Science.gov

Sample records for ultraviolet diode array

  1. Nitride Deep Ultraviolet Light-Emitting Diodes with Microlens Array

    NASA Astrophysics Data System (ADS)

    Muhammad, Khizar

    2005-03-01

    We report on the fabrication of 285 nm AlGaN-based deep ultraviolet light-emitting diodes (UV LEDs) on sapphire substrates with integrated microlens array. Microlenses with a diameter of 12 microns were fabricated on the sapphire substrate by resist thermal reflow and plasma dry etching. LED devices were flip-chip bonded on high thermal conductive AlN ceramic submounts to improve the thermal dissipation, and the emitted UV light was extracted through the sapphire substrates. With the integrated microlense array, a 55% enhancement in the output power at 20 mA DC driving was achieved compared with the same LED without microlens. The light extraction enhancement is the result of the reduced internal reflections of the light caused by the microlense surface profile. An output power of 0.22 mW at 20 mA was measured for a circular LED with a diameter of 275 microns.

  2. Nitride deep-ultraviolet light-emitting diodes with microlens array

    NASA Astrophysics Data System (ADS)

    Khizar, M.; Fan, Z. Y.; Kim, K. H.; Lin, J. Y.; Jiang, H. X.

    2005-04-01

    We report on the fabrication of 280-nm AlGaN-based deep-ultraviolet light-emitting diodes (UV LEDs) on sapphire substrates with an integrated microlens array. Microlenses with a diameter of 12μm were fabricated on the sapphire substrate by resist thermal reflow and plasma dry etching. LED devices were flip-chip bonded on high thermal conductive AlN ceramic submounts to improve the thermal dissipation, and the emitted UV light was extracted through the sapphire substrates. With the integrated microlens array, a 55% enhancement in the output power at 20-mA dc driving was achieved compared with the same LED without microlens. The light extraction enhancement is the result of the reduced internal reflections of the light caused by the microlens surface profile.

  3. Diode Laser Arrays

    NASA Astrophysics Data System (ADS)

    Botez, Dan; Scifres, Don R.

    1994-08-01

    This book provides a comprehensive overview of the fundamental principles and applications of semiconductor diode laser arrays. All of the major types of arrays are discussed in detail, including coherent, incoherent, edge- and surface-emitting, horizontal- and vertical-cavity, individually addressed, lattice- matched and strained-layer systems. The initial chapters cover such topics as lasers, amplifiers, external-cavity control, theoretical modeling, and operational dynamics. Spatially incoherent arrays are then described in detail, and the uses of vertical-cavity surface emitter and edge-emitting arrays in parallel optical-signal processing and multi-channel optical recording are discussed. Researchers and graduate students in solid state physics and electrical engineering studying the properties and applications of such arrays will find this book invaluable.

  4. Diode-array velocimeter

    NASA Astrophysics Data System (ADS)

    Devenport, William J.; Smith, Edward J.

    1994-01-01

    Diode-array velocimetry is an optical technique for measuring turbulent flows. It involves timing the passage of seed particles through a small section of a light beam by imaging the light they scatter onto one or more photodiode arrays. The arrays have a few carefully shaped elements, the shapes and positions of which are used to control the measurement-volume geometry and thus select the measurement made. Measurement volumes sensitive to velocity, position and acceleration may be designed. Measurements in highly turbulent and reversing flows are possible. A diode-array velocimeter (DAV) for one-component velocity measurements has been developed to demonstrate this concept. This uses a single laser beam to illuminate particles and a photodiode array with two rectangular elements to sense their motion. The sensitivity of this DAV to electrical noise in the photodiode circuitry decreases with reduction in measurement-volume size. The angle response is closely cosinusoidal to about 60 deg. Changes to the photodiode-array design could substantially increase this limit. Measurements of mean velocity, normal turbulence stress, and velocity skewness made with this DAV in two attached boundary-layer flows compare well with hot-wire measurements. Useful DAV measurements were made as close as 0.2 mm from the wall. DAV measurements made in a separated flow formed downstream of a fence are also presented. These show all the expected features of the separated shear layer and recirculation including the sub-boundary layer formed beneath the backflow. Histograms measured in the reversing part of this flow show a hole near zero velocity that is a consequence of the imperfections in the DAV angle response and limitations on the maximum transit time. These are not fundamental problems, however, and the hole could be minimized or eliminated by using a different photodiode array design and/or measurement strategy.

  5. Diode laser array

    NASA Technical Reports Server (NTRS)

    Carlson, Nils W. (Inventor); Evans, Gary A. (Inventor); Kaiser, Charlie J. (Inventor)

    1990-01-01

    A diode laser array comprises a substrate of a semiconductor material having first and second opposed surfaces. On the first surface is a plurality of spaced gain sections and a separate distributed Bragg reflector passive waveguide at each end of each gain section and optically connecting the gain sections. Each gain section includes a cavity therein wherein charge carriers are generated and recombine to generate light which is confined in the cavity. Also, the cavity, which is preferably a quantum well cavity, provides both a high differential gain and potentially large depth of loss modulation. Each waveguide has a wavelength which is preferably formed by an extension of the cavity of the gain sections and a grating. The grating has a period which provides a selective feedback of light into the gain sections to supporting lasing, which allows some of the light to be emitted from the waveguide normal to the surface of the substrate and which allows optical coupling of the gain sections. Also, the grating period provides an operating wavelength which is on the short wavelength side of the gain period of the gain sections required for laser oscillation. An RF pulse is applied so as to maximize the magnitude of the loss modulation and the differential gain in the gain sections. The array is operated by applying a DC bias to all the gain sections at a level just below the threshold of the gain sections to only one of the gain sections which raises the bias in all of the gain sections to a level that causes all of the gain sections to oscillate. Thus, a small bias can turn the array on and off.

  6. Simultaneous determination three phytosterol compounds, campesterol, stigmasterol and daucosterol in Artemisia apiacea by high performance liquid chromatography-diode array ultraviolet/visible detector

    PubMed Central

    Lee, Jiwoo; Weon, Jin Bae; Yun, Bo-Ra; Eom, Min Rye; Ma, Choong Je

    2015-01-01

    Background: Artemisia apiacea is a traditional herbal medicine using treatment of eczema and jaundice in Eastern Asia, including China, Korea, and Japan. Objective: An accurate and sensitive analysis method using high performance liquid chromatography-diode array ultraviolet/visible detector and liquid chromatography–mass spectrometry for the simultaneous determination of three phytosterol compounds, campesterol, stigmasterol and daucosterol in A. apiacea was established. Materials and Methods: The analytes were separated on a Shiseido C18 column (5 μm, 4.6 mm I.D. ×250 mm) with gradient elution of 0.1% trifluoroacetic acid and acetonitrile. The flow rate was 1 mL/min and detection wavelengths were set at 205 and 254 nm. Results: Validation of the method was performed to demonstrate its linearity, precision and accuracy. The calibration curves showed good linearity (R2 > 0.9994). The limits of detection and limits of quantification were within the ranges 0.55–7.07 μg/mL and 1.67–21.44 μg/mL, respectively. And, the relative standard deviations of intra- and inter-day precision were <2.93%. The recoveries were found to be in the range of 90.03–104.91%. Conclusion: The developed method has been successfully applied to the analysis for quality control of campesterol, stigmasterol and daucosterol in A. apiacea. PMID:25829768

  7. Laser diode array and transmission optics

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.

    1989-01-01

    Information on laser diode array and transmission optics is given in viewgraph form. Information is given on coherent combining of laser diode arrays, amplification through a laser diode array, the far field pattern of a laser diode transmitter, and beam diameter at receiver vs. transmission distance.

  8. Determination of flavone C-glucosides in antioxidant of bamboo leaves (AOB) fortified foods by reversed-phase high-performance liquid chromatography with ultraviolet diode array detection.

    PubMed

    Zhang, Yu; Bao, Bili; Lu, Boyi; Ren, Yiping; Tie, Xiaowei; Zhang, Ying

    2005-02-18

    Reversed-phase high-performance liquid chromatography (RP-HPLC) with ultraviolet diode array detection (UV-DAD) was used for the simultaneous determination of four flavone C-glucosides, i.e. orientin, homoorientin, vitexin and isovitexin in several food systems fortified by the antioxidant of bamboo leaves (AOB), such as high temperature sterilized milk, sunflower seed oil and extruded rice cake for the first time. The method included extraction of flavone C-glucosides from AOB-fortified foods by methanol aqueous solution, deproteinating with saturated lead acetate solution and potassium oxalate, defatting with n-hexane and clean-up by solid-phase extraction (SPE) with Phenomenex C18 cartridges. Analytes were separated with Luna C18 5 microm 250mm x 4.6mm column using acetonitrile and 1% (v/v) acetic acid (pH 3.0) as mobile phase. Good results were obtained with respect to repeatability (relative standard deviation (RSD)< 2.2%) and recovery (81.4-91.8%) which fulfilled the requirements defined by European Union (EU) legislation. The total amounts of four flavone C-glucosides were 12.56 microg/100 mL, 881.08 microg/100 mL and 1420.83 microg/100 g dry weight in AOB-fortified sterilized milk, sunflower seed oil and extruded rice cake, respectively. The method was successfully applied to the analysis of flavone C-glucosides in AOB-fortified samples. The optimized procedure could also be referenced for the separation of flavone C-glucosides in other fortified foodstuffs. PMID:15782963

  9. Application of high-performance liquid chromatography with ultraviolet diode array detection and refractive index detection to the determination of class composition and to the analysis of gasoline.

    PubMed

    Kamiński, Marian; Kartanowicz, Rafał; Przyjazny, Andrzej

    2004-03-12

    A method of effective application of normal-phase high-performance liquid chromatography (NP-HPLC) with ultraviolet diode array detection (DAD) and refractive index detection (RID) for the determination of class composition of gasoline and its components, i.e. for the determination of content of alkenes, aromatic and saturated hydrocarbons in gasoline meeting modern quality standards, has been developed. An aminopropyl-bonded silica stationary phase was used along with n-hexane or n-heptane as the mobile phase. A DAD signal integrated over the 207-240 nm range was used to determine alkenes. This eliminates the necessity of separating alkenes from saturates, because the latter do not absorb UV radiation above 200 nm. The content of aromatic hydrocarbons is determined by means of a refractive index detector. Calibration was based on hydrocarbon type composition determined by the fluorescent indicator adsorption method, ASTM D1319. The results obtained by the developed method were found to be consistent with those obtained by fluorescent indicator adsorption or by a multidimensional GC method (PIONA) (ASTM D5443). The method can be applied to gasoline meeting recent quality standards, irrespective of refining technology used in the production of gasoline components, including gasoline with various contents of oxygenates. The developed method cannot be used to determine the hydrocarbon type composition of gasoline that contains as a component the so-called pyrocondensate, i.e. the fraction with a boiling point up to 220 degrees C, obtained through thermal pyrolysis of distillation residues of crude oil or coal and, consequently, does not meet the quality standards. The paper includes the procedure for identification of this type of gasoline. PMID:15032352

  10. A Portable Diode Array Spectrophotometer.

    PubMed

    Stephenson, David

    2016-05-01

    A cheap portable visible light spectrometer is presented. The spectrometer uses readily sourced items and could be constructed by anyone with a knowledge of electronics. The spectrometer covers the wavelength range 450-725 nm with a resolution better than 5 nm. The spectrometer uses a diffraction grating to separate wavelengths, which are detected using a 128-element diode array, the output of which is analyzed using a microprocessor. The spectrum is displayed on a small liquid crystal display screen and can be saved to a micro SD card for later analysis. Battery life (2 × AAA) is estimated to be 200 hours. The overall dimensions of the unit are 120 × 65 × 60 mm, and it weighs about 200 g. PMID:27036399

  11. Performance improvements in diode laser arrays

    SciTech Connect

    Beach, R.J.; Emanuel, M.A.; Freitas, B.L.; Benett, W.J.; Skidmore, J.A.; Carlson, N.W.; Solarz, R.W.

    1994-06-01

    The average power performance capability of semiconductor laser diode arrays has improved dramatically over the past several years. Additionally, optical conditioning technologies have been developed that increase the effective radiance of stacked two-dimensional arrays by nearly two orders of magnitude. These performance improvements have been accompanied by cost reductions that now make feasible the replacement of flashlamp pump sources by laser diode arrays in a large variety of military and commercial solid state laser systems.

  12. Radiation effects in semiconductor laser diode arrays

    NASA Astrophysics Data System (ADS)

    Carson, Richard F.

    The effects of radiation events are important for many of the present and future applications that involve optoelectronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt X-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are, however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD epitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co source.

  13. Radiation Effects In Semiconductor Laser Diode Arrays

    NASA Astrophysics Data System (ADS)

    Carson, Richard F.

    1989-02-01

    The effects of radiation events are important for many of the present and future applications that involve opto-electronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt x-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD expitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co60 source. Additional test results involving flash X-rays indicate that high power diode lasers and arrays are tolerant to 10rads(Si)/sec, when observed on microsecond or milli-second time scales. High power diode laser devices were also irradiated with neutrons to a fluence of 1014 neutrons per cm2 with some degradation of thresh-old current level.

  14. Scalable diode array pumped Nd rod laser

    NASA Technical Reports Server (NTRS)

    Zenzie, H. H.; Knights, M. G.; Mosto, J. R.; Chicklis, E. P.; Perkins, P. E.

    1991-01-01

    Experiments were carried out on a five-array pump head which utilizes gold-coated reflective cones to couple the pump energy to Nd:YAG and Nd:YLF rod lasers, demonstrating high efficiency and uniform energy deposition. Because the cones function as optical diodes to light outside their acceptance angle (typically 10-15 deg), much of the diode energy not absorbed on the first pass can be returned to the rod.

  15. Integrated power conditioning for laser diode arrays

    SciTech Connect

    Hanks, R.L.; Kirbie, H.C.; Newton, M.A.; Farhoud, M.S.

    1995-06-30

    This compact modulator has demonstated its ability to efficiently and accurately drive a laser diode array. The addition of the crowbar protection circuit is an invaluable addition to the integrated system and is capable of protecting the laser diode array against severe damage. We showed that the correlation between measured data and simulation indicates that our modulator model is valid and can be used as a tool in the design of future systems. The spectrometer measurements that we conducted underline the imprtance of current regulation to stable laser operation.

  16. International ultraviolet explorer solar array power degradation

    NASA Technical Reports Server (NTRS)

    Day, J. H., Jr.

    1983-01-01

    The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.

  17. The Fuge Tube Diode Array Spectrophotometer

    ERIC Educational Resources Information Center

    Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.

    2008-01-01

    We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in

  18. The Fuge Tube Diode Array Spectrophotometer

    ERIC Educational Resources Information Center

    Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.

    2008-01-01

    We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in…

  19. Performance measurements of hybrid PIN diode arrays

    SciTech Connect

    Jernigan, J.G.; Arens, J.F. . Space Sciences Lab.); Kramer, G. ); Collins, T.; Herring, J. ); Shapiro, S.L. ); Wilburn, C.D. )

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format having 10 {times} 64 pixels, each 120 {mu}m square, and the other format having 256 {times} 256 pixels, each 30 {mu}m square. In both cases, the thickness of the PIN diode layer is 300 {mu}m. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 13 figs.

  20. Low-cost laser diode array

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.

    1999-01-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

  1. Low-cost laser diode array

    DOEpatents

    Freitas, B.L.; Skidmore, J.A.

    1999-06-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

  2. VBG controlled narrow bandwidth diode laser arrays

    NASA Astrophysics Data System (ADS)

    Levy, Joseph; Feeler, Ryan; Junghans, Jeremy

    2012-03-01

    Northrop Grumman Cutting Edge Optronics has developed large kilowatt class lensed laser diode arrays with subnanometer spectral width using Volume Bragg Grating (VBG) reflectors. Using these CW arrays with 100W bars at 885nm, excellent absorption in Nd:YAG is achieved, with lower thermal aberration than can be attained with 808nm pumps. The additional cost of the VBG reflectors and their alignment is partially offset by the much broader wavelength tolerance that is allowed in the unlocked array enhancing bar yield. Furthermore, the center wavelength of the arrays exhibit lower temperature sensitivity allowing the arrays to be operated over a wider current or temperature range than arrays without wavelength control. While there is an efficiency penalty associated with the addition of VBGs of 5-8%, it is more than compensated for by enhanced absorption, especially when used with narrowband absorption lines, such as 885nm in Nd:YAG. An overview of the design and manufacturing issues for arrays that are wavelength-locked with VBGs is presented along with the effect of post-construction hard UV exposure.

  3. Compact fiber-optic fluorosensor employing light-emitting ultraviolet diodes as excitation sources

    NASA Astrophysics Data System (ADS)

    Ek, Sara; Anderson, Benjamin; Svanberg, Sune

    2008-02-01

    A compact fluorosensor using three different ultraviolet light-emission diodes as excitation sources for fiber-optic recording of fluorescence spectra from samples is described. A compact integrated spectrometer with linear array wavelength recording is used, yielding a spectral resolution of about 8 nm. In two system implementations ultraviolet light-emitting diodes at 300, 340 and 395 nm, or at 360, 385 and 410 nm were used as excitation sources with typical emission halfwidths of 12 nm, each combined with a matching long-path colored-glass filter automatically brought into the fluorescence light flow for suppression of reflected light. Spectra from measurements on vegetation, human skin tumors and a rare-earth ion-based thermographic phosphor were recorded to illustrate the system performance.

  4. Laser diode array pumped continuous wave Rubidium vapor laser.

    PubMed

    Zhdanov, B V; Stooke, A; Boyadjian, G; Voci, A; Knize, R J

    2008-01-21

    We have demonstrated continuous wave operation of a laser diode array pumped Rb laser with an output power of 8 Watts. A slope efficiency of 60% and a total optical efficiency of 45% were obtained with a pump power of 18 Watts. This laser can be scaled to higher powers by using multiple laser diode arrays or stacks of arrays. PMID:18542151

  5. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  6. Microcontroller interface for diode array spectrometry

    NASA Astrophysics Data System (ADS)

    Aguo, L.; Williams, R. R.

    An alternative to bus-based computer interfacing is presented using diode array spectrometry as a typical application. The new interface consists of an embedded single-chip microcomputer, known as a microcontroller, which provides all necessary digital I/O and analog-to-digital conversion (ADC) along with an unprecedented amount of intelligence. Communication with a host computer system is accomplished by a standard serial interface so this type of interfacing is applicable to a wide range of personal and minicomputers and can be easily networked. Data are acquired asynchronousty and sent to the host on command. New operating modes which have no traditional counterparts are presented.

  7. Graphene/GaN diodes for ultraviolet and visible photodetectors

    SciTech Connect

    Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun; Shen, Bo; Liao, Zhi-Min E-mail: yudp@pku.edu.cn; Yu, Da-Peng E-mail: yudp@pku.edu.cn

    2014-08-18

    The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ∼mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

  8. Microlens frames for laser diode arrays

    DOEpatents

    Skidmore, Jay A.; Freitas, Barry L.

    1999-01-01

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.

  9. Microlens frames for laser diode arrays

    DOEpatents

    Skidmore, J.A.; Freitas, B.L.

    1999-07-13

    Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.

  10. Space Qualification of Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Troupaki, Elisavet; Kashem, Nasir B.; Allan, Graham R.; Vasilyev, Aleksey; Stephen, Mark

    2005-01-01

    Laser instruments have great potential in enabling a new generation of remote-sensing scientific instruments. NASA s desire to employ laser instruments aboard satellites, imposes stringent reliability requirements under severe conditions. As a result of these requirements, NASA has a research program to understand, quantify and reduce the risk of failure to these instruments when deployed on satellites. Most of NASA s proposed laser missions have base-lined diode-pumped Nd:YAG lasers that generally use quasi-constant wave (QCW), 808 nm Laser Diode Arrays (LDAs). Our group has an on-going test program to measure the performance of these LDAs when operated in conditions replicating launch and orbit. In this paper, we report on the results of tests designed to measure the effect of vibration loads simulating launch into space and the radiation environment encountered on orbit. Our primary objective is to quantify the performance of the LDAs in conditions replicating those of a satellite instrument, determine their limitations and strengths which will enable better and more robust designs. To this end we have developed a systematic testing strategy to quantify the effect of environmental stresses on the optical and electrical properties of the LDA.

  11. Diode array detection in capillary electrophoresis.

    PubMed

    Heiger, D N; Kaltenbach, P; Sievert, H J

    1994-10-01

    Diode array detection (DAD) in capillary electrophoresis (CE) offers similar advantages over single-wavelength detection as it does in high performance liquid chromatography (HPLC). Thus, confirmation of compound identity and establishment of peak purity are critical issues in CE, necessitating sensitive and specific detection. With an optimized optical system, DAD yields sensitivity comparable to that of single or variable wavelength detectors. Sensitivity can be further improved three to five times by use of expanded pathlength capillaries employing the so-called bubble cell. Optimization of optical design, as well as maintenance of spectral fidelity, will be discussed in this work. A variety of applications of CE, and specifically of micellar electrokinetic capillary chromatography (MEKC), with emphasis on quantitative analysis, sensitivity, linearity, spectral identification, and peak purity verification will be presented. The use of spectral information for peak tracking in MEKC method development and for the assessment of purity of electrodistorted peaks will also be illustrated. PMID:7895713

  12. Confirmation of malachite green, gentian violet and their leuco analogs in catfish and trout tissue by high-performance liquid chromatography utilizing electrochemistry with ultraviolet-visible diode array detection and fluorescence detection.

    PubMed

    Rushing, L G; Hansen, E B

    1997-10-24

    A sensitive analytical procedure for the confirmation of residues of malachite green (MG), gentian violet (GV) and their leuco analogs (LMG and LGV) in catfish and trout tissue at 10 ng/g is described. Frozen (-20 degrees C) fish fillets were cut into small pieces and homogenized in Waring blendors. The compounds of interest were extracted from 20-g amounts of homogenized fish tissue with acetonitrile-buffer, partitioned against methylene chloride, and isolated with tandem neutral alumina and propylsulfonic acid cation-exchange solid-phase extraction cartridges. Samples of 100 microl (0.8 g equiv.) were chromatographed isocratically in 10 min using an acetonitrile-buffer mobile phase on a short-chain deactivated (SCD) reversed-phase column (150x4.6 mm I.D.) in-line with a post-column oxidation coulometric electrochemical cell (EC), a UV-Vis diode array detector and a fluorescence detector. PMID:9390733

  13. Rubidium vapor laser pumped by two laser diode arrays.

    PubMed

    Zhdanov, Boris V; Stooke, Adam; Boyadjian, Gregory; Voci, Adam; Knize, R J

    2008-03-01

    Scaling of alkali lasers to higher powers requires using multiple diode lasers for pumping. The first (to our knowledge) results of a cw rubidium laser pumped by two laser diode arrays are presented. A slope efficiency of 53%, total optical efficiency of 46%, and output power of 17 W have been demonstrated. PMID:18311276

  14. Calibration of a novel four-dimensional diode array

    SciTech Connect

    Yan Guanghua; Lu Bo; Kozelka, Jakub; Liu, Chihray; Li, Jonathan G.

    2010-01-15

    Purpose: The aim of this work is to develop effective calibration methods for a novel four-dimensional (4D) diode array for pretreatment verification of intensity-modulated radiation therapy (IMRT) and rotational therapy. Methods: A novel 4D diode array (ArcCHECK, Sun Nuclear, Melbourne, FL) was developed to meet the needs of appropriate and efficient quality assurance for IMRT and especially rotational radiotherapy. The diode array presents a consistent detector image in beam's eye view at arbitrary gantry angles due to isotropic arrangement of diodes in a three-dimensional (3D) cylindrical phantom. The 50 ms simultaneous update of all diodes on the detector array (fourth dimension) makes it capable of time-resolved beam delivery analysis with any rotational delivery techniques. The calibration procedure consisted of delivering and measuring a series of calibration beams with 5.8 deg. angular spacing surrounding the cylindrical diode array. Correction factors for diode intrinsic sensitivity and directional response dependence were derived from these measurements. A real-time algorithm to derive gantry angles based on the detector signal was developed to interpolate and apply the corresponding angular correction factors. Results: The calibration was validated with ion chamber scanned beam profiles in a 3D water tank. Excellent agreement was observed between diode array measurement and treatment planning system calculation. The accuracy of the gantry angle derivation algorithm was within 1 deg. which caused a less than 0.2% dosimetric uncertainty. Conclusions: With the proposed calibration method and the automatic gantry angle derivation algorithm, the 4D diode array achieved isotropic detector response and is suitable for both IMRT and rotational therapy pretreatment verification.

  15. Ball Lenses Collimate And Focus Diode-Laser-Array Beams

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1992-01-01

    Ball lenses used to collimate and focus pump light from array of diode lasers onto input face of solid-state laser. Experiments show ball lenses perform as well as, or better than, multiple-element lenses supplied heretofore as parts of commercial arrays of diode lasers. Offers advantages of relative simplicity and ease of fabrication, lower cost, lower weight, and less sensitivity to misalignment.

  16. Modular package for cooling a laser diode array

    DOEpatents

    Mundinger, David C.; Benett, William J.; Beach, Raymond J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.

  17. Means for phase locking the outputs of a surface emitting laser diode array

    NASA Technical Reports Server (NTRS)

    Lesh, James R. (Inventor)

    1987-01-01

    An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.

  18. Laser diode arrays for expanded mine detection capability

    NASA Astrophysics Data System (ADS)

    Crosby, Frank J.; Holloway, John H., Jr.; Petee, Danny A.; Stetson, Suzanne P.; Suiter, Harold R.; Tinsley, Ken R.

    2002-08-01

    A tactical unmanned aerial vehicle-size illumination system for enhanced mine detection capabilities has been designed, developed, integrated, and tested at the Coastal Systems Station. Airborne test flights were performed from June 12, 2001 to February 1, 2002. The Airborne Laser Diode Array Illuminator uses a single-wavelength compact laser diode array stack to provide illumination and is coupled with a pair of intensified CCD video cameras. The cameras were outfitted with various lenses and polarization filters to determine the benefits of each of the configurations. The first airborne demonstration of a laser diode illumination system is described and its effectiveness to perform nighttime mine detection operations is shown.

  19. Diode-array UV solar spectroradiometer implementing a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Feldman, A.; Burnitt, T.; Porrovecchio, G.; Smid, M.; Egli, L.; Gröbner, J.; Nield, K. M.

    2014-12-01

    The solar ultraviolet spectrum captured by commercially available diode-array spectroradiometers is dominated by stray light from longer wavelengths with higher intensity. The implementation of a digital micromirror device in an array spectroradiometer has the potential to enable the precise selection of desired wavelengths as well as the ability to reduce spectral intensity of some wavelengths via selective mirror modulation, both reducing long wavelength stray light. A prototype consisting of off-the-shelf components has been assembled to verify the validity of the base concept, and initial measurements have been performed to confirm the throughput and image qualities such as spectral resolution and astigmatism.

  20. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    SciTech Connect

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.; Grassman, Tyler J.; McComb, David W.; Myers, Roberto C.

    2015-09-07

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junction within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.

  1. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.; Grassman, Tyler J.; McComb, David W.; Myers, Roberto C.

    2015-09-01

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ˜6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ˜310 nm is measured with external quantum efficiency in the range of 4-6 m%. The realization of tunnel junction within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.

  2. Monolithic millimeter-wave diode grid frequency multiplier arrays

    NASA Technical Reports Server (NTRS)

    Liu, Hong-Xia L.; Qin, X.-H.; Sjogren, L. B.; Wu, W.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.

    1992-01-01

    Monolithic diode frequency multiplier arrays, including barrier-N-N(+) (BNN) doubler, multi-quantum-barrier-varactor (MQBV) tripler, Schottky-quantum-barrier-varactor (SQBV) tripler, and resonant-tunneling-diode (RTD) tripler arrays, have been successfully fabricated with yields between 85 and 99 percent. Frequency doubling and/or tripling have been observed for all the arrays. Output powers of 2.4-2.6 W (eta = 10-18 percent) at 66 GHz with the BNN doubler and 3.8-10 W (eta = 1.7-4 percent) at 99 GHz with the SQBV tripler have been achieved.

  3. PIN diode array x-ray imaging. Final Technical report

    SciTech Connect

    Jernigan, J.G.

    1996-09-01

    We have completed constructing an x-ray camera based on a solid state imaging device and have obtained images of Omega laser targets. A Si PIN diode array is used. Objective of this project is to investigate the use of a PIN diode array readout device for obtaining images of 1-20 keV x-ray emission from laser targets. The PIN array detector was successfully used for obtaining hard x-ray images in the high powered laser environment and real time images of the x-ray emission from laser targets.

  4. Microchannel heatsinks for high average power laser diode arrays

    SciTech Connect

    Beach, R.; Benett, B.; Freitas, B.; Ciarlo, D.; Sperry, V.; Comaskey, B.; Emanuel, M.; Solarz, R.; Mundinger, D.

    1992-01-01

    Detailed performance results and fabrication techniques for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor or even CW operation of fully filled laser diode arrays is enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using a photolithographic pattern definition procedure followed by anisotropic chemical etching. A modular rack-and-stack architecture is adopted for the heatsink design allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel cooled heatsinks is ideally suited to pump array requirements for high average power crystalline lasers because of the stringent temperature demands that result from coupling the diode light to several nanometers wide absorption features characteristic of leasing ions in crystals.

  5. Phased array operation of a diode grid impedance surface

    SciTech Connect

    Sjogren, L.B.; Liu, H.X.; Qin, X.; Domier, C.W.; Luhmann, N.C. . Dept. of Electrical Engineering)

    1994-04-01

    New experimental results have been achieved with monolithic millimeter-wave Schottky varactor diode arrays. In addition to improved results for such arrays as reflected beam phase shifters, the capability of the arrays, under voltage control, to steer, focus, and change the polarization state of a beam, has been experimentally demonstrated for the first time. These new results broaden the demonstrated capabilities of millimeter wave solid state device arrays, furthering the ultimate objective of the construction of complete systems based on quasi-optical power-combining array technology.

  6. Applications of microlens-conditioned laser diode arrays

    SciTech Connect

    Beach, R.J.; Emanuel, M.A.; Freitas, B.L.

    1995-01-01

    The ability to condition the radiance of laser diodes using shaped-fiber cylindrical-microlens technology has dramatically increased the number of applications that can be practically engaged by diode laser arrays. Lawrence Livermore National Laboratory (LLNL) has actively pursued optical efficiency and engineering improvements in this technology in an effort to supply large radiance-conditioned laser diode array sources for its own internal programs. This effort has centered on the development of a modular integrated laser diode packaging technology with the goal of enabling the simple and flexible construction of high average power, high density, two-dimensional arrays with integrated cylindrical microlenses. Within LLNL, the principal applications of microlens-conditioned laser diode arrays are as high intensity pump sources for diode pumped solid state lasers (DPSSLs). A simple end-pumping architecture has been developed and demonstrated that allows the radiation from microlens-conditioned, two-dimensional diode array apertures to be efficiently delivered to the end of rod lasers. To date, pump powers as high as 2.5 kW have been delivered to 3 mm diameter laser rods. Such high power levels are critical for pumping solid state lasers in which the terminal laser level is a Stark level lying in the ground state manifold. Previously, such systems have often required operation of the solid state gain medium at low temperature to freeze out the terminal laser Stark level population. The authors recently developed high intensity pump sources overcome this difficulty by effectively pumping to much higher inversion levels, allowing efficient operation at or near room temperature. Because the end-pumping technology is scalable in absolute power, the number of rare-earth ions and transitions that can be effectively accessed for use in practical DPSSL systems has grown tremendously.

  7. Microchannel cooled heatsinks for high average power laser diode arrays

    SciTech Connect

    Bennett, W.J.; Freitas, B.L.; Ciarlo, D.; Beach, R.; Sutton, S.; Emanuel, M.; Solarz, R.

    1993-01-15

    Detailed performance results for an efficient and low impedance laser diode array heatsink are presented. High duty factor and even cw operation of fully filled laser diode arrays at high stacking densities are enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using an anisotropic chemical etching process. A modular rack-and-stack architecture is adopted for heatsink design, allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel heatsinks is ideally suited to pump army requirements for high average power crystalline laser because of the stringent temperature demands are required to efficiently couple diode light to several-nanometer-wide absorption features characteristic of lasing ions in crystals.

  8. Stacked, filtered multi-channel X-ray diode array

    NASA Astrophysics Data System (ADS)

    MacNeil, L. P.; Dutra, E. C.; Compton, S. M.; Jacoby, B. A.; Raphaelian, M. L.

    2015-08-01

    There are many types of X-ray diodes that are used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need arose for a low cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. We fielded individual and stacked systems at several national facilities as ancillary `ride-along' diagnostics to test and improve the design usability. We present the MiniXRD system performance which supports consideration as a viable low-cost alternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  9. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  10. Method and system for homogenizing diode laser pump arrays

    SciTech Connect

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  11. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  12. High duty cycle hard soldered kilowatt laser diode arrays

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom

    2010-02-01

    High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.

  13. Simultaneous molecular and atomic spectrometry with electrothermal atomization and diode array detection

    SciTech Connect

    Tittarelli, P.; Lancia, R.; Zerlia, T.

    1985-08-01

    Some papers dealing with the ultraviolet and visible study of molecular vapors produced by electrothermal atomizers were recently published. Various instruments were proposed depending on the aim of the work, from conventional flameless atomic absorption spectrometers to dedicated equipment. Recently also the infrared range has been investigated, coupling an FT-IR spectrometer with a heated graphite atomizer, thus introducing further analytical applications of this device. At the same time new techniques have been developed for simultaneous multielement determination by graphite furnace atomic absorption (GFAA) or emission spectrometry. Considering these different applications, it seems advisable to explore the capability and behavior of electrothermal atomizers in acquiring, with the same equipment, molecular and/or atomic spectra for qualitative and quantitative analysis. This work reports some results obtained by a single instrument, made up of a graphite furnace and a diode array detector, in the ultraviolet investigation of vaporization phenomena of organic and organometallic compounds. 15 references, 7 figures, 1 table.

  14. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  15. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-07-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90 %). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize product yields and to identify side products. The present work demonstrates that UV-LED arrays are a viable alternative to current Hg lamp setups.

  16. Qualification of Laser Diode Arrays for Mercury Laser Altimeter Mission

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. The MESSENGER mission is flying the Mercury Laser Altimeter (MLA) which is a diode-pumped Nd:YAG laser instrument designed to map the topography of Mercury. The environment imposed on the instrument by the orbital dynamics places special requirements on the laser diode arrays. In order to limit the radiative heating of the satellite from the surface of Mercury, the satellite is designed to have a highly elliptical orbit. The satellite will heat near perigee and cool near apogee. The laser power is cycled during these orbits so that the laser is on for only 30 minutes (perigee) in a 12 hour orbit. The laser heats 10 C while powered up and cools while powered down. In order to simulate these operational conditions, we designed a test to measure the LDA performance while being temperature and power cycled. Though the mission requirements are specific to NASA and performance requirements are derived from unique operating conditions, the results are general and widely applicable. We present results on the performance of twelve LDAs operating for several hundred million pulses. The arrays are 100 watt, quasi-CW, conductively-cooled, 808 nm devices. Prior to testing, we fully characterize each device to establish a baseline for individual array performance and status. Details of this characterization can be found in reference. Arrays are divided into four groups and subjected to the temperature and power cycling matrix are shown.

  17. Deep diode arrays for X-ray detection

    NASA Technical Reports Server (NTRS)

    Zemel, J. N.

    1984-01-01

    Temperature gradient zone melting process was used to form p-n junctions in bulk of high purity silicon wafers. These diodes were patterned to form arrays for X-ray spectrometers. The whole fabrication processes for these X-ray detectors are reviewed in detail. The p-n junctions were evaluated by (1) the dark diode I-V measurements, (2) the diode C sub I - V measurements, and (3) the MOS C-V measurements. The results showed that these junctions were linearly graded in charge distribution with low reverse bias leakage current flowing through them (few nA at -10 volts). The X-ray detection experiments showed that an FWHM of 500 eV was obtained from these diodes with a small bias of just -5 volts (for X-ray source Fe55). A theoretical model was proposed to explain the extra peaks found in the energy spectra and a very interesting point - cross talk effect was pointed out. This might be a solution to the problem of making really high resolution X-ray spectrometers.

  18. Linear laser diode arrays for improvement in optical disk recording

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.

  19. Ultraviolet light emitting diode based on p-NiO/n-ZnO nanowire heterojunction

    NASA Astrophysics Data System (ADS)

    Jung, Byung Oh; Kwon, Yong Hun; Seo, Dong Ju; Lee, Dong Seon; Cho, Hyung Koun

    2013-05-01

    We fabricated nanowire-based ultraviolet (UV) light emitting diodes (LEDs) consisting of ITO/p-NiO/n-ZnO nanowires/AZO/n-Si heterostructure by using a dimensional transition technique of 1D to 2D. The p-type NiO layer was directly deposited on the ZnO nanowire arrays, followed by the growth of ITO electrode, resulting in the full coverage of the top surface of the ZnO nanowires and their electrical interconnection. The current-voltage curve of the LED showed obvious rectifying characteristics with a threshold voltage of about 8 V and low leakage current. Under forward bias, this device exhibited UV electroluminescence located at around 380 nm coming from band edge transition of the ZnO and the broad visible emission peak around 450-650 nm was attributed to the n-ZnO defect level emission. The origin of the UV and visible emission were discussed in term of the energy band diagram of the p-NiO/n-ZnO nanowires heterjunctions.

  20. A 340-nm-band ultraviolet laser diode composed of GaN well layers.

    PubMed

    Yamashita, Yoji; Kuwabara, Masakazu; Torii, Kousuke; Yoshida, Harumasa

    2013-02-11

    We have demonstrated the laser operation of a short-wavelength ultraviolet laser diode with multiple-quantum-wells composed of GaN well layers. The laser action has been achieved in 340-nm-band far from the wavelength corresponding to GaN band gap under the pulsed current mode at room temperature. The device has been realized on the Al(0.2)Ga(0.8)N underlying layer. The AlN mole fraction of the underlying layer is 0.1 lower than that of the underlying layer which was used for the previously reported 342 nm laser diode. These results provide a chance to the next step for a shorter-wavelength ultraviolet laser diode. PMID:23481771

  1. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes

    PubMed Central

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

    2015-01-01

    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  2. Low-cost diode arrays for the LIFE project

    NASA Astrophysics Data System (ADS)

    Feeler, Ryan; Junghans, Jeremy; Stephens, Ed

    2011-03-01

    One of the primary challenges of the Laser Inertial Fusion Engine (LIFE) project is the cost and availability of the laser diode arrays needed to pump the solid-state laser gain media in the system. Current projections indicate that the arrays need to be available for approximately one cent per Watt of output power, which is one to two orders of magnitude cheaper than currently available. This work focuses on potential manufacturing approaches to meet the projected specifications of the LIFE project. Special attention will be paid to requirements related to power density (25 kW/cm2), bar pitch (150 - 400 microns), output wavelength (87x), and fast-axis divergence (+/- 4 degrees). A summary of the supply limitations and cost ramifications of each requirement is presented. Also discussed are potential supply chain limitations that are anticipated as a result of the immense size of the LIFE project.

  3. Photoluminescence performance enhancement of ZnO/MgO heterostructured nanowires and their applications in ultraviolet laser diodes.

    PubMed

    Shi, Zhi-Feng; Zhang, Yuan-Tao; Cui, Xi-Jun; Zhuang, Shi-Wei; Wu, Bin; Chu, Xian-Wei; Dong, Xin; Zhang, Bao-Lin; Du, Guo-Tong

    2015-06-01

    Vertically aligned ZnO/MgO coaxial nanowire (NW) arrays were prepared on sapphire substrates by metal-organic chemical vapor deposition combined with a sputtering system. We present a comparative investigation of the morphological and optical properties of the produced heterostructures with different MgO layer thicknesses. Photoluminescence measurements showed that the optical performances of ZnO/MgO coaxial NWs were strongly dependent on the MgO layer thickness. The intensity of deep-level emission (DLE) decreased monotonously with the increase of MgO thickness, while the enhancement of ultraviolet (UV) emission showed a critical thickness of 15 nm, achieving a maximum intensity ratio (∼226) of IUV/IDLE at the same time. The significantly improved exciton emission efficiency of the coaxial NW structures allows us to study the surface passivation effect, photogenerated carrier confinement and transfer in terms of energy band theory. More importantly, we achieved an ultralow threshold (4.5 mA, 0.58 A cm(-2)) electrically driven UV lasing action based on the ZnO/MgO NW structures by constructing an Au/MgO/ZnO metal/insulator/semiconductor diode, and the continuous-current-driven diode shows a good temperature tolerance. The results obtained on the unique optical properties of ZnO/MgO coaxial NWs shed light on the design and development of ZnO-based UV laser diodes assembled with nanoscale building blocks. PMID:25803480

  4. High-density pulsed laser diode arrays for SSL pumping

    NASA Astrophysics Data System (ADS)

    Feeler, Ryan; Stephens, Edward

    2010-04-01

    Northrop Grumman Cutting Edge Optronics has developed a new laser diode array package with minimal bar-to-bar spacing. These High Density Stack (HDS) packages allow for a power density increase on the order of ~ 2.5x when compared to industry-standard arrays. This work contains an overview of the manufacturing process, as well as representative data for 5-, 10-, and 20-bar arrays. Near-field and power vs. current data is presented in each case. Power densities approaching 15 kW/cm2 are presented. In addition, power and wavelength are presented as a function of pulse width in order to determine the acceptable operational parameters for this type of array. In the low repetition rate Nd:YAG pumping regime, all devices are shown to operate with relatively low junction temperatures. A discussion of future work is also presented, with a focus on extending the HDS architecture to reliable operation at 300W per bar. This will enable power densities of approximately 25 kW/cm2.

  5. ZnO ultraviolet random laser diode on metal copper substrate.

    PubMed

    Liu, C Y; Xu, H Y; Sun, Y; Ma, J G; Liu, Y C

    2014-07-14

    Direct fabrication of light emitting devices on metal substrates is highly desirable due to their advantages of high thermal conductivity and light reflection. In this work, we demonstrated a feasibility of directly fabricating ZnO-based ultraviolet laser diodes on metal substrates. By introducing an anti-oxidation buffer layer, Au/MgO/ZnO metal-insulator-semiconductor heterojunction devices are successfully fabricated on the copper substrate. Electrically pumped ultraviolet random lasing was achieved from ZnO active layer. The use of copper substrate offers some merits, including lower thermal effect and higher stability of emission wavelength. PMID:25090491

  6. Diode pumped Pr3+:LiYF4-BBO ultraviolet laser at 320 nm

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Liu, X. H.; Wu, J. B.; Zhang, X.; Li, Y. L.

    2012-03-01

    A diode pumped Pr3+:LiYF4 laser at 639.5 nm has been demonstrated. With an incident pump power of 920 mW, the maximum red output power was 272 mW. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a maximum ultraviolet power of 23 mW by using a β-BaB2O4 (BBO) nonlinear crystal. To the best of our knowledge, this is the first report on continuous-wave ultraviolet generation by intracavity frequency doubling Pr3+:LiYF4 laser.

  7. V-shaped resonators for addition of broad-area laser diode arrays

    DOEpatents

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  8. Characterization of High-power Quasi-cw Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  9. Ruggedized microchannel-cooled laser diode array with self-aligned microlens

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.

    2003-11-11

    A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.

  10. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  11. Packaging of complete indium-free high reliable and high power diode laser array

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Li, Xiaoning; Feng, Feifei; Liu, Yalong; Hou, Dong; Liu, Xingsheng

    2015-02-01

    High power diode lasers have been widely used in many fields. For many applications, a diode laser needs to be robust under on-off power-cycling as well as environmental thermal cycling conditions. To meet the requirements, the conduction cooled single bar CS-packaged diode laser arrays must have high durability to withstand thermal fatigue and long lifetime. In this paper, a complete indium-free bonding technology is presented for packaging high power diode laser arrays. Numerical simulations on the thermal behavior of CS-packaged diode laser array with different packaging structure were conducted and analyzed. Based on the simulation results, the device structure and packaging process of complete indium-free CS-packaged diode laser array were optimized. A series of high power hard solder CS (HCS) diode laser arrays were fabricated and characterized. Under the harsh working condition of 90s on and 30s off, good lifetime was demonstrated on 825nm 60W single bar CS-packaged diode laser with a lifetime test of more than 6100hours achieved so far with less 5% power degradation and less 1.5nm wavelength shift. Additionally, the measurement results indicated that the lower smile of complete indium-free CS-packaged diode laser arrays were achieved by advanced packaging process.

  12. Mid-ultraviolet light-emitting diode detects dipicolinic acid.

    SciTech Connect

    Bogart, Katherine Huderle Andersen; Lee, Stephen Roger; Temkin, Henryk; Crawford, Mary Hagerott; Dasgupta, Purnendu K.; Li, Qingyang; Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-06-01

    Dipicolinic acid (DPA, 2,6-pyridinedicarboxylic acid) is a substance uniquely present in bacterial spores such as that from anthrax (B. anthracis). It is known that DPA can be detected by the long-lived fluorescence of its terbium chelate; the best limit of detection (LOD) reported thus far using a large benchtop gated fluorescence instrument using a pulsed Xe lamp is 2 nM. We use a novel AlGaN light-emitting diode (LED) fabricated on a sapphire substrate that has peak emission at 291 nm. Although the overlap of the emission band of this LED with the absorption band of Tb-DPA ({lambda}{sub max} doublet: 273, 279 nm) is not ideal, we demonstrate that a compact detector based on this LED and an off-the-shelf gated photodetection module can provide an LOD of 0.4 nM, thus providing a basis for convenient early warning detectors.

  13. Microtube Light-Emitting Diode Arrays with Metal Cores.

    PubMed

    Tchoe, Youngbin; Lee, Chul-Ho; Park, Jun Beom; Baek, Hyeonjun; Chung, Kunook; Jo, Janghyun; Kim, Miyoung; Yi, Gyu-Chul

    2016-03-22

    We report the fabrication and characteristics of vertical microtube light-emitting diode (LED) arrays with a metal core inside the devices. To make the LEDs, gallium nitride (GaN)/indium gallium nitride (InxGa1-xN)/zinc oxide (ZnO) coaxial microtube LED arrays were grown on an n-GaN/c-aluminum oxide (Al2O3) substrate. The microtube LED arrays were then lifted-off the substrate by wet chemical etching of the sacrificial ZnO microtubes and the silicon dioxide (SiO2) layer. The chemically lifted-off LED layer was then transferred upside-down on other supporting substrates. To create the metal cores, titanium/gold and indium tin oxide were deposited on the inner shells of the microtubes, forming n-type electrodes inside the metal-cored LEDs. The characteristics of the resulting devices were determined by measuring electroluminescence and current-voltage characteristic curves. To gain insights into the current-spreading characteristics of the devices and understand how to make them more efficient, we modeled them computationally. PMID:26855251

  14. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    SciTech Connect

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-15

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks.

  15. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms.

    PubMed

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-01

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks. PMID:26233359

  16. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-01

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks.

  17. Thin planar package for cooling an array of edge-emitting laser diodes

    DOEpatents

    Mundinger, David C.; Benett, William J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.

  18. Linewidth-tunable laser diode array for rubidium laser pumping

    SciTech Connect

    Li Zhiyong; Tan Rongqing; Xu Cheng; Li Lin

    2013-02-28

    To optimise the pump source for a high-power diodepumped rubidium vapour laser, we have designed a laser diode array (LDA) with a narrowed and tunable linewidth and an external cavity formed by two volume Bragg gratings (VBGs). Through controlling the temperature differences between the two VBGs, the LDA linewidth, which was 1.8 nm before mounting the two VBGs, was tunable from 100 pm to 0.2 nm, while the output power changed by no more than 4 %. By changing simultaneously the temperature in both VBGs, the centre wavelength in air of the linewidth-tunable LDA was tunable from 779.40 nm to 780.05 nm. (control of laser radiation parameters)

  19. Application of HPLC with diode array detection in tribology

    SciTech Connect

    Lehotay, J.; Oktavec, D. . Dept. of Analytical Chemistry)

    1994-01-01

    A strategy for the analysis of engine oils is described based on the correlation between previously developed methods and HPLC. The areas of some chromatographic peaks of oil samples were linearly correlated to: covered kilometers, the kinematic viscosity, the amount of insoluble compounds in heptane, Conradson's carbonized residue, the number of alkalinity and the carbonyl number. The detection is performed by a diode array detector, simultaneously providing structural information and quantitative data. The results are compared with other analytical methods, which are used for the evaluation of the oil quality. The main aim of this work was to investigate a number of parameters to find correlation between HPLC results and another parameters that characterized the properties of oil wear.

  20. Diode-pumped doubly resonant all-intracavity continuous-wave ultraviolet laser at 336 nm

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Sun, G. C.; Fu, X. H.; Liu, Z. T.; Chen, J. F.

    2010-08-01

    We report for the first time a coherent ultraviolet radiation at 336 nm by intracavity sum-frequency generation of a 912 nm Nd:GdVO4 laser and a 532 nm frequency doubling Nd:YVO4 laser. The ultraviolet laser is obtained by using a doubly resonator, type-I critical phase matching CsLiB6O10 (CLBO) crystal sum-frequency mixing. With a total diode pump power of 31.8 W (13.1 W pump power for 912 nm Nd:GdVO4 laser and 18.7 W pump power for 532 nm Nd:YVO4 frequency doubling laser), TEM00 mode ultraviolet laser at 336 nm of 93 mW is obtained. The power stability is better than 3.4% and laser beam quality M2 factors are 1.52 and 1.27 in both horizontal and vertical dimensions respectively.

  1. Spectrally narrowed external-cavity high-power stack of laser diode arrays

    PubMed Central

    Zhu, H.; Ruset, I. C.; Hersman, F. W.

    2005-01-01

    We describe an effective external cavity for narrowing the spectral linewidth of a multiarray stack of laser diode arrays. For a commercially available 279-W free-running five-array laser diode array operating at 60 A, we narrow the spectral linewidth to 0.40 nm at FWHM with 115 W of cw power output. This technique leads to the possibility of higher-efficiency, lower-cost production of hyperpolarized noble gases for magnetic resonance imaging. PMID:15981527

  2. Environmental testing of a diode-laser-pumped Nd:YAG laser and a set of diode-laser-arrays

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Lesh, J. R.

    1989-01-01

    Results of the environmental test of a compact, rigid and lightweight diode-laser-pumped Nd:YAG laser module are discussed. All optical elements are bonded onto the module using space applicable epoxy, and two 200 mW diode laser arrays for pump sources are used to achieve 126 mW of CW output with about 7 percent electrical-to-optical conversion efficiency. This laser assembly and a set of 20 semiconductor diode laser arrays were environmentally tested by being subjected to vibrational and thermal conditions similar to those experienced during launch of the Space Shuttle, and both performed well. Nevertheless, some damage to the laser front facet in diode lasers was observed. Significant degradation was observed only on lasers which performed poorly in the life test. Improvements in the reliability of the Nd:YAG laser are suggested.

  3. Facile fabrication of a ultraviolet tunable MoS{sub 2}/p-Si junction diode

    SciTech Connect

    Serrano, William; Pinto, Nicholas J.; Naylor, Carl H.; Kybert, Nicholas J.; Johnson, A. T. Charlie

    2015-05-11

    Chemical vapor deposition grown MoS{sub 2} single crystals were transferred onto the edge of a p-Si/SiO{sub 2} wafer, forming an abrupt heterogeneous junction diode at the MoS{sub 2}/p-Si interface. When electrically characterized as a field effect transistor, MoS{sub 2} exhibits an n-type response and can be doped in the presence of ultraviolet (UV) light. As a diode, it operates satisfactorily in air, but has higher currents in vacuum with a turn on voltage of ∼1.3 V and an on/off ratio of 20 at ±2 V. UV irradiation increases the diode on state current, decreases the turn-on voltage, and reduces the ideality parameter below 2. These changes are reversible after annealing in air as desorption of electron trapping species like O{sub 2}{sup −} and H{sub 2}O{sup −} are believed responsible for this effect. A circuit integrating this diode was used to rectify a 1 kHz signal with an efficiency of 12%. Its simple design, coupled with the ability to clip AC signals, sense UV light, and reversibly tune these diodes, makes them inexpensive, multifunctional, and usable as active or passive circuit components in complex electronics.

  4. Electroluminescence spectra of ultraviolet light-emitting diodes based on p-n-heterostructures coated with phosphors

    SciTech Connect

    Gal'china, N. A.; Kogan, L. M.; Soshchin, N. P.; Shirokov, S. S.; Yunovich, A. E.

    2007-09-15

    The electroluminescence spectra of light-emitting diodes based on p-n heterostructures of the InGaN/AlGaN/GaN type are studied in the near-ultraviolet spectral region (360-405 nm). The spectra are peaked at the wavelengths 385 and 395 nm, and the intensity of emission falls exponentially with the photon energy in the shorter-wavelength and longer-wavelength regions. The emitters in the green and yellow spectral regions based on these light-emitting diodes coated with silicate phosphors are studied. The luminescence spectra of phosphors have the Gaussian shape and maximums in the range from 525 to 560 nm. The color characteristics of emitters depend on the ratios of intensities of the ultraviolet and yellow-green bands. The possibilities of fabrication of light-emitting diodes of visible luminescence based on ultraviolet light-emitting diodes that excite colored phosphors are discussed.

  5. Short range laser obstacle detector. [for surface vehicles using laser diode array

    NASA Technical Reports Server (NTRS)

    Kuriger, W. L. (Inventor)

    1973-01-01

    A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.

  6. Effect of interface layer on the performance of high power diode laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Wang, Jingwei; Xiong, Lingling; Li, Xiaoning; Hou, Dong; Liu, Xingsheng

    2015-02-01

    Packaging is an important part of high power diode laser (HPLD) development and has become one of the key factors affecting the performance of high power diode lasers. In the package structure of HPLD, the interface layer of die bonding has significant effects on the thermal behavior of high power diode laser packages and most degradations and failures in high power diode laser packages are directly related to the interface layer. In this work, the effects of interface layer on the performance of high power diode laser array were studied numerically by modeling and experimentally. Firstly, numerical simulations using finite element method (FEM) were conducted to analyze the effects of voids in the interface layer on the temperature rise in active region of diode laser array. The correlation between junction temperature rise and voids was analyzed. According to the numerical simulation results, it was found that the local temperature rise of active region originated from the voids in the solder layer will lead to wavelength shift of some emitters. Secondly, the effects of solder interface layer on the spectrum properties of high power diode laser array were studied. It showed that the spectrum shape of diode laser array appeared "right shoulder" or "multi-peaks", which were related to the voids in the solder interface layer. Finally, "void-free" techniques were developed to minimize the voids in the solder interface layer and achieve high power diode lasers with better optical-electrical performances.

  7. Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor.

    PubMed

    Anderson, Thomas N; Lucht, Robert P; Barron-Jimenez, Rodolfo; Hanna, Sherif F; Caton, Jerald A; Walther, Thomas; Roy, Sukesh; Brown, Michael S; Gord, James R; Critchley, Ian; Flamand, Luis

    2005-03-10

    A diode-laser-based sensor has been developed for ultraviolet absorption measurements of the nitric oxide (NO) molecule. The sensor is based on the sum-frequency mixing (SFM) of the output of a tunable, 395-nm external-cavity diode laser and a 532-nm diode-pumped, frequency-doubled Nd:YAG laser in a beta-barium borate crystal. The SFM process generates 325 +/- 75 nW of ultraviolet radiation at 226.8 nm, corresponding to the (v' = 0, v" = 0) band of the A2Sigma+-chi2II electronic transition of NO. Results from initial laboratory experiments in a gas cell are briefly discussed, followed by results from field demonstrations of the sensor for measurements in the exhaust streams of a gas turbine engine and a well-stirred reactor. It is demonstrated that the sensor is capable of fully resolving the absorption spectrum and accurately measuring the NO concentration in actual combustion environments. Absorption is clearly visible in the gas turbine exhaust even for the lowest concentrations of 9 parts per million (ppm) for idle conditions and for a path length of 0.51 m. The sensitivity of the current system is estimated at 0.23%, which corresponds to a detection limit of 0.8 ppm in 1 m for 1000 K gas. The estimated uncertainty in the absolute concentrations that we obtained using the sensor is 10%. PMID:15796251

  8. Current status of the laser diode array projector technology

    NASA Astrophysics Data System (ADS)

    Beasley, D. Brett; Saylor, Daniel A.

    1998-07-01

    This paper describes recent developments and the current status of the Laser Diode Array Projector (LDAP) Technology. The LDAP is a state-of-the-art dynamic infrared scene projector system capable of generating high resolution in-band infrared imagery at high frame rates. Three LDAPs are now operational at the U.S. Army Aviation and Missile Command's (AMCOM) Missile Research, Development, and Engineering Center (MRDEC). These projectors have been used to support multiple Hardware-in-the-Loop test entries of various seeker configurations. Seeker configurations tested include an InSb 256 X $256 focal-plane array (FPA), an InSb 512 X 512 FPA, a PtSi 640 X 480 FPA, a PtSi 256 X 256 FPA, an uncooled 320 X 240 microbolometer FPA, and two dual field- of-view (FOV) seekers. Several improvements in the projector technology have been made since we last reported in 1997. The format size has been increased to 544 X 544, and 672 X 512, and it has been proven that the LDAP can be synchronized without a signal from the unit-under test (UUT). The control software has been enhanced to provide 'point and click' control for setup, calibration, image display, image capture, and data analysis. In addition, the first long-wave infrared (LWIR) LDAP is now operational, as well as a dual field of view LDAP which can change its FOV within 0.25 seconds. The projector is interfaced to a Silicon Graphics scene generation computer which is capable of real-time 3-D scene generation. Sample images generated with the projector and captured by an InSb FPA sensor are included in the text.

  9. Enhanced out-coupling efficiency of organic light-emitting diodes using an nanostructure imprinted by an alumina nanohole array

    SciTech Connect

    Endo, Kuniaki; Adachi, Chihaya

    2014-03-24

    We demonstrate organic light-emitting diodes (OLEDs) with enhanced out-coupling efficiency containing nanostructures imprinted by an alumina nanohole array template that can be applied to large-emitting-area and flexible devices using a roll-to-roll process. The nanostructures are imprinted on a glass substrate by an ultraviolet nanoimprint process using an alumina nanohole array mold and then an OLED is fabricated on the nanostructures. The enhancement of out-coupling efficiency is proportional to the root-mean-square roughness of the nanostructures, and a maximum improvement of external electroluminescence quantum efficiency of 17% is achieved. The electroluminescence spectra of the OLEDs indicate that this improvement is caused by enhancement of the out-coupling of surface plasmon polaritons.

  10. Real-time monitoring of sulfur dioxide using ultraviolet light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zhong, Weijia; Lin, Hongze; Lou, Xiutao; Yan, Chunsheng; Mei, Liang

    2014-02-01

    A compact and low-cost light-emitting diode (LED) with center wavelength of 295 nm and high light density was used measure the concentration of sulfur dioxide, which has a strong structured absorption band in the ultraviolet region 300 nm. Differential optical absorption spectroscopy (DOAS) was used to determine the concentration of sulfur dioxide using reference absorption spectrum due to 1000 ppm SO2. A sensitivity of about 1.5 ppm was achieved with a gas cell in 1-s integration time, enabling real-time monitoring of sulfur dioxide.

  11. Directional and controllable edge-emitting ZnO ultraviolet random laser diodes

    NASA Astrophysics Data System (ADS)

    Liang, H. K.; Yu, S. F.; Yang, H. Y.

    2010-03-01

    Room-temperature ultraviolet random lasing action is demonstrated from a p-GaN/annealed i-ZnO:Al(3%)/n-ZnO:Al(5%) buried heterojunction diode with a 2 ?m rib waveguide. Excellent electrical-to-optical conversion efficiency is achieved by strong electrical and optical confinement of a buried heterojunction rib waveguide structure. Hence, emission intensity (threshold current) can be enhanced (reduced) by 9 times (40%). Directional emission as well as controllability on the number of the random lasing modes can also be achieved.

  12. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  13. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.

    PubMed

    Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S

    2015-12-28

    Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency. PMID:26832039

  14. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors.

    PubMed

    Nie, Biao; Hu, Ji-Gang; Luo, Lin-Bao; Xie, Chao; Zeng, Long-Hui; Lv, Peng; Li, Fang-Ze; Jie, Jian-Sheng; Feng, Mei; Wu, Chun-Yan; Yu, Yong-Qiang; Yu, Shu-Hong

    2013-09-01

    A new Schottky junction ultraviolet photodetector (UVPD) is fabricated by coating a free-standing ZnO nanorod (ZnONR) array with a layer of transparent monolayer graphene (MLG) film. The single-crystalline [0001]-oriented ZnONR array has a length of about 8-11 μm, and a diameter of 100∼600 nm. Finite element method (FEM) simulation results show that this novel nanostructure array/MLG heterojunction can trap UV photons effectively within the ZnONRs. By studying the I-V characteristics in the temperature range of 80-300 K, the barrier heights of the MLG film/ZnONR array Schottky barrier are estimated at different temperatures. Interestingly, the heterojunction diode with typical rectifying characteristics exhibits a high sensitivity to UV light illumination and a quick response of millisecond rise time/fall times with excellent reproducibility, whereas it is weakly sensitive to visible light irradiation. It is also observed that this UV photodetector (PD) is capable of monitoring a fast switching light with a frequency as high as 2250 Hz. The generality of the above results suggest that this MLG film/ZnONR array Schottky junction UVPD will have potential application in future optoelectronic devices. PMID:23495044

  15. Triggering GaAs lock-on switches with laser diode arrays

    SciTech Connect

    Loubriel, G.M.; Buttram, M.T.; Helgeson, W.D.; McLaughlin, D.L.; O'Malley, M.W.; Zutavern, F.J. ); Rosen, A.; Stabile, P.J. )

    1990-01-01

    Laser diode arrays have been used to trigger GaAs Photoconducting Semiconductor Switches (PCSS) charged to voltages of up to 60 kV and conducting currents of 580 A. The driving forces behind the use of laser diode arrays are compactness, elimination of complicated optics, and the ability to run at high repetition rates. Laser diode arrays are compactness, elimination of complicated optics, and the ability to run at high repetition rates. Laser diode arrays can trigger GaAs at high fields as the result of a new switching mode (lock-on) with very high carrier number gain. We have achieved switching of up to 10 MW in a 60 {Omega} system, with a pulse rise time of 500 ps. At 1.2 MW we have achieved repetition rates of 1 kHz with switch rise time of 500 ps for 10{sup 5} shots. The laser diode array used for these experiments delivers a 166 W pulse. In a single shot mode we have switched 4 kA with a flash lamp pumped laser and 600 A with the 166 W array. 7 refs., 5 figs.

  16. Improved ultraviolet emission performance from polarization-engineered n-ZnO/p-GaN heterojunction diode

    NASA Astrophysics Data System (ADS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Shi, Zhifeng; Yan, Long; Li, Pengchong; Zhang, Baolin; Du, Guotong

    2016-02-01

    O-polar ZnO films were grown on N-polar p-GaN/sapphire substrates by photo-assisted metal-organic chemical vapor deposition, and further heterojunction light-emitting diodes based O-polar n-ZnO/N-polar p-GaN were proposed and fabricated. It is experimentally demonstrated that the interface polarization of O-polar n-ZnO/N-polar p-GaN heterojunction can shift the location of the depletion region from the interface deep into the ZnO side. When a forward bias is applied to the proposed diode, a strong and high-purity ultraviolet emission located at 385 nm can be observed. Compared with conventional Zn-polar n-ZnO/Ga-polar p-GaN heterostructure diode, the ultraviolet emission intensity of the proposed heterojunction diode is greatly enhanced due to the presence of polarization-induced inversion layer at the ZnO side of the heterojunction interface. This work provides an innovative path for the design and development of ZnO-based ultraviolet diode.

  17. AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Fabricated on Patterned Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Kim, Myunghee; Fujita, Takehiko; Fukahori, Shinya; Inazu, Tetsuhiko; Pernot, Cyril; Nagasawa, Yosuke; Hirano, Akira; Ippommatsu, Masamichi; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Yamaguchi, Masahito; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2011-09-01

    Deep ultraviolet (DUV) light-emitting diodes (LEDs) on patterned sapphire substrates (PSSs) have been clearly demonstrated. AlN templates grown on PSSs had average threading dislocation densities (TDDs) of as low as 5×107 cm-2. Flip-chip DUV LEDs fabricated on PSSs demonstrated a significantly high performance. The 266 nm LED exhibited an output power of 5.3 mW and an external quantum efficiency (EQE) of 1.9% at 60 mA DC, and the 278 nm LED had 8.4 mW output and an EQE of 3.4%. Moreover, the 70% lifetime was more than 700 h at 20 mA.

  18. Molecular weight dependent electroluminescence of silicon polymer near-ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hoshino, Satoshi; Furukawa, Kazuaki; Ebata, Keisuke; Yuan, Chien-Hua; Suzuki, Hiroyuki

    2000-09-01

    We investigated the electroluminescence (EL) of single-layer near-ultraviolet (NUV) light-emitting diodes (LEDs) made from poly[bis(p-n-butylphenyl)silane] (PBPS) with three different molecular weights (MWs). Although the NUV EL spectra of the three LEDs exhibited no noticeable differences, we observed a marked MW dependence on such aspects of the operating performance as the EL external quantum efficiency, EL threshold current density and electric field, which were improved as the MW of PBPS decreased. The MW dependence of the hole transport behavior suggested that the MW decrease promoted positive space charge formation in the PBPS layer during LED operation. We attributed the origin of the MW dependence of the LED performance to this positive space charge formation, which played an important role in improving the electron-hole supply balance from the external electrodes of the LED.

  19. AlGaN/GaN quantum well ultraviolet light emitting diodes

    SciTech Connect

    Han, J.; Crawford, M.H.; Shul, R.J.; Figiel, J.J.; Banas, M.; Zhang, L.; Song, Y.K.; Zhou, H.; Nurmikko, A.V.

    1998-09-01

    We report on the growth and characterization of ultraviolet GaN quantum well light emitting diodes. The room-temperature electroluminescence emission was peaked at 353.6 nm with a narrow linewidth of 5.8 nm. In the simple planar devices, without any efforts to improve light extraction efficiency, an output power of 13 {mu}W at 20 mA was measured, limited in the present design by absorption in the GaN cap layer and buffer layer. Pulsed electroluminescence data demonstrate that the output power does not saturate up to current densities approaching 9 kA/cm{sup 2}. {copyright} {ital 1998 American Institute of Physics.}

  20. Diode Characterization of Rockwell LWIR HgCdTe Detector Arrays

    NASA Astrophysics Data System (ADS)

    Bacon, Candice; Pipher, Judith L.; Forrest, William J.; McMurtry, Craig W.; Garnett, James D.

    2003-03-01

    Future infrared space missions will undoubtedly employ passively cooled focal planes (T ~ 30K), as well as passively cooled telescopes. Most long-wave detector arrays (e.g. Si:As IBC) require cooling to temperatures of ~ 6-8K. We have been working with Rockwell to produce 10μm cutoff HgCdTe detector arrays that, at temperatures of ~ 30K, exhibit sufficiently low dark current and sufficiently high detective quantum efficiency to be interesting for astronomy. In pursuit of these goals, Rockwell Scientific Company has delivered twelve 256 x 256 arrays (several of them engineering arrays), with cutoff wavelengths at 30K between 7.4 and 11μm for characterization at Rochester. Seven of these arrays utilize advanced structure diodes with differing capacitances arranged in rows (banded arrays), and the materials properties of the HgCdTe also vary significantly from array to array. Of ultimate interest to astronomy is the fraction of pixels with dark current below the target value of ~ 100e-/s with 10-60mV of actual reverse bias across the diodes at T ~ 30K. These arrays were developed for the purpose of selecting diode architecture: we use this fraction as one criterion for selection. We have determined from these experiments the optimal diode architecture for future array development. Measurement of the dark current as a function of reverse bias and temperature allows us to ascertain the extent to which trap-to-band tunneling dominates the dark current at this temperature. We present the results for one representative array, UR008.

  1. Wide-aperture laser diode array in the external V-shaped cavity

    SciTech Connect

    Svetikov, V V; Nurligareev, D Kh

    2014-09-30

    The operation of a wide-aperture laser diode array with the radiation wavelength 980 nm in external V-shaped symmetric and asymmetric cavities is experimentally studied. The regimes of stable oscillation are studied as functions of the feedback beam direction. The spectra and the intensity distribution of radiation in the far zone are presented for the laser diode in symmetric and asymmetric cavities. Tuning of the radiation wavelength is demonstrated using the Littman geometry in the asymmetric cavity. (lasers)

  2. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  3. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  4. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOEpatents

    Beach, R.J.; Benett, W.J.; Mills, S.T.

    1997-04-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a ``rack and stack`` configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber. 3 figs.

  5. Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array

    DOEpatents

    Beach, Raymond J.; Benett, William J.; Mills, Steven T.

    1997-01-01

    The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.

  6. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    SciTech Connect

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

  7. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    SciTech Connect

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan; Smith, Michael L.; Biedermann, Laura

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, and the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 ?m wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.

  8. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    SciTech Connect

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan; Smith, Michael L.; Biedermann, Laura

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, and the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.

  9. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    DOE PAGESBeta

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan; Smith, Michael L.; Biedermann, Laura

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less

  10. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review.

    PubMed

    Song, Kai; Mohseni, Madjid; Taghipour, Fariborz

    2016-05-01

    Ultraviolet (UV) disinfection is an effective technology for the inactivation of pathogens in water and is of growing interest for industrial application. A new UV source - ultraviolet light-emitting diode (UV-LED) - has emerged in the past decade with a number of advantages compared to traditional UV mercury lamps. This promising alternative raises great interest in the research on application of UV-LEDs for water treatment. Studies on UV-LED water disinfection have increased during the past few years. This article presents a comprehensive review of recent studies on UV-LEDs with various wavelengths for the inactivation of different microorganisms. Many inconsistent and incomparable data were found from published studies, which underscores the importance of establishing a standard protocol for studying UV-LED inactivation of microorganisms. Different UV sensitivities to UV-LEDs and traditional UV lamps were observed in the literature for some microorganisms, which requires further investigation for a better understanding of microorganism response to UV-LEDs. The unique aspects of UV-LEDs improve inactivation effectiveness by applying LED special features, such as multiple wavelengths and pulsed illumination; however, more studies are needed to investigate the influencing factors and mechanisms. The special features of UV-LEDs offer the flexibility of novel reactor designs for a broad application of UV-LED reactors. PMID:26971809

  11. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  12. Linear laser diode arrays for improvement in optical disk recording for space stations

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated.

  13. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  14. Electronic beam steering in monolithic grating-surface-emitting diode laser arrays

    SciTech Connect

    Carlson, N.W.; Evans, G.A.; Amantea, R.; Palfrey, S.L.; Hammer, J.M.; Lurie, M.; Carr, L.A.; Hawrylo, F.Z.; James, E.A.; Kaiser, C.J.; and others

    1988-12-05

    Electronic beam steering has been demonstrated in both one- and two-dimensional injection-coupled grating-surface-emitting diode laser arrays. By appropriately varying the drive current to the electrically independent gain sections of an injection-coupled grating-surface-emitting laser array, the angular position of the far-field output can be steered. Experimental results for two-dimensional surface-emitting arrays are presented, as well as a theoretical model which shows that beam steering is a general property of injection-coupled surface-emitting arrays.

  15. Detection of composite resin restorations using an ultraviolet light-emitting diode flashlight during forensic dental identification.

    PubMed

    Guzy, Gerald; Clayton, Mary Ann

    2013-06-01

    With the increased use of composite resin and the decreased use of amalgam as a dental restorative material, the forensic dental identification of unidentified human remains has become more difficult. Various methods have been used to detect the presence of composite resin restorations including dyes, forensic alternative light sources, quantitative light-induced fluorescence, and ultraviolet lights. Although these methods may be helpful, the expense of the equipment, the electrical requirements, and the need for water to wash the dye from the mouth may make these methods impractical especially in a temporary morgue situation during a mass disaster. The fluorescent properties of composite resins, when exposed to ultraviolet light, are well documented. Standard tube ultraviolet lights have been used to detect the presence of composite resin, but these lights are large and bulky, and the tubes are fragile. The development of ultraviolet light emitting diode flashlights has provided forensic odontologists with a tool that is small, inexpensive, and battery operated. The two forensic dental identification cases described here demonstrate the value of ultraviolet light emitting diode flashlights as an adjunct to a careful clinical and radiographic examination. PMID:23574870

  16. Anode modification of polymer light-emitting diode using graphene oxide interfacial layer: The role of ultraviolet-ozone treatment

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Chen; Li, Yan-Qing; Deng, Yan-Hong; Zhuo, Qi-Qi; Lee, Shuit-Tong; Tang, Jian-Xin

    2013-08-01

    A simple and efficient method has been developed to modify the anode interface of polymer light-emitting diode by incorporating solution-processable graphene oxide as hole transport layer. Interface engineering of ultraviolet-ozone treatment on graphene oxide is demonstrated to dramatically enhance the electrical properties, leading to 15% increase in efficiency compared to that with a traditionally used poly(styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene) layer. As determined by photoelectron spectroscopy and impedance spectroscopy, an optimized ultraviolet-ozone treatment results in a more favorable energy level alignment and a decrease in series resistance, which can subsequently facilitate charge injection at the anodic interface.

  17. Discrete spectrum terahertz imaging using bow-tie diodes: optimized antenna designs and arrays

    NASA Astrophysics Data System (ADS)

    Minkevičius, Linas; Madeikis, Karolis; Kašalynas, Irmantas; Venckevičius, Rimvydas; Seliuta, Dalius; TamošiÅ«nas, Vincas; Valušis, Gintaras

    2013-09-01

    Optimization routes to optimize the operation of InGaAs bow-tie diodes were demonstrated using simulations based on 3D finite-difference time-domain method. Calculations of the electromagnetic field amplitude distribution in a detector plane were performed. Three types of designs - bow-tie diode itself, log-periodic antenna and log-periodic antenna coupled with the bow-tie diode were analyzed; it was determined that frequency properties of such antennacoupled device can be tuned via variation of antenna shape and size. Multi-pixel InGaAs bow-tie diodes arrays of different designs - narrow band and broadband operation - were designed and fabricated. They were demonstrated to be well suited for continuous wave room temperature spectroscopic terahertz imaging at 0.58 THz and at 1.63 THz.

  18. Low cost batch fabrication of microdevices using ultraviolet light-emitting diode photolithography technique

    NASA Astrophysics Data System (ADS)

    Lee, Neam Heng; Swamy, Varghese; Ramakrishnan, Narayanan

    2016-01-01

    Solid-state technology has enabled the use of light-emitting diodes (LEDs) in lithography systems due to their low cost, low power requirement, and higher efficiency relative to the traditional mercury lamp. Uniform irradiance distribution is essential for photolithography to ensure the critical dimension (CD) of the feature fabricated. However, light illuminated from arrays of LEDs can have nonuniform irradiance distribution, which can be a problem when using LED arrays as a source to batch-fabricate multiple devices on a large wafer piece. In this study, the irradiance distribution of an UV LED array was analyzed, and the separation distance between light source and mask optimized to obtain maximum irradiance uniformity without the use of a complex lens. Further, employing a diffuser glass enhanced the fabrication process and the CD loss was minimized to an average of 300 nm. To assess the performance of the proposed technology, batch fabrication of surface acoustic wave devices on lithium niobate substrate was carried out, and all the devices exhibited identical insertion loss of -18 dB at a resonance frequency of 39.33 MHz. The proposed low-cost UV lithography setup can be adapted in academic laboratories for research and teaching on microdevices.

  19. Contact photolithography using a carbon-black embedded soft photomask and ultraviolet light emitting diodes with application on patterned sapphire substrates.

    PubMed

    Hsieh, Heng; Wu, Chun-Ying; Lee, Yung-Chun

    2016-04-18

    This paper presents a contact photolithography method for large-area ultraviolet (UV) patterning using a soft polydimethylsiloxane (PDMS) photomask and a planar light source consisting of arrayed light-emitting diodes (LEDs). With simple design and construction, the UV light source can achieve uniformly distributed UV light intensity over an area of 4" in diameter but its divergent angle is 15°. To overcome this large divergent angle, a PDMS soft mold embedded with carbon-black inserts as the UV light blocking materials is applied. It is demonstrated that, when increasing the aspect ratio of the carbon-black inserts, one can achieve excellent UV patterning results. Both experimental data and simulation results are presented. This contact photolithography system has been successfully used for manufacturing patterned sapphire substrates (PSSs) in LED industry. The advantages and potential applications of the proposed method will be addresses. PMID:27137297

  20. High power, high efficiency, 2D laser diode arrays for pumping solid state lasers

    SciTech Connect

    Rosenberg, A.; McShea, J.C.; Bogdan, A.R.; Petheram, J.C.; Rosen, A.

    1987-11-01

    This document reports the current performance of 2D laser diode arrays operating at 770 nm and 808 nm for pumping promethium and neodymium solid state lasers, respectively. Typical power densities are in excess of 2kw/cm/sup 2/ with overall efficiencies greater than 30%.

  1. A Lunar Optical-Ultraviolet-Infrared Synthesis Array (LOUISA)

    NASA Technical Reports Server (NTRS)

    Burns, Jack O. (Editor); Johnson, Stewart W. (Editor); Duric, Nebojsa (Editor)

    1992-01-01

    This document contains papers presented at a workshop held to consider 'optical ultraviolet infrared' interferometric observations from the moon. Part 1 is an introduction. Part 2 is a description of current and planned ground-based interferometers. Part 3 is a description of potential space-based interferometers. Part 4 addresses the potential for interferometry on the moon. Part 5 is the report of the workshop's working groups. Concluding remarks, summary, and conclusions are presented in Part 6.

  2. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    NASA Astrophysics Data System (ADS)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Kueller, V.; Knauer, A.; Rass, J.; Wernicke, T.; Einfeldt, S.; Weyers, M.; Kneissl, M.

    2016-04-01

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al0.70Ga0.30N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm2.

  3. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes.

    PubMed

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas J; Stuetz, Richard

    2016-05-15

    Improvements in point-of-use (POU) drinking water disinfection technologies for remote and regional communities are urgently needed. Conceptually, UV-C light-emitting diodes (LEDs) overcome many drawbacks of low-pressure mercury tube based UV devices, and UV-A or visible light LEDs also show potential. To realistically evaluate the promise of LED disinfection, our study assessed the performance of a model 1.3L reactor, similar in size to solar disinfection bottles. In all, 12 different commercial or semi-commercial LED arrays (270-740nm) were compared for their ability to inactivate Escherichia coli K12 ATCC W3110 and Enterococcus faecalis ATCC 19433 over 6h. Five log10 and greater reductions were consistently achieved using the 270, 365, 385 and 405nm arrays. The output of the 310nm array was insufficient for useful disinfection while 430 and 455nm performance was marginal (≈4.2 and 2.3-log10s E. coli and E. faecalis over the 6h). No significant disinfection was observed with the 525, 590, 623, 660 and 740nm arrays. Delays in log-phase inactivation of E. coli were observed, particularly with UV-A wavelengths. The radiation doses required for >3-log10 reduction of E. coli and E. faecalis differed by 10 fold at 270nm but only 1.5-2.5 fold at 365-455nm. Action spectra, consistent with the literature, were observed with both indicators. The design process revealed cost and technical constraints pertaining to LED electrical efficiency, availability and lifetime. We concluded that POU LED disinfection using existing LED technology is already technically possible. UV-C LEDs offer speed and energy demand advantages, while UV-A/violet units are safer. Both approaches still require further costing and engineering development. Our study provides data needed for such work. PMID:26967007

  4. Progress report on the use of hybrid silicon pin diode arrays in high energy physics

    SciTech Connect

    Shapiro, S.L. ); Jernigan, J.G.; Arens, J.F. . Space Sciences Lab.)

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump-bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format has 10 {times} 64 pixels, each 120 {mu}m square; and the other format has 256 {times} 156 pixels, each 30 {mu}m square. In both cases, the thickness of the PIN diode layer is 300 {mu}m. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 17 figs.

  5. Fabrication and characterization of alternating-current-driven ZnO-based ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Haoning; Long, Hao; Chen, Zhao; Mo, Xiaoming; Li, Songzhan; Zhong, Zhiyou; Fang, Guojia

    2015-07-01

    Alternating-current-driven ZnO-based light-emitting diodes (LEDs) with an Au/ZnMgO/ZnO/ZnMgO/GaN/In structure have been fabricated. Both polarity-controlled electroluminescence (EL) and ultraviolet emission were achieved when driven by an alternating current (AC) under a much lower root-mean-square voltage than that of conventional inorganic AC thin-film electroluminescent devices. This ZnO-based LED can be regarded as a series incorporating a metal-insulator-semiconductor diode and a p- i- n diode. The EL mechanisms were discussed in terms of the band diagrams and carrier transport behavior with reference to the semiconductor heterojunction theory. [Figure not available: see fulltext.

  6. High performance near-ultraviolet flip-chip light-emitting diodes with distributed Bragg reflector

    NASA Astrophysics Data System (ADS)

    Choi, Il-Gyun; Jin, Geun-Mo; Park, Jun-Cheon; Jeon, Soo-Kun; Park, Eun-Hyun

    2015-09-01

    We have fabricated the near-ultraviolet (NUV) flip-chip (FC) light-emitting diodes (LEDs) with the high external quantum efficiency (EQE) using distributed Bragg reflectors (DBRs) and compared with conventional FC-LED using silver (Ag) reflector. Reflectance of Ag is very high (90 ~ 95 %) at visible spectrum region, but sharply decrease at NUV region. Therefore we used DBR composed of two different materials which have high-index contrast, such as TiO2 and SiO2. However, to achieve high-performance NUV flip-chip LEDs, we used Ta2O5 instead of TiO2 that absorbs lights of NUV region. Thus, we have designed a DBR composed of twenty pairs of Ta2O5 and SiO2 using optical coating design software. The DBR designed by our group achieves a reflectance of ~99 % in the NUV region (350 ~ 500 nm), which is much better than Ag reflector. Optical power is higher than the Ag-LED up to 22 % @ 390 nm.

  7. Ultraviolet electroluminescence from organic light-emitting diode with cerium(III) crown ether complex

    NASA Astrophysics Data System (ADS)

    Yu, Tianzhi; Su, Wenming; Li, Wenlian; Hua, Ruinan; Chu, Bei; Li, Bin

    2007-06-01

    Cerium-dicyclohexano-18-crown-6 complex, Ce-DC-18·C·6, was prepared and used to fabricate organic light-emitting diode (OLEDs) with structure of ITO (indium tin oxide)/CuPc (copper-phthalocyanine)/Ce-DC-18·C·6: CBP (4,4'-bis(9-carbazolyl)biphenyl)/Bu-PBD (2-(4-biphenylyl)-5-(4- tert-butylphenyl)-1,3,4-oxadiazole)/LiF/Al. In the device the emitter layer consists of Ce(III)-complex as a dopant and CBP as a host. Adopting this doping Ce(III)-complex film, the device exhibits ultraviolet (UV) emission at 376 nm and maximum UV radiance power 13 μW/cm 2 at 3 wt% Ce(III)-complex doped device is obtained, which has been improved by about two times in comparison with no Ce(III)-complex layer UV device. In terms of photoluminescence (PL) of Ce(III) ion and CBP film, we demonstrated that the two UV emissions should be assigned to be from electron transitions of 5d → 4f of the Ce(III) ion and of S 1 → S 0 of CBP molecule, respectively. Increasing in UV radiation at shorter UV wavelength is more valuable and interesting for solid lighting application because the shorter UV emission would much match with excitation bands of more organic or inorganic phosphors. The mechanism on the electroluminescence (EL) processes of Ce(III) ion was also discussed.

  8. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)

    SciTech Connect

    Kurose, N. Aoyagi, Y.; Shibano, K.; Araki, T.

    2014-02-15

    A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400 nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  9. Structural design and optimization of near-ultraviolet light-emitting diodes with wide wells

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chen, Fang-Ming; Chang, Jih-Yuan; Shih, Ya-Hsuan

    2016-03-01

    The characteristics of the near-ultraviolet (NUV) light-emitting diodes (LEDs) with wide (14-nm-thick) and narrow (2-nm-thick) wells under the situations of different numbers of wells and degree of polarization are systematically investigated. The simulation results show that the Auger recombination can be efficiently suppressed with the increase of number of wells in NUV LEDs. For the LEDs with wide wells, the quantum-confined Stark effect and Shockley-Read-Hall recombination play an important role when the number of wells increases, especially when the LED is under low current injection or high degree of polarization. In order to take the advantage of using wide wells, it is proposed that the quaternary Al0.1In0.05Ga0.85N barriers be used in wide-well NUV LEDs along with the use of Al0.3Ga0.7N/Al0.1Ga0.9N superlattice electron-blocking layer to mitigate the polarization effect and electron overflow. With this band-engineering structural design, the optical performance of the wide-well NUV LEDs is much better than its thin-well counterpart even under the situation of high degree of polarization.

  10. Efficiency enhancement in ultraviolet light-emitting diodes by manipulating polarization effect in electron blocking layer

    NASA Astrophysics Data System (ADS)

    Lu, Yu-Hsuan; Fu, Yi-Keng; Huang, Shyh-Jer; Su, Yan-Kuin; Xuan, Rong; Pilkuhn, Manfred H.

    2013-04-01

    The characteristics of the ultraviolet light-emitting diode (LED) with conventional and specifically designed electron blocking layers (EBLs) are investigated numerically and experimentally in this work. Simulation results show that delicately designed EBLs can not only capably perform the electron blocking function but also eliminate the incidental drawback of obstruction of hole injection caused by the nature of the large polarization field at the c-plane nitride heterojunction. It is shown that the polarization induced downward band bending can be mitigated when the portion of conventional EBL lying adjacent to the active region is replaced by a graduated AlGaN layer. The conduction band profile indicates that this replacement structure could have the capability of electron confinement similar to the conventional structure, and the valence band profile indicates that the spike induced by the polarization field is simultaneously eliminated, assisting the process of hole injection and distribution in the active region. Electron leakage over the EBL is thus obviously reduced, and the consumption efficiency of the injection carriers is improved, as expressed in the distribution of the electron current density. The experimental results show that the light output power can be significantly enhanced from 29.3 mW for the conventional device to 54.7 mW for the LED with the redesigned EBL structure.

  11. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources

    PubMed Central

    Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.

    2015-01-01

    Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 – 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335

  12. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  13. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources.

    PubMed

    Zhao, S; Connie, A T; Dastjerdi, M H T; Kong, X H; Wang, Q; Djavid, M; Sadaf, S; Liu, X D; Shih, I; Guo, H; Mi, Z

    2015-01-01

    Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 - 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335

  14. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  15. Optical fluence modelling for ultraviolet light emitting diode-based water treatment systems.

    PubMed

    Simons, R; Gabbai, U E; Moram, M A

    2014-12-01

    This work presents a validated optical fluence rate model optimised for ultraviolet light-emitting diodes (UV-LEDs), which allow a very wide range of emission wavelengths and source geometries to be used in water treatment units. The model is based on a Monte Carlo approach, in which an incremental ray-tracing algorithm is used to calculate the local volumetric rate of energy absorption and subsequently convert it to the local fluence rate distribution for an UV-LED water treatment chamber of arbitrary design. The model includes contributions from optical reflections and scattering by treatment chamber walls and from scattering due to particulates and/or microorganisms. The model successfully predicts optical fluence rates in point-of-use water treatment units, as verified using biodosimetry with MS-2 bacteriophage at a UV-LED emission wavelength of 254 nm. The effects of chamber geometry are also modelled effectively and are consistent with the inactivation data for E. coli at 254 nm. The data indicate that this model is suitable for application in the design and optimisation of UV-LED-based water treatment systems. PMID:25222335

  16. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.

    2015-02-01

    Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 - 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated.

  17. 1D hyperspectral images of a light emitting diodes array

    NASA Astrophysics Data System (ADS)

    Urzica (Iordache), I.; Damian, V.; Logofatu, P. C.; Apostol, D.; Vasile, T.; Udrea, C.

    2015-02-01

    The paper present our first steps to realize a hyperspectral imaging system. Preliminary experiments in the domain have as purpose to test the capability of a monochromator with a 2D linear CCD camera, to create hyperspectral images. Using a Sciencetech 9055 model monochromator with a Hamamatsu CCD, we have analyzed an array of three LEDs of various colors, obtaining 1D hyperspectral images.

  18. Diffuser array for a light-emitting diode backlight system

    NASA Astrophysics Data System (ADS)

    Hu, Yeu-Jent; Lee, Jiunn-Chyi; Wang, Yi-Ping; Wu, Ya-Fen; Sheu, Lih-Gen

    2007-09-01

    A novel light-emitting diode backlight module applied in liquid crystal displays is demonstrated. With microgrooves on the bottom surface and diffusive dots on the upper surface of the light guide plate (LGP), most of the incident backlight is utilized effectively and the dispersion of light is decreased obviously. The design procedure of optimization for the backlight module is accomplished by the TracePro optical simulation software. Relationship between the dimensions of microgrooves and diffusive dots are investigated and discussed in detail. By using the structure of microgrooves and diffusive dots on the LGP, the incident light satisfies the total internal reflection conditions and reflects from the bottom surface then spread by the diffusive dots. Compared to the conventional backlight devices, the light uniformity and light intensity for the LGP are improved by our design.

  19. High power external cavity laser diode arrays for the generation of hyperpolarized noble gases

    NASA Astrophysics Data System (ADS)

    Blasche, Gregory Paul

    Hyperpolarized noble gas magnetic resonance imaging promises to be a useful medical diagnostic tool due to its ability to image airways and brain function. A current limitation to widespread use is the time needed to generate gas quantities large enough for clinical patient imaging. Here I investigate line-narrowing of laser diode arrays in order to optimize the generation of hyperpolarized noble gases. Hyperpolarized noble gases are nuclear spin-½ isotopes that are polarized externally to have a large excess population of metastable spin up nuclei. When inhaled and imaged, they provide a novel tool for scientific studies and medical diagnosis in the human body. The gases are generated through a spin-exchange process via the spin-conserving hyperfine interaction of noble gas nuclei and optically pumped alkali metals. The net amount of polarized gas is limited by the optical power which is absorbed by the alkali metals as this is the first stage in the spin-exchange process. Laser diode arrays are typically used because they have a high available power for relatively low cost. Unfortunately, they are optically inefficient due to the factor of twenty larger inherent linewidth relative to the pressure broadened absorption linewidth of the alkali metal. In order to increase the efficiency of the system, I have designed and built an external cavity around the laser diode array consisting of a diffraction grating which acts as a wavelength dependent mirror tuned to the alkali metal rubidium absorption frequency. This causes the laser to operate solely at the desired wavelength, reducing the linewidth. External cavities have long been used for single element laser diodes. I extend this technique to laser diode arrays by imaging the diodes onto the grating using a set of imaging lenses forming individual cavities. I discuss the limitations on the power and linewidth achievable due to the optics of the cavity, as well as limitations caused by non-uniform heating effects. Finally, I present measurements of the nuclear polarization and absorption for Helium using our line-narrowed laser system and will compare and contrast the benefits of the line-narrowed system over the fiber-coupled laser diode arrays currently being used.

  20. Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.

  1. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires.

    PubMed

    Shi, Zhi-Feng; Xu, Ting-Ting; Wu, Di; Zhang, Yuan-Tao; Zhang, Bao-Lin; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong

    2016-05-21

    Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ∼65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ∼382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores. PMID:27142941

  2. Light emitting diode arrays for HWIL sensor testing

    NASA Astrophysics Data System (ADS)

    Das, Naresh C.; Shen, P.; Simonis, George; Gomes, John; Olver, Kim

    2005-05-01

    We report here the light emission from IR interband-cascade (IC) Type-II-super lattice LED structures. We employed two different IC epitaxial structures for the LED experiments consisting of 9 or 18 periods of active super lattice gain regions separated by multilayer injection regions. The light output (and the voltage drop) of the LEDs is observed to increase with increase of number of IC active regions in the device. The voltage drop decreases with increase of mesa size and light emission increases with mesa sizes. We have made 8x7 2-D LED array flip-chip bonded to fan out array. The black body emissive temperature is 650 and 1050 K for LED operation at room and liquid nitrogen temperature respectively. A comparison of different IR sources for scene generation is presented.

  3. Application of three-step epitaxial process to dual trench epitaxial diode array.

    PubMed

    Zhang, Chao; Wu, Guan-Ping; Song, Zhi-Tang; Liu, Bo; Wang, Lian-Hong; Liu, Yan; Yang, Zuoya; Feng, Songlin

    2013-02-01

    The application of three-step Epitaxial (EPI) process to dual trench epitaxial diode array for high density phase change random access memory (PCRAM) was reported in this paper. With three-step EPI process condition, both vertical and lateral Arsenic auto-doping were suppressed effectively from Arsenic heavily-doped substrate. It was found that EPI layer (- 300 nm) with high-quality single crystalline and good thickness uniformity within 200 mm diameter wafer could be achieved. It was also found that both lateral and vertical Arsenic auto-doping concentration could be reduced by 2-3 orders by adding high temperature and low deposition rate EPI step before main EPI process, as compared to the conventional CVD EPI process. As a result, diode breakdown voltage was improved above 11 V and the On/Off current ratio of diode is greater than 9 orders of magnitude. PMID:23646599

  4. Progress of laser diode arrays operating under harsh conditions

    NASA Astrophysics Data System (ADS)

    Kohl, Andreas; Fillardet, Thierry; Moisan, Herve; Brousse, Eric

    2010-10-01

    High Power Laser Diodes (HPLD) are increasingly used in different fields of applications such as Industry, Medical and Defense. Significant improvements of performances (especially in efficiency) and a reproducible manufacturing process have led to reliable, highly robust components. For defense and security applications these devices are used predominantly for pumping of solid state lasers (range finders, designators and countermeasures) but also as direct light source (illuminator, pointer,...). For these applications the devices not only have to show outstanding electro optical performances but the packaging must also be robust enough to sustain the harsh environmental requirements. Due to recent progress in both semiconductor technology and packaging, QLD was able to push the peak power up to 400W per bar at 808nm. At this wavelength QLD has achieved record high efficiencies close to 65% in production. Thanks to a very small bar to bar pitch down to 330μm our stacks deliver peak power densities as high as 12 kW/cm². Even at 400 μm pitch the bars can be collimated in order to improve the beam quality.

  5. Optimization of rod diameter in solid state lasers side pumped with multiple laser diode arrays

    NASA Technical Reports Server (NTRS)

    Sims, Newton, Jr.; Chamblee, Christyl M.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1992-01-01

    Results of a study to determine the optimum laser rod diameter for maximum output energy in a solid state neodymium laser transversely pumped with multiple laser diode arrays are reported here. Experiments were performed with 1.0 mm, 1.5 mm and 2.0 mm rod radii of both neodymium doped Y3Al5O12 (Nd:YAG) and La2Be2O5 (Nd:BeL) pumped with laser diode arrays having a maximum combined energy of 10.5 mJ. Equations were derived which predict the optimum rod radius and corresponding output mirror reflectivity for a given laser material and total pump energy. Predictions of the equations agreed well with the experiments for each of the laser materials which possessed significantly different laser properties from one another.

  6. Development of 260 nm band deep-ultraviolet light emitting diodes on Si substrates

    NASA Astrophysics Data System (ADS)

    Mino, Takuya; Hirayama, Hideki; Takano, Takayoshi; Tsubaki, Kenji; Sugiyama, Masakazu

    2013-03-01

    Deep-ultraviolet (DUV) light-emitting diodes (LEDs) have a wide range of potential applications, such as sterilization, water purification, and medicine. In recent years, the external quantum efficiency (EQE) and the performance of AlGaNbased DUV LEDs on sapphire substrates have increased markedly due to improvements in the crystalline-quality of high Al-content AlGaN layers, and the optimization of LED structures. On the other hand, DUV LEDs fabricated on Si substrates are very promising as a low-cost DUV light-source in the near future. However, AlN layers on Si have suffered from cracking induced by the large mismatch in lattice constants and thermal expansion coefficients between AlN and Si. In this paper, DUV LEDs on Si were realized by a combination of a reduction in the number of cracks and of the threading dislocation density (TDD) of AlN templates by using the epitaxial lateral overgrowth (ELO) method. The ELO-AlN templates were successfully coalesced on trench-patterned substrates, with the stripes running along the <1-100> direction of AlN. The density of cracks was greatly reduced in 4- μm-thick ELO-AlN templates, because voids formed by the ELO process relaxed the tensile stress in the AlN layer. Furthermore, the AlN templates showed low-TDD. The full-width-at-half-maximum values of the (0002) and (10-12) X-ray rocking curves were 780 and 980 arcsec, respectively. DUV LEDs fabricated on these high-quality ELO-AlN/Si substrates showed single peak emission at 256- 278 nm in electroluminescence measurements. It is expected that we will be able to realize low-cost DUV LEDs on Si substrates by using ELO-AlN templates.

  7. Steady-state self-consistent analysis of diode-laser arrays

    SciTech Connect

    Kumar, T.

    1987-04-06

    A diode-laser array model, solving the two-dimensional Laplace equation in the passive layer and the carrier diffusion equation in the active layer in a self-consistent manner, is presented. The model is general and does not make use of the usual one-dimensional approximation to the current spreading problem. The beam-propagation method used in solving the wave equation eases the inclusion of any axial variations.

  8. Dynamic characteristics of far-field radiation of current modulated phase-locked diode laser arrays

    NASA Technical Reports Server (NTRS)

    Elliott, R. A.; Hartnett, K.

    1987-01-01

    A versatile and powerful streak camera/frame grabber system for studying the evolution of the near and far field radiation patterns of diode lasers was assembled and tested. Software needed to analyze and display the data acquired with the steak camera/frame grabber system was written and the total package used to record and perform preliminary analyses on the behavior of two types of laser, a ten emitter gain guided array and a flared waveguide Y-coupled array. Examples of the information which can be gathered with this system are presented.

  9. Robotic radiosurgery system patient-specific QA for extracranial treatments using the planar ion chamber array and the cylindrical diode array.

    PubMed

    Lin, Mu-Han; Veltchev, Iavor; Koren, Sion; Ma, Charlie; Li, Jinsgeng

    2015-01-01

    Robotic radiosurgery system has been increasingly employed for extracranial treatments. This work is aimed to study the feasibility of a cylindrical diode array and a planar ion chamber array for patient-specific QA with this robotic radiosurgery system and compare their performance. Fiducial markers were implanted in both systems to enable image-based setup. An in-house program was developed to postprocess the movie file of the measurements and apply the beam-by-beam angular corrections for both systems. The impact of noncoplanar delivery was then assessed by evaluating the angles created by the incident beams with respect to the two detector arrangements and cross-comparing the planned dose distribution to the measured ones with/without the angular corrections. The sensitivity of detecting the translational (1-3 mm) and the rotational (1°-3°) delivery errors were also evaluated for both systems. Six extracranial patient plans (PTV 7-137 cm³) were measured with these two systems and compared with the calculated doses. The plan dose distributions were calculated with ray-tracing and the Monte Carlo (MC) method, respectively. With 0.8 by 0.8 mm² diodes, the output factors measured with the cylindrical diode array agree better with the commissioning data. The maximum angular correction for a given beam is 8.2% for the planar ion chamber array and 2.4% for the cylindrical diode array. The two systems demonstrate a comparable sensitivity of detecting the translational targeting errors, while the cylindrical diode array is more sensitive to the rotational targeting error. The MC method is necessary for dose calculations in the cylindrical diode array phantom because the ray-tracing algorithm fails to handle the high-Z diodes and the acrylic phantom. For all the patient plans, the cylindrical diode array/ planar ion chamber array demonstrate 100% / > 92% (3%/3 mm) and > 96% / ~ 80% (2%/2 mm) passing rates. The feasibility of using both systems for robotic radiosurgery system patient-specific QA has been demonstrated. For gamma evaluation, 2%/2 mm criteria for cylindrical diode array and 3%/3 mm criteria for planar ion chamber array are suggested. The customized angular correction is necessary as proven by the improved passing rate, especially with the planar ion chamber array system. PMID:26219013

  10. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  11. Optical frequency domain reflectometry based fiber Bragg grating vibration sensor array using sinusoidal current modulation of laser diodes

    NASA Astrophysics Data System (ADS)

    Wada, Atsushi; Tanaka, Satoshi; Takahashi, Nobuaki

    2015-09-01

    We present multipoint vibration sensing using fiber Bragg gratings and optical frequency domain refrectometry (OFDR). In OFDR based method, the maximum number of arrayed sensor can be few thousands and the measurement time is determined by wavelength scanning rate of a light source. In our sensor system, a laser diode is used as a wavelength scanning light source. Lasing wavelength of a laser diode can be modulated by changing its injection current. The injection current can be precisely modulated at high frequency up to 1 MHz using a laser-diode controller and wavelength scanning can be then easily achieved with a laser diode.

  12. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode

    SciTech Connect

    Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung; Kim, Byeong-Hyeok; Tu, C. W.; Park, Seong-Ju

    2014-02-03

    We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

  13. Characteristics of deep ultraviolet AlGaN-based light emitting diodes with p-hBN layer

    NASA Astrophysics Data System (ADS)

    Dong, K. X.; Chen, D. J.; Shi, J. P.; Liu, B.; Lu, H.; Zhang, R.; Zheng, Y. D.

    2016-01-01

    The AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with p-hBN layer are investigated numerically. In comparison with the conventional AlGaN DUV LEDs, the proposed LED can significantly improve the carrier injection, radiative efficiency, as well as the electroluminescence (EL) intensity under the same applied forward bias. Simultaneously, the light extraction efficiency in the LED using p-hBN instead of p-AlGaN exhibits a more than 250% increase at the applied voltage of 7.5 V due to the smaller loss of reflection and absorption of the emitted light.

  14. Collimating diode laser beams from a large-area VCSEL-array using microlens array

    SciTech Connect

    Chen, H.L.; Francis, D.; Nguyen, T.; Yuen, W.; Li, G.; Chang-Hasnain, C.

    1999-05-01

    In this letter, the authors demonstrate the fabrication and bonding of a 1 cm {times} 1 cm monolithic two-dimensional (2-D) vertical-cavity surface-emitting laser (VCSEL) array. They coupled the array to a matched microlens array to individually collimate light from each laser. They found the beam divergence of the collimated array to be 1.6{degree} (1/e{sup 2}) for the entire array. Using a 1-cm diameter F2 lens, they were able to focus the collimated beams to a spot of 400 {micro}m in diameter and to couple more than 75% of the array power into a 1-mm core fiber. The results show that it is possible to uniformly bond large area VCSEL arrays to heat sinks, and to collimate light from each element into parallel beams using a single 2-D microlens array. The results also show that the brightness of the focused beam can be further increased with a lens to near 10{sup 5}-W/cm{sup 2} Steradian, a level that is useful for many high-power applications.

  15. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    PubMed Central

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald

    2015-01-01

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively scattered proton beams. Variations in MapCHECK’s dose response with increasing levels of total accumulated radiation dose should be carefully monitored. PMID:26264024

  16. Development of ultraviolet electroabsorption modulators and light emitting diodes based on AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Kao, Chen-Kai

    The research in this dissertation addressed the development of ultraviolet (UV) electroabsorption modulators and ultraviolet light emitting diodes (UV-LEDs), covering the spectral range from 360 to 265 nm. The materials system for both types of devices is the AlGaN alloys, either in bulk or quantum well (QW) form, grown by plasma-assisted molecular beam epitaxy (MBE). Potential applications of these devices either individually or in combination include UV non-line-of-sight free-space-optical communications, UV sensing and spectroscopic systems, Q-switched pulsed lasers, water/air purification and various medical applications. Optical modulators based on cubic III-V semiconductors have been the subject of extensive research over the past several years. Such devices are typically based on the quantum-confined Stark effect to modify the absorption spectrum of multiple-quantum-well active regions. On the other hand, in wurtzite III-Nitride semiconductors, strong electric fields are already present in the quantum wells due to intrinsic and piezoelectric polarizations; as a result, an even greater change in absorption is achievable, especially if the internal fields are compensated by the external bias so that the net field in the quantum wells is reduced. A number of UV electroabsorption modulators based on Schottky barriers on bulk GaN and GaN /AlGaN multiple quantum wells (MQWs) were designed, fabricated and characterized. Record modulation ratio of 30 % was obtained from bulk GaN Schottky barrier modulators at the excitonic resonant energy of 3.45 eV (360 nm) upon the application of 12 V reverse bias. Similarly, record modulation ratio of 43% was obtained from GaN / AlGaN MQWs Schottky barrier modulators at the excitonic resonant energy of 3.48 eV (356 nm) upon the application of 17 V reverse bias. The external quantum efficiency (EQE) of AlGaN based deep UV LEDS is relatively low (˜1% at 270 nm). This is generally attributed to the poor internal quantum efficiency (IQE) of this material system due to the high concentration of line and point defects. In the current work the deep UV-LED structures were grown on inexpensive and widely available sapphire substrates, which resulted in materials with dislocation density of 1010 cm-2. To prevent the non-radiative recombination of the injected electron-hole pairs, the active region of the devices were grown under conditions which lead to band structure potential fluctuations, which lead to exciton localization and thus efficient radiative recombination. Using such a growth method AlGaN MQWs emitting at 265 nm with an IQE as high as 58.8% were demonstrated. Using such QWs a number UV LEDs emitting in the spectral region from 340 to 265 nm were fabricated and evaluated at the die level. A number of milliwatt output power LEDs emitting at 280 nm were demonstrated.

  17. Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis

    NASA Technical Reports Server (NTRS)

    Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.

    2011-01-01

    The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  18. Airborne intercomparison of vacuum ultraviolet fluorescence and tunable diode laser absorption measurements of tropospheric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Holloway, John S.; Jakoubek, Roger O.; Parrish, David D.; Gerbig, Christoph; Volz-Thomas, Andreas; Schmitgen, Sandra; Fried, Alan; Wert, Brian; Henry, Bruce; Drummond, James R.

    2000-01-01

    During the fall 1997 North Atlantic Regional Experiment (NARE 97), two separate intercomparisons of aircraft-based carbon monoxide measurement instrumentation were conducted. On September 2, CO measurements were simultaneously made aboard the National Oceanic and Atmospheric Administration (NOAA) WP-3 by vacuum ultraviolet (VUV) fluorescence and by tunable diode laser absorption spectroscopy (TDLAS). On September 18, an intercomparison flight was conducted between two separate instruments, both employing the VUV fluorescence method, on the NOAA WP-3 and the U.K. Meteorological Office C-130 Hercules. The results indicate that both of the VUV fluorescence instruments and the TDLAS system are capable of measuring ambient CO accurately and precisely with no apparent interferences in 5 s. The accuracy of the measurements, based upon three independent calibration systems, is indicated by the agreement to within 11% with systematic offsets of less than 1 ppbv. In addition, one of the groups participated in the Measurement of Air Pollution From Satellite (MAPS) intercomparison [Novelli et al., 1998] with a different measurement technique but very similar calibration system, and agreed with the accepted analysis to within 5%. The precision of the measurements is indicated by the variability of the ratio of simultaneous measurements from the separate instruments. This variability is consistent with the estimated precisions of 1.5 ppbv and 2.2 ppbv for the 5 s average results of the C-130 and the WP-3 instruments, respectively, and indicates a precision of approximately 3.6% for the TDLAS instrument. The excellent agreement of the instruments in both intercomparisons demonstrates that significant interferences in the measurements are absent in air masses that ranged from 7 km in the midtroposphere to boundary layer conditions including subtropical marine air and continental outflow with embedded urban plumes. The intercomparison of the two VUV instruments that differed widely in their design indicates that the VUV fluorescence technique for CO measurements is not particularly sensitive to the details of its implementation. These intercomparisons help to establish the reliability of ambient CO measurements by the VUV fluorescence technique.

  19. A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.

  20. Detector arrays for photometric measurements at soft X-ray, ultraviolet and visible wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Mount, G. H.; Bybee, R. L.

    1979-01-01

    The construction and modes of operation of the Multi-Anode Microchannel Array (MAMA) detectors are described, and the designs of spectrometers utilizing them are outlined. MAMA consists of a curved microchannel array plate, an opaque photocathode (peak quantum efficiency of 19% at 1216 A), and a multi-anode (either discrete- or coincidence-anode) readout array. Designed for use in instruments on spaceborne telescopes, MAMA can be operated in a windowless configuration in extreme-ultraviolet and soft X-ray wavelengths, or in a sealed configuration at UV and visible wavelengths. Advantages of MAMA include low applied potential (less than 3.0 kV), high gain (greater than 10 to the 6th electrons/pulse), low sensitivity to high-energy charged particles, and immunity to external magnetic fields of less than 500 Gauss

  1. A digital optical phase-locked loop for diode lasers based on field programmable gate array.

    PubMed

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers. PMID:23020359

  2. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  3. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    SciTech Connect

    Xu Zhouxiang; Zhang Xian; Huang Kaikai; Lu Xuanhui

    2012-09-15

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  4. Numerical analysis of the beam quality and spectrum of wavelength-beam-combined laser diode arrays

    NASA Astrophysics Data System (ADS)

    Tang, Xuan; Wang, Xiao-Jun; Ke, Wei-Wei

    2015-02-01

    In this paper, a numerical model is presented to simulation the performance of the wavelength-beam-combined laser diode arrays (LDA) system. The eigen mode expansion method is used to describe the two-dimensional optical amplification and the strength of field feedback of external cavity. To describe the mode competition in laser diodes, the gain saturation effect is considered. The two-dimension distributions of the carrier concentration, recombination rates, and optical gain are calculated for solving the laser dynamic equation. The Fresnel integration, grating equation and mode overlap integration are used to obtain the feedback coefficient of extent cavity diffraction. Quantum noise is considered to evaluate the spectral linewidth of semiconductor laser. Based on the numerical model, the impact of the mutual optical feedback on the beam quality and spectrum of the LDA is present and analysis.

  5. Lateral beam steering in mutual injection coupled Y-branch grating-surface-emitting diode laser arrays

    SciTech Connect

    Hammer, J.M.; Evans, G.A.; Carlson, N.W.; Bour, D.P.; Lurie, M.; Palfrey, S.L.; Amantea, R.; Liew, S.K.; Carr, L.A.; James, E.A.; Kirk, J.B.; Reichert, W.F. )

    1990-01-15

    We have observed lateral electronic beam steering of light emitted by monolithic, two-dimensional, grating-surface-emitting, mutually injection coupled arrays of diode lasers in the AlGaAs/GaAs system. Positionally staggered Y-branch subarrays are optically connected through pumped waveguides which provide the required phase shift. These observations taken in conjunction with previously reported work on steering such arrays in the longitudinal direction now demonstrate, for the first time, monolithic, two-dimensional-coherent-diode-laser arrays that may be electronically steered in two orthogonal directions.

  6. Multi-spectral solar telescope array IV; The soft x-ray and extreme ultraviolet filters

    SciTech Connect

    Lindblom, J.F.; O'Neal, R.H.; Walker, A.B.C. Jr. ); Powell, F.R. ); Barbee, T.W. Jr. ); Hoover, R.B. ); Powell, S.F. )

    1991-08-01

    The multilayer mirrors used in the normal-incidence optical systems of the Multi-Spectral Solar Telescope Array (MSSTA) are efficient reflectors for soft x-ray/extreme ultraviolet (EUV) radiation at wavelengths that satisfy the Bragg condition, thus allowing a narrow band of the soft x-ray/EUV spectrum to be isolated. However, these same mirrors are also excellent reflectors in the visible, ultraviolet, and far-ultraviolet (FUV) part of the spectrum, where normal incidence reflectivities can exceed 50%. Furthermore, the sun emits far more radiation in the ultraviolet and visible part of the spectrum than it does in the soft x-ray/EUV. For this reason, thin foil filters are employed to eliminate the unwanted longer wavelength solar emission. The MSSTA instrument uses various combinations of thin foil filters composed of aluminum carbon, tellurium, potassium bromide, beryllium, molybdenum, rhodium, and phthalocyanine to achieve the desired radiation rejection characteristics. In this paper, the authors discuss issues concerning the design, manufacture, and predicted performance of MSSTA filters.

  7. Quantitative Detection of Combustion Species using Ultra-Violet Diode Lasers

    NASA Technical Reports Server (NTRS)

    Pilgrim, J. S.; Peterson, K. A.

    2001-01-01

    Southwest Sciences is developing a new microgravity combustion diagnostic based on UV diode lasers. The instrument will allow absolute concentration measurements of combustion species on a variety of microgravity combustion platforms including the Space Station. Our approach uses newly available room temperature UV diode lasers, thereby keeping the instrument compact, rugged and energy efficient. The feasibility of the technique was demonstrated by measurement of CH radicals in laboratory flames. Further progress in fabrication technology of UV diode lasers at shorter wavelengths and higher power will result in detection of transient species in the deeper UV. High sensitivity detection of combustion radicals is provided with wavelength modulation absorption spectroscopy.

  8. Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo

    2010-04-01

    High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

  9. 11.5 W pulsed operation of antiguided laser diode array

    NASA Technical Reports Server (NTRS)

    Major, J. S., Jr.; Mehuys, D.; Welch, D. F.

    1992-01-01

    A 40-element array of antiguided laser diodes was constructed, which produced a peak power of 11.5 W in an in-phase radiation pattern. The laser has a threshold current of 0.5 A and a differential efficiency of 50 percent. It achieves the output power of 11.5 W at an input current of 18 A. The FWHM of the central lobe of the device at the output power of 11.5 W is 1.0 deg.

  10. Near-infrared compressive line sensing imaging system using individually addressable laser diode array

    NASA Astrophysics Data System (ADS)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Sue; Britton, Walter

    2015-05-01

    The compressive line sensing (CLS) active imaging system was proposed and validated through a series of test-tank experiments. As an energy-efficient alternative to the traditional line-scan serial image, the CLS system will be highly beneficial for long-duration surveillance missions using unmanned, power-constrained platforms such as unmanned aerial or underwater vehicles. In this paper, the application of an active spatial light modulator (SLM), the individually addressable laser diode array, in a CLS imaging system is investigated. In the CLS context, active SLM technology can be advantageous over passive SLMs such as the digital micro-mirror device. Initial experimental results are discussed.

  11. QCW diode array reliability at 80x and 88x nm

    NASA Astrophysics Data System (ADS)

    Feeler, Ryan; Junghans, Jeremy; Levy, Joseph; Schnurbusch, Don; Stephens, Ed

    2011-03-01

    Northrop Grumman Cutting Edge Optronics (NGCEO) has recently developed high-power laser diode arrays specifically for long-life operation in quasi-CW applications. These arrays feature a new epitaxial wafer design that utilizes a large optical cavity and are packaged using AuSn solder and CTE-matched heat sinks. This work focuses on life test matrix of multiple epitaxial structures, multiple wavelengths, and multiple drive currents. Particular emphasis is given to the 80x and 88x wavelength bands running at 100-300 Watts per bar. Reliable operating points are identified for various applications including range finding (product lifetimes less than 1 billion shots) and industrial machining (product lifetimes greater than 20 billion shots). In addition to life test data, a summary of performance data for each epitaxial structure and each bar design is also presented.

  12. Elimination of deionized cooling water requirement for microchannel-cooled laser diode arrays

    NASA Astrophysics Data System (ADS)

    Feeler, Ryan; Coleman, Steve; Levy, Joe; Stephens, Ed

    2007-02-01

    Northrop Grumman / Cutting Edge Optronics has developed three designs for microchannel-cooled laser diode arrays in which the coolant is electrically isolated from the current path. As a result, these arrays do not require the use of deionized water. The thermal performance of two of these designs is presented and, in one case, shown to far exceed the performance of standard copper microchannel-cooled packages. Also presented is a microchannel cooler made from ceramic material. This design leverages existing technology to create a low-cost, high-performance alternative to copper-based microchannel coolers. This approach offers the greatest promise for future development due to the vast assortment of existing capabilities that have already been developed for similar ceramic structures used in the electronics industry.

  13. Arrays of high quality SAM-based junctions and their application in molecular diode based logic.

    PubMed

    Wan, Albert; Suchand Sangeeth, C S; Wang, Lejia; Yuan, Li; Jiang, Li; Nijhuis, Christian A

    2015-12-14

    This paper describes a method to fabricate a microfluidic top-electrode that can be utilized to generate arrays of self-assembled monolayer (SAM)-based junctions. The top-electrodes consist of a liquid-metal of GaOx/EGaIn mechanically stabilized in microchannels and through-holes in polydimethylsiloxane (PDMS); these top-electrodes form molecular junctions by directly placing them onto the SAM supported by template-stripped (TS) Ag or Au bottom-electrodes. Unlike conventional techniques to form multiple junctions, our method does not require lithography to pattern the bottom-electrode and is compatible with TS bottom-electrodes, which are ultra-flat with large grains, free from potential contamination of photoresist residues, and do not have electrode-edges where the molecules are unable to pack well. We formed tunneling junctions with n-alkanethiolate SAMs in yields of ∼80%, with good reproducibility and electrical stability. Temperature dependent J(V) measurements indicated that the mechanism of charge transport across the junction is coherent tunneling. To demonstrate the usefulness of these junctions, we formed molecular diodes based on SAMs with Fc head groups. These junctions rectify currents with a rectification ratio R of 45. These molecular diodes were incorporated in simple electronic circuitry to demonstrate molecular diode-based Boolean logic. PMID:26537895

  14. A ten-element array of individually addressable channeled-substrate-planar AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Bednarz, J. P.; Harvey, M. G.; Dinkel, N. A.

    1987-01-01

    The fabrication of arrays of channeled-substrate-planar (CSP) AlGaAs diode lasers which emit up to 150 mW CW in a single spatial mode and are applicable to mulitchannel optical recording systems is described. The CSP diode lasers are incorporated in ten-array geometry, and each array is 1.95 nm in width and 100 microns in thickness and is cleaved to have a cavity length of 200 microns and coated to produce 90-percent reflectivity on the back facet and 10-percent reflectivity on the front facet. The array is attached to a thermoelectrically cooled submount. The optical output power versus input current characteristics for the array are evaluated, and the lateral far-field intensity profiles for each of the lasers (at 30 mW CW) and CW spectra of the lasers are analyzed.

  15. Calibration and linearity verification of capacitance type cryo level indicators using cryogenically multiplexed diode array

    NASA Astrophysics Data System (ADS)

    Karunanithi, R.; Jacob, Subhash; Singh Gour, Abhay Singh; Das, M.; Nadig, D. S.; Prasad, M. V. N.

    2012-06-01

    In space application the precision level measurement of cryogenic liquids in the storage tanks is done using triple redundant capacitance level sensor, for control and safety point of view. The linearity of each sensor element depends upon the cylindricity and concentricity of the internal and external electrodes. The complexity of calibrating all sensors together has been addressed by two step calibration methodology which has been developed and used for the calibration of six capacitance sensors. All calibrations are done using Liquid Nitrogen (LN2) as a cryogenic fluid. In the first step of calibration, one of the elements of Liquid Hydrogen (LH2) level sensor is calibrated using 700mm eleven point discrete diode array. Four wire method has been used for the diode array. Thus a linearity curve for a single element of LH2 is obtained. In second step of calibration, using the equation thus obtained for the above sensor, it is considered as a reference for calibrating remaining elements of the same LH2 sensor and other level sensor (either Liquid Oxygen (LOX) or LH2). The elimination of stray capacitance for the capacitance level probes has been attempted. The automatic data logging of capacitance values through GPIB is done using LabVIEW 8.5.

  16. Evaluation of a 3D Diode Array Dosimeter for Helical Tomotherapy Delivery QA

    SciTech Connect

    Feygelman, Vladimir; Opp, D.; Javedan, K.; Saini, A.J.; Zhang, G.

    2010-01-01

    The Delta4 biplanar diode array dosimeter was validated for helical tomotherapy delivery QA. The basic detector characteristics were found to be satisfactory in terms of short-term reproducibility (0.1%), linearity (<0.1%), dose rate dependence (0.4%), and absolute calibration accuracy (0.4% in the center of the phantom compared with the independently calibrated diode). Relative calibration of the arrays was verified by comparison with film and by rotating the detector 180{sup o}. The dosimeter response to rotational irradiation changed by no more than 0.2% when one of the detector boards was replaced by the homogeneous phantom material. The daily output correction factor can be derived from a Delta4 measurement in a uniform cylindrical field. The {gamma}(3%, 3 mm) passing rate (absolute dose) was above 90% for all 9 evaluated clinical plans, and above 96% for all but one. The mean passing rate was 97 {+-} 2.7%. The plans varied in modulation factor, pitch, and calculation grid size. For best results, the phantom needs to be aligned carefully, preferably by megavoltage computed tomography imaging.

  17. Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1975-01-01

    The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

  18. Novel efficient compact package of high-power laser diode arrays with a single-piece copper microchannel heat sink cooling

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Liao, Xinsheng; Tang, Yuxia; Yao, Shun; Cheng, Dongming; Yao, Di; Ning, Yongqiang; Wang, Lijun

    2004-05-01

    Novel efficient and compact package of high power laser diode arrays with single piece microchannel heatsink cooling was designed. The width of microchannel was optimized by theoretic analysis. Using single piece microchannel heatsink we manufactured 5 bars high power laser diode stack and obtained 40W CW output, the lifetime of laser diode stack was more than 5000 hours.

  19. Highly efficient, spectrally pure 340 nm ultraviolet emission from AlxGa?-xN nanowire based light emitting diodes.

    PubMed

    Wang, Q; Connie, A T; Nguyen, H P T; Kibria, M G; Zhao, S; Sharif, S; Shih, I; Mi, Z

    2013-08-30

    High crystal quality, vertically aligned AlxGa1-xN nanowire based double heterojunction light emitting diodes (LEDs) are grown on Si substrate by molecular beam epitaxy. Such AlxGa1-xN nanowires exhibit unique core-shell structures, which can significantly suppress surface nonradiative recombination. We successfully demonstrate highly efficient AlxGa1-xN nanowire array based LEDs operating at ?340 nm. Such nanowire devices exhibit superior electrical and optical performance, including an internal quantum efficiency of ?59% at room temperature, a relatively small series resistance, highly stable emission characteristics, and the absence of efficiency droop under pulsed biasing conditions. PMID:23899873

  20. Efficiency of transverse pumping of a solid-state pulsed Nd:YAG laser by laser diode arrays

    SciTech Connect

    Abazadze, Aleksandr Yu; Zverev, Georgii M; Kolbatskov, Yurii M

    2002-03-31

    A Nd{sup 3+}:YAG laser with a cylindrical active element transversely pumped by quasi-continuous laser-diode arrays located around its side surface is studied experimentally. The developed pumping modules with symmetric and asymmetric geometries provide the differential efficiency of 48% and 55% for multimode free-running lasing upon pumping of elements of diameter 3 and 5 mm, respectively. Under the conditions corresponding to this efficiency of utilisation of radiation emitted by laser diode arrays, laser pulses with energy of 28 and 55 mJ are generated in the Q-switching mode.

  1. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  2. Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures

    NASA Astrophysics Data System (ADS)

    Djavid, Mehrdad; Mi, Zetian

    2016-02-01

    The performance of conventional AlGaN deep ultraviolet light emitting diodes has been limited by the extremely low light extraction efficiency (<10%), due to the unique transverse magnetic (TM) polarized light emission. Here, we show that, by exploiting the lateral side emission, the extraction efficiency of TM polarized light can be significantly enhanced in AlGaN nanowire structures. Using the three-dimensional finite-difference time domain simulation, we demonstrate that the nanowire structures can be designed to inhibit the emission of guided modes and redirect trapped light into radiated modes. A light extraction efficiency of more than 70% can, in principle, be achieved by carefully optimizing the nanowire size, nanowire spacing, and p-GaN thickness.

  3. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    SciTech Connect

    Wu, Y.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.; Hasan, T.

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecture offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.

  4. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    SciTech Connect

    Lu, Yu-Hsuan; Pilkuhn, Manfred H.; Fu, Yi-Keng; Chu, Mu-Tao; Huang, Shyh-Jer E-mail: totaljer48@gmail.com; Su, Yan-Kuin E-mail: totaljer48@gmail.com; Wang, Kang L.

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  5. Characterization of biological materials by frequency-domain fluorescence lifetime measurements using ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Žukauskas, A.; Vitta, P.; Kurilčik, N.; Juršėnas, S.; Bakienė, E.

    2008-01-01

    Recently developed deep-ultraviolet light-emitting diodes (UV LEDs) emit at wavelengths short enough to excitate fluorescence in most biological autofluorophores. We demonstrate the possibility of harmonical modulation of the output of group-III-nitride based UV LEDs ranging from 255 to 375 nm at frequencies up to 200 MHz. This enables the application of UV LEDs for frequency-domain fluorescence lifetime sensing with subnanosecond resolution. We report on measurements of fluorescence decay time in common biofluorophores (tyrosine, tryptophan, NADPH, NADH, collagen, DPA, elastin and riboflavin) using commercially available UV LEDs. We demonstrate the capacity of a multichannel LED-based frequency-resolved measurement technique to discriminate between Bacillus globigii and a variety of ambient interferants such as diesel fuel, paper, cotton, dust, etc.

  6. Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes.

    PubMed

    Dong, Peng; Yan, Jianchang; Zhang, Yun; Wang, Junxi; Geng, Chong; Zheng, Haiyang; Wei, Xuecheng; Yan, Qingfeng; Li, Jinmin

    2014-03-10

    Nanopillar AlGaN/GaN multiple quantum wells ultraviolet light-emitting diodes (LEDs) were fabricated by nanosphere lithography and dry-etching. The optical properties of the nanopillar LEDs were characterized by both temperature-dependent and time-resolved photoluminescence measurements. Compared to an as-grown sample, the nanopillar sample has a PL emission peak blue-shift of 7 meV, a 42% enhanced internal quantum efficiency at room temperature and a reduced radiative recombination lifetime from 870 picosecond to 621 picosecond at 7K. These results are directly from the suppressed quantum confined stark effect that is due to the strain relaxation in the nanopillar MQWs, further revealed by micro-Raman measurement. Additionally, finite-difference time domain simulation also proves better light extraction efficiency in the nanopillar LEDs. PMID:24922241

  7. Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes.

    PubMed

    Dong, Peng; Yan, Jianchang; Zhang, Yun; Wang, Junxi; Geng, Chong; Zheng, Haiyang; Wei, Xuecheng; Yan, Qingfeng; Li, Jinmin

    2014-03-10

    Nanopillar AlGaN/GaN multiple quantum wells ultraviolet light-emitting diodes (LEDs) were fabricated by nanosphere lithography and dry-etching. The optical properties of the nanopillar LEDs were characterized by both temperature-dependent and time-resolved photoluminescence measurements. Compared to an as-grown sample, the nanopillar sample has a PL emission peak blue-shift of 7 meV, a 42% enhanced internal quantum efficiency at room temperature and a reduced radiative recombination lifetime from 870 picosecond to 621 picosecond at 7K. These results are directly from the suppressed quantum confined stark effect that is due to the strain relaxation in the nanopillar MQWs, further revealed by micro-Raman measurement. Additionally, finite-difference time domain simulation also proves better light extraction efficiency in the nanopillar LEDs. PMID:24800288

  8. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    NASA Astrophysics Data System (ADS)

    Reich, Christoph; Guttmann, Martin; Feneberg, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian; Rass, Jens; Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus; Goldhahn, Rüdiger; Kneissl, Michael

    2015-10-01

    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented AlxGa1-xN multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in AlxGa1-xN. Using k ṡ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  9. Advantages of AlGaN-based deep ultraviolet light-emitting diodes with a superlattice electron blocking layer

    NASA Astrophysics Data System (ADS)

    Sun, Pai; Bao, Xianglong; Liu, Songqing; Ye, Chunya; Yuan, Zhaorong; Wu, Yukun; Li, Shuping; Kang, Junyong

    2015-09-01

    The properties of 298 nm AlGaN based deep ultraviolet light-emitting diodes (UV LEDs) with different Al mole compositions in the conventional electron blocking layer (EBL) are discussed in this paper, the optimal Al mole composition of the conventional EBL is identified at 0.8. The improved structure with an AlGaN/AlGaN superlattice (SL) electron blocking layer (EBL) was then investigated numerically. The electrical and optical properties, band diagrams, carrier concentrations, radiative recombination rates and internal quantum efficiency (IQE) were investigated by APSYS software, and results show that the deep UV LED with superlattice EBL performed much better than the conventional EBL deep UV LED, attributed to reduced electrons leakage and increased holes injection.

  10. Investigation of Light Extraction Efficiency in AlGaN Deep-Ultraviolet Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Ryu, Han-Youl; Choi, Il-Gyun; Choi, Hyo-Sik; Shim, Jong-In

    2013-06-01

    Light extraction efficiency (LEE) in AlGaN deep-ultraviolet (DUV) light-emitting diodes (LEDs) is investigated using finite-difference time-domain simulations. For flip-chip and vertical LED structures, LEE is obtained to be <10% due to strong DUV light absorption in the p-GaN layer. In flip-chip LEDs, LEE of transverse-magnetic (TM) modes is found to be more than ten times smaller than that of transverse-electric (TE) modes, which explains the decreasing behavior of external quantum efficiency of DUV LEDs with decreasing wavelength. It is also found that vertical LED structures can have advantages over flip-chip structures for increasing LEE in the TM mode.

  11. A fiber optic, ultraviolet light-emitting diode-based, two wavelength fluorometer for monitoring reactive adsorption

    NASA Astrophysics Data System (ADS)

    Granz, Christopher D.; Schindler, Bryan J.; Peterson, Gregory W.; Whitten, James E.

    2016-03-01

    Construction and use of an ultraviolet light-emitting diode-based fluorometer for measuring photoluminescence (PL) from powder samples with a fiber optic probe is described. Fluorescence at two wavelengths is detected by miniature photomultiplier tubes, each equipped with a different band pass filter, whose outputs are analyzed by a microprocessor. Photoluminescent metal oxides and hydroxides, and other semiconducting nanoparticles, often undergo changes in their emission spectra upon exposure to reactive gases, and the ratio of the PL intensities at two wavelengths is diagnostic of adsorption. Use of this instrument for reactive gas sensing and gas filtration applications is illustrated by measuring changes in the PL ratio for zirconium hydroxide and zinc oxide particles upon exposure to air containing low concentrations of sulfur dioxide.

  12. A fiber optic, ultraviolet light-emitting diode-based, two wavelength fluorometer for monitoring reactive adsorption.

    PubMed

    Granz, Christopher D; Schindler, Bryan J; Peterson, Gregory W; Whitten, James E

    2016-03-01

    Construction and use of an ultraviolet light-emitting diode-based fluorometer for measuring photoluminescence (PL) from powder samples with a fiber optic probe is described. Fluorescence at two wavelengths is detected by miniature photomultiplier tubes, each equipped with a different band pass filter, whose outputs are analyzed by a microprocessor. Photoluminescent metal oxides and hydroxides, and other semiconducting nanoparticles, often undergo changes in their emission spectra upon exposure to reactive gases, and the ratio of the PL intensities at two wavelengths is diagnostic of adsorption. Use of this instrument for reactive gas sensing and gas filtration applications is illustrated by measuring changes in the PL ratio for zirconium hydroxide and zinc oxide particles upon exposure to air containing low concentrations of sulfur dioxide. PMID:27036833

  13. Ultraviolet laser quantum well intermixing based prototyping of bandgap tuned heterostructures for the fabrication of superluminescent diodes

    NASA Astrophysics Data System (ADS)

    Beal, Romain; Moumanis, Khalid; Aimez, Vincent; Dubowski, Jan J.

    2016-04-01

    The ultraviolet laser induced quantum well intermixing process has been investigated for prototyping of multiple bandgap quantum well (QW) wafers designed for the fabrication of superluminescent diodes (SLDs). The process takes advantage of a krypton fluoride excimer laser (λ=248 nm) that by irradiating an InP layer capping GaInAs/GaInAsP QW heterostructure leads to the modification of its surface chemical composition and formation of point defects. A subsequent rapid thermal annealing step results in the selective area intermixing of the investigated heterostructures achieving a high quality bandgap tuned material for the fabrication of broad spectrum SLDs. The devices made from a 3-bandgap material are characterized by ~100 nm wide emission spectra with relatively flat profiles and emission exceeding 1 mW.

  14. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Hasan, T.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.

    2015-02-01

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecture offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.

  15. Fabrication of an optical lens array using ultraviolet light and ultrasonication.

    PubMed

    Taniguchi, Satoki; Koyama, Daisuke; Nakamura, Kentaro; Matsukawa, Mami

    2015-04-01

    A technique to form an optical lens array using an ultraviolet (UV)-curable resin and ultrasound was investigated. A UV-curable gel film was formed on a glass plate having four lead zirconate titanate (PZT) transducers. Excitation of the transducers generated a lattice flexural vibration mode on the glass plate. The acoustic radiation force acted to deform the surface of the gel film, so that a lens array could be fabricated on the gel film. The lens array was exposed to UV light under ultrasonication to cure the UV-curable film. The quality factor of the transducer resonance was decreased upon curing of the resin film because the cured resin dampened the vibration of the plate. The acoustic characteristics of the UV-curable gel film were measured by using an ultrasound pulse technique at the MHz range. The sound speed of the gel increased from 987 to 1006 m/s (increase of 1.9%) as the UV exposure time increased. The attenuation coefficient also increased and the larger attenuation of the resin caused the lens array to have a lower quality factor. PMID:25497498

  16. Evaluating dosimetric accuracy of flattening filter free compensator-based IMRT: Measurements with diode arrays

    SciTech Connect

    Robinson, Joshua; Opp, Daniel; Zhang, Geoffrey; Cashon, Ken; Kozelka, Jakub; Hunt, Dylan; Walker, Luke; Hoffe, Sarah; Shridhar, Ravi; Feygelman, Vladimir

    2012-01-15

    Purpose: Compensator-based IMRT coupled with the high dose rate flattening filter free (FFF) beams offers an intriguing possibility of delivering an intensity modulated radiation field in just a few seconds. As a first step, the authors evaluate the dosimetric accuracy of the treatment planning system (TPS) FFF beam model with compensators. Methods: A 6 MV FFF beam from a TrueBeam accelerator (Varian Medical Systems, Palo Alto CA) was modeled in PINNACLE TPS (v. 9.0, Philips Radiation Oncology, Fitchburg WI). Flat brass slabs from 0.3 to 7 cm thick and an 18 deg. brass wedge were used to adjust the beam model. A 2D (MAPCHECK) and 3D (ARCCHECK) diode arrays (Sun Nuclear Corp, Melbourne FL), were investigated for use with the compensator FFF beams. Corrections for diode sensitivity caused by the spectral changes in the beam were introduced. Four compensator plans based on the AAPM TG-119 report were developed. A composite ion chamber measurement, beam by beam MAPCHECK measurements, and a composite ARCCHECK measurement were performed. The array results were analyzed with the same thresholds as in TG-119 report--3%/3 mm with global dose normalization--as well as with the more stringent combinations of the gamma analysis criteria. Results: The FFF beam shows a greater variation of the effective attenuation coefficient with brass thickness due to the prevalence of the low energy photons compared to the conventional 6X beam. As a result, a compromise had to be made while trying to achieve dose agreement for a combination of field sizes, brass thicknesses, and measurement depths ({>=}5 cm in water). An agreement of measured and calculated dose to within 1% was observed for brass thicknesses up to 2 cm. For the 3 cm slab, an error of up to 2.8% was noted for the field sizes above 10 x 10 cm{sup 2}, and up to 3.8% for the 5 x 5 cm{sup 2} field. Both diode arrays exhibit a substantial sensitivity drop as the compensator thickness increases, reaching 10% for a 7 cm brass slab. A simple correction based on the brass thickness along the ray was introduced to counteract this effect. Pooled for five profiles, the average ratio of uncorrected and corrected MAPCHECK to ion chamber readings are 0.966 and 1.008, respectively. With the proper correction, all MAPCHECK measurement to calculation comparisons exhibit 100%{gamma}(3%/3 mm) passing rates with global dose-error normalization. For the TG-119-type plans, the average {gamma}(2%/2 mm) passing rate with local normalization is 94% (range 87.8%-98.3%). The lower ARCCHECK{gamma}-analysis passing rates (corrected for diode sensitivity) are predictable based on the observed PDD discrepancies. However, with the 3%/3 mm thresholds and global normalization, the average {gamma}-analysis passing rate is 96.4% (range 89.9%-100%). Conclusions: MAPCHECK analysis demonstrates high passing rates with the stringent {gamma}(2%/2 mm) and local normalization criteria combination. The geometry of the ARCCHECK array creates a stress test for the FFF TPS model because of the shallow depth of the entrance diodes and large air cavity. Hence, the ARCCHECK{gamma}-analysis passing rates are lower than with the MAPCHECK, while still on par with TG-119.

  17. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE PAGESBeta

    Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.

    2016-01-12

    In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  18. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    NASA Astrophysics Data System (ADS)

    Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.

    2016-01-01

    Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage is not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].

  19. Comparison of continuous versus pulsed ultraviolet light emitting diode use for the inactivation of Bacillus globigii spores.

    PubMed

    Tran, Tho; Racz, LeeAnn; Grimaila, Michael R; Miller, Michael; Harper, Willie F

    2014-01-01

    Light emitting diodes (LEDs) in the ultraviolet (UV) range offer a promising alternative for the disinfection of water. LEDs have many advantages over conventional UV lamps but there are concerns related to the operating life of the LED lamps. In this project Bacillus globigii was inactivated using UV LED technology. The experimental strategy included using pulsed ultraviolet (PUV) output rather than continuous UV (CUV) current in order to reduce the power requirements and extend the life of the lamps. The kinetic profiles for CUV experiments reached 6-log inactivation faster than PUV at 9.1% duty cycle (approx. 840 vs. 5,000 s) but the PUV required lower fluence (365 vs. 665 J/m²). In addition, the inactivation rate constants associated with PUV were generally higher than those of CUV (4.6-5.1 vs. 3.6-4.4 m²/J), which supports the notion that high energy bursts are more effective at causing cellular damage. Multi-target kinetics applied to most of the kinetic observations and tailing effects were generally observed. PUV LED appears to have potential to extend the lifetime of the LEDs for inactivation of spore-forming pathogens. PMID:25401310

  20. Far field beam pattern of one MW combined beam of laser diode array amplifiers for space power transmission

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.

    1989-01-01

    The far-field beam pattern and the power-collection efficiency are calculated for a multistage laser-diode-array amplifier consisting of about 200,000 5-W laser diode arrays with random distributions of phase and orientation errors and random diode failures. From the numerical calculation it is found that the far-field beam pattern is little affected by random failures of up to 20 percent of the laser diodes with reference of 80 percent receiving efficiency in the center spot. The random differences in phases among laser diodes due to probable manufacturing errors is allowed to about 0.2 times the wavelength. The maximum allowable orientation error is about 20 percent of the diffraction angle of a single laser diode aperture (about 1 cm). The preliminary results indicate that the amplifier could be used for space beam-power transmission with an efficiency of about 80 percent for a moderate-size (3-m-diameter) receiver placed at a distance of less than 50,000 km.

  1. Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power.

    PubMed

    Zhang, H X; Massoubre, D; McKendry, J; Gong, Z; Guilhabert, B; Griffin, C; Gu, E; Jessop, P E; Girkin, J M; Dawson, M D

    2008-06-23

    Micropixelated blue (470 nm) and ultraviolet (370 nm) AlInGaN light emitting diode ('micro-LED') arrays have been fabricated in flip-chip format with different pixel diameters (72 microm and 30 microm at, respectively, 100 and 278 pixels/mm(2)). Each micro-LED pixel can be individually-addressed and the devices possess a specially designed n-common contact incorporated to ensure uniform current injection and consequently uniform light emission across the array. The flip-chip micro-LEDs show, per pixel, high continuous output intensity of up to 0.55 microW/microm(2) (55 W/cm(2)) at an injection current density of 10 kA/cm(2) and can sustain continuous injection current densities of up to 12 kA/cm(2) before breakdown. We also demonstrate that nanosecond pulsed output operation of these devices with per pixel onaxis average peak intensity up to 2.9 microW/microm(2) (corresponding to energy of 45pJ per 22ns optical pulse) can be achieved. We investigate the pertinent performance characteristics of these arrays for micro-projection applications, including the prospect of integrated optical pumping of organic semiconductor lasers. PMID:18575561

  2. Arrays of high quality SAM-based junctions and their application in molecular diode based logic

    NASA Astrophysics Data System (ADS)

    Wan, Albert; Suchand Sangeeth, C. S.; Wang, Lejia; Yuan, Li; Jiang, Li; Nijhuis, Christian A.

    2015-11-01

    This paper describes a method to fabricate a microfluidic top-electrode that can be utilized to generate arrays of self-assembled monolayer (SAM)-based junctions. The top-electrodes consist of a liquid-metal of GaOx/EGaIn mechanically stabilized in microchannels and through-holes in polydimethylsiloxane (PDMS); these top-electrodes form molecular junctions by directly placing them onto the SAM supported by template-stripped (TS) Ag or Au bottom-electrodes. Unlike conventional techniques to form multiple junctions, our method does not require lithography to pattern the bottom-electrode and is compatible with TS bottom-electrodes, which are ultra-flat with large grains, free from potential contamination of photoresist residues, and do not have electrode-edges where the molecules are unable to pack well. We formed tunneling junctions with n-alkanethiolate SAMs in yields of ~80%, with good reproducibility and electrical stability. Temperature dependent J(V) measurements indicated that the mechanism of charge transport across the junction is coherent tunneling. To demonstrate the usefulness of these junctions, we formed molecular diodes based on SAMs with Fc head groups. These junctions rectify currents with a rectification ratio R of 45. These molecular diodes were incorporated in simple electronic circuitry to demonstrate molecular diode-based Boolean logic.This paper describes a method to fabricate a microfluidic top-electrode that can be utilized to generate arrays of self-assembled monolayer (SAM)-based junctions. The top-electrodes consist of a liquid-metal of GaOx/EGaIn mechanically stabilized in microchannels and through-holes in polydimethylsiloxane (PDMS); these top-electrodes form molecular junctions by directly placing them onto the SAM supported by template-stripped (TS) Ag or Au bottom-electrodes. Unlike conventional techniques to form multiple junctions, our method does not require lithography to pattern the bottom-electrode and is compatible with TS bottom-electrodes, which are ultra-flat with large grains, free from potential contamination of photoresist residues, and do not have electrode-edges where the molecules are unable to pack well. We formed tunneling junctions with n-alkanethiolate SAMs in yields of ~80%, with good reproducibility and electrical stability. Temperature dependent J(V) measurements indicated that the mechanism of charge transport across the junction is coherent tunneling. To demonstrate the usefulness of these junctions, we formed molecular diodes based on SAMs with Fc head groups. These junctions rectify currents with a rectification ratio R of 45. These molecular diodes were incorporated in simple electronic circuitry to demonstrate molecular diode-based Boolean logic. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05533d

  3. Indium-Tin Oxide/Al Reflective Electrodes for Ultraviolet Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Takehara, Kosuke; Takeda, Kenichiro; Ito, Shun; Aoshima, Hiroki; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu; Amano, Hiroshi

    2012-04-01

    We investigated indium-tin oxide (ITO)/Al reflective electrodes for improving the light extraction efficiency of UV light-emitting diodes (LEDs). The ITO layer showed high transparency in the UV region upon optimization of the thickness and annealing temperature. As a result, the ITO/Al electrode exhibited both high reflectivity in the UV region and good contact characteristics simultaneously. Using this electrode, we succeeded in improving the light output power of a 350 nm UV-A LED.

  4. Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture

    NASA Astrophysics Data System (ADS)

    Ji, Yongsung; Zeigler, David F.; Lee, Dong Su; Choi, Hyejung; Jen, Alex K.-Y.; Ko, Heung Cho; Kim, Tae-Wook

    2013-11-01

    Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.

  5. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics.

    PubMed

    Mazin, Benjamin A; Bumble, Bruce; Meeker, Seth R; O'Brien, Kieran; McHugh, Sean; Langman, Eric

    2012-01-16

    Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging. PMID:22274494

  6. High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank

    2006-01-01

    High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.

  7. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.

    PubMed

    Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

    2014-10-20

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint. PMID:25401669

  8. Determination of phenolic compounds in Prunella L. by liquid chromatography-diode array detection.

    PubMed

    Sahin, Saliha; Demir, Cevdet; Malyer, Hulusi

    2011-07-15

    Four species of Prunella L. (Prunella vulgaris L., Prunella laciniata L., Prunella grandiflora L. and Prunella orientalis Bornm.) belong to the family of Lamiaceae and representing popular Western and Chinese herbal medicine were examined for the content of phenolic compounds. Phenolic acids (rosmarinic acid, caffeic acid, ferulic acid, chlorogenic acid, protocatechuic acid), flavonoids (rutin, quercetin) in different quantitative proportions depending on extracts were determined by the rapid, selective and accurate method combining solvent/acid hydrolysis extraction and high performance liquid chromatography-diode array detection (HPLC-DAD). Water, methanol, butanol, acetonitrile, ethyl acetate, hexane and their acidic solutions were used to examine the efficiency of different solvent systems for the extraction of phenolic compounds. Acid hydrolysis extraction was established as the most suitable extraction method for phenolic compounds. PMID:21498022

  9. Tm,Ho:YLF laser end-pumped by a semiconductor diode laser array

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid (Inventor)

    1990-01-01

    An Ho:YLF crystal including Tm as sensitizers for the activator Ho, is optically pumped with a semiconductor diode laser array to generate 2.1 micron radiation with a pump power to output power of efficiency as high as 68 percent. The prior-art dual sensitizer system of Er and Tm requires cooling, such as by LN2, but by using Tm alone and decreasing the concentrations of Tm and Ho, and decreasing the length of the laser rod to about 1 cm, it has been demonstrated that laser operation can be obtained from a temperature of 77 K with an efficiency as high as 68 percent up to ambient room temperature with an efficiency at that temperature as high as 9 percent.

  10. Analysis of etorphine in postmortem samples by HPLC with UV diode-array detection.

    PubMed

    Elliott, S P; Hale, K A

    1999-04-12

    Etorphine is a synthetic narcotic analgesic usually used in veterinary medicine. It possesses an analgesic potency up to 1000 times greater than morphine and is therefore used in low doses, primarily for tranquilising large animals. For veterinary use, etorphine is usually available in its commercial formulation as Immobilon, when in combination with acepromazine or methotrimeprazine. Due to the potency of etorphine, only very low doses are required to produce adverse or fatal effects. This paper describes a method for detecting and quantifying etorphine using HPLC with UV diode array detection (HPLC-DAD) and demonstrates the advantage of the technique for the detection of Immobilon at low doses. In a forensic case involving Immobilon, the etorphine concentrations measured in postmortem femoral vein and heart blood specimens were 14.5 and 23.5 micrograms/l, respectively. No etorphine was detected in the urine. To our knowledge this is the first time postmortem etorphine concentrations have been reported. PMID:10376332

  11. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.

    2013-01-01

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  12. Spectral Linewidth Narrowing and Tunable Two-Color Laser Operation of Two Diode Laser Arrays

    SciTech Connect

    Liu, Bo; Braiman, Yehuda

    2012-01-01

    We propose and implement a common external cavity to narrow spectral linewidth of two broad-area laser diode arrays (LDAs) and align their center wavelengths. The locked center wavelength of two LDAs can be tuned in the range of {approx}10 nm by tuning the tilted angle of the diffraction grating. The output beams of two LDAs are spatially overlapped through the polarization beam splitter of the common external cavity, and the total output power equals the power of two LDAs. The center wavelength of each LDA can be independently tuned by shifting the corresponding fast-axis collimation lens. As a result, the high-power two-color LDA operation is demonstrated with the tunable wavelength difference of up to 2 nm ({approx}1 THz).

  13. Far-field pattern of a coherently combined beam from large-scale laser diode arrays

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.; Williams, Michael D.

    1991-01-01

    The far-field pattern of a large-scale amplifier array (LSAA) consisting of a large number (2000) of diode laser amplifiers is numerically simulated, and the power collection efficiencies are determined. Random distributions of phase mismatches, misorientations, and element failures in the LSAA system are considered. Phase mismatches and misorientations of the element amplifiers are found to be the most critical parameters of those affecting the power-collection efficiency. Errors of 0.2 wavelength and 25 percent for phase and diffraction angle, respectively, cause a 10 percent reduction in power-collection efficiency. The results are used to evaluate the concept of space-laser power transmission. It is found that an overall transmission efficiency of 80 percent could be realized with a 5-m-diam. receiver at a distance of 10,000 km when an LSAA transmitter 6 m in diam. is aimed with state-of-the-art pointing accuracy.

  14. High-performance thin layer chromatography using fiber optics and diode-array detection

    NASA Astrophysics Data System (ADS)

    Spangenberg, Bernd; Klein, Karl-Friedrich; Mannhardt, J.

    2002-06-01

    HPTLC (High Performance Thin Layer Chromatography) is a well known and versatile separation method which shows a lot of advantages and options in comparison to other separation techniques. The method is fast and inexpensive and does not need time-consuming pretreatments. Using fiber-optic elements for controlled light-guiding, the TLC-method was significantly improved: the new HPTLC-system is able to measure simultaneously at different wavelengths without destroying the plate surface or the analytes on the surface. For registration of the sample distribution on a HPTLC-plate we developed a new and sturdy diode-array HPTLC- scanner which allows registration of spectra on the TLC- plates in the range of 198 nm to 610 nm with a spectral resolution better than 1.2 nm. The spatial resolution on plate is better than 160 micrometers . In the spectral mode, the new HPTLC-scanner delivers much more information than the commonly used TLC-scanner. The measurement of 450 spectra of one separation track does not need more than three minutes. However, in the fixed wavelength mode the contour plot can be measured within 15 seconds. In this case, the signal will be summarized and averaged over a spectral range having FWHM from 10 nm to 25 nm depending on the substance under test. The new diode-array HPTLC-scanner makes various chemometric applications possible. The new method can be used easily in clinical diagnostic systems easily, e.g. for blood and uring investigations. In addition, new applications are possible. For example, the rich structured PAHs were studied. Although the separation is incomplete the 16 compounds can be quantified using suitable wavelengths.

  15. Coal liquefaction process streams characterization and evaluation: High performance liquid chromatography (HPLC) of coal liquefaction process streams using normal-phase separation with uv diode array detection

    SciTech Connect

    Clifford, D.J.; McKinney, D.E.; Hou, Lei; Hatcher, P.G.

    1994-01-01

    This study demonstrated the considerable potential of using two-dimensional, high performance liquid chromatography (HPLC) with normal-phase separation and ultraviolet (UV) diode array detection for the examination of filtered process liquids and the 850{degrees}F{sup {minus}} distillate materials derived from direct coal liquefaction process streams. A commercially available HPLC column (Hypersil Green PAH-2) provided excellent separation of the complex mixture of polynuclear aromatic hydrocarbons (PAHs) found in coal-derived process streams process. Some characteristics of the samples delineated by separation could be attributed to processing parameters. Mass recovery of the process derived samples was low (5--50 wt %). Penn State believes, however, that, improved recovery can be achieved. High resolution mass spectrometry and gas chromatography/mass spectrometry (GC/MS) also were used in this study to characterize the samples and the HPLC fractions. The GC/MS technique was used to preliminarily examine the GC-elutable portion of the samples. The GC/MS data were compared with the data from the HPLC technique. The use of an ultraviolet detector in the HPLC work precludes detecting the aliphatic portion of the sample. The GC/MS allowed for identification and quantification of that portion of the samples. Further development of the 2-D HPLC analytical method as a process development tool appears justified based on the results of this project.

  16. Quality assurance of asymmetric jaw alignment using 2D diode array

    SciTech Connect

    Kim, Sun Mo; Yeung, Ivan W. T.; Moseley, Douglas J.; Radiation Medicine Program, Princess Margaret Hospital Department of Radiation Oncology, University of Toronto, Ontario M5G 2M9

    2013-12-15

    Purpose: A method using a 2D diode array is proposed to measure the junction gap (or overlap) and dose with high precision for routine quality assurance of the asymmetric jaw alignment.Methods: The central axis (CAX) of the radiation field was determined with a 15 × 15 cm{sup 2} photon field at four cardinal collimator angles so that the junction gap (or overlap) can be measured with respect to the CAX. Two abutting fields having a field size of 15 cm (length along the axis parallel to the junction) × 7.5 cm (width along the axis perpendicular to the junction) were used to irradiate the 2D diode array (MapCHECK2) with 100 MU delivered at the photon energy of 6 MV. The collimator was slightly rotated at 15° with respect to the beam central axis to increase the number of diodes effective on the measurement of junction gap. The junction gap and dose measured in high spatial resolution were compared to the conventional methods using an electronic portal imaging device (EPID) and radiochromic film, respectively. In addition, the reproducibility and sensitivity of the proposed method to the measurements of junction gap and dose were investigated.Results: The junction gap (or overlap) and dose measured by MapCHECK2 agreed well to those measured by the conventional methods of EPID and film (the differences ranged from −0.01 to 0 cm and from −1.34% to 0.6% for the gap and dose, respectively). No variation in the repeat measurements of the junction gap was found whereas the measurements of junction dose were found to vary in quite a small range over the days of measurement (0.21%–0.35%). While the sensitivity of the measured junction gap to the actual junction gap applied was the ideal value of 1 cm/cm as expected, the sensitivity of the junction dose to the actual junction gap increased as the junction gap (or overlap) decreased (maximum sensitivity: 201.7%/cm).Conclusions: The initial results suggest that the method is applicable for a comprehensive quality assurance of the asymmetric jaw alignment.

  17. Optical injection and spectral filtering of high-power ultraviolet laser diodes.

    PubMed

    Schäfer, V M; Ballance, C J; Tock, C J; Lucas, D M

    2015-09-15

    We demonstrate injection locking of high-power laser diodes operating at 397 nm. We achieve stable operation with an injection power of ∼100  μW and a slave laser output power of up to 110 mW. We investigate the spectral purity of the slave laser light via photon scattering experiments on a single trapped (40)Ca(+) ion. We show that it is possible to achieve a scattering rate indistinguishable from that of monochromatic light by filtering the laser light with a diffraction grating to remove amplified spontaneous emission. PMID:26371912

  18. Proposed Use of Zero Bias Diode Arrays as Thermal Electric Noise Rectifiers and Non-Thermal Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Valone, Thomas F.

    2009-03-01

    The well known built-in voltage potential for some select semiconductor p-n junctions and various rectifying devices is proposed to be favorable for generating DC electricity at "zero bias" (with no DC bias voltage applied) in the presence of Johnson noise or 1/f noise which originates from the quantum vacuum (Koch et al., 1982). The 1982 Koch discovery that certain solid state devices exhibit measurable quantum noise has also recently been labeled a finding of dark energy in the lab (Beck and Mackey, 2004). Tunnel diodes are a class of rectifiers that are qualified and some have been credited with conducting only because of quantum fluctuations. Microwave diodes are also good choices since many are designed for zero bias operation. A completely passive, unamplified zero bias diode converter/detector for millimeter (GHz) waves was developed by HRL Labs in 2006 under a DARPA contract, utilizing a Sb-based "backward tunnel diode" (BTD). It is reported to be a "true zero-bias diode." It was developed for a "field radiometer" to "collect thermally radiated power" (in other words, 'night vision'). The diode array mounting allows a feed from horn antenna, which functions as a passive concentrating amplifier. An important clue is the "noise equivalent power" of 1.1 pW per root hertz and the "noise equivalent temperature difference" of 10° K, which indicate sensitivity to Johnson noise (Lynch, et al., 2006). There also have been other inventions such as "single electron transistors" that also have "the highest signal to noise ratio" near zero bias. Furthermore, "ultrasensitive" devices that convert radio frequencies have been invented that operate at outer space temperatures (3 degrees above zero point: 3° K). These devices are tiny nanotech devices which are suitable for assembly in parallel circuits (such as a 2-D array) to possibly produce zero point energy direct current electricity with significant power density (Brenning et al., 2006). Photovoltaic p-n junction cells are also considered for possible higher frequency ZPE transduction. Diode arrays of self-assembled molecular rectifiers or preferably, nano-sized cylindrical diodes are shown to reasonably provide for rectification of electron fluctuations from thermal and non-thermal ZPE sources to create an alternative energy DC electrical generator in the picowatt per diode range.

  19. Large-area anodized alumina nanopore arrays assisted by soft ultraviolet nanoimprint prepatterning.

    PubMed

    Ng, S M; Wong, H F; Lau, H K; Leung, C W

    2012-08-01

    Aluminium anodization under optimized conditions can naturally generate close-packed and aligned nanopore arrays, but the spatial extent of such regular pore arrangement is generally limited. Here we demonstrated the use of soft ultraviolet nanoimprint lithography to guide the formation of nanopores at specific locations, using an elastomer negative mold for the process. By anodizing at voltages which naturally led to the formation of pores with matching averaged interpore separation, pre-patterned triangular holes (diameter 100 nm, periodicity 350 nm) on aluminium thin films induced conformal growth of nanopores at pre-defined positions. In addition, pores in geometries other than close-packed patterns were prepared, with square pore arrangement being demonstrated in this work. The influence of the anodization voltage on the final pore formation was also studied. Our results illustrated the possibility to fabricate well-organized nanopore arrays with conditions far less stringent than those reported in literature, which has the potential to be adopted for applications where regular pore alignment are critical. PMID:22962742

  20. Enhanced performance of nitride-based ultraviolet vertical-injection light-emitting diodes by non-insulation current blocking layer and textured surface

    NASA Astrophysics Data System (ADS)

    Chiang, Yen Chih; Lin, Bing Cheng; Chen, Kuo Ju; Lin, Chien Chung; Lee, Po Tsung; Kuo, Hao Chung

    2014-12-01

    For the purpose of light extraction and efficiency enhancement, the nitride-based ultraviolet vertical-injection light-emitting diodes (UV-VLEDs) with non-insulation current blocking layer (n-CBL) and optimized textured surface were fabricated. The optical and electrical characteristics were investigated in this n-CBL UV-VLED. Furthermore, the efficiency of optimized structure was improved by 5 ~ 6 times compared to our reference.

  1. Tomographic imaging of MHD activity in tokamaks by combining diode arrays and a tangentially viewing pinhole camera

    NASA Astrophysics Data System (ADS)

    Holland, A.; Fonck, R. J.; Powell, E. T.; Sesnic, S.

    1988-08-01

    Two 32-channel side-viewing soft x-ray diode arrays will be installed on PBX-M which will provide profile information in the horizontal and vertical directions with a time resolution up to 1 μs. The information from these arrays can be reconstructed to provide a high time-resolution poloidal emission profile using a maximum-entropy-based technique which incorporates the reconstructed profile from a tangentially viewing soft x-ray pinhole camera. The pinhole camera provides lower time-resolution (about 5 ms) shape information which has been reconstructed with the assumption of toroidal symmetry. The pinhole camera information supplements the information from the diode arrays, allowing a reconstruction which can resolve MHD fluctuations of the equilibrium profile. The pinhole camera information need only be a better approximation to the real emission profile than the assumption of a flat profile since the algorithm uses it as a first-order solution which is perturbed by the information from the diode arrays. The algorithm can also explicitly include the bean-shaped PBX-M vacuum vessel and the vignetting of some detectors by the pusher coil.

  2. Ultraviolet electroluminescence from n-ZnO/ i-MgO/p+-GaN heterojunction light-emitting diodes fabricated by RF-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, G. Y.; Li, J. T.; Shi, Z. L.; Lin, Y.; Chen, G. F.; Ding, T.; Tian, Z. S.; Xu, C. X.

    2012-11-01

    Based on the easily controllable radio frequency magnetron sputtering, n-ZnO and i-MgO thin films were fabricated on p+-GaN substrate to construct heterojunctional light-emitting diodes for ultraviolet emission from the near band edge exciton recombination of ZnO. Effects of the insulator MgO layer on the electroluminescent performance of the n-ZnO/ i-MgO/p+-GaN light-emitting diodes have been investigated. It was found that the light-emitting diode presented stronger near band-edge emission with blue shift emission peak under the lower working current when i-MgO layer was inserted. The fabrication process, characteristics and the mechanism were discussed in detail.

  3. Enhancement in external quantum efficiency of 365 nm vertical-type ultraviolet light-emitting diodes with embedded oxide structure

    NASA Astrophysics Data System (ADS)

    Shen, Kun-Ching; Yang, Min-Hao; Lin, Wen-Yu; Horng, Ray-Hua; Wuu, Dong-Sing

    2013-03-01

    High performance 365 nm vertical-type ultraviolet light-emitting diodes (UV-LEDs) were developed using an embedded self-textured oxide (STO) structure using metal-organic chemical vapor deposition system. From etch-pit-density results, the dislocation densities of LED epilayers were effectively reduced to 5.6×106 cm-2 by inserting the STO structures due to the relaxation of residual stress. The vertical-type UV-LEDs are fabricated using a combination technique of metal bonding and sapphire substrate separation. When the UV-LEDs (size: 45 × 45 mil2) were driven with a 20 mA injection current, the output powers of the LEDs with and without STO were measured to be 10.2 and 5.51 mW, respectively. The external quantum efficiency of LEDs with STO exhibits 32% higher than that of LED without STO. As increasing injection current to 350 mA, a near 45 mW light output was measured from STO-LED sample. This benefit was attributed to the introduction of STO structure which can not only block the propagation of threading dislocations but also intensify the light extraction of LED.

  4. Deep-ultraviolet tailored- and low-refractive index antireflection coatings for light-extraction enhancement of light emitting diodes

    NASA Astrophysics Data System (ADS)

    Yan, Xing; Shatalov, Max; Saxena, Tanuj; Shur, Michael S.

    2013-04-01

    An omnidirectional antireflection (AR) coating for a deep-ultraviolet (UV) AR band is designed and fabricated on the sapphire substrate of a deep-UV flip-chip light-emitting diode (LED) device. The two-layer AR coating uses the tailored- and low-refractive index nanoporous alumina fabricated by glancing-angle deposition methodology. The AR coating effectively matches the refractive indices between the air and sapphire substrate. At close-to-normal angles of incidence, this AR coating almost completely eliminates the Fresnel reflection at the sapphire/air interface of the deep-UV LED device. The resulting improvement of the light-extraction efficiency by 8% is in good agreement with the simulation results. For a total thickness of 172 nm for the two-layer AR coating, extinction was negligible (<2%). The results show that nanoporous alumina thin films are excellent tailored- and low-refractive index thin film materials for high-performance deep-UV AR coating applications.

  5. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    SciTech Connect

    Reich, Christoph Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian; Feneberg, Martin; Goldhahn, Rüdiger; Rass, Jens; Kneissl, Michael; Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus

    2015-10-05

    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  6. Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with double electron blocking layers

    NASA Astrophysics Data System (ADS)

    Cheng, Zhang; Sun, Hui-Qing; Xu-Na, Li; Hao, Sun; Xuan-Cong, Fan; Zhu-Ding, Zhang; Zhi-You, Guo

    2016-02-01

    The AlGaN-based deep ultraviolet light-emitting diodes (LED) with double electron blocking layers (d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances compared with the conventional structure with only a single electron blocking layer, such as a higher recombination rate, improved light output power and internal quantum efficiency (IQE). The reasons can be concluded as follows. On the one hand, the weakened electrostatic field within the quantum wells (QWs) enhances the electron-hole spatial overlap in QWs, and therefore increases the probability of radioactive recombination. On the other hand, the added n-AlGaN layer can not only prevent holes from overflowing into the n-side region but also act as another electron source, providing more electrons. Project supported by the Special Strategic Emerging Industries of Guangdong Province, China (Grant No. 2012A080304006), the Major Scientific and Technological Projects of Zhongshan City, Guangdong Province, China (Grant No. 2014A2FC204), and the Forefront of Technology Innovation and Key Technology Projects of Guangdong Province, China (Grant Nos. 2014B010121001 and 2014B010119004).

  7. Ultraviolet-enhanced light emitting diode employing individual ZnO microwire with SiO{sub 2} barrier layers

    SciTech Connect

    Xu, Yingtian; Xu, Li; Dai, Jun; Ma, Yan; Chu, Xianwei; Zhang, Yuantao; Du, Guotong; Zhang, Baolin; Yin, Jingzhi

    2015-05-25

    This paper details the fabrication of n-ZnO single microwire (SMW)-based high-purity ultraviolet light-emitting diodes (UV-LEDs) with an added SiO{sub 2} barrier layer on the p-Si substrate. However, the current-voltage (I-V) curve exhibited non-ideal rectifying characteristics. Under forward bias, both UV and visible emissions could be detected by electroluminescence (EL) measurement. When bias voltage reached 60 V at room temperature, a UV emission spike occurred at 390 nm originating from the n-ZnO SMW. Compared with the EL spectrum of the n-ZnO SMW/p-Si heterojunction device without the SiO{sub 2} barrier layer, we saw improved UV light extraction efficiency from the current-blocking effect of the SiO{sub 2} layer. The intense UV emission in the n-ZnO SMW/SiO{sub 2}/p-Si heterojunction indicated that the SiO{sub 2} barrier layer can restrict the movement of electrons as expected and result in effective electron-hole recombination in ZnO SMW.

  8. Near-ultraviolet electroluminescent performance of polysilane-based light-emitting diodes with a double-layer structure

    NASA Astrophysics Data System (ADS)

    Hoshino, Satoshi; Ebata, Keisuke; Furukawa, Kazuaki

    2000-02-01

    We fabricated double-layer light-emitting diodes (LEDs) by utilizing poly[bis(p-nbutylphenyl)silane] (PBPS) and oxadiazole derivatives, and investigated their basic LED characteristics. The near-ultraviolet electroluminescence (EL) performance, such as the EL threshold electric field and the current density, depended on the oxadiazole derivatives used as the electron transport materials as well as the components of the EL emission. We observed better EL performance where the EL external quantum efficiency in a double-layer LED with a 2-(4'-tert-butylphenyl)-5-(4″-biphenyl)-1,3,4-oxadiazole based electron transport layer was twice that of a PBPS single-layer LED. By contrast, we observed a worse EL threshold electric field and current density when we used 2,5-bis(1-naphthyl)-1,3,4-oxadiazole as an electron transport material. The reason for the difference in the EL performance was revealed by investigating the charge carrier injection and transport dynamics of the two LEDs.

  9. Near-Ultraviolet InGaN/GaN Light-Emitting Diodes Grown on Patterned Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Wang, Woei-Kai; Wuu, Dong-Sing; Shih, Wen-Chung; Fang, Jau-Shing; Lee, Chia-En; Lin, Wen-Yu; Han, Pin; Horng, Ray-Hua; Hsu, Ta-Cheng; Huo, Tai-Chan; Jou, Ming-Jiunn; Lin, Aikey; Yu, Yuan-Hsin

    2005-04-01

    We describe the microstructure and optical properties of near-ultraviolet InGaN-GaN light-emitting diodes (LEDs) fabricated onto conventional and patterned sapphire substrates (PSSs) using metalorganic chemical vapor deposition. The PSS LED with an optimized hole depth (1.5 μm) shows an improvement of the room-temperature photoluminescence intensity by one order of magnitude compared with that of the conventional LED. As much as a 63% increased light emission intensity of the PSS LED was obtained at a forward current of 20 mA. For a typical lamp-form PSS LED (at 20 mA), the output power and external quantum efficiency were estimated to be 10.4 mW and 14.1%, respectively. The increase of the output power could be partly due to the improvement of the internal quantum efficiency upon decreasing the dislocation density, which was further confirmed by the transmission-electron-microscopy and etch-pit-density studies for the GaN-on-PSS samples. Moreover, the emitted light scattering at the GaN/PSS interface could also contribute to the enhancement of light extraction efficiency.

  10. Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters.

    PubMed

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas; Jagals, Paul; Stuetz, Richard

    2014-09-15

    For many decades, populations in rural and remote developing regions will be unable to access centralised piped potable water supplies, and indeed, decentralised options may be more sustainable. Accordingly, improved household point-of-use (POU) disinfection technologies are urgently needed. Compared to alternatives, ultraviolet (UV) light disinfection is very attractive because of its efficacy against all pathogen groups and minimal operational consumables. Though mercury arc lamp technology is very efficient, it requires frequent lamp replacement, involves a toxic heavy metal, and their quartz envelopes and sleeves are expensive, fragile and require regular cleaning. An emerging alternative is semiconductor-based units where UV light emitting diodes (UV-LEDs) are powered by photovoltaics (PV). Our review charts the development of these two technologies, their current status, and challenges to their integration and POU application. It explores the themes of UV-C-LEDs, non-UV-C LED technology (e.g. UV-A, visible light, Advanced Oxidation), PV power supplies, PV/LED integration and POU suitability. While UV-C LED technology should mature in the next 10 years, research is also needed to address other unresolved barriers to in situ application as well as emerging research opportunities especially UV-A, photocatalyst/photosensitiser use and pulsed emission options. PMID:24946032

  11. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures

    NASA Astrophysics Data System (ADS)

    Ryu, Han-Youl

    2014-02-01

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs.

  12. Calibration of optimal use parameters for an ultraviolet light-emitting diode in eliminating bacterial contamination on needleless connectors

    PubMed Central

    Hutchens, M.P.; Drennan, S.L.; Cambronne, E.D.

    2015-01-01

    Aims Needleless connectors may develop bacterial contamination and cause central-line-associated bloodstream infections (CLABSI) despite rigorous application of best-practice. Ultraviolet (UV) light-emitting diodes (LED) are an emerging, increasingly affordable disinfection technology. We tested the hypothesis that a low-power UV LED could reliably eliminate bacteria on needleless central-line ports in a laboratory model of central-line contamination. Methods and Results Needleless central-line connectors were inoculated with Staphylococcus aureus. A 285 nm UV LED was used in calibrated fashion to expose contaminated connectors. Ports were directly applied to agar plates and flushed with sterile saline, allowing assessment of bacterial survival on the port surface and in simulated usage flow-through fluid. UV applied to needleless central-line connectors was highly lethal at 0·5 cm distance at all tested exposure times. At distances >1·5 cm both simulated flow-through and port surface cultures demonstrated significant bacterial growth following UV exposure. Logarithmic-phase S. aureus subcultures were highly susceptible to UV induction/maintenance dosing. Conclusions Low-power UV LED doses at fixed time and distance from needleless central-line connector ports reduced cultivable S. aureus from >106 CFU to below detectable levels in this laboratory simulation of central-line port contamination. Significance and Impact of the study Low-power UV LEDs may represent a feasible alternative to current best-practice in connector decontamination. PMID:25801979

  13. Improved output power of GaN-based ultraviolet light-emitting diodes with sputtered AlN nucleation layer

    NASA Astrophysics Data System (ADS)

    Chiu, C. H.; Lin, Y. W.; Tsai, M. T.; Lin, B. C.; Li, Z. Y.; Tu, P. M.; Huang, S. C.; Hsu, Earl; Uen, W. Y.; Lee, W. I.; Kuo, H. C.

    2015-03-01

    In this work, the ultraviolet light-emitting diodes (UV-LEDs) at 380 nm were grown on patterned sapphire substrate (PSS) by atmospheric pressure metal organic chemical vapor deposition (AP-MOCVD). A sputtered AlN nucleation layer was utilized on the PSS to enhance the quality of the epitaxial layer. By using high-resolution X-ray diffraction, the full-width at half-maximum of the rocking curve shows that the UV-LEDs with sputtered AlN nucleation layer had better crystalline quality when compared to conventional GaN nucleation samples. From the scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, it can be observed that the tip and sidewall portion of the pattern was smooth using the sputtered AlN nucleation layer. The threading dislocation densities (TDDs) are reduced from 6×107 cm-2 to 2.5×107 cm-2 at the interface between the u-GaN layers for conventional and AlN PSS devices, respectively. As a result, a much higher light output power was achieved. The light output power at an injection current of 20 mA was enhanced by 30%. Further photoluminescence (PL) measurement and numerical simulation confirm that this increase of output power can be attributed to the improvement of material quality and light extraction.

  14. Monolithic watt-level millimeter-wave diode-grid frequency tripler array

    NASA Technical Reports Server (NTRS)

    Hwu, R. J.; Luhmann, N. C., Jr.; Rutledge, D. B.; Hancock, B.; Lieneweg, U.

    1988-01-01

    In order to provide watt-level CW output power throughout the millimeter and submillimeter wave region, thousands of solid-state diodes have been monolithically integrated using a metal grid to produce a highly efficient frequency multiplier. Devices considered include GaAs Schottky diodes, thin MOS diodes, and GaAs Barrier-Intrinsic-N(+)diodes. The performance of the present compact low-cost device has been theoretically and experimentally validated.

  15. 8xxnm kW conduction cooled QCW diode arrays with both electrically conductive and insulation submounts

    NASA Astrophysics Data System (ADS)

    Du, Jihua; Zhou, Hailong; Schleuning, David; Agrawal, Vivek; Morales, John; Hasenberg, Thomas; Reed, Murray

    2008-02-01

    We present kW QCW vertical and horizontal arrays composed of 200W bars (peak power) at 8xxnm wavelength. We also present an unique Bar-on-Submount design using the electrically insulating submounts, which can provide a platform for simple and flexible horizontal array construction. The p-n junction temperature of the arrays under QCW operation is modeled with FEA software, as well as measured in this research. Updated reliability test results for these kW arrays will be also reported. As the examples, we present the performance of the vertical arrays with > 57% Wall-Plug-Efficiency and the horizontal arrays with < 23 degree fast axis divergence (FWHM), both with 808nm wavelength. The available wavelength for such arrays ranges from 780nm to beyond 1 um. Coherent also have the capability to produce the array with wide and relatively uniform spectrum for athermal pumping of solid-state lasers, by integrating diode lasers bars with different wavelength into single array.

  16. Growth and fabrication of deep ultraviolet light emitting diodes on silicon carbide substrates

    NASA Astrophysics Data System (ADS)

    Moe, Craig Gunar

    Interest in deep ultraviolet (< 280 nm) emitters has developed rapidly in recent years, with its use in applications such as water purification, solid state lighting, and biochemical detection now being explored. The aluminum nitride and aluminum gallium nitride material systems are ideal for low cost, highly efficient emitters at these wavelengths, in the same manner that the InGaN LED revolutionized light emitters in the blue, green, and near-ultraviolet wavelengths. While the work to date on such devices have made use of sapphire as a substrate for epitaxial growth, silicon carbide has significant advantages including ease of growth and manufacture, reproducibility, and the potential for fewer dislocations in the material. This work follows the development of AlN and high-composition AlGaN films on SiC to a sufficient quality for emitter applications. A comprehensive examination of the AlN nucleation and buffer layers led to dislocation densities in the low 109cm-2. An extensive study of the n- and p-type doping of AlxGa 1-xN (x > 0.5) was undertaken to develop highly conductive material. The internal quantum efficiency of the quantum well region was significantly improved through modified growth conditions and precursor selection, and a device fabrication process was developed to obtain low turn-on voltages below 5 V and reliable device performance for over 100 hours of use. Careful thermal management of the devices through novel mask designs and improvement in packaging allowed for significant advances in light extraction, resulting in high-power LED emission at 280 nm. Packaged dies exhibited powers as high as 52 muW at 20 mA and 0.24 mW at 100 mA. The greatest obstacle to high external quantum efficiency in these devices is the absorbing nature SiC substrate. This has been successfully mitigated through two different techniques. First, distributed Bragg reflectors consisting of AlGaN/AlN stacks have been developed, with reflectivities greater than 80% at 275 nm, and incorporated into the LED. Showing even greater promise is a method to fully remove the substrate, allowing for a flip-chip LED design and increased light extraction. While such work remains in its infancy, the substrate removal has been accomplished through inductively-coupled plasma reactive-ion etching, demonstrating a three-fold improvement in light output.

  17. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing

    NASA Astrophysics Data System (ADS)

    Choi, Moon Kee; Yang, Jiwoong; Kang, Kwanghun; Kim, Dong Chan; Choi, Changsoon; Park, Chaneui; Kim, Seok Joo; Chae, Sue In; Kim, Tae-Ho; Kim, Ji Hoon; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2015-05-01

    Deformable full-colour light-emitting diodes with ultrafine pixels are essential for wearable electronics, which requires the conformal integration on curvilinear surface as well as retina-like high-definition displays. However, there are remaining challenges in terms of polychromatic configuration, electroluminescence efficiency and/or multidirectional deformability. Here we present ultra-thin, wearable colloidal quantum dot light-emitting diode arrays utilizing the intaglio transfer printing technique, which allows the alignment of red-green-blue pixels with high resolutions up to 2,460 pixels per inch. This technique is readily scalable and adaptable for low-voltage-driven pixelated white quantum dot light-emitting diodes and electronic tattoos, showing the best electroluminescence performance (14,000 cd m-2 at 7 V) among the wearable light-emitting diodes reported up to date. The device performance is stable on flat, curved and convoluted surfaces under mechanical deformations such as bending, crumpling and wrinkling. These deformable device arrays highlight new possibilities for integrating high-definition full-colour displays in wearable electronics.

  18. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing.

    PubMed

    Choi, Moon Kee; Yang, Jiwoong; Kang, Kwanghun; Kim, Dong Chan; Choi, Changsoon; Park, Chaneui; Kim, Seok Joo; Chae, Sue In; Kim, Tae-Ho; Kim, Ji Hoon; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2015-01-01

    Deformable full-colour light-emitting diodes with ultrafine pixels are essential for wearable electronics, which requires the conformal integration on curvilinear surface as well as retina-like high-definition displays. However, there are remaining challenges in terms of polychromatic configuration, electroluminescence efficiency and/or multidirectional deformability. Here we present ultra-thin, wearable colloidal quantum dot light-emitting diode arrays utilizing the intaglio transfer printing technique, which allows the alignment of red-green-blue pixels with high resolutions up to 2,460 pixels per inch. This technique is readily scalable and adaptable for low-voltage-driven pixelated white quantum dot light-emitting diodes and electronic tattoos, showing the best electroluminescence performance (14,000 cd m(-2) at 7 V) among the wearable light-emitting diodes reported up to date. The device performance is stable on flat, curved and convoluted surfaces under mechanical deformations such as bending, crumpling and wrinkling. These deformable device arrays highlight new possibilities for integrating high-definition full-colour displays in wearable electronics. PMID:25971194

  19. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing

    PubMed Central

    Choi, Moon Kee; Yang, Jiwoong; Kang, Kwanghun; Kim, Dong Chan; Choi, Changsoon; Park, Chaneui; Kim, Seok Joo; Chae, Sue In; Kim, Tae-Ho; Kim, Ji Hoon; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2015-01-01

    Deformable full-colour light-emitting diodes with ultrafine pixels are essential for wearable electronics, which requires the conformal integration on curvilinear surface as well as retina-like high-definition displays. However, there are remaining challenges in terms of polychromatic configuration, electroluminescence efficiency and/or multidirectional deformability. Here we present ultra-thin, wearable colloidal quantum dot light-emitting diode arrays utilizing the intaglio transfer printing technique, which allows the alignment of red–green–blue pixels with high resolutions up to 2,460 pixels per inch. This technique is readily scalable and adaptable for low-voltage-driven pixelated white quantum dot light-emitting diodes and electronic tattoos, showing the best electroluminescence performance (14,000 cd m−2 at 7 V) among the wearable light-emitting diodes reported up to date. The device performance is stable on flat, curved and convoluted surfaces under mechanical deformations such as bending, crumpling and wrinkling. These deformable device arrays highlight new possibilities for integrating high-definition full-colour displays in wearable electronics. PMID:25971194

  20. Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence.

    PubMed

    Carnevale, Santino D; Kent, Thomas F; Phillips, Patrick J; Mills, Michael J; Rajan, Siddharth; Myers, Roberto C

    2012-02-01

    Almost all electronic devices utilize a pn junction formed by random doping of donor and acceptor impurity atoms. We developed a fundamentally new type of pn junction not formed by impurity-doping, but rather by grading the composition of a semiconductor nanowire resulting in alternating p and n conducting regions due to polarization charge. By linearly grading AlGaN nanowires from 0% to 100% and back to 0% Al, we show the formation of a polarization-induced pn junction even in the absence of any impurity doping. Since electrons and holes are injected from AlN barriers into quantum disk active regions, graded nanowires allow deep ultraviolet LEDs across the AlGaN band-gap range with electroluminescence observed from 3.4 to 5 eV. Polarization-induced p-type conductivity in nanowires is shown to be possible even without supplemental acceptor doping, demonstrating the advantage of polarization engineering in nanowires compared with planar films and providing a strategy for improving conductivity in wide-band-gap semiconductors. As polarization charge is uniform within each unit cell, polarization-induced conductivity without impurity doping provides a solution to the problem of conductivity uniformity in nanowires and nanoelectronics and opens a new field of polarization engineering in nanostructures that may be applied to other polar semiconductors. PMID:22268600

  1. Comprehensive Material Study of MOCVD grown Aluminum Indium Nitride and Development of Relaxed Template for Ultraviolet Diode Lasers

    NASA Astrophysics Data System (ADS)

    Chung, Roy B.

    AlGaN based conventional deep ultraviolet (UV) light emitting diodes (LEDs) grown on a sapphire or SiC substrate suffer from high threading dislocation density (TDD) (> 1 x 109 cm-2). The high quality bulk AlN substrate (TDD ˜ 1 x 104 cm-2) has shown promising results for high power deep UV LEDs but the substrates are not readily available yet. The performance of UV laser diodes (LDs) has been rapidly improved over the past few years. However, intrinsic valence band property of c-plane AlN could result in poor optical gain for c-plane LDs, especially in UV-C range. In this work, different approaches have been explored for further development of UV LEDs and LDs. The success of c-plane InGaN LEDs has been attributed to the indium induced local potential minima in a length scale shorter than the dislocation spacing. As a result, high internal quantum efficiency (IQE) can be achieved even with high TDD. UV LEDs could potentially benefit from this phenomenon by using AlInN as an active layer. However, due to the lack of understanding of this alloy, we start from the growth study of AlInN by metal organic chemical vapor deposition (MOCVD). High structural quality Al0.82In0.18N has been achieved on GaN, but large Stokes' shift of ˜0.6 eV and broad photoluminescence (PL) spectrum (˜0.3 eV) were also observed. The time resolved PL study revealed extremely long decay lifetime, suggesting the presence of deep traps. Electrical analysis of AlInN by capacitance -- voltage measurement showed n-type conductivity for UID Al0.82In0.18N, possibly due to oxygen. High quality semipolar (112¯2) Al0.76In 0.24N showed emission energy below the bandgap of GaN, allowing us to obtain the electroluminescence characteristics of AlInN. Appearance of a narrow peak under high injection current could shed a light on the emission property of AlInN. Semipolar substrates offer a number of advantages for UV emitting AlGaInN based laser diodes, including higher gain, an ability to operate with nearly transverse electric (TE) optical modes, and an ability to provide pseudo-substrates with tailorable lattice constants, something unavailable from bulk c-plane AlN substrates. AlInN and AlGaN lavers with various thicknesses and compositions have been grown on (202¯1) and (112¯2) bulk GaN substrates by MOCVD. With increasing thickness and Al composition, various defects -- c-plane misfit dislocations, cracks, and secondary defects -- were observed. The critical thickness of each process has been empirically estimated. We have also grown AlGaN on (202¯1) GaN, step grading to higher aluminum composition to minimize the generation of undesired defects. Multiple quantum wells (MQW) and LEDs were grown on a relaxed AlGaN on (202¯1) GaN. IQE measurements and the diode operation of near UV LEDs (lambda˜385 nm) on the relaxed buffer showed a promising result for device application of relaxed AlGaN template.

  2. Feasibility of diode-array instruments to carry near-infrared spectroscopy from laboratory to feed process control.

    PubMed

    Fernández-Ahumada, Elvira; Garrido-Varo, Ana; Guerrero-Ginel, José Emilio

    2008-05-14

    Near-infrared calibrations were developed for the instantaneous prediction of the chemical and ingredient composition of intact compound feeds. Two rather different instruments were compared (diode array vs grating monochromator). The grating monochromator was used in a static mode in the laboratory, whereas the diode-array instrumentbetter adapted to online analysiswas placed on a conveyor belt to simulate measurements at a feed mill plant. Modified partial least squares (MPLS) equations were developed using the same set of samples analyzed in the two instruments. Sample set 1 ( N = 398) was used to predict crude protein (CP) and crude fiber (CF), while sample set 2 ( N = 393) was used for the prediction of one macroingredient (sunflower meal, SFM) and one microingredient (mineral-vitamin premix, MVP). The standard error of cross-validation (SECV) and the coefficient of determination (R2) values for CF were better using the monochromator instrument. However, results obtained for CP, SFM, and MVP using the samples analyzed in the diode-array instrument showed similar or even greater accuracy than those obtained using samples analyzed in the grating monochromator. The excellent predictive ability [R2> 0.95; RPD (ratio of standard deviation to SECV) > 3] obtained for CP, CF, and SFM opens the way for the online use of NIRS diode-array instruments for surveillance and monitoring in the manufacture, processing, and marketing of compound feeds. R2, RPD, and SECV values for MVP showed similar performance for both instruments. Although RPD values did not reach the minimum recommended for quantitative analysis, results are encouraging for an ingredient present in feed compounds in such very low amounts. PMID:18407654

  3. High-performance timing electronics for single photon avalanche diode arrays

    NASA Astrophysics Data System (ADS)

    Acconcia, G.; Crotti, M.; Rech, I.; Ghioni, M.

    2015-05-01

    Time correlated photon counting techniques have been proved to be very effective, especially when very fast and faint optical signals have to be recorded with extremely high precision. Nowadays, a steadily increasing number of applications require not only high performance in terms of photon detection efficiency, time resolution and linearity but also a high number of pixels operating in parallel. In order to combine the features of the most performing detectors and state of art timing electronics, an innovative architecture has been conceived and the main circuits have been designed. The system will employ dense arrays of custom technology Single Photon Avalanche Diode (SPAD) detectors, in order to perform a truly concurrent analysis of the sample, while it will have only a small number of acquisition chains with the ultimate purpose of obtaining very high performance while limiting area occupation and power dissipation. To this aim, three main circuits have been designed: first of all, a pick-up circuit capable of directly reading the signal coming from the sensor; secondly, a timing circuit to measure the arrival time of the each photon with picoseconds resolution and very high linearity and finally, a circuit to perform a dynamic binding between the many sensors and the few conversion chains.

  4. Validated HPLC-Diode Array Detector Method for Simultaneous Evaluation of Six Quality Markers in Coffee.

    PubMed

    Gant, Anastasia; Leyva, Vanessa E; Gonzalez, Ana E; Maruenda, Helena

    2015-01-01

    Nicotinic acid, N-methylpyridinium ion, and trigonelline are well studied nutritional biomarkers present in coffee, and they are indicators of thermal decomposition during roasting. However, no method is yet available for their simultaneous determination. This paper describes a rapid and validated HPLC-diode array detector method for the simultaneous quantitation of caffeine, trigonelline, nicotinic acid, N-methylpyridinium ion, 5-caffeoylquinic acid, and 5-hydroxymethyl furfural that is applicable to three coffee matrixes: green, roasted, and instant. Baseline separation among all compounds was achieved in 30 min using a phenyl-hexyl RP column (250×4.6 mm, 5 μm particle size), 0.3% aqueous formic buffer (pH 2.4)-methanol mobile phase at a flow rate of 1 mL/min, and a column temperature at 30°C. The method showed good linear correlation (r2>0.9985), precision (less than 3.9%), sensitivity (LOD=0.023-0.237 μg/mL; LOQ=0.069-0.711 μg/mL), and recovery (84-102%) for all compounds. This simplified method is amenable for a more complete routine evaluation of coffee in industry. PMID:25857885

  5. Identification of natural dyes in archeological Coptic textiles by liquid chromatography with diode array detection.

    PubMed

    Orska-Gawryś, Jowita; Surowiec, Izabella; Kehl, Jerzy; Rejniak, Hanna; Urbaniak-Walczak, Katarzyna; Trojanowicz, Marek

    2003-03-14

    Reversed-phase HPLC with diode-array UV-Vis spectrophotometric detection has been used for identification of natural dyes in extracts from wool and silk fibres from archeological textiles. The examined objects originate from 4th to 12th Century Egypt and belong to the collection of Early Christian Art of the National Museum in Warsaw. Extraction from fibres was carried out with HCl solution containing ethanol or with warm pyridine. As the main individual chemical components of natural dyes, anthraquinone, indigoid and flavonoid dyes including alizarin, purpurin, luteolin, apigenin, carminic acid, ellagic acid, gallic acid, laccaic acids A and B and indigotin were found. For pyridine extracts another mobile phase with an optimized gradient of organic modifier concentration was used. With such an eluent the appearance of double peaks for indigotin and indirubin was eliminated. For acidic extraction of dyes from fibres, ethanol was used. Due to its higher boiling point than methanol it evaporates slower from the extraction solution enabling a more efficient extraction of dyes. PMID:12650256

  6. Remote online process measurements by a fiber optic diode array spectrometer

    SciTech Connect

    Van Hare, D.R.; Prather, W.S.; O'Rourke, P.E.

    1986-01-01

    The development of remote online monitors for radioactive process streams is an active research area at the Savannah River Laboratory (SRL). A remote offline spectrophotometric measurement system has been developed and used at the Savannah River Plant (SRP) for the past year to determine the plutonium concentration of process solution samples. The system consists of a commercial diode array spectrophotometer modified with fiber optic cables that allow the instrument to be located remotely from the measurement cell. Recently, a fiber optic multiplexer has been developed for this instrument, which allows online monitoring of five locations sequentially. The multiplexer uses a motorized micrometer to drive one of five sets of optical fibers into the optical path of the instrument. A sixth optical fiber is used as an external reference and eliminates the need to flush out process lines to re-reference the spectrophotometer. The fiber optic multiplexer has been installed in a process prototype facility to monitor uranium loading and breakthrough of ion exchange columns. The design of the fiber optic multiplexer is discussed and data from the prototype facility are presented to demonstrate the capabilities of the measurement system.

  7. High-power, low-divergence, linear array of quasi-diffraction-limited beams supplied by tapered diodes

    NASA Astrophysics Data System (ADS)

    Bourdet, Gilbert L.; Hassiaoui, Imen; McBride, Roy; Monjardin, J. F.; Baker, Howard; Michel, Nicolas; Krakowski, Michel

    2007-09-01

    We describe for the first time to our knowledge the performance for a linear array of tapered laser diodes with both fast- and slow-axis collimation using a microlens for fast-axis collimation and a laser-written phase plate for slow-axis collimation and correction of the residual fast-axis errors from lens aberrations, thermal lensing, astigmatism, pointing errors, and other wavefront distortions. The phase plate leads to M2 factor reductions of 1.5 for the lensed array following the fast axis and 2.6 for the whole bar following the slow axis.

  8. Injection-locking characteristics of gain-guided diode laser arrays with an on-chip'' master laser

    SciTech Connect

    Hohimer, J.P.; Myers, D.R.; Brennan, T.M.; Hammons, B.E. )

    1990-04-16

    We report measurements of the injection-locking characteristics of a high-power continuous-wave diode laser array with an on-chip independently controlled master laser. This integrated injection-locked array emits a near-diffraction-limited single-lobed output beam at cw power levels up to 220 mW/facet. By controlling the current to the master laser, the single-lobed output beam can be electronically steered over a far-field angle of {gt}1.7{degree}. We also report preliminary studies of the coupling interaction in these integrated devices.

  9. Performance of 64x64 MWIR super lattice light-emitting diode (SLED) array for IR scene generation

    NASA Astrophysics Data System (ADS)

    Das, Naresh C.; Kiamilev, Fouad; Prineas, J. P.; Olesberg, J. T.; Koerperick, E. J.; Murray, L. M.; Boggess, T. F.

    2008-04-01

    We designed and fabricated 64x64 supper lattice light emitting diode (SLED) array with peak emission wavelength of 3.8 micron. The light emission is observed from the bottom side of the device through the substrate. The CMOS driver circuit is fabricated in the 130 nm IBM 8HP SiGe process. The unit cells were designed to source up to 100mA to the LED. These unit cells can be individually addressable, and have analog drive and memory that can operate at a 1 kHz array refresh rate. We use supper lattice epitaxial active region LED structures grown on n-type GaSb substrates. After initial mesa etching and contact metal deposition, the LED array is flip chip mounted on the LCC package. The light emission is observed from the LED array by InSb focal plane MWIR camera and the apparent black body temperature is measured.

  10. Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC

    SciTech Connect

    Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

    1989-05-01

    Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs.

  11. Low frequency noise of gallium nitride-based deep ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sawyer, Shayla Maya Louise

    This study covers the investigation of deep UV GaN-based light emitting diodes using low frequency noise characterization. Using this technique, device improvements were analyzed as feedback to developers and practical parameters were created for system use. AlGaN LEDs emit wavelengths into the deep UV spectral region (lambda < 290 nm). These devices are an integral component for applications including biological hazard detection systems, biological experimentation, food and water sterilization, non-line-of-sight short range communication, counterfeit identification, photolithography, and general white lighting. The current technological trend demonstrates a decrease in material quality and device performance with decreasing wavelength. However, progress has allowed for its commercialization in a relatively short period of time. Characterization of material and device improvements provides feedback for changes in development. Secondly, methods to determine the reliability and stability of these devices are essential to the applications for which they are used. One such method is through optical and current low frequency noise (LFN) measurements in which both system related parameters such as a signal-to-noise ratio for light sources and insight into the fundamental physics within the devices can be determined. The quality of the device can be compared before costly integration into systems that require low noise, high reliability, and optical stability. It not only quantifies performance limiting noise levels, but it is known to be a sensitive, nondestructive measure of material quality and reliability. The research highlighted in this thesis demonstrates a new measurement technique in analyzing the light intensity fluctuations through low frequency optical noise. From this work, a proposed figure-of-merit is presented. Low frequency current noise was performed as a well known indicator of material quality. Each technique compares LEDs grown by SET Inc. LEDs of varying wavelengths along the UV spectrum, with different growth methods and device structures. The cross-correlation between optical and current noise was analyzed to further understand the physical mechanism of low frequency noise in LEDs. Finally, low frequency current noise analysis for the packaging process and electrical degradation were determined.

  12. Ultraviolet light-emitting diode irradiation-induced cell death in HL-60 human leukemia cells in vitro

    PubMed Central

    XIE, DONG; SUN, YAN; WANG, LINGZHEN; LI, XIAOLING; ZANG, CHUANNONG; ZHI, YUNLAI; SUN, LIRONG

    2016-01-01

    Ultraviolet (UV) radiation is considered to be a potent cell-damaging agent in various cell lineages; however, the effect of UV light-emitting diode (LED) irradiation on human cells remains unclear. The aim of the present study was to examine the effect of UV LED irradiation emitting at 280 nm on cultured HL-60 human leukemia cells, and to explore the underlying mechanisms. HL-60 cells were irradiated with UV LED (8, 15, 30 and 60 J/m2) and incubated for 2 h after irradiation. The rates of cell proliferation and apoptosis, the cell cycle profiles and the mRNA expression of B-cell lymphoma 2 (Bcl-2) were detected using cell counting kit-8, multicaspase assays, propidium iodide staining and reverse transcription-quantitative polymerase chain reaction, respectively. The results showed that UV LED irradiation (8–60 J/m2) inhibited the proliferation of HL-60 cells in a dose-dependent manner. UV LED at 8–30 J/m2 induced dose-dependent apoptosis and G0/G1 cell cycle arrest, and inhibited the expression of Bcl-2 mRNA, while UV LED at 60 J/m2 induced necrosis. In conclusion, 280 nm UV LED irradiation inhibits proliferation and induces apoptosis and necrosis in cultured HL-60 cells. In addition, the cell cycle arrest at the G0/G1 phase and the downregulation of Bcl-2 mRNA expression were shown to be involved in UV LED-induced apoptosis. PMID:26820261

  13. [Saliva cotinine determination using high-performance liquid chromatography with diode - array detection].

    PubMed

    Kulza, Maksymilian; Woźniak, Anna; Seńczuk-Przybyłowska, Monika; Czarnywojtek, Agata; Kurhańska-Flisykowska, Anna; Florek, Ewa

    2012-01-01

    The use of tobacco is a very serious threat to public health. Reducing the proportion of smokers easily leads to improved health of the general population. Smoking is a proven risk factor for respiratory disease, cardiovascular disease and cancer and complications during pregnancy. To verify the level of exposure to tobacco smoke in most patients used a simple test markers of exposure. The most commonly used marker in the evaluation of exposure to tobacco products is cotinine, which is a major metabolite of nicotine contained in tobacco smoke. Biological material most commonly used in this type of study is blood, urine and saliva. In the present study Sarstedt Salivette tubes were used to samples collection. In order to determine the concentration of cotinine in saliva samples analyzed with high performance liquid chromatography with diode array detection after extraction of cotinine from saliva by solid phase extraction. The method was linear of 10 to 400 ng/ml. The limit of detection was the value of the signal-to-noise ratio S/N=3, it amounted to 6 ng/ml, the limit of quantification was 10 ng/ml. The intraday repeatability was 8% for lowconcentrations, for high concentrations - 3.7%. Reproducibility interdays for low concentrations was 2.4%, for high concentrations - 4.1%. We analyzed 18 samples of saliva derived from patients smoking volunteers from the Department of Conservative Dentistry and Periodontology, University of Medical Sciences. University of Medical Sciences and the Chair and Department of Endocrinology, Metabolism and Internal Medicine, University of Medical Sciences. University of Medical Sciences. Mean concentrations of cotinine in patients was 240.9 ng/ml of saliva. In this study we demonstrated the usefulness of the saliva cotinine determination method in the assessment of patient exposure to tobacco smoke. PMID:23421043

  14. Determination of Tyrian purple by high performance liquid chromatography with diode array detection.

    PubMed

    Vasileiadou, Athina; Karapanagiotis, Ioannis; Zotou, Anastasia

    2016-05-27

    Indigotin, indirubin, 6-bromoindigotin, 6'-bromoindirubin, 6-bromoindirubin, 6,6'-dibromoindigotin and 6,6'-dibromoindirubin, the colouring components of Tyrian purple, are quantified by an efficient HPLC method coupled to a diode array detector. The compounds were separated using gradient elution, on a RP-column (Alltima C18, 250mm×3.0mm i.d., 5μm), thermostated at 35°C, with a mobile phase consisting of solvents (Α) H2O+0.1% (v/v) trifluoroacetic acid and (Β) acetonitrile+0.1% (v/v) trifluoroacetic acid, at a flow rate of 0.5mLmin(-1). The method was validated in terms of linearity, detection and quantification limits, precision, accuracy, ruggedness and robustness, the latter with respect to small changes in column temperature and in flow-rate, pH- and solvent composition of the mobile phase. Under optimal conditions, the developed analytical scheme offers limits of detection in the range 0.02-0.05μgmL(-1) and satisfactory linearity up to 2.5μgmL(-1) for all analytes. Four samples produced from the hypobranchial glands of Hexaplex (Murex) trunculus molluscs, collected in the coastlines of Tunisia and Croatia, were treated with hot DMSO and analysed by the established HPLC method, using the standards addition approach. To evaluate the matrix effect, a comparison of the slopes of the standards in solvent regression curves with those of the standard addition method's calibration curves, using the Student's t-test was carried out. The accuracy was evaluated by recovery experiments. Amounts of indigotin, indirubin, and their mono- and dibrominated derivatives ranging between 0.01 to 12.2μgmg(-1) were found in the DMSO extracts of the four molluscan samples. PMID:27125189

  15. Low-Temperature Growth of Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Application

    NASA Astrophysics Data System (ADS)

    Yuan, Zhaolin

    2015-04-01

    A well-aligned ZnO nanorod array (ZNRA) was successfully grown on an indium tin oxide (ITO) substrate by chemical bath deposition at low temperature. The morphology, crystalline structure, transmittance spectrum and photoluminescence spectrum of as-grown ZNRA were investigated by field emission scanning electron microscopy, x-ray diffraction, ultraviolet-visible spectroscopy and spectrophotometer, respectively. The results of these measurements showed that the ZNRA contained densely packed, aligned nanorods with diameters from 30 nm to 40 nm and a wurtzite structure. The ZNRA exhibited good optical transparency within the visible spectral range, with >80% transmission. Gold (Au) was deposited on top of the ZNRA, and the current-voltage characteristics of the resulting ITO/ZNRA/Au device in the dark were evaluated in detail. The ITO/ZNRA/Au device acted as a Schottky barrier diode with rectifying behaviour, low turn-on voltage (0.6 V), small reverse-bias saturation current (3.73 × 10-6 A), a high ideality factor (3.75), and a reasonable barrier height (0.65 V) between the ZNRA and Au.

  16. Performance of a cylindrical diode array for use in a 1.5 T MR-linac

    NASA Astrophysics Data System (ADS)

    Houweling, A. C.; de Vries, J. H. W.; Wolthaus, J.; Woodings, S.; Kok, J. G. M.; van Asselen, B.; Smit, K.; Bel, A.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2016-02-01

    At the UMC Utrecht, a linear accelerator with integrated magnetic resonance imaging (MRI) has been developed, the MR-linac. Patient-specific quality assurance (QA) of treatment plans for MRI-based image guided radiotherapy requires QA equipment compatible with this 1.5 T magnetic field. The purpose of this study was to examine the performance characteristics of the ArcCHECK-MR in a transverse 1.5 T magnetic field. To this end, the short-term reproducibility, dose linearity, dose rate dependence, field size dependence, dose per pulse dependence and inter-diode dose response variation of the ArcCHECK-MR diode array were evaluated on a conventional linac and on the MR-linac. The ArcCHECK-MR diode array performed well for all tests on both linacs, no significant differences in performance characteristics were observed. Differences in the maximum dose deviations between both linacs were less than 1.5%. Therefore, we conclude that the ArcCHECK-MR can be used in a transverse 1.5 T magnetic field.

  17. Performance of a cylindrical diode array for use in a 1.5 T MR-linac.

    PubMed

    Houweling, A C; de Vries, J H W; Wolthaus, J; Woodings, S; Kok, J G M; van Asselen, B; Smit, K; Bel, A; Lagendijk, J J W; Raaymakers, B W

    2016-02-01

    At the UMC Utrecht, a linear accelerator with integrated magnetic resonance imaging (MRI) has been developed, the MR-linac. Patient-specific quality assurance (QA) of treatment plans for MRI-based image guided radiotherapy requires QA equipment compatible with this 1.5 T magnetic field. The purpose of this study was to examine the performance characteristics of the ArcCHECK-MR in a transverse 1.5 T magnetic field. To this end, the short-term reproducibility, dose linearity, dose rate dependence, field size dependence, dose per pulse dependence and inter-diode dose response variation of the ArcCHECK-MR diode array were evaluated on a conventional linac and on the MR-linac. The ArcCHECK-MR diode array performed well for all tests on both linacs, no significant differences in performance characteristics were observed. Differences in the maximum dose deviations between both linacs were less than 1.5%. Therefore, we conclude that the ArcCHECK-MR can be used in a transverse 1.5 T magnetic field. PMID:26767389

  18. Characterization of a novel two dimensional diode array the ''magic plate'' as a radiation detector for radiation therapy treatment

    SciTech Connect

    Wong, J. H. D.; Fuduli, I.; Carolan, M.; Petasecca, M.; Lerch, M. L. F.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2012-05-15

    Purpose: Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the ''magic plate'' (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. Methods: The prototype MP is an 11 x 11 detector array based on thin (50 {mu}m) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary ''drop-in'' technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Results: Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180 deg. Angular dependence was within 3.5% for the gantry angles {+-} 75 deg. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the surface dose increased by 12.1% for a 30 x 30 cm{sup 2} field size at the source to detector distance (SDD) of 80 cm whilst the transmission for the MP was 99%. Conclusions: The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with ''drop-in'' packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.

  19. Integration of Micro-Light-Emitting-Diode Arrays and Silicon Driver for Heterogeneous Optoelectronic Integrated Circuit Device

    NASA Astrophysics Data System (ADS)

    Shin, Sang-Baie; Iijima, Ko-Ichiro; Chiba, Jun-Ichi; Okada, Hiroshi; Iwayama, Sho; Wakahara, Akihiro

    2011-04-01

    In this paper, we proposed the possibility of implementing a single chip device for realizing optoelectronic integrated circuits (OEICs). Micro-light-emitting-diode (LED) arrays and a complementary metal-oxide-semiconductor (CMOS) pulse width modulation (PWM) silicon driver were proposed, designed, and fabricated on a single chip. The micro-LED arrays were separated by a dry etching method into 64 pixels of 8×8, each with a size of 30×30 µm2 and operated in 3 V at 100 µA. The PWM Si driver was well operated and modulated using various control signals. Furthermore, to investigate the driver for handling massive parallel information, a simple multifunctional driver was designed, fabricated, and flip-chip-bonded using a gold compliant bump and anisotropic conductive adhesive with micro-LED arrays.

  20. Patterning the cone mosaic array in zebrafish retina requires specification of ultraviolet-sensitive cones.

    PubMed

    Raymond, Pamela A; Colvin, Steven M; Jabeen, Zahera; Nagashima, Mikiko; Barthel, Linda K; Hadidjojo, Jeremy; Popova, Lilia; Pejaver, Vivek R; Lubensky, David K

    2014-01-01

    Cone photoreceptors in teleost fish are organized in precise, crystalline arrays in the epithelial plane of the retina. In zebrafish, four distinct morphological/spectral cone types occupy specific, invariant positions within a regular lattice. The cone lattice is aligned orthogonal and parallel to circumference of the retinal hemisphere: it emerges as cones generated in a germinal zone at the retinal periphery are incorporated as single-cell columns into the cone lattice. Genetic disruption of the transcription factor Tbx2b eliminates most of the cone subtype maximally sensitive to ultraviolet (UV) wavelengths and also perturbs the long-range organization of the cone lattice. In the tbx2b mutant, the other three cone types (red, green, and blue cones) are specified in the correct proportion, differentiate normally, and acquire normal, planar polarized adhesive interactions mediated by Crumbs 2a and Crumbs 2b. Quantitative image analysis of cell adjacency revealed that the cones in the tbx2b mutant primarily have two nearest neighbors and align in single-cell-wide column fragments that are separated by rod photoreceptors. Some UV cones differentiate at the dorsal retinal margin in the tbx2b mutant, although they are severely dysmorphic and are eventually eliminated. Incorporating loss of UV cones during formation of cone columns at the margin into our previously published mathematical model of zebrafish cone mosaic formation (which uses bidirectional interactions between planar cell polarity proteins and anisotropic mechanical stresses in the plane of the retinal epithelium to generate regular columns of cones parallel to the margin) reproduces many features of the pattern disruptions seen in the tbx2b mutant. PMID:24465536

  1. Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Sang-Hyun; Kim, Jae-Joon; Kang, Jang-Won; Jung, Yen-Sook; Kim, Dong-Yu; Yim, Sang-Youp; Park, Seong-Ju

    2015-09-01

    We report on the characteristics of localized surface plasmon (LSP)-enhanced near-ultraviolet light-emitting diodes (NUV-LEDs) fabricated by using colloidal silver (Ag) nanoparticles (NPs). Colloidal Ag NPs were deposited on the 20 nm thick p-GaN spacer layer using a spray process. The optical output power of NUV-LEDs with colloidal Ag NPs was increased by 48.7% at 20 mA compared with NUV-LEDs without colloidal Ag NPs. The enhancement was attributed to increased internal quantum efficiency caused by the resonance coupling between excitons in the multiple quantum wells and the LSPs in the Ag NPs.

  2. Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles.

    PubMed

    Hong, Sang-Hyun; Kim, Jae-Joon; Kang, Jang-Won; Jung, Yen-Sook; Kim, Dong-Yu; Yim, Sang-Youp; Park, Seong-Ju

    2015-09-25

    We report on the characteristics of localized surface plasmon (LSP)-enhanced near-ultraviolet light-emitting diodes (NUV-LEDs) fabricated by using colloidal silver (Ag) nanoparticles (NPs). Colloidal Ag NPs were deposited on the 20 nm thick p-GaN spacer layer using a spray process. The optical output power of NUV-LEDs with colloidal Ag NPs was increased by 48.7% at 20 mA compared with NUV-LEDs without colloidal Ag NPs. The enhancement was attributed to increased internal quantum efficiency caused by the resonance coupling between excitons in the multiple quantum wells and the LSPs in the Ag NPs. PMID:26335045

  3. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    ERIC Educational Resources Information Center

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  4. Ultra-violet Sensing Characteristic and Field Emission Properties of Vertically Aligned Aluminum Doped Zinc Oxide Nanorod Arrays

    SciTech Connect

    Mamat, M. H.; Malek, M. F.; Musa, M. Z.; Khusaimi, Z.; Rusop, M.

    2011-05-25

    Ultra-violet (UV) sensing behavior and field emission characteristic have been investigated on vertically aligned aluminum (Al) doped zinc oxide (ZnO) nanorod arrays prepared using sol-gel immersion method. Uniform and high coverage density of ZnO nanorod arrays have been successfully deposited on seeded-catalyst coated substrates. The synthesized nanorods have diameter sizes between 50 nm to 150 nm. The XRD spectra show Al doped ZnO nanorod array has high crystallinity properties with the dominancy of crystal growth along (002) plane or c-axis. UV photoresponse measurement indicates that Al doped ZnO nanorod array sensitively detects UV light as shown by conductance increment after UV illumination exposure. The nanorod array shows good field emission properties with low turn on field and threshold field at 2.1 V/{mu}m and 5.6 V/{mu}m, respectively. The result suggested that Al doped ZnO nanorod arrays prepared by low-cost sol-gel immersion method show promising result towards fabrication of multi applications especially in UV photoconductive sensor and field emission displays.

  5. Excellent nonlinearity of a selection device based on anti-series connected Zener diodes for ultrahigh-density bipolar RRAM arrays

    NASA Astrophysics Data System (ADS)

    Li, Yingtao; Li, Rongrong; Fu, Liping; Gao, Xiaoping; Wang, Yang; Tao, Chunlan

    2015-10-01

    A crossbar array is usually used for the high-density application of a resistive random access memory (RRAM) device. However, the cross-talk interference limits the increase in the integration density. In this paper, anti-series connected Zener diodes as a selection device are proposed for bipolar RRAM arrays. Simulation results show that, by using the anti-series connected Zener diodes as a selection device, the readout margin is sufficiently improved compared to that obtained without a selection device or with anti-parallel connected diodes as the selection device. The maximum size of the crossbar arrays with anti-series connected Zener diodes as a selection device over 1 TB is estimated by theoretical simulation. In addition, the feasibility of using the anti-series connected Zener diodes as a selection device for bipolar RRAM is demonstrated experimentally. These results indicate that anti-series connected Zener diodes as a selection device opens up great opportunities to realize ultrahigh-density bipolar RRAM arrays.

  6. Single-element optical injection locking of diode-laser arrays

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1988-01-01

    By optically injecting a single end-element of a semiconductor laser array, both the spatial and spectral emission characteristics of the entire laser array is controlled. With the output of the array locked, the far-field emission angle of the array is continuously scanned over several degrees by varying the injection frequency.

  7. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source.

    PubMed

    Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming

    2009-03-01

    A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol. PMID:19224025

  8. Tumor-tracking radiotherapy of moving targets; verification using 3D polymer gel, 2D ion-chamber array and biplanar diode array

    NASA Astrophysics Data System (ADS)

    Ceberg, Sofie; Falk, Marianne; Rosenschöld, Per Munck Af; Cattell, Herbert; Gustafsson, Helen; Keall, Paul; Korreman, Stine S.; Medin, Joakim; Nordström, Fredrik; Persson, Gitte; Sawant, Amit; Svatos, Michelle; Zimmerman, Jens; Bäck, Sven ÅJ

    2010-11-01

    The aim of this study was to carry out a dosimetric verification of a dynamic multileaf collimator (DMLC)-based tumor-tracking delivery during respiratory-like motion. The advantage of tumor-tracking radiation delivery is the ability to allow a tighter margin around the target by continuously following and adapting the dose delivery to its motion. However, there are geometric and dosimetric uncertainties associated with beam delivery system constraints and output variations, and several investigations have to be accomplished before a clinical integration of this tracking technique. Two types of delivery were investigated in this study I) a single beam perpendicular to a target with a one dimensional motion parallel to the MLC moving direction, and II) an intensity modulated arc delivery (RapidArc®) with a target motion diagonal to the MLC moving direction. The feasibility study (I) was made using an 2D ionisation chamber array and a true 3D polymer gel. The arc delivery (II) was verified using polymer gel and a biplanar diode array. Good agreement in absorbed dose was found between delivery to a static target and to a moving target with DMLC tracking using all three detector systems. However, due to the limited spatial resolution of the 2D array a detailed comparison was not possible. The RapidArc® plan delivery was successfully verified using the biplanar diode array and true 3D polymer gel, and both detector systems could verify that the DMLC-based tumor-tracking delivery system has a very good ability to account for respiratory target motion.

  9. Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array

    NASA Astrophysics Data System (ADS)

    Liu, C.; Kamaev, V.; Vardeny, Z. V.

    2005-04-01

    We fabricated an organic light-emitting diode using a π-conjugated polymer emissive layer sandwiched between two semitransparent electrodes: an optically thin gold film anode, whereas the cathode was in the form of an optically thick aluminum (Al) film with patterned periodic subwavelength two-dimensional hole array that showed anomalous transmission in the spectral range of the polymer photoluminescence band. At similar current densities, we obtained a sevenfold electroluminescence efficiency enhancement with the patterned Al device compared with a control device based on unperforated Al electrode.

  10. Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays

    SciTech Connect

    Li, Qiming; Westlake, Karl R.; Crawford, Mary H.; Lee, Stephen R.; Koleske, Daniel D.; Figiel, Jeffery J.; Cross, Karen C.; Fathololoumi, Saeed; Mi, Zetian; Wang, George T.

    2011-12-05

    Vertically aligned InGaN/GaN nanorod light emitting diode (LED) arrays were created from planar LED structures using a new top-down fabrication technique consisting of a plasma etch followed by an anisotropic wet etch. The wet etch results in straight, smooth, well-faceted nanorods with controllable diameters and removes the plasma etch damage. 94% of the nanorod LEDs are dislocation-free and a reduced quantum confined Stark effect is observed due to reduced piezoelectric fields. Despite these advantages, the IQE of the nanorod LEDs measured by photoluminescence is comparable to the planar LED, perhaps due to inefficient thermal transport and enhanced nonradiative surface recombination.

  11. Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays.

    PubMed

    Li, Qiming; Westlake, Karl R; Crawford, Mary H; Lee, Stephen R; Koleske, Daniel D; Figiel, Jeffery J; Cross, Karen C; Fathololoumi, Saeed; Mi, Zetian; Wang, George T

    2011-12-01

    Vertically aligned InGaN/GaN nanorod light emitting diode (LED) arrays were created from planar LED structures using a new top-down fabrication technique consisting of a plasma etch followed by an anisotropic wet etch. The wet etch results in straight, smooth, well-faceted nanorods with controllable diameters and removes the plasma etch damage. 94% of the nanorod LEDs are dislocation-free and a reduced quantum confined Stark effect is observed due to reduced piezoelectric fields. Despite these advantages, the IQE of the nanorod LEDs measured by photoluminescence is comparable to the planar LED, perhaps due to inefficient thermal transport and enhanced nonradiative surface recombination. PMID:22273946

  12. A Comparative Analysis for Verification of IMRT and VMAT Treatment Plans using a 2-D and 3-D Diode Array

    NASA Astrophysics Data System (ADS)

    Dance, Michael J.

    With the added complexity of current radiation treatment dose delivery modalities such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy), quality assurance (QA) of these plans become multifaceted and labor intensive. To simplify the patient specific quality assurance process, 2D or 3D diode arrays are used to measure the radiation fluence for IMRT and VMAT treatments which can then be quickly and easily compared against the planned dose distribution. Because the arrays that can be used for IMRT and VMAT patient-specific quality assurance are of different geometry (planar vs. cylindrical), the same IMRT or VMAT treatment plan measured by two different arrays could lead to different measured radiation fluences, regardless of the output and performance of linear accelerator. Thus, the purpose of this study is to compare patient specific QA results as measured by the MapCHECK 2 and ArcCHECK diode arrays for the same IMRT and VMAT treatment plans to see if one diode array consistently provides a closer comparison to reference data. Six prostate and three thoracic spine IMRT treatment plans as well as three prostate and three thoracic spine VMAT treatment plans were produced. Radiotherapy plans for this study were generated using the Pinnacle TPS v9.6 (Philips Radiation Oncology Systems, Fitchburg, WI) using 6 MV, 6 MV FFF, and 10 MV x-ray beams from a Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA) with a 120-millenium multi-leaf collimator (MLC). Each IMRT and VMAT therapy plan was measured on Sun Nuclear's MapCHECK 2 and ArcCHECK diode arrays. IMRT measured data was compared with planned dose distribution using Sun Nuclear's 3DVH quality assurance software program using gamma analysis and dose-volume histograms for target volumes and critical structures comparison. VMAT arc plans measured on the MapCHECK 2 and ArcCHECK were compared using beam-by-beam analysis with the gamma evaluation method with Sun Nuclear's SNC Patient (TM) analysis software. MapCHECK 2 showed a slightly better agreement with planned data for IMRT verifications with a mean pass rate of 99.4% for clinically used acceptance criteria of 3%/3mm. MapCHECK 2's 99.4% mean pass rate for IMRT verifications was 1.4% higher than ArcCHECK's mean pass rate. For VMAT verifications, the MapCHECK 2 had a mean pass rate of 99.6% and 100% for each arc respectively, resulting in a 1.25% to 1.92% higher mean passing rates than those measured by the ArcCHECK using an acceptance criteria of 3%/3mm. MapCHECK 2 showed consistently higher ROI-specific mean gamma passing rates, ranging from +0.2% to +5.6%. While neither diode array showed any advantage in regards to D95 measurements within the PTV, MapCHECK 2 again showed closer comparison data in the CTV/GTV with an absolute deviation of -1.14 Gy compared to -3.39 Gy as measured by the ArcCHECK. Lastly, while the MapCHECK 2 and ArcCHECK both closely matched with the reference doses within the PTV and CTV/GTV, the ArcCHECK consistently overestimated the maximum absolute dose to all ROI, from 0.026 Gy to 2.243 Gy. In conclusion, the MapCHECK 2 diode array measured data more closely matched with planned data compared to the ArcCHECK diode array for IMRT verifications. While MapCHECK 2 showed a marginally better gamma passing rates over the ArcCHECK diode array, the ArcCHECK's ability to simultaneously measure flatness, symmetry, output, and MLC positional accuracy as a function of gantry angle make it a more realistic and efficient measurement device for VMAT verifications.

  13. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

    SciTech Connect

    Verma, Jai Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep

    2014-01-13

    Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365 nm (3.4 eV, the bulk bandgap) to below 240 nm (>5.2 eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

  14. Nonlinear dynamics and synchronization of an array of single mode laser diodes in external cavity subject to current modulation

    NASA Astrophysics Data System (ADS)

    Liu, B.; Braiman, Y.; Nair, N.; Lu, Y.; Guo, Y.; Colet, P.; Wardlaw, M.

    2014-08-01

    We study the dynamics of an array of single mode laser diodes subject to filtered feedback provided by an external reflection grating. Our numerical simulations show that by modulating the injection current the array can be phase synchronized leading to high power coherent emission. The output peak power density can be varied by tuning the modulation frequency and can be resonantly enhanced once the frequency matches the inverse of external cavity round trip time and mode-locking behavior is realized. Both non-resonant and resonant injection current modulation results in an excellent degree of phase synchronization and coherence at certain modulation amplitudes and frequencies that is manifested by coherent enhancement of far-field optical intensity.

  15. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  16. DNA sequencing by capillary electrophoresis. Use of a two-laser-two-window intensified diode array detection system

    SciTech Connect

    Carson, S.; Cohen, A.S.; Belenkii, A.; Ruiz-Martinez, M.C.; Berka, J.; Karger, B.L. )

    1993-11-15

    This paper presents the principles of an instrument designed for DNA sequencing using the standard four-dye-labeled primer approach. The method is based on capillary electrophoresis with laser-induced fluorescence and an intensified diode array detector. An important goal of the instrument design has been a detection system that possesses high sensitivity and high spectral resolution. Based on an analysis of the spectral characteristics of the four standard dye-labeled primers, FAM, JOE, ROX, and TAMRA, the strategy has been to use a two-laser-two-window approach, in which a 488-nm argon ion laser illuminates one window, followed by a 543-nm helium-neon laser illuminating the second window. The two-window approach has no moving parts and permits continuous illumination. Spectral resolution is provided by a grating spectrograph and a cooled intensified diode array. The estimated limit of detection for the standard four dye-labeled primers was found to be in the sample concentration range of 1 X 10[sup [minus]12] M. To achieve these low levels, complete free-radical polymerization of polyacrylamide has been found to be necessary in order to reduce background noise. In addition, reduction in background noise was accomplished by continual purging of the anodic reservoir in order to prevent electrolysis products from entering the capillary. Separation of DNA sequencing reaction products is demonstrated on a 9% T linear polyacrylamide column. 31 refs., 8 figs., 1 tab.

  17. Monolithic arrays of grating-surface-emitting diode lasers and quantum well modulators for optical communications

    NASA Technical Reports Server (NTRS)

    Carlson, N. W.; Evans, G. A.; Liew, S. K.; Kaiser, C. J.

    1990-01-01

    The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator.

  18. High-speed switching of monolithic arrays of grating-surface-emitting diode lasers

    SciTech Connect

    Carlson, N.W.; Evans, G.A.; Liew, S.K.; Kaiser, C.J. )

    1989-10-01

    The electrooptic switching properties of injection-coupled coherent two-dimensional grating-surface-emitting (GSE) laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled GSE lasers, a single gain section can act as an intracavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high-power GSE laser arrays by operating only one gain section as an intracavity loss modulator.

  19. Calibration Transfer Between a Bench Scanning and a Submersible Diode Array Spectrophotometer for In Situ Wastewater Quality Monitoring in Sewer Systems.

    PubMed

    Brito, Rita S; Pinheiro, Helena M; Ferreira, Filipa; Matos, José S; Pinheiro, Alexandre; Lourenço, Nídia D

    2016-03-01

    Online monitoring programs based on spectroscopy have a high application potential for the detection of hazardous wastewater discharges in sewer systems. Wastewater hydraulics poses a challenge for in situ spectroscopy, especially when the system includes storm water connections leading to rapid changes in water depth, velocity, and in the water quality matrix. Thus, there is a need to optimize and fix the location of in situ instruments, limiting their availability for calibration. In this context, the development of calibration models on bench spectrophotometers to estimate wastewater quality parameters from spectra acquired with in situ instruments could be very useful. However, spectra contain information not only from the samples, but also from the spectrophotometer generally invalidating this approach. The use of calibration transfer methods is a promising solution to this problem. In this study, calibration models were developed using interval partial least squares (iPLS), for the estimation of total suspended solids (TSS) and chemical oxygen demand (COD) in sewage from Ultraviolet-visible spectra acquired in a bench scanning spectrophotometer. The feasibility of calibration transfer to a submersible, diode array equipment, to be subsequently operated in situ, was assessed using three procedures: slope and bias correction (SBC); single wavelength standardization (SWS) on mean spectra; and local centering (LC). The results showed that SBC was the most adequate for the available data, adding insignificant error to the base model estimates. Single wavelength standardization was a close second best, potentially more robust, and independent of the base iPLS model. Local centering was shown to be inadequate for the samples and instruments used. PMID:26798079

  20. Controlled fundamental supermode operation of phase-locked arrays of gain-guided diode lasers

    NASA Technical Reports Server (NTRS)

    Kapon, E.; Margalit, S.; Yariv, A.; Katz, J.

    1984-01-01

    Uniform semiconductor laser arrays tend to oscillate in a superposition of their supermodes, thus leading to large beam divergence and spectral spread. Discrimination among the supermodes in phase-locked arrays is discussed theoretically. It is shown that supermode discrimination in gain-guided arrays, in favor of the fundamental supermode, is made possible by the near-field interference patterns which result from the complex optical fields of the gain-guided lasers. A fundamental supermode operation is demonstrated, for the first time, in GaAlAs/GaAs gain-guided laser arrays. This is achieved by control of the current (gain) profile across the array by means of individual laser contacts.

  1. Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)

    SciTech Connect

    Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming

    2014-06-03

    Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.

  2. Coupled-mode analysis of gain and wavelength oscillation characteristics of diode laser phased arrays

    NASA Technical Reports Server (NTRS)

    Butler, J. K.; Ettenberg, M.; Ackley, D. E.

    1985-01-01

    The lasing wavelengths and gain characteristics of the modes of phase-locked arrays of channel-substrate-planar (CSP) lasers are presented. The gain values for the array modes are determined from complex coupling coefficients calculated using the fields of neighboring elements of the array. The computations show that, for index guided lasers which have nearly planar phase fronts, the highest order array mode will be preferred. The 'in-phase' or fundamental mode, which produces only one major lobe in the far-field radiation pattern, has the lowest modal gain of all array modes. The modal gain differential between the highest order and fundamental modes is less than 10/cm for weak coupling between the elements.

  3. Aspect ratio engineering of microlens arrays in thin-film flip-chip light-emitting diodes.

    PubMed

    Zhu, Peifen; Tan, Chee-Keong; Sun, Wei; Tansu, Nelson

    2015-12-01

    Light extraction efficiency of thin-film flip-chip InGaN-based light-emitting diodes (LEDs) with a TiO2 microlens arrays was calculated by employing the finite-difference time-domain method. The microlens arrays, formed by embedding hexagonal close-packed TiO2 sphere arrays in a polystyrene (PS) layer, were placed on top of the InGaN LED to serve as an intermediate medium for light extraction. By tuning the thickness of the PS layer, in-coupling and out-coupling efficiencies were optimized to achieve maximum light extraction efficiency. A thicker PS layer resulted in higher in-coupling efficiency, while a thinner PS layer led to higher out-coupling efficiency. Thus, the maximum light extraction efficiency becomes a trade-off between in-coupling and out-coupling efficiency. In addition, the cavity formed by the PS layer also affects light extraction from the LED. Our study reveals that a maximum light extraction efficiency of 86% was achievable by tuning PS thickness to 75 nm with maximized in-coupling and out-coupling efficiency accompanied by the optimized resonant cavity condition. PMID:26836692

  4. Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays

    NASA Astrophysics Data System (ADS)

    Marrs, R. E.; Widmann, K.; Brown, G. V.; Heeter, R. F.; MacLaren, S. A.; May, M. J.; Moore, A. S.; Schneider, M. B.

    2015-10-01

    Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums. If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.

  5. Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays.

    PubMed

    Marrs, R E; Widmann, K; Brown, G V; Heeter, R F; MacLaren, S A; May, M J; Moore, A S; Schneider, M B

    2015-10-01

    Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums. If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics. PMID:26520959

  6. Band engineering for surface emission enhancement in Al-rich AlGaN-based deep-ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Huimin; Yu, Tongjun; Chen, Xinjuan; Wang, Jianping; Zhang, Guoyi

    2016-05-01

    The optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) with different structure parameters were analyzed using the modified theoretical model based on the effective mass equation. It is demonstrated that the optical polarization properties of AlGaN-based QWs are determined by the valence subband structure, including the energy level order and the valence subband coupling. The results show that the TE-polarized emission is enhanced in Al-rich AlGaN/AlN QWs with smaller well width, a buffer layer inducing compressive stress, and a staggered well layer owing to the change in the valence subband structure. Hence, the enhancement of surface emission from deep-ultraviolet (DUV) AlGaN-based light-emitting diodes (LEDs) can be realized by adjusting the QW structure parameters to induce a valence subband change.

  7. Effect of Hydrogen Post-Annealing on Transparent Conductive ITO/Ga2O3 Bi-Layer Films for Deep Ultraviolet Light-Emitting Diodes.

    PubMed

    Kim, Kyeong Heon; Kim, Su Jin; Park, Sang Young; Kim, Tae Geun

    2015-10-01

    The effect of hydrogen post-annealing on the electrical and optical properties of ITO/Ga2O bi-layer films, deposited by RF magnetron sputtering, is investigated for potential applications to transparent conductive electrodes of ultraviolet (UV) light-emitting diodes. Three samples--an as-deposited sample and two samples post-annealed in N2 gas and N2-H2 gas mixture--were prepared and annealed at different temperatures ranging from 100 C to 500 C for comparison. Among these samples, the sample annealed at 300 C in a mixture of N2 and H2 gases shows the lowest sheet resistance of 301.3 ?/square and a high UV transmittance of 87.1% at 300 nm. PMID:26726411

  8. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes.

    PubMed

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-01-01

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode. PMID:26010378

  9. AlGaN-based deep-ultraviolet light-emitting diodes grown on High-quality AlN template using MOVPE

    NASA Astrophysics Data System (ADS)

    Yan, Jianchang; Wang, Junxi; Zhang, Yun; Cong, Peipei; Sun, Lili; Tian, Yingdong; Zhao, Chao; Li, Jinmin

    2015-03-01

    In this article, we report the growth of high-quality AlN film using metal-organic vapor phase epitaxy. Three layers of middle-temperature (MT) AlN were introduced during the high-temperature (HT) AlN growth. During the MT-AlN layer growth, aluminum and nitrogen sources were closed for 6 seconds after every 5-nm MT-AlN, while H2 carrier gas was always on. The threading dislocation density in an AlN epi-layer on a sapphire substrate was reduced by almost half. AlGaN-based deep-ultraviolet light-emitting diodes were further fabricated based on the AlN/sapphire template. At 20 mA driving current, the emitted peak wavelength is 284.5 nm and the light output power exceeds 3 mW.

  10. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes

    SciTech Connect

    Wierer, J. J. Allerman, A. A.; Montaño, I.; Moseley, M. W.

    2014-08-11

    The improvement in light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes (UVLEDs) emitting at ∼270 nm is shown to be influenced by optical polarization. Three UVLEDs with different reflective scattering structures are investigated and compared to standard UVLEDs without scattering structures. The optical polarization and therefore the direction of light propagation within the various UVLEDs are altered by changes in the quantum well (QW) thickness. The improvement in light extraction efficiency of the UVLEDs with reflective scattering structures increases, compared to the UVLEDs without scattering structures, as the fraction of emitted light propagating parallel to the QW plane increases. Additionally, the light extraction efficiency increases as the average distance to the reflective scattering structures decreases.

  11. Highly polarized emission from a GaN-based ultraviolet light-emitting diode using a Si-subwavelength grating on a SiO2 underlayer

    NASA Astrophysics Data System (ADS)

    Takashima, Yuusuke; Tanabe, Masato; Haraguchi, Masanobu; Naoi, Yoshiki

    2016-06-01

    The polarization characteristics of a 370 nm GaN-based ultraviolet light-emitting diode (UV-LED) were controlled by a subwavelength grating (SWG) on a low-refractive-index SiO2 underlayer inserted between the SWG and LED surface. Highly polarized UV emission was demonstrated by utilizing the Bloch eigenmode resonance in the SWG structure for the two orthogonal polarization states. The polarization ratio of the emission reached 16:1, which is the highest reported to date for direct emission from a GaN-based UV-LED. The decrease in UV emission was also prevented by suppressing the diffracted plane wave and by increasing the amplitude of the wave incident onto the SWG structure; this increase was achieved by taking advantage of the low refractive index of SiO2.

  12. Efficiency improvements in AlGaN-based deep ultraviolet light-emitting diodes using inverted-V-shaped graded Al composition electron blocking layer

    NASA Astrophysics Data System (ADS)

    Fan, Xuancong; Sun, Huiqing; Li, Xuna; Sun, Hao; Zhang, Cheng; Zhang, Zhuding; Guo, Zhiyou

    2015-12-01

    This paper principally presents the numerical investigation of electron blocking layers (EBL) structures with different Al concentration gradient changing in AlGaN-based deep ultraviolet light emitting diodes (DUV-LEDs). Compared to conventional EBL structure with constant Al composition, the LED with inverted-V-shaped EBL structure has higher output power and carriers recombination rate, but the efficiency droop will decrease obviously while the electron leakage current can reduce much as well. Therefore, the result indicates that appropriate Al component in LED can enhance electron and hole recombination rate in the active region. The improved performance is mainly attribute the sufficient electron-barrier height and relatively higher hole injection efficiency which results from the mitigated band-bending.

  13. Design of electron blocking layers for improving internal quantum efficiency of InGaN/AlGaN-based ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Park, Tae Hoon; Kim, Tae Geun

    2015-09-01

    In this paper, we designed and simulated InGaN/AlGaN-based near-ultraviolet light-emitting diode (NUV LED) epi-structures to obtain high internal quantum efficiency and low efficiency droop. When the conventional epi-structure of an last quantum barrier and an electron blocking layer (EBL) was replaced with a graded last quantum barrier and multi-step EBLs, the NUV LED showed 35 % higher internal quantum efficiency and 25 % more suppression of efficiency droop than the conventional NUV LED. Furthermore, a detailed study of the grading effect of the EBL revealed that 10-step EBLs increase performance when compared to other structures. These results are attributed to the polarization-induced effect, which reduces the electron leakage and increases the hole injection efficiency.

  14. Numerical analysis on the effects of multi-quantum last barriers in AlGaN-based ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Shengchang; Li, Yang; Tian, Wu; Zhang, Min; Li, Senlin; Wu, Zhihao; Fang, Yanyan; Dai, Jiangnan; Chen, Changqing

    2015-03-01

    The advantages of AlGaN-based ultraviolet light-emitting diode with AlGaN/AlGaN multi-quantum last barrier (MQLB) are investigated numerically in this work. The light output power, internal quantum efficiency, energy band diagrams, carrier concentrations, radiative recombination rate, and spontaneous emission spectra in the multi-quantum wells are investigated. The simulation results show that the structure with MQLB exhibits higher output power and smaller efficiency droop at high current as compared to the conventional one. Based on the numerical simulation and analysis, these improvements on the device characteristics are attributed to the remarkable improvement of the hole injection efficiency from p-type region, which results from the lower effective barrier height for hole transportation, the lower consumption of holes in the p-side, and the very low hole population in MQLB region.

  15. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: AlGaN-Based Deep-Ultraviolet Light Emitting Diodes Fabricated on AlN/sapphire Template

    NASA Astrophysics Data System (ADS)

    Sang, Li-Wen; Qin, Zhi-Xin; Fang, Hao; Zhang, Yan-Zhao; Li, Tao; Xu, Zheng-Yu; Yang, Zhi-Jian; Shen, Bo; Zhang, Guo-Yi; Li, Shu-Ping; Yang, Wei-Huang; Chen, Hang-Yang; Liu, Da-Yi; Kang, Jun-Yong

    2009-11-01

    We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AlN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317 nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved.

  16. Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates

    NASA Astrophysics Data System (ADS)

    Nakahara, K.; Akasaka, S.; Yuji, H.; Tamura, K.; Fujii, T.; Nishimoto, Y.; Takamizu, D.; Sasaki, A.; Tanabe, T.; Takasu, H.; Amaike, H.; Onuma, T.; Chichibu, S. F.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.

    2010-07-01

    We have grown nitrogen-doped MgxZn1-xO:N films on Zn-polar ZnO single crystal substrates by molecular beam epitaxy. As N-sources, we employed NO-plasma or NH3 gas itself. As x increased, optimum growth temperature window for smooth film morphology shifted to higher temperatures, while maintaining high N-concentration (˜1×1019 cm-3). The heterosructures of MgxZn1-xO:N (0.1≤x≤0.4)/ZnO were fabricated into light emitting diodes of 500-μm-diameter. We observed ultraviolet near-band-edge emission (λ ˜382 nm) with an output power of 0.1 μW for a NO-plasma-doped LED and 70 μW for a NH3-doped one at a bias current of 30 mA.

  17. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes

    PubMed Central

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-01-01

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode. PMID:26010378

  18. InAlGaN optical emitters: laser diodes with non-epitaxial cladding layers and ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chua, Christopher; Yang, Zhihong; Knollenberg, Clifford; Teepe, Mark; Cheng, Bowen; Strittmatter, Andre; Bour, David; Johnson, Noble M.

    2011-02-01

    We describe recent work on InGaN lasers and AlGaN UV LEDs at the Palo Alto Research Center (PARC). The presentation includes results from InGaN laser diodes in which the usual epitaxial upper cladding layer is replaced with an evaporated or sputtered non-epitaxial material, such as indium tin oxide, silver, or a silver-palladium-copper alloy [1, 2]. Non-epitaxial cladding layers offer several advantages to long wavelength InGaN laser diodes, such as eliminating the need to expose vulnerable InGaN active layers to the high temperatures required for growing conventional p-AlGaN cladding layers subsequent to the active layer growth. The presentation also discusses our recent results on AlGaN UV LEDs. UV LEDs with 300 micron square geometries operating at λ = 325 nm exhibit output powers of 13 mW with differential quantum efficiencies of 0.054 W/A measured under wafer-level, unpackaged condition with no heat sink. LEDs operating at λ = 290 nm under similar test conditions display output powers of 1.6 mW for large-area 300 μm X 1 mm devices.

  19. DETERMINATION OF CARBENDAZIM IN WATER BY HIGH-PERFORMANCE IMMUNOAFFINITY CHROMATOGRAPHY ON-LINE WITH HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH DIODE-ARRAY OR MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    An automated method for the determination of carbendazim in water that combines high-performance immunoaffinity chromatography (HPIAC), high-performance liquid chromatography (HPLC) in the reversed-phase mode, and detection by either UV-Vis diode array detector (DAD) spectroscopy...

  20. Study of the radiation divergence and energy efficiency of a pulsed Nd{sup 3+} : YAG laser transversely pumped by laser diode arrays

    SciTech Connect

    Abazadze, Aleksandr Yu; Zverev, Georgii M; Kolbatskov, Yurii M

    2004-06-30

    The spatial and energy characteristics of radiation from a pulsed Nd{sup 3+} : YAG laser transversely pumped by laser diode arrays are studied experimentally by varying the resonator parameters. The differential efficiencies of the laser for multimode and close to single-mode free running lasing were measured to be 48 % and 40 % - 42 %, respectively. (lasers)

  1. Optical pumping of Rb vapor using high-power Ga{sub 1{minus}{ital x}}Al{sub {ital x}}As diode laser arrays

    SciTech Connect

    Cummings, W.J.; Haeusser, O.; Lorenzon, W.; Swenson, D.R.; Larson, B.

    1995-06-01

    The use of high-power Ga{sub 1{minus}{ital x}}Al{sub {ital x}}As diode laser arrays for optical pumping of Rb vapor has been examined both theoretically and experimentally. Our studies show that large atomic polarizations can be obtained using the broad spectral output of a diode laser array if the Rb resonance line is collisionally broadened by several atmospheres of a buffer gas. The objective was to study the effectiveness of diode laser arrays as light sources for optically pumped spin-exchange polarized {sup 3}He targets. The average Rb polarization was deduced at three different Rb vapor pressures using the polarization induced in the {sup 3}He buffer gas. The largest {sup 3}He polarization observed was 53% using a 20-W diode array with 1.9-nm full width at half maximum spectral width in 10.5 amagat of {sup 3}He. This result compares favorably with other light sources for this target. The measured average Rb polarizations are compared to theoretical calculations.

  2. One joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry

    NASA Technical Reports Server (NTRS)

    Kasinski, Jeffrey J.; Hughes, Will; Dibiase, Don; Bournes, Patrick; Burnham, Ralph

    1992-01-01

    Output of 1.25 J per pulse (1.064 micron) with an absolute optical efficiency of 28 percent and corresponding electrical efficiency of 10 percent was demonstrated in a diode-array-pumped Nd:YAG laser using a side-pumped rod geometry in a master-oscillator/power-amplifier configuration. In Q-switched operation, an output of 0.75 J in a 17-ns pulse was obtained. The fundamental laser output was frequency doubled in KTP with 60 percent conversion efficiency to obtain 0.45 J in a 16-ns pulse at 532 nm. The output beam had high spatial quality with pointing stability better than 40 microrad and a shot-to-shot pulse energy fluctuation of less than +/-3 percent.

  3. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays.

    PubMed

    Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran

    2016-01-11

    Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED. PMID:26832299

  4. Recover soft x-ray spectrum using virtual flat response channels with filtered x-ray diode array

    SciTech Connect

    Song Tianming; Yang Jiamin; Yi Rongqing

    2012-11-15

    A method for the recovery of soft x-ray spectra in indirect-drive inertial confinement fusion experiments is presented. Virtual detection channels with bandpass responses are obtained using linear combinations of the channel response functions of a filtered x-ray diode array and a weighted correction is introduced to improve the recovery. These virtual channels can be used to calculate radiation fluxes in some specific photon energy bands and hence to recover the spectrum of the whole photon energy range from 80 eV to 4.5 keV. Examples are listed which demonstrate the capability of this method to unfold various spectra such as Planck spectra with different radiation temperatures and to obtain x-ray flux of certain narrow energy interval.

  5. High-brightness diode laser arrays integrated with a phase shifter designed for single-lobe far-field pattern.

    PubMed

    Liu, Lei; Zhang, Jianxin; Ma, Shaodong; Qi, Aiyi; Qu, Hongwei; Zhang, Yejin; Zheng, Wanhua

    2013-08-01

    High-brightness, edge-emitting diode laser arrays integrated with a phase shifter have been designed and fabricated at a wavelength of about 910 nm. Stable out-of-phase mode is generated through coupling evanescently and converted to be nearly in-phase by the phase modulation from the phase shifter. With a very simple manufacture process, stable single-lobe far-field pattern is achieved in the slow axis when the continuous wave output power exceeds 460 mW/facet, and the divergence angle is only 2.7 times the diffraction-limited value. Such device shows a promising future for high-brightness application with low cost and easy fabrication. PMID:23903137

  6. An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays

    NASA Astrophysics Data System (ADS)

    Liu, S. W.; Wang, J. X.; Divayana, Y.; Dev, K.; Tan, S. T.; Demir, H. V.; Sun, X. W.

    2013-02-01

    We report phosphorescent organic light-emitting diodes with a substantially improved light outcoupling efficiency and a wider angular distribution through applying a layer of zinc oxide periodic nanopillar arrays by pattern replication in non-wetting templates technique. The devices exhibited the peak emission intensity at an emission angle of 40 compared to 0 for reference device using bare ITO-glass. The best device showed a peak luminance efficiency of 95.5 1.5 cd/A at 0 emission (external quantum efficiencyEQE of 38.5 0.1%, power efficiency of 127 1 lm/W), compared to that of the reference device, which has a peak luminance efficiency of 68.0 1.4 cd/A (EQE of 22.0 0.1%, power efficiency of 72 1 lm/W).

  7. Design and fabrication of AlGaInP-based micro-light-emitting-diode array devices

    NASA Astrophysics Data System (ADS)

    Bao, Xingzhen; Liang, Jingqiu; Liang, Zhongzhu; Wang, Weibiao; Tian, Chao; Qin, Yuxin; Lü, Jinguang

    2016-04-01

    An integrated high-resolution (individual pixel size 80 μm×80 μm) solid-state self-emissive active matrix programmed with 320×240 micro-light-emitting-diode arrays structure was designed and fabricated on an AlGaInP semiconductor chip using micro electro-mechanical systems, microstructure and semiconductor fabricating techniques. Row pixels share a p-electrode and line pixels share an n-electrode. We experimentally investigated GaAs substrate thickness affects the electrical and optical characteristics of the pixels. For a 150-μm-thick GaAs substrate, the single pixel output power was 167.4 μW at 5 mA, and increased to 326.4 μW when current increase to 10 mA. The device investigated potentially plays an important role in many fields.

  8. Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser

    NASA Astrophysics Data System (ADS)

    Lazarev, V. A.; Tarabrin, M. K.; Kovtun, A. A.; Karasik, V. E.; Kireev, A. N.; Kozlovsky, V. I.; Korostelin, Yu V.; Podmar’kov, Yu P.; Frolov, M. P.; Gubin, M. A.

    2015-12-01

    We demonstrate the operation of a room-temperature, solid-state, broadly tunable Cr-doped CdSe single-crystal continuous-wave laser. Longitudinal pumping with a continuous-wave diode laser array at 1.94 μm produced a broadband output of 280 mW at 2.6 μm with an incident power slope efficiency of 12%. With an intracavity Brewster-cut CaF2 prism, we tuned the Cr2+:CdSe laser from 2.45 to 3.06 μm with a resolution of 10 nm and an output power up to 55 mW.

  9. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    PubMed

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-01

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute). PMID:23455517

  10. Sr2 ZnWO6 :Eu(3+) ,Bi(3+) ,Li(+) : a potential white-emitting phosphor for near-ultraviolet white light-emitting diodes.

    PubMed

    Ma, Yuanyuan; Ran, Weiguang; Li, Weina; Ren, Chunyan; Jiang, Haiyan; Shi, Jinsheng

    2016-05-01

    A series of Sr2 ZnWO6 phosphors co-doped with Eu(3+) , Bi(3+) and Li(+) were prepared using the Pechini method. The samples were tested using X-ray diffraction and luminescence spectroscopy. The results show that the samples can be effectively excited by near-ultraviolet (UV) and UV light. The introduction of Bi(3+) and Li(+) significantly enhances the fluorescence emission of Sr2 ZnWO6 :Eu(3+) and changes the light emitted by the phosphors from bluish-green to white. When excited at 371 nm, Sr2-x-z Zn1-y WO6 :xEu(3+) ,yBi(3+) ,zLi(+) (x = 0.05, y = 0.05, z = 0.05, 0.1 and 0.15) samples emit high-performance white light. Intense red-orange emission is also observed when excited by UV light. The obtained phosphor is a potential white-emitting phosphor that could meet the needs of excitation sources with near-UV chips. In addition, this phosphor might have promising application as a red-orange emitting phosphor for white light-emitting diodes based on UV light-emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26310203

  11. Effect of chip spacing on light extraction for light-emitting diode array.

    PubMed

    Chung, Shuang-Chao; Ho, Pei-Chen; Li, Dun-Ru; Lee, Tsung-Xian; Yang, Tsung-Hsun; Sun, Ching-Cherng

    2015-06-01

    GaN LED array in packaging is important for the demand of high optical flux. In order to tighten the whole packaging size, the spacing among LED chips becomes an important factor in the packaging design. This study is to investigate the change of the light extraction when a GaN LED chip array packaging is applied. The shielding effect with various spacing for the GaN LED array with or without silicon encapsulation is obtained. We apply the Monte Carlo ray-tracing method in the simulations to analyze the optical behavior of the two major types of the GaN LED array. The shielding effect is more dominant for bare chip packaging. When a silicone thin dispensing layer is applied, the shielding effect is not obvious because of more light extraction, the neighbor dies play an important role in photon recycling. PMID:26072888

  12. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  13. Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO

    NASA Astrophysics Data System (ADS)

    Ohta, Hiromichi; Orita, Masahiro; Hirano, Masahiro; Hosono, Hideo

    2001-05-01

    An ultraviolet light-emitting diode (UV-LED) was realized using a p-n heterojunction composed of the transparent oxide semiconductors p-SrCu2O2 and n-ZnO. A Ni/SrCu2O2/ZnO/ITO multilayered film was epitaxially grown on an extremely flat YSZ (111) surface by a pulsed-laser deposition technique. SrCu2O2 (112) was preferentially grown on ZnO (0001) at 350°C, while the preferential plane was changed into the (100) when the temperature was increased to 600 °C. The grown films were processed by conventional photolithography followed by reactive ion etching to fabricate heterojunction diodes. The resulting devices exhibited rectifying I-V characteristics inherent to p-n junctions. A relatively sharp electroluminescence band centered at 382 nm, attributed to transitions associated with exciton-exciton collision or electron-hole plasma in ZnO, was generated by applying a forward bias voltage greater than the turn-on voltage of 3 V. UV-LED performance characteristics such as threshold current and conversion efficiency improved with higher SrCu2O2 deposition temperatures. On the other hand, increased laser power density at 600 °C during deposition raised the incidence of insulating layer formation between the p and n layers, probably due to migration of K+ ions doped as an acceptor impurity. The resulting p-i-n diode emits broad luminescence centered at 500 nm for forward voltage greater than 14 V.

  14. Ultra high brightness laser diode arrays for pumping of compact solid state lasers and direct applications

    NASA Astrophysics Data System (ADS)

    Kohl, Andreas; Fillardet, Thierry; Laugustin, Arnaud; Rabot, Olivier

    2012-10-01

    High Power Laser Diodes (HPLD) are increasingly used in different fields of applications such as Industry, Medicine and Defense. Our significant improvements of performances (especially in power and efficiency) and a reproducible manufacturing process have led to reliable, highly robust components. For defense and security applications these devices are used predominantly for pumping of solid state lasers (ranging, designation, countermeasures, and sensors). Due to the drastically falling price per watt they are more and more replacing flash lamps as pump sources. By collimating the laser beam even with a bar to bar pitch of only 400μm. cutting edge brightness of our stacks.is achieved Due the extremely high brightness and high power density these stacks are an enabling technology for the development of compact highly efficient portable solid state lasers for applications as telemeters and designators on small platforms such as small UAVs and handheld devices. In combination with beam homogenizing optics their compact size and high efficiency makes these devices perfectly suited as illuminators for portable active imaging systems. For gated active imaging systems a very short pulse at high PRF operation is required. For this application we have developed a diode driver board with an efficiency several times higher than that of a standard driver. As a consequence this laser source has very low power consumption and low waste heat dissipation. In combination with its compact size and the integrated beam homogenizing optics it is therefore ideally suited for use in portable gated active imaging systems. The kWatt peak power enables a range of several hundred meters. The devices described in this paper mostly operate at wavelength between 800 nm and 980nm. Results from diodes operating between 1300 nm and 1550 nm are presented as well.

  15. SU-F-BRE-06: Evaluation of Patient CT Dose Reconstruction From 3D Diode Array Measurements Using Anthropomorphic Phantoms

    SciTech Connect

    Huang, M; Benhabib, S; Cardan, R; Brezovich, I; Popple, R; Faught, A; Followill, D

    2014-06-15

    Purpose: To compare 3D reconstructed dose of IMRT plans from 3D diode array measurements with measurements in anthropomorphic phantoms. Methods: Six IMRT plans were created for the IROC Houston (RPC) head and neck (H and N) and lung phantoms following IROC Houston planning protocols. The plans included flattened and unflattened beam energies ranging from 6 MV to 15 MV and both static and dynamic MLC tecH and Niques. Each plan was delivered three times to the respective anthropomorphic phantom, each of which contained thermoluminescent dosimeters (TLDs) and radiochromic films (RCFs). The plans were also delivered to a Delta4 diode array (Scandidos, Uppsala, Sweden). Irradiations were done using a TrueBeam STx (Varian Medical Systems, Palo Alto, CA). The dose in the patient was calculated by the Delta4 software, which used the diode measurements to estimate incident energy fluence and a kernel-based pencil beam algorithm to calculate dose. The 3D dose results were compared with the TLD and RCF measurements. Results: In the lung, the average difference between TLDs and Delta4 calculations was 5% (range 2%–7%). For the H and N, the average differences were 2.4% (range 0%–4.5%) and 1.1% (range 0%–2%) for the high- and low-dose targets, respectively, and 12% (range 10%-13%) for the organ-at-risk simulating the spinal cord. For the RCF and criteria of 7%/4mm, 5%/3mm, and 3%/3mm, the average gamma-index pass rates were 95.4%, 85.7%, and 76.1%, respectively for the H and N and 76.2%, 57.8%, and 49.5% for the lung. The pass-rate in the lung decreased with increasing beam energy, as expected for a pencil beam algorithm. Conclusion: The H and N phantom dose reconstruction met the IROC Houston acceptance criteria for clinical trials; however, the lung phantom dose did not, most likely due to the inaccuracy of the pencil beam algorithm in the presence of low-density inhomogeneities. Work supported by PHS grant CA10953 and CA81647 (NCI, DHHS)

  16. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    SciTech Connect

    Gargett, Maegan Rosenfeld, Anatoly; Oborn, Brad; Metcalfe, Peter

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI–linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.

  17. Lithium neodymium tetraphosphate lasers pumped via close-coupling to high-power laser diode arrays

    SciTech Connect

    Dixon, G.J.; Lingvay, L.S.; Jarman, R.H.

    1989-05-01

    The authors report what they believe to be the first demonstration of a LiNdP/sub 4/O/sub 12/ solid-state laser in which the active medium was close-coupled to the pump diode. With a pump power of approximately 250 mW, a TEM/sub 00/, multilongitudinal mode output power of 73 mW has been obtained from an external mirror device operating simultaneously on the two lines at 1047 and 1055 nm. Devices operating at 1317 nm have also been studied and a close-coupled, monolithic laser with an output power in excess of 28 mW has been demonstrated.

  18. Enhanced ultraviolet emission of ZnO microrods array based on Au surface plasmon

    NASA Astrophysics Data System (ADS)

    Feng, Wen-po; Jing, Ai-hua; Li, Jing-hua; Liang, Gao-feng

    2016-05-01

    In this work, the Au/ZnO hybrid microstructure was fabricated by assembling Au nanoparticles (NPs) onto the surface of ZnO microrods, and an obviously improved ultraviolet (UV) emission of ZnO is observed in the hybrid microstructure. About 27-fold enhancement ratio of the UV emission to the green band emission of ZnO is achieved. The underlying enhanced mechanism of the UV emission intensities can be ascribed to the charge transfer and the efficient coupling between ZnO excitons and Au surface plasmon (SP).

  19. Planarization of High Aspect Ratio P-I-N Diode Pillar Arrays for Blanket Electrical Contacts

    SciTech Connect

    Voss, L F; Shao, Q; Reinhardt, C E; Graff, R T; Conway, A M; Nikolic, R J; Deo, N; Cheung, C L

    2009-03-05

    Two planarization techniques for high aspect ratio three dimensional pillar structured P-I-N diodes have been developed in order to enable a continuous coating of metal on the top of the structures. The first technique allows for coating of structures with topography through the use of a planarizing photoresist followed by RIE etch back to expose the tops of the pillar structure. The second technique also utilizes photoresist, but instead allows for planarization of a structure in which the pillars are filled and coated with a conformal coating by matching the etch rate of the photoresist to the underlying layers. These techniques enable deposition using either sputtering or electron beam evaporation of metal films to allow for electrical contact to the tops of the underlying pillar structure. These processes have potential applications for many devices comprised of 3-D high aspect ratio structures. Two separate processes have been developed in order to ensure a uniform surface for deposition of an electrode on the {sup 10}Boron filled P-I-N pillar structured diodes. Each uses S1518 photoresist in order to achieve a relatively uniform surface despite the non-uniformity of the underlying detector. Both processes allow for metallization of the final structure and provide good electrical continuity over a 3D pillar structure.

  20. Gun muzzle flash detection using a single photon avalanche diode array in 0.18µm CMOS technology

    NASA Astrophysics Data System (ADS)

    Savuskan, Vitali; Jakobson, Claudio; Merhav, Tomer; Shoham, Avi; Brouk, Igor; Nemirovsky, Yael

    2015-05-01

    In this study, a CMOS Single Photon Avalanche Diode (SPAD) 2D array is used to record and sample muzzle flash events in the visible spectrum, from representative weapons. SPADs detect the emission peaks of alkali salts, potassium or sodium, with spectral emission lines around 769nm and 589nm, respectively. The alkali salts are included in the gunpowder to suppress secondary flashes ignited during the muzzle flash event. The SPADs possess two crucial properties for muzzle flash imaging: (i) very high photon detection sensitivity, (ii) a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. The sole noise sources are the ones prior to the readout circuitry (optical signal distribution, avalanche initiation distribution and nonphotonic generation). This enables high sampling frequencies in the kilohertz range without significant SNR degradation, in contrast to regular CMOS image sensors. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength, in the presence of sunlight. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics and signal processing, which will be reported. The frame rate of ~16 KHz was chosen as an optimum between SNR degradation and temporal profile recognition accuracy. In contrast to a single SPAD, the 2D array allows for multiple events to be processed simultaneously. Moreover, a significant field of view is covered, enabling comprehensive surveillance and imaging.

  1. Quasi-isotropic VHF antenna array design study for the International Ultraviolet Explorer satellite

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1975-01-01

    Results of a study to design a quasi-isotropic VHF antenna array for the IUE satellite are presented. A free space configuration was obtained that has no nulls deeper than -6.4 dbi in each of two orthogonal polarizations. A computer program named SOAP that analyzes the electromagnetic interaction between antennas and complicated conducting bodies, such as satellites was developed.

  2. Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

    1992-01-01

    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

  3. Broadband localized surface-plasmon-enhanced green light-emitting diodes by silver nanocone array

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Yufeng; Huang, Yaping; Wang, Shuai; Feng, Lungang; Gong, Zhina; Wang, Jiangteng; Ding, Wen; Zhang, Ye; Yun, Feng

    2015-12-01

    Green light-emitting diodes (LEDs) with silver nanocone-shaped structures embedded in p-GaN have been demonstrated with the surface plasmon (SP) enhancement effect. The resonance frequency has been broadened and the strength of coupling has been considerably enhanced. Compared with the LED without Ag nanocones, the integrated photoluminescence (PL) intensity of the SP-enhanced LED was improved by ∼275%, and the electroluminescence (EL) enhancement ratio at a different wavelength was evaluated at an injection current of 50 mA/mm2. At the same time, a reduction in the recombination lifetime indicated an increased internal quantum efficiency of LEDs. The results of simulation using nanocones as well as nanorods indicate good correlation with the experimental observation of the broadening effect. This structure is promising for converting incident photons into the localized surface plasmon (LSP) mode, to enhance the emission of LEDs within a broad wavelength range.

  4. Flexible one diode-one phase change memory array enabled by block copolymer self-assembly.

    PubMed

    Mun, Beom Ho; You, Byoung Kuk; Yang, Se Ryeun; Yoo, Hyeon Gyun; Kim, Jong Min; Park, Woon Ik; Yin, You; Byun, Myunghwan; Jung, Yeon Sik; Lee, Keon Jae

    2015-04-28

    Flexible memory is the fundamental component for data processing, storage, and radio frequency communication in flexible electronic systems. Among several emerging memory technologies, phase-change random-access memory (PRAM) is one of the strongest candidate for next-generation nonvolatile memories due to its remarkable merits of large cycling endurance, high speed, and excellent scalability. Although there are a few approaches for flexible phase-change memory (PCM), high reset current is the biggest obstacle for the practical operation of flexible PCM devices. In this paper, we report a flexible PCM realized by incorporating nanoinsulators derived from a Si-containing block copolymer (BCP) to significantly lower the operating current of the flexible memory formed on plastic substrate. The reduction of thermal stress by BCP nanostructures enables the reliable operation of flexible PCM devices integrated with ultrathin flexible diodes during more than 100 switching cycles and 1000 bending cycles. PMID:25826001

  5. Feasibility of High-Power Diode Laser Array Surrogate to Support Development of Predictive Laser Lethality Model

    SciTech Connect

    Lowdermilk, W H; Rubenchik, A M; Springer, H K

    2011-01-13

    Predictive modeling and simulation of high power laser-target interactions is sufficiently undeveloped that full-scale, field testing is required to assess lethality of military directed-energy (DE) systems. The cost and complexity of such testing programs severely limit the ability to vary and optimize parameters of the interaction. Thus development of advanced simulation tools, validated by experiments under well-controlled and diagnosed laboratory conditions that are able to provide detailed physics insight into the laser-target interaction and reduce requirements for full-scale testing will accelerate development of DE weapon systems. The ultimate goal is a comprehensive end-to-end simulation capability, from targeting and firing the laser system through laser-target interaction and dispersal of target debris; a 'Stockpile Science' - like capability for DE weapon systems. To support development of advanced modeling and simulation tools requires laboratory experiments to generate laser-target interaction data. Until now, to make relevant measurements required construction and operation of very high power and complex lasers, which are themselves costly and often unique devices, operating in dedicated facilities that don't permit experiments on targets containing energetic materials. High power diode laser arrays, pioneered by LLNL, provide a way to circumvent this limitation, as such arrays capable of delivering irradiances characteristic of De weapon requires are self-contained, compact, light weight and thus easily transportable to facilities, such as the High Explosives Applications Facility (HEAF) at Lawrence Livermore National Laboratory (LLNL) where testing with energetic materials can be performed. The purpose of this study was to establish the feasibility of using such arrays to support future development of advanced laser lethality and vulnerability simulation codes through providing data for materials characterization and laser-material interaction models and to validate the accuracy of code predictions. This project was a Feasibility Study under the LLNL Laboratory Directed Research and Development (LDRD) Program.

  6. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    SciTech Connect

    Jung, Mi E-mail: Dockha@kist.re.kr; Mo Yoon, Dang; Kim, Miyoung; Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha E-mail: Dockha@kist.re.kr; Lim, Si-Hyung

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  7. Multi-Spectral Solar Telescope Array. IV - The soft X-ray and extreme ultraviolet filters

    NASA Technical Reports Server (NTRS)

    Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Powell, Forbes R.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1991-01-01

    NASA's Multi-Spectral Solar Telescope Array uses various combinations of thin foil filters composed of Al, C, Te, Be, Mo, Rh, and phthalocyanine to achieve the requisite radiation-rejection characteristics. Such rejection is demanded by the presence of strong EUV radiation at longer wavelengths where the specular reflectivity of multilayer mirrors can cause 'contamination' of the image in the narrow band defined by the Bragg condition.

  8. Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy on semipolar GaN (2021) substrates

    SciTech Connect

    Sawicka, M.; Grzanka, S.; Skierbiszewski, C.; Turski, H.; Muziol, G.; Krysko, M.; Grzanka, E.; Sochacki, T.; Siekacz, M.; Kucharski, R.

    2013-03-18

    Multi-quantum well (MQW) structures and light emitting diodes (LEDs) were grown on semipolar (2021) and polar (0001) GaN substrates by plasma-assisted molecular beam epitaxy. The In incorporation efficiency was found to be significantly lower for the semipolar plane as compared to the polar one. The semipolar MQWs exhibit a smooth surface morphology, abrupt interfaces, and a high photoluminescence intensity. The electroluminescence of semipolar (2021) and polar (0001) LEDs fabricated in the same growth run peaks at 387 and 462 nm, respectively. Semipolar LEDs with additional (Al,Ga)N cladding layers exhibit a higher optical output power but simultaneously a higher turn-on voltage.

  9. Integrated electronics for time-resolved array of single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Acconcia, G.; Crotti, M.; Rech, I.; Ghioni, M.

    2013-12-01

    The Time Correlated Single Photon Counting (TCSPC) technique has reached a prominent position among analytical methods employed in a great variety of fields, from medicine and biology (fluorescence spectroscopy) to telemetry (laser ranging) and communication (quantum cryptography). Nevertheless the development of TCSPC acquisition systems featuring both a high number of parallel channels and very high performance is still an open challenge: to satisfy the tight requirements set by the applications, a fully parallel acquisition system requires not only high efficiency single photon detectors but also a read-out electronics specifically designed to obtain the highest performance in conjunction with these sensors. To this aim three main blocks have been designed: a gigahertz bandwidth front-end stage to directly read the custom technology SPAD array avalanche current, a reconfigurable logic to route the detectors output signals to the acquisition chain and an array of time measurement circuits capable of recording the photon arrival times with picoseconds time resolution and a very high linearity. An innovative architecture based on these three circuits will feature a very high number of detectors to perform a truly parallel spatial or spectral analysis and a smaller number of high performance time-to-amplitude converter offering very high performance and a very high conversion frequency while limiting the area occupation and power dissipation. The routing logic will make the dynamic connection between the two arrays possible in order to guarantee that no information gets lost.

  10. Liquid Chromatography-diode Array Detector-electrospray Mass Spectrometry and Principal Components Analyses of Raw and Processed Moutan Cortex

    PubMed Central

    Deng, Xian-Mei; Yu, Jiang-Yong; Ding, Meng-Jin; Zhao, Ming; Xue, Xing-Yang; Che, Chun-Tao; Wang, Shu-Mei; Zhao, Bin; Meng, Jiang

    2016-01-01

    Background: Raw Moutan Cortex (RMC), derived from the root bark of Paeonia suffruticosa, and Processed Moutan Cortex (PMC) is obtained from RMC by undergoing a stir-frying process. Both of them are indicated for different pharmacodynamic action in traditional Chinese medicine, and they have been used in China and other Asian countries for thousands of years. Objective: To establish a method to study the RMC and PMC, revealing their different chemical composition by fingerprint, qualitative, and quantitative ways. Materials and Methods: High-performance liquid chromatography coupled with diode array detector and electrospray mass spectrometry (HPLC-DAD-ESIMS) were used for the analysis. Therefore, the analytes were separated on an Ultimate TM XB-C18 analytical column (250 mm × 4.6 mm, 5.0 μm) with a gradient elution program by a mobile phase consisting of acetonitrile and 0.1% (v/v) formic acid water solution. The flow rate, injection volume, detection wavelength, and column temperature were set at 1.0 mL/min, 10 μL, 254 nm, and 30°C, respectively. Besides, principal components analysis and the test of significance were applied in data analysis. Results: The results clearly showed a significant difference among RMC and PMC, indicating the significant changes in their chemical compositions before and after the stir-frying process. Conclusion: The HPLC-DAD-ESIMS coupled with chemometrics analysis could be used for comprehensive quality evaluation of raw and processed Moutan Cortex. SUMMARY The experiment study the RMC and PMC by HPLC-DAD-ESIMS couple with chemometrics analysis. The results of their fingerprints, qualitative, and quantitative all clearly showed significant changes in their chemical compositions before and after stir-frying processed. Abbreviation used: HPLC-DAD-ESIMS: High-performance Liquid Chromatography-Diode Array Detector-Electrospray Mass Spectrometry, RMC: Raw moutan cortex, PMC: Processed moutan cortex, TCM: Traditional Chinese medicine, PCA: Principal components analysis, LOD: Limit of detection, LOQ: Limit of quantitation, RSD: Relative standard deviation PMID:27019561

  11. High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy

    SciTech Connect

    Cabalu, J. S.; Bhattacharyya, A.; Thomidis, C.; Friel, I.; Moustakas, T. D.; Collins, C. J.; Komninou, Ph.

    2006-11-15

    In this paper, we report on the growth by molecular beam epitaxy and fabrication of high power nitride-based ultraviolet light emitting diodes emitting in the spectral range between 340 and 350 nm. The devices were grown on (0001) sapphire substrates via plasma-assisted molecular beam epitaxy. The growth of the light emitting diode (LED) structures was preceded by detailed materials studies of the bottom n-AlGaN contact layer, as well as the GaN/AlGaN multiple quantum well (MQW) active region. Specifically, kinetic conditions were identified for the growth of the thick n-AlGaN films to be both smooth and to have fewer defects at the surface. Transmission-electron microscopy studies on identical GaN/AlGaN MQWs showed good quality and well-defined interfaces between wells and barriers. Large area mesa devices (800x800 {mu}m{sup 2}) were fabricated and were designed for backside light extraction. The LEDs were flip-chip bonded onto a Si submount for better heat sinking. For devices emitting at 340 nm, the measured differential on-series resistance is 3 {omega} with electroluminescence spectrum full width at half maximum of 18 nm. The output power under dc bias saturates at 0.5 mW, while under pulsed operation it saturates at approximately 700 mA to a value of 3 mW, suggesting that thermal heating limits the efficiency of these devices. The output power of the investigated devices was found to be equivalent with those produced by the metal-organic chemical vapor deposition and hydride vapor-phase epitaxy methods. The devices emitting at 350 nm were investigated under dc operation and the output power saturates at 4.5 mW under 200 mA drive current.

  12. High power ultraviolet light emitting diodes based on GaN /AlGaN quantum wells produced by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cabalu, J. S.; Bhattacharyya, A.; Thomidis, C.; Friel, I.; Moustakas, T. D.; Collins, C. J.; Komninou, Ph.

    2006-11-01

    In this paper, we report on the growth by molecular beam epitaxy and fabrication of high power nitride-based ultraviolet light emitting diodes emitting in the spectral range between 340 and 350nm. The devices were grown on (0001) sapphire substrates via plasma-assisted molecular beam epitaxy. The growth of the light emitting diode (LED) structures was preceded by detailed materials studies of the bottom n-AlGaN contact layer, as well as the GaN /AlGaN multiple quantum well (MQW) active region. Specifically, kinetic conditions were identified for the growth of the thick n-AlGaN films to be both smooth and to have fewer defects at the surface. Transmission-electron microscopy studies on identical GaN /AlGaN MQWs showed good quality and well-defined interfaces between wells and barriers. Large area mesa devices (800×800μm2) were fabricated and were designed for backside light extraction. The LEDs were flip-chip bonded onto a Si submount for better heat sinking. For devices emitting at 340nm, the measured differential on-series resistance is 3Ω with electroluminescence spectrum full width at half maximum of 18nm. The output power under dc bias saturates at 0.5mW, while under pulsed operation it saturates at approximately 700mA to a value of 3mW, suggesting that thermal heating limits the efficiency of these devices. The output power of the investigated devices was found to be equivalent with those produced by the metal-organic chemical vapor deposition and hydride vapor-phase epitaxy methods. The devices emitting at 350nm were investigated under dc operation and the output power saturates at 4.5mW under 200mA drive current.

  13. Photonic Power Delivery Through Optical Fiber Using Very High Power Laser Diode Arrays

    SciTech Connect

    Heino, Matthew; Saethre, Robert

    1999-05-01

    Described is a system that will provide isolated electric power for a circuit that drives the core reset of a pulsed power modulator. This can be accomplished by coupling light from a number of diode laser bars to bundles of 200 um multimode optical fibers. This is then coupled to photo-voltaic power converters that will deliver 16 V 29mA of electricity from 1 watt of optical power. Spot size at the bundle face is a Gausian ellipse with a major axis of 1.4 mm radius and a minor axis of four bundles of 12 fibers generating a total of 24 W of electrical power. Various schemes are used to maximize coupling into the optical filber while limiting the number of optical components, and comparing components such as fresnel and aspheric lenses and lens ducts for effectiveness and cost. This will provide a completely isolated low power source for high voltage, high current environments where tradional isolation techniques yield inadequate isolation or prove too cumbersome.

  14. Characterization and calibration of compact array spectrometers in the ultraviolet spectral region

    SciTech Connect

    Shindo, Francois; Woolliams, Emma; Scott, Barry; Harris, Subrena

    2013-05-10

    Array-based spectrometers, with their compact size, low weight, low cost, and fast measurement time, are now frequently used in place of both conventional single-channel scanning monochromators, and broadband meters. Their rapid measurement capability makes them an attractive option for routine solar UV spectral measurements, where shortterm variability in signal is a challenge. However, compactness, portability, low cost and high speed are achieved at the expense of the spectrometer's optical and electronic performance. Thus such spectrometers are more prone to measurement error from environmental changes, and more prone to other intrinsic sources of error such as stray light and detector non-linearity, which significantly affect solar UV measurements, than a scanning monochromator. The effects of stray light and non-linearity can be reduced either by improved optical and detector design or by a detailed spectrometer characterization. We present in this paper our investigation of the performance of three different commercial array spectrometers: two mini-spectrometers, and a more elaborate array spectrometer with an on-board image amplifier device. These were tested for a subset of performance parameters: their wavelength accuracy and stability, electronic linearity, responsivity linearity, stray light sensitivity, and mechanical stability and repeatability. With all three spectrometers we found that these parameters, particularly but not limited to stray light, had a significant impact on the measurement of the incoming optical radiation. This meant that, without characterization, the instruments would be unable to accurately measure the UV component of any source with significant visible radiation. We discuss various simple and low-cost solutions for improving the performance of these instruments, and providing a rigorous calibration using a straightforward set-up including optical filters and the quasi-monochromatic light from a double monochromator.

  15. Enhancing the far-ultraviolet sensitivity of silicon complementary metal oxide semiconductor imaging arrays

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Bai, Yibin; Ryu, Kevin K.; Gregory, James A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winters, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.

    2015-10-01

    We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.

  16. 1-µm Micro-Lens Array on Flip-Chip Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Hei Li, Kwai; Zhang, Qian; Choi, Hoi Wai

    2013-08-01

    The fabrication of hexagonally close-packed micro-lens array on sapphire face of flip-chip bonded LED by nanosphere lithography is demonstrated. Self-assembled silica spheres serve as an etch mask to transfer hemispherical geometry onto the sapphire. The optical and electrical properties are evaluated. Without degrading the current-voltage (I-V) properties, the lensed LED shows an enhancement of 27.8% on light output power, compared with unpatterned LED. The emission characteristic is also investigated by performing finite-difference time-domain simulation, which is found to be consistent with the experimental results.

  17. 1-μm Micro-Lens Array on Flip-Chip Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Li, Kwai Hei; Zhang, Qian; Choi, Hoi Wai

    2013-08-01

    The fabrication of hexagonally close-packed micro-lens array on sapphire face of flip-chip bonded LED by nanosphere lithography is demonstrated. Self-assembled silica spheres serve as an etch mask to transfer hemispherical geometry onto the sapphire. The optical and electrical properties are evaluated. Without degrading the current--voltage (I--V) properties, the lensed LED shows an enhancement of 27.8% on light output power, compared with unpatterned LED. The emission characteristic is also investigated by performing finite-difference time-domain simulation, which is found to be consistent with the experimental results.

  18. Atomically sharp 318 nm Gd:AlGaN ultraviolet light emitting diodes on Si with low threshold voltage

    SciTech Connect

    Kent, Thomas F.; Carnevale, Santino D.; Myers, Roberto C.; Deparment of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210

    2013-05-20

    Self-assembled Al{sub x}Ga{sub 1-x}N polarization-induced nanowire light emitting diodes (PINLEDs) with Gd-doped AlN active regions are prepared by plasma-assisted molecular beam epitaxy on Si substrates. Atomically sharp electroluminescence (EL) from Gd intra-f-shell electronic transitions at 313 nm and 318 nm is observed under forward biases above 5 V. The intensity of the Gd 4f EL scales linearly with current density and increases at lower temperature. The low field excitation of Gd 4f EL in PINLEDs is contrasted with high field excitation in metal/Gd:AlN/polarization-induced n-AlGaN devices; PINLED devices offer over a three fold enhancement in 4f EL intensity at a given device bias.

  19. Analysis of multicomponent formulations containing pseudoephedrine HCl and chlorpheniramine maleate using first-derivative spectroscopy on a diode-array spectrophotometer.

    PubMed

    Hoover, J M; Soltero, R A; Bansal, P C

    1987-03-01

    Pseudoephedrine HCl and chlorpheniramine maleate are compounds which have overlapping UV spectra in solutions of phosphate buffer (pH 7.2), water, and 0.1 M HCl. The quantitation of both compounds was achieved by using first-derivative spectroscopy on a diode-array spectrophotometer. The application of this method for the analysis of content uniformity testing and measuring dissolution profiles was demonstrated. PMID:3585742

  20. Application of RP-HPLC-diode array detector after SPE to the determination of pesticides in pepper samples.

    PubMed

    Tuzimski, Tomasz

    2012-01-01

    The application of HPLC-diode array detector (DAD) after SPE for identification and quantitative analysis of pesticides in red and green pepper samples is demonstrated. An HPLC procedure on an RP column (C18) was developed for analysis of selected pesticides from different chemical groups: metamitron, metalaxyl, linuron, and prometryn. Average recoveries for C18 Polar Plus cartridges and solvents by the proposed RP-HPLC-DAD method after SPE are presented. Average recoveries from the spiked samples and the SDs were 22.5 +/- 2.2, 138.0 +/- 4.1, 78.6 +/- 2.8, and 109.2 +/- 2.3% for metamitron, metalaxyl, linuron, and prometryn, respectively, at concentrations of 7 microg/g in the plant material. The efficiency of the SPE procedure was evaluated using real food samples. The quantities of prometryn, linuron, metalaxyl, and metamitron determined were in the ranges of 0.02-2.24 microg/g (n = 24), 0.08-1.01 microg/g (n = 9), 1.61-2.28 microg/g (n=4), and 0.05-1.07 microg/g (n = 3), respectively, in plant material sampled in 2011. The method was validated for precision, repeatability, and accuracy. PMID:23175966

  1. Rapid method for the determination of 14 isoflavones in food using UHPLC coupled to photo diode array detection.

    PubMed

    Shim, You-Shin; Yoon, Won-Jin; Hwang, Jin-Bong; Park, Hyun-Jin; Seo, Dongwon; Ha, Jaeho

    2015-11-15

    A rapid method for the determination of 14 types of isoflavones in food using ultra-high performance liquid chromatography (UHPLC) was validated in terms of precision, accuracy, sensitivity and linearity. The UHPLC separation was performed on a reverse-phase C18 column (particle size 2 μm, i.d. 2 mm, length 100 mm) using a photo diode array detector that was fixed to 260 nm. The limits of detection and quantification of the UHPLC analyses ranged from 0.03 to 0.33 mg kg(-1). The intra-day and inter-day precision of the individual isoflavones were less than 11.77% and calibration curves exhibited good linearity (r(2) = 0.99) within the tested ranges. These results suggest that the rapid method used in this study could be available to determine of 14 types of isoflavones in a variety of food such as soy bean, black bean, red bean and soybean paste. PMID:25977042

  2. Titanium oxide nanotube arrays for high light extraction efficiency of GaN-based vertical light-emitting diodes.

    PubMed

    Leem, Young-Chul; Seo, Okkyun; Jo, Yong-Ryun; Kim, Joon Heon; Chun, Jaeyi; Kim, Bong-Joong; Noh, Do Young; Lim, Wantae; Kim, Yong-Il; Park, Seong-Ju

    2016-05-21

    TiO2 nanotube (NT) arrays were fabricated on the surface of n-GaN through a liquid-phase conversion process using ZnO nanorods (NRs) as a template for high-efficiency InGaN/GaN multiple quantum well (MQW) vertical light-emitting diodes (VLEDs). The optical output power of the VLEDs with TiO2 NTs was remarkably enhanced by 23% and 189% at an injection current of 350 mA compared to those of VLEDs with ZnO NRs and planar VLEDs, respectively. The large enhancement in optical output is attributed to a synergistic effect of efficient light injection from the n-GaN layer of the VLED to TiO2 NTs because of the well-matched refractive indices and superior light extraction into air at the end of the TiO2 NTs. Light propagation along various configurations of TiO2 NTs on the VLEDs was investigated using finite-difference time domain simulations and the results indicated that the wall thickness of the TiO2 NTs should be maintained close to 20 nm for superior light extraction from the VLEDs. PMID:27121775

  3. Screening method for the determination of tetracyclines and fluoroquinolones in animal drinking water by liquid chromatography with diode array detector.

    PubMed

    Patyra, E; Kowalczyk, E; Grelik, A; Przeniosło-Siwczyńska, M; Kwiatek, K

    2015-01-01

    A liquid chromatography - diode array detector (HPLC-DAD) procedure has been developed for the determination of oxytetracycline (OTC), tetracycline (TC), chlorotetracycline (CTC), doxycycline (DC), enrofloxacin (ENR), ciprofloxacin (CIP), sarafloxacin (SAR) and flumequine (FLU) residues in animal drinking water. This method was applied to animal drinking water. Solid-phase extraction (SPE) clean-up on an Oasis HLB cartridge allowed an extract suitable for liquid chromatographic analysis to be obtained. Chromatographic separation was carried out on a C18 analytical column, using gradient elution with 0.1% trifluoroacetic acid - acetonitrile - methanol at 30°C. The flow-rate was 0.7 mL/min and the eluate was analysed at 330 nm. The whole procedure was evaluated according to the requirements of the Commission Decision 2002/657/EC, determining specificity, decision limit (CCα), detection capacity (CCβ), limit of detection (LOD), limit of quantification (LOQ), precision and accuracy during validation of the method. The recoveries of TCs and FQs from spiked samples at the levels of 10, 100 and 1000 μg/L were higher than 82%. The developed method based on HPLC-DAD has been applied for the determination of four tetracyclines and four fluoroquinolones in animal drinking water samples. PMID:26172177

  4. Analysis of vitamin B1 in dry-cured sausages by hydrophilic interaction liquid chromatography (HILIC) and diode array detection.

    PubMed

    Gratacós-Cubarsí, M; Sárraga, C; Clariana, M; Regueiro, J A García; Castellari, M

    2011-03-01

    A method based on hydrophilic interaction liquid chromatography (HILIC) and diode array detection (DAD) was developed to quantify thiamine (vitamin B1) concentration in Spanish dry-cured sausages ("chorizo," "fuet," and "salchichón"). Samples were extracted with diluted acid (HCl 0.1M) followed by an enzymatic hydrolysis to release vitamin B1 vitamers from food matrix. Crude extracts were purified on a weak cation exchange SPE cartridge and total thiamine concentration was determined by LC-HILIC-DAD with a limit of detection better than 0.01 mg/100g. The proposed conditions, that do not require the derivatization of the extracts nor the use of fluorescence or MS detectors, are suitable to provide chromatographic separation and identification of vitamin B1 within 8 min. Selectivity, repeatability and accuracy of the method were evaluated with both spiked samples and the reference material Pig Liver BCR® 487. Quantification of vitamin B1 was also carried out for different kinds of commercial samples of Spanish dry-cured products. PMID:21078548

  5. Regularly patterned non-polar InGaN/GaN quantum-well nanorod light-emitting diode array.

    PubMed

    Tu, Charng-Gan; Liao, Che-Hao; Yao, Yu-Feng; Chen, Horng-Shyang; Lin, Chun-Han; Su, Chia-Ying; Shih, Pei-Ying; Chen, Wei-Han; Zhu, Erwin; Kiang, Yean-Woei; Yang, C C

    2014-12-15

    The growth and process of a regularly patterned nanorod (NR)- light-emitting diode (LED) array with its emission from sidewall non-polar quantum wells (QWs) are demonstrated. A pyramidal un-doped GaN structure is intentionally formed at the NR top for minimizing the current flow through this portion of the NR such that the injection current can be effectively guided to the sidewall m-plane InGaN/GaN QWs for emission excitation by a conformal transparent conductor (GaZnO). The injected current density at a given applied voltage of the NR LED device is similar to that of a planar c-plane or m-plane LED. The blue-shift trend of NR LED output spectrum with increasing injection current is caused by the non-uniform distributions of QW width and indium content along the height on a sidewall. The photoluminescence spectral shift under reversed bias confirms that the emission of the fabricated NR LED comes from non-polar QWs. PMID:25607494

  6. Sampling and identification of natural dyes in historical maps and drawings by liquid chromatography with diode-array detection.

    PubMed

    Blanc, Rosario; Espejo, Teresa; López-Montes, Ana; Torres, David; Crovetto, Guillermo; Navalón, Alberto; Vílchez, José Luis

    2006-07-28

    A simple and rapid liquid chromatographic with diode-array UV-vis spectrophotometric detection (HPLC-DAD) method for identification of natural dyes has been developed. Chromatographic retention of carminic acid, indigotin, crocetin, gambogic acid, alizarin and purpurin has been studied. The mobile phase consisted of 40 mM SDS-10 mM phosphate buffer solution (pH 2.3)-0.1% TFA (eluent A) and acetonitrile (eluent B) using a programmed gradient (5% B to 95% B). Analyses were carried out on a Phenomenex, Luna 5u NH2 100(a) column (250 mm x 4.60 mm i.d., 5 microm particle) and the operating conditions were: 0.6 ml min(-1) flow rate, 20 microl volume injection and 35 degrees C column temperature. Extracts of samples of natural dyes taken from historical maps belonging to The Royal Chancellery Archives in Granada were successfully analyzed using the proposed method including a new technique for sampling. PMID:16759664

  7. Quantification of polyacetylenes in apiaceous plants by high-performance liquid chromatography coupled with diode array detection.

    PubMed

    Kramer, Maike; Mühleis, Andrea; Conrad, Jürgen; Leitenberger, Martin; Beifuss, Uwe; Carle, Reinhold; Kammerer, Dietmar R

    2011-01-01

    Polyacetylenes are known for their biofunctional properties in a wide range of organisms. In the present study, the most frequently occurring polyacetylenes, i.e. falcarinol, falcarindiol, and falcarindiol-3-acetate, were determined in six genera of the Apiaceae family. For this purpose, a straightforward and reliable method for the screening and quantification of the polyacetylenes using high-performance liquid chromatography coupled with diode array and mass spectrometric detection without tedious sample clean-up has been developed. Peak assignment was based on retention times, UV spectra, and mass spectral data. Quantification was carried out using calibration curves of authentic standards isolated from turnip-rooted parsley and Ligusticum mutellina, respectively. The references were unambiguously identified by Fourier transform-IR (FT-IR) spectroscopy, GC-MS, HPLC-MSn in the positive ionization mode, and 1H NMR and 13C NMR spectroscopy. To the best of our knowledge, the occurrence of falcarindiol-3-acetate in Anthriscus sylvestris and Pastinaca sativa has been reported for the first time. The data revealed great differences in the polyacetylene contents and varying proportions of individual compounds in the storage roots of Apiaceous plants. The results of the present study may be used as a suitable tool for authenticity control and applied to identify novel sources devoid or particularly rich in polyacetylenes, thus facilitating breeding programs for the selective enrichment and depletion of these plant secondary metabolites, respectively. PMID:21950154

  8. Liquid chromatographic-diode-array detection multiresidue determination of rice herbicides in drinking and paddy-field water.

    PubMed

    Roehrs, Rafael; Zanella, Renato; Pizzuti, Ionara; Adaime, Martha B; Pareja, Lucía; Niell, Silvina; Cesio, María V; Heinzen, Horacio

    2009-01-01

    A sensitive, rapid, and simple multiresidue method for the simultaneous determination of six postemergence herbicides currently used in rice cultivation--metsulfuron methyl, bensulfuron methyl, pyrazosulfuron ethyl, bentazone, bispyribac sodium, and cyhalofop butyl--in drinking and paddy-field water is presented. Water samples were extracted with solid-phase extraction cartridges. Final determination was made by LC with diode-array detection. The extraction efficiencies of C18 and HLB cartridges were compared. The average recovery obtained for these compounds for the lowest spiked level (0.1 microg/L) varied from 70 to 122% for C18 and 75-119% for HLB, with RSDs of 11 and 8.3%, respectively. The method had good linearity, and the lower detection limit for the pesticides studied varied from 0.03 to 0.04 microg/L. The proposed method was also tested in paddy-field water, with recovery studies giving good results with low RSDs at 1.0 microg/L. PMID:19714989

  9. Simultaneous determination of 11 bioactive compounds in Jaeumganghwa-tang by high performance liquid chromatography-diode array detection

    PubMed Central

    Yun, Bo-Ra; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2014-01-01

    Background: Jaeumganghwa-tang (JEGH) is a traditional Korean herbal medicine for the treatment of chronic bronchitis, nephritis and diabetes mellitus. Objective: A high performance liquid chromatography-diode array detector (HPLC-DAD) method was developed for simultaneous determination of 11 major compounds such as 5- hydroxymethylfurfural, mangiferin, paeoniflorin, nodakenin, naringin, hesperidin, decursinol, berberine, glycyrrhizin, atractylenolide III and decursin, in JEGH. Materials and Methods: The separation was conducted on Shishedo C18 column with gradient elution of 0.1% trifluoroacetic acid–acetonitrile. Detection of wavelength was set at 205, 250, 280 and 330 nm. Results: The developed analysis showed a good linearity (R2 >0.9997). The range of limit of detection and limit of quantification were observed from 0.04 to 0.43 and from 0.11 to 1.30, respectively. The intra- and inter-day test relative standard deviations (RSD) were less than 3% and the accuracy was 95.98-108.44%. The recoveries were between 92.75% and 109.19% and RSD range of recoveries was measured from 0.52% to 2.78%. Conclusion: This HPLC-DAD method can be successfully applied for simultaneous determination of 11 major compounds in JEGH samples. PMID:24991100

  10. Vacuum ultraviolet radiation and thermal cycling effects on atomic oxygen protective photovoltaic array blanket materials

    NASA Technical Reports Server (NTRS)

    Brady, J.; Banks, B.

    1990-01-01

    The importance of synergistic environmental exposure is demonstrated through the evaluation of DuPont 93-1 in simulated LEO environment. Changes in optical properties, surface condition, and mass loss data are described. The qualitative results indicate the necessity for exposure of materials to a series of simulated LEO environments in order to properly determine synergistic effects and demonstrate the overall LEO durability of candidate materials. It is shown that synergistic effects may occur with vacuum thermal cycling combined with VUV radiation followed by atomic oxygen exposure. Testing the durability of candidate solar array blanket materials in a test sequence with necessary synergistic effects makes it possible to determine the appropriate material for providing structural support and maintaining the proper operating temperature for solar cells in the SSF Photovaltaic Power System.

  11. Resonant cavity effect optimization of III-nitride thin-film flip-chip light-emitting diodes with microsphere arrays.

    PubMed

    Zhu, Peifen; Tansu, Nelson

    2015-07-10

    Comprehensive studies were carried out to investigate the light extraction efficiency of thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with anatase TiO(2) microsphere arrays by employing the finite-difference time-domain method. The quantum well position and the resonant cavity effect were studied to obtain optimum light extraction for the planar TFFC LED. Further enhancement in light extraction was achieved by depositing microsphere arrays on the TFFC LED. The calculation results showed that the sphere diameter, packing density, and packing configuration have significant effects on the light extraction efficiency. A maximum light extraction efficiency of 75% in TFFC LEDs with microsphere arrays has been achieved. This study demonstrates the importance of optimizing the quantum well position, cavity thickness, sphere diameter, sphere packing density, and packing configuration for enhancing the light extraction efficiency of TFFC LEDs with microsphere arrays. PMID:26193408

  12. Electrical switching and memory behaviors in organic diodes based on polymer blend films treated by ultraviolet ozone

    NASA Astrophysics Data System (ADS)

    Huang, Jinying; Ma, Dongge

    2014-09-01

    Resistive memory devices with resistive switching characteristics were fabricated based on poly (3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) doping with polyvinyl alcohol. It has been demonstrated that the resistive switching characteristics in the memory device was strongly dependent on the treatment of the polymer blend film by ultraviolet ozone (UV-ozone). The UV-ozone treated device exhibited improved performance with the ON/OFF current ratio of more than 102, and its ON and OFF states can be maintained over 96 h without deterioration. The resistive switching behavior in the UV-ozone treated device was attributed to the formation and rupture of the PEDOT:PSS filaments as well as the narrow conducting paths through the native oxide of aluminum.

  13. Out-of-plane high-density piezoresistive silicon microwire/p-n diode array for force- and temperature-sensitive artificial whisker sensors

    NASA Astrophysics Data System (ADS)

    Ikedo, Akihito; Ishida, Makoto; Kawano, Takeshi

    2011-03-01

    We propose an out-of-plane high-aspect-ratio 'whisker-like' microwire array sensor for use in multisite contact force and temperature detection with high spatial resolution. Although the wire element has two terminal electrodes, the device consists of force-sensitive wire arrays where one end of the wire is attached to the substrate and the other end is free to be touched. We fabricated a force-sensitive wire array based on p-type (p-) silicon with 3 µm diameter and 30 µm length (1 Ω cm) assembled over an n-type (n-) silicon substrate (3-6 Ω cm), which resulted in a p-silicon wire/p-n diode system array. Due to the piezoresistance effect of the p-silicon wire, the electrical conductance changes upon contact of an individual wire with an object. The shift in the rectifying current-voltage (I-V) curves of the embedded p-n diode depends on the temperature through the silicon wire. Thus, the same alignment can be used as a force sensor and a temperature sensor. Both force- and temperature-sensitive microwire sensor arrays with a small detection area (~20 µm2) and high spatial resolution (~100 µm in pitch) have potential in numerous applications, including artificial electronic fingertips in a robot hand/prosthetics, multisite sensing of contact force, shear force, surface roughness and slip, and local temperature sensing capabilities.

  14. Micro-lens array design on a flexible light-emitting diode package for indoor lighting.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2015-10-01

    An advanced, ultra-thin, flexible LED (FLED) package technique is first proposed in this study, where a polyimide substrate was used as the lead frame package material due to its physical stability in thermal processing. The experimental results showed that the thickness of the mockup sample measured by a vernier caliper was 260 μm and 35% thinner than the Panasonic organic LED lighting panel announced on 4 March 2014 in Tokyo. Moreover, the flexible angle of the ultra-thin LED package was 200.54° when it surrounded a disk with a 1 cm radius. A design of a micro-lens array manufactured by silicone molding on the FLED is also proposed in this study. Finally, different types of micro-lenses were applied to different lighting regions to investigate their lighting effects. PMID:26479655

  15. Luminescent properties of Eu{sup 2+}-doped BaGdF{sub 5} glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    SciTech Connect

    Zhang, Weihuan; Zhang, Yuepin Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

    2015-01-14

    Eu{sup 2+} doped transparent oxyfluoride glass ceramics containing BaGdF{sub 5} nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd{sup 3+} ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu{sup 2+} doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions, the energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu{sup 2+} doped BaGdF{sub 5} glass ceramics may be used as a potential blue-emitting phosphor for UV-LED.

  16. Transparent conductive oxide films mixed with gallium oxide nanoparticle/single-walled carbon nanotube layer for deep ultraviolet light-emitting diodes

    PubMed Central

    2013-01-01

    We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9??10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4??105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4??10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342

  17. Transparent conductive oxide films mixed with gallium oxide nanoparticle/single-walled carbon nanotube layer for deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Kyoeng Heon; An, Ho-Myoung; Kim, Hee-Dong; Kim, Tae Geun

    2013-12-01

    We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs.

  18. Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111)

    NASA Astrophysics Data System (ADS)

    Zhang, Yinjun; Gautier, Simon; Cho, Chu-Young; Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Bayram, Can; Bai, Yanbo; Razeghi, M.

    2013-01-01

    We report on the growth, fabrication, and device characterization of AlGaN-based thin-film ultraviolet (UV) (λ ˜ 359 nm) light emitting diodes (LEDs). First, AlN/Si(111) template is patterned. Then, a fully coalesced 7-μm-thick lateral epitaxial overgrowth (LEO) of AlN layer is realized on patterned AlN/Si(111) template followed by UV LED epi-regrowth. Metalorganic chemical vapor deposition is employed to optimize LEO AlN and UV LED epitaxy. Back-emission UV LEDs are fabricated and flip-chip bonded to AlN heat sinks followed by Si(111) substrate removal. A peak pulsed power and slope efficiency of ˜0.6 mW and ˜1.3 μW/mA are demonstrated from these thin-film UV LEDs, respectively. For comparison, top-emission UV LEDs are fabricated and back-emission LEDs are shown to extract 50% more light than top-emission ones.

  19. Efficiency improvement of GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate

    PubMed Central

    2014-01-01

    The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crystal quality of the GaN epitaxial layers. Utilizing high-resolution X-ray diffraction, the full width at half maximum of the rocking curve shows that the crystalline quality of the epitaxial layer with the (RPD) AlN nucleation layer is better than that with the low-temperature GaN (LT-GaN) nucleation layer. The threading dislocation density (TDD) is estimated by transmission electron microscopy (TEM), which shows the reduction from 6.8 × 107 cm−2 to 2.6 × 107 cm−2. Furthermore, the light output power (LOP) of the LEDs with the RPD AlN nucleation layer has been improved up to 30 % at a forward current of 350 mA compared to that of the LEDs grown on PSS with conventional LT-GaN nucleation layer. PMID:25258616

  20. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with n-AlGaN underlayers

    NASA Astrophysics Data System (ADS)

    Li, Lei; Tsutsumi, Tatsuya; Miyachi, Yuta; Miyoshi, Makoto; Egawa, Takashi

    2015-12-01

    We demonstrate notable performance improvement of 270 nm deep ultraviolet light-emitting diodes (DUV-LEDs) by inserting an n-AlGaN underlayer (UL), which was directly beneath an AlGaN multiple quantum well (MQW) active region. This DUV-LED exhibited significantly improved forward and reverse bias current-voltage characteristics, and spectral properties. As a result, the turn-on voltage was decreased from 7 to 4.6 V by introducing the n-AlGaN UL, and the maximum light output power and external quantum efficiency of DUV-LEDs with the n-AlGaN UL, obtained via on-wafer measurement, were increased by factors of 3.6 and 2.2, respectively. Further enhancements can be realized by using high-quality AlN/sapphire templates together with the n-AlGaN UL. These improvements were considered to be attributed to the introduction of the n-AlGaN UL which improved electron injection and reduced the quantum confined stark effect in the AlGaN MQWs.

  1. Disinfection of B. SUBTILIS Cells in Suspension Using Ultraviolet Light Emitting Diodes (leds) in the Presence of TiO2

    NASA Astrophysics Data System (ADS)

    Province, Dennis W.; O'Neil, Shannon; Higgins, Keri; Smith, Paul J.; Dooley, Kristin; Curtis, Joey; Grippo, Adam M.; Rino, John W.; Allen, Susan D.

    2011-06-01

    The concentration of vegetative Bacillus subtilis (B. subtilis) in phosphate buffered saline decreased when subjected to ultraviolet (UV) light from light emitting diodes (LEDs) in the presence of 0.01% Degussa P25 titanium dioxide (TiO2) as compared to a sample that contained bacteria only, a sample of bacteria that contained 0.01% TiO2, and bacteria that was subjected to the same UV light but no TiO2. The starting concentration of each sample was on the order of 104 colony forming units per milliliter (CFU/mL) and the time required for complete kill was less than 100min when the peak wavelength was 370 nm for the four LED light source at a total LED power of 0.8 milliWatts (mW), decreasing to less than 75 min for a total LED power of 3 mW. Changing the peak wavelength by 7 nm to 377 nm decreased the kill of vegetative B. subtilis to less than 1 log at 100 min for 5 mW total LED power. This work was performed under Federal Contract W9113M-09-C-0136 in support of the Radiance Technologies, Inc., prime contract from US Army SMDC, Huntsville, AL.

  2. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect.

    PubMed

    Yang, Qing; Liu, Ying; Pan, Caofeng; Chen, Jun; Wen, Xiaonan; Wang, Zhong Lin

    2013-02-13

    ZnO nanowire inorganic/organic hybrid ultraviolet (UV) light-emitting diodes (LEDs) have attracted considerable attention as they not only combine the high flexibility of polymers with the structural and chemical stability of inorganic nanostructures but also have a higher light extraction efficiency than thin film structures. However, up to date, the external quantum efficiency of UV LED based on ZnO nanostructures has been limited by a lack of efficient methods to achieve a balance between electron contributed current and hole contributed current that reduces the nonradiative recombination at interface. Here we demonstrate that the piezo-phototronic effect can largely enhance the efficiency of a hybridized inorganic/organic LED made of a ZnO nanowire/p-polymer structure, by trimming the electron current to match the hole current and increasing the localized hole density near the interface through a carrier channel created by piezoelectric polarization charges on the ZnO side. The external efficiency of the hybrid LED was enhanced by at least a factor of 2 after applying a proper strain, reaching 5.92%. This study offers a new concept for increasing organic LED efficiency and has a great potential for a wide variety of high-performance flexible optoelectronic devices. PMID:23339573

  3. Efficiency improvement of GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yu; Tzou, An-Jye; Lin, Bing-Cheng; Lan, Yu-Pin; Chiu, Ching-Hsueh; Chi, Gou-Chung; Chen, Chi-Hsiang; Kuo, Hao-Chung; Lin, Ray-Ming; Chang, Chun-Yen

    2014-09-01

    The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crystal quality of the GaN epitaxial layers. Utilizing high-resolution X-ray diffraction, the full width at half maximum of the rocking curve shows that the crystalline quality of the epitaxial layer with the (RPD) AlN nucleation layer is better than that with the low-temperature GaN (LT-GaN) nucleation layer. The threading dislocation density (TDD) is estimated by transmission electron microscopy (TEM), which shows the reduction from 6.8 × 107 cm-2 to 2.6 × 107 cm-2. Furthermore, the light output power (LOP) of the LEDs with the RPD AlN nucleation layer has been improved up to 30 % at a forward current of 350 mA compared to that of the LEDs grown on PSS with conventional LT-GaN nucleation layer.

  4. Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes

    SciTech Connect

    Moseley, Michael Allerman, Andrew; Crawford, Mary; Wierer, Jonathan J.; Smith, Michael; Biedermann, Laura

    2014-08-07

    Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al{sub 0.7}Ga{sub 0.3}N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al{sub 0.7}Ga{sub 0.3}N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.

  5. Luminescent properties of Ca3 SiO4 Cl2 co-doped with Ce(3+) and Eu(2+) for near-ultraviolet light-emitting diodes.

    PubMed

    Shen, Wangqing; Zhu, Yiwen; Wang, Zhengliang

    2015-12-01

    Ca3 SiO4 Cl2 co-doped with Ce(3+) ,Eu(2+) was prepared by high temperature reaction. The structure, luminescent properties and the energy transfer process of Ca3 SiO4 Cl2 : Ce(3+) ,Eu(2+) were investigated. Eu(2+) ions can give enhanced green emission through Ce(3+)  → Eu(2+) energy transfer in these phosphors. The green phosphor Ca2.9775 SiO4 Cl2 :0.0045Ce(3+) ,0.018Eu(2+) showed intense green emission with broader excitation in the near-ultraviolet light range. A green light-emitting diode (LED) based on this phosphor was made, and bright green light from this green LED could be observed by the naked eye under 20 mA current excitation. Hence it is considered to be a good candidate for the green component of a three-band white LED. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25892443

  6. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hirayama, Hideki; Maeda, Noritoshi; Fujikawa, Sachie; Toyoda, Shiro; Kamata, Norihiko

    2014-10-01

    In this paper, recent advances in AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) are demonstrated. 220-350-nm-band DUV LEDs have been realized by developing crystal growth techniques for wide-bandgap AlN and AlGaN semiconductors. Significant increases in internal quantum efficiency (IQE) have been achieved for AlGaN DUV emissions by developing low-threading-dislocation-density (TDD) AlN buffer layers grown on sapphire substrates. The electron injection efficiency (EIE) of the LEDs was also significantly increased by introducing a multiquantum barrier (MQB). We also discuss light extraction efficiency (LEE), which is the most important parameter for achieving high-efficiency DUV LEDs. We succeeded in improving LEE by developing a transparent p-AlGaN contact layer. The maximum external quantum efficiency (EQE) obtained was 7% for a 279 nm DUV LED. EQE could be increased by up to several tens of percent through the improvement of LEE by utilizing transparent contact layers and photonic nanostructures in the near future.

  7. Vertically conducting deep-ultraviolet light-emitting diodes with interband tunneling junction grown on 6H-SiC substrate

    NASA Astrophysics Data System (ADS)

    Liang, Hongwei; Tao, Pengcheng; Xia, Xiaochuan; Chen, Yuanpeng; Zhang, Kexiong; Liu, Yang; Shen, Rensheng; Luo, Yingmin; Zhang, Yuantao; Du, Guotong

    2016-03-01

    Vertically conducting deep-ultraviolet (DUV) light-emitting diodes (LEDs) with a polarization-induced backward-tunneling junction (PIBTJ) were grown by metal-organic chemical vapor deposition (MOCVD) on 6H-SiC substrates. A self-consistent solution of Poisson-Schrödinger equations combined with polarization-induced theory was applied to simulate the PIBTJ structure, energy band diagrams, and free-carrier concentration distribution. AlN and graded AlxGa1-xN interlayers were introduced between the PIBTJ and multiple quantum well layers to avoid cracking of the n-Al0.5Ga0.5N top layer. At a driving current of 20 mA, an intense DUV emission at ˜288 nm and a weak shoulder at ˜386 nm were observed from the AlGaN top layer side. This demonstrates that the PIBTJ can be used to fabricate vertically conducting DUV LED on SiC substrates.

  8. Luminescent properties of Eu2+-doped BaGdF5 glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zhang, Weihuan; Zhang, Yuepin; Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

    2015-01-01

    Eu2+ doped transparent oxyfluoride glass ceramics containing BaGdF5 nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd3+ ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu2+ doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd3+ to Eu2+ ions, the energy transfer efficiency from Gd3+ to Eu2+ ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu2+ doped BaGdF5 glass ceramics may be used as a potential blue-emitting phosphor for UV-LED.

  9. A facile route to realize ultraviolet emission in a nano-engineered SnO2-based light-emitting diode

    NASA Astrophysics Data System (ADS)

    Huang, Yanan; Li, Yongfeng; Yao, Bin; Ding, Zhanhui; Deng, Rui; Zhang, Ligong; Zhao, Haifeng

    2015-11-01

    We reported a facile route to fabricate a tin dioxide (SnO2)-based light-emitting diode (LED) and obtain an electrically pumped band-edge ultraviolet (UV) emission. We first investigated the photoluminescence (PL) properties of the SnO2 thin films deposited on quartz substrates annealed at various temperatures. It was found that SnO2 nanocrystals were embedded in the SnO2 amorphous matrix after annealing at 400 °C to form a SnO2 nanoparticle/amorphous hybrid film; the band-edge UV emission was observed from the hybrid film due to the hybrid structure breaking the dipole-forbidden rule of bulk SnO2. This hybrid SnO2 film was then deposited on a p-type GaN substrate to form a SnO2 hybrid film-based LED and a band-edge UV electroluminescence (EL) was observed. Our results suggest that this easy and effective approach may find extensive application in the field of optoelectronics, displays and solid-state lighting.

  10. Self-powered ultraviolet photodetectors based on selectively grown ZnO nanowire arrays with thermal tuning performance.

    PubMed

    Bai, Zhiming; Chen, Xiang; Yan, Xiaoqin; Zheng, Xin; Kang, Zhuo; Zhang, Yue

    2014-05-28

    A self-powered Schottky-type ultraviolet photodetector with Al-Pt interdigitated electrodes has been fabricated based on selectively grown ZnO nanowire arrays. At zero bias, the fabricated photodetector exhibited high sensitivity and excellent selectivity to UV light illumination with a fast response time of 81 ms. By tuning the Schottky barrier height through the thermally induced variation of the interface chemisorbed oxygen, an ultrahigh sensitivity of 3.1 × 10(4) was achieved at 340 K without an external power source, which was 82% higher than that obtained at room temperature. According to the thermionic emission-diffusion theory and the solar cell theory, the changes in the photocurrent of the photodetector at zero bias with various system temperatures were calculated, which agreed well with the experimental data. This work demonstrates a promising approach to modulating the performance of a self-powered photodetector by heating and provides theoretical support for studying the thermal effect on the future photoelectric device. PMID:24728006

  11. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.

    PubMed

    Li, Wanbo; Qiu, Yongcai; Zhang, Li; Jiang, Lelun; Zhou, Zhangkai; Chen, Huanjun; Zhou, Jianhua

    2016-05-15

    Aluminum-based localized surface plasmon resonance (LSPR) holds attractive properties include low cost, high natural abundance, and ease of processing by a wide variety of methods including complementary metal oxide semiconductor process, making itself having an edge over conventional ones induced by noble metal. However, the inherent drawbacks of plasmonic mode limited on UV-green wavelength, low refractive index sensitivity, as well as heavy-shape-dependence greatly prevent aluminum plasmonics from real-life biosensing. Here, we demonstrated a uniform quasi-3-dimensional Al nanopyramid array (NPA) structure with tunable ultraviolet-visible-infrared (UV-vis-NIR) plasmon resonances for biosensing. By changing the reflection measuring angle, we could easily obtain typical peaks simultaneously exhibited on the reflectance spectrum across UV-vis-NIR wave region. The Al NPAs carried out high refractive index sensitivities which even comparable with that of noble metal, and can be used as a biosensor for directly detecting cytochrome c and carbohydrate antigen 199 in air after the sensing surface was washed cleanly and dried; the limits of detection were determined to be 800 nM and 29 ng/mL, respectively. Our proposed work therefore initiates the low-cost, high-performance biosensing using aluminum plasmonics, which would find wide applications in rapid diagnosis, mobile-healthcare and environmental monitoring. PMID:26748367

  12. Design and characterization of indium gallium arsenic phosphide/indium phosphide and indium(aluminum) gallium arsenic antimonide/gallium antimonide laser diode arrays

    NASA Astrophysics Data System (ADS)

    Gourevitch, Alexandre

    2006-12-01

    Semiconductor laser diodes and laser diode arrays are efficient electrical to optical power converters providing their output energy in relatively narrow emission spectra. The different wavelength ranges are well covered by different semiconductor materials. InP-based laser diodes cover the wavelength range from 1-mum to 2-mum. The region between 2 and 3-mum is well handled by type-I devices based on the GaSb material system. We designed, fabricated and characterized InP-based and GaSb-based laser arrays with record high continuous wave output power emitting at 1.5-mum and 2.3-mum, correspondingly. A laser array based on the InGaAsP/InP material system was developed for optical pumping of erbium doped solid state lasers emitting eye-safe light around 1.6-mum. The 2.3-mum laser arrays can be used for optical pumping of recently developed type-II semiconductor lasers operating in the mid-infrared atmospheric transparency window between 3.5-mum and 5-mum. Optical pumping requires pump sources that reliably provide output energy in a relatively narrow spectral range matching with absorption bands of illuminated materials. Also the compact size of laser diodes and laser arrays is preferable and convenient in different implementations, but it leads to significant overheating in high power operations. The inherent properties of semiconductor materials result in a red-shift of the laser emission spectrum with increased temperature. This thermal drift of the laser emission spectrum can lead to misalignment with the narrow absorption bands of illuminated material. We have developed an experimental technique to measure the time-resolved evolution of the laser emission spectrum. The data obtained from the emission spectrum measurements have been used to optimize the laser device design. In this dissertation the progress in the development of high-power infrared laser arrays have been discussed. The different aspects of laser array design, thermal analysis and laser bar optimization have been studied analytically and experimentally.

  13. AlGaN-Based Light Emitting Diodes Using Self-Assembled GaN Quantum Dots for Ultraviolet Emission

    NASA Astrophysics Data System (ADS)

    Brault, Julien; Damilano, Benjamin; Vinter, Borge; Vennéguès, Philippe; Leroux, Mathieu; Kahouli, Abdelkarim; Massies, Jean

    2013-08-01

    Self-assembled GaN quantum dots (QDs) grown on Al0.5Ga0.5N have been used as the active region of light emitting diodes (LEDs). The LED emission wavelength exhibits a strong shift towards higher energies with increasing current density, which allows obtaining an emission in the UV range (down to 375 nm) above 100 A/cm2. Together with this shift, a reduction of the electroluminescence (EL) peak full width at half maximum (FWHM) is observed. These features are a consequence of the quantum confined Stark effect caused by the built-in electric field in the heterostructure. At larger current densities, an opposite behavior (i.e., an increase of the FWHM) is observed concomitant with the appearance of an additional peak on the EL high energy side. This characteristic has been confronted with calculations and attributed to a transition between the lowest electron state and the first excited hole state in the QDs.

  14. [CCD-diode array spectrophotometry used for simultaneous determination of cadmium and lead].

    PubMed

    Hu, J; Li, Y; Yang, J; Ha, Y

    1998-09-01

    A new spectrophotometric setup for simultaneous determination of lead and cadmium has been developed. It is composed of charge coupled device (array detector), multichromatic instrument and computer. The optimum chromogenic conditions of meso-tetra (4-trimethylammoniumphenyl) porphine (TAPP) with cadmium and lead were studied and reported in this paper. The linear ranges of Pb and Cd were 0-0.50 microgram/ml and 0-0.20 microgram/ml respectively. The detection limits were 0.001 microgram/ml for both Pb and Cd. The proposed method has been successfully applied to the simultaneous determination of cadmium and lead in the synthetic samples and the soaking solutions of ceramics and enamel. The recoveries of spiked samples ranged from 84.4%-118.6% and the average recovery was 100.8% with RSD of 1.0%-9.1%. The proposed method is more sensitive, more accurate and faster than the traditional one, it can be used to simultaneously determine multiple elements. PMID:10684109

  15. Quantification of maltol in Korean ginseng (Panax ginseng) products by high-performance liquid chromatography-diode array detector

    PubMed Central

    Jeong, Hyun Cheol; Hong, Hee-Do; Kim, Young-Chan; Rhee, Young Kyoung; Choi, Sang Yoon; Kim, Kyung-Tack; Kim, Sung Soo; Lee, Young-Chul; Cho, Chang-Won

    2015-01-01

    Background: Maltol, as a type of phenolic compounds, is produced by the browning reaction during the high-temperature treatment of ginseng. Thus, maltol can be used as a marker for the quality control of various ginseng products manufactured by high-temperature treatment including red ginseng. For the quantification of maltol in Korean ginseng products, an effective high-performance liquid chromatography-diode array detector (HPLC-DAD) method was developed. Materials and Methods: The HPLC-DAD method for maltol quantification coupled with a liquid-liquid extraction (LLE) method was developed and validated in terms of linearity, precision, and accuracy. An HPLC separation was performed on a C18 column. Results: The LLE methods and HPLC running conditions for maltol quantification were optimized. The calibration curve of the maltol exhibited good linearity (R2 = 1.00). The limit of detection value of maltol was 0.26 μg/mL, and the limit of quantification value was 0.79 μg/mL. The relative standard deviations (RSDs) of the data of the intra- and inter-day experiments were <1.27% and 0.61%, respectively. The results of the recovery test were 101.35–101.75% with an RSD value of 0.21–1.65%. The developed method was applied successfully to quantify the maltol in three ginseng products manufactured by different methods. Conclusion: The results of validation demonstrated that the proposed HPLC-DAD method was useful for the quantification of maltol in various ginseng products. PMID:26246746

  16. Simultaneous determination of eight flavonoids in propolis using chemometrics-assisted high performance liquid chromatography-diode array detection.

    PubMed

    Sun, Yan-Mei; Wu, Hai-Long; Wang, Jian-Yao; Liu, Zhi; Zhai, Min; Yu, Ru-Qin

    2014-07-01

    A fast analytical strategy of second-order calibration method based on the alternating trilinear decomposition algorithm (ATLD)-assisted high performance liquid chromatography coupled with a diode array detector (HPLC-DAD) was established for the simultaneous determination of eight flavonoids (rutin, quercetin, luteolin, kaempferol, isorhamnetin, apigenin, galangin and chrysin) in propolis capsules samples. The chromatographic separation was implemented on a Wondasil™ C18 column (250mm×4.6mm, 5μm) within 13min with a binary mobile phase composed of water with 1% formic acid and methanol at a flow rate of 1.0mLmin(-1) after flavonoids were only extracted with methanol by ultrasound extraction for 15min. The baseline problem was overcome by considering background drift as additional compositions or factors as well as the target analytes, and ATLD was employed to handle the overlapping peaks from analytes of interest or from analytes and co-eluting matrix compounds. The linearity was good with the correlation coefficients no less than 0.9947; the limit of detections (LODs) within the range of 3.39-33.05ngmL(-1) were low enough; the accuracy was confirmed by the recoveries ranged from 91.9% to 110.2% and the root-mean-square-error of predictions (RMSEPs) less than 1.1μg/mL. The results indicated that the chromatographic method with the aid of ATLD is efficient, sensitive and cost-effective and can realize the resolution and accurate quantification of flavonoids even in the presence of interferences, thus providing an alternative method for accurate quantification of analytes especially when the complete separation is not easily accomplished. The method was successfully applied to propolis capsules samples and the satisfactory results were obtained. PMID:24907544

  17. High power and high efficiency kW 88x-nm multi-junction pulsed diode laser bars and arrays

    NASA Astrophysics Data System (ADS)

    Chen, Zhigang; Bai, John; Dong, Weimin; Guan, Xingguo; Zhang, Shiguo; Elim, Sandrio; Bao, Ling; Grimshaw, Mike; Devito, Mark; Kanskar, Manoj

    2014-03-01

    There is great interest in the development of high-power, high-efficiency and low cost QCW 88x-nm diode laser bars and arrays for pumping solid state lasers. We report on the development of kW 88x-nm diode laser bars that are based on a bipolar cascade design, in which multiple lasers are epitaxially grown in electrical series on a single substrate. Multiple laser junctions, each of which is based on nLight's high performance 88x-nm epitaxial design, are separated by low resistance tunnel junctions with resistance as low as 8.0x10-6 Ω-cm2. Optimization of bar geometry and wafer fabrication processes was explored for electrical and optical performance improvement in double-junction diode lasers. A QCW power of 630 W was demonstrated in a 3-mm wide mini-bar with 3-mm cavity length. Peak efficiency of 61% was measured with 200 s and 14 Hz pulses, at a heatsink temperature of 10 °C. Further power scaling was demonstrated in a 1-cm wide bar with 3-mm cavity length, where a record high peak power of 1.77 kW was measured at 1 kA drive current. Ongoing work for further power scaling includes development of triple-junction diode laser bars and double-junction bar-stack that emits < 10kW optical power.

  18. Enhanced light emission in vertical-structured GaN-based light-emitting diodes with trench etching and arrayed p-electrodes

    NASA Astrophysics Data System (ADS)

    Lin, Tseng-Hsing; Wang, Shui-Jinn; Tu, Yung-Chun; Hung, Chien-Hsiung; Lin, Che-An; Lin, Yung-Cheng; You, Zong-Sian

    2015-05-01

    We investigate the effect of trench etching and arrayed p-electrodes in improving current spreading and the efficiency of light extraction of GaN-based vertical-structured light-emitting diodes (VLEDs). Both simulated and experimental results on the uniformities of current distribution and light emission are presented and discussed. For a 2 × 2 array VLED with a die size of 1020 × 1020 μm2, enhancements in light output power by 0.38% (6.03%) and wall-plug efficiency by 2.79% (2.32%) at 364.4 mA/mm2 (728.9 mA/mm2) as compared with that of regular VLED are achieved experimentally, which are attributed to improved current spreading from the arrayed p-electrode and trench designs as well as enhanced light emission from the trench region.

  19. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm

    NASA Astrophysics Data System (ADS)

    Li, David D.-U.; Arlt, Jochen; Tyndall, David; Walker, Richard; Richardson, Justin; Stoppa, David; Charbon, Edoardo; Henderson, Robert K.

    2011-09-01

    A high-speed and hardware-only algorithm using a center of mass method has been proposed for single-detector fluorescence lifetime sensing applications. This algorithm is now implemented on a field programmable gate array to provide fast lifetime estimates from a 32 × 32 low dark count 0.13 μm complementary metal-oxide-semiconductor single-photon avalanche diode (SPAD) plus time-to-digital converter array. A simple look-up table is included to enhance the lifetime resolvability range and photon economics, making it comparable to the commonly used least-square method and maximum-likelihood estimation based software. To demonstrate its performance, a widefield microscope was adapted to accommodate the SPAD array and image different test samples. Fluorescence lifetime imaging microscopy on fluorescent beads in Rhodamine 6G at a frame rate of 50 fps is also shown.

  20. Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: a comparison to InGaN-based visible flip-chip light-emitting diodes.

    PubMed

    Lee, Keon Hwa; Park, Hyun Jung; Kim, Seung Hwan; Asadirad, Mojtaba; Moon, Yong-Tae; Kwak, Joon Seop; Ryou, Jae-Hyun

    2015-08-10

    We study light-extraction efficiency (LEE) of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) using flip-chip (FC) devices with varied thickness in remaining sapphire substrate by experimental output power measurement and computational methods using 3-dimensional finite-difference time-domain (3D-FDTD) and Monte Carlo ray-tracing simulations. Light-output power of DUV-FCLEDs compared at a current of 20 mA increases with thicker sapphire, showing higher LEE for an LED with 250-μm-thick sapphire by ~39% than that with 100-μm-thick sapphire. In contrast, LEEs of visible FCLEDs show only marginal improvement with increasing sapphire thickness, that is, ~6% improvement for an LED with 250-μm-thick sapphire. 3D-FDTD simulation reveals a mechanism of enhanced light extraction with various sidewall roughness and thickness in sapphire substrates. Ray tracing simulation examines the light propagation behavior of DUV-FCLED structures. The enhanced output power and higher LEE strongly depends on the sidewall roughness of the sapphire substrate rather than thickness itself. The thickness starts playing a role only when the sapphire sidewalls become rough. The roughened surface of sapphire sidewall during chip-separation process is critical for TM-polarized photons from AlGaN quantum wells to escape in lateral directions before they are absorbed by p-GaN and Au-metal. Furthermore, the ray tracing results show a reasonably good agreement with the experimental result of the LEE. PMID:26367889

  1. Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Park, Jun Hyuk; Lee, Jong Won; Kim, Dong Yeong; Cho, Jaehee; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    The temperature-dependent external quantum efficiencies (EQEs) were investigated for a 620 nm AlGaInP red light-emitting diodes (LEDs), a 450 nm GaInN blue LED, and a 285 nm AlGaN deep-ultraviolet (DUV) LED. We observed distinct differences in the variation of the EQE with temperature and current density for the three types of LEDs. Whereas the EQE of the AlGaInP red LED increases as temperature decreases below room temperature, the EQEs of GaInN blue and AlGaN DUV LEDs decrease for the same change in temperature in a low-current density regime. The free carrier concentration, as determined from the dopant ionization energy, shows a strong material-system-specific dependence, leading to different degrees of asymmetry in carrier concentration for the three types of LEDs. We attribute the EQE variation of the red, blue, and DUV LEDs to the different degrees of asymmetry in carrier concentration, which can be exacerbated at cryogenic temperatures. As for the EQE variation with temperature in a high-current density regime, the efficiency droop for the AlGaInP red and GaInN blue LEDs becomes more apparent as temperature decreases, due to the deterioration of the asymmetry in carrier concentration. However, the EQE of the AlGaN DUV LED initially decreases, then reaches an EQE minimum point, and then increases again due to the field-ionization of acceptors by the Poole-Frenkel effect. The results elucidate that carrier transport phenomena allow for the understanding of the droop phenomenon across different material systems, temperatures, and current densities.

  2. The effect of free-standing GaN substrate on carrier localization in ultraviolet InGaN light-emitting diodes.

    PubMed

    Tsai, Ming-Ta; Chu, Chung-Ming; Huang, Che-Hsuan; Wu, Yin-Hao; Chiu, Ching-Hsueh; Li, Zhen-Yu; Tu, Po-Min; Lee, Wei-I; Kuo, Hao-Chung

    2014-12-01

    In this study, we have grown 380-nm ultraviolet light-emitting diodes (UV-LEDs) based on InGaN/AlInGaN multiple quantum well (MQW) structures on free-standing GaN (FS-GaN) substrate by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD), and investigated the relationship between carrier localization degree and FS-GaN. The micro-Raman shift peak mapping image shows low standard deviation (STD), indicating that the UV-LED epi-wafer of low curvature and MQWs of weak quantum-confined Stark effect (QCSE) were grown. High-resolution X-ray diffraction (HRXRD) analyses demonstrated high-order satellite peaks and clear fringes between them for the UV-LEDs grown on the FS-GaN substrate, from which the interface roughness (IRN) was estimated. The temperature-dependent photoluminescence (PL) measurement confirmed that the UV-LEDs grown on the FS-GaN substrate exhibited better carrier confinement. Besides, the high-resolution transmission electron microscopy (HRTEM) and energy-dispersive spectrometer (EDS) mapping images verified that the UV-LEDs on FS-GaN have fairly uniform distribution of indium and more ordered InGaN/AlInGaN MQW structure. Clearly, the FS-GaN can not only improve the light output power but also reduce the efficiency droop phenomenon at high injection current. Based on the results mentioned above, the FS-GaN can offer UV-LEDs based on InGaN/AlInGaN MQW structures with benefits, such as high crystal quality and small carrier localization degree, compared with the UV-LEDs on sapphire. PMID:26088993

  3. High-reflectance of hybrid reflector with distributed Bragg reflector and metal mirror for flip-chip ultra-violet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Huang, Huamao; Wang, Hong

    2014-12-01

    Three types of reflectors, including the distributed Bragg reflectors (DBRs), the first hybrid reflectors composed of DBR and Al mirror (DBR-Al), and the second hybrid reflectors composed of DBR, an additional low-refractive-index layer, and Al mirror (DBR-L-Al), were investigated by use of thin-film theory at the central wavelength of 300 nm for flip-chip ultra-violet light-emitting diodes (UV-LEDs). The number of DBR pairs and various high-refractive-index materials were studied. It is shown that the lossless materials with high refractive-index contrast should be selected for DBRs, and the DBR-Al hybrid reflectors provides higher reflectance comparing to DBRs. However, the Al mirror causes a sharp drop near the central wavelength and a blue shift of the peak position. These drawbacks can be suppressed by additional low-refractive-index layer attached on the Al mirror. In addition, the DBR-L-Al reflector leads to higher reflectivity and larger FWHM as compared to DBR-Al reflectors. By use of Monte Carlo ray tracing method, the light-extraction efficiency (LEE) for flip-chip UV-LEDs with (SiO2/ZrO2) 3 -SiO2-Al hybrid reflector or perfect mirror were simulated. The calculated LEE for the (SiO2/ZrO2) 3 -SiO2-Al hybrid reflector is 97 % of that for the perfect mirror. Moreover, the sharp drop in the angular reflectance spectrum of the (SiO2/ZrO2)3 -SiO2-Al hybrid reflector induces a slightly reduction of light intensity as compared to the perfect mirror.

  4. The effect of free-standing GaN substrate on carrier localization in ultraviolet InGaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Ta; Chu, Chung-Ming; Huang, Che-Hsuan; Wu, Yin-Hao; Chiu, Ching-Hsueh; Li, Zhen-Yu; Tu, Po-Min; Lee, Wei-I.; Kuo, Hao-Chung

    2014-12-01

    In this study, we have grown 380-nm ultraviolet light-emitting diodes (UV-LEDs) based on InGaN/AlInGaN multiple quantum well (MQW) structures on free-standing GaN (FS-GaN) substrate by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD), and investigated the relationship between carrier localization degree and FS-GaN. The micro-Raman shift peak mapping image shows low standard deviation (STD), indicating that the UV-LED epi-wafer of low curvature and MQWs of weak quantum-confined Stark effect (QCSE) were grown. High-resolution X-ray diffraction (HRXRD) analyses demonstrated high-order satellite peaks and clear fringes between them for the UV-LEDs grown on the FS-GaN substrate, from which the interface roughness (IRN) was estimated. The temperature-dependent photoluminescence (PL) measurement confirmed that the UV-LEDs grown on the FS-GaN substrate exhibited better carrier confinement. Besides, the high-resolution transmission electron microscopy (HRTEM) and energy-dispersive spectrometer (EDS) mapping images verified that the UV-LEDs on FS-GaN have fairly uniform distribution of indium and more ordered InGaN/AlInGaN MQW structure. Clearly, the FS-GaN can not only improve the light output power but also reduce the efficiency droop phenomenon at high injection current. Based on the results mentioned above, the FS-GaN can offer UV-LEDs based on InGaN/AlInGaN MQW structures with benefits, such as high crystal quality and small carrier localization degree, compared with the UV-LEDs on sapphire.

  5. Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm

    SciTech Connect

    Risk, W.P.; Lenth, W.

    1987-12-01

    We report the use of GaAlAs laser-diode arrays to pump a cw Nd:YAG laser operating on the 946-nm /sup 4/F/sub 3/2/..-->../sup 4/I/sub 9/2/ transition. At room temperature, the lasing threshold was reached with 58 mW of absorbed pump power, and, with 175 mW of absorbed pump power, 42 mW of output power at 946 nm was obtained in a TEM/sub 00/ mode by using 0.7% output coupling. In addition, pumping with an infrared dye laser operating in a pure TEM/sub 00/ mode was used to investigate the effects of reabsorption loss that are characteristic of the 946-nm laser transition. LiIO/sub 3/ was used as an intracavity doubling crystal, and 100 ..mu..W of blue light was generated by using diode-laser pumping in a nonoptimized cavity.

  6. Illumination distribution and signal transmission for indoor visible light communication with different light-emitting diode arrays and pre-equality circuits

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Liou, Cheng-Jyun; Siao, Syuan-Ruei

    2015-11-01

    The purpose of this study was to seek the optimal design for light-emitting diode (LED) arrays and pre-equality circuits in indoor visible lighting illumination combined with communication. The optical and communicational properties of illumination distribution and signal transmission were investigated. These illumination distributions of array sources were derivate and simulated and actually can be used in free-space communication. Simulated results show the total flux size was rectangle>radial>circlearray, and real measurements also showed the total flux was rectangle>radial>circlearray. The simulated and measured results have a similarity of over 98% by normalized cross correlation. In addition, when the distance of the installed lamp from the wall was 1 m, the rectangular array had the best illumination uniformity of 77.24%, and the size of uniformity was the rectangle>radial≈circle array. Finally, the gain and constant-current pre-equality circuits were used in free-space communication with a carrier frequency from 1 KHz to 1 MHz at a distance of 1.8 m. Both the received signal intensity and divergence angle were rectangle>radial>circle array. The constant-current pre-equality circuit could add the divergence angle from ±18.6 deg to ±36.68 deg in the rectangle array at a carrier frequency of 1 MHz.

  7. Optimizing the accuracy of a helical diode array dosimeter: A comprehensive calibration methodology coupled with a novel virtual inclinometer

    SciTech Connect

    Kozelka, Jakub; Robinson, Joshua; Nelms, Benjamin; Zhang, Geoffrey; Savitskij, Dennis; Feygelman, Vladimir

    2011-09-15

    Purpose: The goal of any dosimeter is to be as accurate as possible when measuring absolute dose to compare with calculated dose. This limits the uncertainties associated with the dosimeter itself and allows the task of dose QA to focus on detecting errors in the treatment planning (TPS) and/or delivery systems. This work introduces enhancements to the measurement accuracy of a 3D dosimeter comprised of a helical plane of diodes in a volumetric phantom. Methods: We describe the methods and derivations of new corrections that account for repetition rate dependence, intrinsic relative sensitivity per diode, field size dependence based on the dynamic field size determination, and positional correction. Required and described is an accurate ''virtual inclinometer'' algorithm. The system allows for calibrating the array directly against an ion chamber signal collected with high angular resolution. These enhancements are quantitatively validated using several strategies including ion chamber measurements taken using a ''blank'' plastic shell mimicking the actual phantom, and comparison to high resolution dose calculations for a variety of fields: static, simple arcs, and VMAT. A number of sophisticated treatment planning algorithms were benchmarked against ion chamber measurements for their ability to handle a large air cavity in the phantom. Results: Each calibration correction is quantified and presented vs its independent variable(s). The virtual inclinometer is validated by direct comparison to the gantry angle vs time data from machine log files. The effects of the calibration are quantified and improvements are seen in the dose agreement with the ion chamber reference measurements and with the TPS calculations. These improved agreements are a result of removing prior limitations and assumptions in the calibration methodology. Average gamma analysis passing rates for VMAT plans based on the AAPM TG-119 report are 98.4 and 93.3% for the 3%/3 mm and 2%/2 mm dose-error/distance to agreement threshold criteria, respectively, with the global dose-error normalization. With the local dose-error normalization, the average passing rates are reduced to 94.6 and 85.7% for the 3%/3 mm and 2%/2 mm criteria, respectively. Some algorithms in the convolution/superposition family are not sufficiently accurate in predicting the exit dose in the presence of a 15 cm diameter air cavity. Conclusions: Introduction of the improved calibration methodology, enabled by a robust virtual inclinometer algorithm, improves the accuracy of the dosimeter's absolute dose measurements. With our treatment planning and delivery chain, gamma analysis passing rates for the VMAT plans based on the AAPM TG-119 report are expected to be above 91% and average at about 95% level for {gamma}(3%/3 mm) with the local dose-error normalization. This stringent comparison methodology is more indicative of the true VMAT system commissioning accuracy compared to the often quoted dose-error normalization to a single high value.

  8. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  9. Application of HPLC and TLC with diode array detection after SPE to the determination of pesticides in water samples from the Zemborzycki Reservoir (Lublin, southeastern Poland).

    PubMed

    Tuzimski, Tomasz

    2010-01-01

    The application of TLC with a diode array detector (TLC-DAD) and HPLC-DAD after SPE for identification and quantitative analysis of pesticides in water samples is demonstrated. The procedures described for the determination of compounds are inexpensive and can be applied to routine analysis of analytes in water samples after preliminary cleanup and concentration by SPE. Average recoveries for four different cartridges and three solvents by the proposed HPLC-DAD method after SPE also are presented. The efficiency of the SPE procedure was evaluated using real water samples from the Zemborzycki Reservoir, near Lublin, southeastern Poland. The method was validated for precision, repeatability, and accuracy. PMID:21313800

  10. Quantification of alpha-amanitin in biological samples by HPLC using simultaneous UV- diode array and electrochemical detection.

    PubMed

    Garcia, Juliana; Costa, Vera M; Baptista, Paula; Bastos, Maria de Lourdes; Carvalho, Félix

    2015-08-01

    α-Amanitin is a natural bicyclic octapeptide, from the family of amatoxins, present in the deadly mushroom species Amanita phalloides. The toxicological and clinical interests raised by this toxin, require highly sensitive, accurate and reproducible quantification methods for pharmacokinetic studies. In the present work, a high-performance liquid chromatographic (HPLC) method with in-line connected diode-array (DAD) and electrochemical (EC) detection was developed and validated to quantify α-amanitin in biological samples (namely liver and kidney). Sample pre-treatment consisted of a simple and unique deproteinization step with 5% perchloric acid followed by centrifugation at 16,000×g, 4°C, for 20min. The high recovery found for α-amanitin (≥96.8%) makes this procedure suitable for extracting α-amanitin from liver and kidney homogenates. The resulting supernatant was collected and injected into the HPLC. Mobile phase was composed by 20% methanol in 50mM citric acid, and 0.46mM octanessulfonic acid, adjusted to pH 5.5. The chromatographic runs took less than 22min and no significant endogenous interferences were observed at the α-amanitin retention time. Calibration curves were linear with regression coefficients higher than 0.994. The overall inter- and intra-assay precision did not exceed 15.3%. The present method has low interferences with simple and fast processing steps, being a suitable procedure to support in vivo toxicokinetic studies involving α-amanitin. In fact, the validated method was successfully applied to quantify α-amanitin in biological samples following intraperitoneal α-amanitin administration to rats. Moreover, human plasma was also used as matrix and the purposed method was adequate for detection of α-amanitin in that matrix. The results clearly indicate that the proposed method is suitable to investigate the pharmacokinetic and tissue distribution of α-amanitin. Additionally, the method will be very useful in the development of novel and potent antidotes against amatoxins poisoning and to improve the knowledge of α-amanitin toxicity. PMID:26100080

  11. Simultaneous determination of seven azole antifungal drugs in serum by ultra-high pressure liquid chromatography and diode array detection.

    PubMed

    Mistretta, V; Dubois, N; Denooz, R; Charlier, C

    2014-01-01

    Azole antifungals are a group of fungistatic agents that can be administered orally or parenterally. The determination of the concentrations of these antifungals (miconazole, fluconazole, ketoconazole, posaconazole, voriconazole, itraconazole, and its major active metabolite, hydroxy-itraconazole) in serum can be useful to adapt the doses to pharmacological ranges because of large variability in the absorption and metabolism of the drugs, multiple drug interactions, but also potential resistance or toxicity. A method was developed and validated for the simultaneous determination of these drugs in serum utilizing ultra-high pressure liquid chromatography and diode array detection (UHPLC-DAD). After a simple and rapid liquid-liquid extraction, the pre-treated sample was analysed on an UHPLC-DAD system (Waters Corporation(®)). The chromatographic separation was carried out on an Acquity BEH C18 column (Waters Corporation) with a gradient mode of mobile phase composed of acetonitrile and aqueous ammonium bicarbonate 10·0 M pH10. The flow rate was 0·4 ml/min and the injection volume was 5 μl. The identification wavelength varied according to the drug from 210 to 260 nm. The method was validated by the total error method approach by using an analytical validation software (e•noval V3·0 Arlenda(®)). The seven azole antifungals were identified by retention time and specific UV spectra, over a 13-minute run time. All calibration curves showed good linearity (r(2)>0·99) in ranges considered clinically adequate. The assay was linear from 0·05 to 10 mg/l for voriconazole, posaconazole, itraconazole, hydroxy-itraconazole, and ketoconazole, from 0·3 to 10 mg/l for fluconazole, and from 0·1 to 10 mg/l for miconazole. The bias and imprecision values for intra- and inter-assays were lower than 10% and than 15%, respectively. In conclusion, a simple, sensitive, and selective UHPLC-DAD method was developed and validated to determine seven azole antifungal drugs in human serum. This method is applicable to patient samples, and can be applied successfully to clinical applications and therapeutic drug monitoring. PMID:24635400

  12. Rapid determination of lidocaine solutions with non-column chromatographic diode array UV spectroscopy and multivariate calibration.

    PubMed

    Wiberg, Kent; Hagman, Anders; Jacobsson, Sven P

    2003-01-01

    A new method for the rapid determination of pharmaceutical solutions is proposed. A conventional HPLC system with a Diode Array Detector (DAD) was used with no chromatographic column connected. As eluent, purified water (Milli Q) was used. The pump and autosampler of the HPLC system were mainly utilised as an automatic and convenient way of introducing the sample into the DAD. The method was tested on the local anaesthetic compound lidocaine. The UV spectrum (245-290 nm) from the samples analysed in the detector was used for multivariate calibration for the determination of lidocaine solutions. The content was determined with PLS regression. The effect on the predictive ability of three factors: flow, data-collection rate and rise time as well as two ways of exporting a representative UV spectrum from the DAD file collected was investigated by means of an experimental design comprising 11 experiments. For each experiment, 14 solutions containing a known content of lidocaine were analysed (0.02-0.2 mg ml(-1)). From these 14 samples two calibration sets and two test sets were made and as the response in the experimental design the Root Mean Square Error of Prediction (RMSEP) values from the predictions of the two test sets were used. When the factor setting giving the lowest RMSEP was found, this setting was used when analysing a new calibration set of 12 lidocaine samples (0.1-0.2 mg ml(-1)). This calibration model was validated by two external test sets, A and B, analysed on separate occasions for the evaluation of repeatability (test set A) and determination over time (test set B). For comparison, the reference method, liquid chromatography, was also used for analysis of the ten samples in test set B. This comparison of the two methods was done twice on different occasions. The results show that in respect of accuracy, precision and repeatability the new method is comparable to the reference method. The main advantages compared with liquid chromatography are the much shorter time of analysis (<30 s) as well as the automatic and simple analytical procedure and the low consumption of organic solvents. PMID:12467929

  13. CW operation of monolithic arrays of surface-emitting AlGaAS diode lasers with dry-etched vertical facets and parabolic deflecting mirrors

    SciTech Connect

    Donnelly, J.P.; Goodhue, W.D.; Wang, C.A.; Bailey, R.J.; Lincoln, G.A.; Johnson, G.D.; Missaggia, L.J.; Walpole, J.N. . Lincoln Lab.)

    1993-10-01

    A monolithic two-dimensional array of surface-emitting AlGaAs diode lasers with dry-etched vertical facets and parabolic deflecting mirrors was mounted junction-site up on a W/Cu microchannel heatsink and evaluated under continuous-wave (CW) operating conditions. Both the facets and parabolic deflecting mirrors were etched using chlorine ion-beam-assisted etching. Threshold current densities of different sections of the array were consistently around 240 A/cm[sup 2], and measured CW differential quantum efficiencies were in the 46--48% range. CW power densities as high as 148 W/cm[sup 2] were achieved with an average temperature rise of less than 25 C in this junction-side-up configuration.

  14. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    SciTech Connect

    Scarcella, Carmelo; Tosi, Alberto Villa, Federica; Tisa, Simone; Zappa, Franco

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  15. Influence of the alignment of ZnO nanorod arrays on light extraction enhancement of GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Dai, Kehui; Soh, Chew Beng; Chua, Soo Jin; Wang, Lianshan; Huang, Dexiu

    2011-04-01

    ZnO nanorod arrays (ZNAs) were hydrothermally synthesized on the surface of patterned indium-doped tin oxide p-type contact (PIPC) of GaN-based light-emitting diodes (GaN-LEDs) for enhancing the light extraction efficiency (LEE). It was found that the alignment of the ZnO nanorod arrays in the grooves of the PIPC was poorer than these grown on the ridges of the PIPC. By comparing the light output of the GaN-LEDs with and without ZNAs grown in the grooves of PIPC, the influence of the alignment of ZNAs on the LEE of GaN-LEDs was revealed and investigated. Numerical analysis based on the finite difference of time domain (FDTD) method suggested that the poorer alignment of ZNAs grown on GaN-LEDs resulted in more energy reflected back into GaN-LEDs and lower light extraction efficiency.

  16. Increasing Electrochemiluminescence Intensity of a Wireless Electrode Array Chip by Thousands of Times Using a Diode for Sensitive Visual Detection by a Digital Camera.

    PubMed

    Qi, Liming; Xia, Yong; Qi, Wenjing; Gao, Wenyue; Wu, Fengxia; Xu, Guobao

    2016-01-19

    Both a wireless electrochemiluminescence (ECL) electrode microarray chip and the dramatic increase in ECL by embedding a diode in an electromagnetic receiver coil have been first reported. The newly designed device consists of a chip and a transmitter. The chip has an electromagnetic receiver coil, a mini-diode, and a gold electrode array. The mini-diode can rectify alternating current into direct current and thus enhance ECL intensities by 18 thousand times, enabling a sensitive visual detection using common cameras or smart phones as low cost detectors. The detection limit of hydrogen peroxide using a digital camera is comparable to that using photomultiplier tube (PMT)-based detectors. Coupled with a PMT-based detector, the device can detect luminol with higher sensitivity with linear ranges from 10 nM to 1 mM. Because of the advantages including high sensitivity, high throughput, low cost, high portability, and simplicity, it is promising in point of care testing, drug screening, and high throughput analysis. PMID:26669809

  17. Macroscopic Violation of Three Cauchy-Schwarz Inequalities Using Correlated Light Beams From an Infra-Red Emitting Semiconductor Diode Array

    NASA Technical Reports Server (NTRS)

    Edwards, P. J.; Huang, X.; Li, Y. Q. (Editor); Wang, Y. Z. (Editor)

    1996-01-01

    We briefly review quantum mechanical and semi-classical descriptions of experiments which demonstrate the macroscopic violation of the three Cauchy-Schwarz inequalities: g(sup 2)(sub 11)(0) greater than or equal to 1; g(sup 2)(sub 11)(0) greater than or equal to g(sup 2)(sub 11)(t), (t approaches infinity); (the absolute value of g(sup 2)(sub 11)(0))(exp 2) less than or equal to g(sup 2)(sub 11)(0) g(sup 2)(sub 11)(0). Our measurements demonstrate the violation, at macroscopic intensities, of each of these inequalities. We show that their violation, although weak, can be demonstrated through photodetector current covariance measurements on correlated sub-Poissonian Poissonian, and super Poissonian light beams. Such beams are readily generated by a tandem array of infrared-emitting semiconductor junction diodes. Our measurements utilize an electrically coupled array of one or more infrared-emitting diodes, optically coupled to a detector array. The emitting array is operated in such a way as to generate highly correlated beams of variable photon Fano Factor. Because the measurements are made on time scales long compared with the first order coherence time and with detector areas large compared with the corresponding coherence areas, first order interference effects are negligible. The first and second inequalities are violated, as expected, when a sub-Poissonian light beam is split and the intensity fluctuations of the two split beams are measured by two photodetectors and subsequently cross-correlated. The third inequality is violated by bunched (as well as anti-bunched) beams of equal intensity provided the measured cross correlation coefficient exceeds (F - 1)/F, where F is the measured Fano Factor of each beam. We also investigate the violation for the case of unequal beams.

  18. Development of gallium nitride-based ultraviolet and visible light-emitting diodes using hydride vapor-phase epitaxy and molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cabalu, Jasper Sicat

    Much of the work done on ultraviolet (UV) and visible III-Nitrides-based light emitting diodes (LEDs) involves growth by metal-organic chemical vapor deposition (MOCVD). In this dissertation, the growth, development, and fabrication of III-Nitrides-based UV and visible LEDs with very high photon conversion and extraction efficiencies using hydride vapor-phase epitaxy (HVPE) and radio frequency (rf) plasma-assisted molecular beam epitaxy (PAMBE) is presented. High-power electrically-pumped UV-LEDs based on GaN/AlGaN multiple quantum wells (MQWs) emitting at 340 nm and 350 nm have been fabricated in a flip-chip configuration and evaluated. Under pulsed operation, UV-LEDs emitting at 340 nm have output powers that saturate, due to device heating, at approximately 3 mW. Devices emitting at 350 nm show DC operation output powers as high as 4.5 mW under 200 mA drive current. These results were found to be equivalent with those of UV-LEDs produced by the MOCVD and HVPE methods. The concept of using textured MQWs on UV-LED structures was tested by optical pumping of GaN/AlGaN MQWs grown on textured GaN templates. Results show highly enhanced (>700 times) blue-shifted photoluminescence (PL) at 360 nm compared to similarly produced MQWs on smooth GaN templates whose PL emission is red-shifted. These results are attributed partly to enhancement in light extraction efficiency (LEE) and partly to enhancement in internal quantum efficiency (IQE). The origin of the increase in IQE is partly due to reduction of the quantum-confined Stark effect (QCSE) on QW-planes not perpendicular to the polarization direction and partly due to charge redistribution in the QWs caused by the polarization component parallel to the planes of the QWs. Similar studies have been done for visible LEDs using InGaN/GaN MQWs. Growth of LED structures on textured GaN templates employing textured MQW-active regions resulted in the production of dichromatic (430 nm and 530 nm) phosphorless white LEDs with good electrical characteristics. We attribute this behavior to different incorporation of In in different QW-planes. These studies show that textured MQW-based LEDs not only offers the benefit of enhanced IQE and LEE, but also the benefit of producing efficient white LEDs without the use of phosphor.

  19. GaN-based ultraviolet light-emitting diodes with AlN/GaN/InGaN multiple quantum wells.

    PubMed

    Chang, Hung-Ming; Lai, Wei-Chih; Chen, Wei-Shou; Chang, Shoou-Jinn

    2015-04-01

    We demonstrate indium gallium nitride/gallium nitride/aluminum nitride (AlN/GaN/InGaN) multi-quantum-well (MQW) ultraviolet (UV) light-emitting diodes (LEDs) to improve light output power. Similar to conventional UV LEDs with AlGaN/InGaN MQWs, UV LEDs with AlN/GaN/InGaN MQWs have forward voltages (V(f)'s) ranging from 3.21 V to 3.29 V at 350 mA. Each emission peak wavelength of AlN/GaN/InGaN MQW UV LEDs presents 350 mA output power greater than that of the corresponding emission peak wavelength of AlGaN/InGaN MQW UV LEDs. The light output power at 350mA of AlN/GaN/InGaN MQWs UV LEDs with 375 nm emission wavelength can reach around 26.7% light output power enhancement in magnitude compared to the AlGaN/InGaN MQWs UV LEDs with same emission wavelength. But 350mA light output power of AlN/GaN/InGaN MQWs UV LEDs with emission wavelength of 395nm could only have light output power enhancement of 2.43% in magnitude compared with the same emission wavelength AlGaN/InGaN MQWs UV LEDs. Moreover, AlN/GaN/InGaN MQWs present better InGaN thickness uniformity, well/barrier interface quality and less large size pits than AlGaN/InGaN MQWs, causing AlN/GaN/InGaN MQW UV LEDs to have less reverse leakage currents at -20 V. Furthermore, AlN/GaN/InGaN MQW UV LEDs have the 2-kV human body mode (HBM) electrostatic discharge (ESD) pass yield of 85%, which is 15% more than the 2-kV HBM ESD pass yield of AlGaN/InGaN MQW UV LEDs of 70%. PMID:25968799

  20. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of time. In fact, it is one of the 'deepest,' or longest-exposure, images of a nearby galaxy in ultraviolet light. This deeper view shows more clusters of stars, as well as stars in the very remote reaches of the galaxy, up to 140,000 light-years away from its core.

    The view at the left is a combination of the ultraviolet picture at the right and data taken by the telescopes of the National Science Foundation's Very Large Array in New Mexico. The radio data, colored here in red, reveal extended galactic arms of gaseous hydrogen atoms, which are raw ingredients for stars. Astronomers are excited that the remote clusters of baby stars match up with the extended arms, because this helps them better understand how stars can be created out in the boondocks of a galaxy.

    M83 is located 15 million light-years away in the southern constellation Hydra.

    In the Galaxy Evolution Explorer image on the right, near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow and far-ultraviolet light is blue. In the combined image at the left, far-ultraviolet light is blue, near-ultraviolet light is green, and the radio emission at a wavelength of 21 centimeters is red.

  1. Determination of Phenolic Content in Different Barley Varieties and Corresponding Malts by Liquid Chromatography-diode Array Detection-Electrospray Ionization Tandem Mass Spectrometry

    PubMed Central

    Carvalho, Daniel O.; Curto, Andreia F.; Guido, Luís F.

    2015-01-01

    A simple and reliable method for the simultaneous determination of nine phenolic compounds in barley and malted barley was established, using liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry (HPLC-DAD-ESI-MS/MS). The phenolic compounds can be easily detected with both systems, despite significant differences in sensitivity. Concentrations approximately 180-fold lower could be achieved by mass spectrometry analysis compared to diode array detection, especially for the flavan-3-ols (+)-catechin and (−)-epicatechin, which have poor absorptivity in the UV region. Malt samples were characterized by higher phenolic content comparing to corresponding barley varieties, revealing a significant increase of the levels of (+)-catechin and (−)-epicatechin during the malting process. Moreover, the industrial malting is responsible for modification on the phenolic profile from barley to malt, namely on the synthesis or release of sinapinic acid and epicatechin. Accordingly, the selection of the malting parameters, as well as the barley variety plays an important role when considering the quality and antioxidant stability of beer. PMID:26783844

  2. Quality assessment of crude and processed ginger by high-performance liquid chromatography with diode array detection and mass spectrometry combined with chemometrics.

    PubMed

    Deng, Xianmei; Yu, Jiangyong; Zhao, Ming; Zhao, Bin; Xue, Xingyang; Che, ChunTao; Meng, Jiang; Wang, Shumei

    2015-09-01

    A sensitive, simple, and validated high-performance liquid chromatography with diode array detection and mass spectrometry detection method was developed for three ginger-based traditional Chinese herbal drugs, Zingiberis Rhizoma, Zingiberis Rhizome Preparatum, and Zingiberis Rhizome Carbonisata. Chemometrics methods, such as principal component analysis, hierarchical cluster analysis, and analysis of variance, were also employed in the data analysis. The results clearly revealed significant differences among Zingiberis Rhizoma, Zingiberis Rhizome Preparatum, and Zingiberis Rhizome Carbonisata, indicating variations in their chemical compositions during the processing, which may elucidate the relationship of the thermal treatment with the change of the constituents and interpret their different clinical uses. Furthermore, the sample consistency of Zingiberis Rhizoma, Zingiberis Rhizome Preparatum, and Zingiberis Rhizome Carbonisata can also be visualized by high-performance liquid chromatography with diode array detection and mass spectrometry analysis followed by principal component analysis/hierarchical cluster analysis. The comprehensive strategy of liquid chromatography with mass spectrometry analysis coupled with chemometrics should be useful in quality assurance for ginger-based herbal drugs and other herbal medicines. PMID:26174663

  3. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    NASA Astrophysics Data System (ADS)

    Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  4. High-performance GaSb laser diodes and diode arrays in the 2.1-3.3 micron wavelength range for sensing and defense applications

    NASA Astrophysics Data System (ADS)

    Dvinelis, Edgaras; TrinkÅ«nas, Augustinas; Greibus, Mindaugas; Kaušylas, Mindaugas; Žukauskas, Tomas; Å imonytÄ--, Ieva; Songaila, RamÅ«nas; Vizbaras, Augustinas; Vizbaras, Kristijonas

    2015-01-01

    Mid-infrared spectral region (2-4 μm) is gaining significant attention recently due to the presence of numerous enabling applications in the field of gas sensing, medical, and defense applications. Gas sensing in this spectral region is attractive due to the presence of numerous absorption lines for such gases as methane, ethane, ozone, carbon dioxide, carbon monoxide, etc. Sensing of the mentioned gas species is of particular importance for applications such as atmospheric LIDAR, petrochemical industry, greenhouse gas monitoring, etc. Defense applications benefit from the presence of covert atmospheric transmission window in the 2.1-2.3 micron band which is more eye-safe and offers less Rayleigh scattering than the conventional atmospheric windows in the near-infrared. Major requirement to enable these application is the availability of high-performance, continuous-wave laser sources in this window. Type-I GaSb-based laser diodes are ideal candidates for these applications as they offer direct emission possibility, high-gain and continuous wave operation. Moreover, due to the nature of type-I transition, these devices have a characteristic low operation voltage, which results in very low input powers and high wall-plug efficiency. In this work, we present recent results of 2 μm - 3.0 μm wavelength room-temperature CW light sources based on type-I GaSb developed at Brolis Semiconductors. We discuss performance of defense oriented high-power multimode laser diodes with < 1 W CW power output with over 30 % WPE as well as ~ 100 mW single TE00 Fabry-Perot chips. In addition, recent development efforts on sensing oriented broad gain superluminescent gain chips will be presented.

  5. The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance

    SciTech Connect

    Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B.; Corde, S.; Jackson, M.

    2013-11-15

    Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly {sup 192}Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 μGy m{sup 2}/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the {sup 192}Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a {sup 192}Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of the epitaxial diodes used in the MP is in good agreement (within 8%) with radial dose function measurements found within the TG-43 protocol, with SDD of up to 70 mm showing a 40% over response. A method for four-dimensional localization of the HDR source was developed, allowing the source dwell position to be derived within 0.50 mm of the expected position. An estimation of the average transit speed for varying step sizes was determined and was found to increase from (12.8 ± 0.3) up to (38.6 ± 0.4) cm/s for a step size of 2.5 and 50 mm, respectively.Conclusions: Our characterization of the designed QA “magic phantom” with MP in realistic HDR photon fields demonstrates the promising performance for real-time source position tracking in four dimensions and measurements of transit times. Further development of this system will allow a full suite for QA in HDR brachytherapy and analysis, and for future in vivo tracking.

  6. Determination of brilliant green from fish pond water using carbon nanotube assisted pseudo-stir bar solid/liquid microextraction combined with UV-vis spectroscopy-diode array detection

    NASA Astrophysics Data System (ADS)

    Es'haghi, Zarrin; Khooni, Maliheh Ahmadi-Kalateh; Heidari, Tahereh

    2011-08-01

    This paper describes the development of a new design of hollow fiber solid/liquid phase microextraction (HF-SLPME) for determination of brilliant green (BG) residues in water fish ponds. This method consists of an aqueous donor phase and carbon nanotube reinforced organic solvent (acceptor phase) operated in direct immersion sampling mode. The multi-walled carbon nanotube dispersed in the organic solvent is held in the pores and lumen of a porous polypropylene hollow fiber. It is in contact directly with the aqueous donor phase. In this method the solid/liquid extractor phase is supported using a polypropylene hollow fiber membrane. Both ends of the hollow fiber segment are sealed with magnetic stoppers. This device is placed inside the donor solution and plays the rule of a pseudo-stir bar. It is disposable, so single use of the fiber reduces the risk of carry-over problems. Brilliant green (BG) after extraction from the aqueous samples with mentioned HF-SLPME device was determined by ultraviolet-visible spectroscopy with diode array detection (UV-vis/DAD). The absorption wavelength was set to 625 nm ( λmax). The effect of different variables on the extraction was evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. The calibration curve was linear in the range of 1.00-10,000 μg L -1 of BG in the initial solution with R2 = 0.979. Detection limit, based on three times the standard deviation of the blank, was 0.55 μg L -1. All experiments were carried out at room temperature (25 ± 0.5 °C).

  7. Dosimetric verification for intensity-modulated arc therapy plans by use of 2D diode array, radiochromic film and radiosensitive polymer gel.

    PubMed

    Hayashi, Naoki; Malmin, Ryan L; Watanabe, Yoichi

    2014-05-01

    Several tools are used for the dosimetric verification of intensity-modulated arc therapy (IMAT) treatment delivery. However, limited information is available for composite on-line evaluation of these tools. The purpose of this study was to evaluate the dosimetric verification of IMAT treatment plans using a 2D diode array detector (2D array), radiochromic film (RCF) and radiosensitive polymer gel dosimeter (RPGD). The specific verification plans were created for IMAT for two prostate cancer patients by use of the clinical treatment plans. Accordingly, the IMAT deliveries were performed with the 2D array on a gantry-mounting device, RCF in a cylindrical acrylic phantom, and the RPGD in two cylindrical phantoms. After the irradiation, the planar dose distributions from the 2D array and the RCFs, and the 3D dose distributions from the RPGD measurements were compared with the calculated dose distributions using the gamma analysis method (3% dose difference and 3-mm distance-to-agreement criterion), dose-dependent dose difference diagrams, dose difference histograms, and isodose distributions. The gamma passing rates of 2D array, RCFs and RPGD for one patient were 99.5%, 96.5% and 93.7%, respectively; the corresponding values for the second patient were 97.5%, 92.6% and 92.9%. Mean percentage differences between the RPGD measured and calculated doses in 3D volumes containing PTVs were -0.29 7.1% and 0.97 7.6% for the two patients, respectively. In conclusion, IMAT prostate plans can be delivered with high accuracy, although the 3D measurements indicated less satisfactory agreement with the treatment plans, mainly due to the dosimetric inaccuracy in low-dose regions of the RPGD measurements. PMID:24449714

  8. Multi-wavelength light emitting diode array as an excitation source for light emitting diode-induced fluorescence detection in capillary electrophoresis.

    PubMed

    Huo, Feng; Yuan, Hongyan; Breadmore, Michael C; Xiao, Dan

    2010-08-01

    A multi-wavelength LED array was used as an excitation source for in-column fiber-optic LED-induced fluorescence for CE. The light source consisted of a multi-wavelength LED array consisting of three different LEDs (430, 450 and 480 nm), a focusing lens and a gradient index lens group. The LED beam was collimated and reshaped with the gradient index lens group for coupling the LED light source into a single-mode optical fiber. In addition, the luminance and stability of the LED light source was improved by powering the LED under constant current at enhanced voltages. The benefits of this system were demonstrated by the simultaneous determination of FITC-labeled L-asparagine (Ex/Em 488/520 nm), 4-fluoro-7-nitro-2,1,3-benzoxadiazole-labeled epinephrine (Ex/Em 468/530 nm) and 3-(4-carboxybenzoyl)-quinoline-2-carboxaldehyde-labeled L-leucine (Ex/Em 440/530 nm). Detection limits of L-asparagine, epinephrine and L-leucine were estimated to be 0.8 x 10(-9), 12.0 x 10(-8) and 4.0 x 10(-8) M (S/N=3), respectively. The RSDs (n=6) for migration time and peak area were better than 0.71 and 0.92%, respectively. The performance of the developed multi-wavelength LED excitation source was compared to the use of a single-wavelength LED and found to provide superior sensitivity for the three fluorophores used in this study. PMID:20603826

  9. Binary HPLC-diode array detector and HPLC-evaporative light-scattering detector fingerprints of methanol extracts from the selected sage (Salvia) species.

    PubMed

    Sajewicz, Mieczysław; Staszek, Dorota; Wojtal, Łukasz; Kowalska, Teresa; Hajnos, Michał Ł; Waksmundzka-Hajnos, Monika

    2011-01-01

    This study is focused on an important family of the sage (Salvia) species, with Salvia officinalis L. having a long-established position in European traditional medicine. Binary fingerprints (chromatographic profiles) of six different sage species were compared using HPLC coupled with two different detectors: the diode-array detector and the evaporative light-scattering detector. Advantages of using binary fingerprinting over single-detector fingerprinting are demonstrated and discussed, with selected examples. Experimental data are provided for a comparison of the chemical composition of sage samples originating from two harvesting seasons (2007 and 2008). A number of phytochemical standards (i.e., certain phenolic acids, flavonoids, and coumarin) were used that allowed identification and semiquantitative estimation of these particular compounds in the analyzed methanol extracts. PMID:21391482

  10. High efficiency 2 micrometer laser utilizing wing-pumped Tm{sup 3+} and a laser diode array end-pumping architecture

    DOEpatents

    Beach, R.J.

    1997-11-18

    Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.

  11. High efficiency 2 micrometer laser utilizing wing-pumped Tm.sup.3+ and a laser diode array end-pumping architecture

    DOEpatents

    Beach, Raymond J.

    1997-01-01

    Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.

  12. Identification and quantification of flavonoids and chromes in Baeckea frutescens by using HPLC coupled with diode-array detection and quadruple time-of-flight mass spectrometry.

    PubMed

    Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang

    2015-01-01

    This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens. PMID:25466282

  13. Using second-order calibration method based on trilinear decomposition algorithms coupled with high performance liquid chromatography with diode array detector for determination of quinolones in honey samples.

    PubMed

    Yu, Yong-Jie; Wu, Hai-Long; Shao, Sheng-Zhi; Kang, Chao; Zhao, Juan; Wang, Yu; Zhu, Shao-Hua; Yu, Ru-Qin

    2011-09-15

    A novel strategy that combines the second-order calibration method based on the trilinear decomposition algorithms with high performance liquid chromatography with diode array detector (HPLC-DAD) was developed to mathematically separate the overlapped peaks and to quantify quinolones in honey samples. The HPLC-DAD data were obtained within a short time in isocratic mode. The developed method could be applied to determine 12 quinolones at the same time even in the presence of uncalibrated interfering components in complex background. To access the performance of the proposed strategy for the determination of quinolones in honey samples, the figures of merit were employed. The limits of quantitation for all analytes were within the range 1.2-56.7 μg kg(-1). The work presented in this paper illustrated the suitability and interesting potential of combining second-order calibration method with second-order analytical instrument for multi-residue analysis in honey samples. PMID:21807221

  14. Simultaneous Detection of Sulfamethoxazole, Diclofenac, Carbamazepine, and Bezafibrate by Solid Phase Extraction and High Performance Liquid Chromatography with Diode Array Detection

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Jiang, J.-Q.

    2014-05-01

    A method of solid phase extraction (SPE) coupled with high performance liquid chromatography and diode array detection (HPLC-DAD) was studied for the simultaneous determination of sulfamethoxazole (SMX), diclofenac (DCF), carbamazepine (CBZ), and bezafi brate (BZF) in test solutions. The target compounds were extracted by SPE from samples, and the resulting elutes were analyzed using a HPLC-DAD system at wavelengths of 270, 280, 290, and 230 nm for SMX, DCF, CBZ, and BZF, respectively. This method shows good recoveries for SMX, DCF, CBZ, and BZF with mean recoveries of 89.7 ± 9.3%, 86.1 ± 7.6%, 95.0 ± 6.5%, and 94.0 ± 5.4%, respectively.

  15. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection

    SciTech Connect

    Wang Guoping; Chu Sheng; Zhan Ning; Liu Jianlin; Lin Yuqing; Chernyak, Leonid

    2011-01-24

    ZnO p-n homojunctions based on Sb-doped p-type nanowire array and n-type film were grown by combining chemical vapor deposition (for nanowires) with molecular-beam epitaxy (for film). Indium tin oxide and Ti/Au were used as contacts to the ZnO nanowires and film, respectively. Characteristics of field-effect transistors using ZnO nanowires as channels indicate p-type conductivity of the nanowires. Electron beam induced current profiling confirmed the existence of ZnO p-n homojunction. Rectifying I-V characteristic showed a turn-on voltage of around 3 V. Very good response to ultraviolet light illumination was observed from photocurrent measurements.

  16. Room-temperature violet luminescence and ultraviolet photodetection of Sb-doped ZnO/Al-doped ZnO homojunction array

    PubMed Central

    2013-01-01

    A Sb-doped ZnO microrod array was fabricated on an Al-doped ZnO thin film by electrodeposition. Strong violet luminescence, originated from free electron-to-acceptor level transitions, was identified by temperature-dependent photoluminescence measurements. This acceptor-related transition was attributed to substitution of Sb dopants for Zn sites, instead of O sites, to form a complex with two Zn vacancies (VZn), the SbZn-2VZn complex. This SbZn-2VZn complex has a lower formation energy and acts as a shallow acceptor which can induce the observed strong violet luminescence. The photoresponsivity of our ZnO p-n homojunction device under a negative bias demonstrated a nearly 40-fold current gain, illustrating that our device is potentially an excellent candidate for photodetector applications in the ultraviolet wavelength region. PMID:23826909

  17. Development of Type-I Gallium Antimonide-based Diode Lasers and Arrays Operating within Spectral Range above 2 microns

    NASA Astrophysics Data System (ADS)

    Chen, Jianfeng

    2011-12-01

    This work deals with GaSb-based diode lasers grown by solid source molecular beam epitaxy and operating in high power continuous wave regime at room temperature in mid-infrared spectral region near and above 2 mum. Firstly, we present experimental and theoretical studies of the effect of the compressive strain above 1% on differential gain and threshold current of GaSb-based type-I quantum well diode lasers on the example of 2.3 mum emitters. The experimental results supported by theoretical calculations conclusively demonstrated that improvement of the hole confinement was primarily responsible for the observed enhancement of the optical gain and the reduction of the threshold current density in laser structures with heavily strained QWs. Secondly, we introduce quinary AlGaInAsSb as waveguide/barrier material to improve hole confinement in 2.7 mum emitters. Room temperature continuous wave output power of 600 mW was demonstrated for emitters with 470-nm-wide AlGaInAsSb waveguide optimized for improved device differential gain. Thirdly we describe the design approach and demonstrate the experimental results for 2 mum emitting high power devices with reduced fast axis beam divergence in far field. When asymmetric cladding and non-broadened waveguide design were employed, the fast axis far field beam divergence was reduced from 62° to 37° while keeping favorable threshold current density and internal efficiency. Finally, we fabricate and characterize single spatial mode room temperature operated 3.15 mum diode lasers. Ridge waveguide lasers generate 9 mW of continuous wave output power in a diffraction limited beam at 20°C.

  18. High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111).

    PubMed

    Koester, Robert; Sager, Daniel; Quitsch, Wolf-Alexander; Pfingsten, Oliver; Poloczek, Artur; Blumenthal, Sarah; Keller, Gregor; Prost, Werner; Bacher, Gerd; Tegude, Franz-Josef

    2015-04-01

    The high speed on-off performance of GaN-based light-emitting diodes (LEDs) grown in c-plane direction is limited by long carrier lifetimes caused by spontaneous and piezoelectric polarization. This work demonstrates that this limitation can be overcome by m-planar core-shell InGaN/GaN nanowire LEDs grown on Si(111). Time-resolved electroluminescence studies exhibit 90-10% rise- and fall-times of about 220 ps under GHz electrical excitation. The data underline the potential of these devices for optical data communication in polymer fibers and free space. PMID:25758029

  19. Realization of 256-278 nm AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Si Substrates Using Epitaxial Lateral Overgrowth AlN Templates

    NASA Astrophysics Data System (ADS)

    Mino, Takuya; Hirayama, Hideki; Takano, Takayoshi; Tsubaki, Kenji; Sugiyama, Masakazu

    2011-09-01

    We demonstrated 256-278 nm AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) on Si substrates by using epitaxial lateral overgrowth (ELO) AlN templates. A 4-µm-thick ELO-AlN layer grown in a striped pattern along the <1010> direction can be coalesced successfully. Low-threading-dislocation-density AlN templates were achieved on Si wafers by a combination of the ELO and NH3 pulsed-flow multilayer growth methods. Single-peaked AlGaN LEDs with wavelengths shorter than 280 nm were achieved by fabricating them on ELO-AlN templates on Si. These low-cost AlGaN-based DUV LEDs on Si substrates are expected to be integrated on the same chips with Si-based electrical circuits.

  20. Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure

    SciTech Connect

    Inoue, Shin-ichiro; Naoki, Tamari; Kinoshita, Toru; Obata, Toshiyuki; Yanagi, Hiroyuki

    2015-03-30

    Deep-ultraviolet (DUV) aluminum gallium nitride-based light-emitting diodes (LEDs) on transparent aluminum nitride (AlN) substrates with high light extraction efficiency and high power are proposed and demonstrated. The AlN bottom side surface configuration, which is composed of a hybrid structure of photonic crystals and subwavelength nanostructures, has been designed using finite-difference time-domain calculations to enhance light extraction. We have experimentally demonstrated an output power improvement of up to 196% as a result of the use of the embedded high-light-extraction hybrid nanophotonic structure. The DUV-LEDs produced have demonstrated output power as high as 90 mW in DC operation at a peak emission wavelength of 265 nm.

  1. KOH based selective wet chemical etching of AlN, Al{sub x}Ga{sub 1−x}N, and GaN crystals: A way towards substrate removal in deep ultraviolet-light emitting diode

    SciTech Connect

    Guo, W. Kirste, R.; Bryan, I.; Bryan, Z.; Hussey, L.; Reddy, P.; Collazo, R.; Sitar, Z.; Tweedie, J.

    2015-02-23

    A controllable and smooth potassium hydroxide-based wet etching technique was developed for the AlGaN system. High selectivity between AlN and Al{sub x}Ga{sub 1−x}N (up to 12×) was found to be critical in achieving effective substrate thinning or removal for AlGaN-based deep ultraviolet light emitting diodes, thus increasing light extraction efficiency. The mechanism of high selectivity of AlGaN as a function of Al composition can be explained as related to the formation and dissolution of oxide/hydroxide on top of N-polar surface. Cross-sectional transmission electron microscopic analysis served as ultimate proof that these hillocks were not related to underlying threading dislocations.

  2. KOH based selective wet chemical etching of AlN, AlxGa1-xN, and GaN crystals: A way towards substrate removal in deep ultraviolet-light emitting diode

    NASA Astrophysics Data System (ADS)

    Guo, W.; Kirste, R.; Bryan, I.; Bryan, Z.; Hussey, L.; Reddy, P.; Tweedie, J.; Collazo, R.; Sitar, Z.

    2015-02-01

    A controllable and smooth potassium hydroxide-based wet etching technique was developed for the AlGaN system. High selectivity between AlN and AlxGa1-xN (up to 12×) was found to be critical in achieving effective substrate thinning or removal for AlGaN-based deep ultraviolet light emitting diodes, thus increasing light extraction efficiency. The mechanism of high selectivity of AlGaN as a function of Al composition can be explained as related to the formation and dissolution of oxide/hydroxide on top of N-polar surface. Cross-sectional transmission electron microscopic analysis served as ultimate proof that these hillocks were not related to underlying threading dislocations.

  3. Effects of Mg-doped AlN/AlGaN superlattices on properties of p-GaN contact layer and performance of deep ultraviolet light emitting diodes

    SciTech Connect

    Al tahtamouni, T. M.; Lin, J. Y.; Jiang, H. X.

    2014-04-15

    Mg-doped AlN/AlGaN superlattice (Mg-SL) and Mg-doped AlGaN epilayers have been investigated in the 284 nm deep ultraviolet (DUV) light emitting diodes (LEDs) as electron blocking layers. It was found that the use of Mg-SL improved the material quality of the p-GaN contact layer, as evidenced in the decreased density of surface pits and improved surface morphology and crystalline quality. The performance of the DUV LEDs fabricated using Mg-SL was significantly improved, as manifested by enhanced light intensity and output power, and reduced turn-on voltage. The improved performance is attributed to the enhanced blocking of electron overflow, and enhanced hole injection.

  4. KOH based selective wet chemical etching of AlN, AlxGa1-xN, and GaN crystals: A way towards substrate removal in deep ultraviolet-light emitting diode

    SciTech Connect

    Guo, W; Kirste, R; Bryan, I; Bryan, Z; Hussey, L; Reddy, P; Tweedie, J; Collazo, R; Sitar, Z

    2015-02-23

    A controllable and smooth potassium hydroxide-based wet etching technique was developed for the AlGaN system. High selectivity between AlN and AlxGa1-xN (up to 12 x) was found to be critical in achieving effective substrate thinning or removal for AlGaN-based deep ultraviolet light emitting diodes, thus increasing light extraction efficiency. The mechanism of high selectivity of AlGaN as a function of Al composition can be explained as related to the formation and dissolution of oxide/hydroxide on top of N-polar surface. Cross-sectional transmission electron microscopic analysis served as ultimate proof that these hillocks were not related to underlying threading dislocations. (C) 2015 AIP Publishing LLC.

  5. Spatial phase locking of linear arrays of 4 and 12 wide-aperture semiconductor laser diodes in an external cavity

    SciTech Connect

    Apollonov, V V; Derzhavin, S I; Kislov, V I; Kuz'minov, V V; Mashkovskii, D A; Kazakov, A A; Koval', Yu P; Prokhorov, A M

    1998-03-31

    Spatial phase locking was achieved experimentally for radiation from linear arrays of 4 and 12 wide-aperture multimode semiconductor lasers. This phase locking was attained in an external cavity of 1 < L < 3 cm length with a plane mirror (R=90%) by diffractive exchange of radiation between neighbouring lasers. An analysis of all possible cavity oscillation eigenmodes (supermodes) was made for a phase-locked array of 4 coupled lasers. The output radiation of this array was characterised by a high degree of coherence (with the contrast of V=0.9). The angular width (at half-maximum) dy was 1.2 mrad for the fundamental ({nu} =1) and highest ({nu} =4) supermodes, and 0.8 mrad for the modes with {nu} =2 or 3, which corresponded to the diffraction limit. Full supermode selection was achieved in the 4-laser array as a result of the Talbot effect when the cavity length was L=Z{sub T}/4. The far-field distribution of the radiation was then characterised by the parameters V=0.98 and {delta}{psi} = 1.2 mrad. The corresponding parameters of a phase-locked 12-laser array were V=0.93 for the axial propagation zone and {delta}{psi} =0.46 mrad. (control of laser radiation parameters)

  6. Light-output enhancement of GaN-based light-emitting diodes with three-dimensional backside reflectors patterned by microscale cone array.

    PubMed

    Huang, Huamao; Hu, Jinyong; Wang, Hong

    2014-01-01

    Three-dimensional (3D) backside reflector, compared with flat reflectors, can improve the probability of finding the escape cone for reflecting lights and thus enhance the light-extraction efficiency (LEE) for GaN-based light-emitting diode (LED) chips. A triangle-lattice of microscale SiO2 cone array followed by a 16-pair Ti3O5/SiO2 distributed Bragg reflector (16-DBR) was proposed to be attached on the backside of sapphire substrate, and the light-output enhancement was demonstrated by numerical simulation and experiments. The LED chips with flat reflectors or 3D reflectors were simulated using Monte Carlo ray tracing method. It is shown that the LEE increases as the reflectivity of backside reflector increases, and the light-output can be significantly improved by 3D reflectors compared to flat counterparts. It can also be observed that the LEE decreases as the refractive index of the cone material increases. The 3D 16-DBR patterned by microscale SiO2 cone array benefits large enhancement of LEE. This microscale pattern was prepared by standard photolithography and wet-etching technique. Measurement results show that the 3D 16-DBR can provide 12.1% enhancement of wall-plug efficiency, which is consistent with the simulated value of 11.73% for the enhancement of LEE. PMID:25133262

  7. Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes

    SciTech Connect

    Wei, Tongbo Wu, Kui; Sun, Bo; Zhang, Yonghui; Chen, Yu; Huo, Ziqiang; Hu, Qiang; Wang, Junxi; Zeng, Yiping; Li, Jinmin; Lan, Ding

    2014-06-15

    Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.

  8. Performance of an Ultraviolet Photoconductive Sensor Using Well-Aligned Aluminium-Doped Zinc-Oxide Nanorod Arrays Annealed in an Air and Oxygen Environment

    NASA Astrophysics Data System (ADS)

    Mamat, Mohamad Hafiz; Khusaimi, Zuraida; Zahidi, Musa Mohamed; Mahmood, Mohamad Rusop

    2011-06-01

    Ultraviolet (UV) photoconductive sensors were fabricated using an aluminium (Al)-doped zinc-oxide (ZnO) nanorod array with a diameter between 40 and 150 nm and thickness of approximately 1.1 ?m. The nanorod arrays were prepared using a sonicated sol--gel immersion and annealed at 500 C under different ambient conditions of air and oxygen. The annealing process induced the formation of nanoholes on the nanorod surfaces, which increased the nanorod surface area. The nanoholes existed in larger quantities on the nanorod surfaces annealed in air compared with the nanorods annealed in an oxygen environment. This condition reduced the rise and decay time constants of the air-annealed UV sensor. However, the sample annealed in an oxygen ambient shows the highest responsivity of 1.55 A/W for UV light (365 nm, 5 mW/cm2) under a 10 V bias mainly due to defect reduction and improvement in stoichiometric properties. To the best of our knowledge, a UV photoconductive sensor using this ZnO nanostructure has not yet been reported.

  9. Performance of an Ultraviolet Photoconductive Sensor Using Well-Aligned Aluminium-Doped Zinc-Oxide Nanorod Arrays Annealed in an Air and Oxygen Environment

    NASA Astrophysics Data System (ADS)

    Hafiz Mamat, Mohamad; Khusaimi, Zuraida; Zahidi, Musa Mohamed; Rusop Mahmood, Mohamad

    2011-06-01

    Ultraviolet (UV) photoconductive sensors were fabricated using an aluminium (Al)-doped zinc-oxide (ZnO) nanorod array with a diameter between 40 and 150 nm and thickness of approximately 1.1 m. The nanorod arrays were prepared using a sonicated sol-gel immersion and annealed at 500 C under different ambient conditions of air and oxygen. The annealing process induced the formation of nanoholes on the nanorod surfaces, which increased the nanorod surface area. The nanoholes existed in larger quantities on the nanorod surfaces annealed in air compared with the nanorods annealed in an oxygen environment. This condition reduced the rise and decay time constants of the air-annealed UV sensor. However, the sample annealed in an oxygen ambient shows the highest responsivity of 1.55 A/W for UV light (365 nm, 5 mW/cm2) under a 10 V bias mainly due to defect reduction and improvement in stoichiometric properties. To the best of our knowledge, a UV photoconductive sensor using this ZnO nanostructure has not yet been reported.

  10. A series of color tunable yellow-orange-red-emitting SrWO4:RE (Sm3+, Eu3+-Sm3+) phosphor for near ultraviolet and blue light-based warm white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Ren, Yandong; Liu, Yonghao; Yang, Rui

    2016-03-01

    A series of wide-range-tunable light emissive SrWO4:Sm3+, SrWO4:Sm3+,Eu3+ phosphors were synthesized via the simple co-precipitation method. The charge compensation can greatly improve SrWO4: Sm3+ phosphors luminous intensity. The critical distance, ηT and energy transfer mechanism of SrWO4:0.01Sm3+,0.12Eu3+ were studied. These obtained phosphors exhibit a high luminous efficiency, purity and lower color temperature of the comfortable warm white LEDs. Hues varying have been generated by appropriately tuning the Sm3+ ions concentration, excitation wavelength or Sm3+, Eu3+ co-doping, which have the color tunable wide gamut light covering the yellow-green, greenish-yellow, yellow, yellow orange, orange, reddish orange and red chromaticity region. In particular, SrWO4:0.01Sm3+,0.12Eu3+ phosphors excited at 404 and 480 nm have higher color saturation than commercially available Y2O2S:Eu3+ red phosphor. These phosphors can be excited efficiently using commercial ultraviolet, blue laser diodes and LEDs, and can be used for developing new color light sources, fluorescent display devices, ultraviolet-sensors and tunable visible lasers.

  11. High-brightness line generators and fiber-coupled sources based on low-smile laser diode arrays

    NASA Astrophysics Data System (ADS)

    Watson, J.; Schleuning, D.; Lavikko, P.; Alander, T.; Lee, D.; Lovato, P.; Winhold, H.; Griffin, M.; Tolman, S.; Liang, P.; Hasenberg, T.; Reed, M.

    2008-02-01

    We describe the performance of diode laser bars mounted on conductive and water cooled platforms using low smile processes. Total smile of <1?m is readily achieved on both In and AuSn based platforms. Combined with environmentally robust lensing, these mounts form the basis of multiple, high-brightness products. Free-space-coupled devices utilizing conductively-cooled bars delivering 100W from a 200?m, 0.22NA fiber at 976nm have been developed for pumping fiber lasers, as well as for materials processing. Additionally, line generators for graphics and materials processing applications have been produced. Starting from single bars mounted on water-cooled packages that do not require de-ionized or pH-controlled water, these line generators deliver over 80W of power into a line with an aspect ratio of 600:1, and have a BPP of <2mm-mrad in the direction orthogonal to the line.

  12. Self-Injection Locking Of Diode Lasers

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1991-01-01

    Simple optical coupling scheme locks array of gain-guided diode lasers into oscillation in single mode and with single-lobed output beam. Selective feedback from thin etalon self-injection-locks array into desired mode. One application of new scheme for pumping of neodymium: yttrium aluminum garnet lasers with diode-laser arrays.

  13. Photovoltaic module bypass diode encapsulation

    NASA Technical Reports Server (NTRS)

    Shepard, N. J., Jr.

    1983-01-01

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  14. A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not cover the impact of atmospheric scattering when the target is diffusely illuminated by airglow.

  15. Measurement and Simulation of the Variation in Proton-Induced Energy Deposition in Large Silicon Diode Arrays

    NASA Technical Reports Server (NTRS)

    Howe, Christina L.; Weller, Robert A.; Reed, Robert A.; Sierawski, Brian D.; Marshall, Paul W.; Marshall, Cheryl J.; Mendenhall, Marcus H.; Schrimpf, Ronald D.

    2007-01-01

    The proton induced charge deposition in a well characterized silicon P-i-N focal plane array is analyzed with Monte Carlo based simulations. These simulations include all physical processes, together with pile up, to accurately describe the experimental data. Simulation results reveal important high energy events not easily detected through experiment due to low statistics. The effects of each physical mechanism on the device response is shown for a single proton energy as well as a full proton space flux.

  16. Reverse Phase-ultra Flow Liquid Chromatography-diode Array Detector Quantification of Anticancerous and Antidiabetic Drug Mangiferin from 11 Species of Swertia from India

    PubMed Central

    Kshirsagar, Parthraj R.; Gaikwad, Nikhil B.; Panda, Subhasis; Hegde, Harsha V.; Pai, Sandeep R.

    2016-01-01

    Background: Genus Swertia is valued for its great medicinal potential, mainly Swertia chirayita (Roxb. ex Fleming) H. Karst. is used in traditional medicine for a wide range of diseases. Mangiferin one of xanthoids is referred with enormous pharmacological potentials. Objective: The aim of the study was to quantify and compare the anticancerous and antidiabetic drug mangiferin from 11 Swertia species from India. The study also evaluates hierarchical relationships between the species based on mangiferin content using multivariate analysis. Materials and Methods: The reverse phase-ultra flow liquid chromatography-diode array detector analyses was performed and chromatographic separation was achieved on a Lichrospher 100, C18e (5 μm) column (250–4.6 mm). Mobile phase consisting of 0.2% triethylamine (pH-4 with O-phosphoric acid) and acetonitrile (85:15) was used for separation with injection volume 20 μL and detection wave length at 257 nm. Results: Results indicated that concentration of mangiferin has been found to vary largely between Swertia species collected from different regions. Content of mangiferin was found to be highest in Swertia minor compared to other Swertia species studied herein from the Western Ghats and Himalayan region also. The same was also evident in the multivariate analysis, wherein S. chirayita, S. minor and Swertia paniculata made a separate clade. Conclusion: Conclusively, the work herein provides insights of mangiferin content from 11 Swertia species of India and also presents their hierarchical relationships. To best of the knowledge this is the first report of higher content of mangiferin from any Swertia species. SUMMARY The present study quantifies and compares mangiferin in 11 species of Swertia from India. The study also evaluates hierarchical relationships between the species based on mangiferin content using multivariate analysis. The mangiferin content was highest in S. minor compared to the studied Swertia species. To the best of our knowledge this is the first report of higher content of mangiferin from Swertia species. Abbreviations used: LOD: Limit of detection, LOQ: Limit of quantification, RP-UFLC-DAD: Reverse phase-ultra flow liquid chromatography-diode array detector, RSD: Relative standard deviation, SAN: Swertia angustifolia, SAP: Swertia angustifolia var. pulchella, SBI: S. bimaculata, SCH: S. chirayita, SCO: S. corymbosa, SDE: S. densifolia, SDI: S. dialatata, SLA: S. lawii, SMI: S. minor; SNE: S. nervosa, and SPA: S. paniculata PMID:27041855

  17. PIN Diode Detectors

    SciTech Connect

    Ramirez-Jimenez, F. J.

    2008-07-02

    A review of the application of PIN diodes as radiation detectors in particle counting, X- and {gamma}-ray spectroscopy, medical applications and charged particle spectroscopy is presented. As a practical example of its usefulness, a PIN diode and a low noise preamplifier are included in a nuclear spectroscopy chain for X-ray measurements. This is a laboratory session designed to review the main concepts needed to set up the detector-preamplifier array and to make measurements of X-ray energy spectra with a room temperature PIN diode. The results obtained are compared with those obtained with a high resolution cooled Si-Li detector.

  18. Al(x)Ga(1-x)N-based deep-ultraviolet 320×256 focal plane array.

    PubMed

    Cicek, Erdem; Vashaei, Zahra; Huang, Edward Kwei-wei; McClintock, Ryan; Razeghi, Manijeh

    2012-03-01

    We report the synthesis, fabrication, and testing of a 320×256 focal plane array (FPA) of back-illuminated, solar-blind, p-i-n, Al(x)Ga(1-x)N-based detectors, fully realized within our research laboratory. We implemented a pulse atomic layer deposition technique for the metalorganic chemical vapor deposition growth of thick, high-quality, crack-free, high Al composition Al(x)Ga(1-x)N layers. The FPA is hybridized to a matching ISC 9809 readout integrated circuit and operated in a SE-IR camera system. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower, and falling off three orders of magnitude by ~285 nm. By developing an opaque masking technology, the visible response of the ROIC is significantly reduced; thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allows the FPA to achieve high external quantum efficiency (EQE); at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated. PMID:22378430

  19. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    NASA Astrophysics Data System (ADS)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Papp, D.; Wiewior, P. P.; Chalyy, O.

    2015-11-01

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  20. A novel automated hydrophilic interaction liquid chromatography method using diode-array detector/electrospray ionization tandem mass spectrometry for analysis of sodium risedronate and related degradation products in pharmaceuticals.

    PubMed

    Bertolini, Tiziana; Vicentini, Lorenza; Boschetti, Silvia; Andreatta, Paolo; Gatti, Rita

    2014-10-24

    A simple, sensitive and fast hydrophilic interaction liquid chromatography (HILIC) method using ultraviolet diode-array detector (UV-DAD)/electrospray ionization tandem mass spectrometry was developed for the automated high performance liquid chromatography (HPLC) determination of sodium risedronate (SR) and its degradation products in new pharmaceuticals. The chromatographic separations were performed on Ascentis Express HILIC 2.7μm (150mm×2.1mm, i.d.) stainless steel column (fused core). The mobile phase consisted of formate buffer solution (pH 3.4; 0.03M)/acetonitrile 42:58 and 45:55 (v/v) for granules for oral solution and effervescent tablet analysis, respectively, at a flow-rate of 0.2mL/min, setting the wavelength at 262nm. Stability characteristics of SR were evaluated by performing stress test studies. The main degradation product formed under oxidation conditions corresponding to sodium hydrogen (1-hydroxy-2-(1-oxidopyridin-3-yl)-1-phosphonoethyl)phosphonate was characterized by high performance liquid chromatography-electrospray ionization-mass tandem mass spectrometry (HPLC-ESI-MS/MS). The validation parameters such as linearity, sensitivity, accuracy, precision and selectivity were found to be highly satisfactory. Linear responses were observed in standard and in fortified placebo solutions. Intra-day precision (relative standard deviation, RSD) was ≤1.1% for peak area and ≤0.2% for retention times (tR) without significant differences between intra- and inter-day data. Recovery studies showed good results for all the examined compounds (from 98.7 to 101.0%) with RSD ranging from 0.6 to 0.7%. The limits of detection (LOD) and quantitation (LOQ) were 1 and 3ng/mL, respectively. The high stability of standard and sample solutions at room temperature means an undoubted advantage of the method allowing the simultaneous preparation of many samples and consecutive chromatographic analyses by using an autosampler. The developed stability indicating method is suitable for the quality control of SR in new and commercial pharmaceutical formulations. PMID:25242223

  1. Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Pena, Ana; Wang, Zengbo; Whitehead, David; Li, Lin

    2010-11-01

    A practical approach to a well-known technique of laser micro/nano-patterning by optical near fields is presented. It is based on surface patterning by scanning a Gaussian laser beam through a self-assembled monolayer of silica micro-spheres on a single-crystalline silicon (Si) substrate. So far, the outcome of this kind of near-field patterning has been related to the simultaneous, parallel surface-structuring of large areas either by top hat or Gaussian laser intensity distributions. We attempt to explore the possibility of using the same technique in order to produce single, direct writing of features. This could be of advantage for applications in which only some areas need to be patterned (i.e. local area selective patterning) or single lines are required (e.g. a particular micro/nano-fluidic channel). A diode pumped Nd:YVO4 laser system (wavelength of 532 nm, pulse duration of 8 ns, repetition rate of 30 kHz) with a computer-controlled 3 axis galvanometer beam scanner was employed to write user-defined patterns through the particle lens array on the Si substrate. After laser irradiation, the obtained patterns which are in the micro-scale were composed of sub-micro/micro-holes or bumps. The micro-pattern resolution depends on the dimension of both the micro-sphere’s diameter and the beam’s spot size. The developed technique could potentially be employed to fabricate photonic crystal structures mimicking nature’s butterfly wings and anti-reflective “moth eye” arrays for photovoltaic cells.

  2. Characterization of an Optical Device with an Array of Blue Light Emitting Diodes LEDS for Treatment of Neonatal Jaundice.

    NASA Astrophysics Data System (ADS)

    Sebbe, Priscilla Fróes; Villaverde, Antonio G. J. Balbin; Nicolau, Renata Amadei; Barbosa, Ana Maria; Veissid, Nelson

    2008-04-01

    Phototherapy is a treatment that consists in irradiating a patient with light of high intensity, which promotes beneficial photochemical transformations in the irradiated area. The phototherapy for neonates is applied to break down the bilirubin, an organic pigment that is a sub product of the erythrocytes degradation, and to increase its excretion by the organism. Neonates should be irradiated with light of wavelength that the bilirubin can absorb, and with spectral irradiances between 4 and 16 μW/cm2/nm. The efficiency of the treatment depends on the irradiance and the area of the body that is irradiated. A convenient source of light for treatment of neonatal jaundice is the blue Light Emitter Diode (LED), emitting in the range of 400 to 500 nm, with power of the order of 10-150 mW. Some of the advantages for using LEDS are: low cost, operating long lifetime (over 100,000 hours), narrow emission linewith, low voltage power supply requirement and low heating. The aim of this work was to build and characterize a device for phototherapy treatment of neonatal jaundice. This consists of a blanket with 88 blue LEDs (emission peak at 472 nm), arranged in an 8×11 matrix, all connected in parallel and powered by a 5V-2A power supply. The device was characterized by using a spectroradiometer USB2000 (Ocean Optics Inc, USA), with a sensitivity range of 339-1019 nm. For determination of light spatial uniformity was used a calibrated photovoltaic sensor for measuring light intensity and mapping of the light intensity spatial distribution. Results indicate that our device shows a uniform spatial distribution for distances from the blanket larger than 10 cm, with a maximum of irradiance at such a distance. This device presenting a large and uniform area of irradiation, efficient wavelength emission and high irradiance seems to be promising for neonates' phototherapy treatment.

  3. Simultaneous Determination of 11 Components in Yinzhihuang Preparations and Their Constituent Herbs by High-Performance Liquid Chromatography with Diode Array Detector.

    PubMed

    Du, Yan; Han, Jie; Sun, Shi-An; Li, Zheng; Yang, Fang-Xiu; Dong, Lu-Lu; Yang, Dong-Zhi; Tang, Dao-Quan

    2016-04-01

    A simple and sensitive liquid chromatography method with diode array detector was established for simultaneous determination of 11 components (geniposidic acid, chlorogenic acid, caffeic acid, geniposide, luteoloside, isochlorogenic acid C, baicalin, luteolin, wogonoside, baicalein and wogonin) in various commercial Yinzhihuang preparations and their herbs by optimizing the extraction, separation and analytical conditions. Eleven components were identified on the basis of their retention times and mass spectra. Chromatographic separation was performed on a C18 analytical column with a gradient elution of acetonitrile and 0.1% formic acid water solution at a flow rate of 1.0 mL/min. The linearity, precision and accuracy of the data obtained were acceptable. The method was used to analyze four Yinzhihuang preparations (powder, capsule, oral liquid and injection) and related herbs (Radix Scutellariae, Flos Lonicerae, Herba Artemisiae Scopariae and Fructus gardeniae). Results suggested that the optimized method could be considered as a good approach to control the quality of Yinzhihuang preparations and their herbs. PMID:26809640

  4. Detection of hazardous weight-loss substances in adulterated slimming formulations using ultra-high-pressure liquid chromatography with diode-array detection.

    PubMed

    Rebiere, H; Guinot, P; Civade, C; Bonnet, P-A; Nicolas, A

    2012-01-01

    The presence on the market of illegal products for slimming purposes or the treatment of overweight is a public health issue. These products may contain illicit chemicals in order to improve their effectiveness. Some of these weight-loss compounds are responsible for adverse events, including fatal outcomes. A general strategy for the analysis of any suspect formulation begins with a large screening for the general search of a wide range of compounds. A methodology for the qualitative and quantitative determination of 34 compounds in slimming preparations (such as dietary supplements or medicinal products) was used for the control of slimming formulations from the market, including over the Internet. The fast liquid chromatography system (ultra-high-pressure liquid chromatography) used a gradient of solvent (phosphate buffer and acetonitrile), a C18 endcapped column and a diode array detector. This system allows dual identification based on retention time and UV spectra. The analytical method is simple, fast and selective since 34 weight-loss compounds can be detected in a 15-min run time. Thus, 32 commercial slimming formulations were analysed using this method, allowing the detection and quantification of hazardous active substances: caffeine, clenbuterol, nicotinamide, phenolphthalein, rimonabant, sibutramine, didesmethylsibutramine, synephrine and yohimbine. PMID:22150438

  5. Ultrasound-assisted dispersive extraction for the high pressure liquid chromatographic determination of tetracyclines residues in milk with diode array detection.

    PubMed

    Karageorgou, Eftichia; Armeni, Marina; Moschou, Ioulia; Samanidou, Victoria

    2014-05-01

    Ultrasound assisted matrix solid phase dispersive extraction was applied for the selective isolation and clean-up of tetracyclines (oxytetracycline, tetracycline, epi-chlorotetracycline, chlorotetracycline and doxycycline) from milk. Target analytes were determined by an accurate and sensitive chromatographic analytical method, which was validated to meet the European Legislation criteria. The separation was performed on a LiChroCART-LiChrospher® 100 RP-18 (5μm, 250×4mm) analytical column, operated at ambient temperature, followed by diode array detection. Validation included investigation of linearity, selectivity, stability, limits of detection and quantitation, decision limit, detection capability, trueness, precision and ruggedness according to the Youden's approach. Limits of quantitation of examined tetracyclines were from 14.5 to 56.6μg/kg significantly lower than respective Maximum Residue Limits, whereas recoveries ranged from 82.0% to 108%. The applicability of the method was evaluated using milk samples purchased from local market. Accuracy of the method was additionally proved by analysis of bovine milk certified reference material (BCR®-492). PMID:24360458

  6. Development of a method for the analysis of drugs of abuse in vitreous humor by capillary electrophoresis with diode array detection (CE-DAD).

    PubMed

    Costa, Jose Luiz; Morrone, Andre Ribeiro; Resende, Rodrigo Ribeiro; Chasin, Alice Aparecida da Matta; Tavares, Marina Franco Maggi

    2014-01-15

    This work presents the development of an analytical method based on capillary electrophoresis with diode array detection for the analysis of drugs of abuse and biotransformation products in vitreous humor. Composition of the background electrolyte, implementation of an online pre-concentration strategy and sample preparation procedures were objects of study. The complete electrophoretic separation of 12 analytes (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyethylamphetamine (MDEA), ketamine, cocaine, cocaethylene, lidocaine, morphine, 6-monoacetylmorphine and heroin) and the internal standard N-methyl-1-(3,4-methylenedioxyphenyl)-2-butamine (MBDB) was obtained within 13min of run. The method was validated presenting good linearity (r(2)>0.99), recovery ≥90%, precision better than 12% RSD and acceptable accuracy in the range of 86-118% at three concentration levels (50, 100 and 500ng/mL). LODs and LOQs in the order of 1-5ng/mL and 5-10ng/mL, respectively, were obtained. After validation, the method was applied to eighty-seven vitreous humor samples and the results were compared to those obtained by a liquid chromatography tandem mass spectrometry (LC-MS/MS) screening method, routinely used by the forensic toxicology laboratory of the Sao Paulo State Police, Brazil. Cocaine was detected in 7.1%, cocaethylene in 3.6%, lidocaine in 2.4% and ketamine in 1.2% of the total number of analyzed samples. PMID:24325829

  7. Direct identification of phenolic constituents in Boldo Folium (Peumus boldus Mol.) infusions by high-performance liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry.

    PubMed

    Simirgiotis, M J; Schmeda-Hirschmann, G

    2010-01-22

    A very simple and direct method was developed for the qualitative analysis of polyphenols in boldo (Peumus boldus Mol., Monimiaceae) leaves infusions by high-performance liquid chromatography with diode array detection (HPLC-DAD) and electrospray ionization tandem mass spectrometry (HPLC-MS(n)). The phenolic constituents identified in infusions of the crude drug Boldo Folium were mainly proanthocyanidins and flavonol glycosides. In the infusions, 41 compounds were detected in male and 43 compounds in female leaf samples, respectively. Nine quercetin glycosides, eight kaempferol derivatives, nine isorhamnetin glycosides, three phenolic acids, one caffeoylquinic acid glycoside and twenty one proanthocyanidins were identified by HPLC-DAD and ESI-MS for the first time in the crude drug. Isorhamnetin glucosyl-di-rhamnoside was the most abundant flavonol glycoside in the male boldo sample, whereas isorhamnetin di-glucosyl-di-rhamnoside was the main phenolic compound in female boldo leaves infusion. The results suggest that the medicinal properties reported for this popular infusion should be attributed not only to the presence of catechin and boldine but also to several phenolic compounds with known antioxidant activity. The HPLC fingerprint obtained can be useful in the authentication of the crude drug Boldo Folium as well as for qualitative analysis and differentiation of plant populations in the tree distribution range. PMID:20022332

  8. Identification of protein binders in works of art by high-performance liquid chromatography-diode array detector analysis of their tryptic digests.

    PubMed

    Fremout, Wim; Sanyova, Jana; Saverwyns, Steven; Vandenabeele, Peter; Moens, Luc

    2009-04-01

    Proteins in works of art are generally determined by the relative amounts of amino acids. This method, however, implies a loss of information on the protein structure and its modifications. Consequently, we propose a method based on the analysis of trypsin digests using high-performance liquid chromatography (HPLC) UV diode array detection (DAD) for painting binder studies. All reaction steps are done in the same vial; no extraction methods or sample transfer is needed, reducing the risk of sample losses. A collection of pure binders (collagen, ovalbumin, yolk and casein) as well as homemade and historical paint samples have been investigated with this method. Chromatograms of unknowns at 214 nm and 280 nm are compared with those of the reference samples as a fingerprint. There is a good agreement between many peptides, but others seem to have been lost or their retention time shifted due to small compositional changes because of ageing and degradation of the paint. The results are comparable with the results of other techniques used for binder identification on the same samples, with the additional advantage of differentiation between egg yolk and glair. PMID:19259647

  9. Selective microextraction of mononucleotides from milk using alumina and stannia hollow fibers prior to their determination by hydrophilic interaction liquid chromatography-diode array detection.

    PubMed

    Sfakianaki, A G; Stalikas, C D

    2015-10-01

    Alumina- and stannia-based hollow fibers were synthesized via simple sol-gel procedures and characterized with respect to morphology, crystalline phase and specific surface area. Then, an optimization study was undertaken for the preconcentration of five 5'-mononucleotides using the hollow fibers. The separation and quantification of the analytes were carried out by HILIC with diode array detection, after proper optimization of the chromatographic conditions. The method demonstrated satisfactory linearities over a concentration range of 0.09-50 μg mL(-1) with regression coefficients to range from 0.9993 to 0.9997. A range of commercially available 5'-mononucleotide supplemented infant formulas and three human breast milk samples were used to apply alumina hollow fibers, as a proof of concept. Recoveries ranged from 84% to 104%, while the calculated RSDs were from 3.6% to 4.3%. The proposed preconcentration-clean-up method is environmentally friendly and convenient, indicating that alumina and stannia are suitable for the applications by immersing them into milk samples, after removal of proteins. PMID:25872443

  10. Online screening of nitric oxide scavengers in natural products using high performance liquid chromatography coupled with tandem diode array and fluorescence detection.

    PubMed

    Li, Dapeng; Wang, Ting; Guo, Yujie; Hu, Yuanjia; Yu, Boyang; Qi, Jin

    2015-12-18

    Nitric oxide (NO) is an important cellular signaling molecule with extensive physiological and pathophysiological effects. NO scavengers have the potential to treat inflammation, septic shock and other related diseases, and numerous examples have been chemically synthesized or isolated from natural products. The chemical diversity of natural products, however, means that a huge effort is necessary to efficiently screen and identify bioactive compounds, especially NO scavengers. In this article, we propose an effective analytical method to screen for NO scavengers in three natural products using an online system that couples high performance liquid chromatography with tandem diode array and fluorescence detection (HPLC-DAD-FLD). Eighteen compounds from radix of Scutellaria baicalensis Georgi and green tea displayed significant NO scavenging activity whereas components of Pueraria lobata (Willd.) Ohwi had no discernable activity. The structures of the active compounds were elucidated using Agilent Accurate-Mass Q-TOF LC/MS system. Preliminary analysis of structure-activity relationships indicated that, in flavonoids, a 2,3-double bond and a 3-H atom or a 3-OH group are essential for activity. In tannins, poly-hydroxyl groups are important for NO scavenging activity. Method validation indicated that the newly developed method is both reliable and repeatable. The online method that we present provides a simple, rapid and effective way to identify and characterize NO scavengers present in natural products. PMID:26607316

  11. Chemometrics-assisted high performance liquid chromatography-diode array detection strategy to solve varying interfering patterns from different chromatographic columns and sample matrices for beverage analysis.

    PubMed

    Yin, Xiao-Li; Wu, Hai-Long; Gu, Hui-Wen; Hu, Yong; Wang, Li; Xia, Hui; Xiang, Shou-Xia; Yu, Ru-Qin

    2016-02-26

    This work reports a chemometrics-assisted high performance liquid chromatography-diode array detection (HPLC-DAD) strategy to solve varying interfering patterns from different chromatographic columns and sample matrices for the rapid simultaneous determination of six synthetic colorants in five kinds of beverages with little sample pretreatment. The investigation was performed using two types of LC columns under the same elution conditions. Although analytes using different columns have different co-elution patterns that appear more seriously in complex backgrounds, all colorants were properly resolved by alternating trilinear decomposition (ATLD) method and accurate chromatographic elution profiles, spectral profiles as well as relative concentrations were obtained. The results were confirmed by those obtained from traditional HPLC-UV method at a particular wavelength and the results of both methods were consistent with each other. All results demonstrated that the proposed chemometrics-assisted HPLC-DAD method is accurate, economical and universal, and can be promisingly applied to solve varying interfering patterns from different chromatographic columns and sample matrices for the analysis of complex food samples. PMID:26830638

  12. Comparative study of Puerariae lobatae and Puerariae thomsonii by HPLC-diode array detection-flow injection-chemiluminescence coupled with HPLC-electrospray ionization-MS.

    PubMed

    Zhang, Cui-Ling; Ding, Xiao-Ping; Hu, Zheng-Fang; Wang, Xin-Tang; Chen, Lin-Lin; Qi, Jin; Yu, Bo-Yang

    2011-01-01

    An on-line HPLC-diode array detection-flow injection chemiluminescence (HPLC-DAD-FICL) method was applied to estimate the difference of Puerariae lobatae and Puerariae thomsonii. Their chemical and active profiles could be obtained by HPLC-DAD-FICL in one run. Seventeen compounds in two species were tentatively identified by HPLC-electrospray ionization-MS (HPLC-ESI-MS) method. The main antioxidants were rapidly screened by active fingerprints coupled with MS data. Similarity and Hierarchical clustering analysis (HCA) were used to distinguish different samples. The results suggested that the chemical fingerprints of 16 batches of samples were similar by similarity evaluation, while HCA could discriminate the two species. The active fingerprints of Puerariae lobatae and Puerariae thomsonii were significantly different. More antioxidants were found in Puerariae lobatae than in Puerariae thomsonii. Main antioxidants, including 3'-hydroxypuerarin, genistein 8-C-glycoside-xyloside, puerarin, 6″-O-xylosylpuerarin, mirificin and daidzein in two species, may be reasonable markers for the discrimination of the two species. The integrated fingerprint based on the chemical and active characteristics may provide an objective quality evaluation for Puerariae lobatae and Puerariae thomsonii. PMID:21532189

  13. Simultaneous determination of ginsenosides and lignans in Sheng-mai injection by ultra-performance liquid chromatography with diode array detection.

    PubMed

    Liu, Rui; Nie, Li-Xing; Li, Xiao-Feng; Cheng, Xian-Long; Zhang, Yuan-Yuan; Wang, Gang-Li; Lin, Rui-Chao

    2012-01-01

    An ultra-performance liquid chromatography (UPLC) method with diode array detection was developed for simultaneous analysis of eight ginsenosides (ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, Rb3, Rd) and one lignan (schizandrin) in Sheng-mai injection, a traditional Chinese medicine prescription widely used for the treatment of cardiovascular diseases. The chromatographic separation was performed on a Waters ACQUITY UPLC HSS T3 column (1.8 microm, 100 mm x 2.1 mm i.d.) using a linear gradient elution over 28 min with a mixture of water and acetonitrile as the mobile phase. All calibration curves showed good linearity (r2 > 0.9998) within the test ranges. Validation proved the repeatability of the method was good and recovery was satisfactory. The validated method was successfully applied to 12 batches of Sheng-mai injection. The results showed that there was a great variation among different samples. Principal component analysis (PCA) further proved considerable variations among the samples from different factories and suggested that schizandrin, ginsenosides Rb1 and Rg1 might have the greatest influence on the variation of 12 samples. In conclusion, these results demonstrated that the UPLC method proposed was very useful for the analysis and quality evaluation of Sheng-mai injection. PMID:22393825

  14. Determination of chloroacetanilide herbicide metabolites in water using high-performance liquid chromatography-diode array detection and high-performance liquid chromatography/mass spectrometry

    USGS Publications Warehouse

    Hostetler, K.A.; Thurman, E.M.

    2000-01-01

    Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: alachlor ethanesulfonic acid (ESA); alachlor oxanilic acid; acetochlor ESA; acetochlor oxanilic acid; metolachlor ESA; and metolachlor oxanilic acid. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The average HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.5 and 2.0 ??g/l ranged from 84 to 112%, with relative standard deviations of 18% or less. The average HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.2 and 2.0 ??g/l ranged from 81 to 118%, with relative standard deviations of 20% or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 ??g/l, whereas the LOQ using the HPLC/MS method was at 0.05 ??g/l. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water. Copyright (C) 2000 Elsevier Science B.V.

  15. Investigation of interpolation techniques for the reconstruction of the first dimension of comprehensive two-dimensional liquid chromatography-diode array detector data.

    PubMed

    Allen, Robert C; Rutan, Sarah C

    2011-10-31

    Simulated and experimental data were used to measure the effectiveness of common interpolation techniques during chromatographic alignment of comprehensive two-dimensional liquid chromatography-diode array detector (LC×LC-DAD) data. Interpolation was used to generate a sufficient number of data points in the sampled first chromatographic dimension to allow for alignment of retention times from different injections. Five different interpolation methods, linear interpolation followed by cross correlation, piecewise cubic Hermite interpolating polynomial, cubic spline, Fourier zero-filling, and Gaussian fitting, were investigated. The fully aligned chromatograms, in both the first and second chromatographic dimensions, were analyzed by parallel factor analysis to determine the relative area for each peak in each injection. A calibration curve was generated for the simulated data set. The standard error of prediction and percent relative standard deviation were calculated for the simulated peak for each technique. The Gaussian fitting interpolation technique resulted in the lowest standard error of prediction and average relative standard deviation for the simulated data. However, upon applying the interpolation techniques to the experimental data, most of the interpolation methods were not found to produce statistically different relative peak areas from each other. While most of the techniques were not statistically different, the performance was improved relative to the PARAFAC results obtained when analyzing the unaligned data. PMID:21962368

  16. Analysis of opiates, cocaine and metabolites in urine by high-performance liquid chromatography with diode array detection (HPLC-DAD).

    PubMed

    Fernández, P; Vázquez, C; Morales, L; Bermejo, A M

    2005-01-01

    An analytical method is proposed for the simultaneous determination of morphine, codeine, 6-acetyl-morphine (MAM), cocaine, benzoylecgonine (BEG), cocaethylene, methadone and 2-ethylen-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in urine using high performance liquid chromatography coupled to a diode array detector (HPLC-DAD). The selection of working wavelengths is based on the highest chromatographic response for each component: 233 nm for cocaine, BEG and cocaethylene; 285 nm for morphine, codeine and MAM; and 292 nm for methadone and EDDP. The mobile phase, which is a mixture of acetonitrile and 0.02 M phosphate buffer at pH 6.53, was eluted in gradient mode through an XTerra RP-8 column (250 mm x 4.6 mm i.d., 5 microm particle size). After applying a solid-phase extraction procedure with Bond Elut Certify cartridges, the recoveries obtained were between 60% (EDDP) and 97% (cocaethylene). A good linearity of the method in the 0.1-10 microg mL(-1) range of urinary concentrations was obtained because the coefficient of correlation exceeded 0.99 for each drug. The precision and accuracy were quite good, with values of <7% and within the range +/- 6%, respectively. Finally, the proposed method was applied to 23 urine samples from fatal intoxications related to methadone, heroin and[sol ]or cocaine. PMID:15895479

  17. Qualitative and quantitative analysis of an alkaloid fraction from Piper longum L. using ultra-high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry.

    PubMed

    Li, Kuiyong; Fan, Yunpeng; Wang, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2015-05-10

    In a previous research, an alkaloid fraction and 18 alkaloid compounds were prepared from Piper longum L. by series of purification process. In this paper, a qualitative and quantitative analysis method using ultra-high performance liquid chromatography-diode array detector-mass spectrometry (UHPLC-DAD-MS) was developed to evaluate the alkaloid fraction. Qualitative analysis of the alkaloid fraction was firstly completed by UHPLC-DAD method and 18 amide alkaloid compounds were identified. A further qualitative analysis of the alkaloid fraction was accomplished by UHPLC-MS/MS method. Another 25 amide alkaloids were identified according to their characteristic ions and neutral losses. At last, a quantitative method for the alkaloid fraction was established using four marker compounds including piperine, pipernonatine, guineensine and N-isobutyl-2E,4E-octadecadienamide. After the validation of this method, the contents of above four marker compounds in the alkaloid fraction were 57.5mg/g, 65.6mg/g, 17.7mg/g and 23.9mg/g, respectively. Moreover, the relative response factors of other three compounds to piperine were calculated. A comparative study between external standard quantification and relative response factor quantification proved no remarkable difference. UHPLC-DAD-MS method was demonstrated to be a powerful tool for the characterization of the alkaloid fraction from P. longum L. and the result proved that the quality of alkaloid fraction was efficiently improved after appropriate purification. PMID:25746504

  18. Evaluation of Drying Process on the Composition of Black Pepper Ethanolic Extract by High Performance Liquid Chromatography With Diode Array Detector

    PubMed Central

    Namjoyan, Foroogh; Hejazi, Hoda; Ramezani, Zahra

    2012-01-01

    Background Black pepper (Piper nigrum) is one of the well-known spices extensively used worldwide especially in India, and Southeast Asia. The presence of alkaloids in the pepper, namely, piperine and its three stereoisomers, isopiperine, chavicine and isochavicine are well noticed. Objectives The current study evaluated the effect of lyophilization and oven drying on the stability and decomposition of constituents of black pepper ethanolic extract. Materials and Methods In the current study ethanolic extract of black pepper obtained by maceration method was dried using two methods. The effect of freeze and oven drying on the chemical composition of the extract especially piperine and its three isomers were evaluated by HPLC analysis of the ethanolic extract before and after drying processes using diode array detector. The UV Vis spectra of the peaks at piperine retention time before and after each drying methods indicated maximum absorbance at 341.2 nm corresponding to standard piperine. Results The results indicated a decrease in intensity of the chromatogram peaks at approximately all retention times after freeze drying, indicating a few percent loss of piperine and its isomers upon lyophilization. Two impurity peaks were completely removed from the extract. Conclusions In oven dried samples two of the piperine stereoisomers were completely removed from the extract and the intensity of piperine peak was increased. PMID:24624176

  19. Determination of phenol compounds in surface water matrices by bar adsorptive microextraction-high performance liquid chromatography-diode array detection.

    PubMed

    Neng, Nuno R; Nogueira, José M F

    2014-01-01

    Bar adsorptive microextraction combined with liquid desorption followed by high performance liquid chromatography with diode array detection (BAµE-LD/HPLC-DAD) is proposed for the determination of trace levels of five phenol compounds (3-nitrophenol, 4-nitrophenol, bisphenol-A, 4-n-octylphenol and 4-n-nonylphenol) in surface water matrices. By using a polystyrene-divinylbenzene copolymer (PS-DVB) sorbent phase, high selectivity and efficiency is achieved even against polydimethylsiloxane through stir bar sorptive extraction. Assays performed by BAµE(PS-DVB)-LD/HPLC-DAD on 25 mL water samples spiked at the 10.0 µg/L levels yielded recoveries over 88.0%±5.7% for all five analytes, under optimized experimental conditions. The analytical performance showed good precision (RSD<15%), detection limits of 0.25 µg/L and linear dynamic ranges (1.0-25.0 μg/L) with determination coefficient higher than 0.9904. By using the standard addition method, the application of the present method to surface water matrices allowed very good performances at the trace level. The proposed methodology proved to be a suitable alternative to monitor phenol compounds in surface water matrices, showing to be easy to implement, reliable, sensitive and requiring a low sample volume. PMID:24995922

  20. Simultaneous determination of 10 components in traditional Chinese medicine Dachaihu Granule by reversed-phase-high-performance liquid chromatographic-diode array detector

    PubMed Central

    Hu, Yingfei; Lu, Tulin; Mao, Chunqin; Wu, Hao; Zhang, Xing; Wang, JV; Gu, Juanjuan

    2013-01-01

    Background: Dachaihu Granule, commonly used for treating cholecystitis, is derived from a famous traditional Chinese formula named Dachaihu Decoction. No analytical method has been reported for simultaneous determination of 10 bioactive compounds for quality control in Dachaihu Granule so far. Objective: To develop a high-performance liquid chromatographic (HPLC) method with diode array detector (DAD) for simultaneous determination of 10 bioactive compounds (paeoniflorin, aloe-emodin, rhein, emodin, chrysophanol, physcion, naringin, hesperidin, neohesperidin, and baicalin) in traditional Chinese medicine Dachaihu Granule. Materials and Methods The samples were separated on a Kromasil C18 (250 × 4.6 mm,i.d. with 5.0 μm particle size)column with multi-wavelength detection method by a gradient elution using acetonitrile (A) and 0.2% acetic acid (B) as the mobile phase. The column temperature was maintained at 30°C and the detection wavelength was set at 230 nm for paeoniflorin, 254 nm for aloe-emodin, rhein, emodin, chrysophanol, and physcion, 280 nm for naringin, hesperidin, neohesperidin, and baicalin. Results: The developed method provided satisfactory precision and the accuracy of this method was in the range from 94.0% to 103.1%, all of the 10 compounds showed good linearity (r > 0.999) in a detected concentration range. Conclusion: The validated method was successfully applied to the simultaneously of these active components in Dachaihu Granule from different production batches. PMID:23661991

  1. Characterisation of phenolic compounds in South African plum fruits (Prunus salicina Lindl.) using HPLC coupled with diode-array, fluorescence, mass spectrometry and on-line antioxidant detection.

    PubMed

    Venter, Alet; Joubert, Elizabeth; de Beer, Dalene

    2013-01-01

    Phenolic compounds are abundant secondary metabolites in plums, with potential health benefits believed to be due to their antioxidant activity, amongst others. Phenolic characterisation of South African Prunus salicina Lindl. plums is necessary to fully evaluate their potential health benefits. An HPLC method using diode-array detection (DAD) for quantification of phenolic compounds was improved and fluorescence detection (FLD) was added for quantification of flavan-3-ols. Validation of the HPLC-DAD-FLD method showed its suitability for quantification of 18 phenolic compounds, including flavan-3-ols using FLD, and phenolic acids, anthocyanins and flavonols using DAD. The method was suitable for characterisation of the phenolic composition of 11 South African plum cultivars and selections, including various types with yellow and red skin and flesh. The method was used in conjunction with mass spectrometry (MS) to identify 24 phenolic compounds. Neochlorogenic acid and cyanidin-3-O-glucoside were the major compounds in most of the plums, while cyanidin-3-O-glucoside was absent in Sun Breeze plums with yellow skin and flesh. Post-column on-line coupling of the ABTS•+ scavenging assay with HPLC-DAD enabled qualitative evaluation of the relative contribution of individual phenolic compounds to the antioxidant activity. The flavan-3-ols, neochlorogenic acid and cyanidin-3-O-glucoside displayed the largest antioxidant response peaks. PMID:23644975

  2. Determination of benzimidazole anthelmintics in milk and honey by monolithic fiber-based solid-phase microextraction combined with high-performance liquid chromatography-diode array detection.

    PubMed

    Zhang, Yong; Huang, Xiaojia; Yuan, Dongxing

    2015-01-01

    A porous poly(methacrylic acid-co-ethylene dimethacrylate) monolithic fiber (MEMF) for solid-phase microextraction (SPME) of five benzimidazole anthelmintics was prepared by in-situ polymerization. The effect of polymerization conditions on SPME of the target analytes was studied thoroughly. The physicochemical properties of the monolith were characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy, and mercury intrusion porosimetry. Several conditions affecting the extraction efficiency were investigated and, under the optimized conditions, a simple and sensitive method for the determination of trace benzimidazoles residues in milk and honey was established by coupling MEMF-SPME with high-performance liquid chromatography-diode array detection (MEMF-SPME-HPLC-DAD). Under the optimum experimental conditions, the limits of detection (S/N = 3) of the method were 0.11-0.30 μg L(-1) for milk and 0.086-0.28 μg L(-1) for honey. Evaluation of intra-day and inter-day precision showed reproducibility was satisfactory-relative standard deviations (RSD) for both were <10 %. Finally, the method was successfully used for determination of benzimidazole residues in milk and honey. Recoveries obtained for determination of benzimidazole anthelmintics in spiked samples ranged from 72.3 to 121 %, with RSD always <11 %. PMID:25407428

  3. Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection.

    PubMed

    Montero, Lidia; Ibáñez, Elena; Russo, Mariateresa; di Sanzo, Rosa; Rastrelli, Luca; Piccinelli, Anna Lisa; Celano, Rita; Cifuentes, Alejandro; Herrero, Miguel

    2016-03-24

    Profiling of the main metabolites from several licorice (Glycyrrhiza glabra) samples collected at different locations is carried out in this work by using comprehensive two-dimensional liquid chromatography (LC × LC) coupled to diode array (DAD) and mass spectrometry (MS) detectors. The optimized method was based on the application of a HILIC-based separation in the first dimension combined with fast RP-based second dimension separation. This set-up was shown to possess powerful separation capabilities allowing separating as much as 89 different metabolites in a single sample. Identification and grouping of metabolites according to their chemical class were achieved using the DAD, MS and MS/MS data. Triterpene saponins were the most abundant metabolites followed by glycosylated flavanones and chalcones, whereas glycyrrhizic acid, as expected, was confirmed as the main component in all the studied samples. LC × LC-DAD-MS/MS was able to resolve these complex licorice samples providing with specific metabolite profiles to the different licorice samples depending on their geographical origin. Namely, from 19 to 50 specific compounds were exclusively determined in the 2D-chromatograms from the different licorice samples depending on their geographical origin, which can be used as a typical pattern that could potentially be related to their geographical location and authentication. PMID:26944999

  4. Simultaneous quantification of coumarins, flavonoids and limonoids in Fructus Citri Sarcodactylis by high performance liquid chromatography coupled with diode array detector.

    PubMed

    Chu, Jun; Li, Song-Lin; Yin, Zhi-Qi; Ye, Wen-Cai; Zhang, Qing-Wen

    2012-07-01

    A high performance liquid chromatography coupled with diode array detector (HPLC-DAD) method was developed for simultaneous quantification of eleven major bioactive components including six coumarins, three flavonoids and two limonoids in Fructus Citri Sarcodactylis. The analysis was performed on a Cosmosil 5 C(18)-MS-II column (4.6 mm × 250 mm, 5 μm) with water-acetonitrile gradient elution. The method was validated in terms of linearity, sensitivity, precision, stability and accuracy. It was found that the calibration curves for all analytes showed good linearity (R(2)>0.9993) within the test ranges. The overall limit of detection (LOD) and limit of quantification (LOQ) were less than 3.0 and 10.2 ng. The relative standard deviations (RSDs) for intra- and inter-day repeatability were not more than 4.99% and 4.92%, respectively. The sample was stable for at least 48 h. The spike recoveries of eleven components were 95.1-104.9%. The established method was successfully applied to determine eleven components in three samples from different locations. The results showed that the newly developed HPLC-DAD method was linear, sensitive, precise and accurate, and could be used for quality control of Fructus Citri Sarcodactylis. PMID:22494516

  5. Multi-residue determination of non-steroidal anti-inflammatory drug residues in animal serum and plasma by HPLC and photo-diode array detection.

    PubMed

    Gallo, Pasquale; Fabbrocino, Serena; Vinci, Floriana; Fiori, Maurizio; Danese, Vincenzo; Nasi, Antonella; Serpe, Luigi

    2006-01-01

    The European Union regulated the use of non-steroidal anti-inflammatory drugs (NSAIDs) in animal production and set the official analytical controls to detect their residues in plasma, serum, and milk within the frame of national monitoring programs in each member state. In this work, a multi-residue reversed-phase high-performance liquid chromatography with diode array detector (DAD) method is described for the simultaneous determination of 13 NSAIDs in serum and plasma of farm animals. Chromatographic separation by a C12 stationary phase column with a linear gradient is able to resolve all the compounds considered: salicylic acid, ketoprofen, flurbiprofen, phenylbutazone and its metabolite (oxyphenbutazone), carprofen, ibuprofen, naproxen, niflumic acid, suxibutazone, diclofenac, mefenamic acid, and tolfenamic acid. These compounds are chosen as the most representative of the different NSAID chemical sub-classes. The DAD analysis allows the confirmation of all drugs on the basis of their own UV-vis spectrum, according to the requirements of the European Council Decision 2002/657/EC. Moreover, the method is in-house validated, evaluating mean recoveries, specificity, repeatability, and within-laboratory reproducibility as the performance parameters required by the Decision. The results of this study indicate the method is specific and repeatable, with the mean percentage recoveries of the drugs ranging between 72.5% and 104.5%. Only salicylic acid has poor recovery, with results ranging between 36.3% and 54.9%. PMID:17254366

  6. Fingerprinting and simultaneous determination of alkaloids and limonins in Phellodendri amurensis cortex from different locations by high-performance liquid chromatography with diode array detection.

    PubMed

    Wang, Lihong; Yan, Guangli; Zhang, Aihua; Shi, Hui; Sun, Hui; Wang, Xijun

    2015-01-01

    A sensitive high-performance liquid chromatography method coupled with diode array detection (HPLC-DAD) was developed for the quality control of Phellodendri amurensis cortex (PAC), the quality control included the simultaneous determination of seven major constituents, namely phellodendrine, magnoflorine, jatrorrhizine, palmatine, berberine, obaculactone and obacunone. The chromatographic separation was accomplished on a Diamonsil-C18 column (4.6 mm × 200 mm, 5 μm) with acetonitrile and 0.1% phosphoric acid (0.02 mol sodium dihydrogen phosphate per liter) by linear gradient elution. The established method was successfully validated by acceptable linearity, limits of detection and quantitation, precision, repeatability, stability and accuracy. The HPLC-DAD fingerprint chromatograph under 220 nm consisting of 21 peaks was constructed for the evaluation of the 11 batches of PAC. The HPLC fingerprints were analyzed by similarity analysis, hierarchical clustering analysis and principal component analysis. The results indicated that the combination of multicomponent determination method and chromatographic fingerprint analysis could be employed for the quantitative analysis and identification of PAC, as well as pharmaceutical products containing this herbal material. PMID:24872523

  7. Evaluation of polyphenol contents in differently processed apricots using accelerated solvent extraction followed by high-performance liquid chromatography-diode array detector.

    PubMed

    Erdoğan, Selım; Erdemoğlu, Sema

    2011-11-01

    Concentrations of 17 polyphenols in ripe-fresh, sun-dried and sulfited-dried apricots either harvested from organic or pesticide-treated trees before harvest were determined using reverse-phase high-performance liquid chromatography with UV-Vis diode array detector, and the change of polyphenol profile with origin of the apricot product was established. Extraction of polyphenols was achieved using the accelerated solvent extraction technique (ASE). A mixture of methanol, water (70:30 v/v) including 0.1 g of tert-butylhydroquinone as solvent, 60 min extraction time, 60°C temperature and 1,500 psi pressure were found the most productive operating conditions for ASE. Concentrations of polyphenols in organic apricots were higher than pesticide-treated samples, and roughly the same in ripe-fresh and sun-dried apricots. Polyphenol concentrations of either organic or pesticide-treated sulfited-dried apricots were lower than the ripe-fresh apricots. Considering the organic ripe-fresh apricots, there was a decrease in some polyphenol concentration in the sulfited-dried apricots compared with the ripe-fresh apricot, and the range of decrease is between 1.4 and 53%. PMID:21599463

  8. Quantitative analysis of the eight major compounds in the Samsoeum using a high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometer

    PubMed Central

    Weon, Jin Bae; Yang, Hye Jin; Lee, Bohyoung; Ma, Jin Yeul; Ma, Choong Je

    2015-01-01

    Background: Samsoeum was traditionally used for treatment of a respiratory disease. Objective: The simultaneous determination of eight major compounds, ginsenoside Rg3, caffeic acid, puerarin, costunolide, hesperidin, naringin, glycyrrhizin, and 6-gingerol in the Samsoeum using a high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD) and an electrospray ionization mass spectrometer was developed for an accurate and reliable quality assessment. Materials and Methods: Eight compounds were qualitative identified based on their mass spectra and by comparing with standard compounds and quantitative analyzed by HPLC-DAD. Separation of eight compounds was carried out on a LUNA C18 column (S-5 μm, 4.6 mm i.d. ×250 mm) with gradient elution composed of acetonitrile and 0.1% trifluoroacetic acid. Results: The data showed good linearity (R2 > 0.9996). The limits of detection and the limits of quantification were <0.53 μg and 1.62 μg, respectively. Inter- and Intra-day precisions (expressed as relative standard deviation values) were within 1.94% and 1.91%, respectively. The recovery of the method was in the range of 94.24–107.90%. Conclusion: The established method is effective and could be applied to quality control of Samsoeum. PMID:25829771

  9. Simultaneous determination of five marker compounds in Xuanfu Daizhe Tang by high-performance liquid chromatography coupled with diode array detection for quality control

    PubMed Central

    Qin, Kunming; Wang, Bin; Cai, Hao; Li, Weidong; Yao, Zhongqing; Zhang, Xingde; Lu, Tulin; Cai, Baochang

    2012-01-01

    Background: Xuanfu Daizhe Tang (XDT) is a classical traditional Chinese medicinal prescription that has been widely used for treating digestive system illnesses for hundreds of years. Materials and Methods: In this study, a simple and sensitive high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) method was established for the simultaneous determination of five marker compounds in XDT including chlorogenic acid, glycyrrhizic acid, ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Re, for quality control of this well-known traditional Chinese medicine (TCM). Results: These compounds were separated in less than 130 min using a YMC C18 column with a gradient elution system of acetonitrile and 0.1% phosphoric acid water solution at a flow rate of 1 ml/min. All calibration curves of standard components showed good linearity with R2 >0.9991. Limit of detection and limit of quantification varied from 0.11 to 4.3 μg/ml and 0.20 to 11.6 μg/ml, respectively. The relative standard deviations (RSDs) of the intra-day and inter-day experiments were less than 4.72 and 5.48%, respectively. The accuracy of recovery test ranged from 95.0 to 105.0% with RSD values 1.28- 4.32%. Conclusion: The validated method is simple, reliable, and successfully applied to determine the contents of the selected compounds in XDT for quality control. PMID:24082626

  10. Simultaneous determination of ten bioactive compaounds from the roots of Cynanchum paniculatum by using high performance liquid chromatography coupled-diode array detector

    PubMed Central

    Weon, Jin Bae; Lee, Bohyoung; Yun, Bo-Ra; Lee, Jiwoo; Ma, Choong Je

    2012-01-01

    Background: Cynanchum paniculatum Kitagawa belongs to Asclepiadaceae and was used in traditional medicine to invigorate blood, alleviate edema, relieve pain, and relieve toxicity for a long time. Objective: A novel and reliable high performance liquid chromatography coupled with diode array detector method has been established for simultaneous determination of 10 bioactive compounds isolated from Cynanchum paniculatum Kitagawa, one of the herbal medicines. Materials and Methods: The chromatography analysis was performed on a SHISEIDO C18 column (S-5 μm, 4.6 mm I.D. × 250 mm) at 35°C with a gradient elution of acetonitrile and water at a flow rate of 1ml/min and UV detection at 210, 230, and 280 nm. Results: The method was validated for linearity, precision, and accuracy. All calibration curves showed good linear regression (r2 > 0.9996). Limits of detection (LOD) and limits of quantification (LOQ) fell in the ranges 0.01 - 0.28 μg/ml and 0.04 - 0.83 μg/ml, respectively. The relative standard deviation (RSD) of the intra- and inter- day test, precision test were within 1.92% and 2.43%, respectively. The mean recovery of all ranged from 92.82 to 107.96% with RSD values 0.12 - 2.18%. Conclusion: The results of validation appeared that this established method was very accurate and stabilized for the quantification of 10 bioactive compounds isolated from C. paniculatum. PMID:23060698

  11. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    PubMed

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy. PMID:23952783

  12. New method for the quantification of dequalinium cations in pharmaceutical samples by absorption and fluorescence diode array thin-layer chromatography.

    PubMed

    Hiegel, Katharina; Spangenberg, Bernd

    2009-06-19

    A diode array HPTLC method for dequalinium chloride in pharmaceutical preparations is presented. For separation a Nano TLC silica gel plate (Merck) is used with the mobile phase methanol-7.8% aqueous NH(4)(+)CH(3)COO(-) (17:3, v/v) over a distance of 6 cm. Dequalinium chloride shows an R(F) value of 0.58. Pure dequalinium chloride is measured in the wavelength range from 200 to 500 nm and shows several by-products, contour plot visualized in absorption, fluorescence and using the Kubelka-Munk transformation. Scanning of a single track in absorption and fluorescence measuring 600 spectra in the range from 200 to 1100 nm takes 30s. As a sample pre-treatment of an ointment it is simply dissolved in methanol and can be quantified in absorption from 315 to 340 nm. The same separation can also be quantified using fluorescence spectrometry in the range from 355 to 370 nm. A new staining method for dequalinium chloride, using sodium tetraphenyl borate/HCl in water allows a fluorescence quantification in the range from 445 to 485 nm. The linearity range of absorption and fluorescence measurements is from 10 to 2000 ng. Sugar-containing preparations like liquids or lozenges with a reduced sample pre-treatment can be reliably quantified only in fluorescence. The total for the quantification of an ointment sample (measuring four standards and five samples), including all sample pre-treatment steps takes less than 45 min! PMID:19446824

  13. β-Ga2O3 solar-blind deep-ultraviolet photodetector based on a four-terminal structure with or without Zener diodes

    NASA Astrophysics Data System (ADS)

    Qian, L. X.; Liu, X. Z.; Sheng, T.; Zhang, W. L.; Li, Y. R.; Lai, P. T.

    2016-04-01

    A four-terminal photodetector was fabricated on the ( 2 ¯ 01 )-dominant β-Ga2O3 thin film which was deposited in a plasma-assisted molecular beam epitaxy system. The suitability of this film for solar-blind DUV detection was proved by its transmission spectra. Moreover, the device operating in a specific voltage-current mode can accurately detect the DUV radiation both qualitatively and quantitatively. Accordingly, a dark/photo voltage ratio of 15 was achieved, which is comparable to that of previously-reported β-Ga2O3 interdigital metal-semiconductor-metal photoconductor. More importantly, the aperture ratio of our proposed device exceeds 80%, nearly doubling that of the conventional interdigital metal-semiconductor-metal devices including photoconductor and Schottky-type photodiode, which can intensively benefit the detection efficiency. Furthermore, it was found the dark/photo voltage ratio was nearly trebled with the assistance of two Zener diodes, and further enhancement can be expected by increasing the operating current and/or adopting Zener diodes with smaller Zener voltage. Therefore, this work provides a promising alternative for solar-blind DUV detection.

  14. Degradation of the Adhesive Properties of MD-944 Diode Tape by Simulated Low Earth Orbit Environmental Factors

    NASA Technical Reports Server (NTRS)

    Albyn, K.; Finckenor, M.

    2006-01-01

    The International Space Station (ISS) solar arrays utilize MD-944 diode tape with silicone pressure-sensitive adhesive to protect the underlying diodes and also provide a high-emittance surface. On-orbit, the silicone adhesive will be exposed and ultimately convert to a glass-like silicate due to atomic oxygen (AO). The current operational plan is to retract ISS solar array P6 and leave it stored under load for a long duration (6 mo or more). The exposed silicone adhesive must not cause the solar array to stick to itself or cause the solar array to fail during redeployment. The Environmental Effects Branch at Marshall Space Flight Center, under direction from the ISS Program Office Environments Team, performed simulated space environment exposures with 5-eV AO, near ultraviolet radiation and ionizing radiation. The exposed diode tape samples were put under preload and then the resulting blocking force was measured using a tensile test machine. Test results indicate that high-energy AO, ultraviolet radiation, and electron ionizing radiation exposure all reduce the blocking force for a silicone-to-silicone bond. AO exposure produces the most significant reduction in blocking force

  15. Controlling the properties of electrodeposited ZnO nanowire arrays for light emitting diode, photodetector and gas sensor applications

    NASA Astrophysics Data System (ADS)

    Pauporté, T.; Lupan, Oleg; Viana, Bruno; Chow, Lee; Tchernycheva, Maria

    2014-03-01

    Electrochemical deposition (ECD) is a versatile technique for the preparation of ZnO nanowires (NWs) and nanorods (NRs) with high structural and optical quality. The bandgap of the ZnO NWs can be engineered by doping. Depending on the doping cation and concentration, the bandgap is increased or decreased in a controlled manner. The NW arrays have been grown on various substrates. The epitaxial growth on single-crystal conducting substrates has been demonstrated. By using p-type GaN layers, heterostructures have been fabricated with a high rectifying electrical behavior. They have been integrated in low-voltage LEDs emitting in the UV or in the visible region depending on the NW composition. For visible-blind UV-photodetector application, ZnO NW ensembles, electrochemically grown on F:SnO2, have been contacted on their top with a transparent graphene sheet. The photodetector had a responsivity larger than 104 A/W at 1V in the near-UV range. ECD ZnO NWs have also been isolated and electrically connected on their both ends by Al contacts. The obtained nanodevice, made of an individual NW, was shown to be a H2 gas sensor with a high selectivity and sensitivity. Moreover, it was shown that Cd-doping of ZnO NWs significantly improved the performance of the sensor.

  16. High-sensitivity detection of CH radicals in flames by use of a diode-laser-based near-ultraviolet light source.

    PubMed

    Peterson, K A; Oh, D B

    1999-05-15

    CH radical distributions in ethylene-air and methane-air diffusion flames are mapped by wavelength-modulation absorption spectroscopy (WMS). Tunable, wavelength-modulated 426-nm light is generated by frequency doubling of a modulated 852-nm distributed Bragg reflector diode laser. Absorbances of 5 x 10(-5) are measured with second-harmonic (2f) WMS with a signal-to-noise ratio of 3:1 in a 3-Hz measurement bandwidth. The feasibility of simultaneous line-of-sight absorption and spatially resolved laser-induced-fluorescence detection with a single excitation beam is also demonstrated. This near-UV source is suitable for microgravity drop-tower experiments and other applications in which compact, rugged, energy-efficient instrumentation is required. PMID:18073817

  17. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal

    NASA Astrophysics Data System (ADS)

    Kwolek, J. M.; Wells, J. E.; Goodman, D. S.; Smith, W. W.

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca+ ions, and its use in other applications with similar modest frequency stabilization requirements.

  18. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    PubMed Central

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency. PMID:26935402

  19. Study of 375 nm ultraviolet InGaN/AlGaN light-emitting diodes with heavily Si-doped GaN transition layer in growth mode, internal quantum efficiency, and device performance

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Cheng; Shen, Kun-Ching; Wuu, Dong-Sing; Tu, Po-Min; Kuo, Hao-Chung; Tu, Chia-Cheng; Horng, Ray-Hua

    2011-12-01

    High performance 375 nm ultraviolet (UV) InGaN/AlGaN light-emitting diodes (LEDs) were demonstrated with inserting a heavy Si-doped GaN transition layer by metal-organic chemical vapor deposition. From transmission electron microcopy (TEM) image, the dislocation densities were significantly reduced due to the existence of the heavily Si-doping growth mode transition layer (GMTL), which results in residual stress relaxation and 3D growth. The internal quantum efficiency (IQE) of the LEDs with GMTL was measured by power-dependent photoluminescence (PL) to be 40.6% higher than ones without GMTL. The GMTL leads to the superior IQE performance of LEDs not only in decreasing carrier consumption at nonradiative recombination centers but also in partially mitigating the efficiency droop tendency. When the vertical-type LED chips (size: 1 mm × 1 mm) was driven with a 350 mA injection current, the output powers of the LEDs with and without GMTL were measured to be 286.7 and 204.2 mW, respectively. A 40.4% enhancement of light output power was achieved. Therefore, using the GMTL to reduce dislocations would be a promising prospective for InGaN/AlGaN UV-LEDs to achieve high IQE.

  20. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission.

    PubMed

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency. PMID:26935402

  1. Realization of 340-nm-Band High-Output-Power (>7 mW) InAlGaN Quantum Well Ultraviolet Light-Emitting Diode with p-Type InAlGaN

    NASA Astrophysics Data System (ADS)

    Fujikawa, Sachie; Takano, Takayoshi; Kondo, Yukihiro; Hirayama, Hideki

    2008-04-01

    We have demonstrated 340-nm-band high-output-power InAlGaN quantum well (QW) ultraviolet (UV) light-emitting diodes (LEDs) under room temperature (RT) continuous wave (CW) operation, which were deposited on sapphire (0001) substrates by low-pressure metal-organic chemical vapor deposition (LP-MOCVD). The high-output-power UV LEDs were achieved by introducing p-type InAlGaN layers in order to obtain a high hole concentration and by optimizing the band lineup to suppress electron overflow. The output power of a UV-LED with p-InAlGaN layers was about 4.7 times larger than that of an equivalent structure containing p-AlGaN. We obtained a significant increase in output power by controlling the barrier height of the electron-blocking layer (EBL) and the depth of the quantum wells. We also obtained a marked increase in UV output power by introducing a low-threading-dislocation-density (TDD) AlN buffer layer. The maximum output power and external quantum efficiency (EQE) of LEDs containing p-InAlGaN layers were 8.4 mW and 0.9%, respectively, at an emission wavelength of 346 nm under room temperature (RT) CW operation.

  2. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    NASA Astrophysics Data System (ADS)

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-03-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency.

  3. Development of magnetic molecularly imprinted polymers for selective extraction: determination of citrinin in rice samples by liquid chromatography with UV diode array detection.

    PubMed

    Urraca, Javier L; Huertas-Pérez, José F; Cazorla, Guillermo Aragoneses; Gracia-Mora, Jesus; García-Campaña, Ana M; Moreno-Bondi, María Cruz

    2016-04-01

    In this work, we report the synthesis of novel magnetic molecularly imprinted polymers (m-MIPs) and their application to the selective extraction of the mycotoxin citrinin (CIT) from food samples. The polymers were prepared by surface imprinting of Fe3O4 nanoparticles, using 2-naphtholic acid (2-NA) as template molecule, N-3,5-bis(trifluoromethyl)phenyl-N'-4-vinylphenyl urea and methacrylamide as functional monomers and ethyleneglycol dimethacrylate as cross-linker. The resulting material was characterized by transmission electron microscopy (TEM), and X-ray diffraction (XRD) and Fourier transform infrared spectroscopies (FT-IR). The polymers were used to develop a solid-phase extraction method (m-MISPE) for the selective recovery of CIT from rice extracts prior to its determination by HPLC with UV diode array detection. The method involves ultrasound-assisted extraction of the mycotoxin from rice samples with (7:3, v/v) methanol/water, followed by sample cleanup and preconcentration with m-MIP. The extraction (washing and elution) conditions were optimized and their optimal values found to provide CIT recoveries of 94-98 % with relative standard deviations (RSD) less than 3.4 % (n = 3) for preconcentrated sample extracts (5 mL) fortified with the analyte at concentrations over the range 25-100 μg kg(-1). Based on the results, the application of the m-MIPs facilitates the accurate and efficient determination of CIT in rice extracts. Graphical Abstract Novel magnetic molecularly imprinted polymers (m-MIPs) for citrinin (CIT) have been obtained and applied to the selective extraction of the mycotoxin from rice samples. PMID:26873195

  4. Determination of piperazine-type stimulants in human urine by means of microextraction in packed sorbent and high performance liquid chromatography-diode array detection.

    PubMed

    Moreno, I E D; da Fonseca, B M; Barroso, M; Costa, S; Queiroz, J A; Gallardo, E

    2012-03-01

    A method using microextraction by packed sorbent (MEPS) and high performance liquid chromatography-diode array detection (HPLC-DAD) is described for the determination of piperazine-type stimulants in human urine. The studied compounds were 1-benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl) piperazine (TFMPP), 1-(3-chlorophenyl) piperazine (mCPP) and 1-(4-methoxyphenyl) piperazine (MeOPP); 1-(2-chlorophenyl)-piperazine (oCPP) was used as internal standard (IS). The factors which might influence the extraction were screened previously using the fractional factorial design approach, and none of them influenced significantly the process. The procedure was linear for concentrations ranging from 0.1 (lower limit of quantitation--LLOQ) to 5 ?g/mL, with determination coefficients (R(2)) higher than 0.99 for all analytes in all runs. The limits of detection were 0.1 ?g/mL for BZP and TFMPP, while for MeOPP and mCPP 0.05 ?g/mL was obtained. Intra- and interday precision ranged from 1 to 14%, and accuracy was within a 15% interval for all analytes, fulfilling the criteria normally accepted in bioanalytical method validation. Under the optimized conditions, extraction efficiency was higher than 80% for all analytes, except BZP (50%). MEPS showed to be a rapid (<2 min) and simple procedure for the determination of piperazine-type stimulants in human urine, allowing reducing the handling time and costs usually associated to this type of analysis. Furthermore, the fact that only 0.1 mL of sample is required make this method a valuable and powerful tool for drug monitoring in human urine in situations where those compounds are involved, for instance in forensic scenarios. PMID:22221903

  5. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    NASA Astrophysics Data System (ADS)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  6. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode.

    PubMed

    Wang, Kun-Lun; Ren, Xiao-Dong; Huang, Xian-Bin; Zhang, Si-Qun; Zhou, Shao-Tong; Dan, Jia-Kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-Chun; Wei, Bing; Ji, Ce; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%. PMID:26628136

  7. Determination of small halogenated carboxylic acid residues in drug substances by high performance liquid chromatography-diode array detection following derivatization with nitro-substituted phenylhydrazines.

    PubMed

    Hou, Desheng; Fan, Jingjing; Han, Lingfei; Ruan, Xiaoling; Feng, Feng; Liu, Wenyuan; Zheng, Feng

    2016-03-18

    A method for the determination of small halogenated carboxylic acid (HCA) residues in drug substances is urgently needed because of the potential of HCAs for genotoxicity and carcinogenicity in humans. We have now developed a simple method, involving derivatization followed by high performance liquid chromatography-diode array detection (HPLC-DAD), for the determination of six likely residual HCAs (monochloroacetic acid, monobromoacetic acid, dichloroacetic acid, 2-chloropropionic acid, 2-bromopropionic acid and 3-chloropropionic acid) in drug substances. Different nitro-substituted phenylhydrazines (NPHs) derivatization reagents were systematically compared and evaluated. 2-Nitrophenylhydrazine hydrochloride (2-NPH·HCl) was selected as the most suitable choice since its derivatives absorb strongly at 392nm, a region of the spectrum where most drug substances and impurities absorb very weakly. During the derivatization process, the commonly used catalyst, pyridine, caused rapid dechlorination or chlorine substitution of α-halogenated derivatives. To avoid these unwanted side reactions, a reliable derivatization method that did not use pyridine was developed. Reaction with 2-NPH·HCl using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as coupling agent in acetonitrile-water (70:30) at room temperature for 2h gave complete reaction and avoided degradation products. The derivatives were analyzed, without any pretreatment, using gradient HPLC with detection in the near visible region. Organic acids commonly found in drug substances and other impurities did not interfere with the analysis. Good linearity (r>0.999) and low limits of quantitation (0.05-0.12μgmL(-1)) were obtained. The mean recoveries were in the range of 80-115% with RSD <5.81% except for 3-CPA in ibuprofen which was 78.5%. The intra- and inter-day precisons were expressed as RSD <1.98% and <4.39%, respectively. Finally, the proposed method was successfully used for the residue determination of the six HCAs in eight drug substance samples. PMID:26893023

  8. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    SciTech Connect

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  9. Development of a rapid resolution liquid chromatography-diode array detector method for the determination of three compounds in Ziziphora clinopodioides Lam from different origins of Xinjiang

    PubMed Central

    Tian, Shuge; Yu, Qian; Wang, Dongdong; Upur, Halmuart

    2012-01-01

    Context: As a traditional Uygur medicinal plant, Z. clinopodioides Lam has various uses in Xinjiang. Aims: A reversed-phase rapid resolution liquid chromatography (RP-RRLC) method with diode array detector (DAD) was developed for simultaneous determination of diosmin, linarin, and pulegone from Ziziphora clinopodioides Lam, a widely used in traditional Uygur medicine for treating heart disease, high blood pressure, and other diseases. Settings and Design: Compounds were separated on a XDB-C18 reversed-phase analytical column (50 mm × 4.6 mm, 1.8 μm) with gradient elution using methanol and 1% aqueous acetic acid (v/v) at 0.9 mL/min. he detection wavelength was set at 270 nm. Materials and Methods: Ziziphora clinopodioides Lam. were collected from ten different origins in Xinjiang, including the Ban fang ditch, Tuoli, the Altay mountains, Terks, Xiata Road, Zhaosu Highway, Guozigou, Fukang, Jimsar, Wulabo. Statistical Analysis Used: The intra-day and inter-day precisions of all three compounds were less than 0.89% and the average recoveries ranged from 97.4 to 104.1%. There were highly significant linear correlations between component concentrations and specific chromatographic peak areas (R2 > 0.999). Results: The proposed method was successfully applied to determine the levels of three active components in Z. clinopodioides Lam. samples from different locations in Xinjiang. Conclusions: The proposed method is simple, consistent, accurate, and could be utilized as a quality control method for Z. clinopodioides Lam. PMID:24082631

  10. Antimicrobial activity of Marcetia DC species (Melastomataceae) and analysis of its flavonoids by reverse phase-high performance liquid chromatography coupled-diode array detector

    PubMed Central

    Leite, Tonny Cley Campos; de Sena, Amanda Reges; dos Santos Silva, Tânia Regina; dos Santos, Andrea Karla Almeida; Uetanabaro, Ana Paula Trovatti; Branco, Alexsandro

    2012-01-01

    Background: Marcetia genera currently comprises 29 species, with approximately 90% inhabiting Bahia (Brazil), and most are endemic to the highlands of the Chapada Diamantina (Bahia). Among the species, only M. taxifolia (A.St.-Hil.) DC. populates Brazil (state of Roraima to Paraná) and also Venezuela, Colombia, and Guyana. Objective: This work evaluated the antimicrobial activity of hexane, ethyl acetate, and methanol extracts of three species of Marcetia (Marcetia canescens Naud., M. macrophylla Wurdack, and M. taxifolia A.StHil) against several microorganism. In addition, the flavonoids were analyzed in extracts by HPLC-DAD. Materials and methods: The tests were made using Gram-positive (three strains of Staphylococcus aureus) and Gram-negative (two strains of Escherichia coli, a strain of Pseudomonas aeruginosa and another of Salmonella choleraesius) bacteria resistant and nonresistant to antibiotics and yeasts (two strains of Candida albicans and one of C. parapsilosis) by the disk diffusion method. Solid-phase extraction (SPE) was performed on the above extracts to isolate flavonoids, which were subsequently analyzed by high performance liquid chromatography coupled diode array detector (HPLC-DAD). Results: Results showed that extracts inhibited the Gram-positive bacteria and yeast. The hexane extracts possessed the lowest activity, while the ethyl acetate and methanolic extracts were more active. Conclusion: Marcetia taxifolia was more effective (active against 10 microorganisms studied), and only its methanol extract inhibited Gram-negative bacteria (P. aeruginosa and S. choleraesius). SPE and HPLC-DAD analysis showed that M. canescens and M. macrophylla contain glycosylated flavonoids, while the majority of extracts from M. taxifolia were aglycone flavonoids. PMID:23060695

  11. Development and validation of an high-performance liquid chromatography-diode array detector method for the simultaneous determination of six phenolic compounds in abnormal savda munziq decoction

    PubMed Central

    Tian, Shuge; Liu, Wenxian; Liu, Feng; Zhang, Xuejia; Upur, Halmuart

    2015-01-01

    Aims: Given the high-effectiveness and low-toxicity of abnormal savda munziq (ASMQ), its herbal formulation has long been used in traditional Uyghur medicine to treat complex diseases, such as cancer, diabetes, and cardiovascular diseases. Settings and Design: ASMQ decoction by reversed-phase high-performance liquid chromatography coupled with a diode array detector was successfully developed for the simultaneous quality assessment of gallic acid, protocatechuic acid, caffeic acid, rutin, rosmarinic acid, and luteolin. The six phenolic compounds were separated on an Agilent TC-C18 reversed-phase analytical column (4.6 × 250 mm, 5 μm) by gradient elution using 0.3% aqueous formic acid (v/v) and 0.3% methanol formic acid (v/v) at 1.0 mL/min. Materials and Methods: The plant material was separately ground and mixed at the following ratios (10): Cordia dichotoma (10.6), Anchusa italic (10.6), Euphorbia humifusa (4.9), Adiantum capillus-veneris (4.9), Ziziphus jujube (4.9), Glycyrrhiza uralensis (7.1), Foeniculum vulgare (4.9), Lavandula angustifolia (4.9), Dracocephalum moldavica L. (4.9), and Alhagi pseudoalhagi (42.3). Statistical Analysis Used: The precisions of all six compounds were <0.60%, and the average recoveries ranged from 99.39% to 104.85%. Highly significant linear correlations were found between component concentrations and specific chromatographic peak areas (R2 > 0.999). Results: The proposed method was successfully applied to determine the levels of six active components in ASMQ. Conclusions: Given the simplicity, precision, specificity, and sensitivity of the method, it can be utilized as a quality control approach to simultaneously determining the six phenolic compounds in AMSQ. PMID:25709227

  12. Separation and quantification of 15 carotenoids by reversed phase high performance liquid chromatography coupled to diode array detection with isosbestic wavelength approach.

    PubMed

    Mitrowska, Kamila; Vincent, Ursula; von Holst, Christoph

    2012-04-13

    The manuscript presents the development of a new reverse phase high performance liquid chromatography (RP-HPLC) photo diode array detection method allowing the separation and quantification of 15 carotenoids (adonirubin, adonixanthin, astaxanthin, astaxanthin dimethyl disuccinate, asteroidenone, beta-apo-8'-carotenal, beta-apo-8'-carotenoic acid ethyl ester, beta-carotene, canthaxanthin, capsanthin, citranaxanthin, echinenone, lutein, lycopene, and zeaxanthin), 10 of which are feed additives authorised within the European Union. The developed method allows for the reliable determination of the total carotenoid content in one run using the corresponding E-isomer as calibration standard while taking into account the E/Z-isomers composition. This is a key criterion for the application of the method, since for most of the analytes included in this study analytical standards are only available for the E-isomers. This goal was achieved by applying the isosbestic concept, in order to identify specific wavelengths, at which the absorption coefficients are identical for all stereoisomers concerned. The second target referred to the optimisation of the LC conditions. By means of an experimental design, an optimised RP-HPLC method was developed allowing for a sufficient chromatographic separation of all carotenoids. The selected method uses a Suplex pKb-100 HPLC column and applying a gradient with a mixture of acetonitrile, tert-butyl-methyl ether and water as mobile phases. The limits of detection and limits of quantification ranged from 0.06 mg L(-1) to 0.14 mg L(-1) and from 0.20 mg L(-1) to 0.48 mg L(-1), respectively. PMID:22377469

  13. BIN Diode For Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Maserjian, J.

    1989-01-01

    Diode formed by selective doping during epitaxial growth, starting with semi-insulating substrate. Use of high-mobility semiconductors like GaAs extends cutoff frequency. Either molecular-beam epitaxy (MBE) or organometallic chemical-vapor deposition used to form layers of diode. Planar growth process permits subsequent fabrication of arrays of diodes by standard photolithographic techniques, to achieve quasi-optical coupling of submillimeter radiation. Useful for generation of harmonics or heterodyne mixing in receivers for atmospheric and space spectroscopy operating at millimeter and submillimeter wavelengths. Used as frequency doublers or triplers, diodes of new type extend frequency range of present solid-state oscillators.

  14. An on-line high-performance liquid chromatography-diode-array detector-electrospray ionization-ion-trap-time-of-flight-mass spectrometry-total antioxidant capacity detection system applying two antioxidant methods for activity evaluation of the edible flowers from Prunus mume.

    PubMed

    Zhang, Xiaoxia; Lin, Zongtao; Fang, Jinggui; Liu, Meixian; Niu, Yanyan; Chen, Shizhong; Wang, Hong

    2015-10-01

    An on-line high-performance liquid chromatography-diode-array detector-electrospray ionization-ion-trap-time-of-flight-mass spectrometry-total antioxidant capacity detection (HPLC-DAD-ESI-IT-TOF-MS-TACD) system was created for identification and evaluation of antioxidants in Prunus (P.) mume flowers. Applying this system, the HPLC fingerprint, ultraviolet (UV) spectra, mass fragmentations, active profiles against 1,1-diphenylpicryl-2-hydrazyl radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) of each complex sample were obtained simultaneously after one injection. Synchronous structure identification and activities screening of complex samples were thus accomplished. In this study, 78 compounds were identified from P. mume flowers by their chromatographic behaviors, UV spectra and MS data with the assistance of standard compounds and literature reports. The DPPH and FRAP activity of 24 samples (23 different P. mume varieties and 1 related herbal medicine) were then quantified by their detailed activity profiles from the on-line system, and by the total activity of each sample extract from off-line 96-well plate method. As a result, 21 and 32 compounds in the on-line system showed anti-oxidative effects against DPPH and FRAP, respectively. The established on-line system is efficient, sensitive and reliable to tell the DPPH and FRAP antioxidant activities of individual compound in complex samples, and therefore would be a useful and promising technique for antioxidant screening from different food and medicinal matrices. PMID:26321507

  15. Preparation of Phi29 DNA Polymerase Free of Amplifiable DNA Using Ethidium Monoazide, an Ultraviolet-Free Light-Emitting Diode Lamp and Trehalose

    PubMed Central

    Takahashi, Hirokazu; Yamazaki, Hiroyuki; Akanuma, Satoshi; Kanahara, Hiroko; Saito, Toshiyuki; Chimuro, Tomoyuki; Kobayashi, Takayoshi; Ohtani, Toshio; Yamamoto, Kimiko; Sugiyama, Shigeru; Kobori, Toshiro

    2014-01-01

    We previously reported that multiply-primed rolling circle amplification (MRPCA) using modified random RNA primers can amplify tiny amounts of circular DNA without producing any byproducts. However, contaminating DNA in recombinant Phi29 DNA polymerase adversely affects the outcome of MPRCA, especially for negative controls such as non-template controls. The amplified DNA in negative control casts doubt on the result of DNA amplification. Since Phi29 DNA polymerase has high affinity for both single-strand and double-stranded DNA, some amount of host DNA will always remain in the recombinant polymerase. Here we describe a procedure for preparing Phi29 DNA polymerase which is essentially free of amplifiable DNA. This procedure is realized by a combination of host DNA removal using appropriate salt concentrations, inactivation of amplifiable DNA using ethidium monoazide, and irradiation with visible light from a light-emitting diode lamp. Any remaining DNA, which likely exists as oligonucleotides captured by the Phi29 DNA polymerase, is degraded by the 3′-5′ exonuclease activity of the polymerase itself in the presence of trehalose, used as an anti-aggregation reagent. Phi29 DNA polymerase purified by this procedure has little amplifiable DNA, resulting in reproducible amplification of at least ten copies of plasmid DNA without any byproducts and reducing reaction volume. This procedure could aid the amplification of tiny amounts DNA, thereby providing clear evidence of contamination from laboratory environments, tools and reagents. PMID:24505243

  16. Lasers solides pompés par diode émettant des impulsions picosecondes à haute cadence dans l'ultraviolet

    NASA Astrophysics Data System (ADS)

    Balembois, F.; Forget, S.; Papadopoulos, D.; Druon, F.; Georges, P.; Devilder, P.-J.; Lefort, L.

    2005-06-01

    De nombreuses applications requièrent des sources lasers impulsionnelles ultraviolettes, présentant des durées d'impulsion et des cadences spécifiques. Grâce à l'utilisation de structures d'oscillateurs et d'amplificateurs originales il est possible de réaliser de telles sources à partir de lasers solides pompés par diodes et de profiter ainsi de la compacité, de l'efficacité et de la robustesse de ces sources. Nous présentons ici la réalisation d'un laser à verrouillage de modes et d'un microlaser déclenché permettant d'obtenir des impulsions ultraviolettes picosecondes à une cadence de quelques MHz en vue d'application à la microscopie de fluorescence résolue en temps, ainsi que la mise en œuvre pour le traitement des matériaux d'un système oscillateur-amplificateur produisant plus de 600 mW de rayonnement UV à 266 ou 355 nm avec des impulsions sub-nanosecondes.

  17. Diode-pumped continuous-wave and femtosecond Cr:LiCAF lasers with high average power in the near infrared, visible and near ultraviolet.

    PubMed

    Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred

    2015-04-01

    We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated. PMID:25968727

  18. Improvement of III-nitride visible and ultraviolet light-emitting diode performance, including extraction efficiency, electrical efficiency, thermal management and efficiency maintenance at high current densities

    NASA Astrophysics Data System (ADS)

    Vampola, Kenneth

    In this work, highly efficient broad-area LEDs on bulk GaN substrates were developed and the fabrication process and device layout were optimized. This optimization relied in part on electrical, optical, thermal and recombination models. The peak external quantum efficiency of the 450 nm LEDs was over 68% when biased at 20 mA. The efficiency characteristic showed a typical droop curve, decreasing at high current densities. The cause of this droop is unknown. An exploratory experiment was conducted to characterize electron overflow and its role in efficiency droop. Novel device structures were developed, allowing direct measurement of overflow electrons in LED-like structures under electrical injection. In these test structures, electrons were observed in the p-type region of the LED only at current densities where efficiency droop was active. The onset of efficiency droop was preceded by the onset of electron overflow. However, the magnitude of the overflow current could not be measured and it is undetermined whether the dominant cause of efficiency droop is electron overflow or some other process such as Auger recombination. Calibration structures allowing measurement of the magnitude of the overflow are proposed. Work on deep-ultraviolet, 275 nm, LEDs is also presented. Demonstration of direct-wafer bonded LEDs to beta-Ga2O3 is presented. A SiC substrate removal process is discussed. LEDs fabricated by this flip-chip process exhibited up to 1.8 times greater power compared to LEDs fabricated by a standard process but suffered from increased forward voltage and premature failure. Further process development leading to electrically efficient operation is proposed.

  19. An enhanced multiwavelength ultraviolet biological trigger lidar

    NASA Astrophysics Data System (ADS)

    Achey, Alexander; Bufton, Jack; Dawson, Jeffrey; Huang, Wen; Lee, Sangmin; Mehta, Nikhil; Prasad, Coorg R.

    2004-12-01

    A compact Ultraviolet Biological Trigger Lidar (UBTL) instrument for detection and discrimination of bio-warfare-agent (BWA) simulant aerosol clouds was developed by us [Prasad, et al, 2004] using a 5mW, 375nm semiconductor UV optical source (SUVOS) laser diode. It underwent successful field tests at Dugway Proving Ground and demonstrated measurement ranges of over 300m for elastic scattering and >100m for fluorescence. The UBTL was modified during mid-2004 to enhance its detection and discrimination performance with increased range of operation and sensitivity. The major optical modifications were: 1. increase in telescope collection aperture to 200 mm diameter: 2. addition of 266nm and 977nm laser transmitters: 3. addition of three detection channels for 266nm and 977nm elastic backscatter and fluorescence centered at 330nm. Also the commercial electronics of the original UBTL were replaced with a multi-channel field programmable gate array (FPGA) chip for laser diode modulation and data acquisition that allowed simultaneous and continuous operation of the UBTL sensor on all of its transmitter and receiver wavelengths. A notebook computer was added for data display and storage. Field tests were performed during July 2004 at the Edgewood Chemical and Biological Center in Maryland to establish the enhanced performance of UBTL subsystems. Results of these tests are presented and discussed.

  20. Design of a silicon avalanche photodiode pixel with integrated laser diode using back-illuminated crystallographically etched silicon-on-sapphire with monolithically integrated microlens for dual-mode passive and active imaging arrays

    NASA Astrophysics Data System (ADS)

    Stern, Alvin G.

    2010-08-01

    There is a growing need in scientific research applications for dual-mode, passive and active 2D and 3D LADAR imaging methods. To fill this need, an advanced back-illuminated silicon avalanche photodiode (APD) design is presented using a novel silicon-on-sapphire substrate incorporating a crystalline aluminum nitride (AlN) antireflective layer between the silicon and R-plane sapphire. This allows integration of a high quantum efficiency silicon APD with a gallium nitride (GaN) laser diode in each pixel. The pixel design enables single photon sensitive, solid-state focal plane arrays (FPAs) with wide dynamic range, supporting passive and active imaging capability in a single FPA. When (100) silicon is properly etched with TMAH solution, square based pyramidal frustum or mesa arrays result with the four mesa sidewalls of the APD formed by (111) silicon planes that intersect the (100) planes at a crystallographic angle, φ c = 54.7°. The APD device is fabricated in the mesa using conventional silicon processing technology. The GaN laser diode is fabricated by epitaxial growth inside of an inverted, etched cavity in the silicon mesa. Microlenses are fabricated in the thinned, and AR-coated sapphire substrate. The APDs share a common, front-side anode contact, and laser diodes share a common cathode. A low resistance (Al) or (Cu) metal anode grid fills the space between pixels and also inhibits optical crosstalk. SOS-APD arrays are flip-chip bump-bonded to CMOS readout ICs to produce hybrid FPAs. The square 27 μm emitter-detector pixel achieves SNR > 1 in active detection mode for Lambert surfaces at 1,000 meters.