry, functions, and features of the generator are described in this article.

  18. DIFFERENTIAL PULSE HEIGHT DISCRIMINATOR

    DOEpatents

    Test, L.D.

    1958-11-11

    Pulse-height discriminators are described, specifically a differential pulse-height discriminator which is adapted to respond to pulses of a band of amplitudes, but to reject pulses of amplitudes greater or less than tbe preselected band. In general, the discriminator includes a vacuum tube having a plurality of grids adapted to cut off plate current in the tube upon the application of sufficient negative voltage. One grid is held below cutoff, while a positive pulse proportional to the amplltude of each pulse is applled to this grid. Another grid has a negative pulse proportional to the amplitude of each pulse simultaneously applied to it. With this arrangement the tube will only pass pulses which are of sufficlent amplitude to counter the cutoff bias but not of sufficlent amplitude to cutoff the tube.

  19. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  20. Nerve-pulse interactions

    SciTech Connect

    Scott, A.C.

    1982-01-01

    Some recent experimental and theoretical results on mechanisms through which individual nerve pulses can interact are reviewed. Three modes of interactions are considered: (1) interaction of pulses as they travel along a single fiber which leads to velocity dispersion; (2) propagation of pairs of pulses through a branching region leading to quantum pulse code transformations; and (3) interaction of pulses on parallel fibers through which they may form a pulse assembly. This notion is analogous to Hebb's concept of a cell assembly, but on a lower level of the neural hierarchy.

  1. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  2. Pulse to pulse klystron diagnosis system

    SciTech Connect

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 ..mu..s. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations.

  3. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB

  4. Emerging Communication Technologies (ECT) Phase 2 Report. Volume 1; Main Report

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Chiodini, Robert; Nelson, Richard A.; Huang, PoTien; Kruhm, David A.

    2003-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.

  5. Random Noise Polarimetry Technique for Covert Detection of Targets Obscured by Foliage

    NASA Astrophysics Data System (ADS)

    Narayanan, Ram M.; Xu, Xiaojian; Henning, Joseph A.; Kumru, Cihan

    2002-07-01

    The University of Nebraska has been investigating a novel technique called random noise polarimetry for foliage penetration (FOPEN) imaging applications, under support from the US Air Force Office of Scientific Research (AFOSR). In this final report, we summarize the main activities and results of the research during the past three years (1999-2002). These include: (a) Development of an experimental UHF band ultra wideband (UWB) FOPEN noise radar system; (b) Development of a down range sidelobe suppression; (c) Study of the foliage transmission model and the impact of foliage obscuration; (d) Development of FOPEN SAR imaging model and image formation algorithms; (e) Study of the impact of frequency and aspect angle dependent target signatures on UWB SAR images; (f) Three-dimensional interferometric SAR and ISAR imaging techniques; (g) Development of SAR image enhancement techniques; and (h) Field tests, data acquisition and image processing using the experimental random noise radar system. Suggestions for future work are also presented.

  6. Adaptive target detection in foliage-penetrating SAR images using alpha-stable models.

    PubMed

    Banerjee, A; Burlina, P; Chellappa, R

    1999-01-01

    Detecting targets occluded by foliage in foliage-penetrating (FOPEN) ultra-wideband synthetic aperture radar (UWB SAR) images is an important and challenging problem. Given the different nature of target returns in foliage and nonfoliage regions and very low signal-to-clutter ratio in UWB imagery, conventional detection algorithms fail to yield robust target detection results. A new target detection algorithm is proposed that (1) incorporates symmetric alpha-stable (SalphaS) distributions for accurate clutter modeling, (2) constructs a two-dimensional (2-D) site model for deriving local context, and (3) exploits the site model for region-adaptive target detection. Theoretical and empirical evidence is given to support the use of the SalphaS model for image segmentation and constant false alarm rate (CFAR) detection. Results of our algorithm on real FOPEN images collected by the Army Research Laboratory are provided. PMID:18267459

  7. Emerging Communication Technologies (ECT) Phase 3 Final Report

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Bates, Lakesha D.; Nelson, Richard A.

    2004-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.

  8. Radial pulse (image)

    MedlinePlus

    ... heart. The arteries are the vessels with the "pulse", a rhythmic pushing of the blood in the ... a refilling of the heart chamber. To determine heart rate, one feels the beats at a pulse point ...

  9. Wrist pulse (image)

    MedlinePlus

    To measure the pulse at the wrist, place the index and middle finger over the underside of the opposite wrist, below the base ... firmly with flat fingers until you feel the pulse in the radial artery.

  10. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  11. Electrical pulse generator

    DOEpatents

    Norris, Neil J.

    1979-01-01

    A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

  12. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  13. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  14. Constant potential pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.

  15. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  16. Stress pulse phenomena

    SciTech Connect

    McGlaun, M.

    1993-08-01

    This paper is an introductory discussion of stress pulse phenomena in simple solids and fluids. Stress pulse phenomena is a very rich and complex field that has been studied by many scientists and engineers. This paper describes the behavior of stress pulses in idealized materials. Inviscid fluids and simple solids are realistic enough to illustrate the basic behavior of stress pulses. Sections 2 through 8 deal with the behavior of pressure pulses. Pressure is best thought of as the average stress at a point. Section 9 deals with shear stresses which are most important in studying solids.

  17. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  18. PULSE DURATION LENGTHENER

    DOEpatents

    Aiken, W.R.

    1958-02-01

    This patent pertains to pulse modifying apparatus and, more particularly, describes a device to provide a rise time and time base expander for signal pulses having a very short duration. The basic element of the device is a vacuum tube comprising a charged particie beam, grid control means, an accelerating electrode, a drift tube, and a collector electrode. As the short duration input pulse modulates the particle beam through the grid control means, the voltage between the drift tube and accelerating electrode is caused to vary, whereby the output signal from the collector is a pulse having longer rise time, expanded duration and proportionate characteristics of the original pulse. The invention is particuiarly useful where subsequent pulse circultry does not have the frequency bandwidth to handle the short duration pulse without distorting it.

  19. ELECTRICAL PULSE COUNTER APPARATUS

    DOEpatents

    Kaufman, W.M.; Jeeves, T.A.

    1962-09-01

    A progressive electrical pulse counter circuit rs designed for the counting of a chain of input pulses. The circuit employs a series of direct connected bistable counting stages simultaneously pulsed by each input pulse and a delay means connected between each of the stages. Each bistable stage has two d-c operative states, which stage, when in its initial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since the delay circuits between the stages prevents the immediate decay of the d-c state of each stage when the stages are pulsed, only one stage will change its state for each input pulse, thereby providing progressive stage-by-stage counting. (AEC)

  20. Direct Extraction of Tumor Response Based on Ensemble Empirical Mode Decomposition for Image Reconstruction of Early Breast Cancer Detection by UWB.

    PubMed

    Li, Qinwei; Xiao, Xia; Wang, Liang; Song, Hang; Kono, Hayato; Liu, Peifang; Lu, Hong; Kikkawa, Takamaro

    2015-10-01

    A direct extraction method of tumor response based on ensemble empirical mode decomposition (EEMD) is proposed for early breast cancer detection by ultra-wide band (UWB) microwave imaging. With this approach, the image reconstruction for the tumor detection can be realized with only extracted signals from as-detected waveforms. The calibration process executed in the previous research for obtaining reference waveforms which stand for signals detected from the tumor-free model is not required. The correctness of the method is testified by successfully detecting a 4 mm tumor located inside the glandular region in one breast model and by the model located at the interface between the gland and the fat, respectively. The reliability of the method is checked by distinguishing a tumor buried in the glandular tissue whose dielectric constant is 35. The feasibility of the method is confirmed by showing the correct tumor information in both simulation results and experimental results for the realistic 3-D printed breast phantom. PMID:26552095

  1. PULSE RATE DIVIDER

    DOEpatents

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  2. PULSE HEIGHT ANALYZER

    DOEpatents

    Goldsworthy, W.W.

    1958-06-01

    A differential pulse-height discriminator circuit is described which is readily adaptable for operation in a single-channel pulse-height analyzer. The novel aspect of the circuit lies in the specific arrangement of differential pulse-height discriminator which includes two pulse-height discriminators having a comnnon input and an anticoincidence circuit having two interconnected vacuum tubes with a common cathode resistor. Pulses from the output of one discriminator circuit are delayed and coupled to the grid of one of the anticoincidence tubes by a resistor. The output pulses from the other discriminator circuit are coupled through a cathode follower circuit, which has a cathode resistor of such value as to provide a long time constant with the interelectrode capacitance of the tube, to lenthen the output pulses. The pulses are then fed to the grid of the other anticoincidence tube. With such connections of the circuits, only when the incoming pulse has a pesk value between the operating levels of the two discriminators does an output pulse occur from the anticoincidence circuit.

  3. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  4. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  5. Random pulse generator

    NASA Technical Reports Server (NTRS)

    Lindsey, R. S., Jr. (Inventor)

    1975-01-01

    An exemplary embodiment of the present invention provides a source of random width and random spaced rectangular voltage pulses whose mean or average frequency of operation is controllable within prescribed limits of about 10 hertz to 1 megahertz. A pair of thin-film metal resistors are used to provide a differential white noise voltage pulse source. Pulse shaping and amplification circuitry provide relatively short duration pulses of constant amplitude which are applied to anti-bounce logic circuitry to prevent ringing effects. The pulse outputs from the anti-bounce circuits are then used to control two one-shot multivibrators whose output comprises the random length and random spaced rectangular pulses. Means are provided for monitoring, calibrating and evaluating the relative randomness of the generator.

  6. PULSE AMPLITUDE ANALYSERS

    DOEpatents

    Lewis, I.A.D.

    1956-05-15

    This patent pentains to an electrical pulse amplitude analyzer, capable of accepting input pulses having a separation between adjacent pulses in the order of one microsecond while providing a large number of channels of classification. In its broad aspect the described pulse amplitude analyzer utilizes a storage cathode ray tube und control circuitry whereby the amplitude of the analyzed pulses controls both the intensity and vertical defiection of the beam to charge particular spots in horizontal sectors of the tube face as the beam is moved horizontally across the tube face. As soon as the beam has swept the length of the tube the information stored therein is read out by scanning individually each horizontal sector corresponding to a certain range of pulse amplitudes and applying the output signal from each scan to separate indicating means.

  7. PULSED INDICATOR CIRCUIT

    DOEpatents

    Linlor, W.I.; Kerns, Q.A.

    1960-11-15

    A system is given for detecting incremental changes in a transducer impedance terminating a transmission line. Principal novelty resides in the transducer impedance terminating the line in a mismatch and a pulse generator being provided to apply discrete pulses to the input end of the line. The amplitudes of the pulses reflected to the input end of the line from the mismatched transducer impedance are then observed as a very accurate measure of the instantaneous value of the latter.

  8. PulseSoar

    SciTech Connect

    Carter, P.; Peglow, S.

    1992-07-21

    This paper is an introduction to the PulseSoar concept. PulseSoar is a hypervelocity airplane that uses existing airport facilities and current technologies to fly at the very edge of space. It will be shown that PulseSoar can fly between any two points on the globe in less than two hours with fuel efficiency exceeding current state of the art commercial airliners. In addition, it will be shown that PulseSoar avoids environmental issues concerning the ozone layer and sonic booms because of its unique flight profile. All of this can be achieved with current technology. PulseSoar does not require the development of enabling technology. It is a concept which can be demonstrated today. The importance of this idea goes beyond the technical significance`s of PulseSoar in terms of feasibility and performance. PulseSoar could provide a crucial economic advantage to America`s largest export market: commercial aircraft. PulseSoar is a breakthrough concept for addressing the emerging markets of long range and high speed aircraft. Application of PulseSoar to commercial transport could provide the US Aerospace industry a substantial lead in offering high speed/long range aircraft to the world`s airlines. The rapid emergence of a US developed high speed aircraft could also be important to our competitiveness in the Pacific Rim and South American economies. A quick and inexpensive demonstration vehicle is proposed to bang the concept to reality within two years. This discussion will address all the major technical subjects encompassed by PulseSoar and identifies several near-term, and low risk, applications which may be further explored with the initial demonstration vehicle. What is PulseSoar? PulseSoar could enable high speed, high altitude and long range flight without many of the difficulties encountered by traditional hypersonic vehicles.

  9. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  10. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  11. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control. PMID:18040384

  12. Opportunities in pulse combustion

    NASA Astrophysics Data System (ADS)

    Brenchley, D. L.; Bomelburg, H. J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  13. Pulse pile-up effects

    SciTech Connect

    Tenney, F.H.

    1983-05-01

    The energy spectrum containing the effects of all orders of pulse pileup is predicted for an idealized x-ray pulse-height-analysis system measuring randomly occurring events. Two simplifying assumptions used are first a fixed pulse resolution time and second that the measured energy of piled-up pulses is the algebraic sum of the energy associated with each pulse.

  14. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOEpatents

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  15. PULSE HEIGHT ANALYZER

    DOEpatents

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  16. Sources of pulsed radiation

    SciTech Connect

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table.

  17. Extrusion cooking: Legume pulses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion is used commercially to produce high value breakfast and snack foods based on cereals such as wheat or corn. However, this processing method is not being commercially used for legume pulses seeds due to the perception that they do not expand well in extrusion. Extrusion cooking of pulses (...

  18. SEMICONDUCTOR INTEGRATED CIRCUITS: A monolithic 3.1-4.8 GHz MB-OFDM UWB transceiver in 0.18-μm CMOS

    NASA Astrophysics Data System (ADS)

    Renliang, Zheng; Xudong, Jiang; Wang, Yao; Guang, Yang; Jiangwei, Yin; Jianqin, Zheng; Junyan, Ren; Wei, Li; Ning, Li

    2010-06-01

    A monolithic RF transceiver for an MB-OFDM UWB system in 3.1-4.8 GHz is presented. The transceiver adopts direct-conversion architecture and integrates all building blocks including a gain controllable wideband LNA, a I/Q merged quadrature mixer, a fifth-order Gm-C bi-quad Chebyshev LPF/VGA, a fast-settling frequency synthesizer with a poly-phase filter, a linear broadband up-conversion quadrature modulator, an active D2S converter and a variable-gain power amplifier. The ESD protected transceiver is fabricated in Jazz Semiconductor's 0.18-μm RF CMOS with an area of 6.1 mm2 and draws a total current of 221 mA from 1.8-V supply. The receiver achieves a maximum voltage gain of 68 dB with a control range of 42 dB in 6 dB/step, noise figures of 5.5-8.8 dB for three sub-bands, and an in-band/out-band IIP3 better than -4 dBm/+9 dBm. The transmitter achieves an output power ranging from -10.7 to -3 dBm with gain control, an output P1dB better than -7.7 dBm, a sideband rejection about 32.4 dBc, and LO suppression of 31.1 dBc. The hopping time among sub-bands is less than 2.05 ns.

  19. A case study on the feasibility and performance of an UWB-AoA real time location system for resources management of civil construction projects

    NASA Astrophysics Data System (ADS)

    Mok, Esmond; Xia, Linyuan; Retscher, Guenther; Tian, Hui

    2010-06-01

    The application of integrated satellite and modern wireless positioning technologies for ubiquitous real-time resources management in large scale civil engineering projects can greatly optimize the time and cost in the construction process, and is now the trend for modern construction project management. As the outdoor conditions of most civil construction sites are open to sky, satellite positioning with the popularly used Global Positioning System (GPS) has been proved to be very efficient and effective. However, the condition in indoor and underground construction site is very complicated due to the fact that different construction activities would be carried out in different congested areas, involving heavy construction plant, equipment, professionals and technical personnel. Nowadays different emerging technologies such as Wi-Fi and ZigBee can be adopted for position and tracking in indoor environments. Nevertheless, under the very complicated construction site conditions these technologies may fail due to movement of human resources and construction plant, variation of metrological conditions, and serious multipath effects of signals. It is considered that Ultra Wide Band (UWB) technology is more suitable for indoor construction site environments. In this paper, a case study on the attempt of integrating GPS with Ubisense Real-time Location System (RTLS) for resources management in an underground railway construction site is discussed. Laboratory and field tests have shown that the RTLS can provide better resources management capability in terms of positioning accuracy and stability than Wi-Fi and ZigBee technologies under complicated construction environments. The test results show that the system can normally achieve better than 15 cm accuracy, and better than 1 m under adverse geometrical site condition. However, the high instrumental set up cost and the requirement for high quality data transmission cable for high precision time synchronization between

  20. Bipolar pulse generator for intense pulsed ion beam accelerator

    SciTech Connect

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-15

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time.

  1. Bipolar pulse generator for intense pulsed ion beam accelerator.

    PubMed

    Ito, H; Igawa, K; Kitamura, I; Masugata, K

    2007-01-01

    A new type of pulsed ion beam accelerator named "bipolar pulse accelerator" (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. PMID:17503918

  2. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  3. ELECTRIC PULSE GENERATOR

    DOEpatents

    Buntenbach, R.W.

    1959-06-01

    S>An electro-optical apparatus is described which produces electric pulses in programmed sequences at times and durations controlled with great accuracy. An oscilloscope CRT is supplied with signals to produce a luminous spot moving in a circle. An opaque mask with slots of variable width transmits light from the spot to a photoelectric transducer. For shorter pulse decay times a CRT screen which emits UV can be used with a UVtransmitting filter and a UV- sensitive photoelectric cell. Pulses are varied by changing masks or by using masks with variable slots. This device may be used in multiple arrangements to produce other pulse aT rangements, or it can be used to trigger an electronic pulse generator. (T.R.H.)

  4. Pulsed hall thruster system

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir J. (Inventor); Pote, Bruce M. (Inventor); Gamero-Castano, Manuel (Inventor)

    2004-01-01

    A pulsed Hall thruster system includes a Hall thruster having an electron source, a magnetic circuit, and a discharge chamber; a power processing unit for firing the Hall thruster to generate a discharge; a propellant storage and delivery system for providing propellant to the discharge chamber and a control unit for defining a pulse duration .tau.<0.1d.sup.3.rho./m, where d is the characteristic size of the thruster, .rho. is the propellant density at standard conditions, and m is the propellant mass flow rate for operating either the power processing unit to provide to the Hall thruster a power pulse of a pre-selected duration, .tau., or operating the propellant storage and delivery system to provide a propellant flow pulse of duration, .tau., or providing both as pulses, synchronized to arrive coincidentally at the discharge chamber to enable the Hall thruster to produce a discreet output impulse.

  5. Localized wave pulse experiments

    SciTech Connect

    Chambers, D L; Henderson, T L; Krueger, K L; Lewis, D K; Zilkowski, R N

    1999-06-01

    The Localized Wave project of the Strategic System Support Program has recently finished an experiment in cooperation with the Advanced SONAR group of the Applied Research Laboratory of the University of Texas at Austin. The purpose of the experiment was three-fold. They wanted to see if (1) the LW pulse could propagate over significant distances, to see if (2) a new type of array and drive system specifically designed for the pulse would increase efficiency over single frequency tone bursts, and to see if (3) the complexity of our 24 channel drivers resulted in better efficiency than a single equivalent pulse driving a piston. In the experiment, several LW pulses were launched from the Lake Travis facility and propagated over distances of either 100 feet or 600 feet, through a thermocline for the 600 foot measurements. The results show conclusively that the Localized Wave will propagate past the near field distance. The LW pulses resulted in extremely broad frequency band width pulses with narrow spatial beam patterns and unmeasurable side lobes. Their array gain was better than most tone bursts and further, were better than their equivalent piston pulses. This marks the first test of several Low Diffraction beams against their equivalent piston pulses, as well as the first propagation of LW pulses over appreciable distances. The LW pulse is now proven a useful tool in open water, rather than a laboratory curiosity. The experimental system and array were built by ARL, and the experiments were conducted by ARL staff on their standard test range. The 600 feet measurements were made at the farthest extent of that range.

  6. Dynamic pulse difference circuit

    DOEpatents

    Erickson, Gerald L.

    1978-01-01

    A digital electronic circuit of especial use for subtracting background activity pulses in gamma spectrometry comprises an up-down counter connected to count up with signal-channel pulses and to count down with background-channel pulses. A detector responsive to the count position of the up-down counter provides a signal when the up-down counter has completed one scaling sequence cycle of counts in the up direction. In an alternate embodiment, a detector responsive to the count position of the up-down counter provides a signal upon overflow of the counter.

  7. Pulsed atomic soliton laser

    SciTech Connect

    Carr, L.D.; Brand, J.

    2004-09-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments.

  8. SHORT PULSE STRETCHER

    DOEpatents

    Branum, D.R.; Cummins, W.F.

    1962-12-01

    >A short pulse stretching circuit capable of stretching a short puise to enable it to be displayed on a relatively slow sweeping oscilloscope is described. Moreover, the duration of the pulse is increased by charging a capacitor through a diode and thereafter discharging the capacitor at such time as is desired. In the circuit the trigger pulse alone passes through a delay line, whereas the main signal passes through the diode only, and results in over-all circuit losses which are proportional to the low losses of the diode only. (AEC)

  9. Target detection and identification using a stepped-frequency ultrawideband radar

    NASA Astrophysics Data System (ADS)

    Rothwell, Edward J.; Chen, Kun Mu; Nyquist, Dennis P.; Norman, Adam; Wallinga, G.; Dai, Y.

    1996-11-01

    Ultra-wideband radar systems provide great potential for radar target detection, identification and imaging through their inherent high-resolution capabilities. This paper considers two applications of a stepped-frequency ultra- wideband radar--detection of targets close to a disturbed sea surface, and imaging of airborne targets. A new technique for target detection is presented, based on the E- pulse concept and designed to eradicate the sea clutter signal while enhancing the target response. A simulation of a missile travelling above an evolving sea-water model is considered, and results are compared to measurements made in an anechoic chamber. Finally, the effects of signal bandwidth and bistatic angle on image resolution are explored, using a time-domain imaging identity with measured, band-limited signals.

  10. Pulse Coil Tester

    NASA Technical Reports Server (NTRS)

    Simon, Richard A.

    1988-01-01

    Set of relays tested easily and repeatedly. Pulse coil tester causes coil under test to generate transient voltage; waveform indicates condition of coil. Tester accommodates assembly of up to four coils at a time.

  11. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  12. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  13. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  14. Pulse measurement apparatus and method

    DOEpatents

    Marciante, John R.; Donaldson, William R.; Roides, Richard G.

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  15. Pulsed spallation Neutron Sources

    SciTech Connect

    Carpenter, J.M.

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  16. Pulsed spallation neutron sources

    SciTech Connect

    Carpenter, J.M.

    1996-05-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology.

  17. Pulse magnetic welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  18. LED flicker pulsing

    NASA Astrophysics Data System (ADS)

    Johnson, Mark A.; Cote, Paul J.

    2001-08-01

    There is need to replace hazardous radioluminescent light sources with a means of illumination that is environmentally friendly. This paper describes an electronic source that was developed as a potential candidate to replace low intensity tritium in a military system. It employs an LED for illumination and a 3-volt coin cell battery as a power source. This new light source is electronically invisible, requires minimal maintenance, and provides the lowest practical illumination to preclude detection by optical means. The low intensity requires that the LED be driven at DC current levels resulting in poor luminous efficiency. Therefore, in an effort to maximize battery life, the LED is pulsed into a more optically efficient mode of operation. However, conventional pulsing techniques are not employed because of concerns the electronics could be identified by conspicuous power spectral density (PSD) components in the electromagnetic spectrum generated by a pulsed LED. Therefore, flicker noise concepts have been employed to efficiently drive the LED while generating a virtually undetectable spectral signature. Although ideally the pulse durations, magnitudes, and spacings should be random, a significant reduction in conspicuous PSD components can be achieved when imposing practical constraints. The dominant components of the power spectrum are significantly reduced using fixed pulse durations and magnitudes while varying only the pulse spacing. The mean duty cycle is set to provide the same effective illumination as DC operation while generating a PSD normally associated with natural phenomena.

  19. A versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy.

    NASA Technical Reports Server (NTRS)

    Tarr, C. E.; Nickerson, M. A.

    1972-01-01

    A digital pulse programmer producing the standard pulse sequences required for pulsed nuclear magnetic resonance spectroscopy is described. In addition, a 'saturation burst' sequence, useful in the measurement of long relaxation times in solids, is provided. Both positive and negative 4 V trigger pulses are produced that are fully synchronous with a crystal-controlled time base, and the pulse programmer may be phase-locked with a maximum pulse jitter of 3 ns to the oscillator of a coherent pulse spectrometer. Medium speed TTL integrated circuits are used throughout.

  20. Investigations into sub-ns pulse generation using ferrite-loaded coaxial lines

    NASA Astrophysics Data System (ADS)

    Bolton, H. R.; Dolan, J. E.; Shapland, A. J.; Parkes, D. M.; Trafford, K.; Kerr, B.

    1995-03-01

    Systems such as Pockels Cell drivers and UWB radar require electrical pulses of less than 200 ps rise-time and amplitude of 10 kV or greater into 50 ohms. Desired p.r.f.'s may be 50 kHz or higher in burst mode. The output rise-time of high power and p.r.f. capable pulsers is generally of the order 2-20 ns, and ferrite-loaded coaxial lines are one means of reducing the leading edge 10-90% rise-time to the order of 100-200 ps. The development of the fast-rising leading edge in ferrite lines is due to the non-linearity of the magnetic medium, and the consequent formation of an 'electromagnetic shock front' at the pulse leading edge. Over the past decade, the use of magnets to bias the ferrite has been found to improve output rise-time and amplitude characteristics considerably. Steady-state analyses made by Soviet analysts in the 1960's do not explain the magnet-biased ferrite line characteristics, and a numerical approach will be presented which shows how the microwave characteristics of the ferrite may be combined with the TEM transmission line equations to model electromagnetic shock wave propagation in such ferrite-loaded lines. It now appears reasonably clear that ferrite lines may be effectively modelled and designed in terms of parameters including the ferrite saturation magnetisation, and the dimensions of the line and the ferrite beads. Second order effects such as conductor and dielectric losses may also be taken into account if required.

  1. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  2. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  3. Efficient optical pulse stacker system

    DOEpatents

    Seppala, Lynn G.; Haas, Roger A.

    1982-01-01

    Method and apparatus for spreading and angle-encoding each pulse of a multiplicity of small area, short pulses into several temporally staggered pulses by use of appropriate beam splitters, with the optical elements being arranged so that each staggered pulse is contiguous with one or two other such pulses, and the entire sequence of stacked pulses comprising a single, continuous long pulse. The single long pulse is expanded in area, and then doubly passed through a nonstorage laser amplifier such as KrF. After amplification, the physically separated, angle-encoded and temporally staggered pulses are recombined into a single pulse of short duration. This high intensity output beam is well collimated and may be propagated over long distance, or used for irradiating inertial confinement fusion targets.

  4. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  5. Photoconductive circuit element pulse generator

    DOEpatents

    Rauscher, Christen

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  6. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  7. Giant radio pulses

    NASA Astrophysics Data System (ADS)

    Kondratiev, Vladislav

    Rotation-powered radio pulsars exhibit a remarkably diverse spectrum of variability with characteristic time scales from days and even years (intermittent pulsars) to minutes-seconds (nulling) and (sub-)microseconds. The latter time scales are associated with the phenomenon of giant pulses (GPs) and micropulses. The story of GPs started in 1968, when Staelin and Reifenstein discovered the Crab pulsar through its spectacularly bright radio pulses. To date, only seven pulsars out of more than 2200 are known to show GP emission, namely the pulsars B0531+21, B1937+21, B0540-69, B1821-24, B1957+20, J0218+4232, and B1820-30A. Giant pulses are characterized by large energies (more than ten times of the energy of the average pulse), short durations, power-law energy distribution, specific rotational phase of occurrence, high degree of polarization, and accompanying high-energy radiation. Large energies of GPs and coincidence of their phase of occurrence with peaks of high-energy profiles hint at the same mechanism of radio GP and high-energy emission. The correlation of Crab pulsar GPs with optical, X-ray and gamma-ray photons was studied for the past 20 years, with only radio/optical link confirmed so far. In my talk I will present the summary of the observational evidence of radio GPs and give an overview of theoretical advances on giant-pulse emission mechanism.

  8. Pulse shaping system

    DOEpatents

    Skeldon, M.D.; Letzring, S.A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.

  9. Pulse shaping system

    DOEpatents

    Skeldon, Mark D.; Letzring, Samuel A.

    1999-03-23

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

  10. Pulse power linac

    DOEpatents

    Villa, Francesco

    1990-01-01

    A linear acceleration for charged particles is constructed of a plurality of transmission line sections that extend between a power injection region and an accelerating region. Each line section is constructed of spaced plate-like conductors and is coupled to an accelerating gap located at the accelerating region. Each gap is formed between a pair of apertured electrodes, with all of the electrode apertures being aligned along a particle accelerating path. The accelerating gaps are arranged in series, and at the injection region the line sections are connected in parallel. At the injection region a power pulse is applied simultaneously to all line sections. The line sections are graduated in length so that the pulse reaches the gaps in a coordinated sequence whereby pulse energy is applied to particles as they reach each of the gaps along the accelerating path.

  11. PULSE AMPLITUDE ANALYZERS

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1958-06-01

    An analyzer system incorporating a cathode-ray tube and linearly spaced targets masked by a plate having slits at points corresponding to the location of the targets is described. The advantages of the system include reduction in the required amplified band width and also the reduction in possible double counting of a pulse by striking two targets. The system comprises integrating means for each pulse, the signal from which is applied to a pair of deflection plates, and a control circuit for turning on the electron beam when the pulse has almost reached its maximum value. The mask prevents the beam from overlapping on a target adjacent to the proper one, while a control circuit responsive to the target output signals acts to cut off the beam immediately after the beam strikes a target to permit the beam to impinge on only one target.

  12. Discharge pulse phenomenology

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.

    1985-01-01

    A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.

  13. Pulsed welding plasma source

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.

    2016-04-01

    It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.

  14. Pulsed eddy current testing

    NASA Astrophysics Data System (ADS)

    Workman, G. L.

    1980-10-01

    Since a large number of the procedures used for inspecting the external tank are concerned with determining flaws in welds, there is a need to develop an inspection technique, which can be automated, to determine flaws in welds and structures with complex geometries. Techniques whereby an eddy current is generated in a metallic material and the changes in the circuit parameters due to material differences are observed, were chosen as one possible approach. Pulsed eddy current and its relationship to multifrequency techniques is discussed as well as some preliminary results obtained from observing pulsed waveforms with apparatus and algorithms currently in use for ultrasonic testing of welds. It can be shown the pulsed eddy current techniques can provide similar results, can eliminate some of the noncritical parameters affecting the eddy current signals, and can facilitate in the detection of critical parameter such as flaws, subsurface voids, and corrosion.

  15. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  16. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  17. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  18. Pulsed NMR spectroscopy

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Elleman, D. D.; Rhim, W.

    1978-01-01

    Method gives results approximating those of classical continuous-irradiation method but in less time. Method also makes it possible to measure chemical shifts and spin-lattice relaxation times with improved sensitivity. Equipment can be used for adiabatic demagnetization experiments, measurements of rotating-frame spin/lattice relaxation times, and accurate measurements of exact resonance points. When measuring relaxation times, pulse technique can be very effective since pulses may be limited in amplitude and length to prevent spin system from being driven into saturation.

  19. Pulse Propagation in Phaseonium

    NASA Astrophysics Data System (ADS)

    Rahman, Ashiqur; Eberly, J. H.

    1996-05-01

    Phaseonium [1] is a medium where the quantum atomic phase is held fixed for long times compared with various relaxation processes. In inhomogeneously broadened two-level phaseonium, we have found a new area theorem (similar to self-induced transparency [2]) for pulse propagation, where pulses of arbitrary area can be stable instead of 2π area. We will also report results for inhomogeneously broadened three-level phaseonium. Research partially supported by NSF grant PHY94-08733. [1] M.O. Scully, Phys. Rev. Lett. 55, 2802 (1985), also Quant. Opt. 6, 203 (1994). [2] S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).

  20. Comments on "Evaluation of interactions of electric fields due to electrostatic discharge with human tissue".

    PubMed

    Seaman, Ronald L; Comeaux, James A

    2006-06-01

    Attention is drawn to recent paper by Rogers et al. (Aug., 2004) in which ultra-wideband pulses are applied to an isolated muscle as part of deriving a strength-duration curve for threshold stimulation. The paper extends the strength-duration threshold curve for unipolar pulses down to a pulse duration of about 1 ns, on the order of 1000 times shorter than previously studied. Results of the work justify use of traditional mathematical models of the strength-duration curve for nanosecond pulses, as done recently for the electric field resulting from electrostatic discharge through the body (Dawson, et al., 2004). PMID:16761853

  1. SNMR pulse sequence phase cycling

    DOEpatents

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  2. Passive and active pulse stacking scheme for pulse shaping

    DOEpatents

    Harney, Robert C.; Schipper, John F.

    1977-01-01

    Apparatus and method for producing a sequence of radiation pulses with a pulse envelope of time variation which is controllable by an external electromagnetic signal applied to an active medium or by a sectored reflector, through which the radiation passes.

  3. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    PubMed

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%. PMID:20372221

  4. Experiments in Pulsed Ultrasonics

    ERIC Educational Resources Information Center

    Palmer, S. B.; Forster, G. A.

    1970-01-01

    Describes and apparatus designed to generate and detect pulsed ultrasonics in solids and liquids over the frequency range 1-20 MHz. Experiments are suggested for velocity of sound, elastic constant and ultrasonic attenuation measurements on various materials over a wide temperature range. The equipment should be useful for demonstration purposes.…

  5. Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dr. Tom Markusic, a propulsion research engineer at the Marshall Space Flight Center (MSFC), adjusts a diagnostic laser while a pulsed plasma thruster (PPT) fires in a vacuum chamber in the background. NASA/MSFC's Propulsion Research Center (PRC) is presently investigating plasma propulsion for potential use on future nuclear-powered spacecraft missions, such as human exploration of Mars.

  6. Analog pulse processor

    DOEpatents

    Wessendorf, Kurt O.; Kemper, Dale A.

    2003-06-03

    A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.

  7. Weak Radial Artery Pulse

    PubMed Central

    Venugopalan, Poothirikovil; Sivakumar, Puthuval; Ardley, Robert G.; Oates, Crispian

    2012-01-01

    We present an 11year-old boy with a weak right radial pulse, and describe the successful application of vascular ultrasound to identify the ulnar artery dominance and a thin right radial artery with below normal Doppler flow velocity that could explain the discrepancy. The implications of identifying this anomaly are discussed. PMID:22375269

  8. Pulsed electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  9. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  10. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  11. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 – F2(NF3 or SF66) and He(Ne) – H2 – F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%.

  12. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  13. Chirped-pulse amplification of 100-fsec pulses.

    PubMed

    Pessot, M; Squier, J; Mourou, G; Harter, D J

    1989-08-01

    Chirped-pulse amplification is used to generate 2-mJ pulses of 106-fsec duration in an alexandrite amplifier. Compression of the optical pulse is achieved by using a sequence of intracavity prisms in conjunction with diffraction gratings. This allows for the compensation of both linear and quadratic contributions to the dispersion from the amplifier. PMID:19752971

  14. All about Heart Rate (Pulse)

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More All About Heart Rate (Pulse) Updated:Apr 19,2016 ... Sodium and Salt 3 Low Blood Pressure 4 All About Heart Rate (Pulse) 5 How to Eat ...

  15. Nondegenerate optical parametric chirped pulse amplifier

    DOEpatents

    Jovanovic, Igor; Ebbers, Christopher A.

    2005-03-22

    A system provides an input pump pulse and a signal pulse. A first dichroic beamsplitter is highly reflective for the input signal pulse and highly transmissive for the input pump pulse. A first optical parametric amplifier nonlinear crystal transfers part of the energy from the input pump pulse to the input signal pulse resulting in a first amplified signal pulse and a first depleted pump pulse. A second dichroic beamsplitter is highly reflective for the first amplified signal pulse and highly transmissive for the first depleted pump pulse. A second optical parametric amplifier nonlinear crystal transfers part of the energy from the first depleted pump pulse to the first amplified signal pulse resulting in a second amplified signal pulse and a second depleted pump pulse. A third dichroic beamsplitter receives the second amplified signal pulse and the second depleted pump pulse. The second depleted pump pulse is discarded.

  16. Sequentially pulsed traveling wave accelerator

    DOEpatents

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  17. ELECTRONIC PULSE SCALING CIRCUITS

    DOEpatents

    Cooke-Yarborough, E.H.

    1958-11-18

    Electronic pulse scaling circults of the klnd comprlsing a serles of bi- stable elements connected ln sequence, usually in the form of a rlng so as to be cycllcally repetitive at the highest scallng factor, are described. The scaling circuit comprises a ring system of bi-stable elements each arranged on turn-off to cause, a succeeding element of the ring to be turned-on, and one being arranged on turn-off to cause a further element of the ring to be turned-on. In addition, separate means are provided for applying a turn-off pulse to all the elements simultaneously, and for resetting the elements to a starting condition at the end of each cycle.

  18. Computationally intelligent pulsed photoacoustics

    NASA Astrophysics Data System (ADS)

    Lukić, Mladena; Ćojbašić, Žarko; Rabasović, Mihailo D.; Markushev, Dragan D.

    2014-12-01

    In this paper, the application of computational intelligence in pulsed photoacoustics is discussed. Feedforward multilayer perception networks are applied for real-time simultaneous determination of the laser beam spatial profile and vibrational-to-translational relaxation time of the polyatomic molecules in gases. Networks are trained and tested with theoretical data adjusted for a given experimental set-up. Genetic optimization has been used for calculation of the same parameters, fitting the photoacoustic signals with a different number of generations. Observed benefits from the application of computational intelligence in pulsed photoacoustics and advantages over previously developed methods are discussed, such as real-time operation, high precision and the possibility of finding solutions in a wide range of parameters, similar to in experimental conditions. In addition, the applicability for practical uses, such as the real-time in situ measurements of atmospheric pollutants, along with possible further developments of obtained results, is argued.

  19. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  20. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.