Science.gov

Sample records for ultrahigh resolution gamma-ray

  1. A Liquid-Cryogen-Free Cryostat for Ultrahigh Resolution Gamma-Ray Spectrometers

    SciTech Connect

    Dreyer, J G; Hertrich, T; Drury, O B; Hohne, J; Friedrich, S

    2008-06-30

    We are developing ultra-high energy resolution gamma-ray detectors based on superconducting transition edge sensors (TESs) for nuclear non-proliferation and fundamental science applications. They use bulk tin absorbers attached to molybdenum-copper multilayer TESs, and have achieved an energy resolution between 50 and 90 eV FWHM for gamma-ray energies below 122 keV. For increased user-friendliness, we have built a cryostat that attains the required detector operating temperature of 0.1 K at the push of a button without the use of cryogenic liquids. It uses a two-stage mechanical pulse tube refrigerator for precooling to {approx}3 K, and a two-stage adiabatic demagnetization refrigerator for cooling to the base temperature. The cryostat is fully automated, attains a base temperature below 30 mK without the use of cryogenic liquids, and has a hold time of {approx}2 days at 0.1 K between 1-hour demagnetization cycles. Here we discuss the performance of the cryostat for operation in a Gamma-spectrometer with 112-pixel arrays of superconducting TES detectors.

  2. Ultrahigh energy gamma rays: Carriers of cosmological information

    NASA Technical Reports Server (NTRS)

    Aharonian, F. A.; Atoyan, A. M.

    1985-01-01

    Observational data being the basis of contemporary cosmological models are not numerous: Hubble law of redshift for galaxies, element abundances, and observation of cosmic microwave background radiation (MBR). The significance of MBR discovery predicted in the Big-Band model is particularly stressed. Radio astronomical measurements give an information on MBR only near the Earth. Experimental confirmation of evolution of MBR, i.e., its probing in remote epochs, might obviously present a direct verification of the hypothesis of hot expanding Universe. The carriers of similar cosmological information should be particles which, firstly, effectively interact with MBR, and secondly, make it possible to identify unambiguously the epoch of interaction. A possibility to verify a number of cosmological hypotheses by searching the cutoffs in spectra of ultrahigh energy gamma-rays (UHEGR) from extragalactic sources is discussed.

  3. Ultra-High Rate Measurements of Spent Fuel Gamma-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Rodriguez, Douglas; Vandevender, Brent; Wood, Lynn; Glasgow, Brian; Taubman, Matthew; Wright, Michael; Dion, Michael; Pitts, Karl; Runkle, Robert; Campbell, Luke; Fast, James

    2014-03-01

    Presently there are over 200,000 irradiated spent nuclear fuel (SNF) assemblies in the world, each containing a concerning amount of weapons-usable material. Both facility operators and safeguards inspectors want to improve composition determination. Current measurements are expensive and difficult so new methods are developed through models. Passive measurements are limited since a few specific decay products and the associated down-scatter overwhelm the gamma rays of interest. Active interrogation methods produce gamma rays beyond 3 MeV, minimizing the impact of the passive emissions that drop off sharply above this energy. New devices like the Ultra-High Rate Germanium (UHRGe) detector are being developed to advance these novel measurement methods. Designed for reasonable resolution at 106 s-1 output rates (compared to ~ 1 - 10 e 3 s-1 standards), SNF samples were directly measured using UHRGe and compared to models. Model verification further enables using Los Alamos National Laboratory SNF assembly models, developed under the Next Generation Safeguards Initiative, to determine emission and signal expectations. Measurement results and future application requirements for UHRGe will be discussed.

  4. PANGU: A high resolution gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Wu, Xin; Su, Meng; Bravar, Alessandro; Chang, Jin; Fan, Yizhong; Pohl, Martin; Walter, Roland

    2014-07-01

    We describe the instrument concept of a high angular resolution telescope dedicated to the sub-GeV (from >=10 MeV to >=1 GeV) gamma-ray photon detection. This mission, named PANGU (PAir-productioN Gamma-ray Unit), has been suggested as a candidate for the joint small mission between the European Space Agency (ESA) and the Chinese Academy of Science (CAS). A wide range of topics of both astronomy and fundamental physics can be attacked with PANGU, covering Galactic and extragalactic cosmic-ray physics, extreme physics of a variety of extended (e.g. supernova remnants, galaxies, galaxy clusters) and compact (e.g. black holes, pulsars, gamma-ray bursts) objects, solar and terrestrial gamma-ray phenomena, and searching for dark matter decay and/or annihilation signature etc. The unprecedented point spread function can be achieved with a pair-production telescope with a large number of thin active tracking layers to precisely reconstruct the pair-produced electron and positron tracks. Scintillating fibers or thin silicon micro-strip detectors are suitable technology for such a tracker. The energy measurement is achieved by measuring the momentum of the electrons and positrons through a magnetic field. The innovated spectrometer approach provides superior photon pointing resolution, and is particular suitable in the sub-GeV range. The level of tracking precision makes it possible to measure the polarization of gamma rays, which would open up a new frontier in gamma-ray astronomy. The frequent full-sky survey at sub-GeV with PANGU's large field of view and significantly improved point spread function would provide crucial information to GeV-TeV astrophysics for current/future missions including Fermi, DAMPE, HERD, and CTA, and other multi-wavelength telescopes.

  5. PANGU: A High Resolution Gamma-Ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2014-08-01

    We propose a high angular resolution telescope dedicated to the sub-GeV gamma-ray astronomy as a candidate for the CAS-ESA joint small mission. This mission, called PANGU (PAir-productioN Gamma-ray Unit), will open up a unique window of electromagnetic spectrum that has never been explored with great precision. A wide range of topics of both astronomy and fundamental physics can be attacked with a telescope that has an angular resolution about one order of magnitude better than the currently operating Fermi Gamma-ray Space Telescope (Fermi) in the sub-GeV range, covering galactic and extragalactic cosmic-ray physics, extreme physics of a variety of extended (e.g. supernova remnants, galaxies, galaxy clusters) and compact (e.g. black holes, pulsars, gamma-ray bursts) objects, solar and terrestrial gamma-ray phenomena, and searching for Dark Matter (DM) decay and/or annihilation signature etc. The unprecedented resolution can be achieved with a pair-production telescope that, instead of the high-Z converter commonly used, relies on a large number of thin active tracking layers to increase the photon conversion probability, and to precisely reconstruct the pair-produced electron and positron tracks. Scintillating fibers or thin silicon micro-strip detectors are suitable technology for such a tracker. The energy measurement is achieved by measuring the momentum of the electrons and positrons through a magnetic field. The innovated spectrometer approach provides superior photon conversion identification and photon pointing resolution, and is particular suitable in the sub-GeV range, where the opening angle between the electron and positron is relatively large. The level of tracking precision makes it possible to measure the polarization of gamma rays, which would open up a new frontier in gamma-ray astronomy. The sub-GeV full sky survey by PANGU would provides crucial link with GeV to TeV maps from current/future missions including Fermi, DAMPE, HERD, and CTA.

  6. Pointlike gamma ray sources as signatures of distant accelerators of ultrahigh energy cosmic rays.

    PubMed

    Gabici, Stefano; Aharonian, Felix A

    2005-12-16

    We discuss the possibility of observing distant accelerators of ultrahigh energy cosmic rays in synchrotron gamma rays. Protons propagating away from their acceleration sites produce extremely energetic electrons during photopion interactions with cosmic microwave background photons. If the accelerator is embedded in a magnetized region, these electrons will emit high energy synchrotron radiation. The resulting synchrotron source is expected to be pointlike, steady, and detectable in the GeV-TeV energy range if the magnetic field is at the nanoGauss level. PMID:16384444

  7. High-resolution gamma-ray spectrometry in uranium exploration

    USGS Publications Warehouse

    Moxham, Robert M.; Tanner, Allan B.

    1977-01-01

    Sedimentary-type uranium deposits accumulate at favorable sites along a migration path which may be kilometers in length. Their source is a large volume of rock from which the uranium has been leached. The geochemical mobilities and half lives of uranium and its daughter products vary widely so that they are transported from the source rocks, at different rates, along the migration path to their ultimate site. The radioactive disequilibrium resulting from this process has been well documented in the immediate vicinity of ore deposits, and disequilibrium is commonly recorded on gamma-ray logs up the hydraulic gradient from uranium ore. Little is known about the state of secular equilibrium in the leached host rocks, which often represent the only part of the migration path that is at or near the surface and is thus most accessible to the exploration geophysicist. High-resolution gamma-ray spectrometry provides a means of investigating the disequilibrium associated with uranium leaching and migration. Direct measurement of uranium can be made by this method, and the equivalent weight percents can be determined for six of the seven daughter-product decay groups that characterize the state of radioactive equilibrium. The technique has been used quantitatively in laboratory studies, where the results compare favorably with radiochemical analyses; field experiments suggest that semi-quantitative data may be obtained at the outcrop.

  8. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter

    2015-03-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  9. Generation of ultrahigh-energy gamma rays in accreting x ray pulsars

    NASA Technical Reports Server (NTRS)

    Gnedin, Yu. N.; Ikhsanov, N. R.

    1991-01-01

    Relativistic protons producing ultrahigh energy gamma rays as a result of nuclear collisions ought to be generated in close proximity to the surface of a neutron star due to accretion. The main features of the mechanism in question are a high efficiency of conversion of the gravitational energy of the accreting matter into acceleration energy and a high efficiency of the acceleration itself. It is shown that in accretion to a neutron star with a strong magnetic field, a loss cone type distribution of accreting protons is formed, which due to instability effectively generates small scale Alfven and proton cyclotron waves, as well as nonlinear waves (magneto-acoustic and Alfven solitons). The electric field of the moving solitons may accelerate the protons to energies of greater than 10(exp 15) eV. The region of acceleration is not locally isolated, but extends from its surface. New possible sources of ultrahigh energy gamma rays are predicted. They may be binary x ray systems containing neutron stars with magnetic fields of about 10(exp 9) gauss.

  10. Strontium iodide scintillators for high energy resolution gamma ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Cody M.; van Loef, Edgar V.; Glodo, Jarek; Cherepy, Nerine; Hull, Giulia; Payne, Stephen; Choong, Woon-Seng; Moses, William; Shah, Kanai S.

    2008-08-01

    Recently SrI2, a scintillator patented by Hofstadter in 1968, has been rediscovered and shown to possess remarkable scintillation properties. The light output of SrI2:Eu2+ has been measured to be even higher than previously observed and exceeds 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal also has excellent energy resolution of less than 3% at 662 keV. The response is highly linear over a wide range of gamma ray energies. The emission of SrI2:Eu2+ and SrI2:Ce3+/Na+ is well-matched to both photomultiplier tubes and blue-enhanced silicon photodiodes. While SrI2:Eu2+ is relatively slow, SrI2:Ce3+/Na+ has a fast response. SrI2 crystals with many different dopant concentrations have been grown and characterized. In this presentation, crystal growth techniques as well as the effects of dopant concentration on the scintillation properties of SrI2, over the range 0.5% to 8% Eu2+ and 0.5% to 2% Ce3+/Na+, will be discussed in detail.

  11. High resolution gamma-ray spectroscopy at GANIL

    SciTech Connect

    France, G. de

    2014-11-11

    Gamma-ray spectroscopy is intensively used at GANIL to measure low lying states in exotic nuclei on the neutron-rich as well as on the neutron-deficient side of the nuclear chart. On the neutron deficient border, gamma-rays have been observed for the first time in {sup 92}Pd. The level scheme which could be established points to the role of isoscalar pairing. On the neutron rich side, the lifetime of excited states in nuclei around {sup 68}Ni have been been measured using the plunger technique. This allows us to study the evolution of collectivity in a broad range of nuclei. In 2014 GANIL will host the AGATA array for a campaign of at least 2 years. This array is based on the gamma-ray tracking technique, which allows an impressive gain in resolving power.

  12. CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION

    SciTech Connect

    Wang Xiangyu; Liu Ruoyu; Aharonian, Felix

    2011-08-01

    Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe, through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.

  13. The First Limits on the Ultra-high Energy Neutrino Fluence from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Vieregg, A. G.; Palladino, K.; Allison, P.; Baughman, B. M.; Beatty, J. J.; Belov, K.; Besson, D. Z.; Bevan, S.; Binns, W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Detrixhe, M.; De Marco, D.; Dowkontt, P. F.; DuVernois, M.; Gorham, P. W.; Grashorn, E. W.; Hill, B.; Hoover, S.; Huang, M.; Israel, M. H.; Javaid, A.; Liewer, K. M.; Matsuno, S.; Mercurio, B. C.; Miki, C.; Mottram, M.; Nam, J.; Nichol, R. J.; Romero-Wolf, A.; Ruckman, L.; Saltzberg, D.; Seckel, D.; Varner, G. S.; Wang, Y.

    2011-07-01

    We set the first limits on the ultra-high energy (UHE) neutrino fluence at energies greater than 109 GeV from gamma-ray bursts (GRBs) based on data from the second flight of the Antarctic Impulsive Transient Antenna (ANITA). During the 31 day flight of ANITA-II, 26 GRBs were recorded by Swift or Fermi. Of these, we analyzed the 12 GRBs which occurred during quiet periods when the payload was away from anthropogenic activity. In a blind analysis, we observe 0 events on a total background of 0.0044 events in the combined prompt window for all 12 low-background bursts. We also observe 0 events from the remaining 14 bursts. We place a 90% confidence level limit on the E -4 prompt neutrino fluence between 108 GeV < E < 1012 GeV of E 4? = 2.5 × 1017 GeV3 cm-2 from GRB090107A. This is the first reported limit on the UHE neutrino fluence from GRBs above 109 GeV, and the strongest limit above 108 GeV.

  14. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  15. CeBr3 as a Room-Temperature, High-Resolution Gamma-Ray Detector

    SciTech Connect

    Paul Guss, Michael Reed, Ding Yuan, Alexis Reed, and Sanjoy Mukhopadhyay

    2009-09-01

    Cerium bromide (CeBr3) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr3 as a room temperature, high-resolution gamma-ray detector. The performance of CeBr3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr3 to cerium-doped lanthanum tribromide (LaBr3:Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  16. Search for very high energy gamma rays from possible ultra-high energy cosmic ray sources by the MAGIC Telescope

    E-print Network

    K. Shinozaki; M. Teshima; for the MAGIC Collaboration

    2007-09-17

    The origin of ultra-high energy (UHE) cosmic rays is still an open question. In the present work, we searched the possible UHE cosmic ray sources using the MAGIC telescope for the associated very high energy (VHE) gamma ray emission. Due to constrained propagation distance of such cosmic rays, we selected nearby galaxies in vicinity of the direction of the AGASA triplet and a HiRes UHE cosmic ray event: NGC 3610 and NGC 3613 (quasar remnants); Arp 299 (a system of colliding galaxies). No significant excess in the VHE region was found found from these objects or their surrounding region. At multi-100 GeV regime, the upper limits on fluxes were given against gamma ray sources in surrounding region. The presented limits constrain the flux of a new hypothetical source in the region, provided the cosmic rays are emitted from a single point-like origin.

  17. Development of a high resolution liquid xenon imaging chamber for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1991-01-01

    The objective was to develop the technology of liquid xenon (LXe) detectors for spectroscopy and imaging of gamma rays from astrophysical sources emitting in the low to medium energy regime. In particular, the technical challenges and the physical processes relevant to the realization of the LXe detector operated as a Time Projection Chamber (TPC) were addressed and studied. Experimental results were obtained on the following topics: (1) long distance drift of free electrons in LXe (purity); (2) scintillation light yield for electrons and alphas in LXe (triggering); and (3) ionization yield for electrons and gamma rays in LXe (energy resolution). The major results from the investigations are summarized.

  18. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K. (Hinsdale, IL)

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  19. On the Angular Resolution of the AGILE gamma-ray imaging detector

    E-print Network

    Sabatini, S; Tavani, M; Trois, A; Bulgarelli, A; Argan, A; Barbiellini, G; Cattaneo, P W; Chen, A; Del Monte, E; Fioretti, V; Gianotti, F; Giuliani, A; Longo, F; Lucarelli, F; Morselli, A; Pittori, C; Verrecchia, F; Caraveo, P

    2015-01-01

    We present a study of the Angular Resolution of the AGILE gamma-ray imaging detector (GRID) that is operational in space since April 2007. The AGILE instrument is made of an array of 12 planes each equipped with a Tungsten converter and Silicon micros trip detectors and is sensitive in the energy range 50 MeV - 10 GeV. Among the space instruments devoted to gamma-ray astrophysics, AGILE uniquely exploits an analog readout system with dedicated electronics coupled with Silicon detectors. We show the results of Monte Carlo simulations carried out to reproduce the gamma-ray detection by the GRID, and we compare them to in-flight data. We use the Crab (pulsar + Nebula) system for discussion of real data performance, since its E^{-2} energy spectrum is representative of the majority of gamma-ray sources. For Crab-like spectrum sources, the GRID angular resolution (FWHM of ~4deg at 100 MeV; ~0.8deg at 1 GeV; ~0.9deg integrating the full energy band from 100 MeV to tens of GeV) is stable across a large field of view...

  20. Ge-diode detector combined with crystal-diffraction spectrometer permits high-resolution gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Namenson, A. I.; Smither, R. K.

    1969-01-01

    Crystal-diffraction spectrometer, combined with a lithium-drifted Ge-diode detector, performs high-resolution gamma ray spectroscopy on the complicated neutron-capture gamma ray spectra. The system is most useful in the 1-3 MeV energy range and improves the signal to background ratio.

  1. Gamma ray spectroscopy at high energy and high time resolution at JETa)

    NASA Astrophysics Data System (ADS)

    Tardocchi, M.; Proverbio, L. I.; Gorini, G.; Grosso, G.; Locatelli, M.; Chugonov, I. N.; Gin, D. B.; Shevelev, A. E.; Murari, A.; Kiptily, V. G.; Syme, B.; Fernandes, A. M.; Pereira, R. C.; Sousa, J.; Jet-Efda Contributors

    2008-10-01

    In fusion plasmas gamma ray emission is caused by reactions of fast particles, such as fusion alpha particles, with impurities. Gamma ray spectroscopy at JET has provided valuable diagnostic information on fast fuel as well as fusion product ions. Improvements of these measurements are needed to fully exploit the flux increase provided by future high power experiments at JET and ITER. Limiting aspects are, for instance, the count rate capability due to a high neutron/gamma background combined with slow detector response and a modest energy resolution due to the low light yield of the scintillators. This paper describes the solutions developed for achieving higher energy resolution, signal to background, and time resolution. The detector design is described based on the new BrLa3 scintillator crystal. The paper will focus on hardware development, including a photomultiplier tube capable of stable operation at counting rate as high as 1MHz, the magnetic shielding, and the fast digital data acquisition system.

  2. High spectral resolution measurement of gamma ray lines from the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Willet, J. B.; Mahoney, W. A.

    1992-01-01

    A search for gamma ray line features from the earth's atmosphere has been conducted using data from the third High Energy Astronomy Observatory (HEAO 3) high spectral resolution gamma ray spectrometer. In addition to the strong line at 0.511 MeV, other intrinsically broadened line features have been observed at 1.63, 2.31, 3.67, 4.43, 5.09, and 6.13 MeV. Since the spectral resolution of the instrument is much finer than the width of the observed line features, the intrinsic width as well as the energy and intensity of each of these lines are reported. Several other predicted lines have also been observed. The characteristic of the lines seen by HEAO 3 are generally consistent with theoretical predictions as well as with previous measurements.

  3. High spectral resolution measurement of gamma ray lines from the earth's atmosphere

    SciTech Connect

    Willett, J.B.; Mahoney, W.A. )

    1992-01-01

    A search for gamma ray line features from the Earth's atmosphere has been conducted using data from the third High Energy Astronomy Observatory (HEAO 3) high spectral resolution gamma ray spectrometer. In addition to the strong line at 0.511 MeV, other intrinsically broadened line features have been observed at 1.63, 2.31, 3.67, 4.43, 5.09, and 6.13 MeV. Since the spectral resolution of the instrument is much finer than the width of the observed line features, the intrinsic width as well as the energy and intensity of each of these lines are reported. Several other predicted lines have also been observed. The characteristics of the lines seen by HEAO 3 are generally consistent with theoretical predictions as well as with previous measurements.

  4. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  5. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K. (Hinsdale, IL)

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  6. High resolution X- and gamma-ray spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1984-01-01

    A balloon-borne X- and gamma-ray instrument was developed, fabricated, and flown. This instrument has the highest energy resolution of any instrument flown to date for measurements of solar and cosmic X-ray and gamma-ray emission in the 13 to 600 keV energy range. The purpose of the solar measurements was to study electron acceleration and solar flare energy release processes. The cosmic observations were to search for cyclotron line features from neutron stars and for low energy gamma-ray lines from nucleosynthesis. The instrument consists of four 4 cm diameter, 1.3 cm thick, planar intrinsic germanium detectors cooled by liquid nitrogen and surrounded by CsI and NaI anti-coincidence scintillation crystals. A graded z collimator limited the field of view to 3 deg x 6 deg and a gondola pointing system provided 0.3 deg pointing accuracy. A total of four flights were made with this instrument. Additional funding was obtained from NSF for the last three flights, which had primarily solar objectives. A detailed instrument description is given. The main scientific results and the data analysis are discussed. Current work and indications for future work are summarized. A bibliography of publications resulting from this work is given.

  7. In situ calibration of a high-resolution gamma-ray borehole sonde for assaying uranium-bearing sandstone deposits

    USGS Publications Warehouse

    Day, J.H., Jr.

    1985-01-01

    A method is presented for assaying radioactive sandstone deposits in situ by using a high-resolution borehole gamma-ray spectrometer. Gamma-ray photopeaks from the same spectrum acquired to analyze a sample are used to characterize gamma-ray attenuation properties, from which a calibration function is determined. Assay results are independent of differences between properties of field samples and those of laboratory or test-hole standards generally used to calibrate a borehole sonde. This assaying technique is also independent of the state of radioactive disequilibrium that usually exists in nature among members of the natural-decay chains. ?? 1985.

  8. Are Gamma-Ray Bursts the Sources of the Ultra-High Energy Cosmic Rays?

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.

    2011-08-01

    A checklist of criteria is presented to help establish the sources of ultra-high energy cosmic rays (UHECRs). These criteria are applied to long-duration GRBs in order to determine if they are UHECR sources. The evidence seems to favor blazars and radio galaxies (or other sources) over GRBs.

  9. Limits on the Transient Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts (GRB) Derived from RICE Data

    E-print Network

    D. Besson; S. Razzaque; J. Adams; P. Harris

    2006-07-24

    We present limits on ultra-high energy (UHE; E(nu)>1 PeV) neutrino fluxes from gamma-ray bursts (GRBs), based on recently presented data, limits, and simulations from the RICE experiment. We use data from five recorded transients with sufficient photon spectral shape and redshift information to derive an expected neutrino flux, assuming that the observed photons are linked to neutrino production through pion decay via the well-known 'Waxman-Bahcall' prescription. Knowing the declination of the observed burst, as well as the RICE sensitivity as a function of polar angle and the previously published non-observation of any neutrino events allows an estimate of the sensitivity to a given neutrino flux. Although several orders of magnitude weaker than the expected fluxes, our GRB neutrino flux limits are nevertheless the first in the PeV--EeV energy regime. For completeness, we also provide a listing of other bursts, recorded at times when the RICE experiment was active, but requiring some assumptions regarding luminosity and redshift to permit estimates of the neutrino flux.

  10. High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications

    NASA Astrophysics Data System (ADS)

    Hampel, U.; Bieberle, A.; Hoppe, D.; Kronenberg, J.; Schleicher, E.; Sühnel, T.; Zimmermann, F.; Zippe, C.

    2007-10-01

    We report on the development of a high resolution gamma ray tomography scanner that is operated with a Cs-137 isotopic source at 662keV gamma photon energy and achieves a spatial image resolution of 0.2linepairs/mm at 10% modulation transfer function for noncollimated detectors. It is primarily intended for the scientific study of flow regimes and phase fraction distributions in fuel element assemblies, chemical reactors, pipelines, and hydrodynamic machines. Furthermore, it is applicable to nondestructive testing of larger radiologically dense objects. The radiation detector is based on advanced avalanche photodiode technology in conjunction with lutetium yttrium orthosilicate scintillation crystals. The detector arc comprises 320 single detector elements which are operated in pulse counting mode. For measurements at fixed vessels or plant components, we built a computed tomography scanner gantry that comprises rotational and translational stages, power supply via slip rings, and data communication to the measurement personal computer via wireless local area network.

  11. Development of a High Resolution Liquid Xenon Imaging Telescope for Medium Energy Gamma Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1992-01-01

    In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.

  12. High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications

    SciTech Connect

    Hampel, U.; Bieberle, A.; Hoppe, D.; Kronenberg, J.; Schleicher, E.; Suehnel, T.; Zimmermann, F.; Zippe, C.

    2007-10-15

    We report on the development of a high resolution gamma ray tomography scanner that is operated with a Cs-137 isotopic source at 662 keV gamma photon energy and achieves a spatial image resolution of 0.2 line pairs/mm at 10% modulation transfer function for noncollimated detectors. It is primarily intended for the scientific study of flow regimes and phase fraction distributions in fuel element assemblies, chemical reactors, pipelines, and hydrodynamic machines. Furthermore, it is applicable to nondestructive testing of larger radiologically dense objects. The radiation detector is based on advanced avalanche photodiode technology in conjunction with lutetium yttrium orthosilicate scintillation crystals. The detector arc comprises 320 single detector elements which are operated in pulse counting mode. For measurements at fixed vessels or plant components, we built a computed tomography scanner gantry that comprises rotational and translational stages, power supply via slip rings, and data communication to the measurement personal computer via wireless local area network.

  13. Temperature control design for a high-resolution gamma-ray tomography detector.

    PubMed

    Bieberle, André; Schleicher, Eckhard; Hampel, Uwe

    2010-01-01

    In this paper, a thermal control design for a high-resolution gamma-ray computed tomography detector is presented. It accounts for the generation of heat produced by active electronic components as well as heat transfer from external heat sources. The development and implementation of this feature were motivated by stringent requirements for measurement accuracy at thermal hydraulic test facilities, where ambient thermal conditions are constantly changing. As a first step, the thermal behavior of the existing tomography detector was analyzed, critical components were identified, and different approaches for heat removal were tested. Eventually, an improved thermal detector design was elaborated and a controlled active cooling system was implemented. Performance tests proved its effectiveness and accuracy improvement. PMID:20113120

  14. Compact, high-resolution, gamma ray imaging for scintimammography and other medical diagostic applications

    DOEpatents

    Majewski, Stanislaw (Grafton, VA); Weisenberger, Andrew G. (Grafton, VA); Wojcik, Randolph F. (Yorktown, VA); Steinbach, Daniela (Williamsburg, VA)

    1999-01-01

    A high resolution gamma ray imaging device includes an aluminum housing, a lead screen collimator at an opened end of the housing, a crystal scintillator array mounted behind the lead screen collimator, a foam layer between the lead screen collimator and the crystal scintillator array, a photomultiplier window coupled to the crystal with optical coupling grease, a photomultiplier having a dynode chain body and a base voltage divider with anodes, anode wire amplifiers each connected to four anodes and a multi pin connector having pin connections to each anode wire amplifier. In one embodiment the crystal scintillator array includes a yttrium aluminum perovskite (YAP) crystal array. In an alternate embodiment, the crystal scintillator array includes a gadolinium oxyorthosilicate (GSO) crystal array.

  15. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    NASA Technical Reports Server (NTRS)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  16. High-resolution gamma-ray measurement systems using a compact electro- mechanically cooled detector system and intelligent software

    SciTech Connect

    Buckley, W.M.; Carlson, J.B.; Neufeld, K.W.

    1995-09-27

    Obtaining high-resolution gamma-ray measurements using high-purity germanium (HPGe) detectors in the field has been of limited practicality due to the need to use and maintain a supply of liquid nitrogen (LN{sub 2}). This same constraint limits high-resolution gamma measurements in unattended safeguards or treaty Verification applications. We are developing detectors and software to greatly extend the applicability of high-resolution germanium-based measurements for these situations.

  17. Hybrid ultrahigh resolution optical coherence / photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hermann, B.; Liu, M.; Schmitner, N.; Maurer, B.; Meyer, D.; Weninger, W. J.; Drexler, W.

    2015-03-01

    We present an ultrahigh resolution dual modality optical resolution photoacoustic microsopy (OR-PAM) and spectral domain optical coherence microscopy (SD-OCM) system. The ultrahigh sub-micron lateral resolution is provided by the high numerical aperture of the objective lens used while the ultrahigh axial resolution is provided by the broadband OCT laser that covers 107 nm with a central wavelength of 840 nm. The synchronized simultaneous acquisition for the two modalities is achieved using a 40MHz FPGA. 2D-scanning is realized by two orthogonal translation stages (PI, 400 nm resolution). The transversal resolution of the system is 0.5 ?m, the axial resolutions are 30 ?m (PAM) and 4 ?m (OCM), respectively. The values have been determined experimentally using nanospheres (diameter 10-200nm). For a demonstration of the imaging capability we present images from thin slices of different biological samples as well as in vivo imaging in the zebrafish embryo.

  18. A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

    SciTech Connect

    Bennett, D. A.; Horansky, R. D.; Schmidt, D. R.; Doriese, W. B.; Fowler, J. W.; Kotsubo, V.; Mates, J. A. B.; Hoover, A. S.; Winkler, R.; Rabin, M. W.; Alpert, B. K.; Beall, J. A.; Fitzgerald, C. P.; Hilton, G. C.; Irwin, K. D.; O'Neil, G. C.; Reintsema, C. D.; Schima, F. J.; Swetz, D. S.; Vale, L. R.; and others

    2012-09-15

    Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gamma-ray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the nondestructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm{sup 2}. We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array.

  19. High Resolution Gamma Ray Tomography and its Application to the Measurement of Phase Fractions in Chemical Reactors

    NASA Astrophysics Data System (ADS)

    Hampel, Uwe; Bieberle, Andre; Schleicher, Eckhard; Hessel, Günther; Zippe, Cornelius; Friedrich, Hans-Jürgen

    2007-06-01

    We applied gamma ray tomography to the problem of phase fraction measurement in chemical reactors. Therefore, we used a new tomography device that is operated with a Cs-137 source and a high resolution gamma ray detector. One application example is the reconstruction of the fluid distribution and the measurement of radial gas fraction profiles in a laboratory scale stirred vessel. The tomograph was used to obtain radiographic projections of the averaged gamma ray attenuation for different stirrer speeds along the height of the vessel. With tomographic reconstruction techniques we calculated the angularly averaged radial distribution of the attenuation coefficient for as many as 150 single cross-sectional planes and synthesised from this data set the axial and radial fluid distribution pattern. Further, we exemplarily reconstructed the radial gas fraction distributions induced by the stirrer in the area of the stirrer blades. In a second application the gamma ray measurement system was used to visualise gas inclusions in a water cleaning column that is used to remove hazardous heavy metal species from water.

  20. Hot-Electron Tunneling sensors for high-resolution x-ray and gamma-ray spectroscopy

    SciTech Connect

    Mears, C.A.; Labov, S.E.; Frank, M.; Netel, H.

    1997-02-07

    Over the past 2 years, we have been studying the use of Hot Electron Tunneling sensors for use in high-energy-resolution x-ray and gamma-ray spectrometers. These sensors promise several advantages over existing cryogenic sensors, including simultaneous high count rate and high resolution capability, and relative ease of use. Using simple shadow mask lithography, we verified the basic principles of operation of these devices and discovered new physics in their thermal behavior as a function applied voltage bias. We also began to develop ways to use this new sensor in practical x-ray and gamma-ray detectors based on superconducting absorbers. This requires the use of quasiparticle trapping to concentrate the signal in the sensing elements.

  1. A transportable high-resolution gamma-ray spectrometer and analysis system applicable to mobile, autonomous or unattended applications

    SciTech Connect

    Buckley, W.M.; Neufeld, K.W.

    1995-07-01

    The Safeguards Technology Program at the Lawrence Livermore National Laboratory is developing systems based on a compact electro-mechanically cooled high-purity germanium (HPGe) detector. This detector system broadens the practicality of performing high- resolution gamma-ray spectrometry in the field. Utilizing portable computers, multi-channel analyzers and software these systems greatly improve the ease of performing mobile high-resolution gamma-ray spectrometry. Using industrial computers, we can construct systems that will run autonomously for extended periods of time without operator input or maintenance. These systems can start or make decisions based on sensor inputs rather than operator interactions. Such systems can provide greater capability for wider domain of safeguards, treaty verification application, and other unattended, autonomous or in-situ applications.

  2. Atomic Resolution {ital {gamma}} -ray Holography Using the M{umlt o}ssbauer Effect

    SciTech Connect

    Korecki, P.; Korecki, J.; Slezak, T.

    1997-11-01

    We have observed a strong (2{percent}) angular modulation of the total backscattered conversion electron yield, measured as a function of the incidence angle of the 14.4keV {gamma} rays from a {sup 57}Co M{umlt o}ssbauer source irradiating thin epitaxial {sup 57}Fe film grown on MgO(001). The measured 2D pattern is the first hologram of the local surrounding of the absorbing nuclei obtained due to nuclear resonant scattering of {gamma} rays. The real space holographic reconstruction shows distinct features corresponding to the nearest neighbor sites in the bcc {alpha} -Fe structure. {copyright} {ital 1997} {ital The American Physical Society}

  3. Complex gamma-ray hologram: solution to twin images problem in atomic resolution imaging.

    PubMed

    Korecki, P; Materlik, G; Korecki, J

    2001-02-19

    A new technique for high fidelity three-dimensional imaging of atomic structure with gamma-ray holography is demonstrated. A complex hologram was constructed from holograms recorded for different values of the nuclear scattering amplitude on both sides of the (57)Fe Mössbauer resonance. The holographic reconstruction was applied to this complex hologram resulting in a twin-image-free image of the bcc Fe local structure. The proposed procedure allows the removal of the twin images for all real space, making gamma-ray holography an unambiguous tool for atomic and magnetic structure imaging. PMID:11290186

  4. Determination of the natural radioactivity in Qatarian building materials using high-resolution gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Al-Sulaiti, Huda; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bradley, D. A.; Bukhari, S.; Matthews, M.; Regan, P. H.; Santawamaitre, T.

    2011-10-01

    This study is aimed at the determination of the activity concentrations of naturally occurring and technically enhanced levels of radiation in building materials used across the State of Qatar. Samples from a range of common building materials, including Qatarian cement, Saudi cement, white cement, sand and washed sand, have been analyzed, in addition to other samples of cement's raw materials and additives collected from the main suppliers in Qatar. In order to establish the activity concentrations associated with the 235,8U and 232Th natural decay chains and 40K, the samples have been studied using a high-resolution, low-background gamma-ray spectrometry set-up. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented, together with the preliminary results of the activity concentrations associated with the naturally occurring radionuclide chains for the building materials collected across the Qatarian peninsula.

  5. Analysis of high resolution satellite data for cosmic gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Imhof, W. L.; Nakano, G. H.; Reagan, J. B.

    1976-01-01

    Cosmic gamma ray bursts detected a germanium spectrometer on the low altitude satellite 1972-076B were surveyed. Several bursts with durations ranging from approximately 0.032 to 15 seconds were found and are tabulated. The frequency of occurrence/intensity distribution of these events was compared with the S to the -3/2 power curve of confirmed events. The longer duration events fall above the S to the -3/2 power curve of confirmed events, suggesting they are perhaps not all true cosmic gamma-ray bursts. The narrow duration events fall closely on the S to the -3/2 power curve. The survey also revealed several counting rate spikes, with durations comparable to confirmed gamma-ray bursts, which were shown to be of magnetospheric origin. Confirmation that energetic electrons were responsible for these bursts was achieved from analysis of all data from the complete payload of gamma-ray and energetic particle detectors on board the satellite. The analyses also revealed that the narrowness of the spikes was primarily spatial rather than temporal in character.

  6. Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: A clear dependence of dose rate

    NASA Astrophysics Data System (ADS)

    Wang, Honglong; Xu, Lu; Hu, Jiangtao; Wang, Mouhua; Wu, Guozhong

    2015-10-01

    Oxidation is an important effect of irradiation on polyethylene in air. In this work, oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder (ca. 110 ?m in diameter) induced by gamma rays (? ray) and electron beams (EB) in air resulted in some large differences in properties, such as oxidative scission due to dose rate differences. However, other properties, such as surface wettability and thermal stability were not that greatly affected. The dose-rates used were 0.0019 kGy/s from a cobalt-60 gamma source and 92 kGy/s from an electron beam. The chemical structure, oxidation level, surface wettability and thermal stability of irradiated UHMWPE were analyzed by FT-IR, XPS, TGA and the static contact angle. Hydrophilic carboxyl and carbonyl groups were present on the surface of irradiated UHMWPE after irradiation in air, resulting in a decrease in the contact angle. After irradiation at 300 kGy, the gel content of the ? ray-irradiated UHMWPE samples decreased to almost zero, while that of EB irradiated UHMWPE decreased to 57%. For UHMWPE powder irradiated by gamma rays at lower doses, radiation-induced oxidation was complete and consistent with a simple theoretic estimation. Surface wettability was primarily affected by surface oxidation, and the oxidation level of UHMWPE could be easily predicted.

  7. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Burns, Kimberly Ann

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explores the use of coupled Monte Carlo-deterministic methods for the simulation of neutron-induced photons for high-resolution gamma-ray spectroscopy applications. RAdiation Detection Scenario Analysis Toolbox (RADSAT), a code which couples deterministic and Monte Carlo transport to perform radiation detection scenario analysis in three dimensions [1], was used as the building block for the methods derived in this work. RADSAT was capable of performing coupled deterministic-Monte Carlo simulations for gamma-only and neutron-only problems. The purpose of this work was to develop the methodology necessary to perform coupled neutron-photon calculations and add this capability to RADSAT. Performing coupled neutron-photon calculations requires four main steps: the deterministic neutron transport calculation, the neutron-induced photon spectrum calculation, the deterministic photon transport calculation, and the Monte Carlo detector response calculation. The necessary requirements for each of these steps were determined. A major challenge in utilizing multigroup deterministic transport methods for neutron-photon problems was maintaining the discrete neutron-induced photon signatures throughout the simulation. Existing coupled neutron-photon cross-section libraries and the methods used to produce neutron-induced photons were unsuitable for high-resolution gamma-ray spectroscopy applications. Central to this work was the development of a method for generating multigroup neutron-photon cross-sections in a way that separates the discrete and continuum photon emissions so the neutron-induced photon signatures were preserved. The RADSAT-NG cross-section library was developed as a specialized multigroup neutron-photon cross-section set for the simulation of high-resolution gamma-ray spectroscopy applications. The methodology and cross sections were tested using code-to-code comparison with MCNP5 [2] and NJOY [3]. A simple benchmark geometry was used for all cases compared with MCNP. The geometry consists of a cubical sample with a 252Cf neutron source on one side and a HPGe gamma-ray spectrometer on the opposing side. Different materials were examined in the cubical sample: polyethylene (C2H4), P, N, O, and Fe. The cross sections for each of the materials were compared to cross sections collapsed using NJOY. Comparisons of the volume-averaged neutron flux within the sample, volume-averaged photon flux within the detector, and high-purity gamma-ray spectrometer response (only for polyethylene) were completed using RADSAT and MCNP. The code-to-code comparisons show promising results for the coupled Monte Carlo-deterministic method. The RADSAT-NG cross-section production method showed good agreement with NJOY for all materials considered although some additional work is needed in the resonance region and in the first and last energy bin. Some cross section discrepancies existed in the lowest and highest energy bin, but the overall shape and magnitude of the two methods agreed. For the volume-averaged photon flux within the detector, typically the five most intense lines agree to within approximately 5% of the MCNP calculated flux for all of materials considered. The agreement in the code-to-code comparisons cases demonstrates a proof-of-concept of the method for use in RADSAT for coupled neutron-photon problems

  8. A position sensitive gamma-ray scintillator detector with enhanced spatial resolution, linearity, and field of view.

    PubMed

    Domingo-Pardo, César; Goel, Namita; Engert, Tobias; Gerl, Juergen; Isaka, Masahiro; Kojouharov, Ivan; Schaffner, Henning

    2009-12-01

    The performance of a position sensitive gamma-ray scintillator detector (PSD) is described. This PSD is based on a lutetium yttrium oxyorthosilicate (LYSO) crystal read out by a crossed-wire anode position sensitive photomultiplier tube (PSPMT). The main difference with respect to similar existing devices is the individual multi-anode readout (IMAR) approach that is followed here. This method allows to exploit better the intrinsic characteristics of the PSPMT, thus yielding better linearity, improved spatial resolution, and a larger field of view. The new detector is intended for the characterization of 3-D position sensitive germanium detectors. PMID:19628451

  9. A high resolution gamma-ray and hard X-ray spectrometer (HIREGS) for long duration balloon flights

    NASA Technical Reports Server (NTRS)

    Pelling, M.; Feffer, P. T.; Hurley, K.; Kane, S. R.; Lin, R. P.; Mcbride, S.; Primbsch, J. H.; Smith, D. M.; Youseffi, K.; Zimmer, G.

    1992-01-01

    The elements of a high resolution gamma-ray spectrometer, developed for observations of solar flares, are described. Emphasis is given to those aspects of the system that relate to its operation on a long duration balloon platform. The performance of the system observed in its first flight, launched from McMurdo Station, Antarctica on 10 January, 1992, is discussed. Background characteristics of the antarctic balloon environment are compared with those observed in conventional mid-latitude balloon flights and the general advantages of long duration ballooning are discussed.

  10. Ultra-high resolution AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  11. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    E-print Network

    Omid Noroozian; John A. B. Mates; Douglas A. Bennett; Justus A. Brevik; Joseph W. Fowler; Jiansong Gao; Gene C. Hilton; Robert D. Horansky; Kent D. Irwin; Zhao Kang; Daniel R. Schmidt; Leila R. Vale; Joel N. Ullom

    2013-10-28

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a $^{153}$Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/$\\sqrt{\\text{Hz}}$ at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices (SQUID) and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than $10^3$ elements and spectral resolving powers $R=\\lambda/\\Delta\\lambda > 10^3$.

  12. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid; Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Kang, Zhao; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N.

    2013-11-01

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a 153Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/?Hz at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 103 elements and spectral resolving powers R =?/??>103.

  13. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    SciTech Connect

    Noroozian, Omid; Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 ; Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N.; Kang, Zhao

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/?(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=?/??>10{sup 3}.

  14. The Application of High-Resolution Gamma-Ray Spectrometry (HRGS) to Nuclear Safeguards, Nonproliferation, and Arms Control Activities

    SciTech Connect

    Kane, Walter R.; Lemley, James R.; Forman, Leon

    1997-12-31

    While well-developed methodologies exist for the employment of high- resolution gamma ray spectrometry (HRGS) in determining the isotopic composition of plutonium samples, the potential capabilities of such measurements in determining the properties of nuclear materials otherwise remain largely unexploited. These measurements contain information sufficiently detailed such that not only can the isotopic composition of uranium and plutonium materials be determined, but the details of the spectrum obtained will depend reproducibly upon other factors including the total mass, density, chemical composition, and geometrical configuration of the material, and for certain materials, the elapsed time since chemical processing. The potential thus exists to obtain a `gamma-ray fingerprint` for typical containers or assemblies of nuclear material which will then serve to identify that class of item in a later confirmatory measurement. These measurements have the additional advantage that, by comparison with active interrogation techniques which usually require the introduction of some extraneous form of radiation or other intrusive activity, they are totally passive, and thus impose only minimal additional safety or regulatory burdens on the operators. In the application of these measurements to the verification of treaty-limited items, where the information acquired may be sensitive in nature, the use of the CIVET (Controlled Intrusiveness Verification Technique) approach, where a computer-based interface is employed to limit access to the information obtained, may be followed.

  15. A portable medium-resolution gamma-ray spectrometer and analysis software

    SciTech Connect

    Lavietes, A.D.; McQuaid, J.H.; Ruhter, W.D.; Buckley, W.M.; Clark, D-L.; Paulus, T.J.

    1996-07-01

    There is a strong need for portable radiometric instrumentation that can both accurately confirm the presence of nuclear materials and allow isotopic analysis of radionuclides in the field. To fulfill this need the Safeguards Technology Program at LLNL has developed a hand-held, non-cryogenic, low-power gamma-ray and x-ray measurements and analysis instrument that can both search for and then accurately verify the presence of nuclear materials. We will report on the use of cadmium zinc telluride (CZT) detectors, detector electronics, and the new field-portable instrument being developed. We will also describe the isotopic analysis that allows enrichment measurements to be made accurately in the field. These systems provide capability for safeguards inspection and verification applications and could find application in counter-smuggling operations.

  16. Ultrahigh resolution photoacoustic microscopy via transient absorption

    PubMed Central

    Shelton, Ryan L.; Applegate, Brian E.

    2010-01-01

    We have developed a novel, hybrid imaging modality, Transient Absorption Ultrasonic Microscopy (TAUM), which takes advantage of the optical nonlinearities afforded by transient absorption to achieve ultrahigh-resolution photoacoustic microscopy. The theoretical point spread function for TAUM is functionally equivalent to confocal and two-photon fluorescence microscopy, potentially enabling cellular/subcellular photoacoustic imaging. A prototype TAUM system was designed, built, and used to image a cross-section through several capillaries in the excised cheek pouch of a Syrian Hamster. The well-resolved capillaries in the TAUM image provided experimental evidence of the spatial resolution. These results suggest that TAUM has excellent potential for producing volumetric images with cellular/subcellular resolution in three dimensions deep inside living tissue. PMID:21258499

  17. Assay for uranium and determination of disequilibrium by means of in situ high resolution gamma-ray spectrometry

    USGS Publications Warehouse

    Tanner, Allan B.; Moxham, Robert M.; Senftle, F.E.

    1977-01-01

    Two sealed sondes, using germanium gamma-ray detectors cooled by melting propane, have been field tested to depths of 79 m in water-filled boreholes at the Pawnee Uranium Mine in Bee Co., Texas. When, used as total-count devices, the sondes are comparable in logging speed and counting rate with conventional scintillation detectors for locating zones of high radioactivity. When used with a multichannel analyzer, the sondes are detectors with such high resolution that individual lines from the complex spectra of the uranium and thorium series can be distinguished. Gamma rays from each group of the uranium series can be measured in ore zones permitting determination of the state of equilibrium at each measurement point. Series of 10-minute spectra taken at 0.3- to 0.5-m intervals in several holes showed zones where maxima from the uranium group and from the 222Rn group were displaced relative to each other. Apparent excesses of 230Th at some locations suggest that uranium-group concentrations at those locations were severalfold greater some tens of kiloyears, ago. At the current state of development a 10-minute count yields a sensitivity of about 80 ppm U308. Data reduction could in practice be accomplished in about 5 minutes. The result is practically unaffected by disequilibrium or radon contamination. In comparison with core assay, high-resolution spectrometry samples a larger volume; avoids problems due to incomplete core recovery, loss of friable material to drilling fluids, and errors in depth and marking; and permits use of less expensive drilling methods. Because gamma rays from the radionuclides are accumulated simultaneously, it also avoids the problems inherent in trying to correlate logs made in separate runs with different equipment. Continuous-motion delayed-gamma activation by a 163-?g 252Cf neutron source attached to the sonde yielded poor sensitivity. A better neutron-activation method, in which the sonde is moved in steps so as to place the detector at the previous activation point, could not be evaluated because of equipment failure.

  18. Angular Resolution of an EAS Array for Gamma Ray Astronomy at Energies Greater Than 5 x 10 (13) Ev

    NASA Technical Reports Server (NTRS)

    Apte, A. R.; Gopalakrishnan, N. V.; Tonwar, S. C.; Uma, V.

    1985-01-01

    A 24 detector extensive air shower array is being operated at Ootacamund (2300 m altitude, 11.4 deg N latitude) in southern India for a study of arrival directions of showers of energies greater than 5 x 10 to the 13th power eV. Various configurations of the array of detectors have been used to estimate the accuracy in determination of arrival angle of showers with such an array. These studies show that it is possible to achieve an angular resolution of better than 2 deg with the Ooty array for search for point sources of Cosmic gamma rays at energies above 5 x 10 to the 13th power eV.

  19. Monte Carlo Simulations of Ultra-High Energy Resolution Gamma Detectors for Nuclear Safeguards

    SciTech Connect

    Robles, A; Drury, O B; Friedrich, S

    2009-08-19

    Ultra-high energy resolution superconducting gamma-ray detectors can improve the accuracy of non-destructive analysis for unknown radioactive materials. These detectors offer an order of magnitude improvement in resolution over conventional high purity germanium detectors. The increase in resolution reduces errors from line overlap and allows for the identification of weaker gamma-rays by increasing the magnitude of the peaks above the background. In order to optimize the detector geometry and to understand the spectral response function Geant4, a Monte Carlo simulation package coded in C++, was used to model the detectors. Using a 1 mm{sup 3} Sn absorber and a monochromatic gamma source, different absorber geometries were tested. The simulation was expanded to include the Cu block behind the absorber and four layers of shielding required for detector operation at 0.1 K. The energy spectrum was modeled for an Am-241 and a Cs-137 source, including scattering events in the shielding, and the results were compared to experimental data. For both sources the main spectral features such as the photopeak, the Compton continuum, the escape x-rays and the backscatter peak were identified. Finally, the low energy response of a Pu-239 source was modeled to assess the feasibility of Pu-239 detection in spent fuel. This modeling of superconducting detectors can serve as a guide to optimize the configuration in future spectrometer designs.

  20. Gamma Ray Bursts and CETI

    E-print Network

    Frank D. Smith Jr

    1993-02-10

    Gamma ray burst sources are isotropically distributed. They could be located at distances $\\sim 1000$ AU. (Katz \\cite{JK92}) GRB signals have many narrow peaks that are unresolved at the millisecond time resolution of existing observations. \\cite{JK87} CETI could use stars as gravitational lenses for interstellar gamma ray laser beam communication. Much better time resolution of GRB signals could rule out (or confirm?) the speculative hypothesis that GRB = CETI.

  1. Preliminary results from the first satellite of a high-resolution germanium gamma-ray spectrometer: Backgrounds from electron bremsstrahlung and from electron-positron annihilation

    NASA Technical Reports Server (NTRS)

    Imhof, W. L.; Nakano, G. H.; Johnson, R. G.; Reagan, J. B.

    1973-01-01

    Detailed data are presented on the bremsstrahlung backgrounds measured by a satellite-borne high resolution Ge(Li) gamma ray spectrometer. Two bremsstrahlung classes were discussed: (1) those arising from radiation belt electrons stopping in the vicinity of the spectrometer, and (2) bremsstrahlung produced by electrons precipitating into the earth's atmosphere.

  2. High resolution magnetohydrodynamic simulation of black hole-neutron star merger: Mass ejection and short gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Kiuchi, Kenta; Sekiguchi, Yuichiro; Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke; Wada, Tomohide

    2015-09-01

    We report results of a high resolution numerical-relativity simulation for the merger of black hole-magnetized neutron star binaries on Japanese supercomputer "K." We focus on a binary that is subject to tidal disruption and subsequent formation of a massive accretion torus. We find the launch of thermally driven torus wind, subsequent formation of a funnel wall above the torus and a magnetosphere with collimated poloidal magnetic field, and high Blandford-Znajek luminosity. We show for the first time this picture in a self-consistent simulation. The turbulencelike motion induced by the nonaxisymmetric magnetorotational instability as well as the Kelvin-Helmholtz instability inside the accretion torus works as an agent to drive the mass accretion and converts the accretion energy to thermal energy, which results in the generation of a strong wind. By an in-depth resolution study, we reveal that high resolution is essential to draw such a picture. We also discuss the implication for the r-process nucleosynthesis, the radioactively powered transient emission, and short gamma ray bursts.

  3. High-resolution magnetohydrodynamics simulation of black hole-neutron star merger: Mass ejection and short gamma-ray burst

    E-print Network

    Kenta Kiuchi; Yuichiro Sekiguchi; Koutarou Kyutoku; Masaru Shibata; Keisuke Taniguchi; Tomohide Wada

    2015-09-03

    We report results of a high-resolution numerical-relativity simulation for the merger of black hole-magnetized neutron star binaries on Japanese supercomputer "K". We focus on a binary that is subject to tidal disruption and subsequent formation of a massive accretion torus. We find the launch of thermally driven torus wind, subsequent formation of a funnel wall above the torus and a magnetosphere with collimated poloidal magnetic field, and high Blandford-Znajek luminosity. We show for the first time this picture in a self-consistent simulation. The turbulence-like motion induced by the non-axisymmetric magnetorotational instability as well as the Kelvin-Helmholtz instability inside the accretion torus works as an agent to drive the mass accretion and converts the accretion energy to thermal energy, which results in the generation of a strong wind. By an in-depth resolution study, we reveal that high resolution is essential to draw such a picture. We also discuss the implication for the r-process nucleosynthesis, the radioactively-powered transient emission, and short gamma-ray bursts.

  4. Ultrahigh-Resolution {gamma}-Ray Spectroscopy of {sup 156}Gd: A Test of Tetrahedral Symmetry

    SciTech Connect

    Jentschel, M.; Krempel, J.; Urban, W.; Tonev, D.; Petkov, P.; Dudek, J.; Curien, D.; Lauss, B.; Angelis, G. de

    2010-06-04

    Tetrahedral symmetry in strongly interacting systems would establish a new class of quantum effects at subatomic scale. Excited states in {sup 156}Gd that could carry the information about the tetrahedral symmetry were populated in the {sup 155}Gd(n,{gamma}){sup 156}Gd reaction and studied using the GAMS4/5 Bragg spectrometers at the Institut Laue-Langevin. We have identified the 5{sub 1}{sup -{yields}}3{sub 1}{sup -} transition of 131.983(12) keV in {sup 156}Gd and determined its intensity to be 1.9(3)x10{sup -6} per neutron capture. The lifetime {tau}=220{sub -30}{sup +180}fs of the 5{sub 1}{sup -} state in {sup 156}Gd has been measured using the GRID technique. The resulting B(E2)=293{sub -134}{sup +61}Weisskopf unit rate of the 131.983 keV transition provides the intrinsic quadrupole moment of the 5{sub 1}{sup -} state in {sup 156}Gd to be Q{sub 0}=7.1{sub -1.6}{sup +0.7} b. This large value, comparable to the quadrupole moment of the ground state in {sup 156}Gd, gives strong evidence against tetrahedral symmetry in the lowest odd-spin, negative-parity band of {sup 156}Gd.

  5. Monte-Carlo studies of the angular resolution of a future Cherenkov gamma-ray telescope

    SciTech Connect

    Funk, S.; Hinton, J. A.

    2008-12-24

    The current generation of Imaging Atmospheric telescopes (IACTs) has demonstrated the power of this observational technique, providing high sensitivity and an angular resolution of {approx}0.1 deg. per event above an energy threshold of {approx}100 GeV. Planned future arrays of IACTs such as AGIS or CTA are aiming at significantly improving the angular resolution. Preliminary results have shown that values down to {approx}1' might be achievable. Here we present the results of Monte-Carlo simulations that aim to exploring the limits of angular resolution for next generation IACTs and investigate how the resolution can be optimised by changes to array and telescope parameters such as the number of pixel in the camera, the field of view of the camera, the angular pixel size, the mirror size, and also the telescope separation.

  6. Array-compatible transition-edge sensor microcalorimeter {gamma}-ray detector with 42 eV energy resolution at 103 keV

    SciTech Connect

    Zink, B. L.; Ullom, J. N.; Beall, J. A.; Irwin, K. D.; Doriese, W. B.; Duncan, W. D.; Ferreira, L.; Hilton, G. C.; Horansky, R. D.; Reintsema, C. D.; Vale, L. R.

    2006-09-18

    The authors describe a microcalorimeter {gamma}-ray detector with measured energy resolution of 42 eV full width at half maximum for 103 keV photons. This detector consists of a thermally isolated superconducting transition-edge thermometer and a superconducting bulk tin photon absorber. The absorber is attached with a technique compatible with producing arrays of high-resolution {gamma}-ray detectors. The results of a detailed characterization of the detector, which includes measurements of the complex impedance, detector noise, and time-domain pulse response, suggest that a deeper understanding and optimization of the thermal transport between the absorber and thermometer could significantly improve the energy resolution of future detectors.

  7. The effect of gain variation in micro-channel plates on gamma-ray energy resolution

    PubMed Central

    Han, Ling; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2015-01-01

    A Monte Carlo simulation of micro-channel plate (MCP) with particular interest in its effect on energy resolution performance is presented. Important physical processes occurring in MCP channels are described and modeled, including secondary electron (SE) yield, SE emission, and primary electron reflection. The effects causing channel saturation are also introduced. A two dimensional Monte Carlo simulation is implemented under the assumption of unsaturated channel. Simulation results about basic MCP performances and especially gain and energy resolution performances are presented and analyzed. It’s found that energy resolution as an intrinsic property of MCP cannot be improved simply by adjusting system parameters; however it can be improved by increasing input signal or number of photoelectrons (PEs) in the context of image intensifier. An initial experiment with BazookaSPECT detector and CsI(Tl) scintillator is performed to validate and correlate with the simulation results and good agreement is achieved. PMID:26339114

  8. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  9. Validation of high-resolution gamma-ray computed tomography for quantitative gas holdup measurements in centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Bieberle, André; Schäfer, Thomas; Neumann, Martin; Hampel, Uwe

    2015-09-01

    In this article, the capability of high-resolution gamma-ray computed tomography (HireCT) for quantitative gas-liquid phase distribution measurements in commercially available industrial pumps is experimentally investigated. The object of interest thereby operates under two-phase flow conditions. HireCT System comprises a collimated 137Cs isotopic source, a radiation detector arc with a multi-channel signal processing unit, and a rotary unit enabling CT scans of objects with diameters of up to 700?mm. The accuracy of gas holdup measurements was validated on a sophisticated modular test mockup replicating defined gas-liquid distributions, which are expected in impeller chambers of industrial centrifugal pumps under two-phase operation. Stationary as well as rotation-synchronized CT scanning techniques have been analyzed, which are both used to obtain sharply resolved gas phase distributions in rotating structures as well as non-rotating zones. A measuring accuracy of better than 1% absolute for variously distributed static gas holdups in the rotating frame has been verified with the modular test mockup using HireCT.

  10. The Effect of Gamma-ray Detector Energy Resolution on the Ability to Identify Radioactive Sources

    SciTech Connect

    Nelson, K E; Gosnell, T B; Knapp, D A

    2009-03-05

    This report describes the results of an initial study on radiation detector spectral resolution, along with the underlying methodology used. The study was done as part of an ongoing effort in Detection Modeling and Operational Analysis (DMOA) for the DNDO System Architecture Directorate. The study objective was to assess the impact of energy resolution on radionuclide identification capability, measured by the ability to reliably discriminate between spectra associated with 'threats' (defined as fissile materials) and radioactive 'non-threats' that might be present in the normal stream of commerce. Although numerous factors must be considered in deciding which detector technology is appropriate for a specific application, spectral resolution is a critical one for homeland security applications in which a broad range of non-threat sources are present and very low false-alarm rates are required. In this study, we have proposed a metric for quantifying discrimination capability, and have shown how this metric depends on resolution. In future work we will consider other important factors, such as efficiency and volume, and the relative frequency of spectra known to be discrimination challenges in practical applications.

  11. A 3D CZT high resolution detector for x- and gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Kuvvetli, I.; Budtz-Jørgensen, C.; Zappettini, A.; Zambelli, N.; Benassi, G.; Kalemci, E.; Caroli, E.; Stephen, J. B.; Auricchio, N.

    2014-07-01

    At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using a novel interpolating technique based on the drift strip signals. The position determination in the detector depth direction, is made using the DOI technique based the detector cathode and anode signals. The position determination along the anode strips is made with the help of 10 cathode strips orthogonal to the anode strips. The position resolutions are at low energies dominated by the electronic noise and improve therefore with increased signal to noise ratio as the energy increases. The achievable position resolution at higher energies will however be dominated by the extended spatial distribution of the photon produced ionization charge. The main sources of noise contribution of the drift signals are the leakage current between the strips and the strip capacitance. For the leakage current, we used a metallization process that reduces the leakage current by means of a high resistive thin layer between the drift strip electrodes and CZT detector material. This method was applied to all the proto type detectors and was a very effective method to reduce the surface leakage current between the strips. The proto type detector was recently investigated at the European Synchrotron Radiation Facility, Grenoble which provided a fine 50 × 50 ?m2 collimated X-ray beam covering an energy band up to 600 keV. The Beam positions are resolved very well with a ~ 0.2 mm position resolution (FWHM ) at 400 keV in all directions.

  12. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  13. Gamma ray generator

    DOEpatents

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  14. Capabilities of germanium detectors. [gamma ray spectoscopy

    NASA Technical Reports Server (NTRS)

    Willett, J. B.; Ling, J. C.; Mahoney, W. A.; Jacobson, A. S.

    1978-01-01

    The gamma ray detection efficiency and energy resolution of germanium detectors is reviewed. A general sensitivity equation for gamma-ray detectors is presented and calculated sensitvity curves are shown for a large volume balloon-borne spectrometer using germanium detectors. Improvement anticipated from a planned satellite experiment using germanium detectors is discussed.

  15. Investigation of gamma-ray families originating from nucleus-nucleus interactions at ultrahigh energies E{sub 0} in excess of 10{sup 16} eV

    SciTech Connect

    Yuldashbaev, T. S.; Nuritdinov, Kh.

    2013-12-15

    Various spatial and energy features of gamma-ray families originating from the interactions of primary nuclei of galactic cosmic rays with nuclei of atmospheric atoms (AA interactions) are studied. The mass composition of galactic cosmic rays is analyzed on the basis of data from x-ray emulsion chambers of the Pamir experiment with the aid of a criterion for selecting gamma-ray families originating from AA interactions (A families) at energies E{sub 0} of primary galactic cosmic rays in excess of 10{sup 16} eV. According to the results obtained in this way only the experimental spatial parameters R{sub 1E} and ? differ from their counterparts in the MC0 model.

  16. Cloaked Gamma Ray Bursts

    E-print Network

    Eichler, David

    2014-01-01

    It is suggested that many $\\gamma$-ray bursts (GRBs) are cloaked by an ultra-relativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include a) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and b) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an {\\it exposed} GRB, in contrast to those cloaked by baryonic shells. \\end{abstract}

  17. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  18. Energy resolution of gamma-ray spectroscopy of JET plasmas with a LaBr{sub 3} scintillator detector and digital data acquisition

    SciTech Connect

    Nocente, M.; Tardocchi, M.; Grosso, G.; Perelli Cippo, E.; Pietropaolo, A.; Proverbio, I.; Gorini, G.; Chugunov, I.; Gin, D.; Shevelev, A.; Pereira, R. C.; Fernandes, A. M.; Neto, A.; Sousa, J.; Murari, A.; Collaboration: JET-EFDA Contributors

    2010-10-15

    A new high efficiency, high resolution, fast {gamma}-ray spectrometer was recently installed at the JET tokamak. The spectrometer is based on a LaBr{sub 3}(Ce) scintillator coupled to a photomultiplier tube. A digital data acquisition system is used to allow spectrometry with event rates in excess of 1 MHz expected in future JET DT plasmas. However, at the lower rates typical of present day experiments, digitization can degrade the energy resolution of the system, depending on the algorithms used for extracting pulse height information from the digitized pulses. In this paper, the digital and analog spectrometry methods were compared for different experimental conditions. An algorithm based on pulse shape fitting was developed, providing energy resolution equivalent to the traditional analog spectrometry method.

  19. Energy resolution and throughput of a new real time digital pulse processing system for x-ray and gamma ray semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Abbene, L.; Gerardi, G.; Raso, G.; Basile, S.; Brai, M.; Principato, F.

    2013-07-01

    New generation spectroscopy systems have advanced towards digital pulse processing (DPP) approaches. DPP systems, based on direct digitizing and processing of detector signals, have recently been favoured over analog pulse processing electronics, ensuring higher flexibility, stability, lower dead time, higher throughput and better spectroscopic performance. In this work, we present the performance of a new real time DPP system for X-ray and gamma ray semiconductor detectors. The system is based on a commercial digitizer equipped with a custom DPP firmware, developed by our group, for on-line pulse shape and height analysis. X-ray and gamma ray spectra measurements with cadmium telluride (CdTe) and germanium (Ge) detectors, coupled to resistive-feedback preamplifiers, highlight the excellent performance of the system both at low and high rate environments (up to 800 kcps). A comparison with a conventional analog electronics showed the better high-rate capabilities of the digital approach, in terms of energy resolution and throughput. These results make the proposed DPP system a very attractive tool for both laboratory research and for the development of advanced detection systems for high-rate-resolution spectroscopic imaging, recently proposed in diagnostic medicine, industrial imaging and security screening.

  20. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  1. Towards Ultra-High Resolution Models of Climate and Weather

    SciTech Connect

    Wehner, Michael; Oliker, Leonid; Shalf, John

    2007-01-01

    We present a speculative extrapolation of the performance aspects of an atmospheric general circulation model to ultra-high resolution and describe alternative technological paths to realize integration of such a model in the relatively near future. Due to a superlinear scaling of the computational burden dictated by stability criterion, the solution of the equations of motion dominate the calculation at ultra-high resolutions. From this extrapolation, it is estimated that a credible kilometer scale atmospheric model would require at least a sustained ten petaflop computer to provide scientifically useful climate simulations. Our design study portends an alternate strategy for practical power-efficient implementations of petaflop scale systems. Embedded processor technology could be exploited to tailor a custom machine designed to ultra-high climate model specifications at relatively affordable cost and power considerations. The major conceptual changes required by a kilometer scale climate model are certain to be difficult to implement. Although the hardware, software, and algorithms are all equally critical in conducting ultra-high climate resolution studies, it is likely that the necessary petaflop computing technology will be available in advance of a credible kilometer scale climate model.

  2. Gamma-Ray Bursts

    SciTech Connect

    Paciesas, W.S. ); Fishman, G.J. )

    1992-01-01

    This proceedings represents the works presented at the Gamma-Ray Bursts Workshop -- 1991 which was held on the campus of theUniversity of Alabama in Huntsville, October 16-18. The emphasis ofthe Workshop was to present and discuss new observations of gamma-ray bursts made recently by experiments on the Compton Gamma-RayObservatory (CGRO), Granat, Ginga, Pioneer Venus Orbiter, Prognozand Phobos. These presentations were complemented by some groundbased observations, reanalysis of older data, descriptions offuture gamma-ray burst experiments and a wide-ranging list oftheoretical discussions. Over seventy papers are included in theproceedings. Eleven of them are abstracted for the database. (AIP)

  3. Nucleosynthesis in gamma-ray bursts outflows

    E-print Network

    M. Lemoine

    2002-06-19

    It is shown that fusion of neutrons and protons to He-4 nuclei occurs in gamma-ray burst outflows in a process similar to big-bang nucleosynthesis in the early Universe. Only the surviving free neutrons can then decouple kinematically from the charged fluid so that the multi-GeV neutrino signal predicted from inelastic nuclear n-p collisions is significantly reduced. It is also argued that a sizeable fraction of ultra-high energy cosmic rays accelerated in gamma-ray bursts should be He-4 nuclei.

  4. Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the detection of over 80 gamma-ray pulsars. Several new populations have been discovered, including 24 radio quiet pulsars found through gamma-ray pulsations alone and about 20 millisecond gamma-ray pulsars. The gamma-ray pulsations from millisecond pulsars were discovered by both folding at periods of known radio millisecond pulsars or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -35 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. The higher sensitivity and larger energy range of the Fermi Large Area Telescope has produced detailed energy-dependent light curves and phase-resolved spectroscopy on brighter pulsars, that have ruled out polar cap models as the major source of the emission in favor of outer magnetosphere accelerators. The large number of gamma-ray pulsars now allows for the first time meaningful population and sub-population studies that are revealing surprising properties of these fascinating sources.

  5. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (editor); Trombka, J. I. (editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  6. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  7. Ultrahigh-resolution endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.

    2005-01-01

    Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.

  8. Atmospheric Cherenkov Gamma-ray Telescopes

    E-print Network

    Holder, Jamie

    2015-01-01

    The stereoscopic imaging atmospheric Cherenkov technique, developed in the 1980s and 1990s, is now used by a number of existing and planned gamma-ray observatories around the world. It provides the most sensitive view of the very high energy gamma-ray sky (above 30 GeV), coupled with relatively good angular and spectral resolution over a wide field-of-view. This Chapter summarizes the details of the technique, including descriptions of the telescope optical systems and cameras, as well as the most common approaches to data analysis and gamma-ray reconstruction.

  9. High Energy Radiation from Gamma Ray Bursts

    E-print Network

    Charles D. Dermer; James Chiang

    1999-12-08

    Gamma-ray burst (GRB) engines are probed most intimately during the prompt gamma-ray luminous phase when the expanding blast wave is closest to the explosion center. Using GRBs 990123 and 940217 as guides, we briefly review observations of high-energy emission from GRBs and summarize some problems in GRB physics. \\gamma\\gamma transparency arguments imply relativistic beaming. The parameters that go into the external shock model are stated, and we show numerical simulation results of gamma-ray light curves from relativistic blast waves with different amounts of baryon loading. A distinct component due to the synchrotron self-Compton process produces significant emission at GeV and TeV energies. Predictions for spectral and temporal evolution at these energies are presented for a blast wave expanding into uniform surroundings. Observations of the slow decay of GeV-TeV radiation provide evidence for ultra-high energy cosmic ray acceleration in GRBs.

  10. Gamma-Ray Pulsar Studies With GLAST

    SciTech Connect

    Thompson, D.J.; /NASA, Goddard

    2011-11-23

    Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

  11. A High Resolution Liquid Xenon Imaging Telescope for 0.3-10 MeV Gamma Ray Astrophysics: Construction and Initial Balloon Flights

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1993-01-01

    The results achieved with a 3.5 liter liquid xenon time projection chamber (LXe-TPC) prototype during the first year include: the efficiency of detecting the primary scintillation light for event triggering has been measured to be higher than 85%; the charge response has been measured to be stable to within 0.1% for a period of time of about 30 hours; the electron lifetime has been measured to be in excess of 1.3 ms; the energy resolution has been measured to be consistent with previous results obtained with small volume chambers; X-Y gamma ray imaging has been demonstrated with a nondestructive orthogonal wires readout; Monte Carlo simulation results on detection efficiency, expected background count rate at balloon altitude, background reduction algorithms, telescope response to point-like and diffuse sources, and polarization sensitivity calculations; and work on a 10 liter LXe-TPC prototype and gas purification/recovery system.

  12. Gamma-ray Astronomy and GLAST

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2007-01-01

    The high energy gamma-ray (30 MeV to 100 GeV) sky has been relatively poorly studied. Most of our current knowledge comes from observations made by the Energetic Gamma Ray Experiment Telescope (EGRET) detector on the Compton Gamma Ray Observatory (CGRO), which revealed that the GeV gamma-ray sky is rich and vibrant. Studies of astrophysical objects at GeV energies are interesting for several reasons: The high energy gamma-rays are often produced by a different physical process than the better studied X-ray and optical emission, thus providing a unique information for understanding these sources. Production of such high-energy photons requires that charged particles are accelerated to equally high energies, or much greater. Thus gamma-ray astronomy is the study of extreme environments, with natural and fundamental connections to cosmic-ray and neutrino astrophysics. The launch of GLAST in 2008 will herald a watershed in our understanding of the high energy gamma-ray sky, providing dramatic improvements in sensitivity, angular resolution and energy range. GLAST will open a new avenue to study our Universe as well as to answer scientific questions EGRET observations have raised. In this talk, I will describe the GLAST instruments and capabilities and highlight some of the science we expect to address.

  13. Gamma-ray Astronomy

    E-print Network

    Jim Hinton

    2007-12-20

    The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

  14. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  15. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1991-01-01

    Miscellaneous tasks related to the development of the Bursts and Transient Source Experiment on the Gamma Ray Observatory and to analysis of archival data from balloon flight experiments were performed. The results are summarized and relevant references are included.

  16. High Energy Gamma Rays

    E-print Network

    R. Mukherjee

    2000-09-22

    This article reviews the present status of high energy gamma-ray astronomy at energies above 30 MeV. Observations in the past decade using both space- and ground-based experiments have been primarily responsible for giving a tremendous boost to our knowledge of the high energy Universe. High energy gamma-rays have been detected from a wide range of Galactic and extragalactic astrophysical sources, such as gamma-ray bursters, pulsars, and active galaxies. These observations have established high energy gamma-ray astronomy as a vital and exciting field, that has a bright future. This review summarizes the experimental techniques, observations and results obtained with recent experiments, and concludes with a short description of future prospects.

  17. Gamma-ray emission from thermonuclear supernovae

    SciTech Connect

    Isern, J.; Bravo, E.; Hirschmann, A.

    2007-08-21

    The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. Nevertheless, there is a wide agreement that high amounts of radioactive nuclei are produced during these events and that they are expected to be strong {gamma}-ray emitters. In this paper we investigate the use of this {gamma}-rays as a diagnostic tool. For this purpose we have performed a complete study of the {gamma}-ray spectra associated with all the different scenarios currently proposed: detonation, deflagration, delayed detonation, and pulsating delayed detonation. Our study shows that the {gamma}-ray emission from SNIa is, effectively, a promising tool but that has to be carefully used since it can lead to misinterpretations. We also show that 3D effects can be relevant in some circumstances and that they can provide important information about the exploding system and the thermonuclear burning front mechanism if high resolution spectra could be obtained.

  18. Gamma-Rays from Decaying Dark Matter

    E-print Network

    Gianfranco Bertone; Wilfried Buchmuller; Laura Covi; Alejandro Ibarra

    2007-10-11

    We study the prospects for detecting gamma-rays from decaying Dark Matter (DM), focusing in particular on gravitino DM in R-parity breaking vacua. Given the substantially different angular distribution of the predicted gamma-ray signal with respect to the case of annihilating DM, and the relatively poor (of order 0.1$^\\circ$) angular resolution of gamma-ray detectors, the best strategy for detection is in this case to look for an exotic contribution to the gamma-ray flux at high galactic latitudes, where the decaying DM contribution would resemble an astrophysical extra-galactic component, similar to the one inferred by EGRET observations. Upcoming experiments such as GLAST and AMS-02 may identify this exotic contribution and discriminate it from astrophysical sources, or place significant constraints on the mass and lifetime of DM particles.

  19. CLOAKED GAMMA-RAY BURSTS

    SciTech Connect

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  20. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  1. Gamma ray optics

    SciTech Connect

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G.

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  2. Ultrahigh-resolution endoscopic optical coherence tomography for gastrointestinal imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Schneider, Karl; Fujimoto, James G.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Marcos; Schmitt, Joseph M.; Koski, Amanda

    2005-04-01

    Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10-15 um for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher axial resolution (<5 um), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus and colon on animal model display tissue microstructures and architectural details at ultrahigh resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using the standard endoscope. OCT images of normal esophagus and Barrett's esophagus are demonstrated with distinct features.

  3. Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D

    2011-08-31

    Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).

  4. The muon content of gamma-ray showers

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a calculation of the expected number of muons in gamma ray initiated and cosmic ray initiated air showers using a realistic model of hadronic collisions in an effort to understand the available experimental results and to assess the feasibility of using the muon content of showers as a veto to reject cosmic ray initiated showers in ultra-high energy gamma ray astronomy are reported. The possibility of observing very-high energy gamma-ray sources by detecting narrow angle anisotropies in the high energy muon background radiation are considered.

  5. Ultrahigh resolution multicolor colocalization of single fluorescent probes

    DOEpatents

    Weiss, Shimon; Michalet, Xavier; Lacoste, Thilo D.

    2005-01-18

    A novel optical ruler based on ultrahigh-resolution colocalization of single fluorescent probes is described. Two unique families of fluorophores are used, namely energy-transfer fluorescent beads and semiconductor nanocrystal (NC) quantum dots, that can be excited by a single laser wavelength but emit at different wavelengths. A novel multicolor sample-scanning confocal microscope was constructed which allows one to image each fluorescent light emitter, free of chromatic aberrations, by scanning the sample with nanometer scale steps using a piezo-scanner. The resulting spots are accurately localized by fitting them to the known shape of the excitation point-spread-function of the microscope.

  6. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor (Berkeley, CA)

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  7. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  8. The Tunka detector complex: from cosmic-ray to gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Budnev, N.; Astapov, I.; Barbashina, N.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Büker, M.; Brückner, M.; Chiavassa, A.; Chvalaev, O.; Gress, O.; Gress, T.; Dyachok, A.; Epimakhov, S.; Gafatov, A.; Gorbunov, N.; Grebenyuk, V.; Grinuk, A.; Haungs, A.; Hiller, R.; Horns, D.; Huege, T.; Ivanova, A.; Kalinin, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kleifges, M.; Kokoulin, R.; Komponiest, K.; Konstantinov, A.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kostunin, D.; Kozhin, V.; Krömer, O.; Kunnas, M.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popova, E.; Porelli, A.; Prosin, V.; Ptuskin, V.; Rubtsov, G.; Rühle, C.; Samoliga, V.; Satunin, P.; Savinov, V.; Saunkin, A.; Schröder, F.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slucka, V.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Voronin, D.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.

    2015-08-01

    TAIGA stands for “Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy” and is a project to build a complex, hybrid detector system for ground-based gamma- ray astronomy from a few TeV to several PeV, and for cosmic-ray studies from 100 TeV to 1 EeV. TAIGA will search for ”PeVatrons” (ultra-high energy gamma-ray sources) and measure the composition and spectrum of cosmic rays in the knee region (100 TeV - 10 PeV) with good energy resolution and high statistics. TAIGA will include Tunka-HiSCORE (an array of wide-angle air Cherenkov stations), an array of Imaging Atmospheric Cherenkov Telescopes, an array of particle detectors, both on the surface and underground, and the TUNKA-133 air Cherenkov array.

  9. Characteristics of the Telescope for High Energy Gamma-ray Astronomy Selected for Definition Studies on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Hughes, E. B.; Hofstadter, R.; Johansson, A.; Rolfe, J.; Bertsch, D. L.; Cruickshank, W. J.; Ehrmann, C. H.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.

    1979-01-01

    The high energy gamma-ray selected for definition studies on the Gamma Ray Observatory provides a substantial improvement in observational capability over earlier instruments. It will have about 20 times more sensitivity, cover a much broader energy range, have considerably better energy resolution and provide a significantly improved angular resolution. The design and performance are described.

  10. GAMMA RAY IMAGING FOR ENVIRONMENTAL REMEDIATION

    EPA Science Inventory

    The research is a three year development program to apply high resolution gamma-ray imaging technologies to environmental remediation of radioactive hazards. High resolution, position-sensitive germanium detectors are being developed at the Naval Research Laboratory for space app...

  11. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  12. Ultrahigh resolution multicolor colocalization of single fluorescent nanocrystals

    SciTech Connect

    Michalet, X.; Lacoste, T.D.; Pinaud, F.; Chemla, D.S.; Alivisatos, A.P.; Weiss, S.

    2000-12-20

    A new method for in vitro and possibly in vivo ultrahigh-resolution colocalization and distance measurement between biomolecules is described, based on semiconductor nanocrystal probes. This ruler bridges the gap between FRET and far-field (or near-field scanning optical microscope) imaging and has a dynamic range from few nanometers to tens of micrometers. The ruler is based on a stage-scanning confocal microscope that allows the simultaneous excitation and localization of the excitation point-spread-function (PSF) of various colors nanocrystals while maintaining perfect registry between the channels. Fit of the observed diffraction and photophysics-limited images of the PSFs with a two-dimensional Gaussian allows one to determine their position with nanometer accuracy. This new high-resolution tool opens new windows in various molecular, cell biology and biotechnology applications.

  13. EFFECTIVENESS OF QUIKSCAT'S ULTRA-HIGH RESOLUTION IMAGES IN DETERMINING TROPICAL CYCLONE EYE LOCATION

    E-print Network

    Long, David G.

    EFFECTIVENESS OF QUIKSCAT'S ULTRA-HIGH RESOLUTION IMAGES IN DETERMINING TROPICAL CYCLONE EYE be enhanced to yield a 2.5km ultra-high resolution (UHR) product that can be used to identify hurricane eye centers more accurately. A comparison is made between the ana- lyst's choice of eye location based on UHR

  14. Evaluation of natural radioactivity content in high-volume surface water samples along the northern coast of Oman Sea using portable high-resolution gamma-ray spectrometry.

    PubMed

    Zare, Mohammad Reza; Kamali, Mahdi; Omidi, Zohre; Khorambagheri, Mahdi; Mortazavi, Mohammad Seddigh; Ebrahimi, Mahmood; Akbarzadeh, Gholamali

    2015-06-01

    Portable high-resolution gamma-ray spectrometry was carried out to determine the natural radioactivity levels in high volume surface water samples of the northern coast of Oman Sea, covering the coastal strip from Hormoz strait to Goatr seaport, for the first time. The water samples from 36 coastal and near shore locations were collected for analysis. Analyses on the samples collected were carried out to determine (226)Ra, (232)Th and (40)K contents. The concentration of (226)Ra, (232)Th and (40)K in surface water samples ranged between 2.19 and 2.82 Bq/L, 1.66-2.17 Bq/L and 132.6-148.87 Bq/L, respectively. The activity profile of radionuclides shows low activity across the study area. The study also examined some radiation hazard indices. The external hazard index was found to be less than 1, indicating a low dose. The results of measurements will serve as background reference level for Oman Sea coastlines. PMID:25847859

  15. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  16. Ultrahigh-resolution optical coherence tomography for enhanced visualization of retinal pathology

    NASA Astrophysics Data System (ADS)

    Ko, Tony H.; Drexler, Wolfgang; Paunescu, Lelia A.; Hartl, Ingmar; Ghanta, Ravi K.; Schuman, Joel S.; Fujimoto, James G.

    2003-07-01

    An ultrahigh resolution ophthalmic optical coherence tomography (OCT) system has been developed. Using a femtosecond Ti:sapphire laser light source, which generates bandwidths of ~150 nm at 800 nm, real-time, cross-sectional imaging of the retina with ~3 ?m axial resolution is possible. Ultrahigh resolution OCT images of retinal morphology were obtained in normal subjects and patients with retinal disease. Intraretinal architectural morphology associated with macular diseases such as macular edema, epiretinal membranes, and macular holes can be visualized with unprecedented resolution. Ultrahigh resolution ophthalmic OCT promises to improve the early diagnosis of retinal diseases as well as enable monitoring of disease progression and the efficacy of therapeutic intervention.

  17. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  18. Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography

    E-print Network

    Hsiung, Pei-Lin

    Ultrahigh resolution optical coherence tomography (OCT) is an emerging imaging modality that enables noninvasive imaging of tissue with 1- to 3-?m resolutions. Initial OCT studies have typically been performed using harvested ...

  19. Gamma-ray events thunderclouds

    E-print Network

    California at Berkeley, University of

    Gamma-ray events from thunderclouds Joseph R. Dwyer Department of Physics and Space Sciences-ray bursts are associated with leader stepping #12;A ground level gamma-ray flash observed during the initial stage of rocket-triggered lightning #12;The gamma-ray flash occurred at the same time the upward leader

  20. Velocity-space observation regions of high-resolution two-step reaction gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Nocente, M.; Gorini, G.; Jacobsen, A. S.; Kiptily, V. G.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Tardocchi, M.; Contributors, JET

    2015-09-01

    High-resolution ?-ray spectroscopy (GRS) measurements resolve spectral shapes of Doppler-broadened ?-rays. We calculate weight functions describing velocity-space sensitivities of any two-step reaction GRS measurements in magnetized plasmas using the resonant nuclear reaction 9Be(?, n?)12C as an example. The energy-dependent cross sections of this reaction suggest that GRS is sensitive to alpha particles above about 1.7 MeV and highly sensitive to alpha particles at the resonance energies of the reaction. Here we demonstrate that high-resolution two-step reaction GRS measurements are not only selective in energy but also in pitch angle. They can be highly sensitive in particular pitch angle ranges and completely insensitive in others. Moreover, GRS weight functions allow rapid calculation of ?-ray energy spectra from fast-ion distribution functions, additionally revealing how many photons any given alpha-particle velocity-space region contributes to the measurements in each ?-ray energy bin.

  1. High-Resolution Spectroscopy of Gamma-Ray Lines from the X-Class Solar Flare of 23 July, 2002

    E-print Network

    David M. Smith; Gerald H. Share; Ronald J. Murphy; Richard A. Schwartz; Albert Y. Shih; Robert P. Lin

    2003-06-14

    The Reuven Ramaty High Energy Solar Spectroscopy Imager (RHESSI) has obtained the first high-resolution measurements of nuclear de-excitation lines produced by energetic ions accelerated in a solar flare, a GOES X4.8 event occurring on 23 July, 2002 at a heliocentric angle of 73 degrees. Lines of neon, magnesium, silicon, iron, carbon, and oxygen were resolved for the first time. They exhibit Doppler redshifts of 0.1--0.8% and broadening of 0.1--2.1% (FWHM), generally decreasing with mass. The measured redshifts are larger than expected for a model of an interacting ion distribution isotropic in the downward hemisphere in a radial magnetic field. Possible interpretations of the large redshifts include 1) an inclination of the loop magnetic field to the solar surface so that the ion distribution is oriented more directly away from the observer, and 2) extreme beaming of the ions downward along a magnetic field normal to the solar surface. Bulk downward motion of the plasma in which the accelerated ions interact can be ruled out.

  2. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  3. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  4. Gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    1994-01-01

    The Burst and Transient Source Experiment (BATSE) is one of four instruments on the Compton observatory which was launched by the space shuttle Atlantis on April 5, 1991. As of mid-March, 1994, BATSE detected more than 925 cosmic gamma-ray bursts and more than 725 solar flares. Pulsed gamma rays have been detected from at least 16 sources and emission from at least 28 sources (including most of the pulsed sources) has been detected by the earth occultation technique. UAH participation in BATSE is extensive but can be divided into two main areas, operations and data analysis. The daily BATSE operations tasks represent a substantial level of effort and involve a large team composed of MSFC personnel as well as contractors such as UAH. The scientific data reduction and analysis of BATSE data is also a substantial level of effort in which UAH personnel have made significant contributions.

  5. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (inventor)

    1991-01-01

    A gamma ray collimator including a housing having first and second sections is disclosed. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  6. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  7. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    SciTech Connect

    Massaro, F.; Ajello, M.; D'Abrusco, R.; Paggi, A.; Tosti, G.; Gasparrini, D.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.

  8. Gamma-ray tracking method for pet systems

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.

    2010-06-08

    Gamma-ray tracking methods for use with granular, position sensitive detectors identify the sequence of the interactions taking place in the detector and, hence, the position of the first interaction. The improved position resolution in finding the first interaction in the detection system determines a better definition of the direction of the gamma-ray photon, and hence, a superior source image resolution. A PET system using such a method will have increased efficiency and position resolution.

  9. Gamma-Ray Localization of Terrestrial Gamma-Ray Flashes

    SciTech Connect

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Bulgarelli, A.; Trifoglio, M.; Di Cocco, G.; Gianotti, F.; Argan, A.; De Paris, G.; Trois, A.; Del Monte, E.; Costa, E.; Di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Pacciani, L.; Rubini, A.; Sabatini, S.

    2010-09-17

    Terrestrial gamma-ray flashes (TGFs) are very short bursts of high-energy photons and electrons originating in Earth's atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of {approx}5-10 deg. at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the subsatellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.

  10. A high resolution liquid xenon imaging telescope for 0.3-10 MeV gamma-ray astrophysics: Construction and initial balloon flights

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1994-01-01

    An instrument is described which will provide a direct image of gamma-ray line or continuum sources in the energy range 300 keV to 10 MeV. The use of this instrument to study the celestial distribution of the (exp 26)Al isotope by observing the 1.809 MeV deexcitation gamma-ray line is illustrated. The source location accuracy is 2' or better. The imaging telescope is a liquid xenon time projection chamber coupled with a coded aperture mask (LXe-CAT). This instrument will confirm and extend the COMPTEL observations from the Compton Gamma-Ray Observatory (CGRO) with an improved capability for identifying the actual Galactic source or sources of (exp 26)Al, which are currently not known with certainty. sources currently under consideration include red giants on the asymptotic giant branch (AGB), novae, Type 1b or Type 2 supernovae, Wolf-Rayet stars and cosmic-rays interacting in molecular clouds. The instrument could also identify a local source of the celestial 1.809 MeV gamma-ray line, such as a recent nearby supernova.

  11. Gamma-Ray Library and Uncertainty Analysis: Passively Emitted Gamma Rays Used in Safeguards Technology

    SciTech Connect

    Parker, W

    2009-09-18

    Non-destructive gamma-ray analysis is a fundamental part of nuclear safeguards, including nuclear energy safeguards technology. Developing safeguards capabilities for nuclear energy will certainly benefit from the advanced use of gamma-ray spectroscopy as well as the ability to model various reactor scenarios. There is currently a wide variety of nuclear data that could be used in computer modeling and gamma-ray spectroscopy analysis. The data can be discrepant (with varying uncertainties), and it may difficult for a modeler or software developer to determine the best nuclear data set for a particular situation. To use gamma-ray spectroscopy to determine the relative isotopic composition of nuclear materials, the gamma-ray energies and the branching ratios or intensities of the gamma-rays emitted from the nuclides in the material must be well known. A variety of computer simulation codes will be used during the development of the nuclear energy safeguards, and, to compare the results of various codes, it will be essential to have all the {gamma}-ray libraries agree. Assessing our nuclear data needs allows us to create a prioritized list of desired measurements, and provides uncertainties for energies and especially for branching intensities. Of interest are actinides, fission products, and activation products, and most particularly mixtures of all of these radioactive isotopes, including mixtures of actinides and other products. Recent work includes the development of new detectors with increased energy resolution, and studies of gamma-rays and their lines used in simulation codes. Because new detectors are being developed, there is an increased need for well known nuclear data for radioactive isotopes of some elements. Safeguards technology should take advantage of all types of gamma-ray detectors, including new super cooled detectors, germanium detectors and cadmium zinc telluride detectors. Mixed isotopes, particularly mixed actinides found in nuclear reactor streams can be especially challenging to identify. The super cooled detectors have a marked improvement in energy resolution, allowing the possibility of deconvolution of mixtures of gamma rays that was unavailable with high purity germanium detectors. Isotopic analysis codes require libraries of gamma rays. In certain situations, isotope identification can be made in the field, sometimes with a short turnaround time, depending on the choice of detector and software analysis package. Sodium iodide and high purity germanium detectors have been successfully used in field scenarios. The newer super cooled detectors offer dramatically increased resolution, but they have lower efficiency and so can require longer collection times. The different peak shapes require software development for the specific detector type and field application. Libraries can be tailored to specific scenarios; by eliminating isotopes that are certainly not present, the analysis time may be shortened and the accuracy may be increased. The intent of this project was to create one accurate library of gamma rays emitted from isotopes of interest to be used as a reliable reference in safeguards work. All simulation and spectroscopy analysis codes can draw upon this best library to improve accuracy and cross-code consistency. Modeling codes may include MCNP and COG. Gamma-ray spectroscopy analysis codes may include MGA, MGAU, U235 and FRAM. The intent is to give developers and users the tools to use in nuclear energy safeguards work. In this project, the library created was limited to a selection of actinide isotopes of immediate interest to reactor technology. These isotopes included {sup 234-238}U, {sup 237}Np, {sup 238-242}Pu, {sup 241,243}Am and {sup 244}Cm. These isotopes were examined, and the best of gamma-ray data, including line energies and relative strengths were selected.

  12. {gamma} ray astronomy with muons

    SciTech Connect

    Halzen, F.; Stanev, T.; Yodh, G.B.

    1997-04-01

    Although {gamma} ray showers are muon poor, they still produce a number of muons sufficient to make the sources observed by GeV and TeV telescopes observable also in muons. For sources with hard {gamma} ray spectra there is a relative {open_quotes}enhancement{close_quotes} of muons from {gamma} ray primaries as compared to that from nucleon primaries. All shower {gamma} rays above the photoproduction threshold contribute to the number of muons N{sub {mu}}, which is thus proportional to the primary {gamma} ray energy. With {gamma} ray energy 50 times higher than the muon energy and a probability of muon production by the {gamma}{close_quote}s of about 1{percent}, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by 10{sup 4}. The muons must have enough energy for sufficiently accurate reconstruction of their direction for doing astronomy. These conditions are satisfied by relatively shallow neutrino detectors such as AMANDA and Lake Baikal, and by {gamma} ray detectors such as MILAGRO. TeV muons from {gamma} ray primaries, on the other hand, are rare because they are only produced by higher energy {gamma} rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy with the AMANDA, Lake Baikal, and MILAGRO detectors. {copyright} {ital 1997} {ital The American Physical Society}

  13. Performance of the EGRET astronomical gamma ray telescope

    SciTech Connect

    Nolan, P.L.; Hofstadter, R.; Hughes, E.B.; Lin, Y.C.; Michelson, P.F. ); Bertsch, D.L.; Fichtel, C.E.; Hartman, R.C.; Hunter, S.D.; Mattox, J.R.; Sreekumar, P.; Thompson, D.J. . Goddard Space Flight Center)

    1992-08-01

    On April 5, 1991, the Space Shuttle Atlantis carried the Compton Gamma Ray Observatory (CGRO) into orbit, deploying the satellite on April 7. This paper reports on the EGRET instrument which was activated on April 15, and the first month of operations was devoted to verification of the instrument performance. Measurements made during that month and in the subsequent sky survey phase have verified that the instrument time resolution, angular resolution, and gamma ray detection efficiency are all within nominal limits.

  14. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  15. Preliminary results from the first satellite of a high-resolution germanium gamma-ray spectrometer: Description of instrument, some activation lines encountered, and studies of the diffuse spectra

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.; Reagan, J. B.; Johnson, R. G.

    1973-01-01

    Gamma radiation from terrestrial and extraterrestrial sources were investigated with a high resolution Ge(Li) spectrometer-cryogen system flown onboard a low altitude, spin stabilized, polar orbiting satellite. A brief description is given of the instrument and preliminary results obtained from earth orbit are discussed. Attempts were made to use angular distributions and geomagnetic latitude spectral variations to determine diffuse background spectrum, detect gamma ray line emissions from solar flares, and search for positron annihilation radiation coming from the direction of the galactic center.

  16. Ultra-high resolution and high-brightness AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  17. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  18. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. There has been tremendous recent progress in our understanding of bursts with the new data from the Swift mission. Swift was launched in November 2004 and is a multiwave length observatory designed to determine the origin of bursts and use them to probe the early Universe. It was developed and is being operated by an international team of scientists from the US, UK and Italian. The first year of findings from the mission will be presented. A large step forward has been made in our understanding of the mysterious short GRBs. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  19. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  20. Development of a gamma-ray detector with iridium transition edge sensor coupled to a Pb absorber

    E-print Network

    Leman, Steven W.

    We have recently started to develop a high-resolution gamma-ray spectrometer for material defect analysis. Our gamma-ray detector is a microcalorimeter consisting of an iridium/gold bilayer transition edge sensor (TES) ...

  1. Lunar gamma-ray emission observed by FERMI

    E-print Network

    Giglietto, N

    2009-01-01

    FERMI-LAT is performing an all-sky gamma-ray survey from 30 MeV to 300 GeV with unprecedented sensitivity and angular resolution. FERMI has detected high-energy gamma rays from the Moon produced by interactions of cosmic rays with the lunar surface. This radiation was previously observed by EGRET on CGRO with significantly lower statistical significance. We present the lunar analysis for the first six months of the Mission and showing images of the lunar gamma-ray emission. We also compare the flux measurements with models the earlier EGRET measurements.

  2. The Advanced Gamma-ray Imaging System (AGIS): Simulation studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V.V.; /UCLA

    2011-06-14

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gamma-ray emission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collecting area, angular resolution, background rejection, and sensitivity - are discussed.

  3. Gamma-Ray Pulsar Revolution

    NASA Astrophysics Data System (ADS)

    Caraveo, Patrizia A.

    2014-08-01

    Isolated neutron stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. In the 1970s, only two sources had been identified, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space in both the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led to breakthrough developments in understanding the structure and physics of neutron star (NS) magnetospheres. In parallel, the 20-year-long chase to understand the nature of Geminga unveiled the existence of a radio-quiet, gamma-ray-emitting INS, adding a new dimension to the INS family. We are living through an extraordinary time of discovery. The current generation of gamma-ray detectors has vastly increased the population of known gamma-ray-emitting NSs. The 100 mark was crossed in 2011, and we are now over 150. The gamma-ray-emitting NS population exhibits roughly equal numbers of radio-loud and radio-quiet young INSs, plus an astonishing, and unexpected, group of isolated and binary millisecond pulsars (MSPs). The number of MSPs is growing so rapidly that they are on their way to becoming the most numerous members of the family of gamma-ray-emitting NSs. Even as these findings have set the stage for a revolution in our understanding of gamma-ray-emitting NSs, long-term monitoring of the gamma-ray sky has revealed evidence of flux variability in the Crab Nebula as well as in the pulsed emission from PSR J2021+4026, challenging a four-decades-old, constant-emission paradigm. Now we know that both pulsars and their nebulae can, indeed, display variable emission.

  4. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  5. Studies of Cosmic Rays with GeV Gamma Rays

    E-print Network

    Hiroyasu Tajima; Tuneyoshi Kamae; Stefano Finazzi; Johann Cohen-Tanugi; James Chiang

    2007-05-10

    We describe the role of GeV gamma-ray observations with GLAST-LAT (Gamma-ray Large Area Space Telescope - Large Area Telescope) in identifying interaction sites of cosmic-ray proton (or hadrons) with interstellar medium (ISM). We expect to detect gamma rays from neutral pion decays in high-density ISM regions in the Galaxy, Large Magellanic Cloud, and other satellite galaxies. These gamma-ray sources have been detected already with EGRET (Energetic Gamma Ray Experiment Telescope) as extended sources (eg. LMC and Orion clouds) and GLAST-LAT will detect many more with a higher spatial resolution and in a wider spectral range. We have developed a novel image restoration technique based on the Richardson-Lucy algorithm optimized for GLAST-LAT observation of extended sources. Our algorithm calculates PSF (point spread function) for each event. This step is very important for GLAST-LAT and EGRET image analysis since PSF varies more than one order of magnitude from one gamma ray to another depending on its energy as well as its impact point and angle in the instrument. The GLAST-LAT and EGRET image analysis has to cope with Poisson fluctuation due to low number of detected photons for most sources. Our technique incorporates wavelet filtering to minimize effects due to the fluctuation. Preliminary studies on some EGRET sources are presented, which shows potential of this novel image restoration technique for the identification and characterisation of extended gamma-ray sources.

  6. HARPO: beam characterization of a TPC for gamma-ray polarimetry and high angular-resolution astronomy in the MeV-GeV range

    NASA Astrophysics Data System (ADS)

    Wang, Shaobo; Bernard, Denis; Bruel, Philippe; Frotin, Mickael; Geerebaert, Yannick; Giebels, Berrie; Gros, Philippe; Horan, Deirdre; Louzir, Marc; Poilleux, Patrick; Semeniouk, Igor; Attié, David; Calvet, Denis; Colas, Paul; Delbart, Alain; Sizun, Patrick; Götz, Diego; Amano, Sho; Kotaka, Takuya; Hashimoto, Satoshi; Minamiyama, Yasuhito; Takemoto, Akinori; Yamaguchi, Masashi; Miyamoto, Shuji; Daté, Schin; Ohkuma, Haruo

    2015-11-01

    A time projection chamber (TPC) can be used to measure the polarization of gamma rays with excellent angular precision and sensitivity in the MeV-GeV energy range through the conversion of photons to e+e? pairs. The Hermetic ARgon POlarimeter (HARPO) prototype was built to demonstrate this concept. It was recently tested in the polarized photon beam at the NewSUBARU facility in Japan. We present this data-taking run, which demonstrated the excellent performance of the HARPO TPC.

  7. Enhanced resolution and quantitation from `ultrahigh' eld NMR spectroscopy of glasses

    E-print Network

    Puglisi, Joseph

    Enhanced resolution and quantitation from `ultrahigh' ®eld NMR spectroscopy of glasses Scott for nuclear magnetic resonance (NMR) (e.g., 14.1 and 18.8 T) can enhance both resolution and sensitivity-®eld NMR can yield structural information not always available from NMR experiments of glasses at lower

  8. Ultrahigh Resolution and Spectroscopic OCT Imaging of Cellular Morphology and Function

    E-print Network

    Boppart, Stephen

    Ultrahigh Resolution and Spectroscopic OCT Imaging of Cellular Morphology and Function Stephen A Developmental and cellular biology are research fields that have burgeoned within recent years due to advancesin such as nuclei or mitotic figures. The first sub-10-J.lm-resolution was achieved by using broadband fluorescence

  9. Solution To The Gamma Ray Burst Mystery?

    E-print Network

    Nir J. Shaviv; Arnon Dar

    1996-08-21

    Photoexcitation and ionization of partially ionized heavy atoms in highly relativistic flows by interstellar photons, followed by their reemission in radiative recombination and decay, boost star-light into beamed $\\gamma$ rays along the flow direction. Repeated excitation/decay of highly relativistic baryonic ejecta from merger or accretion induced collapse of neutron stars in dense stellar regions (DSRs), like galactic cores, globular clusters and super star-clusters, can convert enough kinetic energy in such events in distant galaxies into cosmological gamma ray bursts (GRBs). The model predicts remarkably well all the main observed temporal and spectral properties of GRBs. Its success strongly suggests that GRBs are $\\gamma$ ray tomography pictures of DSRs in galaxies at cosmological distances with unprecedented resolution: A time resolution of $dt\\sim 1~ms$ in a GRB can resolve stars at a Hubble distance which are separated by only $D\\sim 10^{10}cm$. This is equivalent to the resolving power of an optical telescope with a diameter larger than one Astronomical Unit!

  10. Survey of candidate gamma-ray sources at TeV energies using a high-resolution Cerenkov imaging system - 1988-1991

    NASA Technical Reports Server (NTRS)

    Reynolds, P. T.; Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Fegan, D. J.; Hillas, A. M.; Lamb, R. C.; Lang, M. J.; Lawrence, M. A.; Lewis, D. A.

    1993-01-01

    The steady TeV gamma-ray emission from the Crab Nebula has been used to optimize the sensitivity of the Whipple Observatory atmospheric Cerenkov imaging telescope. Using this method, which is of order 20 times more sensitive than the standard method using a simple non-imaging detector, it is possible to detect the Crab Nebula at a significance level in excess of 6 standard deviations (6 sigma) in under 1 hr on source (with a corresponding time observing a background comparison region); a source one-tenth the strength of the Crab Nebula can be detected at the 4 sigma level after 40 hr on the source (and 40 hr on a background region). A variety of sources have been monitored using this technique over the period 1988-1991, but none were detected apart from the Crab Nebula. Upper limits are presented which in many instances are a factor of 10 below the flux of the Crab Nebula. These upper limits assume steady emission from the source and cannot rule out sporadic gamma-ray emission with short duty cycles.

  11. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  12. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  13. SuperAGILE and Gamma Ray Bursts

    SciTech Connect

    Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco; Barbiellini, Guido; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo

    2006-05-19

    The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

  14. Nucleosynthesis and astrophysical gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1987-01-01

    The HEAO-3 gamma ray spectrometer has provided evidence in the quest for the understanding of complex element formation in the universe with the discovery of Al-26 in the interstellar medium. It has demonstrated that the synthesis of intermediate mass nuclei is currently going on in the galaxy. This discovery was confirmed by the Solar Maximum Mission. The flux is peaked near the galactic center and indicates about 3 solar masses of Al-26 in the interstellar medium, with an implied ratio of Al-26/Al-27 = .00001. Several possible distributions were studied but the data gathered thus far do not allow discrimination between them. It is felt that only the spaceflight of a high resolution gamma ray spectrometer with adequate sensitivity will ultimately resolve the issue of the source of this material.

  15. Gamma ray spectroscopic measurements of Mars.

    PubMed

    Metzger, A E; Arnold, J R

    1970-06-01

    A gamma ray spectrometer placed in orbit around Mars is expected to yield significant compositional data which can be related to the evolution of that planet. Components of the observable gamma ray flux come from the Martian surface, galactic and intergalactic space, and the spacecraft itself. The flux can be detected by a scintillation crystal or solid state detector, either of which combines efficiency of detection with energy resolution, and returns information to the earth as a pulse height distribution in order to detect characteristic energy line structure. The data will be evaluated for evidence of elemental differentiation with reference to terrestrial, meteoritic, solar, and lunar abundances. A lengthy mission will allow the surface of Mars to be mapped in a search for possible correlations between composition and topography or albedo. PMID:20076376

  16. Gamma rays at airplane altitudes

    SciTech Connect

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J. )

    1990-03-20

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes.

  17. Gamma Rays from Dark Matter

    E-print Network

    R. J. Protheroe

    2000-11-02

    I give a brief review of high energy gamma-ray signatures of dark matter. The decay of massive $X$-particles and subsequent hadronization have been suggested as the origin of the highest energy cosmic rays. Propagation over cosmological distances to Earth (as would be the case in some topological defect origin models for the $X$-particles) results in potentially observable gamma-ray fluxes at GeV energies. Massive relic particles on the other hand, would cluster in galaxy halos, including that of our Galaxy, and may give rise to anisotropic gamma ray and cosmic ray signals at ultra high energies. Future observations above 100 Gev of gamma rays due to WIMP annihilation in the halo of the Galaxy may be used to place constraints on supersymmetry parameter space.

  18. Improvement of {gamma}-ray energy resolution of LaBr{sub 3}:Ce{sup 3+} scintillation detectors by Sr{sup 2+} and Ca{sup 2+} co-doping

    SciTech Connect

    Alekhin, M. S.; Haas, J. T. M. de; Khodyuk, I. V.; Dorenbos, P.; Kraemer, K. W.; Menge, P. R.; Ouspenski, V.

    2013-04-22

    Commercially available LaBr{sub 3}:5% Ce{sup 3+} scintillators show with photomultiplier tube readout about 2.7% energy resolution for the detection of 662 keV {gamma}-rays. Here we will show that by co-doping LaBr{sub 3}:Ce{sup 3+} with Sr{sup 2+} or Ca{sup 2+} the resolution is improved to 2.0%. Such an improvement is attributed to a strong reduction of the scintillation light losses that are due to radiationless recombination of free electrons and holes during the earliest stages (1-10 ps) inside the high free charge carrier density parts of the ionization track.

  19. Gamma-ray measurements at the WNR white neutron source

    SciTech Connect

    Nelson, R.O.; Wender, S.A.; Mayo, D.R.

    1994-12-31

    Photon production data have been acquired in the incident neutron energy range, 1 < E{sub n} < 400 MeV, for a number of target nuclei, gamma-ray energy ranges, and reactions, using the continuous-energy neutron beam of the WNR facility at Los Alamos. Gamma-ray production measurements using high resolution Ge detectors have been employed for gamma-rays in the energy range, 0.1 < E{sub {gamma}} < 10 MeV. These measurements allow identification of reactions from the known energies of the gamma-ray transitions between low-lying states in the final nucleus. Some of the targets studied include: N, O, Al, Na, {sup 56}Fe, and {sup 207,208}Pb. These data are useful both for testing nuclear reaction models at intermediate energies and for numerous applied purposes. BGO detectors do not have the good energy resolution of Ge detectors, but have much greater detection efficiency for gamma rays with energies greater than a few MeV. We have used an array of 5 BGO detectors to measure cross sections and angular distributions for photon production from C and N. A large, well-shielded BGO detector has been used to measure fast neutron capture in the giant resonance region with a maximum gamma-ray energy of 52 MeV. We present results of our study of the isovector giant quadrupole resonance in {sup 41}Ca via these capture measurements. Recent measurements of inclusive photon spectra from our neutron proton Bremsstrahlung experiment have been made using a gamma-ray telescope to detect gamma-rays in the energy range, 40 < E{sub {gamma}} < 300 MeV. This detector is briefly described. The advantages and disadvantages of these detector systems are discussed using examples from our measurements. The status of current measurements is presented.

  20. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Isabelle Grenier

    2009-04-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  1. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Grenier, Isabelle

    2009-04-01

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  2. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema

    Isabelle Grenier

    2010-01-08

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  3. Multicavity X-Ray Fabry-Perot Resonance with Ultrahigh Resolution and Contrast

    SciTech Connect

    Huang X. R.; Siddons D.; Macrander, A.T.; Peng, R.W.; Wu, X.S.

    2012-05-31

    Realization of x-ray Fabry-Perot (FP) resonance in back-Bragg-reflection crystal cavities has been proposed and explored for many years, but to date no satisfactory performance has been achieved. Here we show that single-cavity crystal resonators intrinsically have limited finesse and efficiency. To break this limit, we demonstrate that monolithic multicavity resonators with equal-width cavities and specific plate thickness ratios can generate ultrahigh-resolution FP resonance with high efficiency, steep peak tails, and ultrahigh contrast simultaneously. The resonance mechanism is similar to that of sequentially cascaded single-cavity resonators. The ultranarrow-bandwidth FP resonance is anticipated to have various applications, including modern ultrahigh-resolution or precision x-ray monochromatization, spectroscopy, coherence purification, coherent diffraction, phase contrast imaging, etc.

  4. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  5. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  6. Elemental mapping of the moon using gamma rays : past, present, and future /

    SciTech Connect

    Reedy, R. C.

    2001-01-01

    The energies and intensities of gamma rays From a planetary surface can be used to infer the elemental composition of an object with no or a thin atmosphere. The Apollo gamma-ray spectrometers in 1972 and 1973 produced many of the results for the distribution of elements in the Moon that are now generally well accepted. Lunar Prospector in 1998 and 1999 globally mapped the Moon with gamma rays and neutrons. Both missions used spectrometers with poor energy resolution ({approx}8-10%). The Japanese plan to send a high-resolution germanium gamma-ray spectrometer to the Moon in about 2004 on their SELENE mission. However, little has been done since the 1970s on the models used to unfold planetary gamma-ray spectra. More work needs to be done on understanding what to expect in future gamma-ray spectra and how to unfold such data.

  7. Ultrahigh-speed imaging of the rat retina using ultrahigh-resolution spectral/Fourier domain OCT

    NASA Astrophysics Data System (ADS)

    Liu, Jonathan J.; Potsaid, Benjamin; Chen, Yueli; Gorczynska, Iwona; Srinivasan, Vivek J.; Duker, Jay S.; Fujimoto, James G.

    2010-02-01

    We performed OCT imaging of the rat retina at 70,000 axial scans per second with ~3 ?m axial resolution. Three-dimensional OCT (3D-OCT) data sets of the rat retina were acquired. The high speed and high density data sets enable improved en face visualization by reducing eye motion artifacts and improve Doppler OCT measurements. Minimal motion artifacts were visible and the OCT fundus images offer more precise registration of individual OCT images to retinal fundus features. Projection OCT fundus images show features such as the nerve fiber layer, retinal capillary networks and choroidal vasculature. Doppler OCT images and quantitative measurements show pulsatility in retinal blood vessels. Doppler OCT provides noninvasive in vivo quantitative measurements of retinal blood flow properties and may benefit studies of diseases such as glaucoma and diabetic retinopathy. Ultrahigh speed imaging using ultrahigh resolution spectral / Fourier domain OCT promises to enable novel protocols for measuring small animal retinal structure and retinal blood flow. This non-invasive imaging technology is a promising tool for monitoring disease progression in rat and mouse models to assess ocular disease pathogenesis and response to treatment.

  8. Theories of. gamma. -ray bursts

    SciTech Connect

    Katz, J.I.

    1983-01-01

    ..gamma..-ray bursts have remained an enigma for a decade. This is attributable to the difficulty of obtaining accurate positions, the low duty cycle of burst sources which prevents planned observations, and their low mean power which rules out arguments based on gross energetics. Several lines of evidence now point to an origin in neutron star magnetospheres, confirming early speculations largely based on the availability of high energy density. The evidence includes spectral features interpreted as cyclotron and gravitationally redshifted annihilation lines, and temporal periodicity interpreted as rotation. The reason for the outbursts remains as much a mystery as when they were first discovered. It is unclear whether ..gamma..-ray bursters are located in binary stars, or whether this is incidental or essential to their activity. It is not known if there is any evolutionary connection or physical resemblance between ..gamma..-ray bursters and pulsars or accretional ..gamma..-ray sources. Some of the problems which arise in constructing models for ..gamma..-ray bursters are discussed, with particular attention to the event of March 5, 1979, physical processes at high energy density, and the role of electron-positron pairs in producing line and continuum radiation. 21 references.

  9. VALIDATION AND EVALUATION OF QUIKSCAT ULTRA-HIGH RESOLUTION WIND RETRIEVAL IN THE GULF OF MAINE

    E-print Network

    Long, David G.

    -mail: amanda.plagge@unh.edu D. G. Long Brigham Young University Electrical Engineering Department ABSTRACT Researchers at Brigham Young University have created an ex- perimental 2.5 km ultra-high resolution (UHR) wind are compli- cated by land-ocean and atmosphere-ocean coupling in the coastal zone. Currently, satellite wind

  10. A Comparison of Hurricane Eye Determination Using Standard and Ultra-High Resolution

    E-print Network

    Long, David G.

    A Comparison of Hurricane Eye Determination Using Standard and Ultra-High Resolution QuikSCAT Winds of hurricanes. I. INTRODUCTION Space-borne scatterometers such as SeaWinds on QuikSCAT are instruments designed these is the observation and tracking of tropical cyclones including hurricanes. Several fea- tures of interest

  11. Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth's

    E-print Network

    Loss, Daniel

    LETTERS Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth spectroscopy2 in the Earth's magnetic field. We show that in the Earth's field the transverse relaxation time T electronics Data acquisition d.c. transmission coil Earth's field N S B0 B0 = 1 T Figure 1 Setup of mobile

  12. Ultrahigh-resolution FT-ICR mass spectrometry characterization of a-pinene ozonolysis SOA

    EPA Science Inventory

    Secondary organic aerosol (SOA) of ?-pinene ozonolysis with and without hydroxyl radical scavenging hexane was characterized by ultrahigh-resolution. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Molecular formulas for more than 900 negative ions were i...

  13. CAT-scan analysis of sedimentary sequences: An ultrahigh-resolution paleoclimatic tool

    E-print Network

    CAT-scan analysis of sedimentary sequences: An ultrahigh-resolution paleoclimatic tool Guillaume St Keywords: CAT-scan Sediments Climatic oscillations Postglacial Glaciomarine Holocene Sangamonian St the ones observed with the relatively short instrumental records. In this paper, we show that CAT

  14. LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS

    SciTech Connect

    Fynbo, J. P. U.; Malesani, D.; Vreeswijk, P. M.; Hjorth, J.; Sollerman, J.; Thoene, C. C.; Jakobsson, P.; Bjoernsson, G.; De Cia, A.; Prochaska, J. X.; Nardini, M.; Chen, H.-W.; Bloom, J. S.; Castro-Tirado, A. J.; Gorosabel, J.; Christensen, L.; Fruchter, A. S.

    2009-12-01

    We present a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured. Our first objective is to measure the redshifts of the bursts. For the majority (90%) of the afterglows, the redshifts have been determined from the spectra. We provide line lists and equivalent widths (EWs) for all detected lines redward of Ly{alpha} covered by the spectra. In addition to the GRB absorption systems, these lists include line strengths for a total of 33 intervening absorption systems. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray-selected statistical sample of Swift bursts with optimal conditions for ground-based follow-up from the period 2005 March to 2008 September; 146 bursts fulfill our sample criteria. We derive the redshift distribution for the statistical (X-ray selected) sample and conclude that less than 18% of Swift bursts can be at z > 7. We compare the high-energy properties (e.g., {gamma}-ray (15-350 keV) fluence and duration, X-ray flux, and excess absorption) for three subsamples of bursts in the statistical sample: (1) bursts with redshifts measured from OA spectroscopy; (2) bursts with detected optical and/or near-IR afterglow, but no afterglow-based redshift; and (3) bursts with no detection of the OA. The bursts in group (1) have slightly higher {gamma}-ray fluences and higher X-ray fluxes and significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fractions of dark bursts, defined as bursts with an optical to X-ray slope {beta}{sub OX} < 0.5, is 14% in group (1), 38% in group (2), and >39% in group (3). For the full sample, the dark burst fraction is constrained to be in the range 25%-42%. From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due to a bias against the most dusty sight lines. This should be taken into account when determining, e.g., the redshift or metallicity distribution of GRBs and when using GRBs as a probe of star formation. Finally, we characterize GRB absorption systems as a class and compare them to QSO absorption systems, in particular the damped Ly{alpha} absorbers (DLAs). On average GRB absorbers are characterized by significantly stronger EWs for H I as well as for both low and high ionization metal lines than what is seen in intervening QSO absorbers. However, the distribution of line strengths is very broad and several GRB absorbers have lines with EWs well within the range spanned by QSO-DLAs. Based on the 33 z > 2 bursts in the sample, we place a 95% confidence upper limit of 7.5% on the mean escape fraction of ionizing photons from star-forming galaxies.

  15. Time correlations between low and high energy gamma rays from discrete sources

    NASA Technical Reports Server (NTRS)

    Ellsworth, R. W.

    1995-01-01

    Activities covered the following areas: (1) continuing analysis of the Cygnus Experiment data on the shadowing of cosmic rays by the moon and sun, which led to a direct confirmation of the angular resolution of the CYGNUS EAS array; and (2) development of analysis methods for the daily search overlapping with EGRET targets. To date, no steady emission of ultrahigh energy (UHE) gamma rays from any source has been detected by the Cygnus Experiment, but some evidence for sporadic emission had been found. Upper limits on steady fluxes from 49 sources in the northern hemisphere have been published. In addition, a daily search of 51 possible sources over the interval April 1986 to June 1992 found no evidence for emission. From these source lists, four candidates were selected for comparison with EGRET data.

  16. Application of Maximum Entropy Deconvolution to ${\\gamma}$-ray Skymaps

    E-print Network

    Raab, Susanne

    2015-01-01

    Skymaps measured with imaging atmospheric Cherenkov telescopes (IACTs) represent the real source distribution convolved with the point spread function of the observing instrument. Current IACTs have an angular resolution in the order of 0.1$^\\circ$ which is rather large for the study of morphological structures and for comparing the morphology in $\\gamma$-rays to measurements in other wavelengths where the instruments have better angular resolutions. Serendipitously it is possible to approximate the underlying true source distribution by applying a deconvolution algorithm to the observed skymap, thus effectively improving the instruments angular resolution. From the multitude of existing deconvolution algorithms several are already used in astronomy, but in the special case of $\\gamma$-ray astronomy most of these algorithms are challenged due to the high noise level within the measured data. One promising algorithm for the application to $\\gamma$-ray data is the Maximum Entropy Algorithm. The advantages of th...

  17. Distributions of secondary muons at sea level from cosmic gamma rays below 10 TeV

    E-print Network

    J. Poirier; S. Roesler; A. Fasso'

    2001-04-26

    The FLUKA Monte Carlo program is used to predict the distributions of the muons which originate from primary cosmic gamma rays and reach sea level. The main result is the angular distribution of muons produced by vertical gamma rays which is necessary to predict the inherent angular resolution of any instrument utilizing muons to infer properties of gamma ray primaries. Furthermore, various physical effects are discussed which affect these distributions in differing proportions.

  18. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  19. Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography.

    PubMed

    Chen, Julian C-H; Hanson, B Leif; Fisher, S Zoë; Langan, Paul; Kovalevsky, Andrey Y

    2012-09-18

    The 1.1 ?, ultrahigh resolution neutron structure of hydrogen/deuterium (H/D) exchanged crambin is reported. Two hundred ninety-nine out of 315, or 94.9%, of the hydrogen atom positions in the protein have been experimentally derived and resolved through nuclear density maps. A number of unconventional interactions are clearly defined, including a potential O?H…? interaction between a water molecule and the aromatic ring of residue Y44, as well as a number of potential C?H…O hydrogen bonds. Hydrogen bonding networks that are ambiguous in the 0.85 ? ultrahigh resolution X-ray structure can be resolved by accurate orientation of water molecules. Furthermore, the high resolution of the reported structure has allowed for the anisotropic description of 36 deuterium atoms in the protein. The visibility of hydrogen and deuterium atoms in the nuclear density maps is discussed in relation to the resolution of the neutron data. PMID:22949690

  20. Gamma rays from molecular clouds

    E-print Network

    Stefano Gabici; Felix Aharonian; Pasquale Blasi

    2006-10-02

    It is believed that the observed diffuse gamma ray emission from the galactic plane is the result of interactions between cosmic rays and the interstellar gas. Such emission can be amplified if cosmic rays penetrate into dense molecular clouds. The propagation of cosmic rays inside a molecular cloud has been studied assuming an arbitrary energy and space dependent diffusion coefficient. If the diffusion coefficient inside the cloud is significantly smaller compared to the average one derived for the galactic disk, the observed gamma ray spectrum appears harder than the cosmic ray spectrum, mainly due to the slower penetration of the low energy particles towards the core of the cloud. This may produce a great variety of gamma ray spectra.

  1. High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope

    NASA Astrophysics Data System (ADS)

    Kitamura, Shin'ichi; Iwatsuki, Masashi

    1998-06-01

    An ultrahigh vacuum scanning Kelvin probe force microscope (UHV SKPM) utilizing the gradient of electrostatic force, was developed based on an ultrahigh vacuum noncontact atomic force microscope (NC-AFM) capable of atomic level imaging, and used for simultaneous observation of contact potential difference (CPD) and NC-AFM images. CPD images of a Si(111) surface with Au deposited, clearly showed the potential difference in phases between 7×7 and 5×2 structures. When Ag was deposited as a submonolayer on the Si(111) 7×7 reconstructed surface, the atomic level lateral resolution was observed in CPD images as well as in NC-AFM topographic images.

  2. Gamma-ray Imaging Methods

    SciTech Connect

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  3. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  4. Cosmogenic gamma rays and the composition of cosmic rays

    SciTech Connect

    Ahlers, Markus; Salvado, Jordi

    2011-10-15

    We discuss the prospects of detecting the sources of ultrahigh energy (UHE) cosmic ray (CR) nuclei via their emission of cosmogenic {gamma} rays in the GeV to TeV energy range. These {gamma} rays result from electromagnetic cascades initiated by high energy photons, electrons, and positrons that are emitted by CRs during their propagation in the cosmic radiation background and are independent of the simultaneous emission of {gamma} rays in the vicinity of the source. The corresponding production power by UHE CR nuclei (with mass number A and charge Z) is dominated by pion photo production ({proportional_to}A) and Bethe-Heitler pair production ({proportional_to}Z{sup 2}). We show that the cosmogenic {gamma}-ray signal from a single steady UHE CR source is typically more robust with respect to variations of the source composition and injection spectrum than the accompanying signal of cosmogenic neutrinos. We study the diffuse emission from the sum of extragalactic CR sources as well as the point-source emission of the closest sources.

  5. The structure and content of the galaxy and galactic gamma rays. [conferences

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Stecker, F. W.

    1976-01-01

    Papers are presented dealing with galactic structure drawing on all branches of galactic astronomy with emphasis on the implications of the new gamma ray observations. Topics discussed include: (1) results from the COS-B gamma ray satellite; (2) results from SAS-2 on gamma ray pulsar, Cygnus X-3, and maps of the galactic diffuse flux; (3) recent data from CO surveys of the galaxy; (4) high resolution radio surveys of external galaxies; (5) results on the galactic distribution of pulsars; and (6) theoretical work on galactic gamma ray emission.

  6. Design of a compact spectrometer for high-flux MeV gamma-ray beams

    SciTech Connect

    Corvan, D. J. Sarri, G.; Zepf, M.

    2014-06-15

    A novel design for a compact gamma-ray spectrometer is presented. The proposed system allows for spectroscopy of high-flux multi-MeV gamma-ray beams with MeV energy resolution in a compact design. In its basic configuration, the spectrometer exploits conversion of gamma-rays into electrons via Compton scattering in a low-Z material. The scattered electron population is then spectrally resolved using a magnetic spectrometer. The detector is shown to be effective for gamma-ray energies between 3 and 20 MeV. The main properties of the spectrometer are confirmed by Monte Carlo simulations.

  7. Recommended Priorities for NASA's Gamma Ray Astronomy Program 1999-2013

    NASA Technical Reports Server (NTRS)

    Carol, Ladd

    1999-01-01

    The Gamma-Ray Astronomy Program Working Group (GRAPWG) recommends priorities for the NASA Gamma-Ray Astronomy Program. The highest priority science topic is nuclear astrophysics and sites of gamma ray line emission. Other high priority topics are gamma ray bursts, hard x-ray emission from accreting black holes and neutron stars, the Advanced Compton Telescope (ACT), the High-resolution Spectroscopic Imager (HSI), and the Energetic X-ray Imaging Survey Telescope (EXIST). The recommendations include special consideration for technology development, TeV astronomy, the ultra-long duration balloon (ULDB) program, the International Space Station, optical telescope support, and data analysis and theory.

  8. Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon

    E-print Network

    K. Ni; E. Aprile; K. L. Giboni; P. Majewski; M. Yamashita

    2006-08-04

    Scintillation light from gamma ray irradiation in liquid xenon is detected by two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV light reflector material, PTFE, is used to optimize the light collection efficiency. The detector gives a high light yield of 6 photoelectron per keV (pe/keV), which allows efficient detection of the 122 keV gamma-ray line from Co-57, with a measured energy resolution of (8.8+/-0.6)% (sigma). The best achievable energy resolution, by removing the instrumental fluctuations, from liquid xenon scintillation light is estimated to be around 6-8% (sigma) for gamma-ray with energy between 662 keV and 122 keV.

  9. Gamma-ray spectrometer utilizing xenon at high pressure

    SciTech Connect

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-08-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166{degrees}C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen.

  10. Quasars, blazars, and gamma rays.

    PubMed

    Dermer, C D; Schlickeiser, R

    1992-09-18

    Before the launch of the Compton Gamma Ray Observatory (CGRO), the only source of >100-megaelectron volt (MeV) gamma radiation known outside our galaxy was the quasar 3C 273. After less than a year of observing, 13 other extragalactic sources have been discovered with the Energetic Gamma Ray Experiment Telescope (EGRET) on CGRO, and it is expected that many more will be found before the full sky survey is complete. All 14 sources show evidence of blazar properties at other wavelengths; these properties include high optical polarization, extreme optical variability, flat-spectrum radio emission associated with a compact core, and apparent superluminal motion. Such properties are thought to be produced by those few, rare extragalactic radio galaxies and quasars that are favorably aligned to permit us to look almost directly down a relativistically outflowing jet of matter expelled from a supermassive black hole. Although the origin of the gamma rays from radio jets is a subject of much controversy, the gamma-ray window probed by CGRO is providing a wealth of knowledge about the central engines of active galactic nuclei and the most energetic processes occurring in nature. PMID:17841159

  11. Skeletons and gamma ray radiosurgery

    E-print Network

    Murty, Ram

    Skeletons and gamma ray radiosurgery The Mathematics of Shapes #12;What is gamma-knife surgery be targeted, the problem can be formulated mathematically as follows: #12;The skeleton of a region Let |X-Y| denote the Euclidean distance between two points in the plane or in space. #12;Two dimensional skeletons

  12. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  13. Gamma-ray camera flyby

    SciTech Connect

    2010-01-01

    Animation based on an actual classroom demonstration of the prototype CCI-2 gamma-ray camera's ability to image a hidden radioactive source, a cesium-137 line source, in three dimensions. For more information see http://newscenter.lbl.gov/feature-stories/2010/06/02/applied-nuclear-physics/.

  14. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  15. POSITION SENSITIVE GERMANIUM DETECTORS FOR GAMMA-RAY IMAGING AND SPECTROSCOPY

    EPA Science Inventory

    Gamma-ray imaging with position-sensitive germanium detectors offers the advantages of excellent energy resolution, high detection efficiency, and potentially good sptial resolution. The development of the amorphous-semiconductor electrical contact technology for germanium detec...

  16. Light Curves of Swift Gamma Ray Bursts

    E-print Network

    Paolo Cea

    2006-09-22

    Recent observations from the Swift gamma-ray burst mission indicate that a fraction of gamma ray bursts are characterized by a canonical behaviour of the X-ray afterglows. We present an effective theory which allows us to account for X-ray light curves of both (short - long) gamma ray bursts and X-ray rich flashes. We propose that gamma ray bursts originate from massive magnetic powered pulsars.

  17. PROGRESS ON MARGIE, A GAMMA-RAY BURST ULTRA-LONG DURATION BALLOON MISSION

    SciTech Connect

    D. BAND; ET AL

    2001-02-01

    We are designing the Minute of Arc Resolution Gamma-ray Imaging Experiment (MARGIE) as a 100 day Ultra Long Duration Balloon (ULDB) mission to: (1) detect and localize gamma-ray bursts; and (2) survey the hard X-ray sky. Major advances in designing the CZT detectors increase the sensitivity to higher energy. Design of the gondola has also progressed.

  18. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  19. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (editor); Ramaty, R. (editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  20. HIGH-RESOLUTION X-RAY OBSERVATIONS OF THE PULSAR WIND NEBULA ASSOCIATED WITH THE GAMMA-RAY SOURCE HESS J1640-465

    SciTech Connect

    Lemiere, A.; Slane, P.; Murray, S.; Gaensler, B. M.

    2009-12-01

    We present a Chandra X-ray observation of the very high energy gamma-ray source HESS J1640 - 465. We identify a point source surrounded by a diffuse emission that fills the extended object previously detected by XMM-Newton at the centroid of the HESS source, within the shell of the radio supernova remnant (SNR) G338.3 - 0.0. The morphology of the diffuse emission strongly resembles that of a pulsar wind nebula (PWN) and extends asymmetrically to the southwest of a point source presented as a potential pulsar. The spectrum of the putative pulsar and compact nebula are well characterized by an absorbed power-law model which, for a reasonable N{sub H} value of 14 x 10{sup 22} cm{sup -2}, exhibit an index of 1.1 and 2.5 respectively, typical of Vela-like PWNe. We demonstrate that, given the H I absorption features observed along the line of sight, the SNR and the H II surrounding region are probably connected and lie between 8 kpc and 13 kpc. The resulting age of the system is between 10 and 30 kyr. For a 10 kpc distance (also consistent with the X-ray absorption) the 2-10 keV X-ray luminosities of the putative pulsar and nebula are L{sub PSR} approx 1.3 x 10{sup 33} d {sup 2}{sub 10kpc} erg s{sup -1} and L{sub PWN} approx 3.9 x 10{sup 33} d {sup 2}{sub 10} erg s{sup -1} (d {sub 10} = d/10 kpc). Both the flux ratio of L {sub PWN}/L{sub PSR} approx 3.4 and the total luminosity of this system predict a pulsar spin-down power around E-dotapprox4 x 10{sup 36} erg s{sup -1}. We finally consider several reasons for the asymmetries observed in the PWN morphology and discuss the potential association with the HESS source in terms of a time-dependent one-zone leptonic model.

  1. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  2. The Advanced Gamma-ray Imaging System (AGIS) - Simulation Studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Vassiliev, V. V.; Funk, S.; Konopelko, A.

    2008-12-24

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  3. Ultrahigh Resolution Simulations of Mode Converted Ion Cyclotron Waves and Lower Hybrid Waves

    E-print Network

    Wright, John C.

    Ultrahigh Resolution Simulations of Mode Converted Ion Cyclotron Waves and Lower Hybrid Waves J. C processors admits us to problems in the lower hybrid range of frequencies. Key words: TORIC ICRF FastWave IBW Bernstein LowerHybrid Simulation FullWave PACS: 52.25.Mq 52.35.H 52.50.Sw 52.65.-y 1 Contact Address PSFC NW

  4. Technical evaluation of software for gamma-ray logging system

    SciTech Connect

    Stromswold, D.C.

    1994-05-01

    This report contains results of a technical review of software, identified as LGCALC, that processes data collected by a high-resolution gamma-ray borehole logging system. The software presently operates within Westinghouse Hanford Company, Department of Geosciences, to process data collected by the Radionuclide Logging System. The software has been reviewed for its suitability for processing data to be collected by new high-resolution gamma-ray logging trucks scheduled to begin operational tests within Westinghouse Tank Waste Remediation Systems during 1994. Examination of the program code and hands-on operational tests have shown that this software is suitable for its intended use of processing high-resolution gamma-ray data obtained from borehole logging. Most of the code requires no changes, but in a few limited cases, suggestions have been made to correct errors or improve operation. Section 4 describes these changes. The technical review has confirmed the appropriateness, correctness, completeness, and coding accuracy of algorithms used to process spectral gamma-ray data, leading to a calculation of subsurface radionuclide contaminants. Running the program with test data from calibration models has confirmed that the program operates correctly. Comparisons with hand calculations have shown the correctness of the output from the program, based on known input data. Section 3 describes these tests. The recommended action is to make the near term programming changes suggested in Section 4.1 and then use the LGCALC analysis program with the new high-resolution logging systems once they have been properly calibrated.

  5. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  6. Gamma-ray imaging with coaxial HPGe detector

    SciTech Connect

    Niedermayr, T; Vetter, K; Mihailescu, L; Schmid, G J; Beckedahl, D; Kammeraad, J; Blair, J

    2005-04-12

    We report on the first experimental demonstration of Compton imaging of gamma rays with a single coaxial high-purity germanium (HPGe) detector. This imaging capability is realized by two-dimensional segmentation of the outside contact in combination with digital pulse-shape analysis, which enables to image gamma rays in 4{pi} without employing a collimator. We are able to demonstrate the ability to image the 662keV gamma ray from a {sup 137}Cs source with preliminary event selection with an angular accuracy of 5 degree with an relative efficiency of 0.2%. In addition to the 4{pi} imaging capability, such a system is characterized by its excellent energy resolution and can be implemented in any size possible for Ge detectors to achieve high efficiency.

  7. The Fermi Gamma-ray Burst Monitor Instrument

    SciTech Connect

    Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.; Meegan, C. A.; Lichti, G. G.; Diehl, R.; Greiner, J.; Kienlin, A. von; Fishman, G. J.; Kouveliotou, C.; Kippen, R. M.

    2009-05-25

    The Fermi Gamma-ray Space Telescope launched on June 11, 2008 carries two experiments onboard--the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The primary mission of the GBM instrument is to support the LAT in observing {gamma}-ray bursts (GRBs) by providing low-energy measurements with high temporal and spectral resolution as well as rapid burst locations over a large field-of-view ({>=}8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 8 keV to 40 MeV, the region of the spectral turnover in most GRBs. The GBM detector signals are processed by the onboard digital processing unit (DPU). We describe some of the hardware features of the DPU and its expected limitations during intense triggers.

  8. Pulsed Photofission Delayed Gamma Ray Detection for Nuclear Material Identification

    SciTech Connect

    John Kavouras; Xianfei Wen; Daren R. Norman; Dante R. Nakazawa; Haori Yang

    2012-11-01

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. High-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. After photofission reactions, delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the fission signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. Isotopic composition measurement methods based on delayed gamma ray spectroscopy will be the primary focus of this work.

  9. Observational evidence for extraterrestrial gamma-ray line sources

    NASA Technical Reports Server (NTRS)

    Jacobson, A. S.; Ling, J. C.; Mahoney, W. A.; Willett, J. B.

    1978-01-01

    During the 1974 balloon flight of a high spectral resolution gamma-ray telescope, observing in the energy range of about 50 keV to 10 Mev, evidences were gathered for two cosmic sources of gamma-ray lines. These are a 73 keV line feature superimposed on a power law continuum spectrum in the 55 to 300 keV range from the Crab nebula; and a flare-like event lasting about twenty minutes, during which four intense gamma-ray lines were measured at .41, 1.79, 2.22 and 5.95 MeV. The properties and operation of the detector used are described. The measured spectrum and count rate are discussed.

  10. Miniature gamma-ray camera for tumor localization

    SciTech Connect

    Lund, J.C.; Olsen, R.W.; James, R.B.; Cross, E.

    1997-08-01

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display.

  11. Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm

    NASA Astrophysics Data System (ADS)

    Povazay, B.; Bizheva, K.; Hermann, B.; Unterhuber, A.; Sattmann, H.; Fercher, A. F.; Drexler, W.; Schubert, C.; Ahnelt, P. K.; Mei, M.; Holzwarth, R.; Wadsworth, W. J.; Knight, J. C.; Russell, P. St. J.

    2003-08-01

    In this article the ability of ultrahigh resolution ophthalmic optical coherence tomography (OCT) to image small choroidal blood vessels below the highly reflective and absorbing retinal pigment epithelium is demonstrated for the first time. A new light source (lc= 1050 nm, Dl = 165 nm, Pout= 10 mW), based on a photonic crystal fiber pumped by a compact, self-starting Ti:Al2O3 laser has therefore been developed. Ex-vivo ultrahigh resolution OCT images of freshly excised pig retinas acquired with this light source demonstrate enhanced penetration into the choroid and better visualization of choroidal vessels as compared to tomograms acquired with a state-of-the art Ti:Al2O3 laser (Femtolasers Compact Pro, lc= 780 nm, Dl= 160 nm, Pout= 400 mW), normally used in clinical studies for in vivo ultrahigh resolution ophthalmic OCT imaging. These results were also compared with retinal tomograms acquired with a novel, spectrally broadened fiber laser (MenloSystems, lc= 1350 nm, Dl= 470 nm, Pout = 4 mW) permitting even greater penetration in the choroid. Due to high water absorption at longer wavelengths retinal OCT imaging at ~1300 nm may find applications in animal ophthalmic studies. Detection and follow-up of choroidal neovascularization improves early diagnosis of many retinal pathologies, e.g. age-related macular degeneration or diabetic retinopathy and can aid development of novel therapy approaches.

  12. Gamma rays and cosmic rays at Venus: The Pioneer Venus gamma ray detector and considerations for future measurements

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Lawrence, David J.

    2015-05-01

    We draw attention to, and present a summary archive of the data from, the Pioneer Venus Orbiter Gamma-ray Burst Detector (OGBD), an instrument not originally conceived with Venus science in mind. We consider the possibility of gamma-ray flashes generated by lightning and model the propagation of gamma rays in the Venusian atmosphere, finding that if gamma rays originate at the upper range of reported cloud top altitudes (75 km altitude), they may be attenuated by factors of only a few, whereas from 60 km altitude they are attenuated by over two orders of magnitude. The present archive is too heavily averaged to reliably detect such a source (and we appeal to investigators who may have retained a higher-resolution archive), but the data do provide a useful and unique record of the cosmic ray flux at Venus 1978-1993. We consider other applications of future orbital gamma ray data, such as atmospheric occultations and the detection of volcanic materials injected high in the atmosphere.

  13. Astrophysical Gamma Ray Emission Lines

    E-print Network

    R. Ramaty; R. E. Lingenfelter

    1995-03-10

    We review the wide range of astrophysical observations of gamma ray emission lines and we discuss their implications. We consider line emission from solar flares, the Orion molecular cloud complex, supernovae 1987A and 1991T, the supernova remnants Cas A and Vela, the interstellar medium, the Galactic center region and several Galactic black hole candidates. The observations have important, and often unique, implications on particle acceleration, star formation, processes of nucleosynthesis, Galactic evolution and compact object physics.

  14. Outburst in the Gamma-ray Bright Quasar CTA26

    NASA Astrophysics Data System (ADS)

    Foord, Adi; Jorstad, S. G.; Marscher, A. P.

    2014-01-01

    We analyze multi-waveband space- and ground-based observations of the z=0.852 quasar CTA26 (PKS 0336-019) over a 6-year time span that includes two gamma-ray outbursts. The instruments used include the Fermi Gamma-ray Space Telescope, the Very Long Baseline Array (VLBA), the Perkins Telescope at Lowell Observatory, and a number of other optical telescopes. We cross-correlate the time variations from the different wavebands and compare the timing of the gamma-ray events with changes in the jet seen in VLBA images at 43 GHz, with a resolution of 100 micro-arcseconds, to determine the relationship between the conditions in the jet and the high-energy outbursts. A total of 39 VLBA images were collected from June 2007 to February 2013 at near bimonthly intervals. We analyze the multi-frequency behavior of the quasar during two prominent gamma-ray outbursts, in late 2010 and late 2011. An increase in the flux in the VLBA images during mid to late 2010 marked the appearance of a new superluminal knot that proceeded to emerge from the mm-wave core as a gamma-ray flare erupted. A similar sequence of events occurred almost a year before the outburst in late 2011, although the associated superluminal knot was not as fast. Our analysis shows radio, optical, and gamma-ray fluxes peaking contemporaneously during these two events, with the maximum of the optical/gamma-ray correlation agreeing within a few days, and with the radio peak occurring about 1 month earlier. Each outburst ended after 3 months at gamma-ray energies, while the radio emission decayed more slowly, with a plateau between the two outbursts. We infer the degree of order and geometry of the magnetic field during the outbursts by studying the linear polarization at both radio (in the images) and optical wavelengths. We use the changing positions of the superluminal knots to locate the gamma-ray flares in the parsec-scale jet. Armed with this information, we compare the evolution of the jet of CTA26 with the expectations of current models, such as those that include moving and/or standing shocks in the parsec-scale jet. This research was supported in part by NASA through Fermi Guest Investigator grant NNX11AQ03G.

  15. High-Speed Multipass Coulter Counter with Ultrahigh Resolution.

    PubMed

    Edwards, Martin A; German, Sean R; Dick, Jeffrey E; Bard, Allen J; White, Henry S

    2015-12-22

    Coulter counters measure the size of particles in solution by passing them through an orifice and measuring a resistive pulse, i.e., a drop in the ionic current flowing between two electrodes placed on either side of the orifice. The magnitude of the pulse gives information on the size of the particle; however, resolution is limited by variability in the path of the translocation, due to the Brownian motion of the particle. We present a simple yet powerful modified Coulter counter that uses programmable data acquisition hardware to switch the voltage after sensing the resistive pulse of a nanoparticle passing through the orifice of a nanopipet. Switching the voltage reverses the direction of the driving force on the particle and, when this detect-switch cycle is repeated, allows us to pass an individual nanoparticle through the orifice thousands of times. By measuring individual particles more than 100 times per second we rapidly determine the distribution of the resistive pulses for each particle, which allows us to accurately determine the mean pulse amplitude and deliver considerably improved size resolution over a conventional Coulter counter. We show that single polystyrene nanoparticles can be shuttled back and forth and monitored for minutes, leading to a precisely determined mean blocking current equating to sub-angstrom size resolution. PMID:26549738

  16. In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope.

    PubMed

    Tumlinson, Alexandre R; Povazay, Boris; Hariri, Lida P; McNally, James; Unterhuber, Angelika; Hermann, Boris; Sattmann, Harald; Drexler, Wolfgang; Barton, Jennifer K

    2006-01-01

    Endoscopic ultrahigh-resolution optical coherence tomography (OCT) enables collection of minimally invasive cross-sectional images in vivo, which may be used to facilitate rapid development of reliable mouse models of colon disease as well as assess chemopreventive and therapeutic agents. The small physical scale of mouse colon makes light penetration less problematic than in other tissues and high resolution acutely necessary. In our 2-mm diameter endoscopic time domain OCT system, isotropic ultrahigh-resolution is supported by a center wavelength of 800 nm and full-width-at-half-maximum bandwidth of 150 nm (mode-locked titanium:sapphire laser) combined with 1:1 conjugate imaging of a small core fiber. A pair of KZFSN5/SFPL53 doublets provides excellent color correction to support wide bandwidth throughout the imaging depth. A slight deviation from normal beam exit angle suppresses collection of the strong back reflection at the exit window surface. Our system achieves axial resolution of 3.2 microm in air and 4.4-microm lateral spot diameter with 101-dB sensitivity. Microscopic features too small to see in mouse tissue with conventional resolution systems, including colonic crypts, are clearly resolved. Resolution near the cellular level is potentially capable of identifying abnormal crypt formation and dysplastic cellular organization. PMID:17212526

  17. The Impact of Multiple-Site Interactions on the Energy Resolution of a High-Pressure Xenon Gamma-Ray Spectrometer

    SciTech Connect

    Kiff, Scott D.; He, Zhong

    2007-11-30

    High-pressure xenon (HPXe) ionization chambers have generated interest as a radiation detection medium for purposes requiring good energy resolution, high detection efficiency, and uniform response over a broad temperature range, such as homeland security and well logging applications. These chambers generally exhibit a substantial degradation of the measured energy resolution relative to theoretical limits. This investigation studies the impact of the number of interaction sites in an event sequence on the measured energy resolution using a benchmarked simulation package. The prominence of single and multiple-site interactions is investigated in addition to the photopeak broadening due to each event class. A radial position-sensing technique developed for coplanar-anode HPXe chambers is shown to have benefit for only single-site events.

  18. Gamma-ray astronomy: Nuclear transition region

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1976-01-01

    This monograph reviews the major theoretical and experimental efforts made during the past 12 years in gamma-ray astronomy over the energy range from 10 keV to about 100 MeV, where nuclear-transition lines are expected. Early attempts to detect celestial gamma rays are recounted, mechanisms of gamma-ray line and continuum production are examined, and formulas giving the various possible differential gamma-ray spectral shapes are provided. Predicted fluxes are discussed for solar gamma rays as well as for gamma emission from supernova remnants, supernovae, neutron stars, flare stars, the galactic core and disk, black holes, and diffuse sources. Gamma-ray interactions with matter are analyzed, particularly the photoelectric effect, Compton scattering from free electrons, and pair production in nuclear fields. Significant results are summarized for observations of gamma rays from the sun as well as from point and extended sources within and beyond the Galaxy, including diffuse fluxes and transient gamma-ray bursts. Factors pertaining to the design of gamma-ray astronomy experiments are considered, especially detector background limitations, gamma-ray production within instruments, and present-day detection methods.

  19. Anomalous Thermal Behavior in Microcalorimeter Gamma-Ray Detectors

    SciTech Connect

    Horansky, Robert D.; Beall, James A.; Irwin, Kent D.; Ullom, Joel N.

    2009-12-16

    Improving the resolution of gamma-ray detectors is important for many fields, including determinations of the Lamb shift in atoms with high atomic numbers, nuclear treaty verification, and environmental monitoring. High-purity germanium detectors are currently the tool of choice for precision gamma-ray spectroscopy. The resolution of these detectors is limited to about 500 eV full-width-at-half-maximum at 100 keV by Fano statistics. In comparison, low-temperature microcalorimeters can provide over an order of magnitude improvement in photon resolution. For instance, a gamma-ray microcalorimeter has achieved 25 eV FWHM resolution at 103 keV. These calorimeters consist of two components, a bulk absorber to stop incident gamma rays and a thermometer made from a thin film electrically biased in the superconducting-to-normal phase transition, called a Transition Edge Sensor, or TES. The standard absorber is bulk, superconducting tin. While tin has historically been the best performing absorber, pulse decays in Sn devices are much slower than predicted. We have begun a systematic study of absorber behavior in order to assess and improve response times. This study leverages two capabilities: the ability to microfabricate highly uniform arrays of gamma-ray detectors and the ability to read out many detectors in a single cool-down using SQUID multiplexer circuits. Here, we present two experiments to identify the source of thermal time constants. The first involves varying properties of the Sn absorber including purity, vendor, and crystal grain size. The second examines the role of the other elements in the microcalorimeter assembly.

  20. Ultra-high Resolution Imaging of Cepheid Pulsation

    NASA Astrophysics Data System (ADS)

    Sasselov, D.; Karovska, M.; Marengo, M.

    2004-05-01

    Classical Cepheids continue to provide the most accurate distances in the local group of galaxies. Their value as tracers of medium to recent star formation has been increasing in the past years, as galaxy evolution has matured as a field. Their value arises from the use of their regular radial pulsations. Getting the precise parameters of the pulsation (apart from period and amplitude) is still a difficult und unresolved problem. The coming few years are going to contribute direct interferometric observations of the pulsation of Cepheids. However the basic issues of wave propagation in the Cepheid atmosphere can only be studied with spectroscopic signatures in the optical (e.g., CaII H&K) and UV (e.g., MgII h&k). Significant emission and its variability during the pulsational cycle have been known since the pioneering IUE observations. More recently it was shown that the combination of UV and optical spectral lines trace accurately wave propagation in a Cepheid atmosphere. A significant insights into pulsation processes in Cepheids, and consequently on the pulsation effects on their atmospheres and distance estimates, could be gained from spatially resolved spectroscopic imaging using sub-milliarsecond resolution. We show examples of the advances that can be achieved using a long-baseline space-based UV-Optical interferometer. Work partially supported by NSF grant AST98-76734.

  1. GLAST: Exploring Nature's Highest Energy Processes with the Gamma-ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    Digel, Seth; Myers, J. D.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is an international and multi-agency space mission that will study the cosmos in the energy range 10 keV-300 GeV. Several successful exploratory missions in gamma-ray astronomy led to the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Gamma Ray Observatory (CGRO). Launched in 1991, EGRET made the first complete survey of the sky in the 30 MeV-10 GeV range. EGRET showed the high-energy gamma-ray sky to be surprisingly dynamic and diverse, with sources ranging from the sun and moon to massive black holes at large redshifts. Most of the gamma-ray sources detected by EGRET remain unidentified. In light of the discoveries with EGRET, the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope vastly more capable than instruments flown previously, as well as a secondary instrument to augment the study of gamma-ray bursts. The main instrument, the Large Area Telescope (LAT), will have superior area, angular resolution, field of view, and deadtime that together will provide a factor of 30 or more advance in sensitivity, as well as provide capability for study of transient phenomena. The GLAST Burst Monitor (GBM) will have a field of view several times larger than the LAT and will provide spectral coverage of gamma-ray bursts that extends from the lower limit of the LAT down to 10 keV. The basic parameters of the GBM are compared to those of the Burst and Transient Source Experiment (BATSE) instrument on CGRO in Table 1-2. With the LAT and GBM, GLAST will be a flexible observatory for investigating the great range of astrophysical phenomena best studied in high-energy gamma rays. NASA plans to launch GLAST in late 2005.

  2. Ultrahigh-resolution and non-contact diameter measurement of metallic wire using eddy current sensor

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Hongbo; Feng, Zhihua

    2014-08-01

    This paper proposes a new method using eddy current sensor (ECS) for online non-contact diameter measurement of metallic wires with ultrahigh resolution. A prototype sensor was designed, fabricated, and tested for copper wires with diameters ranging from 1.12 mm to 1.30 mm. A solenoid coil with dimensions of 16 mm long and 2.1 mm in diameter is used as sensing element with a working frequency of 1.3 MHz. With a well-designed bridge, the sensing coil's inductance variation can be detected and the wire's diameter can be calculated. The ECS system demonstrated a dynamic resolution better than 2.2 ?m and a static resolution better than 0.42 nm for a wire with a diameter of 1.3 mm. This non-contact method has competitive advantages over other methods in many aspects, especially in terms of measurement resolution.

  3. Ultrahigh-resolution and non-contact diameter measurement of metallic wire using eddy current sensor.

    PubMed

    Li, Wei; Wang, Hongbo; Feng, Zhihua

    2014-08-01

    This paper proposes a new method using eddy current sensor (ECS) for online non-contact diameter measurement of metallic wires with ultrahigh resolution. A prototype sensor was designed, fabricated, and tested for copper wires with diameters ranging from 1.12 mm to 1.30 mm. A solenoid coil with dimensions of 16 mm long and 2.1 mm in diameter is used as sensing element with a working frequency of 1.3 MHz. With a well-designed bridge, the sensing coil's inductance variation can be detected and the wire's diameter can be calculated. The ECS system demonstrated a dynamic resolution better than 2.2 ?m and a static resolution better than 0.42 nm for a wire with a diameter of 1.3 mm. This non-contact method has competitive advantages over other methods in many aspects, especially in terms of measurement resolution. PMID:25173300

  4. Telescope for X ray and gamma ray studies in astrophysics

    NASA Astrophysics Data System (ADS)

    Weaver, W. D.; Desai, Upendra D.

    1993-10-01

    Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.

  5. Visualization of 3D cell migration using high speed ultrahigh resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Rey, Sara; Harwood, Adrian; Povazay, Boris; Hofer, Bernd; Unterhuber, Angelika; Hermann, Boris; Drexler, Wolfgang

    2009-02-01

    Using high speed ultrahigh resolution optical coherence tomography (OCT) at 800nm, non-invasive 3D cellular imaging has been accomplished. Cellular resolution imaging on and within these types of substrates is not possible with conventional microscopy techniques such as interference contrast microscopy, and requires the use of fluorescent staining. It is possible to achieve data acquisition rates of 20,000 samples per second with OCT which, in combination with its high axial and transverse resolution (>2-3?m), allows it to be used as a non-invasive technique to analyze cell migration in 3D with time. Comparatively high penetration depth also makes OCT a uniquely suited imaging technique for visualization of cells within a 3D construct. In this paper it is demonstrated that it is possible to resolve ~10?m Dictyostelium discoideum cells, a well established and useful model for investigation of cell motility and chemotaxis, in 3D and follow them in time lapse using an 800nm ultrahigh resolution high speed frequency domain based OCT microscope. Ultimately, these visualization techniques could enable monitoring of cell behavior in regenerative medicine, for example tracking of individual cells within a cell scaffold.

  6. Gamma-ray burst reprocessing

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1988-01-01

    A review of three theoretical models for the generation of transient optical emission thought to accompany the gamma-ray bursts is presented. The physics of reprocessing by Compton-heated electrons in the magnetosphere of a highly magnetized neutron star, the surface layers of a companion star, and an accretion disk are discussed. The spectral shapes, time scales, and arrival time delays between low and high energy photons predicted by the models are compared. These predictions are so different that broad band monitoring could be used to indicate which of the three scenarios (if any) is correct.

  7. Ultrahigh-resolution adaptive optics - optical coherence tomography: toward isotropic 3 ?m resolution for in vivo retinal imaging

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Zhang, Yan; Jones, Steven M.; Ferguson, R. Daniel; Choi, Stacey S.; Cense, Barry; Evans, Julia W.; Chen, Diana; Miller, Donald T.; Olivier, Scot S.; Werner, John S.

    2007-02-01

    Ultrahigh axial resolution in adaptive optics - optical coherence tomography (AO-OCT) is fundamentally limited by the intrinsic chromatic aberrations of the human eye. Variation in refractive index of the ocular media with wavelength causes the spectral content of broadband light sources to focus at different depths in the retina for light entering the eye and at the imaging detector for light exiting. This effect has not been previously reported for ultrahigh-resolution OCT (without AO) likely because the effect is masked by the relatively long depth of focus dictated by the small pupils used in these systems. With AO, the pupil size is much larger and depth of focus substantially narrower. As such the chromatic aberrations of the eye can counteract the lateral resolution benefit of AO when used with broadband light sources. To more fully tap the potential of AO-OCT, compensation of the eye's chromatic and monochromatic aberrations must occur concurrently. One solution is to insert an achromatizing lens in front of the eye whose chromatic aberrations are equal but opposite in sign to that of the eye. In this paper we evaluate the efficacy of a novel design that uses a custom achromatizing lens placed near the fiber collimating optic. AO-OCT images are acquired on several subjects with and without the achromatizing lens and in combination with two light sources of different spectral width. The combination of the achromatizing lens and broadband light source yielded the sharpest images of the retina and the smallest speckle.

  8. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  9. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  10. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  11. Distribution of iron&titanium on the lunar surface from lunar prospector gamma ray spectra

    SciTech Connect

    Prettyman, T. H.; Feldman, W. C.; Lawrence, David J. ,; Elphic, R. C.; Gasnault, O. M.; Maurice, S.; Moore, K. R.; Binder, A. B.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. {approx}140 g/cm{sup 2} for inelastic scattering and {approx}50 g/cm{sup 2} for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods [e.g. Clementine Spectral Reflectance (CSR)], which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum in order to determine the contribution of individual elements.

  12. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  13. Hard gamma ray emission from blazars

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Bloom, Steven D.

    1992-01-01

    The gamma-ray emission expected from compact extragalactic sources of nonthermal radiation is examined. The highly variable objects in this class should produce copious amounts of self-Compton gamma-rays in the compact relativistic jet. This is shown to be a likely interpretation of the hard gamma-ray emission recently detected from the quasar 3C 279 during a period of strong nonthermal flaring at lower frequencies. Ways of discriminating between the self-Compton model and other possible gamma-ray emission mechanisms are discussed.

  14. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  15. Gamma rays from star-forming regions

    E-print Network

    Gustavo E. Romero

    2008-10-15

    Star-forming regions have been tentatively associated with gamma-ray sources since the early days of the COS B satellite. After the Compton Gamma-Ray Observatory, the statistical evidence for such an association has became overwhelming. Recent results from Cherenkov telescopes indicate that some high-energy sources are produced in regions of active star formation like Cygnus OB2 and Westerlund 2. In this paper I will briefly review what kind of stellar objects can produce gamma-ray emission in star-forming regions and I will suggest that the formation process of massive stars could in principle result in the production of observable gamma rays.

  16. Gamma rays from compact binary system

    E-print Network

    Josep M. Paredes

    2008-10-24

    Some of the very high energy (VHE) gamma-ray sources detected with the modern generation of Cherenkov telescopes have been identified with previously known X-ray binary systems. These detections demonstrate the richness of non-thermal phenomena in compact galactic objects containing relativistic outflows or winds produced near black holes and neutron stars. Recently, the well-known microquasar Cygnus X-3 seems to be associated with a gamma-ray source detected with AGILE. Here I summarise the main observational results on gamma-ray emission from X-ray binaries, as well as some of the proposed scenarios to explain the production of VHE gamma-rays.

  17. Gamma-ray burst models.

    PubMed

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts. PMID:17293332

  18. En-face scanning optical coherence tomography with ultra-high resolution for material investigation.

    PubMed

    Wiesauer, Karin; Pircher, Michael; Götzinger, Erich; Bauer, Siegfried; Engelke, Rainer; Ahrens, Gisela; Grützner, Gabi; Hitzenberger, Christoph; Stifter, David

    2005-02-01

    Optical coherence tomography (OCT) is an emerging technique for cross-sectional imaging, originally developed for biological structures. When OCT is employed for material investigation, high-resolution and short measurement times are required, and for many applications, only transversal (en-face) scans yield substantial information which cannot be obtained from cross-sectional images oriented perpendicularly to the sample surface alone. In this work, we combine transversal with ultra-high resolution OCT: a broadband femto-second laser is used as a light source in combination with acousto-optic modulators for heterodyne signal generation and detection. With our setup we are able to scan areas as large as 3 x 3 mm2 with a sensitivity of 100 dB, representing areas 100 times larger compared to other high-resolution en-face OCT systems (full field). We demonstrate the benefits of en-face scanning for different applications in materials investigation. PMID:19494965

  19. Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings

    SciTech Connect

    Voronov,, Dmitriy; Anderson, Erik; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric; Salmassi, Farhad; Yashchuk, Tony; Padmore, Howard

    2011-07-26

    Multilayer coated blazed gratings with high groove density are the most promising candidate for ultra-high resolution soft x-ray spectroscopy. They combine the ability of blazed gratings to concentrate almost all diffraction energy in a desired high diffraction order with high reflectance soft x-ray multilayers. However in order to realize this potential, the grating fabrication process should provide a near perfect groove profile with an extremely smooth surface of the blazed facets. Here we report on successful fabrication and testing of ultra-dense saw-tooth substrates with 5,000 and 10,000 lines/mm.

  20. Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT

    SciTech Connect

    Flohr, T. G.; Stierstorfer, K.; Suess, C.; Schmidt, B.; Primak, A. N.; McCollough, C. H.

    2007-05-15

    We present and evaluate a special ultrahigh resolution mode providing considerably enhanced spatial resolution both in the scan plane and in the z-axis direction for a routine medical multi-detector row computed tomography (CT) system. Data acquisition is performed by using a flying focal spot both in the scan plane and in the z-axis direction in combination with tantalum grids that are inserted in front of the multi-row detector to reduce the aperture of the detector elements both in-plane and in the z-axis direction. The dose utilization of the system for standard applications is not affected, since the grids are moved into place only when needed and are removed for standard scanning. By means of this technique, image slices with a nominal section width of 0.4 mm (measured full width at half maximum=0.45 mm) can be reconstructed in spiral mode on a CT system with a detector configuration of 32x0.6 mm. The measured 2% value of the in-plane modulation transfer function (MTF) is 20.4 lp/cm, the measured 2% value of the longitudinal (z axis) MTF is 21.5 lp/cm. In a resolution phantom with metal line pair test patterns, spatial resolution of 20 lp/cm can be demonstrated both in the scan plane and along the z axis. This corresponds to an object size of 0.25 mm that can be resolved. The new mode is intended for ultrahigh resolution bone imaging, in particular for wrists, joints, and inner ear studies, where a higher level of image noise due to the reduced aperture is an acceptable trade-off for the clinical benefit brought about by the improved spatial resolution.

  1. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  2. Light collection optimization in scintillator-based gamma-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Hull, G.; Du, S.; Niedermayr, T.; Payne, S.; Cherepy, N.; Drobshoff, A.; Fabris, L.

    2008-04-01

    Scintillator-based gamma-ray detectors are being actively pursued for homeland security applications. A key property of such detectors is their energy resolution which enables faster detection and more precise identification of gamma-ray sources. In order to obtain the best energy resolution with a given scintillator material, it is crucial to collect the largest fraction possible of the light emitted after gamma-ray absorption. Different techniques to maximize the light collection efficiency were investigated and tested experimentally. In particular, the effect of the scintillator geometry has been simulated with Detect2000. Also, a number of wrapping materials have been tested for their reflectivity and their performance in terms of improving the energy resolution in a BGO-based gamma-ray detector. The best results were obtained with a tapered cylinder geometry and the GORE DRP tape.

  3. Gamma-ray spectral analysis algorithm library

    Energy Science and Technology Software Center (ESTSC)

    2013-05-06

    The routines of the Gauss Algorithms library are used to implement special purpose products that need to analyze gamma-ray spectra from Ge semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  4. GAMMA-RAY LARGE AREA SPACE TELESCOPE

    E-print Network

    Nishikawa, Ken-Ichi

    SPACE FLIGHT CENTER GREENBELT, MARYLAND #12;433-PLAN-0009 ii GAMMA-RAY LARGE AREA SPACE TELESCOPE (GLAST) OBSERVATORY PROJECT DATA MANAGEMENT PLAN December 20, 2007 NASA Goddard Space Flight Center Greenbelt Ground Network GRB Gamma-Ray Burst GSFC Goddard Space Flight Center GSSC GLAST Science Support Center GUG

  5. Gamma-ray Spectral Analysis Algorithm Library

    Energy Science and Technology Software Center (ESTSC)

    1997-09-25

    The routines of the Gauss Algorithm library are used to implement special purpose products that need to analyze gamma-ray spectra from GE semiconductor detectors as a part of their function. These routines provide the ability to calibrate energy, calibrate peakwidth, search for peaks, search for regions, and fit the spectral data in a given region to locate gamma rays.

  6. Quantification of photoreceptor layer thickness in different macular pathologies using ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Hermann, Boris; Unterhuber, Angelika; Sattmann, Harald; Wirtitsch, Matthias; Stur, Michael; Scholda, Christoph; Ergun, Erdem; Anger, Elisabeth; Ko, Tony H.; Schubert, Christian; Ahnelt, Peter K.; Fujimoto, James G.; Fercher, Adolf F.

    2004-07-01

    In vivo ultrahigh resolution ophthalmic OCT has been performed in more than 300 eyes of 200 patients with several retinal pathologies, demonstrating unprecedented visualization of all major intraretinal layers, in particular the photoreceptor layer. Visualization as well as quantification of the inner and outer segment of the photoreceptor layer especially in the foveal region has been acvhieved. In normal subjects the photoreceptor layer thickness in the center of the fovea is about of 90 ?m, approximately equally distributed to the inner and the outer photoreceptor segment. In the parafoveal region this thickness is reduced to ~50 ?m (~30 ?m for the inner and ~20 ?m for the outer segment). This is in good agreement with well known increase of cone outer segments in the central foveal region. Photoreceptor layer impairment in different macular pathologies like macular hole, central serous chorioretinopathy, age related macular degeneration, foveomacular dystrophies, Stargardt dystrophy as well as retinitis pigmentosa has been investigated. Photoreceptor layer loss significantly correlated with visual acuity (R2 = 0.6, p < 0.001) and microperimetry findings for the first time in 22 eyes with Stargardt dystrophy. Visualization and quantification of photoreceptor inner and outer segment using ultrahigh resolution OCT has the potential to improve early ophthalmic diagnosis, contributes to a better understanding of pathogenesis of retinal diseases as well as might have impact in the development and monitoring of novel therapy approaches.

  7. Gamma-Ray Line Astrophysics

    NASA Astrophysics Data System (ADS)

    Boggs, Steven E.

    2011-05-01

    Nuclear gamma-ray lines provide a unique window on the high energy Universe, especially so for supernovae and nuclear astrophysics. The potential for significant contributions to the understanding of SNe Ia, as well as the large potential for new discoveries, has long been recognized, but technical progress in this challenging energy band has been slow. I will review the groundbreaking discoveries of CGRO and INTEGRAL, and discuss how these have inspired and driven the development of powerful new instrumentation over the past decade. I will preview the expected results from NuSTAR, where the next major advances in nuclear line astronomy will be achieved. In addition I will look forward to the next generation of MeV instruments currently under development, including wide-field Compton and focusing Laue lens telescopes.

  8. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  9. Atmospheric gamma-ray and neutron flashes

    SciTech Connect

    Babich, L. P. Kudryavtsev, A. Yu. Kudryavtseva, M. L. Kutsyk, I. M.

    2008-01-15

    Gamma-ray pulses are calculated from 2D numerical simulations of an upward atmospheric discharge in a self-consistent electric field using the multigroup approach to the kinetics of relativistic runaway electrons (REs). Computed {gamma}-ray numbers and spectra are consistent with those of terrestrial {gamma}-ray flashes (TGFs) observed aboard spacecrafts. The RE flux is concentrated mainly within the domain of the Blue Jet fluorescence. This confirms that exactly the domain adjacent to a thundercloud is the source of the observed {gamma}-ray flashes. The yield of photonuclear neutrons is calculated. One {gamma}-ray pulse generates {approx}10{sup 14}-10{sup 15} neutrons. The possibility of the direct deposition of REs to the detector readings and the origin of the lightning-advanced TGFs are discussed.

  10. Gamma-ray pulsars: a gold mine

    E-print Network

    Grenier, Isabelle A

    2015-01-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to gamma rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of gamma-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic gamma rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing gamma-ray observations and magnetospheric models in more detail.

  11. Remarks on Two Gamma Ray Lines from the Inner Galaxy

    E-print Network

    Ichiro Oda

    2012-07-06

    Monochromatic gamma-ray lines are thought to be the smoking gun signal of the annihilation or decay of dark matter since they do not suffer from deflection or absorption on galactic scales. A recent claim on strong evidence for two gamma-ray lines from the inner galaxy suggests that two-body final states might be one photon plus a Z boson or one photon plus a Higgs boson. In this study, we investigate which final state is more possible by analyzing the energy resolution of the Fermi-LAT. It is concluded that the former case, i.e. one photon plus a Z boson is more plausible than the latter one, i.e. one photon and a Higgs boson since in the latter case the mass of dark matter particle shows tension with a constraint coming from the energy resolution of the Fermi-LAT.

  12. Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Rollins, Andrew M.

    2007-04-01

    We demonstrate a dual-band continuum light source centered at 830 and 1300 nm for optical coherence tomography (OCT) generated by pumping a photonic crystal fiber having two closely spaced zero-dispersion wavelengths with a femtosecond laser at 1059 nm. By use of polarization control, sidelobe suppression can be improved up to approximately 7.7 dB. By employing compression of the pump pulses, the generated spectrum is smooth and near-Gaussian, resulting in a point-spread function with negligible sidelobes. We demonstrate ultrahigh-resolution OCT imaging of biological tissue in vivo and in vitro using this light source and compare it with conventional-resolution OCT imaging at 1300 nm.

  13. Ultrahigh resolution optical coherence tomography imaging of lung structure using Gaussian shaped super continuum sources

    NASA Astrophysics Data System (ADS)

    Nishizawa, N.; Ishida, S.; Ohta, T.; Itoh, K.; Kitatsuji, M.; Ohshima, H.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.

    2011-03-01

    Optical coherence tomography (OCT) is an emerging technology for non-invasive cross-sectional imaging of biological tissue and material with um resolution. In the field of pulmonary medicine, non-invasive high resolution cross-sectional imaging is desired for investigation of diseases in lung. So far, a few works have been reported about OCT imaging of lung. Since the lung consists of alveoli separated by thin wall, ultrahigh resolution (UHR) OCT is supposed to be effective for the imaging of fine structure in lung tissue. In this work, ex vivo cross-sectional imaging of isolated rat and hamster lungs was demonstrated using UHR-OCT. A 120 nm-wide, high-power, Gaussian-like supercontinuum (SC) was generated at wavelength of 0.8 um region. The generated SC was used in a time-domain OCT system, and UHR-OCT imaging was demonstrated. An ultrahigh resolution of 2.9 um in air and 2.1 um in tissue was obtained. The achieved sensitivity was 105 dB. Using this system, ex vivo UHR-OCT imaging of isolated rat and hamster lungs was demonstrated for the first time. The structures of the trachea, visceral pleura, and alveoli were observed clearly. When saline was instilled into the lung, the penetration depth was improved, and clear images of the fine structure of the lung, including alveoli, were observed owing to the index matching effect. We have also demonstrated the UHR-OCT imaging of lung tissue using 1.3 um and 1.7 um SC sources. As the results, owing to the precise structures of lung tissues and index matching by saline, the finest images were observed with 0.8 um UHR-OCT system.

  14. Research in particle and gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1988-01-01

    This research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the Earth and other planets. The emphasis was on precice measurements with high resolution in charge, mass and energy. These investigations were carried out by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  15. DETECTION OF GAMMA RAYS WITH E 300 GeV FROM MARKARIAN 501 J. QUINN,1, 2

    E-print Network

    at the Whipple Observatory on Mount Hopkins in Arizona (elevation 2.3 km). The high-resolution camera, con. WILSON,7 AND J. ZWEERINK 5 Received 1995 October 16; accepted 1995 November 1 ABSTRACT The detection Mrk 421 flux. The new gamma-ray source has not been reported by the Compton Gamma Ray Observatory

  16. Toward an ultra-high resolution community climate system model for the BlueGene platform

    NASA Astrophysics Data System (ADS)

    Dennis, John M.; Jacob, Robert; Vertenstein, Mariana; Craig, Tony; Loy, Raymond

    2007-07-01

    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize Script O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10° resolution for CICE, POP, and CLM models and 1/4° resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science.

  17. Fermi LAT measurements of diffuse gamma-ray emission: results at the first-year milestone

    SciTech Connect

    Tibaldo, Luigi

    2010-03-26

    For more than one year the Fermi Large Area Telescope has been surveying the gamma-ray sky from 20 MeV to more than 300 GeV with unprecedented statistics and angular resolution. One of the key science targets of the Fermi mission is diffuse gamma-ray emission. Galactic interstellar gamma-ray emission is produced by interactions of high-energy cosmic rays with the interstellar gas and radiation field. We review the most important results on the subject obtained so far: the non-confirmation of the excess of diffuse GeV emission seen by EGRET, the measurement of the gamma-ray emissivity spectrum of local interstellar gas, the study of the gradient of cosmic-ray densities and of the X{sub CO} = N(H{sub 2})/W{sub CO} ratio in the outer Galaxy. We also catch a glimpse at diffuse gamma-ray emission in the Large Magellanic Cloud. These results allow the improvement of large-scale models of Galactic diffuse gamma-ray emission and new measurements of the extragalactic gamma-ray background.

  18. Gamma-Ray Burst Physics with GLAST

    SciTech Connect

    Omodei, N.; /INFN, Pisa

    2006-10-06

    The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

  19. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  20. Interpretations and implications of gamma ray lines from solar flares, the galactic center in gamma ray transients

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1980-01-01

    Observations and theories of astrophysical gamma ray line emission are reviewed and prospects for future observations by the spectroscopy experiments on the planned Gamma Ray Observatory are discussed.

  1. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  2. HEAO-1 observations of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Hueter, G. J.; Matteson, J. L.

    1985-01-01

    A search of data from the High Energy X-Ray and Low Energy Gamma Ray Experiment on HEAO-1 uncovered 14 gamma ray bursts. Nine of these events are reported for the first tiome. Except for the faintest events, all of the bursts detected by this experiment have been measured above an MeV, thereby confirming the hard spectral character of gamma ray burst spectra reported by SMM. Results give a burst rate of at least 105 per year above 6 times 10 to the minus 7th power ergs, which is consistent with previous measurements of burst frequency.

  3. Detecting axionlike particles with gamma ray telescopes.

    PubMed

    Hooper, Dan; Serpico, Pasquale D

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range. PMID:18233353

  4. Cosmic gamma-ray lines - Theory

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The various processes that lead to gamma-ray line emission and the possible astrophysical sources of such emission are reviewed. The processes of nuclear excitation, radiative capture, positron annihilation, and cyclotron radiation, which may produce gamma-ray line emission from such diverse sources as the interstellar medium, novas, supernovas, pulsars, accreting compact objects, the galactic nucleus and the nuclei of active galaxies are considered. The significance of the relative intensities, widths, and frequency shifts of the lines are also discussed. Particular emphasis is placed on understanding those gamma-ray lines that have already been observed from astrophysical sources.

  5. Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles

    1993-01-01

    The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.

  6. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.

    PubMed

    Kim, Kyeongtae; Jeong, Wonho; Lee, Woochul; Reddy, Pramod

    2012-05-22

    Understanding energy dissipation at the nanoscale requires the ability to probe temperature fields with nanometer resolution. Here, we describe an ultra-high vacuum (UHV)-based scanning thermal microscope (SThM) technique that is capable of quantitatively mapping temperature fields with ?15 mK temperature resolution and ?10 nm spatial resolution. In this technique, a custom fabricated atomic force microscope (AFM) cantilever, with a nanoscale Au-Cr thermocouple integrated into the tip of the probe, is used to measure temperature fields of surfaces. Operation in an UHV environment eliminates parasitic heat transport between the tip and the sample enabling quantitative measurement of temperature fields on metal and dielectric surfaces with nanoscale resolution. We demonstrate the capabilities of this technique by directly imaging thermal fields in the vicinity of a 200 nm wide, self-heated, Pt line. Our measurements are in excellent agreement with computational results-unambiguously demonstrating the quantitative capabilities of the technique. UHV-SThM techniques will play an important role in the study of energy dissipation in nanometer-sized electronic and photonic devices and the study of phonon and electron transport at the nanoscale. PMID:22530657

  7. Miniaturization in x ray and gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.; Wang, Yuzhong J.; Bradley, James G.

    1993-01-01

    The paper presents advances in two new sensor technologies and a miniaturized associated electronics technology which, when combined, can allow for very significant miniaturization and for the reduction of weight and power consumption in x-ray and gamma-ray spectroscopy systems: (1) Mercuric iodide (HgI2) x-ray technology, which allows for the first time the construction of truly portable, high-energy resolution, non-cryogenic x-ray fluorescence (XRF) elemental analyzer systems, with parameters approaching those of laboratory quality cryogenic instruments; (2) the silicon avalanche photodiode (APD), which is a solid-state light sensitive device with internal amplification, capable of uniquely replacing the vacuum photomultiplier tube in scintillation gamma-ray spectrometer applications, and offering substantial improvements in size, ruggedness, low power operation and energy resolution; and (3) miniaturized (hybridized) low noise, low power amplification and processing electronics, which take full advantage of the favorable properties of these new sensors and allow for the design and fabrication of advanced, highly miniaturized x-ray and gamma-ray spectroscopy systems. The paper also presents experimental results and examples of spectrometric systems currently under construction. The directions for future developments are discussed.

  8. Dark matter annihilation bound from the diffuse gamma ray flux

    SciTech Connect

    Kachelriess, M.; Serpico, P.D.; /Fermilab

    2007-07-01

    An upper limit on the total annihilation rate of dark matter (DM) has been recently derived from the observed atmospheric neutrino background. It is a very conservative upper bound based on the sole hypothesis that the DM annihilation products are the least detectable final states in the Standard Model (SM), neutrinos. Any other decay channel into SM particles would lead to stronger constraints. We show that comparable bounds are obtained for DM masses around the TeV scale by observations of the diffuse gamma ray flux by EGRET, because electroweak bremsstrahlung leads to non-negligible electromagnetic branching ratios, even if DM particles only couple to neutrinos at tree level. A better mapping and the partial resolution of the diffuse gamma-ray background into astrophysical sources by the GLAST satellite will improve this bound in the near future.

  9. Solar Gamma Rays Powered by Secluded Dark Matter

    E-print Network

    Brian Batell; Maxim Pospelov; Adam Ritz; Yanwen Shang

    2009-10-08

    Secluded dark matter models, in which WIMPs annihilate first into metastable mediators, can present novel indirect detection signatures in the form of gamma rays and fluxes of charged particles arriving from directions correlated with the centers of large astrophysical bodies within the solar system, such as the Sun and larger planets. This naturally occurs if the mean free path of the mediator is in excess of the solar (or planetary) radius. We show that existing constraints from water Cerenkov detectors already provide a novel probe of the parameter space of these models, complementary to other sources, with significant scope for future improvement from high angular resolution gamma-ray telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator decays are also capable of contributing a significant solar system component to the spectrum of energetic electrons and positrons, a possibility which can be tested with the directional and timing information of PAMELA and Fermi.

  10. Terrestrial Gamma-ray Flash (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2009-01-01

    Terrestrial gamma-ray flashes (TGFs) are being observed with the Gamma-ray Burst Monitor (GBM) detectors on Fermi about once every four weeks. These intense millisecond flashes of MeV photons have been observed with four space-borne experiments since their initial discovery by the BATSE-CGRO experiment in the early 1990s. TGFs have extremely hard spectra (harder than GRBs) and photons are seen to extend to over 30 MeV. The GBM-Fermi observations have the highest temporal resolution of any previous TGF observations and time-resolved coarse spectra can be derived. These features will be crucial for testing the leading current model of TGF production: relativistic run-away electron cascades formed in the intense electric fields within thunderstorms.

  11. Solar Gamma Rays Powered by Secluded Dark Matter

    E-print Network

    Batell, Brian; Ritz, Adam; Shang, Yanwen

    2009-01-01

    Secluded dark matter models, in which WIMPs annihilate first into metastable mediators, can present novel indirect detection signatures in the form of gamma rays and fluxes of charged particles arriving from directions correlated with the centers of large astrophysical bodies within the solar system, such as the Sun and larger planets. This naturally occurs if the mean free path of the mediator is in excess of the solar (or planetary) radius. We show that existing constraints from water Cerenkov detectors already provide a novel probe of the parameter space of these models, complementary to other sources, with significant scope for future improvement from high angular resolution gamma-ray telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator decays are also capable of contributing a significant solar system component to the spectrum of energetic electrons and positrons, a possibility which can be tested with the directional and timing information of PAMELA and Fermi.

  12. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  13. Gamma-ray Burst Cosmology

    E-print Network

    Wang, F Y; Liang, E W

    2015-01-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to $8.8\\times10^{54}$ erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it...

  14. Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0.68 A resolution

    SciTech Connect

    Chen, C.-J. . E-mail: cjchen@nsrrc.org.tw; Lin, Y.-H.; Huang, Y.-C.; Liu, M.-Y. . E-mail: mingliu@nsrrc.org.tw

    2006-10-13

    Rubredoxin (D.g. Rd) is a small non-heme iron-sulfur protein shown to function as a redox coupling protein from the sulfate reducing bacteria Desulfovibrio gigas. The protein is generally purified from anaerobic bacteria in which it is thought to be involved in electron transfer or exchange processes. Rd transfers an electron to oxygen to form water as part of a unique electron transfer chain, composed by NADH:rubredoxin oxidoreductase (NRO), rubredoxin and rubredoxin:oxygen oxidoreductase (ROO) in D.g. The crystal structure of D.g. Rd has been determined by means of both a Fe single-wavelength anomalous dispersion (SAD) signal and the direct method, and refined to an ultra-high 0.68 A resolution, using X-ray from a synchrotron. Rd contains one iron atom bound in a tetrahedral coordination by the sulfur atoms of four cysteinyl residues. Hydrophobic and {pi}-{pi} interactions maintain the internal Rd folding. Multiple conformations of the iron-sulfur cluster and amino acid residues are observed and indicate its unique mechanism of electron transfer. Several hydrogen bonds, including N-H..., SG of the iron-sulfur, are revealed clearly in maps of electron density. Abundant waters bound to C-O peptides of residues Val8, Cys9, Gly10, Ala38, and Gly43, which may be involved in electron transfer. This ultrahigh-resolution structure allows us to study in great detail the relationship between structure and function of rubredoxin, such as salt bridges, hydrogen bonds, water structures, cysteine ligands, iron-sulfur cluster, and distributions of electron density among activity sites. For First time, this information will provide a clear role for this protein in a strict anaerobic bacterium.

  15. Gamma-ray astronomy: Promise for the future

    SciTech Connect

    Gehrels, Neil; Macomb, Daryl

    1997-01-10

    We are in a very active period in gamma-ray astronomy due primarily to new discoveries from the Compton Gamma Ray Observatory (CGRO). While the near future looks bright with the ESA INTEGRAL mission scheduled for launch in {approx}2001, there are currently no major missions being planned beyond INTEGRAL and none being planned at all by NASA. This paper reviews current missions and then looks beyond INTEGRAL to see what mission concepts are being considered. Based on new technologies that are under development such as Si strip detectors for tracking electron-positron pairs in high-energy instruments, CdZnTe strip detectors for fine spatial resolution of hard x-rays, and grazing incidence mirrors with multilayer coatings that work in the 10-100 keV range, several exciting new concepts for future instruments and missions are under study. These include intermediate class high-energy gamma-ray missions (30 MeV-300 GeV) with two order-of-magnitude better point-source sensitivity than the current EGRET instrument on CGRO, intermediate class focusing-optics hard x-ray missions with micro-Crab sensitivities (two order-of-magnitude better than the Rossi X-ray Timing Explorer), MIDEX class hard x-ray (10-200 keV) all-sky survey missions with much better sensitivity and angular resolution than previous surveys, and SMEX and MIDEX class gamma-ray burst missions that can locate bursts to arcsecond accuracies to allow deep counterpart searches at other wavelengths.

  16. Gamma Rays in a Spectrum from the Mars Odyssey Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Evans, L. G.; Brueckner, J.; Kim, K. J.; Boynton, W. V.

    2003-01-01

    The gamma-ray spectrum from a long sum over the middle latitudes of Mars measured by the Mars Odyssey Gamma Ray Spectrometer was analyzed. About 250 peaks and features were observed, including many seen during the cruise to Mars. The sources of about 85% of these gamma rays were identified. Most were background lines from the Ge detector or from Ti, Mg, and Zn near the detector.

  17. Mining Gamma-Ray Burst Data

    E-print Network

    Jon Hakkila; Richard J. Roiger; David J. Haglin; Robert S. Mallozzi; Geoffrey N. Pendleton; Charles A. Meegan

    2000-11-30

    Gamma-ray bursts provide what is probably one of the messiest of all astrophysical data sets. Burst class properties are indistinct, as overlapping characteristics of individual bursts are convolved with effects of instrumental and sampling biases. Despite these complexities, data mining techniques have allowed new insights to be made about gamma-ray burst data. We demonstrate how data mining techniques have simultaneously allowed us to learn about gamma-ray burst detectors and data collection, cosmological effects in burst data, and properties of burst subclasses. We discuss the exciting future of this field, and the web-based tool we are developing (with support from the NASA AISR Program). We invite others to join us in AI-guided gamma-ray burst classification (http://grb.mnsu.edu/grb/).

  18. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  19. Neutron detection gamma ray sensitivity criteria

    NASA Astrophysics Data System (ADS)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-10-01

    The shortage of 3He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The gamma absolute rejection ratio for neutrons (GARRn) is defined, and it is proposed that the requirement for neutron detection be 0.9

  20. Neutron Detection Gamma Ray Sensitivity Criteria

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-10-21

    The shortage of 3He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The ratio GARRn is defined, and it is proposed that the requirement for neutron detection be 0.9 < GARRn < 1.1 at a 10 mR/h exposure rate. An example of results from a 3He based neutron detector are provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

  1. Optical reprocessing of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Melia, F.; Rappaport, S.; Joss, P. C.

    1986-01-01

    One model for the optical flashes associated with three cosmic gamma-ray burst sources invokes the reprocessing of some of the gamma-radiation emitted by a hypothesized collapsed object in the surface layers of a nearby companion star. This model was investigated by carrying out detail, fully hydrodynamical calculations of such reprocessing in the surface layers of very low mass stars. It is found that, at most, 7 percent of the gamma-ray fluence incident on the companion star is reprocessed into the blue band; the time scale for this reprocessing is typically 100 s, which is long compared to the duration of the gamma-ray burst itself. Using this result, it is shown that there is marginal agreement between the observed and calculated ratios of gamma-ray fluence to optical fluence at earth.

  2. Gamma-ray emission from thunderstorm discharges

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Chubenko, A. P.; Karashtin, A. N.; Mitko, G. G.; Naumov, A. S.; Ptitsyn, M. O.; Ryabov, V. A.; Shepetov, A. L.; Shlyugaev, Yu. V.; Vildanova, L. I.; Zybin, K. P.

    2011-04-01

    Fine features of gamma-ray radiation registered during a thunderstorm at Tien-Shan Mountain Cosmic Ray Station are presented. Long duration (100-600 ms) gamma-ray bursts are found. They are for the first time identified with atmospheric discharges (lighting). Gamma-ray emission lasts all the time of the discharge and is extremely non-uniform consisting of numerous flashes. Its peak intensity in the flashes exceeds the gamma-ray background up to two orders of magnitude. Exclusively strong altitude dependence of gamma radiation is found. The observation of gamma radiation at the height 4-8 km could serve as a new important method of atmospheric discharge processes investigation.

  3. Thermal neutron capture gamma-rays

    SciTech Connect

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  4. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  5. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: comparing laboratory and field studies

    E-print Network

    Kourtchev, I.; Fuller, S. J.; Giorio, C.; Healy, R. M.; Wilson, E.; O'Connor, I.; Wenger, J. C.; McLeod, M.; Aalto, J.; Ruuskanen, T. M.; Maenhaut, W.; Jones, R.; Venables, D. S.; Sodeau, J. R.; Kulmala, M.; Kalberer, M.

    2014-01-01

    . Kalberer (mk594@cam.ac.uk) Received: 25 October 2013 – Published in Atmos. Chem. Phys. Discuss.: 12 November 2013 Revised: 17 January 2014 – Accepted: 21 January 2014 – Published: 26 February 2014 Abstract. Numerous laboratory experiments have been per... - tiate all the compounds present in the complex mixture of organic aerosol. Ultra-high resolution mass spectrometers (UHR-MS) (i.e. Fourier transform ion cyclotron resonance MS and Orbitrap MS) have a mass resolution power that is at least 1 order...

  6. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1998-01-01

    Gamma-ray bursts remain on of the greatest mysteries in astrophysics in spite of recent observational advances and intense theoretical work. Although some of the basic properties of bursts were known 25 years ago, new and more detailed observations have been made by the BATSE (Burst and Transient Source Experiment) experiment on the Compton Gamma Ray Observatory in the past five years. Recent observations of bursts and some proposed models will be discussed.

  7. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  8. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential of gamma-ray spectroscopy for understanding supernovae.

  9. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  10. Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis

    SciTech Connect

    Xie Xufei; Zhang Xing; Yuan Xi; Chen Jinxiang; Li Xiangqing; Zhang Guohui; Fan Tieshuan; Yuan Guoliang; Yang Jinwei; Yang Qingwei

    2012-09-15

    Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

  11. Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis

    NASA Astrophysics Data System (ADS)

    Xie, Xufei; Zhang, Xing; Yuan, Xi; Chen, Jinxiang; Li, Xiangqing; Zhang, Guohui; Fan, Tieshuan; Yuan, Guoliang; Yang, Jinwei; Yang, Qingwei

    2012-09-01

    Digital discrimination of neutron and gamma-ray events in an organic scintillator has been investigated by moment analysis. Signals induced by an americium-beryllium (Am/Be) isotropic neutron source in a stilbene crystal detector have been sampled with a flash analogue-to-digital converter (ADC) of 1 GSamples/s sampling rate and 10-bit vertical resolution. Neutrons and gamma-rays have been successfully discriminated with a threshold corresponding to gamma-ray energy about 217 keV. Moment analysis has also been verified against the results assessed by a time-of-flight (TOF) measurement. It is shown that the classification of neutrons and gamma-rays afforded by moment analysis is consistent with that achieved by digital TOF measurement. This method has been applied to analyze the data acquired from the stilbene crystal detector in mixed radiation field of the HL-2A tokamak deuterium plasma discharges and the results are described.

  12. Gamma rays from the neutralino dark matter annihilations in the Milky Way substructures

    E-print Network

    Xiao-Jun Bi

    2006-01-10

    High resolution simulations reveal that in the cold dark matter scenario the structures form hierarchically and a large number of substructures survive in the galactic halos. The substructures can be probed if they emit gamma rays via dark matter annihilation. We calculated the gamma ray fluxes from the dark matter annihilations in the substructures of our Galaxy within the frame of the minimal supersymmetric extension of the standard model. The uncertainties of the prediction from both the low energy supersymmetry and especially from the density profiles of dark matter in the substructures are carefully investigated. The cumulative number of substructures emitting gamma rays above any given flux is calculated. Detectability of the gamma rays from the substructures is discussed. We propose the viability to detect these signals through the ground large field of view detectors.

  13. Particle Acceleration in Gamma-Ray Burst Jets

    E-print Network

    Frank M. Rieger; Peter Duffy

    2005-11-02

    Gradual shear acceleration of energetic particles in gamma-ray burst (GRB) jets is considered. Special emphasis is given to the analysis of universal structured jets, and characteristic acceleration timescales are determined for a power-law and a Gaussian evolution of the bulk flow Lorentz factor $\\gamma_b$ with angle $\\phi$ from the jet axis. The results suggest that local power-law particle distributions may be generated and that higher energy particles are generally concentrated closer to the jet axis. Taking several constraints into account we show that efficient electron acceleration in gradual shear flows, with maximum particle energy successively decreasing with time, may be possible on scales larger than $r \\sim 10^{15}$ cm, provided the jet magnetic field becomes sufficiently weak and/or decreases rapidly enough with distance, while efficient acceleration of protons to ultra-high energies $> 10^{20}$ eV may be possible under a wide range of conditions.

  14. Plutonium Isotopic Gamma-Ray Analysis

    Energy Science and Technology Software Center (ESTSC)

    1992-01-08

    The MGA8 (Multiple Group Analysis) program determines the relative abundances of plutonium and other actinide isotopes in different materials. The program analyzes spectra taken of such samples using a 4096-channel germanium (Ge) gamma-ray spectrometer. The code can be run in a one or two detector mode. The first spectrum, which is required and must be taken at a gain of 0.075 Kev/channel with a high resolution planar detector, contains the 0-300 Kev energy region. Themore »second spectrum, which is optional, must be taken at a gain of 0.25 Kev/channel; it becomes important when analyzing high burnup samples (concentration of Pu241 greater than one percent). Isotopic analysis precisions of one percent or better can be obtained, and no calibrations are required. The system also measures the abundances of U235, U238, Np237, and Am241. A special calibration option is available to perform a one-time peak-shape characterization when first using a new detector system.« less

  15. Gamma-ray albedo of the moon

    E-print Network

    Igor V. Moskalenko; Troy A. Porter

    2007-08-15

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 4 GeV (600 MeV for the inner part of the Moon disc). Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalisation; this makes it a useful "standard candle" for gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo gamma rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  16. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  17. On Gamma-Ray Bursts

    E-print Network

    Remo Ruffini; Maria Grazia Bernardini; Carlo Luciano Bianco; Letizia Caito; Pascal Chardonnet; Christian Cherubini; Maria Giovanna Dainotti; Federico Fraschetti; Andrea Geralico; Roberto Guida; Barbara Patricelli; Michael Rotondo; Jorge Armando Rueda Hernandez; Gregory Vereshchagin; She-Sheng Xue

    2008-04-17

    (Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model. [...] We then turn to the special role of the baryon loading in discriminating between "genuine" short and long or "fake" short GRBs [...] We finally turn to the GRB-Supernova Time Sequence (GSTS) paradigm: the concept of induced gravitational collapse. [...] We then present some general conclusions.

  18. Ultrahigh-resolution full-field optical coherence tomography for imaging of a developing embryo

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Zheng, Jinggao; Wang, Rui; Chen, Dieyan; Xue, Ping

    2009-07-01

    Optical coherence tomography (OCT) is a new emerging technique for cross-sectional imaging with high spatial resolution of micrometer scale. It enables in vivo and non-invasive imaging with no need to contact the sample and is widely used in biological and clinic application. In this paper a white-light interference microscope is developed for ultrahigh-resolution full-field optical coherence tomography (Full-Field OCT) to implement 3D imaging of biological tissue. The experimental setup is based on a Linnik-type interferometer illuminated by a tungsten halogen lamp via a bundle of fiber. En-face tomographic images are obtained by demodulation of a combination of interferometric images recorded by a CCD camera. We use a PZT synchronized with the CCD in the reference arm to get the modulated interferometric image and use a programmed precisely controlled electric lift stage in the sample arm to get a 3D image. To fulfill the requirement of in vivo measurement and better match the index of bio-tissue, a pair of high numerical-aperture water immersion microscope objectives is used. Spatial resolution of 1.8?m×1.12?m (transverse×axial) is achieved owing to the extremely short coherence length of the light source and optimized compensation of dispersion mismatch. A shot-noise limited detection sensitivity of 80 dB is obtained at an acquisition time of 5 seconds per image. The development of a mouse embryo is studied layer by layer with our ultrahigh-resolution full-filed OCT. 3D imaging of the embryo can be reconstructed by the OCT images. Information of cell shape, centroid, reflectivity, mitosis period in the development process can be obtained. The variance of the relative reflectivity of an oocyte with time is calculated as well. It is found that the reflectivity of a living oocyte is much lower than that of a dead. Therefore the reflectivity of the cytoplasm can be a signal of the cell activity. In fact, all these parameters above could be very useful for distinguishing the healthy embryos from the morbid, showing high potential for early diagnosis of procreation diseases at cellular level in clinic. More experimental study is still in progress.

  19. Multiview autostereoscopic display of 36view using an ultra-high resolution LCD

    NASA Astrophysics Data System (ADS)

    Lee, Byungjoo; Hong, Hyungki; Park, Juun; Park, HyungJu; Shin, Hyunho; Jung, InJae

    2007-02-01

    We have developed an autostereoscopic multi view display with 36view using 15.1" ultra-high resolution LCD. The resolution of LCD used for experiment is QUXGA of 3200x2400. RGB sub pixels are aligned as vertical lines and size of each sub pixel is 0.032 mm by 0.096mm. Parallax barrier are slanted at the angle of tan -1(1/6) = 9.46 degree and placed before LCD panel to generate viewing zones. Barrier patterns repeated approximately for every 6 pixels of LCD. So, the numbers of pixels decrease by six along the horizontal direction and the vertical direction. Nominal 3D resolution becomes (3200/6) x (2400/6) = 533 x 400. In slanted barrier configuration, the angular luminance profile for each zone overlaps each other. For the case of 2view 3D system, cross-talk between left eye and right eye zone deteriorates 3D image quality. However for multi view 3D, cross-talk between adjacent zones does not always bring about negative effects as image differences between adjacent zones are rather small. As viewers can see pixels from multiple viewing zones at one place, viewers feel 3D image of higher resolution than nominal 533x400 resolutions. Tested 3D images are made by computer graphics, in which camera position and depth of 3D objects are varied. Smooth motion parallax is observed for the limited depth range of 3D object. As depth of 3D object increases, 3D objects are observed not one image but as overlapped multiple images and image flipping becomes noticeable. We changed the barrier conditions so that horizontal angles between each zone are different and 3D image qualities were compared. For each barrier condition of different horizontal angle between viewing zones, we find an acceptable range of 3D object depth and camera displacement between each zone for computer generated images.

  20. Ultrahigh Energy Activity in Giant Magnetar Outbursts

    E-print Network

    David Eichler

    2005-04-20

    The recent superflare of 27 December 2004 from the magnetar SGR 1806-20 was the brightest extrasolar flash ever recorded in the modern era. The chances for seeing exotic ultrahigh energy (UHE) radiation - neutrons, neutrinos, gamma rays and charged cosmic rays - from it are far better from an energetic point of view than from cosmological gamma ray bursts (GRBs). The chances for detecting the various components are discussed in light of recent data from the 27 December event.

  1. Gamma-Ray Focusing Optics for Small Animal Imaging

    NASA Technical Reports Server (NTRS)

    Pivovaroff, M. J.; Barber, W. C.; Craig, W. W.; Hasegawa, B. H.; Ramsey, B. D.; Taylor, C.

    2004-01-01

    There is a well-established need for high-resolution radionuclide imaging techniques that provide non-invasive measurement of physiological function in small animals. We, therefore, have begun developing a small animal radionuclide imaging system using grazing incidence mirrors to focus low-energy gamma-rays emitted by I-125, and other radionuclides. Our initial prototype optic, fabricated from thermally-formed glass, demonstrated a resolution of 1500 microns, consistent with the performance predicted by detailed simulations. More recently, we have begun constructing mirrors using a replication technique that reduces low spatial frequency errors in the mirror surface, greatly improving the resolution. Each technique offers particular advantages: e.g., multilayer coatings are easily deposited on glass, while superior resolution is possible with replicated optics. Scaling the results from our prototype optics, which only have a few nested shells, to system where the lens has a full complement of several tens of nested shells, a sensitivity of approx. 1 cps/micro Ci is possible, with the exact number dependent on system magnification and radionuclide species. (Higher levels of efficiency can be obtained with multi-optic imaging systems.) The gamma-ray lens will achieve a resolution as good as 100 microns, independent of the final sensitivity. The combination of high spatial resolution and modest sensitivity will enable in vivo single photon emission imaging studies in small animals.

  2. Gamma-ray identification of nuclear weapon materials

    SciTech Connect

    Gosnell, T. B., LLNL; Hall, J. M.; Jam, C. L.; Knapp, D. A.; Koenig, Z. M.; Luke, S. J.; Pohl, B. A.; Schach von Wittenau, A.; Wolford, J. K.

    1997-02-03

    There has been an accelerating national interest in countering nuclear smuggling. This has caused a corresponding expansion of interest in the use of gamma-ray spectrometers for checkpoint monitoring, nuclear search, and within networks of nuclear and collateral sensors. All of these are fieldable instruments--ranging from large, fixed portal monitors to hand-held and remote monitoring equipment. For operational reasons, detectors with widely varying energy resolution and detection efficiency will be employed. In many instances, such instruments must be sensitive to weak signals, always capable of recognizing the gamma-ray signatures from nuclear weapons materials (NWM), often largely insensitive to spectral alteration by radiation transport through intervening materials, capable of real-time implementation, and able to discriminate against signals from commonly encountered legitimate gamma-ray sources, such as radiopharmaceuticals. Several decades of experience in classified programs have shown that all of these properties are not easily achieved and successful approaches were of limited scope--such as the detection of plutonium only. This project was originally planned as a two-year LDRD-ER. Since funding for 1997 was not sustained, this is a report of the first year's progress.

  3. A cosmic gamma-ray burst on May 14, 1975

    NASA Technical Reports Server (NTRS)

    Herzo, D.; Dayton, B.; Zych, A. D.; White, R. S.

    1975-01-01

    A cosmic gamma-ray burst is reported that occurred at 29309.11 s UTC, May 14, 1975. The burst was detected at an atmospheric depth of 4 g/sq cm residual atmosphere with the University of California double scatter gamma-ray telescope launched on a balloon from Palestine, Texas at 1150 UTC, May 13, 1975. The burst was observed both in the single scatter mode by the top liquid scintillator tank in anti-coincidence with the surrounding plastic scintillator and in the double scatter mode from which energy and directional information are obtained. The burst is 24 standard deviations above the background for single scatter events. The total gamma-ray flux in the burst, incident on the atmosphere with photon energy greater than 0.5 MeV, is 0.59 + or - 0.15 photons/sq cm. The initial rise time to 90% of maximum is 0.015 + or - 0.005 s and the duration is 0.11 s. Time structure down to the 5 ms resolution of the telescope is seen. The mean flux over this time period is 5.0 + or - 1.3 photons/sq cm/s and the maximum flux is 8.5 + or - 2.1 photons/sq cm/s.

  4. Search for TeV gamma-ray emission from Hercules X-1

    NASA Technical Reports Server (NTRS)

    Reynolds, P. T.; Cawley, M. F.; Fegan, D. J.; Lang, M. J.; O'Flaherty, K. S.; Hillas, A. M.; Kwok, P. W.; Lamb, R. C.; Lewis, D. A.; Macomb, D. J.

    1991-01-01

    Six years of observations of Hercules X-1 with the Whipple Observatory gamma-ray telescope have been subjected to a Fourier analysis to search for emission at the 0.8079 Hz neutron star frequency. Evidence for a signal is found at the 99.5 percent confidence level for data taken with the medium-resolution imaging camera with some indications of emission at frequencies blueshifted from the fundamental frequency. However, analysis of the high-resolution camera data base have failed to substantiate this effect. Selection of events on the basis of gamma-ray-like image parameters did not enhance the signal from the medium-resolution data nor produce any indication of a signal from the high-resolution data. The overall conclusion is that no statistically significant evidence for TeV gamma-ray emission was found in the Whipple Observatory data base when the 6 years of data are taken as a whole.

  5. Fireball/Blastwave Model and Soft Gamma-ray Repeaters

    E-print Network

    Y. F. Huang; Z. G. Dai; T. Lu

    2005-02-24

    Soft gamma-ray repeaters are at determined distances and their positions are known accurately. If observed, afterglows from their soft gamma-ray bursts will provide important clues to the study of the so called "classical gamma-ray bursts". On applying the popular fireball/blastwave model of classical gamma-ray bursts to soft gamma-ray repeaters, it is found that their X-ray and optical afterglows are detectable. Monitoring of the three repeaters is solicited.

  6. Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh resolution electron beam lithography and reactive ion

    E-print Network

    Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh, and trenches with aspect ratios greater than 10 using ultrahigh resolution electron beam lithography with HF. The ability to etch nanoscale features in Si is of great interest for trench isolation

  7. CdZnTe gamma ray spectrometer for orbital planetary missions

    SciTech Connect

    Feldman, W. C.; Storms, S. A.; Fuller, K. R.; Moss, C. E.; Browne, M. C.; Lawrence, David J. ,; Ianakiev, K. D.; Prettyman, T. H.

    2001-01-01

    Knowledge of surface elemental composition is needed to understand the formation and evolution of planetary bodies. Gamma rays and neutrons produced by the interaction of galactic cosmic rays with surface materials can be detected from orbit and analyzed to determine composition. Using gamma ray spectroscopy, major rock forming elements such as Fe, Ti, Al, Si, Mg, and Ca can be detected. The accuracy of elemental abundance is limited by the resolution of the spectrometer. For space missions, scintillators such as BGO and NaI(Tl) have been used for gamma ray spectroscopy. New planetary science missions are being planned to explore Mars, Mercury, the asteroid belt, and the outer planets. Significant improvements in the pulse height resolution relative to scintillation detectors can be made using CdZnTe, a new room temperature detector technology. For an orbiting instrument, a CdZnTe detector at least 16 cm{sup 3} in size is needed. A 4 x 4 array of 1-cm{sup 3} coplanar grid detectors can be manufactured that meets requirements for resolution and counting efficiency. The array will shielded from gamma rays produced in the spacecraft by a BGO detector. By improving pulse height resolution by a factor of three at low energy, the CdZnTe detector will be able to make accurate measurements of elements that are currently difficult to measure using scintillation technology. The BGO shield will provide adequate suppression of gamma rays originating in the spacecraft, enabling the gamma ray spectrometer to be mounted on the deck of a spacecraft. To test this concept, we are constructing a flight qualified, prototype CdZnTe detector array. The prototype consists of a 2 x 2 array of coplanar grid detectors. We will present the results of mechanical and electronic testing and radiation damage tests, and the performance of the array for gamma ray spectroscopy.

  8. Nucleotide-binding flexibility in ultrahigh-resolution structures of the SRP GTPase Ffh

    SciTech Connect

    Ramirez, Ursula D.; Focia, Pamela J.; Freymann, Douglas M.

    2008-10-01

    Crystal structures of the Ffh NG GTPase domain at < 1.24 Å resolution reveal multiple overlapping nucleotide binding modes. Two structures of the nucleotide-bound NG domain of Ffh, the GTPase subunit of the bacterial signal recognition particle (SRP), have been determined at ultrahigh resolution in similar crystal forms. One is GDP-bound and one is GMPPCP-bound. The asymmetric unit of each structure contains two protein monomers, each of which exhibits differences in nucleotide-binding conformation and occupancy. The GDP-bound Ffh NG exhibits two binding conformations in one monomer but not the other and the GMPPCP-bound protein exhibits full occupancy of the nucleotide in one monomer but only partial occupancy in the other. Thus, under the same solution conditions, each crystal reveals multiple binding states that suggest that even when nucleotide is bound its position in the Ffh NG active site is dynamic. Some differences in the positioning of the bound nucleotide may arise from differences in the crystal-packing environment and specific factors that have been identified include the relative positions of the N and G domains, small conformational changes in the P-loop, the positions of waters buried within the active site and shifts in the closing loop that packs against the guanine base. However, ‘loose’ binding may have biological significance in promoting facile nucleotide exchange and providing a mechanism for priming the SRP GTPase prior to its activation in its complex with the SRP receptor.

  9. Ultra-high resolution water window x ray microscope optics design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, C.

    1993-01-01

    This project has been focused on the design and analysis of an ultra-high resolution water window soft-x-ray microscope. These activities have been accomplished by completing two tasks contained in the statement of work of this contract. The new results from this work confirm: (1) that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use spherical mirror surfaces and to use graded multilayer coatings on the secondary in order to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater; (2) that surface contour errors will have a significant effect on the optical performance of the microscope and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror; and (3) that tolerance analysis of the spherical Schwarzschild microscope has been shown that the water window operations will require 2-3 times tighter tolerances to achieve a similar performance of operations with 130 A radiation. These results have been included in a manuscript included in the appendix.

  10. Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift

    E-print Network

    California at Santa Cruz, University of

    Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift to GLASTto GLAST Bing ZhangBing Zhang. M.D. M. WeiWei (PMO)(PMO) Swift collaboration (D. Burrows, P.Swift collaboration (D. Burrows, P-Response Observations of Transient Targets Milestone 4: 2004-2005Milestone 4: 2004-2005 (Swift era)(Swift era) Launched

  11. Terrestrial Gamma-ray Flashes (TGFs) Observed with the Fermi-Gamma-ray Burst Monitor: Temporal and Spectral Properties

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.

  12. Terrestrial Gamma-Ray Flashes (TGFs) Observed with the Fermi-Gamma-Ray Burst Monitor: The First Hundred TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.

  13. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    SciTech Connect

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs.

  14. A search for optical counterparts of gamma-ray bursts. Final report

    SciTech Connect

    Park, Hye-Sook

    1995-03-09

    Gamma Ray Bursts (GRBS) are mysterious flashes of gamma rays lasting several tens to hundreds of seconds that occur approximately once per day. NASA launched the orbiting Compton Gamma Ray Observatory to study GRBs and other gamma ray phenomena. CGRO carries the Burst and Transient Experiment (BATSE) specifically to study GRBS. Although BATSE has collected data on over 600 GRBS, and confirmed that GRBs are localized, high intensity point sources of MeV gamma rays distributed isotropically in the sky, the nature and origin of GRBs remains a fundamental problem in astrophysics. BATSE`s 8 gamma ray sensors located on the comers of the box shaped CGRO can detect the onset of GRBs and record their intensity and energy spectra as a function of time. The position of the burst on the sky can be determined to < {plus_minus}10{degrees} from the BATSE data stream. This position resolution is not sufficient to point a large, optical telescope at the exact position of a GRB which would determine its origin by associating it with a star. Because of their brief duration it is not known if GRBs are accompanied by visible radiation. Their seemingly large energy output suggests thatthis should be. Simply scaling the ratio of visible to gamma ray intensities of the Crab Nebula to the GRB output suggests that GRBs ought to be accompanied by visible flashes of magnitude 10 or so. A few photographs of areas containing a burst location that were coincidentally taken during the burst yield lower limits on visible output of magnitude 4. The detection of visible light during the GRB would provide information on burst physics, provide improved pointing coordinates for precise examination of the field by large telescope and provide the justification for larger dedicated optical counterpart instruments. The purpose of this experiment is to detect or set lower limits on optical counterpart radiation simultaneously accompanying the gamma rays from

  15. COMBINED GAMMA-RAY AND NEUTRON DETECTOR FOR MEASURING THE CHEMICAL COMPOSITION OF AIRLESS PLANETARY BODIES.

    SciTech Connect

    Lawrence, David J. ,; Barraclough, B. L.; Feldman, W. C.; Prettyman, T. H.; Wiens, R. C.

    2001-01-01

    Galactic cosmic rays (GCR) constant1,y itnpinge all planetary bodies and produce characteristic gamma-ray lines and leakage neutrons as reaction products. Together with gamma-ray lines produced by radioactive decay, these nuclear emissions provide a powerful technique for remotely measuring the chemical composition of airless planetary surfaces. While lunar gamma-ray spectroscopy was first demonstrated with Apollo Gamma-Ray measurements, the full value of combined gamma-ray and neutron spectroscopy was shown for the first time with the Lunar Prospector Gamma-Ray (LP-GRS) and Neutron Spectrometers (LP-NS). Any new planetary mission will likely have the requirement that instrument mass and power be kept to a minimum. To satisfy such requirements, we have been designing a GR/NS instrument which combines all the functionality of the LP-GRS and LP-NS for a fraction of the mass and power. Specifically, our design uses a BGO scintillator crystal to measure gamma-rays from 0.5-10 MeV. A borated plastic scintillator and a lithium gliiss scintillator are used to separately measure thermal, epithermal, and fast neutrons as well as serve as an anticoincidence shield for the BGO. All three scintillators are packaged together in a compact phoswich design. Modifications to this design could include a CdZnTe gamma-ray detector for enhanced energy resolution at low energies (0.5-3 MeV). While care needs to be taken to ensure that an adequate count rate is achieved for specific mission designs, previous mission successes demonstrate that a cornbined GR/NS provides essential information about planetary surfaces.

  16. Experimental investigation of wavelength dependence of penetration depth and imaging contrast for ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ishida, S.; Nishizawa, N.; Itoh, K.

    2011-03-01

    Optical coherence tomography (OCT) is a non invasive optical imaging technology for micron-scale cross-sectional imaging of biological tissue and materials. Although OCT has many advantages in medical equipments, low penetration depth is a serious limitation for other applications. To realize the ultrahigh resolution and the high penetration depth at the same time, it is effective to choose the proper wavelength to maximize the light penetration and enhance the image contrast at deeper depths. Recently, we have demonstrated ultrahigh resolution and high penetration depth OCT by use of all-fiber based Gaussian shaped supercontinuum source at 1.7 ?m center wavelength. Gaussian-like supercontinuum with 360 nm bandwidth at center wavelength of 1.7 ?m was generated by ultrashort pulse Er doped fiber laser based system. In this paper, using 0.8 ?m and 1.3 ?m SC sources in addition to the 1.7 ?m SC source, we have investigated the wavelength dependence of ultrahigh resolution OCT in terms of penetration depth. Longitudinal resolutions at each wavelength region are almost 4.6 ?m in air. The obtained sensitivity was 95 dB for all wavelength regions. We confirmed the difference of imaging contrast and penetration depth with hamster's cheek pouch and so on. As the wavelength was increased, the magnitude of penetration depth was increased for these samples.

  17. Celestial Gamma Ray Bursts Detector Development and Model Simulations

    NASA Astrophysics Data System (ADS)

    Mock, Patrick Charles

    1993-12-01

    Celestial gamma-ray bursts are a poorly understood astrophysical phenomenon. These transient events were discovered over twenty years ago, yet their origin is still an unsolved mystery. At present no quiescent counterpart to a gamma ray burst source has been conclusively identified, partly because the poor angular resolution of gamma ray detectors and the short durations of the bursts make it difficult to determine precise source positions. (A few precise source positions have been determined by analysis of burst arrival times at widely separated detectors.) The High Energy Transient Experiment (HETE), described by Ricker, et al. (1992), is a new gamma ray astronomy satellite designed to overcome these difficulties. It can determine precise source positions by simultaneously observing a gamma ray burst with gamma ray x-ray, and ultraviolet (UV) instruments and utilizing the better angular resolutions available with the x-ray and UV instruments. In the first part of this dissertation I present experimental research which contributes to the development of a UV-sensitive solid-state imaging detector for the HETE satellite. The detector is a thinned, backside-illuminated charge-coupled device (CCD). The UV quantum efficiency (QE) is very sensitive to the results of the back-surface treatment, which stabilizes and protects that surface. As part of the detector development I designed and built an instrument to measure the quantum efficiency of a CCD over the wavelength range of 200--500~nm. With this instrument I measured the QE of seven prototype devices that were manufactured with three different back-surface technologies. I derived a statistical test to measure the mean number of electrons per photon, which increases from unity with increasing photon energy above a threshold of ~3.65~eV (340 nm). This effect is critically important when making photometric measurements at these wavelengths with solid state detectors. I also developed a simple physically-motivated model of the back surface, which provides adequate fits to the measured QE. I find that the best back-surface technology yields CCDs that have stable QEs of >40\\% in the HETE UV band of 220-310 nm. This is significantly better than the QE of 20% required by the HETE UV instrument (Ricker, et al. 1992). This encouraging result enhances the ability of the HETE UV instrument to detect a gamma-ray burst, which will ultimately lead to the discovery of the underlying physical sources. While the origin of gamma-ray bursts is unknown, the rapid variability and hard spectra indicate that the sources are compact objects. Many different models of gamma-ray bursts assume that the bursts originate from neutrons stars. Blaes, et al. (1990) put forth the idea that the natural evolution of a slowly-accreting, isolated neutron star leads to the formation of density inversions which might become unstable and thereby lead to a gamma-ray burst. However, the recent measurements of the gamma-ray burst distribution reported by Meegan, et al. (1992) rule out many galactic models. Recent theoretical work is split between galactic halo models and cosmological models, many of which still associate gamma-ray bursts with neutron stars. In any event, slowly-accreting neutron stars should exist in the galaxy. Their evolution is the focus of the second part of this dissertation. I present computational research on the evolution of this class of slowly accreting neutron stars. I describe an evolution code, which simulates the crust of a slowly accreting neutron star, and report on the evolution of the structure, composition, density inversions, and stored energy of fifteen different models. This evolution code is a version of ASTRA, an evolution code originally developed by Rakavy, et al. (1967). It is based on the version developed by Joss (1978) to simulate thermonuclear flashes in the crust of an accreting neutron star. The major changes are a new set of thermodynamic equations, a new nuclear reaction network, and a new thermal conductivity algorithm. The thermodynamic equations are based on

  18. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  19. Short gamma-ray bursts: A review

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.

    2015-09-01

    Gamma-Ray Bursts (GRBs) are rapid, bright flashes of radiation peaking in the gamma-ray band occurring at an average rate of one event per day at cosmological distances. They are characterized by a collimated relativistic outflow pushing through the interstellar medium shining in gamma-rays powered by a central engine. This prompt phase is followed by a fading afterglow emission at longer wavelength, powered in part by the expanding outflow, and in part by continuous energy injection by the central engine. The observed evidences of supernovae associated to long GRBs (those with a duration of the gamma-ray emission > 2 s) brought to a general consensus on indicating the core collapse of massive stars as the progenitor of these events. Following the most accredited model, short GRBs (the events with a duration of the gamma-ray emission ? 2 s) originate from the coalescence of compact binary systems (two neutron stars or neutron star-black hole systems). This paper presents a review of the observational properties of short GRBs and shows how the study of these properties can be used as a tool to unveil their elusive progenitors and provide information on the nature of the central engine powering the observed emission. The increasing evidence for compact object binary progenitors makes short GRBs one of the most promising sources of gravitational waves for the forthcoming Advanced LIGO/Virgo experiments.

  20. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  1. Searching for Dark Matter with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Albert, Andrea

    2015-04-01

    There is overwhelming evidence that non-baryonic dark matter constitutes about 27% of the energy density of the Universe. Weakly Interacting Massive Particles (WIMPs) are promising dark matter candidates that may produce gamma rays via annihilation or decay in the Universe. These gamma rays would be detected by space-based detectors like the Fermi Large Area Telescope or by ground-based arrays like VERITAS and H.E.S.S. A detection of gamma rays from WIMPs would not only confirm the existence of dark matter through a non-gravitational force, but also indicate the existence of physics beyond the Standard Model. I will present recent results from WIMP searches including looking for gamma-ray spectral lines and gamma-ray excesses in areas of large dark matter concentration like the Galactic center and dwarf spheroidal galaxies. We have entered an exciting era of dark matter searches since we are becoming sensitive to the natural cross section for WIMPs in some mass ranges and annihilation channels.

  2. Ultrahigh resolution mass spectrometry and indicator species analysis to identify marker components of soil- and plant biomass-derived organic matter fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical properties of organic matter affect important soil processes such as speciation, solubilization, and transport of plant nutrients and metals. This work uses ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to determine the molecula...

  3. Gamma Ray Spectroscopy of U-235

    NASA Astrophysics Data System (ADS)

    Gutman, Eric

    2002-10-01

    It had recently been noted at Lawrence Livermore National Laboratory that some intensity values in the gamma ray spectrum of U-235 above 300 keV might differ slightly from previously reported data [1], from a few degrees up to an order of magnitude. Consequently this experiment was undertaken to re-examine the spectral data, and compare with previously published figures. The gamma rays of four samples of U-235, each with a distinct isotopic purity were counted for various lengths of time and at different distances from a high-purity germanium detector. The resulting data was analyzed, and is currently being compared with what had been previously measured. The newly acquired information of the gamma ray spectrum of U-235 will have various applications, including stockpile stewardship, environmental science, and radiation detection. [1] Richard B. Firestone, Table of Isotopes, 8th ed., Vol. II, (John Wiley and Sons, NY, 1996) pp. 2759-64.

  4. Gamma-ray spectroscopy - Status and prospects

    NASA Astrophysics Data System (ADS)

    Matteson, J. L.

    Contemporary gamma-ray spectroscopy instruments and their results are reviewed. Sensitivities of 10 to the -4th to 10 to the -3rd ph/sq cm-sec have been achieved for steady sources and 10 to the -2nd to 1 ph/sq cm-sec for transient sources. This has led to the detection of gamma-ray lines from more than 40 objects representing 6 classes of astrophysical phenomena. The lines carry model-independent information and are of fundamental importance to theoretical modeling and our understanding of the objects. The objectives and anticipated results of future instruments are discussed. Several instruments in development will have a factor of 10 sensitivity improvement to certain phenomena over contemporary instruments. A factor of 100 improvement in sensitivity will allow the full potential of gamma-ray spectroscopy to be realized. Instrument concepts which would achieve this with both present and advanced techniques are discussed.

  5. The Structure of the Strongly Lensed Gamma-ray Source B2 0218+35

    E-print Network

    Barnacka, Anna; Dell'Antonio, Ian P; Zitrin, Adi

    2015-01-01

    Strong gravitational lensing is a powerful tool for resolving the high energy universe. We combine the temporal resolution of Fermi-LAT, the angular resolution of radio telescopes, and the independently and precisely known Hubble constant from Planck, to resolve the spatial origin of gamma-ray flares in the strongly lensed source B2 0218+35. The lensing model achieves 1 milliarcsecond spatial resolution of the source at gamma-ray energies. The data imply that the gamma-ray flaring sites are separate from the radio core: the bright gamma-ray flare (MJD: 56160 - 56280) occurred $51\\pm8$ pc from the 15 GHz radio core, toward the central engine. This displacement is significant at the $\\sim3\\sigma$ level, and is limited primarily by the precision of the Hubble constant. B2 0218+35 is the first source where the position of the gamma-ray emitting region relative to the radio core can be resolved. We discuss the potential of an ensemble of strongly lensed high energy sources for elucidating the physics of distant va...

  6. Distance and spectrum of the Apollo gamma-ray burst

    SciTech Connect

    Gilman, D.; Metzger, A.E.; Parker, R.H.; Evans, L.G.; Trombka, J.I.

    1980-03-15

    The ..gamma..-ray spectrometer on Apollo 16 obtained spectral information with good energy resolution from more than 2500 burst photons in the energy range 0.06--5.16 MeV. The spectrum from 2 keV to 2 MeV, observed at X-ray energies by the Apollo X-ray spectrometer, is fitted by a thermal bremsstrahlung spectrum with kT=500 keV. The success of the fit implies that the source is optically thin, and it follows that it must be closer than 50 pc. Absence of spectral variability suggests that the burst results from isothermal changes in emission measure.

  7. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging

    PubMed Central

    Zeng, Zhiping; Chen, Xuanze; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-01-01

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition. As the joint-tagging scheme can decrease the labeling density in each spectral channel, thereby bring it closer to single-molecule state, we can faithfully reconstruct the continuous microtubule structure with high resolution through collection of only 100 frames per channel. The improved continuity of the microtubule structure is quantitatively validated with image skeletonization, thus demonstrating the advantage of JT-SOFI over other localization-based super-resolution methods. PMID:25665878

  8. Ground-based Gamma Ray Astronomy

    E-print Network

    Holder, Jamie

    2014-01-01

    This paper is the write-up of a rapporteur talk given by the author at the 33rd International Cosmic Ray Conference in Rio de Janeiro, Brazil, in 2013. It attempts to summarize results and developments in ground-based gamma-ray observations and instrumentation from among the $\\sim300$ submissions to the gamma-ray sessions of the meeting. Satellite observations and theoretical developments were covered by a companion rapporteur. Any review of this nature is unavoidably subjective, and incomplete. Nevertheless, the article should provide a useful status report for those seeking an overview of this exciting and fast-moving field.

  9. VHE Gamma-ray Supernova Remnants

    SciTech Connect

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  10. Radioactivities and gamma-rays from supernovae

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1991-01-01

    An account is given of the implications of several calculations relevant to the estimation of gamma-ray signals from various explosive astronomical phenomena. After discussing efforts to constrain the amounts of Ni-57 and Ti-44 produced in SN 1987A, attention is given to the production of Al-27 in massive stars and SNs. A 'delayed detonation' model of type Ia SNs is proposed, and the gamma-ray signal which may be expected when a bare white dwarf collapses directly into a neutron star is discussed.

  11. Noiseless coding for the Gamma Ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rice, R.; Lee, J. J.

    1985-01-01

    The payload of several future unmanned space missions will include a sophisticated gamma ray spectrometer. Severely constrained data rates during certain portions of these missions could limit the possible science return from this instrument. This report investigates the application of universal noiseless coding techniques to represent gamma ray spectrometer data more efficiently without any loss in data integrity. Performance results demonstrate compression factors from 2.5:1 to 20:1 in comparison to a standard representation. Feasibility was also demonstrated by implementing a microprocessor breadboard coder/decoder using an Intel 8086 processor.

  12. Gamma ray line observations with OSSE

    NASA Technical Reports Server (NTRS)

    Kurfess, J. D.; Grove, J. E.; Johnson, W. N.; Murphy, R. J.; Share, G. H.; Purcell, W. R.; Leising, M. D.; Harris, M. J.

    1997-01-01

    Observations from the oriented scintillation spectrometer experiment of the gamma ray lines originating from a variety of Galactic center sources are reviewed. Extensive observations were acquired of the Galactic center region, including the 0.511 MeV positron annihilation line and associated positronium continuum and Al-26 emission. The results reviewed include: Co-57 from SN 1987A; limits on Co-56 from SN 1991T; gamma ray lines from solar flares; searches for Ti-44 emission from Cas A, and searches for C-12 and O-16 lines from the Orion region.

  13. Evidence for a Galactic gamma ray halo

    E-print Network

    D. D. Dixon; D. H. Hartmann; E. D. Kolaczyk; J. Samimi; R. Diehl; G. Kanbach; H. Mayer-Hasselwander; A. W. Strong

    1998-08-19

    We present quantitative statistical evidence for a $\\gamma$-ray emission halo surrounding the Galaxy. Maps of the emission are derived. EGRET data were analyzed in a wavelet-based non-parametric hypothesis testing framework, using a model of expected diffuse (Galactic + isotropic) emission as a null hypothesis. The results show a statistically significant large scale halo surrounding the center of the Milky Way as seen from Earth. The halo flux at high latitudes is somewhat smaller than the isotropic gamma-ray flux at the same energy, though of the same order (O(10^(-7)--10^(-6)) ph/cm^2/s/sr above 1 GeV).

  14. Nucleotide-binding flexibility in ultrahigh-resolution structures of the SRP GTPase Ffh

    SciTech Connect

    Ramirez, U.D.; Focia, P.J.; Freymann, D.M.

    2008-10-24

    Two structures of the nucleotide-bound NG domain of Ffh, the GTPase subunit of the bacterial signal recognition particle (SRP), have been determined at ultrahigh resolution in similar crystal forms. One is GDP-bound and one is GMPPCP-bound. The asymmetric unit of each structure contains two protein monomers, each of which exhibits differences in nucleotide-binding conformation and occupancy. The GDP-bound Ffh NG exhibits two binding conformations in one monomer but not the other and the GMPPCP-bound protein exhibits full occupancy of the nucleotide in one monomer but only partial occupancy in the other. Thus, under the same solution conditions, each crystal reveals multiple binding states that suggest that even when nucleotide is bound its position in the Ffh NG active site is dynamic. Some differences in the positioning of the bound nucleotide may arise from differences in the crystal-packing environment and specific factors that have been identified include the relative positions of the N and G domains, small conformational changes in the P-loop, the positions of waters buried within the active site and shifts in the closing loop that packs against the guanine base. However, 'loose' binding may have biological significance in promoting facile nucleotide exchange and providing a mechanism for priming the SRP GTPase prior to its activation in its complex with the SRP receptor.

  15. Demystifying an Unidentified EGRET Source by VHE gamma-ray Observations

    SciTech Connect

    Reimer, Olaf; Funk, Stefan; /KIPAC, Menlo Park

    2007-04-17

    In a novel approach in observational high-energy gamma-ray astronomy, observations carried out by imaging atmospheric Cherenkov telescopes provide necessary templates to pinpoint the nature of intriguing, yet unidentified EGRET gamma-ray sources. Using GeV-photons detected by CGRO EGRET and taking advantage of high spatial resolution images from H.E.S.S. observations, we were able to shed new light on the EGRET observed gamma-ray emission in the Kookaburra complex, whose previous coverage in the literature is some-what contradictory. 3EGJ1420-6038 very likely accounts for two GeV gamma-ray sources (E>1 GeV), both in positional coincidence with the recently reported pulsar wind nebulae (PWN) by HESS in the Kookaburra/Rabbit complex. PWN associations at VHE energies, supported by accumulating evidence from observations in the radio and X-ray band, are indicative for the PSR/plerionic origin of spatially coincident, but still unidentified Galactic gamma-ray sources from EGRET. This not only supports the already suggested connection between variable, but unidentified low-latitude gamma-ray sources with pulsar wind nebulae (3EGJ1420-6038 has been suggested as PWN candidate previously), it also documents the ability of resolving apparently confused EGRET sources by connecting the GeV emission as measured from a large-aperture space-based gamma-ray instrument with narrow field-of-view but superior spatial resolution observations by ground-based atmospheric Cherenkov telescopes, a very promising identification technique for achieving convincing individual source identifications in the era of GLAST-LAT.

  16. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cense, Barry; Nassif, Nader A.; Chen, Teresa C.; Pierce, Mark C.; Yun, Seok-Hyun; Hyle Park, B.; Bouma, Brett E.; Tearney, Guillermo J.; de Boer, Johannes F.

    2004-05-01

    We present the first ultrahigh-resolution optical coherence tomography (OCT) structural intensity images and movies of the human retina in vivo at 29.3 frames per second with 500 A-lines per frame. Data was acquired at a continuous rate of 29,300 spectra per second with a 98% duty cycle. Two consecutive spectra were coherently summed to improve sensitivity, resulting in an effective rate of 14,600 A-lines per second at an effective integration time of 68 ?s. The turn-key source was a combination of two super luminescent diodes with a combined spectral width of more than 150 nm providing 4.5 mW of power. The spectrometer of the spectraldomain OCT (SD-OCT) setup was centered around 885 nm with a bandwidth of 145 nm. The effective bandwidth in the eye was limited to approximately 100 nm due to increased absorption of wavelengths above 920 nm in the vitreous. Comparing the performance of our ultrahighresolution SD-OCT system with a conventional high-resolution time domain OCT system, the A-line rate of the spectral-domain OCT system was 59 times higher at a 5.4 dB lower sensitivity. With use of a software based dispersion compensation scheme, coherence length broadening due to dispersion mismatch between sample and reference arms was minimized. The coherence length measured from a mirror in air was equal to 4.0 ?m (n= 1). The coherence length determined from the specular reflection of the foveal umbo in vivo in a healthy human eye was equal to 3.5 ?m (n = 1.38). With this new system, two layers at the location of the retinal pigmented epithelium seem to be present, as well as small features in the inner and outer plexiform layers, which are believed to be small blood vessels.

  17. Real time method and computer system for identifying radioactive materials from HPGe gamma-ray spectroscopy

    DOEpatents

    Rowland, Mark S. (Alamo, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Dublin, CA); Jessup, James L. (Tracy, CA); Bianchini, Greg M. (Livermore, CA); Miller, Wayne O. (Livermore, CA)

    2007-10-23

    A real-time method and computer system for identifying radioactive materials which collects gamma count rates from a HPGe gamma-radiation detector to produce a high-resolution gamma-ray energy spectrum. A library of nuclear material definitions ("library definitions") is provided, with each uniquely associated with a nuclide or isotope material and each comprising at least one logic condition associated with a spectral parameter of a gamma-ray energy spectrum. The method determines whether the spectral parameters of said high-resolution gamma-ray energy spectrum satisfy all the logic conditions of any one of the library definitions, and subsequently uniquely identifies the material type as that nuclide or isotope material associated with the satisfied library definition. The method is iteratively repeated to update the spectrum and identification in real time.

  18. EXPLORING THE NATURE OF THE GALACTIC CENTER {gamma}-RAY SOURCE WITH THE CHERENKOV TELESCOPE ARRAY

    SciTech Connect

    Linden, Tim; Profumo, Stefano

    2012-11-20

    Observations from multiple {gamma}-ray telescopes have uncovered a high-energy {gamma}-ray source spatially coincident with the Galactic center. Recently, a compelling model for the broadband {gamma}-ray emission has been formulated, which posits that high-energy protons emanating from Sgr A* could produce {gamma}-rays through {pi}{sup 0} decays resulting from inelastic collisions with the traversed interstellar gas in the region. Models of the gas distribution in the Galactic center region imply that the resulting {gamma}-ray morphology would be observed as a point source with all current telescopes, but that the upcoming Cherenkov Telescope Array (CTA) may be able to detect an extended emission profile with an unmistakable morphology. Here, we critically evaluate this claim, employing a three-dimensional gas distribution model and a detailed Monte Carlo simulation, and using the anticipated effective area and angular resolution of CTA. We find that the impressive angular resolution of CTA will be key to test hadronic emission models conclusively against, for example, point source or dark matter annihilation scenarios. We comment on the relevance of this result for searches for dark matter annihilation in the Galactic center region.

  19. Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies

    E-print Network

    Kourtchev, I.; Fuller, S. J.; Giorio, C.; Healy, R. M.; Wilson, E.; O'Connor, I.; Wenger, J. C.; McLeod, M.; Aalto, J.; Ruuskanen, T. M.; Maenhaut, W.; Jones, R.; Venables, D. S.; Sodeau, J. R.; Kulmala, M.; Kalberer, M.

    2013-11-12

    University, Krijgslaan 281, S12, 9000 Ghent, Belgium 7Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium Correspondence to: I. Kourtchev (ink22@cam.ac.uk) and M. Kalberer (mk594@cam.ac.uk) Received: 25... in the complex mixture of organic aerosol. Ultra-high resolution mass spectrometers (UHR-MS) (i.e. Fourier transform ion cyclotron resonance MS and Orbitrap MS) have a mass resolution power that is at least 1 order of magnitude higher (? 100 000) than conven...

  20. Fitting and Updating Gamma-Ray Energies

    SciTech Connect

    Guimaraes-Filho, Zwinglio O.; Helene, Octaviano; Vanin, Vito R.; Maidana, Nora L.

    2005-05-24

    The procedure for obtaining the updated version of the recommended gamma-ray transition energies for detector calibration is described. The energies were recalculated to account for the 2002 CODATA Recommended Values of Fundamental Physical Constants. The re-evaluation methodology considered the statistical correlations and used the appropriate covariance matrices in all steps.

  1. HYPERNUCLEAR STRUCTURE FROM GAMMA-RAY SPECTROSCOPY.

    SciTech Connect

    MILLENER,D.J.

    2003-10-14

    The energies of p-shell hypernuclear {gamma} rays obtained from recent experiments using the Hyperball at BNL and KEK are used to constrain the YN interaction which enters into shell-model calculations which include both {Lambda} and {Sigma} configurations.

  2. High redshift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Salvaterra, Ruben

    2015-09-01

    Ten years of operations of the Swift satellite have allowed us to collect a small sample of long Gamma-Ray Bursts (GRBs) at redshift larger than 6. I will review here the present status of this research field and discuss the possible use of GRBs as a fundamental new tool to explore the early Universe, complementary to quasar and galaxy surveys.

  3. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  4. Gamma ray observations of the solar system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  5. Gamma ray observations of the solar system

    SciTech Connect

    Not Available

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  6. Study of gamma-ray strength functions

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.; Dietrich, F.S.

    1980-08-07

    The use of gamma-ray strength function systematics to calculate neutron capture cross sections and capture gamma-ray spectra is discussed. The ratio of the average capture width, GAMMA/sub ..gamma../-bar, to the average level spacing, D/sub obs/, both at the neutron separation energy, can be derived from such systematics with much less uncertainty than from separate systematics for values of GAMMA/sub ..gamma../-bar and D/sub obs/. In particular, the E1 gamma-ray strength function is defined in terms of the giant dipole resonance (GDR). The GDR line shape is modeled with the usual Lorentzian function and also with a new energy-dependent, Breit-Wigner (EDBW) function. This latter form is further parameterized in terms of two overlapping resonances, even for nuclei where photonuclear measurements do not resolve two peaks. In the mass ranges studied, such modeling is successful for all nuclei away from the N = 50 closed neutron shell. Near the N = 50 shell, a one-peak EDBW appears to be more appropriate. Examples of calculated neutron capture excitation functions and capture gamma-ray spectra using the EDBW form are given for target nuclei in the mass-90 region and also in the Ta-Au mass region. 20 figures.

  7. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  8. Swift's 500th Gamma Ray Burst - Duration: 64 seconds.

    NASA Video Gallery

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  9. Investigation of gamma rays from the galactic center

    NASA Technical Reports Server (NTRS)

    Helmken, H. F.

    1973-01-01

    Data from Argentine balloon flights made to investigate gamma ray emission from the galactic center are summarized. Data are also summarized from a Palestine, Texas balloon flight to measure gamma rays from NP 0532 and Crab Nebulae.

  10. Gamma-ray luminosity function of Gamma-ray bright AGNs

    E-print Network

    Bhattacharya, D; Mukherjee, R

    2008-01-01

    Detection of Gamma-ray emission from a class of active galactic nuclei (viz blazars), has been one of the important findings from the Compton Gamma Ray Observatory (CGRO). However, their Gamma-ray luminosity function has not been well determined. Few attempts have been made in earlier works, where BL Lacs and Flat Spectrum Radio Quasars (FSRQs) have been considered as a single source class. In this paper we investigated the evolution and Gamma-ray luminosity function of FSRQs and BL Lacs separately. Our investigation indicates no evolution for BL Lacs, however FSRQs show significant evolution. Pure luminosity evolution is assumed for FSRQs and exponential and power law evolution models are examined. Due to the small number of sources, the low luminosity end index of the luminosity function for FSRQs is constrained with upper limit. BL Lac luminosity function shows no signature of break. As a consistency check, the model source distributions deriving from these luminosity functions show no significant departur...

  11. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  12. Gamma ray bursts of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  13. Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    2010-01-01

    Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be described, such as non-thermal and lasing phenomena on Mars and Venus, mid-infrared aurora on Jupiter [5], and results of small body impacts on Jupiter [6]. The heterodyne technique can also be applied for detailed study of the Earth's stratosphere and mesosphere by measuring trace constituent abundances and temporal and spatial variability as well as winds, which provide information of transport. All ground-based measurements will be described as complementary and supporting studies for on-going and future space missions [7] (Mars Express, Venus Express, Cassini Huygens, JUNO, ExoMars Trace Gas Orbiter, and the Europa Jupiter System Mission, an Earth Science Venture Class missions), Proposed instrument and technology development for a space flight infrared heterodyne spectrometer will be described.

  14. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  15. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  16. Gamma-Ray, Cosmic Ray and Neutrino Tests of Lorentz Invariance and Quantum Gravity Models

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd

    2011-01-01

    High-energy astrophysics observations provide the best possibilities to detect a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10(exp -35) m. I will discuss here the possible signatures of Lorentz invariance violation (LIV) from observations of the spectra, polarization, and timing of gamma-rays from active galactic nuclei and gamma-ray bursts. Other sensitive tests are provided by observations of the spectra of ultrahigh energy cosmic rays and neutrinos. Using the latest data from the Pierre Auger Observatory one can already derive an upper limit of 4.5 x 10(exp -23) to the amount of LIV of at a proton Lorentz factor of approximately 2 x 10(exp 11). This result has fundamental implications for quantum gravity models. I will also discuss the possibilities of using more sensitive space based detection techniques to improve searches for LIV in the future.

  17. Report of the x ray and gamma ray sensors panel

    NASA Technical Reports Server (NTRS)

    Szymkowiak, Andrew; Collins, S.; Kurfess, J.; Mahoney, W.; Mccammon, D.; Pehl, R.; Ricker, G.

    1991-01-01

    Overall five major areas of technology are recommended for development in order to meet the science requirements of the Astrotech 21 mission set. These are: detectors for high resolution gamma ray spectroscopy, cryogenic detectors for improved x ray spectral and spatial resolution, advanced x ray charge coupled devices (CCDs) for higher energy resolution and larger format, extension to higher energies, liquid and solid position sensitive detectors for improving stopping power in the energy range 5 to 500 keV and 0.2 to 2 MeV. Development plans designed to achieve the desired capabilities on the time scales required by the technology freeze dates have been recommended in each of these areas.

  18. CdZnTe technology for gamma ray detectors

    NASA Astrophysics Data System (ADS)

    Stahle, Carl; Shi, Jack; Shu, Peter; Barthelmy, Scott; Parsons, Ann; Snodgrass, Steve

    1998-01-01

    CdZnTe detector technology has been developed at NASA Goddard for imaging and spectroscopy applications in hard x-ray and gamma ray astronomy. A CdZnTe strip detector array with capabilities for arc second imaging and spectroscopy has been built as a prototype for a space flight gamma ray burst instrument. CdZnTe detectors also have applications for medical imaging, environmental protection, transportation safety, nuclear safeguards and safety, nuclear non-proliferation, and national security. This can be accomplished from space and also from portable detectors on earth. One of the great advantages of CdZnTe is that the detectors can be operated at room temperature which eliminates the need for cryogenic cooling. CdZnTe detectors have good energy resolution (3.6 keV at 60 keV) and excellent spatial resolution (<100 microns). NASA Goddard has developed the fabrication technology to make a variery of planar, strip, and pixel detectors and integrated these detectors to high density electronics. We have built a 2×2 and a large area (60 cm2, 36 detectors) 6×6 strip detector array. This paper will summarize the CdZnTe detector fabrication and packaging technology developed at Goddard.

  19. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  20. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  1. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  2. Gamma-Ray Background Variability in Mobile Detectors

    NASA Astrophysics Data System (ADS)

    Aucott, Timothy John

    Gamma-ray background radiation significantly reduces detection sensitivity when searching for radioactive sources in the field, such as in wide-area searches for homeland security applications. Mobile detector systems in particular must contend with a variable background that is not necessarily known or even measurable a priori. This work will present measurements of the spatial and temporal variability of the background, with the goal of merging gamma-ray detection, spectroscopy, and imaging with contextual information--a "nuclear street view" of the ubiquitous background radiation. The gamma-ray background originates from a variety of sources, both natural and anthropogenic. The dominant sources in the field are the primordial isotopes potassium-40, uranium-238, and thorium-232, as well as their decay daughters. In addition to the natural background, many artificially-created isotopes are used for industrial or medical purposes, and contamination from fission products can be found in many environments. Regardless of origin, these backgrounds will reduce detection sensitivity by adding both statistical as well as systematic uncertainty. In particular, large detector arrays will be limited by the systematic uncertainty in the background and will suffer from a high rate of false alarms. The goal of this work is to provide a comprehensive characterization of the gamma-ray background and its variability in order to improve detection sensitivity and evaluate the performance of mobile detectors in the field. Large quantities of data are measured in order to study their performance at very low false alarm rates. Two different approaches, spectroscopy and imaging, are compared in a controlled study in the presence of this measured background. Furthermore, there is additional information that can be gained by correlating the gamma-ray data with contextual data streams (such as cameras and global positioning systems) in order to reduce the variability in the background. This is accomplished by making many hours of background measurements with a truck-mounted system, which utilizes high-purity germanium detectors for spectroscopy and sodium iodide detectors for coded aperture imaging. This system also utilizes various peripheral sensors, such as panoramic cameras, laser ranging systems, global positioning systems, and a weather station to provide context for the gamma-ray data. About three hundred hours of data were taken in the San Francisco Bay Area, covering a wide variety of environments that might be encountered in operational scenarios. These measurements were used in a source injection study to evaluate the sensitivity of different algorithms (imaging and spectroscopy) and hardware (sodium iodide and high-purity germanium detectors). These measurements confirm that background distributions in large, mobile detector systems are dominated by systematic, not statistical variations, and both spectroscopy and imaging were found to substantially reduce this variability. Spectroscopy performed better than the coded aperture for the given scintillator array (one square meter of sodium iodide) for a variety of sources and geometries. By modeling the statistical and systematic uncertainties of the background, the data can be sampled to simulate the performance of a detector array of arbitrary size and resolution. With a larger array or lower resolution detectors, however imaging was better able to compensate for background variability.

  3. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  4. A new approach in the detection of weak {\\gamma}-ray peak of the radioactive waste in tomography {\\gamma} scanning

    E-print Network

    Jinzha, Zhang

    2014-01-01

    We demonstrate a new approach to efficiently detect weak {\\gamma}-ray peak of the radioactive waste in tomographic {\\gamma} scanning (TGS). In the TGS measurement, {\\gamma}-ray peak identification is usually difficult due to the short measurement time that results in a lower {\\gamma}-ray energy produced by the decay. Consequently, the resulting significant scattering in the low-energy side leads to strong statistical fluctuations and low detection efficiency that overwhelm the {\\gamma}-ray peak. Here, we propose the use of shift invariance wavelet algorithm for low-energy part of the spectrum for weak {\\gamma}-ray peak smoothing. The proposed algorithm not only overcomes the pseudo-Gibbs in the high-resolution {\\gamma}-ray spectrum de-noising by the traditional wavelet transform, but also keeps quality of the weak {\\gamma}-ray characteristic peak as well. Our new approach shows a significantly improved performance of the figure of merit (FOM) together with lower limit of quantitation (LLOQ) compared with the ...

  5. A performance study of an electron-tracking Compton camera with a compact system for environmental gamma-ray observation

    E-print Network

    Mizumoto, Tetsuya; Takada, Atsushi; Tanimori, Toru; Komura, Shotaro; Kubo, Hidetoshi; Matsuoka, Yoshihiro; Mizumura, Yoshitaka; Nakamura, Kiseki; Nakamura, Shogo; Oda, Makoto; Parker, Joseph D; Sawano, Tatsuya; Bando, Naoto; Nabetani, Akira

    2015-01-01

    An electron-tracking Compton camera (ETCC) is a detector that can determine the arrival direction and energy of incident sub-MeV/MeV gamma-ray events on an event-by-event basis. It is a hybrid detector consisting of a gaseous time projection chamber (TPC), that is the Compton-scattering target and the tracker of recoil electrons, and a position-sensitive scintillation camera that absorbs of the scattered gamma rays, to measure gamma rays in the environment from contaminated soil. To measure of environmental gamma rays from soil contaminated with radioactive cesium (Cs), we developed a portable battery-powered ETCC system with a compact readout circuit and data-acquisition system for the SMILE-II experiment. We checked the gamma-ray imaging ability and ETCC performance in the laboratory by using several gamma-ray point sources. The performance test indicates that the field of view (FoV) of the detector is about 1$\\;$sr and that the detection efficiency and angular resolution for 662$\\;$keV gamma rays from the ...

  6. Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ruggeri, Marco; Major, James C.; McKeown, Craig; Knighton, Robert W.; Puliafito, Carmen A.

    2010-01-01

    Purpose. To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. Methods. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 ?m (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. Results. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Conclusions. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey. PMID:20554605

  7. DISCOVERY OF LOCALIZED TEV GAMMA-RAY SOURCES AND DIFFUSE TEV GAMMA-RAY EMISSION FROM THE GALACTIC

    E-print Network

    California at Santa Cruz, University of

    DISCOVERY OF LOCALIZED TEV GAMMA-RAY SOURCES AND DIFFUSE TEV GAMMA-RAY EMISSION FROM THE GALACTIC OF PHILOSOPHY Department of Physics and Astronomy 2007 #12;ABSTRACT DISCOVERY OF LOCALIZED TEV GAMMA-RAY SOURCES detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources

  8. The Universe Viewed in Gamma-Rays 1 Galactic Diffuse Gamma-ray Spectrum from Cosmic-ray In-

    E-print Network

    Mori, Masaki

    The Universe Viewed in Gamma-Rays 1 Galactic Diffuse Gamma-ray Spectrum from Cosmic-ray In- teractions with Gas Clouds Michiko OHISHI and Masaki MORI Institute for Cosmic Ray Research, University, Australia Abstract Gamma-ray spectra from cosmic-ray proton and electron interactions with gas clouds have

  9. Gamma-Ray Bursts: A Mystery Story

    NASA Technical Reports Server (NTRS)

    Parsons, Ann

    2007-01-01

    With the success of the Swift Gamma-Ray Burst Explorer currently in orbit, this is quite an exciting time in the history of Gamma Ray Bursts (GRBs). The study of GRBs is a modern astronomical mystery story that began over 30 years ago with the serendipitous discovery of these astronomical events by military satellites in the late 1960's. Until the launch of BATSE on the Compton Gamma-ray Observatory, astronomers had no clue whether GRBs originated at the edge of our solar system, in our own Milky Way Galaxy or incredibly far away near the edge of the observable Universe. Data from BATSE proved that GRBs are distributed isotropically on the sky and thus could not be the related to objects in the disk of our Galaxy. Given the intensity of the gamma-ray emission, an extragalactic origin would require an astounding amount of energy. Without sufficient data to decide the issue, a great debate continued about whether GRBs were located in the halo of our own galaxy or were at extragalactic - even cosmological distances. This debate continued until 1997 when the BeppoSAX mission discovered a fading X-ray afterglow signal in the same location as a GRB. This discovery enabled other telescopes, to observe afterglow emission at optical and radio wavelengths and prove that GRBs were at cosmological distances by measuring large redshifts in the optical spectra. Like BeppoSAX Swift, slews to new GRB locations to measure afterglow emission. In addition to improved GRB sensitivity, a significant advantage of Swift over BeppoSAX and other missions is its ability to slew very quickly, allowing x-ray and optical follow-up measurements to be made as early as a minute after the gamma-ray burst trigger rather than the previous 6-8 hour delay. Swift afterglow measurements along with follow-up ground-based observations, and theoretical work have allowed astronomers to identify two plausible scenarios for the creation of a GRB: either through core collapse of super massive stars or colliding compact objects in distant galaxies. The pieces of the puzzle are beginning to fall into place and yet the story isn't quite finished. I will frame the history of gamma-ray bursts as a mystery story and will end with a description of what we still don't know and what we'll have to do to get the next clues.

  10. Dark Matter and the CACTUS Gamma-Ray Excess from Draco

    E-print Network

    Stefano Profumo; Marc Kamionkowski

    2006-02-16

    The CACTUS atmospheric Cherenkov telescope collaboration recently reported a gamma-ray excess from the Draco dwarf spheroidal galaxy. Draco features a very low gas content and a large mass-to-light ratio, suggesting as a possible explanation annihilation of weakly interacting massive particles (WIMPs) in the Draco dark-matter halo. We show that with improved angular resolution, future measurements can determine whether the halo is cored or cuspy, as well as its scale radius. We find the relevant WIMP masses and annihilation cross sections and show that supersymmetric models can account for the required gamma-ray flux. The annihilation cross section range is found to be not compatible with a standard thermal relic dark-matter production. We compute for these supersymmetric models the resulting Draco gamma-ray flux in the GLAST energy range and the rates for direct neutralino detection and for the flux of neutrinos from neutralino annihilation in the Sun. We also discuss the possibility that the bulk of the signal detected by CACTUS comes from direct WIMP annihilation to two photons and point out that a decaying-dark-matter scenario for Draco is not compatible with the gamma-ray flux from the Galactic center and in the diffuse gamma-ray background.

  11. X-Ray Observations of Unidentified H.E.S.S. Gamma-Ray Sources

    SciTech Connect

    Funk, S.; /SLAC

    2007-10-10

    In a survey of the inner part of the Galaxy, performed with the H.E.S.S. Instrument (High energy stereoscopic system) in 2004 and 2005, a large number of new unidentified very high energy (VHE) {gamma}-ray sources above an energy of 100 GeV was discovered. Often the {gamma}-ray spectra in these sources reach energies of up to {approx} 10 TeV. These are the highest energy particles ever attributed to single astrophysical objects. While a few of these sources can be identified at other wavebands, most of these sources remain unidentified so far. A positive identification of these new g-ray sources with a counterpart object at other wavebands requires (a) a positional coincidence between the two sources,( b) a viable {gamma}-ray emission mechanism and (c) a consistent multiwavelength behavior of the two sources. X-ray observations with satellites such as XMM-Newton, Chandra or Suzaku provide one of the best channels to studying these enigmatic {gamma}-ray sources at other wavebands, since they combine high angular resolution and sensitivity with the ability to access non-thermal electrons through their synchrotron emission. We therefore have started a dedicated program to investigate VHE {gamma}-ray sources with high-sensitivity X-ray instruments.

  12. Very high energy gamma rays from the Crab nebula and pulsar

    SciTech Connect

    Kwok, P.W.

    1989-01-01

    This project is to search for very high energy (VHE) (10(exp 11) to 10(exp 14)eV) gamma rays from the Crab nebula and pulsar using the atmospheric Cherenkov imaging technique. The technique uses an array of 37 photomultiplier tubes to record the images of the Cherenkov light pulses generated by energetic particles in the air showers initiated by VHE gamma rays or charged cosmic rays. Gamma ray like events are selected from numerous cosmic ray events based on the predicted properties of the image, such as the size, shape, and orientation with respect to the axis of the detector. A steady weak flux of VHE gamma rays from the Crab is detected at high statistical significance (9 sigma), which is not usually achieved in VHE gamma ray astronomy. No strong evidence of pulsed emission is found when the same data is folded at the Crab pulsar's radio ephemeris. The angular resolution of the technique cannot separate the emission coming from the nebula from that from the pulsar. Although it is generally believed that the unpulsed emission is coming from the nebula, there may be an unpulsed component coming at only a couple of light cylinder radii away from the pulsar too. Using the outer gap model of pulsar, the spectrum is derived and is found to be compatible with the observations.

  13. Origin of the 871-keV gamma ray and the ``oxide'' attribute

    SciTech Connect

    AJ Peurrung; RJ Arthur; BD Geelhood; RD Scheele; RJ Elovich; SL Pratt

    2000-03-22

    This work concludes the investigation of the oxide attribute of current interest for the characterization of stored plutonium. Originally it was believed that the presence of oxide could be ascertained by measurement of the 871-keV line in a high-resolution gamma-ray spectrum. However, recent work has suggested that the 871-keV gamma ray in plutonium oxide arises from the reaction {sup 14}N({alpha},p){sup 17}O rather than the inelastic scattering reaction {sup 17}O({alpha},{alpha}{prime}){sup 17}O*. This conclusion, though initially surprising, was obtained during efforts to determine the relative importance of americium and plutonium alpha-particle decay for the production of the 871-keV gamma ray. Several questions were raised by previous experiments: What role, if any does {sup 17}O have in the generation of the 871-keV gamma ray? How does sufficient nitrogen come to be present in plutonium oxide? Under what conditions is the 871-keV gamma ray measurable in plutonium oxide? This paper describes the answers to these questions.

  14. Pulse width measurement of laser Compton scattered gamma rays in picosecond range

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Adachi, M.; Zen, H.; Yamamoto, N.; Hosaka, M.; Soda, K.; Katoh, M.

    2012-12-01

    Ultra-short gamma ray pulses of the picosecond and femtosecond ranges can be generated using laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. Measurement techniques for a gamma ray pulse width in the femtosecond range are being developed. As the first stage of pulse width measurement, we tested a pulse width measuring method for the gamma rays with pulse width of 4.8 ps (FWHM) consisted of a multi-pixel photon counter (MPPC) and a digital oscilloscope. The time resolution of the MPPC was measured as 477 ps (FWHM) by using a single photon counting technique. The results indicated that the shortest pulse width that an MPPC can evaluate is 82 ps under ideal conditions. However, the experimental data were affected by a time jitter. The measured gamma ray pulse width including time jitter was 540 ps. The main reason for the large discrepancy was considered to be the noise of the trigger signal. We successfully reduced the time jitter to 77 ps after an improvement. As the next stage, we will develop a pulse width measurement technique in the femtosecond range by using a pump-probe technique with a femtosecond laser and ultra-short gamma ray pulses.

  15. THE MORPHOLOGY OF HADRONIC EMISSION MODELS FOR THE GAMMA-RAY SOURCE AT THE GALACTIC CENTER

    SciTech Connect

    Linden, Tim; Profumo, Stefano; Lovegrove, Elizabeth

    2012-07-01

    Recently, detections of a high-energy {gamma}-ray source at the position of the Galactic center have been reported by multiple {gamma}-ray telescopes, spanning the energy range between 100 MeV and 100 TeV. Analysis of these signals strongly suggests the TeV emission to have a morphology consistent with a point source up to the angular resolution of the HESS telescope (approximately 3 pc), while the point-source nature of the GeV emission is currently unsettled, with indications that it may be spatially extended. In the case that the emission is hadronic and in a steady state, we show that the expected {gamma}-ray morphology is dominated by the distribution of target gas, rather than by details of cosmic-ray injection and propagation. Specifically, we expect a significant portion of hadronic emission to coincide with the position of the circumnuclear ring, which resides between 1 and 3 pc from the Galactic center. We note that the upcoming Cherenkov Telescope Array (CTA) will be able to observe conclusive correlations between the morphology of the TeV {gamma}-ray source and the observed gas density, convincingly confirming or ruling out a hadronic origin for the {gamma}-ray emission.

  16. Distance and Reddening of the Enigmatic Gamma-ray-Detected Nova V1324 Sco

    NASA Astrophysics Data System (ADS)

    Finzell, Thomas; Chomiuk, Laura; Munari, Ulisse; Walter, Frederick M.

    2015-08-01

    It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst. Despite using an unreliable method to determine its distance, previous work showed that nova V1324 Sco was the most gamma-ray luminous of all gamma-ray-detected novae. We present here a different, more robust, method to determine the reddening and distance to V1324 Sco using high-resolution optical spectroscopy. Using two independent methods, we derived a reddening of E(B-V)= 1.16+/- 0.12 and a distance limit of {r}{{D}}\\gt 6.5 {kpc}. This distance is \\gt 40% greater than the value used in the gamma-ray analysis, meaning that V1324 Sco has an even higher gamma-ray luminosity than previously calculated. We also use periodic modulations in the brightness, interpreted as the orbital period, in conjunction with pre-outburst photometric limits to show that a main-sequence companion is strongly favored.

  17. Can Galactic Cosmic Rays Account for Solar 6Li Without Overproducing Gamma Rays?

    E-print Network

    T. Prodanovic; B. D. Fields

    2006-05-26

    Cosmic-ray interactions with interstellar gas produces both 6Li, which accumulates in the interstellar medium (ISM), and $\\pi^0$ mesons, which decay to gamma-rays which propagate throughout the cosmos. Local 6Li abundances and extragalactic gamma-rays thus have a common origin which tightly links them. We exploit this connection to use gamma-ray observations to infer the contribution to 6Li nucleosynthesis by standard Galactic cosmic-ray (GCR) interactions with the ISM. Our calculation uses a carefully propagated cosmic-ray spectrum and accounts for 6Li production from both fusion reactions ($\\alpha \\alpha \\to ^6Li$) as well as from spallation channels (${p,\\alpha+CNO \\to ^6Li$). We find that although extreme assumptions yield a consistent picture, more realistic ones indicate that solar 6Li cannot be produced by standard GCRs alone without overproducing the hadronic gamma rays. Implications for the primordial 6Li production by decaying dark matter and cosmic rays from cosmological structure formation are discussed. Upcoming gamma-ray observations by GLAST will be crucial for determining the resolution of this problem.

  18. Spectroscopy of bright bursts with the transient gamma-ray spectrometer (TGRS)

    SciTech Connect

    Seifert, H.; Palmer, D. M.; Cline, T. L.; Ramaty, R.; Teegarden, B. J.; Madden, N. W.; Pehl, R. H.

    1998-05-16

    The Transient Gamma-Ray Spectrometer (TGRS) on the WIND spacecraft is designed to perform spectroscopy of bright gamma-ray bursts (GRBs) in the {approx}20-8000 keV energy range, with a spectroscopic resolution which is 5-30 times better than that of earlier-generation detectors. During its first {approx}2.5 years of operation, TGRS detected {approx}90 GRBs, of which about one third are suitable for statistically interesting spectroscopy. We present preliminary comparative results for some of the brightest of those bursts, and which were also observed by CGRO/BATSE.

  19. On the observability of the gamma-ray line flux from dark matter annihilation

    NASA Technical Reports Server (NTRS)

    Rudaz, S.; Stecker, F. W.

    1991-01-01

    The limits on the possible cosmic gamma-ray line flux from the two-photon annihilation of dark matter in the Galaxy are discussed. These limits are derived using both particle physics and cosmological constraints on dark matter candidates which arise in supersymmetric extensions of the standard model of particle physics. Results are given in terms of allowed and prescribed areas in the flux-energy plane. Then these bounds are used to consider the observability of the line flux above continuum background fluxes using future high-resolution gamma-ray telescopes.

  20. Computer-generated maps of lunar composition from gamma-ray data

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Metzger, A. E.; Reedy, R. C.

    1977-01-01

    Processing of some of the gamma-ray data obtained by Apollo 15 and 16 has been accomplished by analyzing count rates in three energy bands. The count rate variations in the three energy bands are due in various degrees to thorium, uranium, potassium, iron and titanium. The mapping which results from the gamma-ray count rates has an effective resolution of about two degrees. Regions of high titanium content in certain maria, the low values of iron in a zone of the central equatorial highland and the relatively low value of iron near Archimedes are noted.

  1. A field-deployable gamma-ray spectrometer utilizing xenon at high pressure

    SciTech Connect

    Smith, G.C.; Mahler, G.J.; Yu, B.; Salwen, C.; Kane, W.R.; Lemley, J.R.

    1996-10-01

    Prototype gamma-ray spectrometers utilizing xenon gas at high pressure, suitable for applications in the nuclear safeguards, arms control, and nonproliferation communities, have been developed at Brookhaven National Laboratory (BNL). These spectrometers function as ambient-temperature ionization chambers detecting gamma rays with good efficiency in the energy range 50 keV - 2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. They are capable of prolonged, low-power operation without a requirement for cryogenic fluids or other cooling mechanisms, and with the addition of small quantities of {sup 3}He gas, can function simultaneously as efficient thermal neutron detectors.

  2. Optimization and Testing of the Three-Dimensional Track Imager (3-DTI) for Medium-Energy Gamma-Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Hunter, Stanley

    The medium-energy gamma-ray emission from a few hundred keV to several hundred MeV explores diverse astrophysical phenomenon including pulsars, supernova remnants (SNR), diffuse emission, blazars and other Active Galactic Nuclei (AGN). The current Fermi and AGILE missions have made extensive advances in the high-energy gamma-ray range, above ~200 MeV. The medium energy gamma-ray range on the other hand is relatively unexplored, limited by imaging technologies. Gamma rays in this energy range interact via photo-electric, Compton, or pair production. Future medium-energy gamma- ray space telescopes, optimized for these detection mechanisms, will provide a new view of the gamma-ray Universe. The key for a future mission will be to provide adequate sensitivity and the best angular resolution to go beyond simply detecting sources to making detailed spatial observations with high spectral, polarization and temporal resolution measurements. A natural successor to the exciting Fermi Mission would be a mission with high resolution observations below 200 MeV that has so far been explored with limited sensitivity only by CGRO/COMPTEL (1-30 MeV), CGRO/EGRET (30 MeV-30 GeV) and by Fermi Large Area Telescope (LAT) (~100 MeV-300 GeV, except for bursts).

  3. A multiple-plate, multiple-pinhole camera for X-ray gamma-ray imaging

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.

    1971-01-01

    Plates with identical patterns of precisely aligned pinholes constitute lens system which, when rotated about optical axis, produces continuous high resolution image of small energy X-ray or gamma ray source. Camera has applications in radiation treatment and nuclear medicine.

  4. A new ultra high energy gamma ray telescope at Ohya mine

    NASA Technical Reports Server (NTRS)

    Aoki, T.; Higashi, S.; Kamiya, Y.; Kitamura, T.; Matsuno, S.; Mizutani, K.; Mitsui, K.; Muraki, Y.; Okada, A.; Ohashi, Y.

    1985-01-01

    The search for ultra high energy gamma rays coming from point sources is one of the main experimental aims. A fast air shower timing system was constructed at ICRR for the study of the angular resolution of the system and operated approximately half a year. The characteristics of the surface array of Ohya air shower telescope is described.

  5. A redshifted Kalpha line from the peculiar gamma-ray source PMN J1603-4904

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Krauß, F.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Wilms, J.; Markowitz, A.; Pottschmidt, K.; Stawarz, L.; Taylor, G.

    2015-07-01

    We present the latest results on the bright hard-spectrum gamma-ray source PMN J1603-4904, observed in the framework of the multiwavelength monitoring program TANAMI. High-resolution radio observations reveal a symmetric brightness distribution with the brightest, most compact component at the center of the emission region. Its broadband spectral energy distribution and other multiwavelength properties point to a very atypical blazar. Here, we focus on recent XMM-Newton and Suzaku observations. We detect a narrow iron line which allows for a first measurement of the redshift of the system (z˜ 0.18) and further challenges the earlier blazar classification. This result suggests that the source is observed at a larger angle to the line of sight than expected for blazars, and thus the source would add to the elusive class of gamma-ray loud misaligned-jet objects, possibly a gamma-ray bright young radio galaxy.

  6. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Dereli, H.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; di Bernardo, G.; Dormody, M.; Do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Edmonds, Y.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gaggero, D.; Gargano, F.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuehn, F.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sellerholm, A.; Sgrò, C.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stecker, F. W.; Striani, E.; Strickman, M. S.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    The diffuse galactic ?-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess ?-ray emission ?1GeV relative to diffuse galactic ?-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse ?-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10°?|b|?20°. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic ?-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  7. A search for the reported 400-keV gamma-ray line from Crab Nebula

    NASA Technical Reports Server (NTRS)

    Ling, J. C.; Mahoney, W. A.; Willett, J. B.; Jacobson, A. S.

    1977-01-01

    A balloon-borne large volume high resolution gamma-ray spectrometer which utilizes 40 cu cm Ge(Li) crystals was used June 10, 1974 to search for a 400-keV gamma-ray line from the Crab Nebula. Energy loss spectra in the 400-keV vicinity are compared with gamma-ray measurements of the same source which were reported by Leventhal et al. (1977). In contrast with the 1976 experimental results reported by Leventhal et al., a 400-keV line was not observed. Further, it is thought that the 1974 data contradict the measurement reported by Leventhal et al. if a constant source intensity is assumed.

  8. SNM gamma-ray fingerprint monitor functional requirements and design specifications

    SciTech Connect

    Bieber, A.M. Jr.; Kane, W.R.

    1994-07-01

    A number of DOE facilities need to perform confirmatory inventory measurements on items of special nuclear material (SNM). The DOE Office of Safeguards and Security (OSS) has tasked the Safeguards, Safety and Nonproliferation Division (SSN) of the Department of Advanced Technology at Brookhaven National Laboratory (BNL) to develop a high-resolution gamma-ray-spectroscopy-based instrument for performing confirmatory inventory measurements on such materials, a ``gamma-ray fingerprint monitor`` (GRFM). This document is a conceptual design for the SSN GRFM system. This conceptual design is based on previous experience with measurements of plutonium-bearing materials and comparison of gamma-ray spectrum features, not on actual tests of the procedures or hardware described. As a result, modifications may be necessary when actual prototype hardware and software are tested in realistic circumstances on actual materials of interest.

  9. A performance study of an electron-tracking Compton camera with a compact system for environmental gamma-ray observation

    E-print Network

    Tetsuya Mizumoto; Dai Tomono; Atsushi Takada; Toru Tanimori; Shotaro Komura; Hidetoshi Kubo; Yoshihiro Matsuoka; Yoshitaka Mizumura; Kiseki Nakamura; Shogo Nakamura; Makoto Oda; Joseph D. Parker; Tatsuya Sawano; Naoto Bando; Akira Nabetani

    2015-08-06

    An electron-tracking Compton camera (ETCC) is a detector that can determine the arrival direction and energy of incident sub-MeV/MeV gamma-ray events on an event-by-event basis. It is a hybrid detector consisting of a gaseous time projection chamber (TPC), that is the Compton-scattering target and the tracker of recoil electrons, and a position-sensitive scintillation camera that absorbs of the scattered gamma rays, to measure gamma rays in the environment from contaminated soil. To measure of environmental gamma rays from soil contaminated with radioactive cesium (Cs), we developed a portable battery-powered ETCC system with a compact readout circuit and data-acquisition system for the SMILE-II experiment. We checked the gamma-ray imaging ability and ETCC performance in the laboratory by using several gamma-ray point sources. The performance test indicates that the field of view (FoV) of the detector is about 1$\\;$sr and that the detection efficiency and angular resolution for 662$\\;$keV gamma rays from the center of the FoV is $(9.31 \\pm 0.95) \\times 10^{^-5}$ and $5.9^{\\circ} \\pm 0.6^{\\circ}$, respectively. Furthermore, the ETCC can detect 0.15$\\;\\mu\\rm{Sv/h}$ from a $^{137}$Cs gamma-ray source with a significance of 5$\\sigma$ in 13 min in the laboratory. In this paper, we report the specifications of the ETCC and the results of the performance tests. Furthermore, we discuss its potential use for environmental gamma-ray measurements.

  10. A performance study of an electron-tracking Compton camera with a compact system for environmental gamma-ray observation

    NASA Astrophysics Data System (ADS)

    Mizumoto, T.; Tomono, D.; Takada, A.; Tanimori, T.; Komura, S.; Kubo, H.; Matsuoka, Y.; Mizumura, Y.; Nakamura, K.; Nakamura, S.; Oda, M.; Parker, J. D.; Sawano, T.; Bando, N.; Nabetani, A.

    2015-06-01

    An electron-tracking Compton camera (ETCC) is a detector that can determine the arrival direction and energy of incident sub-MeV/MeV gamma-ray events on an event-by-event basis. It is a hybrid detector consisting of a gaseous time projection chamber (TPC), that is the Compton-scattering target and the tracker of recoil electrons, and a position-sensitive scintillation camera that absorbs of the scattered gamma rays, to measure gamma rays in the environment from contaminated soil. To measure of environmental gamma rays from soil contaminated with radioactive cesium (Cs), we developed a portable battery-powered ETCC system with a compact readout circuit and data-acquisition system for the SMILE-II experiment [1,2]. We checked the gamma-ray imaging ability and ETCC performance in the laboratory by using several gamma-ray point sources. The performance test indicates that the field of view (FoV) of the detector is about 1 sr and that the detection efficiency and angular resolution for 662 keV gamma rays from the center of the FoV is (9.31 ± 0.95) × 10-5 and 5.9° ± 0.6°, respectively. Furthermore, the ETCC can detect 0.15 ?Sv/h from a 137Cs gamma-ray source with a significance of 5? in 13 min in the laboratory. In this paper, we report the specifications of the ETCC and the results of the performance tests. Furthermore, we discuss its potential use for environmental gamma-ray measurements.

  11. Gamma rays and neutrinos from point sources

    SciTech Connect

    Tomozawa, Y. )

    1993-07-05

    We examine the prediction that the energy spectrum from point sources such as AGN (Active Galactic Nuclei) and GBHC (Galactic Black Hole Candidates) is universal, irrespective of the nature of the emitted particles. [gamma]-rays from quasars observed by CGRO (Compton Gamma Ray Observatory) are reported in this symposium. The average of the photon indices from 11 quasars is compared with that of cosmic rays at the source. The former is 2.1[plus minus]0.1 while the latter is 2.2[plus minus]0.1. The compilation of the observed neutrino data by Kamiokande and IMB yields 1.2 for the ratio of [nu][sub [mu

  12. Plasma Instabilities in Gamma-Ray Bursts

    SciTech Connect

    Tautz, Robert C.

    2008-12-24

    Magnetic fields are important in a variety of astrophysical scenarios, ranging from possible creation mechanisms of cosmological magnetic fields through relativistic jets such as that from Active Galactic Nuclei and gamma-ray bursts to local phenomena in the solar system. Here, the outstanding importance of plasma instabilities to astrophysics is illustrated by applying the so-called neutral point method to gamma-ray bursts (GRBs), which are assumed to have a homogeneous background magnetic field. It is shown how magnetic turbulence, which is a prerequisite for the creation of dissipation and, subsequently, radiation, is created by the highly relativistic particles in the GRB jet. Using the fact that different particle compositions lead to different instability conditions, conclusions can be drawn about the particle composition of the jet, showing that it is more likely of baryonic nature.

  13. Stirling Colgate and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lamb, Donald

    2014-10-01

    Even before the discovery of gamma-ray bursts (GRBs), Stirling Colgate proposed that bursts of x rays and gamma rays might be produced by a relativistic shock created in the supernova explosion of a massive star. We trace the scientific story of GRBs from their detection to the present, highlighting along the way Stirling's interest in them and his efforts to understand them. We summarize our current understanding that short, soft, repeating bursts are produced by magnetic neutron stars; short, hard bursts are produced by the mergers of neutron star-neutron star binaries; and long, hard bursts are produced by the core collapse of massive stars that have lost their hydrogen and helium envelopes. We then discuss some important open questions about GRBs and how they might be answered. We conclude by describing the recent serendipitous discovery of an x-ray burst of exactly the kind he proposed, and the insights into core collapse supernovae and GRBs that it provided.

  14. Real time gamma-ray signature identifier

    DOEpatents

    Rowland, Mark (Alamo, CA); Gosnell, Tom B. (Moraga, CA); Ham, Cheryl (Livermore, CA); Perkins, Dwight (Livermore, CA); Wong, James (Dublin, CA)

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  15. The GAMCIT gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Mccall, Benjamin J.; Grunsfeld, John M.; Sobajic, Srdjan D.; Chang, Chinley Leonard; Krum, David M.; Ratner, Albert; Trittschuh, Jennifer E.

    1993-01-01

    The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload.

  16. Synchrotron emission and gamma-ray bursts

    SciTech Connect

    Brainerd, J.J.; Lamb, D.Q.

    1987-02-01

    The parameter space within which synchrotron emission models for gamma-ray burst spectra are valid is evaluated in the cases of thermal and power-law particle distributions. The spectra emitted by noncooling and cooling thermal and power-law particle distributions are modeled numerically over relativistic and nonrelativistic regimes. The structure of the radiation is defined near the fundamental and the continuum up to the 1000th harmonic. Comparisons are made with burst event data collected during the Apollo 16, Venera, SMM, Pioneer Venus Orbiter and Hackucho missions. A two-component synchrotron model is proposed for gamma-ray burst events. The electron-positron distribution is projected to have a thermal component and a nonthermal power-law tail. 71 references.

  17. Nuclear isomer suitable for gamma ray laser

    NASA Technical Reports Server (NTRS)

    Jha, S.

    1979-01-01

    The operation of gamma ray lasers (gasers) are studied. It is assumed that the nuclear isomers mentioned in previously published papers have inherent limitations. It is further assumed that the judicious use of Bormann effect or the application of the total external reflection of low energy gamma radiation at grazing angle of incidence may permit the use of a gaser crystal sufficiently long to achieve observable stimulated emission. It is suggested that a long lived 0(+) isomer decaying by low energy gamma ray emission to a short lived 2(+) excited nuclear state would be an attractive gaser candidate. It is also suggested that the nuclear isomer be incorporated in a matrix of refractory material having an electrostatic field gradient whose principal axis lies along the length of the medium. This results in the preferential transmission of electric quadrupole radiation along the length of the medium.

  18. Properties of multiple event gamma ray bursts

    SciTech Connect

    Lochner, J.C.

    1991-01-01

    We present results from a study of 37 multiple event gamma ray bursts found in the monitoring data of the PVO gamma ray burst detector. We define these bursts as those which have two or more distinct emission events separated by a return to the background intensity. Significant correlation exists between the duration of the first event and the duration of the second event, while some correlation exists between the hardness of the events and only weak correlation exists in the intensity of the events. Although the time profiles of events in a burst may be similar, as measured in the phase portrait, there is no general rule about the degree of similarity of the time profiles. Subdividing the data according to the recurrence time, we find a tendency for the strength of the correlation in the hardness to increase with decreasing separation between the events. 2 refs., 2 figs., 1 tab.

  19. Properties of multiple event gamma ray bursts

    SciTech Connect

    Lochner, J.C.

    1991-12-31

    We present results from a study of 37 multiple event gamma ray bursts found in the monitoring data of the PVO gamma ray burst detector. We define these bursts as those which have two or more distinct emission events separated by a return to the background intensity. Significant correlation exists between the duration of the first event and the duration of the second event, while some correlation exists between the hardness of the events and only weak correlation exists in the intensity of the events. Although the time profiles of events in a burst may be similar, as measured in the phase portrait, there is no general rule about the degree of similarity of the time profiles. Subdividing the data according to the recurrence time, we find a tendency for the strength of the correlation in the hardness to increase with decreasing separation between the events. 2 refs., 2 figs., 1 tab.

  20. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  1. The gamma ray north-south effect

    NASA Technical Reports Server (NTRS)

    White, R. S.; O'Neill, T. J.; Tumer, O. T.; Zych, A. D.

    1988-01-01

    Theoretical calculations are presented that explain the balloon observations by O'Neill et al. (1987) of a strong north-south anisotropy of atmospheric gamma rays over the Southern Hemisphere, and to predict the north-south ratios. It is shown that the gamma rays that originate at the longest distances from the telescopes give the largest north-south ratios. Comparisons are made of the experimental north-south ratios measured on balloons launched from Alice Springs, Australia, and from Palestine, Texas, U.S., and predictions are made for ratios at other geomagnetic latitudes and longitudes. It is pointed out that observers who measure backgrounds for celestial sources may be misled unless they correct for the north-south effect.

  2. Neutron-driven gamma-ray laser

    DOEpatents

    Bowman, Charles D. (Los Alamos, NM)

    1990-01-01

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  3. Lorentz violation from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Ma, Bo-Qiang

    2015-02-01

    The constancy of light speed is a basic assumption in Einstein’s special relativity, and consequently the Lorentz invariance is a fundamental symmetry of space-time in modern physics. However, it is speculated that the speed of light becomes energy-dependent due to the Lorentz invariance violation (LV) in various new physics theories. We analyse the data of the energetic photons from the gamma-ray bursts (GRBs) by the Fermi Gamma-Ray Space Telescope, and find more events to support the energy dependence in the light speed with both linear and quadratic form corrections. We provide two scenarios to understand all the new-released Pass 8 data of bright GRBs by the Fermi-LAT Collaboration, with predictions from such scenarios being testable by future detected GRBs.

  4. Gamma Ray Signatures from Ordinary Cosmic Strings

    E-print Network

    Jane H. MacGibbon; Robert H. Brandenberger

    1992-06-19

    We calculate the flux of ultra high energy photons from individual ordinary (i.e. non-superconducting) cosmic strings and compare the results with the sensitivity of current and proposed TeV and EeV telescopes. Our calculations give only upper limits for the gamma ray flux, since the source of the photons, jets from particle production at cusps, may be weakened by back reaction effects. For the usual cosmic distribution of strings, the predicted bursts from strings with the value of mass per unit length associated with galaxy formation or light strings may just be detectable. A diffuse gamma ray background from light strings may also be seen by the Fly's Eye detector at above $7 \\times 10^{10}$ GeV.

  5. Fissile interrogation using gamma rays from oxygen

    DOEpatents

    Smith, Donald; Micklich, Bradley J.; Fessler, Andreas

    2004-04-20

    The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.

  6. Gamma-ray Output Spectra from 239Pu Fission

    NASA Astrophysics Data System (ADS)

    Ullmann, John

    2015-05-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  7. IBIS: The imaging Gamma-Ray telescope on board INTEGRAL

    SciTech Connect

    Ubertini, Pietro

    1997-05-10

    INTEGRAL (International Gamma Ray Astrophysics Laboratory) will be the follow up on the successful high energy missions CGRO and GRANAT. The Scientific goal of INTEGRAL is to address the fine spectroscopy with imaging and accurate positioning of celestial X-ray emission as well as large scale diffuse emission studies. These achievement will be possible by means of a high spectral resolution Spectrometer (SPI) and a high angular resolution Imager (IBIS) supplemented by an X-ray monitor and an Optical Monitoring Camera. INTEGRAL, with 2 years nominal lifetime possibly extended to 5 years, will be an observatory-class mission. The observing time will be divided into a General Programme, open to the scientific community with scientific targets selected by a peer review committee, and a Core Programme which is guaranteed time for the INTEGRAL Science Working Team (ISWT)

  8. Are Gamma-Ray Bursts Standard Candles?

    E-print Network

    Li-Xin Li

    2007-05-30

    By dividing a sample of 48 long-duration gamma-ray bursts (GRBs) into four groups with redshift from low to high and fitting each group with the Amati relation log Eiso = a + b log Epeak, I find that parameters a and b vary with the mean redshift of the GRBs in each group systematically and significantly. The results suggest that GRBs evolve strongly with the cosmic redshift and hence are not standard candles.

  9. Gamma-Ray Bursts, new cosmological beacons

    E-print Network

    V. Avila-Reese; C. Firmani; G. Ghisellini; J. I. Cabrera

    2008-02-22

    Long Gamma-Ray Bursts (GRBs) are the brightest electromagnetic explosions in the Universe, associated to the death of massive stars. As such, GRBs are potential tracers of the evolution of the cosmic massive star formation, metallicity, and Initial Mass Function. GRBs also proved to be appealing cosmological distance indicators. This opens a unique opportunity to constrain the cosmic expansion history up to redshifts 5-6. A brief review on both subjects is presented here.

  10. The Gamma-Ray Burst Mystery

    E-print Network

    David L. Band

    1997-12-15

    Gamma-ray bursts are transient events from beyond the solar system. Besides the allure of their mysterious origin, bursts are physically fascinating because they undoubtedly require exotic physics. Optical transients coincident with burst positions show that some, and probably all, bursts originate at cosmological distances, and not from a large Galactic halo. Observations of these events' spectral and temporal behavior will guide and constrain the study of the physical processes producing this extragalactic phenomenon.

  11. Gamma rays produce superior seedless citrus

    SciTech Connect

    Pyrah, D.

    1984-10-01

    Using gamma radiation, seedless forms of some varieties of oranges and grapefruit are being produced. Since it has long been known that radiation causes mutations in plants and animals, experiments were conducted to determine if seediness could be altered by exposing seeds or budwood to higher than natural doses of gamma radiation. Orange and grapefruit seeds and cuttings exposed to gamma rays in the early 1970's have produced trees that bear fruit superior to that now on the market.

  12. Gamma-Ray Line Observations with RHESSI

    E-print Network

    David M. Smith

    2004-04-30

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) has been observing gamma-ray lines from the Sun and the Galaxy since its launch in February 2002. Here I summarize the status of RHESSI observations of solar lines (nuclear de-excitation, neutron capture, and positron annihilation), the lines of $^{26}$Al and $^{60}$Fe from the inner Galaxy, and the search for positron annihilation in novae.

  13. Cosmological Time Dilation in Gamma Ray Bursts?

    E-print Network

    David Band

    1994-07-01

    Norris et al. (1994) report that the temporal structure of faint gamma ray bursts is longer than that of bright bursts, as expected for time dilation in the cosmological models of burst origin. I show that the observed trends can easily be produced by a burst luminosity function and thus may not result from cosmological effects. A cosmological signature may be present, but the tests Norris et al. present are not powerful enough to detect these signatures.

  14. Compton scatter attenuation gamma ray spectrometer

    NASA Technical Reports Server (NTRS)

    Austin, W. E. (inventor)

    1973-01-01

    A gamma ray spectrometer is described for use in intense radiation fields such as those in the vicinity of a rocket engine exhaust. A collimated radiation beam is Compton scattered toward shielded spectrometers to reduce the energy and intensity of the radiation and is energy selective among the spectrometers. The scattering targets are changeable to control the percentage of the radiation scattered. Sum-Compton coincidence techniques are employed for data selection.

  15. Gamma ray spectroscopy and timing using LSO and PIN photodiodes

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Melcher, C.L.; Manente, R.A.

    1995-08-01

    The high density, high light output, and short decay time of LSO (lutetium orthosilicate, Lu{sub 2}SiO{sub 5}:Ce) make it an attractive scintillator for gamma ray spectroscopy. The low cost, small size, high quantum efficiency, and ruggedness of silicon photodiodes make them attractive photodetectors for this same application, although their high noise (compared to a photomultiplier tube) reduces their appeal. In this work the authors measure the gamma ray energy resolution, timing accuracy, and conversion factor from gamma energy to number of electron-hole pairs produced with a 3 x 3 x 22 mm{sup 3} LSO scintillator crystal read out with a 3 x 3 mm{sup 2} silicon PIN photodiode. When the detector is excited with 511 keV photons, a photopeak centered at 4,910 e{sup {minus}} with 149 keV fwhm is observed and a timing signal with 25 ns fwhm jitter is produced. While these performance measures are inferior to those obtained with photomultiplier tubes, they are acceptable for some applications.

  16. GAMMA-RAY BURSTS ARE OBSERVED OFF-AXIS

    SciTech Connect

    Ryan, Geoffrey; Van Eerten, Hendrik; MacFadyen, Andrew; Zhang, Bin-Bin

    2015-01-20

    We constrain the jet opening angle and, for the first time, the off-axis observer angle for gamma-ray bursts in the Swift-XRT catalog by using the ScaleFit package to fit afterglow light curves directly to hydrodynamic simulations. The ScaleFit model uses scaling relations in the hydrodynamic and radiation equations to compute synthetic light curves directly from a set of high-resolution two-dimensional relativistic blast wave simulations. The data sample consists of all Swift-XRT afterglows from 2005 to 2012 with sufficient coverage and a known redshift, 226 bursts in total. We find that the jet half-opening angle varies widely but is commonly less than 0.1 rad. The distribution of the electron spectral index is also broad, with a median at 2.30. We find the observer angle to have a median value of 0.57 of the jet opening angle over our sample, which has profound consequences for the predicted rate of observed jet breaks and affects the beaming-corrected total energies of gamma-ray bursts.

  17. Gamma-Ray Bursts are Observed Off-axis

    NASA Astrophysics Data System (ADS)

    Ryan, Geoffrey; van Eerten, Hendrik; MacFadyen, Andrew; Zhang, Bin-Bin

    2015-01-01

    We constrain the jet opening angle and, for the first time, the off-axis observer angle for gamma-ray bursts in the Swift-XRT catalog by using the ScaleFit package to fit afterglow light curves directly to hydrodynamic simulations. The ScaleFit model uses scaling relations in the hydrodynamic and radiation equations to compute synthetic light curves directly from a set of high-resolution two-dimensional relativistic blast wave simulations. The data sample consists of all Swift-XRT afterglows from 2005 to 2012 with sufficient coverage and a known redshift, 226 bursts in total. We find that the jet half-opening angle varies widely but is commonly less than 0.1 rad. The distribution of the electron spectral index is also broad, with a median at 2.30. We find the observer angle to have a median value of 0.57 of the jet opening angle over our sample, which has profound consequences for the predicted rate of observed jet breaks and affects the beaming-corrected total energies of gamma-ray bursts.

  18. Using a Micro-Uav for Ultra-High Resolution Multi-Sensor Observations of Antarctic Moss Beds

    NASA Astrophysics Data System (ADS)

    Lucieer, A.; Robinson, S.; Turner, D.; Harwin, S.; Kelcey, J.

    2012-07-01

    This study is the first to use an Unmanned Aerial Vehicle (UAV) for mapping moss beds in Antarctica. Mosses can be used as indicators for the regional effects of climate change. Mapping and monitoring their extent and health is therefore important. UAV aerial photography provides ultra-high resolution spatial data for this purpose. We developed a technique to extract an extremely dense 3D point cloud from overlapping UAV aerial photography based on structure from motion (SfM) algorithms. The combination of SfM and patch-based multi-view stereo image vision algorithms resulted in a 2 cm resolution digital terrain model (DTM). This detailed topographic information combined with vegetation indices derived from a 6-band multispectral sensor enabled the assessment of moss bed health. This novel UAV system has allowed us to map different environmental characteristics of the moss beds at ultra-high resolution providing us with a better understanding of these fragile Antarctic ecosystems. The paper provides details on the different UAV instruments and the image processing framework resulting in DEMs, vegetation indices, and terrain derivatives.

  19. Ultrahigh resolution spectral-domain optical coherence tomography at 1.3 ?m using a broadband superluminescent diode light source

    NASA Astrophysics Data System (ADS)

    Bayleyegn, Masreshaw D.; Makhlouf, Houssine; Crotti, Caroline; Plamann, Karsten; Dubois, Arnaud

    2012-11-01

    We present an ultrahigh resolution spectral-domain optical coherence tomography imaging system using a broadband superluminescent diode light source emitting at a center wavelength of 1.3 ?m. The light source consists of two spectrally shifted superluminescent diodes that are coupled together into a single mode fiber. The effective emission power spectrum has a full width at half maximum of 200 nm and the source output power is 10 mW. The imaging system has an axial resolution of 3.9 ?m in air (<3.0 ?m in biological tissue), and a lateral resolution of 6.5 ?m. The sensitivity and the maximum line rate are 95 dB and 46 kHz, respectively. Images of an infrared viewing card and a cornea from human eye suffering from glaucoma showing Schlemm's canal are presented to illustrate the performance of the system.

  20. Beacons at the Gamma Ray Horizon

    E-print Network

    K. Mannheim; S. Westerhoff; H. Meyer; H. -H. Fink

    1996-05-17

    Blazars with redshifts z<0.1 are likely candidates for detection at energies in the range 300 GeV - 50 TeV with Cerenkov telescopes and scintillator arrays. We present gamma-ray flux predictions for a sample of 15 nearby flat-spectrum radio sources fitting the proton blazar model of Mannheim (1993a) to their observed broad-band spectral energy distributions. At high energies, we use fluxes or flux limits measured by ROSAT, CGRO and the Whipple Observatory to constrain their spectra. We take into account absorption of the gamma-rays by pair production with low energy photons of the diffuse infrared-to-optical photon background produced by galaxies (cosmic absorption) and with low energy synchrotron photons of the blazar radiation field (internal absorption). Typically, the theoretical spectra decrease much faster above TeV (photon index s~3) than between GeV and TeV (s~2) owing to internal absorption. The predicted fluxes are confronted with flux limits in the 20-50 TeV energy range obtained by the High Energy Gamma Ray Astronomy (HEGRA) experiment. Without cosmic absorption, the fluxes are about equal to the current sensitivity of HEGRA. Improved gamma/hadron separation techniques could render a detection by HEGRA possible, if cosmic absorption by the far-infrared background at wavelengths ~100 mu is not exceedingly strong.

  1. Solar gamma rays. [in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1974-01-01

    The theory of gamma ray production in solar flares is treated in detail. Both lines and continuum are produced. Results show that the strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24 + or - 2.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric He-3 abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from c-12 and at approximately 6.2 from 0-16 and N-15. The gamma ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities a proton-to-electron ratio of about 10 to 100 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma ray emission produce a few percent of the heat generated by the electrons which make the hard X rays above 20 keV.

  2. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  3. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few seconds is larger than that of the Sun during its entire life time (about 10,000 million years). "Gamma-ray bursts" are in fact by far the most powerful events since the Big Bang that are known in the Universe. While there are indications that gamma-ray bursts originate in star-forming regions within distant galaxies, the nature of such explosions remains a puzzle. Recent observations with large telescopes, e.g. the measurement of the degree of polarization of light from a gamma-ray burst in May 1999 with the VLT ( ESO PR 08/99), are now beginning to cast some light on this long-standing mystery. The afterglow of GRB 000131 ESO PR Photo 28a/00 ESO PR Photo 28a/00 [Preview - JPEG: 400 x 475 pix - 41k] [Normal - JPEG: 800 x 949 pix - 232k] [Full-Res - JPEG: 1200 x 1424 pix - 1.2Mb] ESO PR Photo 28b/00 ESO PR Photo 28b/00 [Preview - JPEG: 400 x 480 pix - 67k] [Normal - JPEG: 800 x 959 pix - 288k] [Full-Res - JPEG: 1200 x 1439 pix - 856k] Caption : PR Photo 28a/00 is a colour composite image of the sky field around the position of the gamma-ray burst GRB 000131 that was detected on January 31, 2000. It is based on images obtained with the ESO Very Large Telescope at Paranal. The object is indicated with an arrow, near a rather bright star (magnitude 9, i.e., over 1 million times brighter than the faintest objects visible on this photo). This and other bright objects in the field are responsible for various unavoidable imaging effects, caused by optical reflections (ring-shaped "ghost images", e.g. to the left of the brightest star) and detector saturation effects (horizontal and vertical straight lines and coloured "coronae" at the bright objects, and areas of "bleeding", e.g. below the bright star). PR Photo 28b/00 shows the rapid fading of the optical counterpart of GRB 000131 (slightly left of the centre), by means of exposures with the VLT on February 4 (upper left), 6 (upper right), 8 (lower left) and March 5 (lower right). It is no longer visible on the last photo. Techni

  4. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  5. Radio Flares from Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kopa?, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  6. A field-deployable gamma-ray spectrometer utilizing high pressure xenon

    SciTech Connect

    Smith, G.C.; Mahler, G.J.; Yu, Bo; Kane, W.R.; Lemley, J.R.

    1997-05-01

    Most nuclear materials in the nuclear energy, safeguards, arms control, and nonproliferation regimes emit gamma rays with a unique signature. Currently, two categories of spectrometers are available to evaluate these materials: (1) Semiconductors, with excellent energy resolution, which operate at cryogenic temperatures. (2) Scintillation detectors, which function at ambient temperature, but with poor energy resolution. A detector which functions for extended periods in a range of environments, with an energy resolution superior to that of a scintillation spectrometer, would have evident utility. Recently, in the research community, such a device has evolved, an ionization chamber utilizing xenon gas at very high pressure (60 atm). Its energy resolution, typically, is 20 keV for the 661 keV gamma ray of {sup 137}Cs. With high xenon density and its high atomic number (Z=54), and superior energy resolution, its sensitivity is comparable to that of a scintillator.

  7. A vision for an ultra-high resolution integrated water cycle observation and prediction system

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2013-05-01

    Society's welfare, progress, and sustainable economic growth—and life itself—depend on the abundance and vigorous cycling and replenishing of water throughout the global environment. The water cycle operates on a continuum of time and space scales and exchanges large amounts of energy as water undergoes phase changes and is moved from one part of the Earth system to another. We must move toward an integrated observation and prediction paradigm that addresses broad local-to-global science and application issues by realizing synergies associated with multiple, coordinated observations and prediction systems. A central challenge of a future water and energy cycle observation strategy is to progress from single variable water-cycle instruments to multivariable integrated instruments in electromagnetic-band families. The microwave range in the electromagnetic spectrum is ideally suited for sensing the state and abundance of water because of water's dielectric properties. Eventually, a dedicated high-resolution water-cycle microwave-based satellite mission may be possible based on large-aperture antenna technology that can harvest the synergy that would be afforded by simultaneous multichannel active and passive microwave measurements. A partial demonstration of these ideas can even be realized with existing microwave satellite observations to support advanced multivariate retrieval methods that can exploit the totality of the microwave spectral information. The simultaneous multichannel active and passive microwave retrieval would allow improved-accuracy retrievals that are not possible with isolated measurements. Furthermore, the simultaneous monitoring of several of the land, atmospheric, oceanic, and cryospheric states brings synergies that will substantially enhance understanding of the global water and energy cycle as a system. The multichannel approach also affords advantages to some constituent retrievals—for instance, simultaneous retrieval of vegetation biomass would improve soil-moisture retrieval by avoiding the need for auxiliary vegetation information. This multivariable water-cycle observation system must be integrated with high-resolution, application relevant prediction systems to optimize their information content and utility is addressing critical water cycle issues. One such vision is a real-time ultra-high resolution locally-moasiced global land modeling and assimilation system, that overlays regional high-fidelity information over a baseline global land prediction system. Such a system would provide the best possible local information for use in applications, while integrating and sharing information globally for diagnosing larger water cycle variability. In a sense, this would constitute a hydrologic telecommunication system, where the best local in-situ gage, Doppler radar, and weather station can be shared internationally, and integrated in a consistent manner with global observation platforms like the multivariable water cycle mission. To realize such a vision, large issues must be addressed, such as international data sharing policy, model-observation integration approaches that maintain local extremes while achieving global consistency, and methods for establishing error estimates and uncertainty.

  8. HIGH-ENERGY GAMMA-RAY AFTERGLOWS FROM LOW-LUMINOSITY GAMMA-RAY BURSTS

    SciTech Connect

    He Haoning; Wang Xiangyu; Yu Yunwei; Meszaros, Peter

    2009-12-01

    The observations of gamma-ray bursts (GRBs) such as 980425, 031203 and 060218, with luminosities much lower than those of other classic bursts, lead to the definition of a new class of GRBs-LL-GRBs. The nature of the outflow responsible for them is not yet clear. Two scenarios have been suggested: one is the conventional relativistic outflow with initial Lorentz factor of order of GAMMA{sub 0} approx> 10 and the other is a trans-relativistic outflow with GAMMA{sub 0} approx = 1-2. Here, we compare the high-energy gamma-ray afterglow emission from these two different models, taking into account both synchrotron self-inverse Compton (SSC) scattering and the external inverse Compton scattering due to photons from the cooling supernova or hypernova envelope (SNIC). We find that the conventional relativistic outflow model predicts a relatively high gamma-ray flux from SSC at early times (<10{sup 4} s for typical parameters) with a rapidly decaying light curve, while in the trans-relativistic outflow model, one would expect a much flatter light curve of high-energy gamma-ray emission at early times, which could be dominated by both the SSC emission and the SNIC emission, depending on the properties of the underlying supernova and the shock parameter epsilon{sub e} and epsilon{sub B}. The Fermi Gamma-ray Space Telescope should be able to distinguish between the two models in the future.

  9. Response of AGATA Segmented HPGe Detectors to Gamma Rays up to 15.1 MeV

    E-print Network

    F. C. L. Crespi; R. Avigo; F. Camera; S. Akkoyun; A. Atac; D. Bazzacco; M. Bellato; G. Benzoni; N. Blasi; D. Bortolato; S. Bottoni; A. Bracco; S. Brambilla; B. Bruyneel; S. Cerutia; M. Ciemala; S. Coelli; J. Eberth; C. Fanin; E. Farnea; A. Gadea; A. Giaz; A. Gottardo; H. Hess; M. Kmiecik; S. Leoni; A. Maj; D. Mengoni; C. Michelagnoli; B. Million; D. Montanari; L. Pellegri; F. Recchia; P. Reiter; S. Riboldi; C. A. Ur; V. Vandone; J. J. Valiente-Dobon; O. Wieland; A. Wiens; The AGATA Collaboration

    2012-09-06

    The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the reaction d(11B,ng)12C at Ebeam = 19.1 MeV, while gamma-rays between 2 to 9 MeV were produced using an Am-Be-Fe radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height conversion resulted to be linear within 0.05%. Experimental interaction multiplicity distributions are discussed and compared with the results of Geant4 simulations. It is shown that the application of gamma-ray tracking allows a suppression of background radiation following neutron capture by Ge nuclei. Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information extracted with Pulse-shape Analysis, is discussed.

  10. Design and performance of soft gamma-ray detector for NeXT mission

    SciTech Connect

    Tajima, H.; Kamae, T.; Madejski, G.; Takahashi, T.; Nakazawa, K.; Watanabe, S.; Mitani, T.; Tanaka, T.; Fukazawa, Y.; Kataoka, J.; Ikagawa, T.; Kokubun, M.; Makishima, K.; Terada, Y.; Nomachi, M.; Tashiro, M.; /Saitama U.

    2005-05-04

    The Soft Gamma-ray Detector (SGD) on board NeXT (Japanese future high energy astrophysics mission) is a Compton telescope with narrow field of view, which utilizes Compton kinematics to enhance its background rejection capabilities. It is realized as a hybrid semiconductor gamma-ray detector which consists of silicon and Cadmium Telluride (CdTe) detectors. It can detect photons in an energy band 0.05-1 MeV at a background level of 5 x 10{sup -7} counts/s/cm{sup 2}/keV; the silicon layers are required to improve the performance at a lower energy band (<0.3 MeV). Excellent energy resolution is the key feature of the SGD to achieve both high angular resolution and good background rejection capability. Its ability to measure gamma-ray polarization opens up a new window to study gamma-ray emission in the universe. We will present the development of key technologies to realize the SGD; high quality CdTe, low noise front-end VLSI and bump bonding technology. Energy resolutions of 1.7 keV (FWHM) for CdTe pixel detectors and 1.1 keV for silicon strip detectors have been measured. We also present the validation of Monte Carlo simulation used to evaluate the performance of the SGD.

  11. Gravitational waves and short gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Predoi, Valeriu

    2012-07-01

    Short hard gamma-ray bursts (GRB) are believed to be produced by compact binary coalescences (CBC) { either double neutron stars or neutron star{black hole binaries. The same source is expected to emit strong gravitational radiation, detectable with existing and planned gravitational wave observatories. The focus of this work is to describe a series of searches for gravitational waves (GW) from compact binary coalescence (CBC) events triggered by short gamma-ray burst detections. Specifically, we will present the motivation, frameworks, implementations and results of searches for GW associated with short gamma-ray bursts detected by Swift, Fermi{GBM and the InterPlanetary Network (IPN) gamma-ray detectors. We will begin by presenting the main concepts that lay the foundation of gravitational waves emission, as they are formulated in the theory of General Relativity; we will also brie y describe the operational principles of GW detectors, together with explaining the main challenges that the GW detection process is faced with. Further, we will motivate the use of observations in the electromagnetic (EM) band as triggers for GW searches, with an emphasis on possible EM signals from CBC events. We will briefly present the data analysis techniques including concepts as matched{filtering through a collection of theoretical GW waveforms, signal{to{ noise ratio, coincident and coherent analysis approaches, signal{based veto tests and detection candidates' ranking. We will use two different GW{GRB search examples to illustrate the use of the existing coincident and coherent analysis methods. We will also present a series of techniques meant to improve the sensitivity of existing GW triggered searches. These include shifting background data in time in order to obtain extended coincident data and setting a prior on the GRB inclination angle, in accordance with astrophysical observations, in order to restrict the searched parameter space. We will describe the GW data analysis and present results from a GW search around 12 short gamma-ray bursts detected by the InterPlanetary Network (IPN) between 2006 and 2007. The IPN{detected bursts usually have extended localization error boxes and a search for GW was performed at different sky locations across these error regions. Since no GW detection was made, we set upper limits on the distances to the GRB progenitors; we briefly discuss the implications that two IPN GRBs error regions overlap two nearby galaxies.

  12. Gravitational waves and short gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Predoi, Valeriu

    Short hard gamma-ray bursts (GRB) are believed to be produced by compact binary coalescences (CBC), either double neutron stars or neutron star black hole binaries. The same source is expected to emit strong gravitational radiation, detectable with existing and planned gravitational wave observatories. The focus of this work is to describe a series of searches for gravitational waves (GW) from compact binary coalescence (CBC) events triggered by short gamma-ray burst detections. Specifically, we will present the motivation, frameworks, implementations and results of searches for GW associated with short gamma-ray bursts detected by Swift, Fermi{GBM and the InterPlanetary Network (IPN) gamma-ray detectors. We will begin by presenting the main concepts that lay the foundation of gravitational waves emission, as they are formulated in the theory of General Relativity; we will also brie y describe the operational principles of GW detectors, together with explaining the main challenges that the GW detection process is faced with. Further, we will motivate the use of observations in the electromagnetic (EM) band as triggers for GW searches, with an emphasis on possible EM signals from CBC events. We will briefly present the data analysis techniques including concepts as matched filtering through a collection of theoretical GW waveforms, signal{to{ noise ratio, coincident and coherent analysis approaches, signal{based veto tests and detection candidates' ranking. We will use two different GW GRB search examples to illustrate the use of the existing coincident and coherent analysis methods. We will also present a series of techniques meant to improve the sensitivity of existing GW triggered searches. These include shifting background data in time in order to obtain extended coincident data and setting a prior on the GRB inclination angle, in accordance with astrophysical observations, in order to restrict the searched parameter space. We will describe the GW data analysis and present results from a GW search around 12 short gamma-ray bursts detected by the InterPlanetary Network (IPN) between 2006 and 2007. The IPN detected bursts usually have extended localization error boxes and a search for GW was performed at different sky locations across these error regions. Since no GW detection was made, we set upper limits on the distances to the GRB progenitors; we briefly discuss the implications that two IPN GRBs error regions overlap two nearby galaxies.

  13. Diagnosing ICF gamma-ray physics

    SciTech Connect

    Herrmann, Hans W; Kim, Y H; Mc Evoy, A; Young, C S; Mack, J M; Hoffman, N; Wilson, D C; Langenbrunner, J R; Evans, S; Sedillo, T; Batha, S H; Dauffy, L; Stoeffl, W; Malone, R; Kaufman, M I; Cox, B C; Tunnel, T W; Miller, E K; Rubery, M

    2010-01-01

    Gamma rays produced in an ICF environment open up a host of physics opportunities we are just beginning to explore. A branch of the DT fusion reaction, with a branching ratio on the order of 2e-5 {gamma}/n, produces 16.7 MeV {gamma}-rays. These {gamma}-rays provide a direct measure of fusion reaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Reaction-rate history measurements, such as nuclear bang time and burn width, are fundamental quantities that will be used to optimize ignition on the National Ignition Facility (NIF). Gas Cherenkov Detectors (GCD) that convert fusion {gamma}-rays to UV/visible Cherenkov photons for collection by fast optical recording systems established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. Demonstrated absolute timing calibrations allow bang time measurements with accuracy better than 30 ps. System impulse response better than 95 ps fwhm have been made possible by the combination of low temporal dispersion GCDs, ultra-fast microchannel-plate photomultiplier tubes (PMT), and high-bandwidth Mach Zehnder fiber optic data links and digitizers, resulting in burn width measurement accuracy better than 10ps. Inherent variable energy-thresholding capability allows use of GCDs as {gamma}-ray spectrometers to explore other interesting nuclear processes. Recent measurements of the 4.44 MeV {sup 12}C(n,n{prime}) {gamma}-rays produced as 14.1 MeV DT fusion neutrons pass through plastic capsules is paving the way for a new CH ablator areal density measurement. Insertion of various neutron target materials near target chamber center (TCC) producing secondary, neutron-induced {gamma}y-rays are being used to study other nuclear interactions and as in-situ sources to calibrate detector response and DT branching ratio. NIF Gamma Reaction History (GRH) diagnostics, based on the GCD concept, are now being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases: (1) four PMT-based channels mounted to the outside of the target chamber at {approx}6m from TCC (GRH-6m) for the 3e13-3e16 DT neutron yield range expected during the early ignition-tuning campaigns; and (2) several channels located just inside the target bay shield wall at 15 m from TCC (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs for the 1e16-1e20 yield range expected during the DT ignition campaign. Multiple channels at each phase will allow for increased redundancy, reliability, accuracy and flexibility. This suite of diagnostics will make possible exploration of interesting {gamma}-ray physics well beyond the ignition campaign.

  14. Solar gamma ray and neutron observations. [analysis of gamma ray spectrometer data obtained on OSO-7

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Suri, A. N.

    1973-01-01

    The present status of knowledge concerning the impulsive and the continuous emission of solar gamma rays and neutrons is reviewed in the light of the recent solar activity in early August 1972. The gamma ray spectrometer on Orbiting Solar Observatory-7 (OSO-7) has observed the sun continuously for most of the activity period except for occultation by the earth. In association with the 2B flare on August 4, 1972, and the 3B flare on August 7, 1972, the monitor provides evidence for solar gamma ray line emission in the energy range from 300 keV to 10 MeV. A summary of all the results available from preliminary analysis of the data will be given.

  15. High energy gamma-ray emission from Gamma-Ray Bursts -- before GLAST

    E-print Network

    Yi-Zhong Fan; Tsvi Piran

    2009-05-06

    Gamma-ray bursts (GRBs) are short and intense emission of soft gamma-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high energy gamma-ray emission (>20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high energy emission from GRBs. Special attention is given to the expected high energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  16. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    SciTech Connect

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  17. Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging

    PubMed Central

    Choi, Stacey S; Zawadzki, Robert J; Lim, Michele C; Brandt, James D; Keltner, John L; Doble, Nathan; Werner, John S

    2010-01-01

    Aims It is well established that glaucoma results in a thinning of the inner retina. To investigate whether the outer retina is also involved, ultrahigh-resolution retinal imaging techniques were utilised. Methods Eyes from 10 glaucoma patients (25–78 years old), were imaged using three research-grade instruments: (1) ultrahigh-resolution Fourier-domain optical coherence tomography (UHR-FD-OCT), (2) adaptive optics (AO) UHR-FD-OCT and (3) AO-flood illuminated fundus camera (AO-FC). UHR-FD-OCT and AO-UHR-FD-OCT B-scans were examined for any abnormalities in the retinal layers. On some patients, cone density measurements were made from the AO-FC en face images. Correlations between retinal structure and visual sensitivity were measured by Humphrey visual-field (VF) testing made at the corresponding retinal locations. Results All three in vivo imaging modalities revealed evidence of outer retinal changes along with the expected thinning of the inner retina in glaucomatous eyes with VF loss. AO-UHR-FD-OCT images identified the exact location of structural changes within the cone photoreceptor layer with the AO-FC en face images showing dark areas in the cone mosaic at the same retinal locations with reduced visual sensitivity. Conclusion Losses in cone density along with expected inner retinal changes were demonstrated in well-characterised glaucoma patients with VF loss. PMID:20956277

  18. Radiation measurement above the lunar surface by Kaguya gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Nagaoka, Hiroshi; Kusano, Hiroki; Hareyama, Matoko; Ideguchi, Yusuke; Shimizu, Sota; Shibamura, Eido

    The lunar surface is filled with various ionizing radiations such as high energy galactic particles, albedo particles and secondary radiations of neutrons, gamma rays and other elementary particles. A high-resolution Kaguya Gamma-Ray Spectrometer (KGRS) was carried on the Japan’s lunar explorer SELENE (Kaguya), the largest lunar orbiter since the Apollo missions. The KGRS instrument employed, for the first time in lunar exploration, a high-purity Ge crystal to increase the identification capability of elemental gamma-ray lines. The Ge detector is surrounded by BGO and plastic counters as for anticoincidence shields. The KGRS measured gamma rays in the energy range from 200 keV to 13 MeV with high precision to determine the chemical composition of the lunar surface. It provided data on the abundance of major elements over the entire lunar surface. In addition to the gamma-ray observation by the KGRS, it successfully measured the global distribution of fast neutrons. In the energy spectra of gamma-rays observed by the KGRS, several saw-tooth- peaks of Ge are included, which are formed by the collision interaction of lunar fast neutrons with Ge atoms in the Ge crystal. With these saw-tooth-peaks analysis, global distribution of neutrons emitted from the lunara surface was successfully created, which was compared with the previous results obtained by Lunar Prospector neutron maps. Another anticoincidence counter, the plastic counter with 5 mm thickness, was used to veto radiation events mostly generated by charged particles. A single photomultiplier serves to count scintillation light from the plastic scintillation counter. The global map of counting rates observed by the plastic counter was also created, implying that the radiation counting rate implies the geological distribution, in spite that the plastic counter mostly measures high energy charged particles and energetic neutrons. These results are presented and discussed.

  19. Gamma-ray constraints on maximum cosmogenic neutrino fluxes and UHECR source evolution models

    SciTech Connect

    Gelmini, Graciela B.; Kalashev, Oleg; Semikoz, Dmitri V. E-mail: kalashev@ms2.inr.ac.ru

    2012-01-01

    The dip model assumes that the ultra-high energy cosmic rays (UHECRs) above 10{sup 18} eV consist exclusively of protons and is consistent with the spectrum and composition measure by HiRes. Here we present the range of cosmogenic neutrino fluxes in the dip-model which are compatible with a recent determination of the extragalactic very high energy (VHE) gamma-ray diffuse background derived from 2.5 years of Fermi/LAT data. We show that the largest fluxes predicted in the dip model would be detectable by IceCube in about 10 years of observation and are within the reach of a few years of observation with the ARA project. In the incomplete UHECR model in which protons are assumed to dominate only above 10{sup 19} eV, the cosmogenic neutrino fluxes could be a factor of 2 or 3 larger. Any fraction of heavier nuclei in the UHECR at these energies would reduce the maximum cosmogenic neutrino fluxes. We also consider here special evolution models in which the UHECR sources are assumed to have the same evolution of either the star formation rate (SFR), or the gamma-ray burst (GRB) rate, or the active galactic nuclei (AGN) rate in the Universe and found that the last two are disfavored (and in the dip model rejected) by the new VHE gamma-ray background.

  20. GeV and higher energy photon interactions in gamma-ray burst fireballs and surroundings

    E-print Network

    Soebur Razzaque; Peter Meszaros; Bing Zhang

    2004-06-09

    We have calculated the opacities and secondary production mechanisms of high energy photons arising in gamma-ray burst internal shocks, using exact cross-sections for the relevant processes. We find that for reasonable choices of parameters, photons in the range of 10's to 100's of GeV may be emitted in the prompt phase. Photons above this range are subject to electron-positron pair production with fireball photons and would be absent from the spectrum escaping the gamma-ray burst. We find that, in such cases, the fireball becomes optically thin again at ultra-high energies ($\\gtrsim$ PeV). On the other hand, for sufficiently large fireball bulk Lorentz factors, the fireball is optically thin at all energies. Both for $\\gamma\\gamma$ self-absorbed and optically thin cases, the escaping high energy photons can interact with infra-red and microwave background photons to produce delayed secondary photons in the GeV-TeV range. These may be observable with GLAST, or at low redshifts with ground-based air Cherenkov telescopes. Detection of the primary prompt spectrum constrains the bulk Lorentz factor, while detection of delayed secondary gamma-rays would provide a consistency check for the primary spectrum and the bulk Lorentz factor as well as constraints on the intergalactic magnetic field strength.

  1. In VivoFunctional Imaging of Intrinsic Scattering Changes in the Human Retina with High-speed Ultrahigh Resolution OCT

    PubMed Central

    Srinivasan, V. J.; Chen, Y.; Duker, J. S.; Fujimoto, J. G.

    2009-01-01

    Non-invasive methods of probing retinal function are of interest for the early detection of retinal disease. While retinal function is traditionally directly measured with the electroretinogram (ERG), recently functional optical imaging of the retina has been demonstrated. In this manuscript, stimulus-induced, intrinsic optical scattering changes in the human retina are measured in vivo with high-speed, ultrahigh resolution optical coherence tomography (OCT) operating at 50,000 axial scans per second and ?3.3 micron axial resolution. A stimulus and measurement protocol that enables measurement of functional OCT retinal signals is described. OCT signal changes in the photoreceptors are demonstrated. Two distinct responses having different temporal and spatial properties are reported. These results are discussed in the context of optical intrinsic signals measured previously in the retina by fundus imaging and scanning laser ophthalmoscopy. Finally, challenges associated with in vivo functional retinal imaging in human subjects are discussed. PMID:19259228

  2. High-speed imaging of retinal pathology using ultrahigh-resolution spectral/Fourier domain optical coherence tomography in the ophthalmology clinic

    NASA Astrophysics Data System (ADS)

    Ko, Tony; Wojtkowski, Maciej; Srinivasan, Vivek; Duker, Jay; Schuman, Joel S.; Fujimoto, James G.

    2005-04-01

    An ultrahigh resolution spectral domain optical coherence tomography (OCT) system capable of performing high speed imaging in the ophthalmology clinic has been developed. An OCT system using spectral/Fourier domain enables high speed imaging rates of up to 25,000 axial scans (A-scan) per second. Using a low threshold femtosecond Ti:sapphire laser light source, which can generate bandwidths of ~125 nm at 800 nm, cross-sectional imaging of the retina with ~3 ?m axial resolution is possible. High speed imaging has been performed in the ophthalmology clinic on patients with various retinal pathologies using the ultrahigh resolution spectral domain OCT system. High pixel density OCT images containing 1024 pixels and 2048 transverse lines (A-scans) can be acquired in 0.08 seconds, which represents a ~100 fold improvement in imaging speed over previously reported time-domain ultrahigh resolution OCT systems. High speed imaging also enables three dimensional scanning and mapping of intraretinal architectural morphology with unprecedented resolution. High speed ultrahigh resolution OCT is a powerful tool for visualizing retinal pathologies, especially those involving the details of the photoreceptor segments; it will enable three-dimensional retinal imaging and the rendering of image information from volumetric data, and it has the potential to improve the early diagnosis of retinal diseases.

  3. The Advanced Gamma-Ray Imaging System (AGIS): Science Highlights

    SciTech Connect

    Buckley, J.; Coppi, P.; Digel, S.; Funk, S.; Krawczynski, H.; Krennrich, F.; Pohl, M.; Romani, R.; Vassiliev, V.; /UCLA

    2011-11-21

    The Advanced Gamma-ray Imaging System (AGIS), a future gamma-ray telescope consisting of an array of {approx}50 atmospheric Cherenkov telescopes distributed over an area of {approx}1 km{sup 2}, will provide a powerful new tool for exploring the high-energy universe. The order-of-magnitude increase in sensitivity and improved angular resolution could provide the first detailed images of {gamma}-ray emission from other nearby galaxies or galaxy clusters. The large effective area will provide unprecedented sensitivity to short transients (such as flares from AGNs and GRBs) probing both intrinsic spectral variability (revealing the details of the acceleration mechanism and geometry) as well as constraining the high-energy dispersion in the velocity of light (probing the structure of spacetime and Lorentz invariance). A wide field of view ({approx}4 times that of current instruments) and excellent angular resolution (several times better than current instruments) will allow for an unprecedented survey of the Galactic plane, providing a deep unobscured survey of SNRs, X-ray binaries, pulsar-wind nebulae, molecular cloud complexes and other sources. The differential flux sensitivity of {approx}10{sup -13} erg cm{sup -2} sec{sup -1} will rival the most sensitive X-ray instruments for these extended Galactic sources. The excellent capabilities of AGIS at energies below 100 GeV will provide sensitivity to AGN and GRBs out to cosmological redshifts, increasing the number of AGNs detected at high energies from about 20 to more than 100, permitting population studies that will provide valuable insights into both a unified model for AGN and a detailed measurement of the effects of intergalactic absorption from the diffuse extragalactic background light. A new instrument with fast-slewing wide-field telescopes could provide detections of a number of long-duration GRBs providing important physical constraints from this new spectral component. The new array will also have excellent background rejection and very large effective area, providing the very high sensitivity needed to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.

  4. Electronic characterization of mercuric iodide gamma ray spectrometers

    SciTech Connect

    Gerrish, V.M.

    1993-01-01

    During the past four years the yield of high resolution mercuric iodide (HgI[sub 2]) gamma ray spectrometers produced at EG G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI[sub 2] synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI[sub 2] spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI[sub 2] surface, probably due to surface states formed prior to contact deposition.

  5. Electronic characterization of mercuric iodide gamma ray spectrometers

    SciTech Connect

    Gerrish, V.M.

    1993-06-01

    During the past four years the yield of high resolution mercuric iodide (HgI{sub 2}) gamma ray spectrometers produced at EG&G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI{sub 2} synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI{sub 2} spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI{sub 2} surface, probably due to surface states formed prior to contact deposition.

  6. The Earth's Gamma-ray Albedo as observed by EGRET

    SciTech Connect

    Petry, Dirk

    2005-02-21

    The Earth's high energy gamma-ray emission is caused by cosmic ray interactions with the atmosphere. The EGRET detector on-board the CGRO satellite is only the second experiment (after SAS-2) to provide a suitable dataset for the comprehensive study of this emission. Approximately 60% of the EGRET dataset consist of gamma photons from the Earth. This conference contribution presents the first results from the first analysis project to tackle this large dataset. Ultimate purpose is to develop an analytical model of the Earth's emission for use in the GLAST project. The results obtained so far confirm the earlier results from SAS-2 and extend them in terms of statistical precision and angular resolution.

  7. Gamma ray production cross sections in proton induced reactions on natural Mg, Si and Fe targets over the proton energy range 30 up to 66 MeV

    E-print Network

    W. Yahia-Chérif; S. Ouichaoui; J. Kiener; V. Tatischeff; E. Lawrie; J. J. Lawrie; A. Belhout; H. Benhabiles; T. D. Bucher; A. Chafa; S. Damache; M. Debabi; I. Deloncle; J. L. Easton; C. Hamadache; F. Hammache; P. Jones; B. V. Kheswa; N. Khumalo; T. Lamula; S. T. H. Majola; D. Negi; J. Ndayishimye; S. P. Noncolela; D. Moussa; R. Nchodu; P. Papka; N. de Sereville; J. F. Sharpey-Schafer; O. Shirinda; M. Wiedeking; S. Wyngaardt

    2015-07-09

    Gamma-ray excitation functions have been measured for 30, 42, 54 and 66 MeV proton beams accelerated onto C + O (Mylar), Mg, Si, and Fe targets of astrophysical interest at the separate-sector cyclotron of iThemba LABS in Somerset West (Cape Town, South Africa). A large solid angle, high energy resolution detection system of the Eurogam type was used to record Gamma-ray energy spectra. Derived preliminary results of Gamma-ray line production cross sections for the Mg, Si and Fe target nuclei are reported and discussed. The current cross section data for known, intense Gamma-ray lines from these nuclei consistently extend to higher proton energies previous experimental data measured up to Ep ~ 25 MeV at the Orsay and Washington tandem accelerators. Data for new Gamma-ray lines observed for the first time in this work are also reported.

  8. Gamma-ray burst data from DMSP satellites

    SciTech Connect

    Terrell, J.; Klebesadel, R.W.; Lee, P.; Griffee, J.W.

    1991-12-31

    A number of gamma-ray bursts have been detected by means of gamma-ray detectors aboard three Air Force Defense Meteorological Satellite Program (DMSP) satellites, in polar orbits at 800 km altitude. The gamma-ray data have a 2-second resolving time, and are usually telemetered in 5 energy bins in the range 50--1000 keV. Although it is not possible to detect gamma-ray bursts when the DMSP satellites are passing through the radiation belt or the South Atlantic Anomaly, or when the source is obscured by the Earth, a number of gamma-ray bursts have been detected by two or even three of the satellites. The DMSP data may be of considerable, assistance in evaluating time histories, locations, and spectra of gamma-ray bursts.

  9. Gamma-ray burst data from DMSP satellites

    SciTech Connect

    Terrell, J.; Klebesadel, R.W.; Lee, P. ); Griffee, J.W. )

    1991-01-01

    A number of gamma-ray bursts have been detected by means of gamma-ray detectors aboard three Air Force Defense Meteorological Satellite Program (DMSP) satellites, in polar orbits at 800 km altitude. The gamma-ray data have a 2-second resolving time, and are usually telemetered in 5 energy bins in the range 50--1000 keV. Although it is not possible to detect gamma-ray bursts when the DMSP satellites are passing through the radiation belt or the South Atlantic Anomaly, or when the source is obscured by the Earth, a number of gamma-ray bursts have been detected by two or even three of the satellites. The DMSP data may be of considerable, assistance in evaluating time histories, locations, and spectra of gamma-ray bursts.

  10. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  11. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, ?; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-01

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields. PMID:20360067

  12. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGESBeta

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-raymore »multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  13. Gamma ray bursts from extragalactic sources

    NASA Technical Reports Server (NTRS)

    Hoyle, Fred; Burbidge, Geoffrey

    1992-01-01

    The properties of gamma ray bursts of classical type are found to be explicable in terms of high speed collisions between stars. A model is proposed in which the frequency of such collisions can be calculated. The model is then applied to the nuclei of galaxies in general on the basis that galaxies, or at least some fraction of them, originate in the expulsion of stars from creation centers. Evidence that low level activity of this kind is also taking place at the center of our own Galaxy is discussed. The implications for galactic evolution are discussed and a negative view of black holes is taken.

  14. Gamma ray emission and solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Ramaty, R.

    1978-01-01

    Solar gamma ray line and continuum emission provide information about particle acceleration and its temporal behavior; the energy spectrum, composition and directivity of the accelerated particles; and the composition, density and temperatures of the ambient medium. These data, coupled with the comprehensive photon and particle observations available for the sun, give a detailed picture of the particle acceleration and flare energy release processes. Additional information on elemental and isotopic abundances, surface nuclear reactions and coronal heating mechanisms can be obtained. Implications of present observations and the potential return from future observational are discussed.

  15. Beaming Effects in Gamma-Ray Bursts

    E-print Network

    Y. F. Huang; T. Lu; Z. G. Dai; K. S. Cheng

    2002-08-15

    Based on a refined generic dynamical model, we investigate afterglows from jetted gamma-ray burst (GRB) remnants numerically. In the relativistic phase, the light curve break could marginally be seen. However, an obvious break does exist at the transition from the relativistic phase to the non-relativistic phase, which typically occurs at time 10 to 30 days. It is very interesting that the break is affected by many parameters, especially by the electron energy fraction (xi_e), and the magnetic energy fraction (xi_B^2). Implication of orphan afterglow surveys on GRB beaming is investigated. The possible existence of a kind of cylindrical jets is also discussed.

  16. Gamma-Ray Fuel Gauges for Airplanes

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Sprinkle, Danny R.; Mall, Gerald H.; Chegini, Hoshang

    1987-01-01

    Accurate system overcomes problems of capacitance gauges. Feasibility study conducted on use of attenuation of gamma rays to measure quantities of fuel in tanks. Studies with weak Am241 59.5-keV radiation source indicate it is possible to monitor continuously fuel quantity in tanks to accuracy of better than 1 percent. Measurements also indicate easily measurable differences in physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. Am241-based densitometers currently in use aboard some aircraft . Estimated complete system, including microprocessor and associated display devices, assembled at cost of less than $10,000 per fuel tank.

  17. Gamma Ray Spectrum Unfolding Using Derivative Kernels

    E-print Network

    D. S. Vlachos; O. T. Kosmas

    2009-05-04

    The unfolding of a gamma ray spectrum experience many difficulties due to noise in the recorded data, that is based mainly on the change of photon energy due to scattering mechanisms (either in the detector or the medium), the accumulation of recorded counts in a fixed energy interval (the channel width of the detector) and finally the statistical fluctuation inside the detector. In order to deal with these problems, a new method is developed which interpolates the ideal spectrum with the use of special designed derivative kernels. Preliminary simulation results are presented and show that this approach is very effective even in spectra with low statistics.

  18. Gamma-ray burster counterparts - Radio

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cline, Thomas L.; Desai, U. D.; Teegarden, B. J.; Atteia, J.-L.; Barat, C.; Estulin, I. V.; Evans, W. D.; Fenimore, E. E.; Hurley, K.

    1989-01-01

    Many observers and theorists have suggested that gamma-ray bursters (GRBs) are related to highly magnetized rotating, neutron stars, in which case an analogy with pulsars implies that GRBs would be prodigious emitters of polarized radio emission during quiescence. The paper reports on a survey conducted with the Very Large Array radio telescope of 10 small GRB error regions for quiescent radio emission at wavelengths of 2, 6, and 20 cm. The sensitivity of the survey varied from 0.1 to 0.8 mJy. The observations did indeed reveal four radio sources inside the GRB error regions.

  19. Gamma Ray Bursts: an Enigma Being Unraveled

    SciTech Connect

    De Rujula, Alvaro

    2003-05-14

    The best astrophysical accelerators are quasars and the 'progenitors' of GRBs which, after decades of observations and scores of theories, we still do not understand. But, I shall argue, we now know quite well where GRBs come from, and we understand how their 'beams' behave, as they make short pulses of gamma rays and long-duration X-ray, optical and radio 'afterglows'. I shall argue that our understanding of these phenomena, based on the 'Cannonball Model', is unusually simple, precise and successful. The 'sociology' of GRBs is interesting per se and, in this sense, the avatars of the Cannonball Model in confronting the generally accepted 'fireball models' are also quite revealing.

  20. High Energy Neutrinos from Gamma Ray Bursts

    E-print Network

    Charles D. Dermer; Armen Atoyan

    2003-07-09

    We treat high-energy neutrino production in GRBs. Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of > 10 TeV neutrinos from GRBs with Doppler factors > 200, inferred from gamma-ray observations, would support the supranova model. Detection of powerful bursts at fluence levels > 3x10^{-4} erg/cm^2 offer a realistic prospect for detection of muon neutrinos.

  1. Interpretation of the pulsed gamma ray emission from Vela

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    1975-01-01

    A model is proposed for the Vela pulsar in which the radio emission originates near the surface of the neutron star while the pulsed gamma ray emission is produced by synchrotron radiation near the speed of light cylinder. This model can explain the energy flux, double pulse structure, and phase shift with respect to the radio of the gamma ray emission and offers approximate quantitative predictions for other X-ray and gamma-ray fluxes.

  2. Interpretation of the pulsed gamma-ray emission from Vela

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    1975-01-01

    A model is proposed for the Vela pulsar in which the radio emission originates near the surface of the neutron star while the pulsed gamma-ray emission is produced by synchrotron radiation near the speed-of-light cylinder. This model can explain the energy flux, double pulse structure, and phase shift (with respect to the radio) of the gamma-ray emission, and offers approximate quantitative predictions for other X- and gamma-ray fluxes.

  3. Gamma Ray/neutron Spectrometers for Planetary Elemental Mapping

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Auchampaugh, G. F.; Barraclough, B. L.; Burt, W. W.; Byrd, R. C.; Drake, D. M.; Edwards, B. C.; Feldman, W. C.; Martin, R. A.; Moss, C. E.

    1993-01-01

    Los Alamos has designed gamma ray and neutron spectrometers for Lunar Scout, two robotic missions to map the Moon from 100 km polar orbits. Knowledge of the elemental composition is desirable in identifying resources and for geochemical studies and can be obtained using gamma ray and neutron spectrometers. Measurements with gamma ray and neutron spectrometers complement each other in determining elemental abundances in a planet's surface. Various aspects of the instruments are discussed.

  4. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  5. Fermi Large Area Telescope Bright Gamma-ray Source List

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, Guido; Bastieri, Denis; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bignami, G.F.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  6. Simultaneous Radio, Optical and Gamma-Ray Observations of TGFs

    NASA Astrophysics Data System (ADS)

    Jarvis, C.; Briggs, M. S.; Xiong, S.; Christian, H. J.; Bitzer, P. M.; Buechler, D. E.; Holzworth, R. H.; Cummer, S. A.

    2013-12-01

    One of the largest mysteries surrounding terrestrial gamma ray flashes (TGFs) is their causal relation to lightning. Observations suggest that TGFs occur early in IC lightning. Previously only a single TGF has been simultaneously measured in the radio, optical, and gamma ray bands -- results of which support that TGFs occur early on. A thorough analysis of data from the Lightning Imaging Sensor (LIS), the Gamma Ray Burst Monitor (GBM), and Duke University LF radio sensors has yielded four new TGFs measured in optical and gamma-ray, and one in all three. Presented are the results of these newly discovered matches which stand to affirm that TGFs occur early in IC lightning.

  7. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.

  8. The gamma ray spectrometer for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Chupp, E. L.; Ryan, J. M.; Cherry, M. L.; Gleske, I. U.; Reppin, C.; Pinkau, K.; Rieger, E.; Kanbach, G.; Kinzer, R. L.

    1980-01-01

    The paper describes an actively shielded, multicrystal scintillation spectrometer for measurement of the solar gamma ray flux used by the Solar Maximum Mission Gamma Ray Experiment. The instrument provides a 476-channel pulse height spectrum every 16.38 s over the 0.3-9 MeV energy range; the gamma ray spectral analysis can be extended to at least 15 MeV on command. The instrument is designed to measure the intensity, energy, and Doppler shift of narrow gamma ray lines, the intensity of extremely broadened lines, and the photon continuum.

  9. The Gamma-Ray Large-Area Space Telescope: An Astro-Particle Mission to Explore the High-Energy Gamma-Ray Sky

    SciTech Connect

    Spandre, Gloria; /INFN, Pisa

    2009-05-12

    The Gamma Ray Large Area Space Telescope (GLAST) is a space mission that will detect photons from the gamma ray sky, in the rich yet poorly explored high energy band between 20MeV and 1TeV. Main instrument on board is the Large Area Telescope (LAT), a gamma-ray pair-conversion telescope, that will measure direction and energy of incoming photons by means of a very large (11.000 sensors), low pitch (228 {micro}m) Silicon strip Tracker and an imaging CsI e.m. calorimeter, supported in the rejection of charged particles background by an outer, segmented Anti-Coincidence Detector built with plastic scintillators. The superior angular resolution of the LAT, coupled to its very large field of view, results in a sensitivity advance of a factor 30 or more with respect to previously flown instruments. This will allow GLAST to locate currently unresolved gamma ray sources and to detect potential new classes of sources. Study of the residual gamma ray background will have a crucial role in connection to cosmological models, supersymmetric dark matter and relics of exotic particle decay searches. An accurate spectroscopy of all gamma ray emitters will be possible with the high energy resolution of the calorimeter, improving our knowledge of the mechanisms that power the cores of blazars and AGNs, and enabling tens of different pulsar emission models. The GLAST mission will have the instrumental capabilities to locate and analyze sources of cosmic rays and investigate on their acceleration mechanism. As for transient phenomena studies, like the spectacular GRBs, known to be the most energetic natural events, GLAST is in a prominent position. This is due to the minimum detection dead time (<100 {micro}s), typical of the silicon detectors used for the LAT tracker, and to the increased field of view and alert capabilities of the second GLAST instrument, the Gamma Burst Monitor (GBM), essentially conceived as a fast transients trigger for the more accurate observations from the LAT and from other space and earth missions sensitive to other wavelengths. In this paper we give an overview of the many physics goals and potential reach of the GLAST observatory, we describe in detail the detector design and performances and report on the status of the LAT tracker construction.

  10. The interplanetary gamma ray burst network

    NASA Astrophysics Data System (ADS)

    Cline, T.

    The Interplanetary Gamma-Ray Burst Network (IPN) is providing gamma-ray burst (GRB) alerts and localizations at the maximum rate anticipated before the launch of the Swift mission. The arc-minute source precision of the IPN is again permitting searches for GRB afterglows in the radio and optical regimes with delays of only hours up to 2 days. The successful addition of the Mars Odyssey mission has compensated for the loss of the asteroid mission NEAR, to reconstitute a fully long- baseline interplanetary network, with Ulysses at > 5 AU and Konus-Wind and HETE-2 near the Earth. In addition to making unassisted GRB localizations that enable a renewed supply of counterpart observations, the Mars/Ulysses/Wind IPN is confirming and reinforcing GRB source localizations with HETE-2. It has also confirmed and reinforced localizations with the BeppoSAX mission before the BeppoSAX termination in May and has detected and localized both SGRs and an unusual hard x-ray transient that is neither an SGR nor a GRB. This IPN is expected to operate until at least 2004.

  11. IS CALVERA A GAMMA-RAY PULSAR?

    SciTech Connect

    Halpern, J. P.

    2011-07-20

    Originally selected as a neutron star (NS) candidate in the ROSAT All-Sky Survey, 1RXS J141256.0+792204 ('Calvera') was discovered to be a 59 ms X-ray pulsar in a pair of XMM-Newton observations by Zane et al. Surprisingly, their claimed detection of this pulsar in Fermi {gamma}-ray data requires no period derivative, severely restricting its dipole magnetic field strength, spin-down luminosity, and distance to small values. This implies that the cooling age of Calvera is much younger than its characteristic spin-down age. If so, it could be a mildly recycled pulsar, or the first 'orphaned' central compact object (CCO). Here we show that the published Fermi ephemeris fails to align the pulse phases of the two X-ray observations with each other, which indicates that the Fermi detection is almost certainly spurious. Analysis of additional Fermi data also does not confirm the {gamma}-ray detection. This leaves the spin-down rate of Calvera less constrained, and its place among the families of NSs uncertain. It could still be either an ordinary pulsar, a mildly recycled pulsar, or an orphaned CCO.

  12. Gamma-Ray Bursts and Cosmology

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  13. Very high energy gamma ray astrophysics

    SciTech Connect

    Lamb, R.C.; Lewis, D.A.

    1992-02-01

    The second reflector (project GRANITE) is on schedule. At present (January 1992) it and the 10 m reflector are obtaining stereoscopic views of gamma-ray air showers from the Crab Nebula which verify the expected performance of the twin reflector telescopes. With the additional improvements of the upgrade (a pending DOE proposal) the twin reflectors should reach a limiting intensity of 1% that of the Crab. The astonishing early results from the EGRET detector aboard the Compton Gamma Ray Observatory indicate that distant quasars (powered by supermassive black holes) are active at GeV energies. The Whipple instruments are poised to see if such behavior continues above 100 GeV, as well as perform sensitive observations of previously reported GeV (Geminga) and TeV (Hercules X-1, etc.) sources. In addition to observing sources and identifying their location in the sky to one arcminute, experiments are planned to search for WIMPS in the mass range 0.1 to 1 TeV, and to determine the abundance of anti-protons in the cosmic rays. The successful performance of the stereoscopic reflectors demonstrates the feasibility of the concept of arrays of Cherenkov receivers. Design studies for a much larger array (CASITA) are just beginning.

  14. Physics of Gamma Ray Burst Sources

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter

    2004-01-01

    During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

  15. Classification of Swift's gamma-ray bursts

    E-print Network

    Horváth, I; Bagoly, Z; Veres, P

    2008-01-01

    Two classes of gamma-ray bursts have been identified in the BATSE catalogs characterized by durations shorter and longer than about 2 seconds. There are, however, some indications for the existence of a third class. Swift satellite detectors have different spectral sensitivity than pre-Swift ones for gamma-ray bursts. Therefore, it is worth to reanalyze the durations and their distribution. We analyze, the maximum likelihood estimation, the bursts duration distribution, published in The First BAT Catalog, whether it contains two, three or more groups. The three log-normal fit is significantly (99.54% probability) better than the two for the duration distribution. Monte-Carlo simulations also confirm this probability (99.2%). Similarly, in previous results we found that the fourth component is not needed. The relative frequencies of the distribution of the groups are 7% short 35% intermediate and 58% long. Although the relative frequencies of the groups are different than in the BATSE GRB sample, the differenc...

  16. Gamma ray tests of Minimal Dark Matter

    NASA Astrophysics Data System (ADS)

    Cirelli, Marco; Hambye, Thomas; Panci, Paolo; Sala, Filippo; Taoso, Marco

    2015-10-01

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  17. Environments of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Roming, Peter; Tobler, Jennifer

    2016-01-01

    The death of some of the most massive stars are manifest as long gamma-ray bursts (GRBs). Studying their light curves and spectra are uncovering some of the properties of the "central engine" that remains after the progenitor star collapses, as well as the environment in which they reside. Much of our current understanding comes from data obtained in the gamma-ray to X-ray. Despite this progress in the high-energy regime, our understanding of the soft-energy component (UV/optical) is lacking, particularly with regards to UV/optical flaring from the central engine and distinguishing between interstellar material and wind environments. Although these questions have been addressed for individual bursts, no systematic study in the UV/optical has been done due to the lack of a large homogenous sample. The Swift Ultra-Violet/Optical Telescope (UVOT) has observed more GRBs in the UV/optical than any other telescope. From these observations we have generated a homogenous UV/optical GRB afterglow catalog. From this catalog and coupled with archival Swift X-Ray Telescope (XRT) data, we examine the spectral evolution of GRBs in order to probe the circumburst environment and to test current progenitor models.

  18. Iron K Lines from Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Meszaros, P.; Rees, M. J.

    2003-01-01

    We present models for reprocessing of an intense flux of X-rays and gamma rays expected in the vicinity of gamma ray burst sources. We consider the transfer and reprocessing of the energetic photons into observable features in the X-ray band, notably the K lines of iron. Our models are based on the assumption that the gas is sufficiently dense to allow the microphysical processes to be in a steady state, thus allowing efficient line emission with modest reprocessing mass and elemental abundances ranging from solar to moderately enriched. We show that the reprocessing is enhanced by down-Comptonization of photons whose energy would otherwise be too high to absorb on iron, and that pair production can have an effect on enhancing the line production. Both "distant" reprocessors such as supernova or wind remnants and "nearby" reprocessors such as outer stellar envelopes can reproduce the observed line fluxes with Fe abundances 30-100 times above solar, depending on the incidence angle. The high incidence angles required arise naturally only in nearby models, which for plausible values can reach Fe line to continuum ratios close to the reported values.

  19. Gamma large area silicon telescope: Applying SI strip detector technology to the detection of gamma rays in space

    NASA Astrophysics Data System (ADS)

    Atwood, W. B.; Bloom, E. D.; Godfrey, G. L.; Hertz, P. L.; Lin, Ying-Chi; Nolan, P. L.; Snyder, A. E.; Taylor, R. E.; Wood, K. S.; Michelson, P. F.

    1992-12-01

    The recent discoveries and excitement generated by EGRET (Energetic Gamma Ray Experiment Telescope) (presently operating on CGRO (Compton Gamma Ray Observatory)) has prompted an investigation into modern technologies ultimately leading to the next generation space based gamma ray telescope. The goal is to design a detector that would increase the data acquisition rate by almost two orders of magnitude beyond EGRET, while at the same time improving on the angular resolution, the energy measurement of reconstructed gamma rays and the triggering capability of the instrument. The proposed GLAST (Gamma Ray Large Area Silicon Telescope) instrument is based on silicon particle detectors that offer the advantages of no consumables, no gas volume, robust (versus fragile), long lived, and self triggering. The GLAST detector is roughly modeled after EGRET in that a tracking module precedes a calorimeter. The GLAST tracker has planes of cross strip (x, y) 300 micrometer match silicon detectors coupled to a thin radiator to measure the coordinates of converted electron-positron pairs. An angular resolution of 0.1 deg at high energy is possible (the low energy angular resolution 100 MeV would be about 2 deg, limited by multiple scattering). The increased depth of the GLAST calorimeter over EGRET's extends the energy range to about 300 GeV.

  20. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    NASA Technical Reports Server (NTRS)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  1. Direction-sensitive hand-held gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy

    2013-09-01

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal's energy resolution, less than 3% at 662 keV, is also excellent, and the response is highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.

  2. Unraveling the Origin of Short Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Chincarini, G.; Burrows, D. N.; Gehrels, N.; Covino, S.; Moretti, A.; Romano, P.; OBrien, P. T.; Sarazin, C. L.; Kouveliotou, C.

    2005-01-01

    The origin of the short (<2 s) class of gamma-ray bursts (GRBs) is finally becoming clear after decades of search. The first one localized to a few arcseconds accuracy, GRB 050509B, was found to have a highly probable association with a nearby (z = 0.225) elliptical galaxy. A second one with arcsecond localization, GRB 050709, was also associated with a low redshift (z = 0.16) galaxy. We report here the detection of short GRB 050724 with remarkable properties; in particular, it has low energy gamma-ray emission that lasts for 100 s after the main short pulse, strong early X-ray afterglow, and an unusual lightcurve that rebrightens at 3x10(exp 4) s. A position on the sky accurate to 9 arcsec was determined and provided as a GCN alert to ground-based telescopes within 80 s. A subsequent high-resolution X-ray image provided a sub-arcsec position coincident with ground-based optical and radio observations of the afterglow. Like GRB 050509B, this burst is located off-center in an elliptical galaxy. The energy output of the GRB at the host distance of z = 0.258 is 2-3 orders of magnitude less than for long bursts. The low level of star formation in such galaxies is strong evidence against a collapsar or hypernova origin like that associated with long GRBs. Based on these new data, it is highly probable that short GRBs are produced by the coalescence of orbiting neutron stars (NSs) or black holes (BHs), with some evidence for a NS-BH merger in this burst.

  3. Direction-Sensitive Hand-Held Gamma-Ray Spectrometer

    SciTech Connect

    Mukhopadhyay, S.

    2012-10-04

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response is highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.

  4. In-flight measurements of Terrestrial Gamma-Rays

    NASA Astrophysics Data System (ADS)

    van Deursen, Alexander; Kochkin, Pavlo; de Boer, Alte; Bardet, Michiel; Boissin, Jean-Francois

    2014-05-01

    Thunderstorms emit bursts of energetic radiation. Moreover, lightning stepped leader produces X-ray pulses. The phenomena, their interrelation and impact on Earth's atmosphere and near space are not fully understood yet. In-flight Lightning Strike Damage Assessment System ILDAS is developed in a EU FP6 project ( http://ildas.nlr.nl/ ) to provide information on threat that lightning poses to aircraft. It consists of 2 E-field sensors, and a varying number of H-field sensors. It has recently been modified to include two LaBr3 scintillation detectors. The scintillation detectors are sensitive to x- and gamma-rays above 30 keV. The entire system is installed on A-350 aircraft and digitizes data with 100 MSamples/sec rate when triggered by lightning. A continuously monitoring channel counts the number of occurrences that the X-ray signal exceeds a set of trigger levels. In the beginning of 2014 the aircraft flies through thunderstorm cells collecting the data from the sensors. The X-rays generated by the lightning flash are measured in synchronization with the lightning current information during a period of 1 second around the strike. The continuous channel stores x-ray information with less time and amplitude resolution during the whole flight. That would allow x-rays from TGFs and continuous gamma-ray glow of thundercloud outside that 1 s time window. We will give an overview of the ILDAS system and show that the X-ray detection works as intended. The availability of the lightning associated data depends on the flight schedule. If available, these data will be discussed at the conference.

  5. The ALMA Phasing Project: New Frontiers in Ultra-High Resolution Astronomy Enabled by a Beamformed ALMA

    NASA Astrophysics Data System (ADS)

    Matthews, Lynn D.; Alef, W.; Anderson, J.; Barkats, D.; Crew, G. B.; Doeleman, S. S.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Honma, M.; Impellizzeri, C.; Inoue, M.; Lacasse, R.; Lopez, B.; Mora-Klein, M.; Nagar, N.; Pankratius, V.; Pradel, N.; Rottmann, H.; Roy, A.; Ruszczyk, C.; Saez, A.; Shillue, B.; Treacy, R.; ALMA Phasing Project Team

    2014-01-01

    The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) is an ongoing ALMA Development Project that will provide the means to coherently sum all of the individual ALMA antennas, allowing them to effectively function as a single aperture. This capability will allow ALMA to participate in global Very Long Baseline Interferometry (VLBI) networks operating in the millimeter and submillimeter, offering a dramatic improvement in sensitivity. This will in turn afford a wide range of new ultra-high angular resolution science applications. This poster will provide an overview of the APP design and implementation plan and highlight examples of new science enabled by a beamformed ALMA (including the study of black holes on Event Horizon scales, the detailed investigation of the launch and collimation of astrophysical jets, and astrometry of astrophysical masers with unprecedented precision). Commissioning and Science Verification of the APP is slated to begin in early 2014.

  6. Visualization of 3D high speed ultrahigh resolution optical coherence tomographic data identifies structures visible in 2D frames?

    PubMed Central

    Kagemann, Larry; Isikawa, Hiroshi; Wollstein, Gadi; Gabriele, Michelle; Schuman, Joel S.

    2010-01-01

    Optical coherence tomography has allowed unprecedented visualization of ocular structures, but the identity of some visible objects within slices remains unknown. This study reconstructs a number of those objects in 3D space, allowing their identification by observation of their 3D morphology. In the case mottling deep within image slices through the optic disc, C-mode imaging provided visualization of the appearance and distribution of laminar pores. In the case of white spots and streaks sometimes observed in image slices through the cornea, C-mode imaging contoured to the path of those white spots allowed their visual identification as nerves extending radially into the cornea from the limbus. White spots observed in ultrahigh resolution retinal image slices were identified as blood within retinal capillaries. C-mode contour-corrected imaging of three-dimensional structures provided the identification of previously unidentified structures visible in cross-sectional image slices. PMID:19259256

  7. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    NASA Astrophysics Data System (ADS)

    Nesci, R.; Tosti, G.; Pursimo, T.; Ojha, R.; Kadler, M.

    2013-07-01

    Context. Spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims: In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods: We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from the Fermi gamma-ray Space Telescope, making weekly averages. Results: Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index ?ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. The gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (?peak) of the synchrotron emission. A table of the photometry is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A2

  8. On the origin of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Al Dallal, S.

    Since their discovery some thirty years ago by military satellites, gamma-ray bursts (GRBs) have endured as one of astronomy's greatest mysteries. In this paper we review the existing models to explain the origin of gamma ray bursts and highlight the difficulties associated with these models. We proceed then to consider the general features of the GRBs and propose a new model of their origin that is closely related to the initial phase of the big bang itself. Even though the position of some gamma ray events are found to coincide with that of galaxies, their distribution on the sky is random and is not correlated with the distribution of galaxies or galactic clusters. Another important aspect of GRBs is that these are occurring at great distances stretching to billions of light years away. It then becomes tempting to ask why they are not occurring in the nearby clusters of galaxies. Furthermore, GRBs fall into two categories: long ones lasting from a couple of seconds to few minutes, and short ones lasting less than 2 seconds, sometimes less than 0.1 second. However, there is no cutting edge between the two categories and their numbers, when traced versus duration, form a continuous pattern, which is very difficult to explain in terms of the existing models. In fact, their distribution in distance may allow us to see further back into cosmic history than anything else. Some GRBs likely come from very high red shifts, corresponding to the era when the very first stars were formed. Another trend in this regard is that more distant a GRB is - and hence the earlier in the universe it happened - the more intrinsically powerful it generally turns out to be. In this paper we argue that GRBs are related to the initial phase of the big bang when quantum fluctuations dominate the expanding fireball. A model explaining how GRBs are initiated and evolved in the early stage of the big bang is presented. Recent data obtained from WMAP satellite are shown to be consistent with our model.

  9. GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR

    NASA Technical Reports Server (NTRS)

    Garrick, J.

    1994-01-01

    The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and ASSEMBLER and has been implemented on a VAX 11/780 under VMS 4.5. It has a virtual memory requirement of 255k. GROSS was developed in 1986.

  10. Ultrahigh resolution optical coherence tomography using high power fiber laser supercontinuum at 1.7 ?m wavelength region

    NASA Astrophysics Data System (ADS)

    Ishida, S.; Kawagoe, H.; Aramaki, M.; Sakakibara, Y.; Omoda, E.; Kataura, H.; Nishizawa, N.

    2013-03-01

    Optical coherence tomography (OCT) is a non-invasive optical imaging technology for micron-scale cross-sectional imaging of biological tissue and materials. We have been investigating ultrahigh resolution optical coherence tomography (UHR-OCT) using fiber based supercontinuum (SC) source. Although UHR-OCT has many advantages in medical equipments, low penetration depth is a serious limitation for wider applications. Recently, we have demonstrated high penetration depth UHR-OCT by use of fiber based Gaussian shaped SC source at 1.7 ?m center wavelength. However, the penetration depth has been limited by the low power of SC source. In this paper, to realize deeper penetration imaging, we have developed the high power Gaussian shaped SC source at 1.7 ?m wavelength region based on the custom-made Er-doped ultrashort pulse fiber laser with single-wall carbon nanotube and nonlinear phenomena in fibers. This SC source has 43.3 mW output power, 242 nm full-width at half maximum bandwidth, and 109 MHz repetition rate. The repetition rate and average power were almost twice as large as those of previous SC source. Using this light source, 105 dB sensitivity and ultrahigh resolution of 4.3 ?m in tissue were achieved simultaneously. We have demonstrated the UHR-OCT imaging of pig thyroid gland and hamster's cheek pouch with this developed SC source and compared the images with those measured by the previous SC source. We have observed the fine structures such as round or oval follicles, epithelium, connective tissue band, and muscular layer. From the comparison of the UHR-OCT images and signals, we confirmed the improvement of imaging contrast and penetration depth with the developed SC source.

  11. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  12. Measuring high-energy {gamma} rays with Ge detectors

    SciTech Connect

    Lipoglavsek, M.; Likar, A.; Vencelj, M.; Vidmar, T.; Bark, R. A.; Gueorguieva, E.; Komati, F.; Lawrie, J. J.; Maliage, S. M.; Mullins, S. M.; Murray, S. H. T.; Ramashidzha, T. M.

    2006-04-26

    Gamma rays with energies up to 21 MeV were measured with Ge detectors. Such {gamma} rays were produced in the 208Pb(p,{gamma})209Bi reaction. The position of the 2g9/2 single proton orbit in 209Bi has been determined indicating the size of the Z=126 shell gap.

  13. Gamma-ray Bursts as Probes of Galaxy Evolution

    E-print Network

    ?umer, Slobodan

    Gamma-ray Bursts as Probes of Galaxy Evolution Daniele Malesani, Dark Cosmology Centre and the X to ongoing star formation "Naked-eye" GRB 080319B GRBs explode within star-forming galaxies Gamma-ray bursts formation rate (you "only" need a redshift) Includes "invisible" star formation: - SF in faint galaxies

  14. Solving the Mystery of Short Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. Until this year, the origin of short gamma-ray bursts was a complete mystery. A new NASA satellite named Swift has now captured the first images of these events and found that they are caused by tremendous explosions in the distant universe.

  15. Gamma Ray Astrophysics: New insight into the universe

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Trombka, J. I.

    1981-01-01

    Gamma ray observations of the solar system, the galaxy and extragalactic radiation are reported. Topics include: planets, comets, and asteroids; solar observations; interstellar medium and galactic structure; compact objects; cosmology; and diffuse radiation. The instrumentation used in gamma ray astronomy in covered along with techniques for the analysis of observational spectra.

  16. QUALITY CONTROL FOR ENVIRONMENTAL MEASUREMENTS USING GAMMA-RAY SPECTROMETRY

    EPA Science Inventory

    This report describes the quality control procedures, calibration, collection, analysis, and interpretation of data in measuring the activity of gamma ray-emitting radionuclides in environmental samples. Included in the appendices are basic data for selected gamma ray-emitting ra...

  17. HEAO C-1 gamma-ray spectrometer. [experimental design

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Ling, J. C.; Willett, J. B.; Jacobson, A. S.

    1978-01-01

    The gamma-ray spectroscopy experiment to be launched on the third High Energy Astronomy Observatory (HEAO C) will perform a complete sky search for narrow gamma-ray line emission to the level of about 00001 photons/sq cm -sec for steady point sources. The design of this experiment and its performance based on testing and calibration to date are discussed.

  18. Very High Energy Gamma Ray Extension of GRO Observations

    NASA Technical Reports Server (NTRS)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  19. Gamma ray bursts: Current status of observations and theory

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    1990-01-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed.

  20. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    SciTech Connect

    Patt, B.

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.