These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Diode laser array  

NASA Technical Reports Server (NTRS)

A diode laser array comprises a substrate of a semiconductor material having first and second opposed surfaces. On the first surface is a plurality of spaced gain sections and a separate distributed Bragg reflector passive waveguide at each end of each gain section and optically connecting the gain sections. Each gain section includes a cavity therein wherein charge carriers are generated and recombine to generate light which is confined in the cavity. Also, the cavity, which is preferably a quantum well cavity, provides both a high differential gain and potentially large depth of loss modulation. Each waveguide has a wavelength which is preferably formed by an extension of the cavity of the gain sections and a grating. The grating has a period which provides a selective feedback of light into the gain sections to supporting lasing, which allows some of the light to be emitted from the waveguide normal to the surface of the substrate and which allows optical coupling of the gain sections. Also, the grating period provides an operating wavelength which is on the short wavelength side of the gain period of the gain sections required for laser oscillation. An RF pulse is applied so as to maximize the magnitude of the loss modulation and the differential gain in the gain sections. The array is operated by applying a DC bias to all the gain sections at a level just below the threshold of the gain sections to only one of the gain sections which raises the bias in all of the gain sections to a level that causes all of the gain sections to oscillate. Thus, a small bias can turn the array on and off.

Carlson, Nils W. (Inventor); Evans, Gary A. (Inventor); Kaiser, Charlie J. (Inventor)

1990-01-01

2

Simultaneous determination three phytosterol compounds, campesterol, stigmasterol and daucosterol in Artemisia apiacea by high performance liquid chromatography-diode array ultraviolet/visible detector  

PubMed Central

Background: Artemisia apiacea is a traditional herbal medicine using treatment of eczema and jaundice in Eastern Asia, including China, Korea, and Japan. Objective: An accurate and sensitive analysis method using high performance liquid chromatography-diode array ultraviolet/visible detector and liquid chromatography–mass spectrometry for the simultaneous determination of three phytosterol compounds, campesterol, stigmasterol and daucosterol in A. apiacea was established. Materials and Methods: The analytes were separated on a Shiseido C18 column (5 ?m, 4.6 mm I.D. ×250 mm) with gradient elution of 0.1% trifluoroacetic acid and acetonitrile. The flow rate was 1 mL/min and detection wavelengths were set at 205 and 254 nm. Results: Validation of the method was performed to demonstrate its linearity, precision and accuracy. The calibration curves showed good linearity (R2 > 0.9994). The limits of detection and limits of quantification were within the ranges 0.55–7.07 ?g/mL and 1.67–21.44 ?g/mL, respectively. And, the relative standard deviations of intra- and inter-day precision were <2.93%. The recoveries were found to be in the range of 90.03–104.91%. Conclusion: The developed method has been successfully applied to the analysis for quality control of campesterol, stigmasterol and daucosterol in A. apiacea.

Lee, Jiwoo; Weon, Jin Bae; Yun, Bo-Ra; Eom, Min Rye; Ma, Choong Je

2015-01-01

3

SOI diode uncooled infrared focal plane arrays  

Microsoft Academic Search

An uncooled infrared focal plane array (IR FPA) is a MEMS device that integrates an array of tiny thermal infrared detector pixels. An SOI diode uncooled IR FPA is a type that uses freestanding single-crystal diodes as temperature sensors and has various advantages over the other MEMS-based uncooled IR FPAs. Since the first demonstration of an SOI diode uncooled IR

Masafumi Kimata; Masashi Ueno; Munehisa Takeda; Toshiki Seto

2006-01-01

4

Analysis of phased-array diode lasers  

SciTech Connect

An improved, more accurate analysis of phased-array diode lasers is presented, which yields results that differ both qualitatively and quantitatively from those previously employed. A numerical example indicating decreased splitting in array mode gains is included.

Hardy, A.; Streifer, W.

1985-07-01

5

Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons  

NASA Astrophysics Data System (ADS)

Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ~9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their ``remote'' separation. Thereby, two possible models involving the dynamic process of interactions among excitons, photons, and LSPs, were established to understand the selective enhancement of ZnO EL.Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ~9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their ``remote'' separation. Thereby, two possible models involving the dynamic process of interactions among excitons, photons, and LSPs, were established to understand the selective enhancement of ZnO EL. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04966g

Zhang, Cen; Marvinney, Claire Elizabeth; Xu, Hai Yang; Liu, Wei Zhen; Wang, Chun Liang; Zhang, Li Xia; Wang, Jian Nong; Ma, Jian Gang; Liu, Yi Chun

2014-12-01

6

Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons.  

PubMed

Localized surface plasmon (LSP) enhanced waveguide-type ultraviolet light-emitting diodes (LEDs) were fabricated by sputtering Ag nanoparticles (Ag-NPs) onto ZnO/MgZnO core/shell nanorod array (CS-NRA)/p-GaN heterostructures. A ?9-fold enhancement of ZnO ultraviolet electroluminescence (EL) was demonstrated by the Ag-NPs decorated LED compared with the device without Ag-NPs. Angle-dependent EL measurements, as well as finite-difference time-domain simulations of the EL intensity spatial distribution, confirmed the waveguide-type EL transmission mode along the NR's axial direction. The increased spontaneous emission rate observed in time-resolved spectroscopy suggested that the ZnO EL enhancement was attributed to LSP-exciton/polariton coupling. However, a direct coupling is very difficult to achieve between Ag-LSPs and electron-hole pairs in the active region due to their "remote" separation. Thereby, two possible models involving the dynamic process of interactions among excitons, photons, and LSPs, were established to understand the selective enhancement of ZnO EL. PMID:25475883

Zhang, Cen; Marvinney, Claire Elizabeth; Xu, Hai Yang; Liu, Wei Zhen; Wang, Chun Liang; Zhang, Li Xia; Wang, Jian Nong; Ma, Jian Gang; Liu, Yi Chun

2015-01-21

7

C18 solid-phase isolation and high-performance liquid chromatography/ultraviolet diode array determination of fully methoxylated flavones in citrus juices.  

PubMed

A new analytical methodology for the determination of fully methoxylated flavones (FMFs) in citrus juices is described. Isolation of the FMFs is carried out by percolation of 30 mL of clarified citrus juice (to which tetramethyl-o-kaempferol is previously added as internal standard) through a C18 Sep-Pak cartridge, washing with 3 mL of water followed by 5 mL of water/acetonitrile (3:1), and selective elution of the retained FMFs with 5 mL of water/acetonitrile (9:11). Determination of the isolated FMFs is carried out by reversed-phase high-performance liquid chromatography (HPLC) and UV diode array detection (DAD). Signals at wavelengths 320, 335, and 345 nm (bandwidth 4 nm) are simultaneously acquired, stored, plotted, and integrated. The column used is a microbore (200 x 2.1-mm) Hypersil ODS 5 microns. Elution is in gradient mode, using a ternary mobile phase (water/acetonitrile/tetrahydrofuran). Column temperature is 40 degrees C. Recovery yields are nearly 100% for all the FMFs detected and identified: isosinensetin, hexamethyl-o-gossypetin, sinensetin, tetramethyl-o-isoscutellarein, hexamethyl-o-quercetagetin, nobiletin, tetramethyl-o-scutellarein, heptamethoxyflavone, and tangeretin. Chromatographic separation of the FMFs is extremely dependent upon the minor changes of the mobile phase composition and percentages, gradient rate, and temperature. The UV spectra (230 to 400 nm) of the FMFs obtained under chromatographic conditions are given. The FMFs relative response factors at 320, 335, and 345 nm and their concentrations in hand-squeezed and commercial concentrated orange and mandarin juices are tabulated. The FMF concentration differences found among samples are discussed. PMID:3225307

Sendra, J M; Navarro, J L; Izquierdo, L

1988-09-01

8

Scalable diode array pumped Nd rod laser  

NASA Technical Reports Server (NTRS)

Experiments were carried out on a five-array pump head which utilizes gold-coated reflective cones to couple the pump energy to Nd:YAG and Nd:YLF rod lasers, demonstrating high efficiency and uniform energy deposition. Because the cones function as optical diodes to light outside their acceptance angle (typically 10-15 deg), much of the diode energy not absorbed on the first pass can be returned to the rod.

Zenzie, H. H.; Knights, M. G.; Mosto, J. R.; Chicklis, E. P.; Perkins, P. E.

1991-01-01

9

Millimeter wave monolithic schottky diode imaging arrays  

Microsoft Academic Search

Planar Schottky diodes are integrated with bow-tie antennas to form a one-dimensional array. The energy is focused onto the antennas through a silicon lens placed on the back of the gallium-arsenide substrate. A polystyrene cap on the silicon lens reduces the reflection loss. A self-aligning process with proton isolation has been developed to make the planar Schottky diodes with a

Chung-en Zah; Dayalan Kasilingam; John Steven Smith; David Rutledge; Tai-Chi Wang; Steven E. Schwarz

1985-01-01

10

International ultraviolet explorer solar array power degradation  

NASA Technical Reports Server (NTRS)

The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.

Day, J. H., Jr.

1983-01-01

11

The Fuge Tube Diode Array Spectrophotometer  

ERIC Educational Resources Information Center

We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in…

Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.

2008-01-01

12

Graphene/GaN diodes for ultraviolet and visible photodetectors  

NASA Astrophysics Data System (ADS)

The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ˜mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun; Shen, Bo; Liao, Zhi-Min; Yu, Da-Peng

2014-08-01

13

Graphene/GaN diodes for ultraviolet and visible photodetectors  

SciTech Connect

The Schottky diodes based on graphene/GaN interface are fabricated and demonstrated for the dual-wavelength photodetection of ultraviolet (UV) and green lights. The physical mechanisms of the photoelectric response of the diodes with different light wavelengths are different. For UV illumination, the photo-generated carriers lower the Schottky barrier and increase the photocurrent. For green light illumination, as the photon energy is smaller than the bandgap of GaN, the hot electrons excited in graphene via internal photoemission are responsible for the photoelectric response. Using graphene as a transparent electrode, the diodes show a ?mS photoresponse, providing an alternative route toward multi-wavelength photodetectors.

Lin, Fang; Chen, Shao-Wen; Meng, Jie; Tse, Geoffrey; Fu, Xue-Wen; Xu, Fu-Jun [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Shen, Bo; Liao, Zhi-Min, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn; Yu, Da-Peng, E-mail: liaozm@pku.edu.cn, E-mail: yudp@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

2014-08-18

14

Low-cost laser diode array  

DOEpatents

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

Freitas, Barry L. (Livermore, CA); Skidmore, Jay A. (Livermore, CA)

1999-01-01

15

Low-cost laser diode array  

DOEpatents

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

Freitas, B.L.; Skidmore, J.A.

1999-06-01

16

Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser  

E-print Network

Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical linewidth of a commercial ultraviolet grating extended-cavity diode laser (TOPTICA DL Pro) using weak stabilization; (140.2020) Diode lasers; (140.3610) Lasers, ul- traviolet. References and links 1. L. Ricci, M

Vuletic, Vladan

17

1-D array of perforated diode neutron detectors  

Microsoft Academic Search

Performance of a 4cm long 64-pixel perforated diode neutron detector array is compared with an identical array of thin-film coated diodes. The perforated neutron detector design has been adapted to a 1-D pixel array capable of 120?m spatial resolution and counting efficiency greater than 12%. Deep vertical trenches filled with 6LiF provide outstanding improvement in efficiency over thin-film coated diode

Walter J. McNeil; Steven L. Bellinger; Troy C. Unruh; Chris M. Henderson; Phil Ugorowski; Bryce Morris-Lee; Russell D. Taylor; Douglas S. McGregor

2009-01-01

18

Microcontroller interface for diode array spectrometry  

NASA Astrophysics Data System (ADS)

An alternative to bus-based computer interfacing is presented using diode array spectrometry as a typical application. The new interface consists of an embedded single-chip microcomputer, known as a microcontroller, which provides all necessary digital I/O and analog-to-digital conversion (ADC) along with an unprecedented amount of intelligence. Communication with a host computer system is accomplished by a standard serial interface so this type of interfacing is applicable to a wide range of personal and minicomputers and can be easily networked. Data are acquired asynchronousty and sent to the host on command. New operating modes which have no traditional counterparts are presented.

Aguo, L.; Williams, R. R.

19

Microlens frames for laser diode arrays  

DOEpatents

Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.

Skidmore, Jay A. (Livermore, CA); Freitas, Barry L. (Livermore, CA)

1999-01-01

20

Microlens frames for laser diode arrays  

DOEpatents

Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.

Skidmore, J.A.; Freitas, B.L.

1999-07-13

21

Ultraviolet emission from a ZnO rod homojunction light-emitting diode  

NASA Astrophysics Data System (ADS)

Ultraviolet electroluminescence was demonstrated at room temperature from a ZnO rod homojunction light-emitting diode array. The p-type doping was realized by phosphorous (P) ion implantation into defect-free ZnO rods followed by annealing. High resolution transmission electron microscopy shows the lattice compression of annealed single crystalline P-doped ZnO rod compared to the as-grown ZnO rod, suggesting atomically incorporation of P into the ZnO wurtzite structure. p-type doping was confirmed by low temperature photoluminescence spectra and single rod current-voltage characterization.

Sun, X. W.; Ling, B.; Zhao, J. L.; Tan, S. T.; Yang, Y.; Shen, Y. Q.; Dong, Z. L.; Li, X. C.

2009-09-01

22

Space Qualification of Laser Diode Arrays  

NASA Technical Reports Server (NTRS)

Laser instruments have great potential in enabling a new generation of remote-sensing scientific instruments. NASA s desire to employ laser instruments aboard satellites, imposes stringent reliability requirements under severe conditions. As a result of these requirements, NASA has a research program to understand, quantify and reduce the risk of failure to these instruments when deployed on satellites. Most of NASA s proposed laser missions have base-lined diode-pumped Nd:YAG lasers that generally use quasi-constant wave (QCW), 808 nm Laser Diode Arrays (LDAs). Our group has an on-going test program to measure the performance of these LDAs when operated in conditions replicating launch and orbit. In this paper, we report on the results of tests designed to measure the effect of vibration loads simulating launch into space and the radiation environment encountered on orbit. Our primary objective is to quantify the performance of the LDAs in conditions replicating those of a satellite instrument, determine their limitations and strengths which will enable better and more robust designs. To this end we have developed a systematic testing strategy to quantify the effect of environmental stresses on the optical and electrical properties of the LDA.

Troupaki, Elisavet; Kashem, Nasir B.; Allan, Graham R.; Vasilyev, Aleksey; Stephen, Mark

2005-01-01

23

1-D array of perforated diode neutron detectors  

Microsoft Academic Search

Performance of a 4 cm long 64-pixel perforated diode neutron detector array is compared with an identical array of thin-film coated diodes. The perforated neutron detector design has been adapted to a 1-D pixel array capable of 120 mum spatial resolution and counting efficiency greater than 12%. Deep vertical trenches filled with 6LiF provide outstanding improvement in efficiency over thin-film

Walter J. McNeil; Steven L. Bellinger; Troy C. Unruh; Chris M. Henderson; Phil Ugorowski; Bryce Morris-Lee; Russell D. Taylor; Douglas S. McGregor

2009-01-01

24

Tunable picosecond blue and ultraviolet pulses from a diode-pumped laser system seeded  

E-print Network

Tunable picosecond blue and ultraviolet pulses from a diode-pumped laser system seeded by a gain-switched laser diode Franc¸ ois Balembois, Mickae¨ l Gaignet, Patrick Georges, Alain Brun, Nikolai¨ Stelmakh, and Jean Michel Lourtioz Picosecond pulses emitted from a gain-switched laser diode have been amplified

Paris-Sud XI, Université de

25

Ball Lenses Collimate And Focus Diode-Laser-Array Beams  

NASA Technical Reports Server (NTRS)

Ball lenses used to collimate and focus pump light from array of diode lasers onto input face of solid-state laser. Experiments show ball lenses perform as well as, or better than, multiple-element lenses supplied heretofore as parts of commercial arrays of diode lasers. Offers advantages of relative simplicity and ease of fabrication, lower cost, lower weight, and less sensitivity to misalignment.

Hemmati, Hamid

1992-01-01

26

Means for phase locking the outputs of a surface emitting laser diode array  

NASA Technical Reports Server (NTRS)

An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.

Lesh, James R. (inventor)

1987-01-01

27

Modular package for cooling a laser diode array  

DOEpatents

A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.

Mundinger, David C. (Stockton, CA); Benett, William J. (Livermore, CA); Beach, Raymond J. (Livermore, CA)

1992-01-01

28

Phased array operation of a diode grid impedance surface  

SciTech Connect

New experimental results have been achieved with monolithic millimeter-wave Schottky varactor diode arrays. In addition to improved results for such arrays as reflected beam phase shifters, the capability of the arrays, under voltage control, to steer, focus, and change the polarization state of a beam, has been experimentally demonstrated for the first time. These new results broaden the demonstrated capabilities of millimeter wave solid state device arrays, furthering the ultimate objective of the construction of complete systems based on quasi-optical power-combining array technology.

Sjogren, L.B.; Liu, H.X.; Qin, X.; Domier, C.W.; Luhmann, N.C. (Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering)

1994-04-01

29

Applications of microlens-conditioned laser diode arrays  

SciTech Connect

The ability to condition the radiance of laser diodes using shaped-fiber cylindrical-microlens technology has dramatically increased the number of applications that can be practically engaged by diode laser arrays. Lawrence Livermore National Laboratory (LLNL) has actively pursued optical efficiency and engineering improvements in this technology in an effort to supply large radiance-conditioned laser diode array sources for its own internal programs. This effort has centered on the development of a modular integrated laser diode packaging technology with the goal of enabling the simple and flexible construction of high average power, high density, two-dimensional arrays with integrated cylindrical microlenses. Within LLNL, the principal applications of microlens-conditioned laser diode arrays are as high intensity pump sources for diode pumped solid state lasers (DPSSLs). A simple end-pumping architecture has been developed and demonstrated that allows the radiation from microlens-conditioned, two-dimensional diode array apertures to be efficiently delivered to the end of rod lasers. To date, pump powers as high as 2.5 kW have been delivered to 3 mm diameter laser rods. Such high power levels are critical for pumping solid state lasers in which the terminal laser level is a Stark level lying in the ground state manifold. Previously, such systems have often required operation of the solid state gain medium at low temperature to freeze out the terminal laser Stark level population. The authors recently developed high intensity pump sources overcome this difficulty by effectively pumping to much higher inversion levels, allowing efficient operation at or near room temperature. Because the end-pumping technology is scalable in absolute power, the number of rare-earth ions and transitions that can be effectively accessed for use in practical DPSSL systems has grown tremendously.

Beach, R.J.; Emanuel, M.A.; Freitas, B.L. [and others

1995-01-01

30

Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode  

NASA Technical Reports Server (NTRS)

Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

2006-01-01

31

Ultraviolet electroluminescence from two-dimensional ZnO nanomesh/GaN heterojunction light emitting diodes  

NASA Astrophysics Data System (ADS)

The authors report the fabrication of heterojunction light emitting diodes (LEDs) based on two-dimensional (2D) hexagonal ordered n-type ZnO nanomesh and p-type GaN. The 2D ZnO nanomesh array was prepared by employing polystyrene spheres as a template. When a forward bias was applied to the LED, a strong ultraviolet (UV) electroluminescence peaked at 385 nm can be observed. The peak deconvolution revealed three emission peaks at 370, 388, and 420 nm. The origin of these emission peaks will be discussed. In addition, the LED was capable of exciting a red phosphor to convert UV light into red light.

Ye, Jing; Zhao, Yu; Tang, Libin; Chen, Li-Miao; Luk, C. M.; Yu, S. F.; Lee, S. T.; Lau, S. P.

2011-06-01

32

Method and system for homogenizing diode laser pump arrays  

SciTech Connect

An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

Bayramian, Andy J

2013-10-01

33

Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting  

SciTech Connect

We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

Arto V. Nurmikko; Jung Han

2005-09-30

34

Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light emitting diodes  

NASA Astrophysics Data System (ADS)

Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90%). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize products yields and to identify side products. The use of UV-LED arrays offers many advantages over conventional Hg lamp setups, including greater light output over a narrower wavelength range, lower power consumption, and minimal generation of heat.

Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

2015-01-01

35

Photodiode arrays having minimized cross-talk between diodes  

DOEpatents

Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.

Guckel, Henry (Madison, WI); McNamara, Shamus P. (Madison, WI)

2000-10-17

36

Coherently Combined Diode Laser Arrays and Stacks  

E-print Network

We have coherently combined up to 7.2 W CW using an individually addressable 10-element-array of 960-nm slab-coupled optical waveguide lasers (SCOWLs). We are currently scaling the phase-locked output power to 100 W using ...

Hostetler, John L.

37

Stripe-array diode-laser in an off-axis external cavity: Theory and experiment  

E-print Network

Stripe-array diode-laser in an off-axis external cavity: Theory and experiment Andreas Jechow1, Mohrenstr. 39, 10117 Berlin ajechow@uni-potsdam.de, lichtner@wias-berlin.de Abstract: Stripe-array diode of America OCIS codes: (000.4430) General: Numerical approximation and analysis; (140.2020) Diode lasers

Vladimirov, Andrei G.

38

Narrowing of high power diode laser arrays using reflection feedback from an etalon  

E-print Network

Narrowing of high power diode laser arrays using reflection feedback from an etalon M. V. Romalisa of Physics. S0003-6951 00 03434-3 High power 20­100 W diode laser arrays are com- monly used for production of spin-polarized noble gases.1 The diode lasers are used for optical pumping of Rb or K atoms, which

Romalis, Mike

39

Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes  

E-print Network

Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes Jung Min Lee, Jae a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics, light-emitting diodes, 3D architectures, transparent electrodes V ertical arrays of one-dimensional (1D

Rogers, John A.

40

Radiometric characterization of diode-array field spectroradiometers  

Microsoft Academic Search

A study was conducted to evaluate the radiometric performance of two commercially available diode-array field spectroradiometers: the Spectron Engineering (SE) Model 590 that has been on the market for some 10 years and the several-year-old Analytical Spectral Devices (ASD) Personal Spectrometer (PS) 2. Both of these instruments provide rapid acquisition (?1 s) of a spectrum in the visible to near-infrared

Brian L. Markham; Darrel L. Williams; John R. Schafer; Frank Wood; Moon S. Kim

1995-01-01

41

Airborne intercomparison of vacuum ultraviolet fluorescence and tunable diode laser absorption measurements of tropospheric carbon monoxide  

Microsoft Academic Search

During the fall 1997 North Atlantic Regional Experiment (NARE 97), two separate intercomparisons of aircraft-based carbon monoxide measurement instrumentation were conducted. On September 2, CO measurements were simultaneously made aboard the National Oceanic and Atmospheric Administration (NOAA) WP-3 by vacuum ultraviolet (VUV) fluorescence and by tunable diode laser absorption spectroscopy (TDLAS). On September 18, an intercomparison flight was conducted between

John S. Holloway; Roger O. Jakoubek; David D. Parrish; Christoph Gerbig; Andreas Volz-Thomas; Sandra Schmitgen; Alan Fried; Brian Wert; Bruce Henry; James R. Drummond

2000-01-01

42

Ultraviolet picosecond optical pulse generation from a mode-locked InGaN laser diode  

E-print Network

Ultraviolet picosecond optical pulse generation from a mode-locked InGaN laser diode S. Geea) and J optical pulses were generated by actively mode locking an external cavity InGaN laser at a wavelength subpicosecond optical pulses.1 Recent developments of GaN-based semiconductor lasers have made it possible

Bowers, John

43

Qualification of Laser Diode Arrays for Mercury Laser Altimeter Mission  

NASA Technical Reports Server (NTRS)

NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. The MESSENGER mission is flying the Mercury Laser Altimeter (MLA) which is a diode-pumped Nd:YAG laser instrument designed to map the topography of Mercury. The environment imposed on the instrument by the orbital dynamics places special requirements on the laser diode arrays. In order to limit the radiative heating of the satellite from the surface of Mercury, the satellite is designed to have a highly elliptical orbit. The satellite will heat near perigee and cool near apogee. The laser power is cycled during these orbits so that the laser is on for only 30 minutes (perigee) in a 12 hour orbit. The laser heats 10 C while powered up and cools while powered down. In order to simulate these operational conditions, we designed a test to measure the LDA performance while being temperature and power cycled. Though the mission requirements are specific to NASA and performance requirements are derived from unique operating conditions, the results are general and widely applicable. We present results on the performance of twelve LDAs operating for several hundred million pulses. The arrays are 100 watt, quasi-CW, conductively-cooled, 808 nm devices. Prior to testing, we fully characterize each device to establish a baseline for individual array performance and status. Details of this characterization can be found in reference. Arrays are divided into four groups and subjected to the temperature and power cycling matrix are shown.

Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

2004-01-01

44

Linear laser diode arrays for improvement in optical disk recording  

NASA Technical Reports Server (NTRS)

The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.

Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

1990-01-01

45

Deep diode arrays for X-ray detection  

NASA Technical Reports Server (NTRS)

Temperature gradient zone melting process was used to form p-n junctions in bulk of high purity silicon wafers. These diodes were patterned to form arrays for X-ray spectrometers. The whole fabrication processes for these X-ray detectors are reviewed in detail. The p-n junctions were evaluated by (1) the dark diode I-V measurements, (2) the diode C sub I - V measurements, and (3) the MOS C-V measurements. The results showed that these junctions were linearly graded in charge distribution with low reverse bias leakage current flowing through them (few nA at -10 volts). The X-ray detection experiments showed that an FWHM of 500 eV was obtained from these diodes with a small bias of just -5 volts (for X-ray source Fe55). A theoretical model was proposed to explain the extra peaks found in the energy spectra and a very interesting point - cross talk effect was pointed out. This might be a solution to the problem of making really high resolution X-ray spectrometers.

Zemel, J. N.

1984-01-01

46

Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes  

PubMed Central

Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

2015-01-01

47

Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes  

NASA Astrophysics Data System (ADS)

Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs.

Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

2015-03-01

48

Vacuum nanohole array embedded phosphorescent organic light emitting diodes.  

PubMed

Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

2015-01-01

49

Animation of Diode Array Detection in High Performance Liquid Chromatography  

NSDL National Science Digital Library

This animation site deals specifically with diode array detection for liquid chromatography. The animations are short (one to two minutes) and can easily be shown in class as part of a lecture. They are extremely helpful in illustrating key components and concepts of chromatographic systems. Users are encouraged to explore the site and the other brief animations as well. Separate links to other simulations by the same company (TRSL) are also listed on ASDL. This site requires FLASH version 7 or higher in order to work properly.

50

A preliminary analysis of a diode array for densitometry  

NASA Technical Reports Server (NTRS)

A diode-array based image digitizer manufactured by the Eikonix Corp. was tested to see if it can be adapted to the exacting requirements of astronomical densitometry. As the device is presently configured, a dynamic range of 400:1 can be achieved routinely, with a positional accuracy of 2 microns or better. An area of 2048 X 2048 pixels can be scanned in about 5 minutes. Preliminary tests indicate that several relatively simple enhancements can improve both the photometric and the positional accuracy of the device.

Janes, K. A.

1984-01-01

51

Design Proposal of Light Emitting Diode in Vacuum Ultraviolet Based on Perovskite-Like Fluoride Crystals  

Microsoft Academic Search

The variation of band gap energy, band structure and lattice constant of mixed LiBaF3, LiCaF3 and LiSrF3 perovskites is studied. The band structure and transition type of these fluorides is predicted by ab initio band calculation based on the local density approximation. The design principle of vacuum ultraviolet light emitting diode is proposed. The lattice-matched double-hetero structure of different perovskite-like

Riadh El Ouenzerfi; Shingo Ono; Alex Quema; Masahiro Goto; Nobuhiko Sarukura; Takeshi Nishimatsu; Noriaki Terakubo; Hiroshi Mizuseki; Yoshiyuki Kawazoe; Akira Yoshikawa; Tsuguo Fukuda

2004-01-01

52

Phosphor-Conversion White Light Emitting Diode Using InGaN Near-Ultraviolet Chip  

Microsoft Academic Search

We fabricated a phosphor-conversion white light emitting diode (LED) using an InGaN chip that emits 400 nm near-ultraviolet (n-UV) light and phosphors that emit in the blue and yellow region. When the white LED was operated at a forward-bias current of 20 mA at room temperature (RT), the color temperature (Tcp), average color rendering (Ra), operating voltage (Vf) and luminous

Yukio Narukawa; Isamu Niki; Kunihiro Izuno; Motokazu Yamada; Yoshinori Murazaki; Takashi Mukai

2002-01-01

53

A portable fibre-probe ultraviolet light emitting diode (LED)-induced fluorescence detection system  

Microsoft Academic Search

A portable fibre-probe fluorescence detection system comprising a continuous-wave high-power ultraviolet light emitting diode (UV LED) emitting at 365 nm as excitation source, a bifurcated fibre probe with a six-around-one fibre configuration to illuminate and read from a large target area (?3.6 mm2) and an integrated PC-coupled spectrometer has been developed. The construction, calibration and operation of the fluorescence detection

Paul K Buah-Bassuah; Hubertus M von Bergmann; Ebenezer T Tatchie; Christine M Steenkamp

2008-01-01

54

Effect of Patterned Ion-Implanted Sapphire on Ultraviolet Light-Emitting Diodes  

Microsoft Academic Search

Ultraviolet (UV) light-emitting diodes (LEDs) were fabricated on patterned-ion-implanted sapphire (PIIS) substrates using metalorganic chemical vapor deposition. The crystal qualities of the n-GaN epilayer grown on the patterned-N+-ion-implanted sapphire substrate were improved compared with that of the n-GaN epilayer grown on a conventional sapphire substrate. The optical properties of the undoped GaN and n-GaN epilayers grown on the PIIS substrate

Jaehong Choi; Junggeun Jhin; Seungdo Yang; Jonghyeob Baek; Jaesang Lee; Dongjin Byun

2008-01-01

55

V-shaped resonators for addition of broad-area laser diode arrays  

SciTech Connect

A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

2012-12-25

56

A smile insensitive method for spectral linewidth narrowing on high power laser diode arrays  

NASA Astrophysics Data System (ADS)

To eliminate the smile effect in spectral linewidth narrowing on high power laser diode arrays, we have introduced a plane reflective mirror into a common Littrow configuration external cavity to enhance the correlation among emitters. By this way, we obtained uniform spectral distribution among emitters of a 64-elements laser diode array with 35 GHz linewidth and 41 W output laser power.

Yang, Zining; Wang, Hongyan; Li, Yuandong; Lu, Qisheng; Hua, Weihong; Xu, Xiaojun; Chen, Jinbao

2011-10-01

57

Characterization of High-power Quasi-cw Laser Diode Arrays  

NASA Technical Reports Server (NTRS)

NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

2005-01-01

58

Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms  

E-print Network

We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system, which does not depend on complex nonlinear frequency-doubling, has great importance for implementing transportable optical lattice clocks, and is also useful for investigations on condensed matter physics or quantum information processing using cold atoms.

Toshiyuki Hosoya; Martin Miranda; Ryotaro Inoue; Mikio Kozuma

2014-12-02

59

Ruggedized microchannel-cooled laser diode array with self-aligned microlens  

DOEpatents

A microchannel-cooled, optically corrected, laser diode array is fabricated by mounting laser diode bars onto Si surfaces. This approach allows for the highest thermal impedance, in a ruggedized, low-cost assembly that includes passive microlens attachment without the need for lens frames. The microlensed laser diode array is usable in all solid-state laser systems that require efficient, directional, narrow bandwidth, high optical power density pump sources.

Freitas, Barry L.; Skidmore, Jay A.

2003-11-11

60

Mid-ultraviolet light-emitting diode detects dipicolinic acid.  

SciTech Connect

Dipicolinic acid (DPA, 2,6-pyridinedicarboxylic acid) is a substance uniquely present in bacterial spores such as that from anthrax (B. anthracis). It is known that DPA can be detected by the long-lived fluorescence of its terbium chelate; the best limit of detection (LOD) reported thus far using a large benchtop gated fluorescence instrument using a pulsed Xe lamp is 2 nM. We use a novel AlGaN light-emitting diode (LED) fabricated on a sapphire substrate that has peak emission at 291 nm. Although the overlap of the emission band of this LED with the absorption band of Tb-DPA ({lambda}{sub max} doublet: 273, 279 nm) is not ideal, we demonstrate that a compact detector based on this LED and an off-the-shelf gated photodetection module can provide an LOD of 0.4 nM, thus providing a basis for convenient early warning detectors.

Bogart, Katherine Huderle Andersen; Lee, Stephen Roger; Temkin, Henryk (Texas Tech University, Lubbock, TX); Crawford, Mary Hagerott; Dasgupta, Purnendu K. (Texas Tech University, Lubbock, TX); Li, Qingyang (Texas Tech University, Lubbock, TX); Allerman, Andrew Alan; Fischer, Arthur Joseph

2005-06-01

61

Packaging of complete indium-free high reliable and high power diode laser array  

NASA Astrophysics Data System (ADS)

High power diode lasers have been widely used in many fields. For many applications, a diode laser needs to be robust under on-off power-cycling as well as environmental thermal cycling conditions. To meet the requirements, the conduction cooled single bar CS-packaged diode laser arrays must have high durability to withstand thermal fatigue and long lifetime. In this paper, a complete indium-free bonding technology is presented for packaging high power diode laser arrays. Numerical simulations on the thermal behavior of CS-packaged diode laser array with different packaging structure were conducted and analyzed. Based on the simulation results, the device structure and packaging process of complete indium-free CS-packaged diode laser array were optimized. A series of high power hard solder CS (HCS) diode laser arrays were fabricated and characterized. Under the harsh working condition of 90s on and 30s off, good lifetime was demonstrated on 825nm 60W single bar CS-packaged diode laser with a lifetime test of more than 6100hours achieved so far with less 5% power degradation and less 1.5nm wavelength shift. Additionally, the measurement results indicated that the lower smile of complete indium-free CS-packaged diode laser arrays were achieved by advanced packaging process.

Wang, Jingwei; Li, Xiaoning; Feng, Feifei; Liu, Yalong; Hou, Dong; Liu, Xingsheng

2015-02-01

62

Diode-pumped doubly resonant all-intracavity continuous-wave ultraviolet laser at 336 nm  

NASA Astrophysics Data System (ADS)

We report for the first time a coherent ultraviolet radiation at 336 nm by intracavity sum-frequency generation of a 912 nm Nd:GdVO4 laser and a 532 nm frequency doubling Nd:YVO4 laser. The ultraviolet laser is obtained by using a doubly resonator, type-I critical phase matching CsLiB6O10 (CLBO) crystal sum-frequency mixing. With a total diode pump power of 31.8 W (13.1 W pump power for 912 nm Nd:GdVO4 laser and 18.7 W pump power for 532 nm Nd:YVO4 frequency doubling laser), TEM00 mode ultraviolet laser at 336 nm of 93 mW is obtained. The power stability is better than 3.4% and laser beam quality M2 factors are 1.52 and 1.27 in both horizontal and vertical dimensions respectively.

Lü, Y. F.; Sun, G. C.; Fu, X. H.; Liu, Z. T.; Chen, J. F.

2010-08-01

63

Thin planar package for cooling an array of edge-emitting laser diodes  

DOEpatents

A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.

Mundinger, David C. (Stockton, CA); Benett, William J. (Livermore, CA)

1992-01-01

64

High energy erbium laser end-pumped by a laser diode bar array coupled to a Nonimaging Optic Concentrator  

E-print Network

High energy erbium laser end-pumped by a laser diode bar array coupled to a Nonimaging Optic laser end pumped by a laser diode array emitting at 980 nm coupled to a Nonimaging Z .Optic Concentrator , 3q w xYb phosphate glass 2 end pumped by a laser diode bar array leads to a low-cost, compact micro

Boyer, Edmond

65

Linewidth-tunable laser diode array for rubidium laser pumping  

SciTech Connect

To optimise the pump source for a high-power diodepumped rubidium vapour laser, we have designed a laser diode array (LDA) with a narrowed and tunable linewidth and an external cavity formed by two volume Bragg gratings (VBGs). Through controlling the temperature differences between the two VBGs, the LDA linewidth, which was 1.8 nm before mounting the two VBGs, was tunable from 100 pm to 0.2 nm, while the output power changed by no more than 4 %. By changing simultaneously the temperature in both VBGs, the centre wavelength in air of the linewidth-tunable LDA was tunable from 779.40 nm to 780.05 nm. (control of laser radiation parameters)

Li Zhiyong; Tan Rongqing; Xu Cheng; Li Lin

2013-02-28

66

Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays  

PubMed Central

Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs). Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.

Privitera, Simona; Tudisco, Salvatore; Lanzanò, Luca; Musumeci, Francesco; Pluchino, Alessandro; Scordino, Agata; Campisi, Angelo; Cosentino, Luigi; Finocchiaro, Paolo; Condorelli, Giovanni; Mazzillo, Massimo; Lombardo, Salvo; Sciacca, Emilio

2008-01-01

67

The integration of bypass diodes with terrestrial photovoltaic modules and arrays  

NASA Technical Reports Server (NTRS)

Bypass diodes are often required to limit the potential for reverse voltage 'hot-spot' heating in high voltage arrays or in arrays that undergo periodic operation near the short-circuit point. In addition, when properly applied, bypass diodes can minimize the effect of shadowing and various internal module failures on the array energy output. This paper discusses the mechanical and electrical integration of bypass diodes beginning with the array-level considerations which influence the selection of an implementation approach. Concepts for the mounting of these diodes, both internally within the module encapsulant and externally to the exposed rear surface of the module, are described. Factors affecting the reliability of bypass diodes, including the control of junction temperature through adequate heat sinking and the derating of reverse voltage, are discussed.

Shepard, N. F., Jr.; Sugimura, R. S.

1984-01-01

68

Environmental testing of a diode-laser-pumped Nd:YAG laser and a set of diode-laser-arrays  

NASA Technical Reports Server (NTRS)

Results of the environmental test of a compact, rigid and lightweight diode-laser-pumped Nd:YAG laser module are discussed. All optical elements are bonded onto the module using space applicable epoxy, and two 200 mW diode laser arrays for pump sources are used to achieve 126 mW of CW output with about 7 percent electrical-to-optical conversion efficiency. This laser assembly and a set of 20 semiconductor diode laser arrays were environmentally tested by being subjected to vibrational and thermal conditions similar to those experienced during launch of the Space Shuttle, and both performed well. Nevertheless, some damage to the laser front facet in diode lasers was observed. Significant degradation was observed only on lasers which performed poorly in the life test. Improvements in the reliability of the Nd:YAG laser are suggested.

Hemmati, H.; Lesh, J. R.

1989-01-01

69

Expected progress based on aluminium galium nitride Focal Plan Array for near and deep Ultraviolet  

NASA Astrophysics Data System (ADS)

The fast development of nitrides has given the opportunity to investigate AlGaN as a material for ultraviolet detection. A camera based on such a material presents an extremely low dark current at room temperature. It can compete with technologies based on photocathodes, MCP intensifiers, back thinned CCD or hybrid CMOS focal plane arrays for low flux measurements. First, we will present results on focal plane array of 320 × 256 pixels with a pitch of 30 ?m. The peak responsivity is tuned from 260 nm to 360 nm in different cameras. All these results are obtained in a standard SWIR supply chaine and with AlGaN Schottky diodes grown on sapphire. We will present here the first attempts to transfer the standard design Schottky photodiodes on from sapphire to silicon substrates. We will show the capability to remove the silicon substrate, to etch the window layer in order to extend the band width to lower wavelength and to maintain the AlGaN membrane integrity.

Reverchon, J.-L.; Robin, K.; Bansropun, S.; Gourdel, Y.; Robo, J.-A.; Truffer, J.-P.; Costard, E.; Brault, J.; Frayssinet, E.; Duboz, J.-Y.

70

Influence of Interference on Extraction Efficiency of Ultraviolet Vertical Light-Emitting Diodes  

NASA Astrophysics Data System (ADS)

We report on enhanced efficiency of ultraviolet vertical light-emitting diodes (VLEDs) with interference between the reflective mirror and the multiple quantum well. The dimensions of the cavity are fixed at 30 nm for the p-AlGaN layer, while various thicknesses of p-GaN from 60 nm to 140 nm were used. The light output power of the VLED in constructive compared with destructive interference condition increased by 23.9% at 350 mA. These improvements could be attributed to the predominant constructive interference of vertical radiation due to an optical cavity with optimal p-GaN thickness.

Kim, Seung Hwan; Song, Young Ho; Jeon, Seong Ran; Yang, Gye Mo; Ha, Jun Seok; Lee, Sang Hern; Baek, Jong Hyeob; Park, Hyung Jo

2013-08-01

71

Enhanced out-coupling efficiency of organic light-emitting diodes using an nanostructure imprinted by an alumina nanohole array  

SciTech Connect

We demonstrate organic light-emitting diodes (OLEDs) with enhanced out-coupling efficiency containing nanostructures imprinted by an alumina nanohole array template that can be applied to large-emitting-area and flexible devices using a roll-to-roll process. The nanostructures are imprinted on a glass substrate by an ultraviolet nanoimprint process using an alumina nanohole array mold and then an OLED is fabricated on the nanostructures. The enhancement of out-coupling efficiency is proportional to the root-mean-square roughness of the nanostructures, and a maximum improvement of external electroluminescence quantum efficiency of 17% is achieved. The electroluminescence spectra of the OLEDs indicate that this improvement is caused by enhancement of the out-coupling of surface plasmon polaritons.

Endo, Kuniaki [Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Yokohama Research Laboratories, Mitsubishi Rayon Co., Ltd., 10-1 Daikoku, Tsurumi, Yokohama 230-0053 (Japan); Adachi, Chihaya [Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

2014-03-24

72

A hybrid integrated silicon diode array for visible earth-horizon sensing  

Microsoft Academic Search

The present work describes fabrication and stress testing results for a hybrid, integrated earth-horizon sensor operating principally in the visible portion of the spectrum. The sensor consists of four silicon chips each containing a linear array of eight photodiode. The diodes are planar, n+ on p, shallow junction devices which use a channel stop to prevent surface inversion between diodes

F. J. Bachner; R. A. Cohen; W. H. McGonagle; A. G. Foyt

1974-01-01

73

High-power diode-array-pumped frequency-doubled cw Nd:YAG laser  

Microsoft Academic Search

We report the demonstration of a diode-array-pumped Nd:YAG laser with a cw output of 3.3 W at 1.06 ..mu..m. The laser was side pumped using linear diode arrays focused with cylindrical optics to provide efficient spatial overlap between the pump and cavity modes. Intracavity doubling using KTP produced 0.76-W output repetitively Q switched at 532 nm. The electrical efficiency for

R. Burnham; A. D. Hays

1989-01-01

74

Multichannel fiber ferrule for a stable laser-diode array module  

Microsoft Academic Search

We developed a multichannel fiber ferrule for a stable laser-diode array module. To apply YAG laser welding to parallel butt couple between the laser-diode and the single-mode fiber arrays, hermetically sealed and precisely aligned equi-interval fibers are required. We describe a V-grooved ceramic ferrule for embedding fibers. Fibers are fixed by soldering, using a flat ceramic lid and aligned with

Gohji Nakagawa; Kazunori Miura; Kazuhiro Tanaka; Mitsuhiro Yano

1995-01-01

75

Photon-counting array detectors for space and ground-based studies at ultraviolet and vacuum ultraviolet /VUV/ wavelengths  

NASA Technical Reports Server (NTRS)

The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric photon-counting array detectors, with formats as large as (256 x 1024)-pixels that can be operated in a windowless configuration at vacuum ultraviolet (VUV) and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. This paper describes the construction and modes of operation of (1 x 1024)-pixel and (24 x 1024)-pixel MAMA detector systems that are being built and qualified for use in sounding-rocket spectrometers for solar and stellar observations at wavelengths below 1300 A. The performance characteristics of the MAMA detectors at ultraviolet and VUV wavelengths are also described.

Timothy, J. G.; Bybee, R. L.

1981-01-01

76

Development of 256x256 GaN ultraviolet imaging arrays  

NASA Astrophysics Data System (ADS)

We have successfully developed a prototype 256 X 256 photoconductive GaN ultraviolet (UV) imaging array. The array, with its pixels (30 X 30 micrometer2) indium bump bonded to a Lockheed Martin Fairchild Systems LT9601 readout integrated circuit, is highly sensitive to ultraviolet light below 365 nm with a sharp reduction in response to visible and infrared light. The array was installed into a custom designed UV camera utilizing a Nikon UV lens with all the off-chip electronics interfaced to an automatic computer controlled system. To the best of our knowledge, this is the first reported UV array camera based on the nitride materials.

Huang, Ted Z. C.; Mott, David B.; La, Anh T.

1999-11-01

77

Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury  

NASA Astrophysics Data System (ADS)

A new sensor has been developed for measuring atomic mercury using absorption spectroscopy with 254-nm radiation generated from two sum-frequency-mixed diode lasers. Beams from a 375-nm external-cavity diode laser and a 784-nm distributed feedback diode laser are mixed in a beta-barium-borate crystal to generate approximately 4 nW of ultraviolet radiation. The development of the sensor is described along with extensive characterization experiments in a mercury vapor cell in the laboratory. An accuracy of ±6% in the absolute concentration of atomic mercury has been demonstrated by comparison with equilibrium vapor pressure calculations. The detection limit is approximately 0.1 parts per billion of atomic mercury in a meter path length for 300-K gas and a 10-s integration time. The insensitivity of the sensor to broadband attenuation is demonstrated. Measurements of collision-broadening coefficients for air, N2, Ar, and CO2 are reported, and implementation of wavelength-modulation spectroscopy with the sensor is demonstrated. Finally, results are presented from measurements with the sensor in situ in the exhaust stream of an actual coal-fired combustor.

Anderson, T. N.; Magnuson, J. K.; Lucht, R. P.

2007-04-01

78

Influence of storage causing packaging stress changes on smile effect for diode laser arrays  

NASA Astrophysics Data System (ADS)

The smile effect is caused by the thermal stress in the packaging process. If packaging technology of a diode laser array is poor, smile effect will be very bad and the smile effect will vary with storage time. To accurately measure smile effect and to objectively compare the different measuring methods for smile effect, a set of optical system is designed for measuring the smile effect. By using an image amplification method, the smile effect of a diode laser array is accurately measured, and the measurement error is about +/-0.1?m. By researching, the heat sink surface flatness has little influence on smile effect. However the solder quality is a critical factor for smile effect. That is to say, there is more voids, the corresponding smile effect is more serious in this area. Reflow soldering curve has a major impact on smile effect in the packaging process of a diode laser array .During reflow soldering process, accelerated cooling before solidification and slow cooling after solidification not only can commendably reduce voids and smile effect ,but also can effectively solve the smile effect with storage time variation problem .By optimizing the reflow soldering curve of a diode laser array , the smile effect has been controlled within +/-0.5?m..As the smile effect values of a semiconductor laser array is diminished and the beam quality of a laser diode array is improved significantly. The recommended method provides favorable conditions for the beam collimation and shaping of a semiconductor laser array.

Xu, Hui-wu; Zhang, Yong; Fang, Yu-suo; Liu, Xiao-wen; Niu, Jiang-li; Yuan, Chun-sheng; Li, Cheng-yan; Wang, Yuan-yuan; Wang, Xiao-yan; Shen, Mu; An, Zhen-feng

2013-09-01

79

Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped  

E-print Network

Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode from a multi-kHz diode-pumped multi-longitudinal- mode Q-switched Nd:YAG laser by fourth harmonic­4], or a tightly focused, relatively complicated arrange- ment for compact diode-pumped systems [5­8]. Serious

Kung, Andy

80

Largely Enhanced Efficiency in ZnO Nanowire/p-Polymer Hybridized Inorganic/Organic Ultraviolet Light-Emitting Diode by Piezo-  

E-print Network

O nanowire inorganic/organic hybrid ultra- violet (UV) light-emitting diodes (LEDs) have attracted Light-Emitting Diode by Piezo- Phototronic Effect Qing Yang,,, Ying Liu,, Caofeng Pan, Jun Chen, Xiaonan generation optoelectronic devices operating in ultraviolet (UV) region, such as light-emitting diodes (LEDs

Wang, Zhong L.

81

Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments  

NASA Technical Reports Server (NTRS)

Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

2004-01-01

82

Evaluation of a diode array for QA measurements on a helical tomotherapy unit  

SciTech Connect

A helical tomotherapy system is used in our clinic to deliver intensity-modulated radiation therapy (IMRT) treatments. Since this machine is designed to deliver IMRT treatments, the traditional field flatness requirements are no longer applicable. This allows the unit to operate without a field flatness filter and consequently the 400 mm wide fan beam is highly inhomogeneous in intensity. The shape of this beam profile is mapped during machine commissioning and for quality assurance purposes the shape of the beam profile needs to be monitored. The use of a commercial diode array for quality assurance measurements is investigated. Central axis beam profiles were acquired at different depths using solid water built-up material. These profiles were compared with ion chamber scans taken in a water tank to test the accuracy of the diode array measurements. The sensitivity of the diode array to variations in the beam profile was checked. Over a seven week period, beam profiles were repeatedly measured. The observed variations are compared with those observed with an on-board beam profile monitor. The diode measurements were in agreement with the ion chamber scans. In the high dose, low gradient region the average ratio between the diode and ion chamber readings was 1.000{+-}0.005 ({+-}1 standard deviation). In the penumbra region the agreement was poorer but all diodes passed the distance to agreement (DTA) requirement of 2 mm. The trend in the beam profile variations that was measured with the diode array device was in agreement with the on-board monitor. While the calculated amount of variation differs between the devices, both were sensitive to subtle variations in the beam profile. The diode array is a valuable tool to quickly and accurately monitor the beam profile on a helical tomotherapy unit.

Langen, K.M.; Meeks, S.L.; Poole, D.O.; Wagner, T.H.; Willoughby, T.R.; Zeidan, O.A.; Kupelian, P.A.; Ruchala, K.J.; Olivera, G.H. [Department of Radiation Oncology, M.D. Anderson Cancer Center Orlando, Orlando, Florida (United States); TomoTherapy Inc., Madison, Wisconsin (United States)

2005-11-15

83

Effect of Patterned Ion-Implanted Sapphire on Ultraviolet Light-Emitting Diodes  

NASA Astrophysics Data System (ADS)

Ultraviolet (UV) light-emitting diodes (LEDs) were fabricated on patterned-ion-implanted sapphire (PIIS) substrates using metalorganic chemical vapor deposition. The crystal qualities of the n-GaN epilayer grown on the patterned-N+-ion-implanted sapphire substrate were improved compared with that of the n-GaN epilayer grown on a conventional sapphire substrate. The optical properties of the undoped GaN and n-GaN epilayers grown on the PIIS substrate were improved. The light intensity of the UV LED at 100 mA on the PIIS chip was 78% higher than that of the conventional LED. This increase in light intensity is due to the relaxation of the misfit strain at high temperature and the contribution of the internal free energies to the enhancement in structural and optical properties.

Choi, Jaehong; Jhin, Junggeun; Yang, Seungdo; Baek, Jonghyeob; Lee, Jaesang; Byun, Dongjin

2008-11-01

84

Reducing electrical crosstalk in laser-diode array modules by using a film-carrier interconnection  

Microsoft Academic Search

Interconnecting the laser-diode (LD) arrays in a LD array module with a film-carrier reduces electrical crosstalk by about 8 dB. This value agrees well with the analytical value of 10 dB obtained by SPICE simulation. Application of this new technique to a prototype four-channel dual-electrode distributed-feedback LD array module for optical frequency-division-multiplexing achieved a flat response up to 2.3 GHz

Tsuyoshi Hayashi; Mitsuo Usui; Masakaze Hosoya; Kenji Sato; Satoshi Sekine

1995-01-01

85

Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process  

Microsoft Academic Search

This paper reports an innovative technique for rapid fabrication of ultraviolet-cured polymer microlens arrays based on soft roller stamping process. In this method, a soft roller with microlens array cavity is made by casting a pre-polymer of polydimethylsiloxane (PDMS) in a plastic master of microlens array. The plastic master is prepared using gas-assisted hot embossing of polycarbonate (PC) film over

Chih-Yuan Chang; Sen-Yeu Yang; Ming-Hui Chu

2007-01-01

86

High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array  

DOEpatents

An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

Freitas, Barry L. (Livermore, CA)

1998-01-01

87

High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array  

DOEpatents

An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

Freitas, B.L.

1998-10-27

88

Uniformity of pump intensity distribution in diode-array side-pumped laser rod  

NASA Astrophysics Data System (ADS)

Diode-pumped solid-state lasers are high efficiency, long lifetime, compact and reliable, so they have been covering a wide range of applications. Thermal effect is a major limiting factor in scaling the average power of high-power solid-state lasers, so it is a critical issue in designing diode-pumped solid-state lasers. The uniform pump intensity distribution in laser rod can weaken the influence of thermal effects in laser, and the research of improving the pump distribution uniformity has attracted a great deal of attention. People usually establish a model of single diode-bar pumped laser rod to calculate the distribution. However, for diode-array pumped high-power lasers, the model is limited and has deviation with the actual pump distribution, which cannot reflect the real working conditions in the laser. In this paper, the theoretical model of diode-array pumped laser rod is built. Based on the actual working environment of diode-array side-pumped Tm:YAG laser rod, the expression of pump intensity distribution in the laser medium is deduced. Additionally, the influence of total pump power, pump structure, Tm:YAG rod characteristic parameters and pump beam radius on pump intensity distribution are simulated and analyzed. Moreover, the parameters are optimized in order to obtain the optimistic results which are efficient to improve the uniformity of pump distribution. The results show that when the pumping distance from diode-array to the rod's surface is 3mm, the distance between two rows of diode-bars is 1mm, the absorption coefficient is 330m-1,the pump beam width is 2.5mm,the pump intensity distribution of five-way pumped laser rod is improved, and then the thermal effects could be weakened. The presented results can provide theoretical guidance to design and optimization of high-power lasers.

Liu, Wenwen; Niu, Yanxiong; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

2014-11-01

89

Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array  

DOEpatents

The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a ``rack and stack`` configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber. 3 figs.

Beach, R.J.; Benett, W.J.; Mills, S.T.

1997-04-01

90

Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array  

DOEpatents

The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.

Beach, Raymond J. (Livermore, CA); Benett, William J. (Livermore, CA); Mills, Steven T. (Antioch, CA)

1997-01-01

91

Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers  

SciTech Connect

The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

1994-01-01

92

Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode  

NASA Technical Reports Server (NTRS)

Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

2006-01-01

93

Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers  

NASA Technical Reports Server (NTRS)

Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

2007-01-01

94

Linear laser diode arrays for improvement in optical disk recording for space stations  

NASA Technical Reports Server (NTRS)

The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated.

Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

1990-01-01

95

Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment  

NASA Astrophysics Data System (ADS)

Room-temperature fabrication of Schottky diodes was demonstrated for p-type boron-doped diamond. This fabrication method's key technique is selective modification of surface termination from monohydride into oxygen groups using vacuum ultraviolet light irradiation in oxygen. The Au contacts, formed on the hydrogen-terminated surface, maintained Ohmic properties after this selective surface oxidation. The Au contacts then deposited on the oxidized surface, imparting Schottky properties. The lateral-type diodes comprising Au Schottky contacts and Au Ohmic contacts showed blocking voltage higher than 1 kV without electrode guarding. The leakage current at 1 kV was as low as 30 pA.

Teraji, T.; Garino, Y.; Koide, Y.; Ito, T.

2009-06-01

96

Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment  

SciTech Connect

Room-temperature fabrication of Schottky diodes was demonstrated for p-type boron-doped diamond. This fabrication method's key technique is selective modification of surface termination from monohydride into oxygen groups using vacuum ultraviolet light irradiation in oxygen. The Au contacts, formed on the hydrogen-terminated surface, maintained Ohmic properties after this selective surface oxidation. The Au contacts then deposited on the oxidized surface, imparting Schottky properties. The lateral-type diodes comprising Au Schottky contacts and Au Ohmic contacts showed blocking voltage higher than 1 kV without electrode guarding. The leakage current at 1 kV was as low as 30 pA.

Teraji, T.; Garino, Y.; Koide, Y. [Sensor Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ito, T. [Department of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2009-06-15

97

Anode modification of polymer light-emitting diode using graphene oxide interfacial layer: The role of ultraviolet-ozone treatment  

NASA Astrophysics Data System (ADS)

A simple and efficient method has been developed to modify the anode interface of polymer light-emitting diode by incorporating solution-processable graphene oxide as hole transport layer. Interface engineering of ultraviolet-ozone treatment on graphene oxide is demonstrated to dramatically enhance the electrical properties, leading to 15% increase in efficiency compared to that with a traditionally used poly(styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene) layer. As determined by photoelectron spectroscopy and impedance spectroscopy, an optimized ultraviolet-ozone treatment results in a more favorable energy level alignment and a decrease in series resistance, which can subsequently facilitate charge injection at the anodic interface.

Jiang, Xiao-Chen; Li, Yan-Qing; Deng, Yan-Hong; Zhuo, Qi-Qi; Lee, Shuit-Tong; Tang, Jian-Xin

2013-08-01

98

Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates  

Microsoft Academic Search

Blue and near-ultraviolet (UV) InGaN\\/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission at 465 nm and 405 nm, respectively, were grown on GaN and sapphire substrates. The densities of surface and bulk defects in the homoepitaxially grown LEDs were substantially reduced, leading to a decrease in reverse currents by more than six orders of magnitude. At a typical operating current

X. A. Cao; S. F. Leboeuf; M. P. D'Evelyn; S. D. Arthur; J. Kretchmer; C. H. Yan; Z. H. Yang

2004-01-01

99

1352 OPTICS LETTERS / Vol. 25, No. 18 / September 15, 2000 Frequency-narrowed external-cavity diode-laser-array bar  

E-print Network

1352 OPTICS LETTERS / Vol. 25, No. 18 / September 15, 2000 Frequency-narrowed external-cavity diode cavities can be used to frequency narrow high-power diode-array bars. Using a commercial 20-W array, we collimating lens minimize broadening owing to curvature in the alignment of the diode-array elements. © 2000

Walker, Thad G.

100

Performance of a TiN-coated monolithic silicon pin-diode array under mechanical stress  

NASA Astrophysics Data System (ADS)

The Karlsruhe Tritium Neutrino Experiment (KATRIN) will detect tritium ?-decay electrons that pass through its electromagnetic spectrometer with a highly segmented monolithic silicon pin-diode focal-plane detector (FPD). This pin-diode array will be on a single piece of 500-?m-thick silicon, with contact between titanium nitride (TiN)-coated detector pixels and front-end electronics made by spring-loaded pogo pins. The pogo pins will exert a total force of up to 50 N on the detector, deforming it and resulting in mechanical stress up to 50 MPa in the silicon bulk. We have evaluated a prototype pin-diode array with a pogo-pin connection scheme similar to the KATRIN FPD. We find that pogo pins make good electrical contact to TiN and observe no effects on detector resolution or reverse-bias leakage current which can be attributed to mechanical stress.

VanDevender, B. A.; Bodine, L. I.; Myers, A. W.; Amsbaugh, J. F.; Howe, M. A.; Leber, M. L.; Robertson, R. G. H.; Tolich, K.; Van Wechel, T. D.; Wall, B. L.

2012-05-01

101

EXTERNAL-CAVITY DESIGNS FOR PHASE-COUPLED LASER DIODE ARRAYS  

E-print Network

EXTERNAL-CAVITY DESIGNS FOR PHASE-COUPLED LASER DIODE ARRAYS G. Lucas-Leclina , D. Paboeufa , P combining architectures, based on external cavity designs. Coherence of the entire laser bars is induced by the diffractive coupling between the emitters within the external cavity. Two different configurations

Paris-Sud XI, Université de

102

Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle  

Microsoft Academic Search

High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will

Genady Klumel; Yoram Karni; Jacob Oppenhaim; Yuri Berk; Moshe Shamay; Renana Tessler; Shalom Cohen; Shlomo Risemberg

2010-01-01

103

Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes  

SciTech Connect

We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)] [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)

2013-01-28

104

Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources.  

PubMed

Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 - 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335

Zhao, S; Connie, A T; Dastjerdi, M H T; Kong, X H; Wang, Q; Djavid, M; Sadaf, S; Liu, X D; Shih, I; Guo, H; Mi, Z

2015-01-01

105

Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)  

SciTech Connect

A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400?nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

Kurose, N., E-mail: kurose@fc.ritsumei.ac.jp; Aoyagi, Y. [The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)] [The Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan); Shibano, K.; Araki, T. [Department of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)] [Department of Science and Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

2014-02-15

106

Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes  

NASA Astrophysics Data System (ADS)

We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).

Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin

2015-02-01

107

Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources  

NASA Astrophysics Data System (ADS)

Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 - 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated.

Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.

2015-02-01

108

Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources  

PubMed Central

Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210?nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6?V, which is significantly lower than the commonly observed 20 – 40?V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335

Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.

2015-01-01

109

NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING  

SciTech Connect

We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

Arto V. Nurmikko; Jung Han

2004-10-01

110

Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes  

NASA Astrophysics Data System (ADS)

We report that the oxidation of graphene-based highly transparent conductive layers to AlGaN/GaN/AlGaN ultra-violet (UV) light-emitting diodes (LEDs) was suppressed by the use of SiNX passivation layers. Although graphene is considered to be an ideal candidate as the transparent conductive layer to UV-LEDs, oxidation of these layers at high operating temperatures has been an issue. The oxidation is initiated at the un-saturated carbon atoms at the edges of the graphene and reduces the UV light intensity and degrades the current-voltage (I-V) characteristics. The oxidation also can occur at defects, including vacancies. However, GaN-based UV-LEDs deposited with SiNX by plasma-enhanced chemical vapor deposition showed minimal degradation of light output intensity and I-V characteristics because the graphene-based UV transparent conductive layers were shielded from the oxygen molecules. This is a simple and effective approach for maintaining the advantages of graphene conducting layers as electrodes on UV-LEDs.

Kim, Byung-Jae; Lee, Chongmin; Mastro, Michael A.; Hite, Jennifer K.; Eddy, Charles R.; Ren, Fan; Pearton, Stephen J.; Kim, Jihyun

2012-07-01

111

Physics of aligned arrays of single-walled NTs: From transistor to diode applications  

NASA Astrophysics Data System (ADS)

NTs have been originally proposed as a 1D high mobility semiconductor material for field-effect transistors (FET). This format is though appeared to be less practical due to low values of the currents through a single NT channel. On contrary, NT massive parallel arrays have already found implementation in flexible and RF electronics. Can we think of NT arrays being another semiconductor thin film materials? Where does the conventional knowledge apply for NT parallel array devices? This talk discusses specialized aspects of physics of electronic and optoelectronic device prototypes and presents recent results for NT FETs and LEDs (light-emitting diode) in parallel array geometries. Cross-talk between individual NTs in the array allows to beat the statistical "noise" in the device properties which appears due to randomized NT distribution in the array. Although, taking this into account, device-level characteristics should be used with a care to extract a single NT physical parameters.

Rotkin, Slava V.; Rogers, John A.

2011-03-01

112

Demonstration of high-performance silicon microchannel heat exchangers for laser diode array cooling  

NASA Astrophysics Data System (ADS)

A heat exchanger package has been demonstrated for semiconductor laser arrays using silicon microstructures with water as the coolant. A thermal impedance of 0.04 C sq cm/W has been achieved for a single linear bar. This design makes use of efficient edge-emitting laser diode arrays in a rack and stack architecture combined with a high-performance silicon microchannel structure to allow CW operation. The architecture can be scaled to large areas, and a thermal impedance of 0.09 C sq cm/W is projected for close-packed two-dimensional arrays on this device.

Mundinger, D.; Beach, R.; Benett, W.; Solarz, R.; Krupke, W.

1988-09-01

113

Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar  

NASA Technical Reports Server (NTRS)

The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.

Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

2007-01-01

114

Clinical ultraviolet dosimetry with a CCD monochromator array spectroradiometer  

NASA Astrophysics Data System (ADS)

Single monochromator charge-coupled device (CCD) array spectroradiometers have the advantage of ease of use and speed compared with double grating instruments. Their inherently inferior stray-light rejection, however, can critically affect their accuracy in phototherapy and research-related dosimetry applications. This paper shows that without adequate correction the HR4000 (Ocean Optics Inc., Dunedin, USA) array device can overestimate the CIE erythema-weighted irradiance of common phototherapy sources and solar simulator beams by over 100%. A software stray-light correction (Ylianttila et al 2005 Photochem. Photobiol. 81 333-41), using the measured slit function of the HR4000, has been applied to spectra acquired from sources used in phototherapy and photobiology (PUVA, UV21, TL01 and solar simulator). The resulting corrected erythema-weighted irradiance measurements from the HR4000 are within 10% of those from a DM150 double grating spectroradiometer (Bentham Instruments Ltd, Reading, UK). A simple model is considered for combining estimates of measurement uncertainties. The importance of exposure bracketing to improve the dynamic range of the HR4000 is illustrated, along with the difficulty in making direct comparison of spectral values between two instruments due to wavelength scale uncertainties. Comparison with a double grating instrument in a solar simulator beam is examined here as a basis for validating CCD array device measurements. The study demonstrates that the HR4000 array spectroradiometer can provide an adequate level of accuracy for common phototherapy and photobiology applications only where a suitable stray-light correction is carefully applied and where the instrument's effective dynamic range is improved.

Coleman, Andrew; Sarkany, Robert; Walker, Susan

2008-09-01

115

Transient thermal behavior of high power diode laser arrays  

Microsoft Academic Search

Reliability and lifetime of high power laser arrays are governed by their thermal properties. Thus the understanding of the thermal behavior such as thermal transients as well as the optimization of laser chips and mounting are key features for obtaining improved devices. We present numerical simulations of the active layer temperature employing the finite element method (FEM). Both continuous wave

Roland Puchert; Artur Bärwolff; M. Voss; U. Menzel; J. W. Tomm; J. Luft

2000-01-01

116

Analysis of surface and bulk effects in HgCdTe photodetector arrays by variable-area diode test structures  

Microsoft Academic Search

This study describes variable-area diode data analysis of surface and bulk effects of HgCdTe infrared photodiodes passivated with dual-layer CdTe\\/ZnS films. We attempt to present a general analytical relation between the zero-bias resistance-area product and the perimeter-to-area ratio of the diodes by variable-area diode array test structures. We have taken contributions into consideration from surface leakage between HgCdTe and passivant

Yi Deng; Chun Lin; Xiaoning Hu

2009-01-01

117

Highly stable strained layer leaky-mode diode laser arrays  

NASA Astrophysics Data System (ADS)

A simple fabrication process for InGaAs strained quantum well leaky-mode laser arrays is demonstrated. The arrays are ten-element devices grown by two-step metal-organic chemical vapor deposition. The structure consists of a strained quantum well InGaAs graded index-separate confinement active region and a thin (0.12 micron), transparent GaAs waveguide region. The near-field pattern typical of leaky-mode phase-locked arrays was measured. Fundamental mode oscillation was observed up to 2 A (threshold was as low as 175 mA). The authors observed a 1 microsec pulsed optical output power of 172 mW per facet and a far-field angle (full width at half maximum) of 1.6 times the diffraction limit at 1 A. This is the first reported operation of a strained quantum well leaky-mode laser utilizing a built-in index step.

Shiau, T. H.; Sun, S.; Schaus, C. F.; Zheng, K.; Hadley, G. Ronald

1990-08-01

118

Optimization of rod diameter in solid state lasers side pumped with multiple laser diode arrays  

NASA Technical Reports Server (NTRS)

Results of a study to determine the optimum laser rod diameter for maximum output energy in a solid state neodymium laser transversely pumped with multiple laser diode arrays are reported here. Experiments were performed with 1.0 mm, 1.5 mm and 2.0 mm rod radii of both neodymium doped Y3Al5O12 (Nd:YAG) and La2Be2O5 (Nd:BeL) pumped with laser diode arrays having a maximum combined energy of 10.5 mJ. Equations were derived which predict the optimum rod radius and corresponding output mirror reflectivity for a given laser material and total pump energy. Predictions of the equations agreed well with the experiments for each of the laser materials which possessed significantly different laser properties from one another.

Sims, Newton, Jr.; Chamblee, Christyl M.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

1992-01-01

119

Effect of injection current on the optical polarization of AlGaN-based ultraviolet light-emitting diodes.  

PubMed

The injection current dependence of optical polarization of ultraviolet (UV) light-emitting diodes (LEDs) emitting at wavelength of 310 nm and 277 nm was investigated by electroluminescence (EL) measurements. For both diodes, it was found that the degree of polarization (DOP) decreased obviously as the injection current increased. We attribute the decrease in DOP to the different changing trend of the intensity of the light emission from transverse electric (TE) polarization (E?c) and transverse magnetic (TM) polarization (E?c) as the injected carriers occupy higher states above k = 0 with increasing the injection current. For the 277 nm LED, even the polarization switching from TE to TM mode was observed. PMID:25321042

Hou, Mengjun; Qin, Zhixin; He, Chenguang; Cai, Jun'an; Wang, Xinqiang; Shen, Bo

2014-08-11

120

Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application  

Microsoft Academic Search

The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)\\/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled

Fute Zhang; Tao Song; Baoquan Sun

2012-01-01

121

Diode arrays, crystals, and thermal management for solid-state lasers  

Microsoft Academic Search

We summarize our efforts in the development of solid-state lasers, including the laser diode arrays, pump light delivery, approaches to thermal management, and novel gain media. Our interests are in developing unique solid-state lasers, including those operating at higher powers, offering less common wavelengths, and having other specialized features. In this paper, we discuss high-power Tm:YAG and Yb:YAG lasers. The

Stephen A. Payne; Raymond J. Beach; Camille Bibeau; Christopher A. Ebbers; Mark A. Emanuel; Eric C. Honea; Christopher D. Marshall; Ralph H. Page; Kathleen I. Schaffers; Jay A. Skidmore; Steven B. Sutton; William F. Krupke

1997-01-01

122

Single-photon avalanche diode arrays and CMOS microelectronics for counting, timing, and imaging quantum events  

NASA Astrophysics Data System (ADS)

Aim of the paper is to discuss design, fabrication and performances of Single-Photon Avalanche Diode (SPAD) arrays developed at the SPADLab of Politecnico di Milano, in both custom and fully-CMOS technologies. Applications span from 2D imagers for high sensitivity fast frame-rate (close to Mframe/s) video acquisitions, to molecular imaging, to functional time-resolved Near-Infrared Spectroscopy (fNIRS) of organs and tissues, to Fluorescence Correlation Spectroscopy (FCS), Fluorescence Lifetime Imaging (FLIM) with 30psFWHM photon timing resolution. Various microelectronic single-chip detection modules and monolithic SPAD arrays will be presented and discussed.

Zappa, F.; Tosi, A.; Dalla Mora, A.; Guerrieri, F.; Tisa, S.

2010-01-01

123

Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode  

SciTech Connect

We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Byeong-Hyeok [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Tu, C. W. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407 (United States); Park, Seong-Ju, E-mail: sjpark@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

2014-02-03

124

Indium Tin Oxide-Free Transparent Conductive Electrode for GaN-Based Ultraviolet Light-Emitting Diodes.  

PubMed

Transparent conducting electrodes are important components of highly efficient ultraviolet light-emitting diodes (UV LEDs). Indium tin oxide (ITO) is commonly used to form a current spreading layer, but its UV-range optical transparency is limited with a low sheet resistance. We demonstrate a simple solution-based coating technique to obtain large-area, highly uniform, and conductive silver-nanowire-based electrodes that exhibit UV-range optical transparency better than that of ITO for the same sheet resistance. The UV LEDs fabricated using this current spreading layer showed improved optical power emission as well as improvement in electrical properties. PMID:25830932

Kim, Ja-Yeon; Jeon, Jong-Hyun; Kwon, Min-Ki

2015-04-22

125

AlGaN Deep-Ultraviolet Light-Emitting Diodes with External Quantum Efficiency above 10%  

NASA Astrophysics Data System (ADS)

Improvements of the internal quantum efficiency by reduction of the threading dislocation density and of the light extraction by using UV transparent p-type cladding and contact layers, UV reflecting ohmic contact, and chip encapsulation with optimized shape and refractive index allowed us to obtain the external quantum efficiency of 10.4% at 20 mA CW current with the output power up to 9.3 mW at 278 nm for AlGaN-based deep-ultraviolet light-emitting diodes grown on sapphire substrates.

Shatalov, Max; Sun, Wenhong; Lunev, Alex; Hu, Xuhong; Dobrinsky, Alex; Bilenko, Yuri; Yang, Jinwei; Shur, Michael; Gaska, Remis; Moe, Craig; Garrett, Gregory; Wraback, Michael

2012-08-01

126

Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis  

NASA Technical Reports Server (NTRS)

The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.

2011-01-01

127

Laser diode end-pumped efficient coupling system based on microlens arrays  

NASA Astrophysics Data System (ADS)

Efficient pumped coupling is one of the important technologies of diode pumped solid state laser system applying end-pumped structure. This work present a novel pumped coupling optical system based on microlens arrays. In the coupling system, the light of laser diode stack is incident on an imaging microlens array, that cuts the beam into a number of beamlets. Subsequently these beamlets are overlapped in the pumped surface of laser media through an aspheric focusing lens. Then a high homogeneity pump field is realized. Furthermore, for different aspect ratios of the homogenized spot two microlens arrays with crossed cylindrical lenses are used to match different pump field size. Such coupling system was designed by ray tracing method using ZEMAXTM Non-Sequential Components analysis tools. The non-sequential raytracing simulation shows that a 5 × 5 mm2 Top-Hat intensity pump profile was got at a working distance of 40 mm and the homogeneity of the intensity distribution is better than 90%. In comparison with the traditional coupling optical system homogenization by means of microlens arrays is more flexible and requires a reduced number of optical components.

Huang, Feng; Jia, Wenwu; Wang, Yuefeng; Hou, Junyan; Dong, Wei

2009-11-01

128

Survey of grapevine Vitis vinifera stem polyphenols by liquid chromatography-diode array detection-tandem mass spectrometry.  

PubMed

Grapes and red wine prepared from Vitis vinifera L. contain a variety of polyphenols. Some information is available about the polyphenols of the seeds and leaves of grapevine, but considerably less is known about the polyphenols of woody stems. In this paper, we describe the results of a study of polyphenolic compounds in grapevine stems. We demonstrate how a combination of reversed phase high-performance liquid chromatography with ultraviolet-diode array detection and electrospray ionization-tandem mass spectrometry ion-trap detection enables characterization of a phytochemical mixture of considerable complexity. As the polyphenol source, the stems of three frost-hardy grapevine varieties [Hasaine (Hasansky) sladki, Zilga, and Yubilei Novgoroda] were used. The main group of methanol-extractable polyphenols of stems consists of trans-resveratrol and its derivatives including oligomers and glucosides. As minor components of the extract, stilbenoid piceatannol as well as a number of nonstilbenoid polyphenols, mostly flavan-3-ols and phenolic acids glucosides, were determined. The total polyphenol content of the grapevine stems depends on the variety, whereby the stems of cultivar Yubilei Novgoroda with white grapes contain significantly less of both groups of polyphenols. PMID:17002412

Püssa, Tõnu; Floren, Janar; Kuldkepp, Paul; Raal, Ain

2006-10-01

129

10?m pitch design of HgCdTe diode array in Sofradir  

NASA Astrophysics Data System (ADS)

Sofradir recently presented Daphnis, its latest 10?m pitch XGA and HD720 products. Daphnis XGA is a 10?m pitch 1024x768 mid-wave infrared focal plane array. The development of small pixel pitch is opening the way to very compact products with high spatial resolution. This new product is key contribution to the HOT technology competition allowing reductions in size, weight and power of the overall package. This paper presents the recent developments achieved at Sofradir to make this 10?m pitch HgCdTe focal plane array. Electrical and electro-optical characterizations are presented to define the appropriate design of 10?m pitch diode array. The technological tradeoffs are explained to lower the dark current, to keep high quantum efficiency with a high operability above 110K, F/4.

Péré-Laperne, Nicolas; Rubaldo, Laurent; Kerlain, Alexandre; Carrère, Emmanuel; Dargent, Loïc.; Taalat, Rachid; Berthoz, Jocelyn

2015-01-01

130

Detector arrays for photometric measurements at soft X-ray, ultraviolet and visible wavelengths  

NASA Technical Reports Server (NTRS)

The construction and modes of operation of the Multi-Anode Microchannel Array (MAMA) detectors are described, and the designs of spectrometers utilizing them are outlined. MAMA consists of a curved microchannel array plate, an opaque photocathode (peak quantum efficiency of 19% at 1216 A), and a multi-anode (either discrete- or coincidence-anode) readout array. Designed for use in instruments on spaceborne telescopes, MAMA can be operated in a windowless configuration in extreme-ultraviolet and soft X-ray wavelengths, or in a sealed configuration at UV and visible wavelengths. Advantages of MAMA include low applied potential (less than 3.0 kV), high gain (greater than 10 to the 6th electrons/pulse), low sensitivity to high-energy charged particles, and immunity to external magnetic fields of less than 500 Gauss

Timothy, J. G.; Mount, G. H.; Bybee, R. L.

1979-01-01

131

A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy  

NASA Technical Reports Server (NTRS)

A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.

Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

1982-01-01

132

A digital optical phase-locked loop for diode lasers based on field programmable gate array  

SciTech Connect

We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

Xu Zhouxiang; Zhang Xian; Huang Kaikai; Lu Xuanhui [Physics Department, Zhejiang University, Hangzhou, 310027 (China)

2012-09-15

133

Design and analysis of a high fill-factor SOI diode uncooled infrared focal plane array  

NASA Astrophysics Data System (ADS)

A new concept for uncooled infrared (IR) imaging with a high fill-factor SOI diode structure has been proposed. This approach has the potential of reaching a noise equivalent temperature difference (NETD) in the milli-Kelvin range. This detector makes the IR absorbing structure cover almost the entire pixel area, in which the fill factor can reach 80%. Using the multilever structure, thermal isolation can be independently optimized without sacrificing the IR absorption area. The analysis shows that this high fill-factor SOI diode uncooled IR focal plane array can be made without failure of structure breakdown or buckling. The design shows that the sensitivity is of 7.75 × 10-3 V K-1, and the NETD is of 42 mK (f/1.0, 30Hz) which can be achieved in a 35 µm × 35 µm micromachined structure.

Jiang, Wenjing; Ou, Wen; Ming, Anjie; Liu, Zhanfeng; Zhang, Xinwei

2013-06-01

134

The ArcCHECK diode array for dosimetric verification of HybridArc  

NASA Astrophysics Data System (ADS)

The aim of this work is to evaluate dosimetric accuracy of a new treatment modality, HybridArc, in iPlan RT Dose 4.5 (BrainLAB, Feldkirchen, Germany) using a four-dimensional diode array (ArcCHECK, Sun Nuclear Corporation, Melbourne, USA). HybridArc is able to enhance dynamic conformal arcs with inversely planned elements. HybridArc plans for various sites (intracranial and extracranial) were constructed and after that these plans were recalculated for the ArcCHECK diode array with Monte Carlo (MC) and Pencil Beam (PB) dose algorithms in iPlan RT Dose. All measurements of these HybridArc plans were performed with 6 MV photon beams of a Novalis accelerator (BrainLAB, Feldkirchen, Germany) using the ArcCHECK device without and with an insert containing an ionization chamber. Comparison of the absolute dose distributions measured and calculated in iPlan RT Dose with the MC algorithm at the cylinder of the ArcCHECK diode array for HybridArc plans gives good agreement, even for the 2% dose difference and 2 mm distance-to-agreement criteria. The PB calculations significantly differ from the ArcCHECK measurements so that the MC algorithm is found to be superior to the PB algorithm in the calculation of the HybridArc plans. One of the drawbacks of the PB calculations in iPlan RT Dose is the too large arc step size of 10°. Use of a finer angular resolution may improve the PB results significantly.

Petoukhova, A. L.; van Egmond, J.; Eenink, M. G. C.; Wiggenraad, R. G. J.; van Santvoort, J. P. C.

2011-08-01

135

Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle  

NASA Astrophysics Data System (ADS)

High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo

2010-04-01

136

Room-temperature ultraviolet emission from an organic light-emitting diode C. F. Qiu, L. D. Wang, H. Y. Chen, M. Wong, and H. S. Kwok  

E-print Network

. DOI: 10.1063/1.1407300 The organic light-emitting diode OLED offers many advantages in display OLED and converting the blue light to either red or green light with phosphors or ``color converters.'' If the OLED can emit in the ultraviolet UV , light conversion ef- ficiencies to the visible, in principle, can

137

High power cw operation of phased array diode lasers with diffraction limited output beam  

SciTech Connect

Phased array diode lasers have been operated emitting predominantly in a single diffraction limited beam with full width at half-maximum of 0.8/sup 0/ in pulsed operation and 0.7/sup 0/ in cw operation and output power of 420 and 350 mW, respectively. The current in these lasers is confined to periodic stripes that are offset by a half period at two positions along the laser. In addition, the stripe width varies monotonically across the device while holding the period constant. The single lobed, far-field pattern occurs at 4/sup 0/ off the facet normal and suggests operation in the lowest order supermode of the asymmetric array.

Welch, D.F.; Scifres, D.; Cross, P.; Kung, H.; Streifer, W.; Burnham, R.D.; Yaeli, J.; Paoli, T.L.

1985-12-01

138

New silicon technologies enable high-performance arrays of single photon avalanche diodes  

NASA Astrophysics Data System (ADS)

In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency at the longer wavelengths (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we will analyze the factors the currently prevent the fabrication of arrays of SPADs by adopting such a Red-Enhanced (RE) technology and we will propose further modifications to the device structure that will enable the fabrication of high performance RE-SPAD arrays for photon timing applications.

Gulinatti, Angelo; Rech, Ivan; Maccagnani, Piera; Cova, Sergio; Ghioni, Massimo

2013-05-01

139

New silicon technologies enable high-performance arrays of Single Photon Avalanche Diodes  

PubMed Central

In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency at the longer wavelengths (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we will analyze the factors the currently prevent the fabrication of arrays of SPADs by adopting such a Red-Enhanced (RE) technology and we will propose further modifications to the device structure that will enable the fabrication of high performance RE-SPAD arrays for photon timing applications. PMID:24353395

Gulinatti, Angelo; Rech, Ivan; Maccagnani, Piera; Cova, Sergio; Ghioni, Massimo

2013-01-01

140

New silicon technologies enable high-performance arrays of Single Photon Avalanche Diodes.  

PubMed

In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency at the longer wavelengths (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we will analyze the factors the currently prevent the fabrication of arrays of SPADs by adopting such a Red-Enhanced (RE) technology and we will propose further modifications to the device structure that will enable the fabrication of high performance RE-SPAD arrays for photon timing applications. PMID:24353395

Gulinatti, Angelo; Rech, Ivan; Maccagnani, Piera; Cova, Sergio; Ghioni, Massimo

2013-05-29

141

Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory  

NASA Technical Reports Server (NTRS)

The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

Feldman, P. D.

1975-01-01

142

Label-free specific detection of femtomolar cardiac troponin using an integrated nanoslit array fluidic diode.  

PubMed

We demonstrate here for the first time the utility of an integrated nanofluidic diode for detecting and quantifying physiologically relevant macromolecules. Troponin T, a key human cardiac protein biomarker, was selectively and rapidly detected free of labels for concentrations down to 10 fg/mL (? 0.3 fM) in buffer as well as 10 pg/mL (? 300 fM) in untreated human serum. This ultrasensitive detection arises from monolithic integration of a unique nanofluidic diode structure that is highly robust and amenable to site-specific surface modification. The structure features a planar nanoslit array where each nanoslit is defined at a nominal width of 70 nm over a micrometer-scale silicon trench without the use of high-resolution patterning techniques. Through vapor deposition, a glass layer is placed at a nonuniform thickness, tapering the trench profile upward and contributing to the triangular nanoslit structure. This asymmetric profile is essential for ionic current rectification noted here at various pH values, ionic strengths, and captured target species, which modulate the surface-charge density within the sensitive region of the nanoslit. The nanoslit, unlike nanopores, offers only 1D confinement, which appears to be adequate for reasonable rectification. The measurements are found in quantitative agreement with the diode simulations for the first time based on a pH- and salt-dependent surface-charge model. PMID:25366228

Liu, Yifan; Yobas, Levent

2014-12-10

143

High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes  

NASA Astrophysics Data System (ADS)

We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 ?A) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 ?A current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecture offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.

Wu, Y.; Hasan, T.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.

2015-02-01

144

Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes.  

PubMed

Nanopillar AlGaN/GaN multiple quantum wells ultraviolet light-emitting diodes (LEDs) were fabricated by nanosphere lithography and dry-etching. The optical properties of the nanopillar LEDs were characterized by both temperature-dependent and time-resolved photoluminescence measurements. Compared to an as-grown sample, the nanopillar sample has a PL emission peak blue-shift of 7 meV, a 42% enhanced internal quantum efficiency at room temperature and a reduced radiative recombination lifetime from 870 picosecond to 621 picosecond at 7K. These results are directly from the suppressed quantum confined stark effect that is due to the strain relaxation in the nanopillar MQWs, further revealed by micro-Raman measurement. Additionally, finite-difference time domain simulation also proves better light extraction efficiency in the nanopillar LEDs. PMID:24922241

Dong, Peng; Yan, Jianchang; Zhang, Yun; Wang, Junxi; Geng, Chong; Zheng, Haiyang; Wei, Xuecheng; Yan, Qingfeng; Li, Jinmin

2014-03-10

145

Enhancement of surface emission in deep ultraviolet AlGaN-based light emitting diodes with staggered quantum wells.  

PubMed

The optical polarization properties of staggered AlGaN-AlGaN/AlN quantum wells (QWs) are investigated using the theoretical model based on the k·p method. The numerical results show that the energy level order and coupling relation of the valence subband structure change in the staggered QWs and the trend is beneficial to TE polarized transition compared to that of conventional AlGaN/AlN QWs. As a result, the staggered QWs have much stronger TE-polarized emission than conventional AlGaN-based QWs, which can enhance the surface emission of deep ultraviolet (DUV) light-emitting diodes (LEDs). The polarization control by using staggered QWs can be applied in high efficiency DUV AlGaN-based LEDs. PMID:22940993

Lu, Huimin; Yu, Tongjun; Yuan, Gangcheng; Chen, Xinjuan; Chen, Zhizhong; Chen, Genxiang; Zhang, Guoyi

2012-09-01

146

Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes  

SciTech Connect

The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

Lu, Yu-Hsuan; Pilkuhn, Manfred H. [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Fu, Yi-Keng; Chu, Mu-Tao [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Huang, Shyh-Jer, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electronic Engineering, Kun-Shan University, Tainan 71003, Taiwan (China); Wang, Kang L. [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

2014-03-21

147

Evaluation of a 3D diode array dosimeter for helical tomotherapy delivery QA.  

PubMed

The Delta4 biplanar diode array dosimeter was validated for helical tomotherapy delivery QA. The basic detector characteristics were found to be satisfactory in terms of short-term reproducibility (0.1%), linearity (<0.1%), dose rate dependence (0.4%), and absolute calibration accuracy (0.4% in the center of the phantom compared with the independently calibrated diode). Relative calibration of the arrays was verified by comparison with film and by rotating the detector 180°. The dosimeter response to rotational irradiation changed by no more than 0.2% when one of the detector boards was replaced by the homogeneous phantom material. The daily output correction factor can be derived from a Delta4 measurement in a uniform cylindrical field. The ?(3%, 3 mm) passing rate (absolute dose) was above 90% for all 9 evaluated clinical plans, and above 96% for all but one. The mean passing rate was 97 ± 2.7%. The plans varied in modulation factor, pitch, and calculation grid size. For best results, the phantom needs to be aligned carefully, preferably by megavoltage computed tomography imaging. PMID:20097061

Feygelman, Vladimir; Opp, D; Javedan, K; Saini, A J; Zhang, G

2010-01-01

148

Optical and Thermal Analyses of High-Power Laser Diode Arrays  

NASA Technical Reports Server (NTRS)

An important need, especially for space-borne applications, is the early identification and rejection of laser diode arrays which may fail prematurely. The search for reliable failure predictors is ongoing and has led to the development of two techniques, infrared imagery and monitoring the Temporally-resolved and Spectrally-Resolved (TSR) optical output from which temperature of the device can be measured. This is in addition to power monitoring on long term burn stations. A direct measurement of the temperature of the active region is an important parameter as the lifetime of Laser Diode Arrays (LDA) decreases exponentially with increasing temperature. We measure the temperature from time-resolving the spectral emission in an analogous method to Voss et al. In this paper we briefly discuss the measurement setup and present temperature data derived from thermal images and TSR data for two differently designed high-power 808 nanometer LDA packages of similar specification operated in an electrical and thermal environment that mimic the expected operational conditions.

Vasilyev, Aleksey; Allan, Graham R.; Schafer, John; Stephen, Mark A.; Young, Stefano

2004-01-01

149

A novel controllable synthesis of silica nanotube arrays with ultraviolet photoluminescence  

NASA Astrophysics Data System (ADS)

The synthesis of large-scale one-dimensional silica nanotube (SNT) arrays embedded in Si substrate is demonstrated by using the combination of AAO template mask and Ar ion milling technique. The geometry of the SNTs could be precisely controlled by the process parameters, which included that the SNT diameter and the interpore distance were controlled by AAO anodization voltage and H 3PO 4 pore widening time, while the length of SNT was controlled by ion milling time and AAO aspect ratio. Also, the SNT fabrication parameters could be related to their photoluminescence (PL) emitting properties, when anodized at 40 V, pore widening in H 3PO 4 acid for 70 min and ion milled for 5 min, a strong intensity and stable ultraviolet (UV) light of 3.25 eV (381 nm) emitted from the SNTs under the excitation of 266 nm laser, which could be assumed arising from twofold coordinated silicon lone pair centers in the oxygen deficiency SNTs. The present fabrication of SNT arrays presents a novel method for intensity and frequency adjustable ultraviolet optoelectronic devices.

Hu, Mingzhe; Liu, Yinglin; Gu, Haoshuang; Yu, Rong; MacManus-Driscoll, Judith L.; Robinson, Adam P.

2009-07-01

150

Tunable absorption resonances in the ultraviolet for InP nanowire arrays.  

PubMed

The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < ? < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors. PMID:25402159

Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

2014-11-17

151

Fabrication of an optical lens array using ultraviolet light and ultrasonication.  

PubMed

A technique to form an optical lens array using an ultraviolet (UV)-curable resin and ultrasound was investigated. A UV-curable gel film was formed on a glass plate having four lead zirconate titanate (PZT) transducers. Excitation of the transducers generated a lattice flexural vibration mode on the glass plate. The acoustic radiation force acted to deform the surface of the gel film, so that a lens array could be fabricated on the gel film. The lens array was exposed to UV light under ultrasonication to cure the UV-curable film. The quality factor of the transducer resonance was decreased upon curing of the resin film because the cured resin dampened the vibration of the plate. The acoustic characteristics of the UV-curable gel film were measured by using an ultrasound pulse technique at the MHz range. The sound speed of the gel increased from 987 to 1006 m/s (increase of 1.9%) as the UV exposure time increased. The attenuation coefficient also increased and the larger attenuation of the resin caused the lens array to have a lower quality factor. PMID:25497498

Taniguchi, Satoki; Koyama, Daisuke; Nakamura, Kentaro; Matsukawa, Mami

2015-04-01

152

Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes  

NASA Astrophysics Data System (ADS)

Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the forward-bias IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-n junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the forward-bias IV characteristics of the leaky DUV-LED is achieved.

Moseley, Michael W.; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan J.; Smith, Michael L.; Armstrong, Andrew M.

2015-03-01

153

Injection locking of a fiber-coupled laser diode array M.A. Humphrey, J.E. Massey, D.F. Phillips, and R.L. Walsworth  

E-print Network

1 Injection locking of a fiber-coupled laser diode array M.A. Humphrey, J.E. Massey, D.F. Phillips, fiber-coupled laser diode array was significantly narrowed by injection locking. Up to 72% of the 1 THz intrinsic to the fiber- coupling of the slave laser reduced the injection-locked gain to less than unity

Walsworth, Ronald L.

154

Comparison of continuous versus pulsed ultraviolet light emitting diode use for the inactivation of Bacillus globigii spores.  

PubMed

Light emitting diodes (LEDs) in the ultraviolet (UV) range offer a promising alternative for the disinfection of water. LEDs have many advantages over conventional UV lamps but there are concerns related to the operating life of the LED lamps. In this project Bacillus globigii was inactivated using UV LED technology. The experimental strategy included using pulsed ultraviolet (PUV) output rather than continuous UV (CUV) current in order to reduce the power requirements and extend the life of the lamps. The kinetic profiles for CUV experiments reached 6-log inactivation faster than PUV at 9.1% duty cycle (approx. 840 vs. 5,000 s) but the PUV required lower fluence (365 vs. 665 J/m²). In addition, the inactivation rate constants associated with PUV were generally higher than those of CUV (4.6-5.1 vs. 3.6-4.4 m²/J), which supports the notion that high energy bursts are more effective at causing cellular damage. Multi-target kinetics applied to most of the kinetic observations and tailing effects were generally observed. PUV LED appears to have potential to extend the lifetime of the LEDs for inactivation of spore-forming pathogens. PMID:25401310

Tran, Tho; Racz, LeeAnn; Grimaila, Michael R; Miller, Michael; Harper, Willie F

2014-01-01

155

Feasibility study of using a Zener diode as the selection device for bipolar RRAM and WORM memory arrays  

NASA Astrophysics Data System (ADS)

Cross-bar arrays are usually used for the high density application of resistive random access memory (RRAM) devices. However, cross-talk interference limits an increase in the integration density. In this paper, the Zener diode is proposed as a selection device to suppress the sneak current in bipolar RRAM arrays. Measurement results show that the Zener diode can act as a good selection device, and the sneak current can be effectively suppressed. The readout margin is sufficiently improved compared to that obtained without the selection device. Due to the improvement for the reading disturbance, the size of the cross-bar array can be enhanced to more than 103 × 103. Furthermore, the possibility of using a write-once-read-many-times (WORM) cross-bar array is also demonstrated by connecting the Zener diode and the bipolar RRAM in series. These results strongly suggest that using a Zener diode as a selection device opens up great opportunities to realize high density bipolar RRAM arrays.

Li, Yingtao; Fu, Liping; Tao, Chunlan; Jiang, Xinyu; Sun, Pengxiao

2014-01-01

156

Low-haze light extraction from organic light-emitting diode lighting with auxiliary electrode by selective microlens arrays.  

PubMed

Improved out-coupling efficiency and low haze of organic light-emitting diode (OLED) lighting with an auxiliary electrode are demonstrated by selective microlens arrays (SMLAs). The microlens arrays, aligned with the auxiliary electrode, were selectively fabricated, since the fully packed microlens arrays lead to OLED lighting with high haze. The external quantum efficiency and power efficiency of the devices with the SMLAs increased by 32% when compared with the devices without these arrays. Using the SMLAs, dark grid lines in the emission region became brighter, with a low haze, and the spectra of the emitted light had no shift. PMID:24321954

Hwang, Ju Hyun; Park, Tae Hyun; Lee, Hyun Jun; Choi, Kyung Bok; Park, Young Wook; Ju, Byeong-Kwon

2013-10-15

157

Evaluating dosimetric accuracy of flattening filter free compensator-based IMRT: Measurements with diode arrays  

SciTech Connect

Purpose: Compensator-based IMRT coupled with the high dose rate flattening filter free (FFF) beams offers an intriguing possibility of delivering an intensity modulated radiation field in just a few seconds. As a first step, the authors evaluate the dosimetric accuracy of the treatment planning system (TPS) FFF beam model with compensators. Methods: A 6 MV FFF beam from a TrueBeam accelerator (Varian Medical Systems, Palo Alto CA) was modeled in PINNACLE TPS (v. 9.0, Philips Radiation Oncology, Fitchburg WI). Flat brass slabs from 0.3 to 7 cm thick and an 18 deg. brass wedge were used to adjust the beam model. A 2D (MAPCHECK) and 3D (ARCCHECK) diode arrays (Sun Nuclear Corp, Melbourne FL), were investigated for use with the compensator FFF beams. Corrections for diode sensitivity caused by the spectral changes in the beam were introduced. Four compensator plans based on the AAPM TG-119 report were developed. A composite ion chamber measurement, beam by beam MAPCHECK measurements, and a composite ARCCHECK measurement were performed. The array results were analyzed with the same thresholds as in TG-119 report--3%/3 mm with global dose normalization--as well as with the more stringent combinations of the gamma analysis criteria. Results: The FFF beam shows a greater variation of the effective attenuation coefficient with brass thickness due to the prevalence of the low energy photons compared to the conventional 6X beam. As a result, a compromise had to be made while trying to achieve dose agreement for a combination of field sizes, brass thicknesses, and measurement depths ({>=}5 cm in water). An agreement of measured and calculated dose to within 1% was observed for brass thicknesses up to 2 cm. For the 3 cm slab, an error of up to 2.8% was noted for the field sizes above 10 x 10 cm{sup 2}, and up to 3.8% for the 5 x 5 cm{sup 2} field. Both diode arrays exhibit a substantial sensitivity drop as the compensator thickness increases, reaching 10% for a 7 cm brass slab. A simple correction based on the brass thickness along the ray was introduced to counteract this effect. Pooled for five profiles, the average ratio of uncorrected and corrected MAPCHECK to ion chamber readings are 0.966 and 1.008, respectively. With the proper correction, all MAPCHECK measurement to calculation comparisons exhibit 100%{gamma}(3%/3 mm) passing rates with global dose-error normalization. For the TG-119-type plans, the average {gamma}(2%/2 mm) passing rate with local normalization is 94% (range 87.8%-98.3%). The lower ARCCHECK{gamma}-analysis passing rates (corrected for diode sensitivity) are predictable based on the observed PDD discrepancies. However, with the 3%/3 mm thresholds and global normalization, the average {gamma}-analysis passing rate is 96.4% (range 89.9%-100%). Conclusions: MAPCHECK analysis demonstrates high passing rates with the stringent {gamma}(2%/2 mm) and local normalization criteria combination. The geometry of the ARCCHECK array creates a stress test for the FFF TPS model because of the shallow depth of the entrance diodes and large air cavity. Hence, the ARCCHECK{gamma}-analysis passing rates are lower than with the MAPCHECK, while still on par with TG-119.

Robinson, Joshua; Opp, Daniel; Zhang, Geoffrey; Cashon, Ken; Kozelka, Jakub; Hunt, Dylan; Walker, Luke; Hoffe, Sarah; Shridhar, Ravi; Feygelman, Vladimir [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Division of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); decimal Inc., Sanford, Florida 32771 (United States); Sun Nuclear Corp., Melbourne, Florida 32940 (United States); Division of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

2012-01-15

158

Enhancement of Flip-Chip Light-Emitting Diodes With OmniDirectional Reflector and Textured Micropillar Arrays  

Microsoft Academic Search

The flip-chip light-emitting diodes (FC-LEDs) with a conductive omni-directional reflector and textured micropillar arrays were investigated. The micropillar arrays structure was formed on the bottom side of sapphire substrate by dry etching process to increase the light-extraction efficiency. The light output power of the FC-LED was increased by 65% for a 3.2-mum textured micropillar on the bottom side of the

Chia-En Lee; Yi-Jiun Lee; Hao-Chung Kuo; Meng-Ru Tsai; B. S. Cheng; Tien-Chang Lu; Shing-Chung Wang; Chia-Tai Kuo

2007-01-01

159

A 10 × 10 Gb/s DFB laser diode array fabricated using a SAG technique.  

PubMed

We present a ten-channel distributed feedback laser diode array (DFB-LDA) developed for the transmission of 100-Gb/s (10 × 10 Gb/s) signals separated by an 8 nm wavelength grid at a center wavelength of 1.55 ?m. For the fabrication of this type of laser array, a selective area growth (SAG) technique, electron-beam lithography, and a reverse-mesa ridge waveguide LD processing technique were adopted to offer a tailored gain spectrum to each channel, providing both accurate lasing-wavelength control and excellent single-mode yield over all channels, and reducing the fabrication cost and electrical and thermal resistances. To evaluate the operational performance of the fabricated chip systematically, we also developed a sub-assembly module containing a ten-channel ?/4-shifted DFB-LDA, ten matching resistors, flexible printed circuit board (FPCB) wiring, and a thermistor on a metal optical bench. The static and dynamic properties of all channels of the fabricated array are examined in this paper. The developed sub-assembly module shows a side-mode suppression ratio (SMSR) of > 50 dB, a modulation bandwidth of > 10 GHz, and a clear eye-opening before and after a 2-km transmission with dynamic extinction ratio of > 5 dB. PMID:24787795

Kwon, Oh Kee; Leem, Yong Ahn; Han, Young Tak; Lee, Chul Wook; Kim, Ki Soo; Oh, Su Hwan

2014-04-21

160

High reliability, high power arrays of 808 nm single mode diode lasers employing various quantum well structures  

Microsoft Academic Search

Single mode laser diode arrays operating at 808 nm have been designed and fabricated using several different waveguide and quantum well combinations. In order to operate these devices at 200 mW per element a quantum well intermixing process has been used to render their facets non-absorbing and thus they do not suffer from mirror damage related failure. In this paper

B. C. Qiu; O. Kowalski; S. D. McDougall; X. F. Liu; J. H. Marsh

2008-01-01

161

Extraction, Detection, and Quantification of Heterocyclic Aromatic Amines in Portuguese Meat Dishes by HPLC\\/Diode Array  

Microsoft Academic Search

The present paper describes the results obtained in the analyses of heterocyclic aromatic amines (HAs) in bovine meat dishes prepared by three different coking methods; usually ingredients such as, salt, garlic, wine, olive oil, onion, and tomato were added. Control meat samples (cooked without ingredients) were also prepared. Analyses were performed by HPLC\\/diode array and detection of the eluted HAs

A. Melo; O. Viegas; R. Eça; C. Petisca; O. Pinho; I. M. P. L. V. O. Ferreira

2008-01-01

162

Coal liquefaction process streams characterization and evaluation: High performance liquid chromatography (HPLC) of coal liquefaction process streams using normal-phase separation with uv diode array detection  

SciTech Connect

This study demonstrated the considerable potential of using two-dimensional, high performance liquid chromatography (HPLC) with normal-phase separation and ultraviolet (UV) diode array detection for the examination of filtered process liquids and the 850{degrees}F{sup {minus}} distillate materials derived from direct coal liquefaction process streams. A commercially available HPLC column (Hypersil Green PAH-2) provided excellent separation of the complex mixture of polynuclear aromatic hydrocarbons (PAHs) found in coal-derived process streams process. Some characteristics of the samples delineated by separation could be attributed to processing parameters. Mass recovery of the process derived samples was low (5--50 wt %). Penn State believes, however, that, improved recovery can be achieved. High resolution mass spectrometry and gas chromatography/mass spectrometry (GC/MS) also were used in this study to characterize the samples and the HPLC fractions. The GC/MS technique was used to preliminarily examine the GC-elutable portion of the samples. The GC/MS data were compared with the data from the HPLC technique. The use of an ultraviolet detector in the HPLC work precludes detecting the aliphatic portion of the sample. The GC/MS allowed for identification and quantification of that portion of the samples. Further development of the 2-D HPLC analytical method as a process development tool appears justified based on the results of this project.

Clifford, D.J.; McKinney, D.E.; Hou, Lei; Hatcher, P.G. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

1994-01-01

163

Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.  

PubMed

Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint. PMID:25401669

Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

2014-10-20

164

High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments  

NASA Technical Reports Server (NTRS)

High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.

Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank

2006-01-01

165

Tm,Ho:YLF laser end-pumped by a semiconductor diode laser array  

NASA Technical Reports Server (NTRS)

An Ho:YLF crystal including Tm as sensitizers for the activator Ho, is optically pumped with a semiconductor diode laser array to generate 2.1 micron radiation with a pump power to output power of efficiency as high as 68 percent. The prior-art dual sensitizer system of Er and Tm requires cooling, such as by LN2, but by using Tm alone and decreasing the concentrations of Tm and Ho, and decreasing the length of the laser rod to about 1 cm, it has been demonstrated that laser operation can be obtained from a temperature of 77 K with an efficiency as high as 68 percent up to ambient room temperature with an efficiency at that temperature as high as 9 percent.

Hemmati, Hamid (inventor)

1990-01-01

166

A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy  

PubMed Central

We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.

2013-01-01

167

Spectral Linewidth Narrowing and Tunable Two-Color Laser Operation of Two Diode Laser Arrays  

SciTech Connect

We propose and implement a common external cavity to narrow spectral linewidth of two broad-area laser diode arrays (LDAs) and align their center wavelengths. The locked center wavelength of two LDAs can be tuned in the range of {approx}10 nm by tuning the tilted angle of the diffraction grating. The output beams of two LDAs are spatially overlapped through the polarization beam splitter of the common external cavity, and the total output power equals the power of two LDAs. The center wavelength of each LDA can be independently tuned by shifting the corresponding fast-axis collimation lens. As a result, the high-power two-color LDA operation is demonstrated with the tunable wavelength difference of up to 2 nm ({approx}1 THz).

Liu, Bo [ORNL; Braiman, Yehuda [ORNL

2012-01-01

168

Electrically driven ultraviolet lasing behavior from phosphorus-doped p-ZnO nanonail array/n-Si heterojunction  

NASA Astrophysics Data System (ADS)

Electrically driven ultraviolet lasing behavior from p-ZnO:P nanonail array/n-Si heterojunction was demonstrated. Phosphorus-doped ZnO nanonail arrays were grown by chemical vapor deposition method. The constructed heterojunction with indium tin oxide films as the contacted electrodes demonstrated clear rectifying behavior, and the turn-on voltage was about 2.5 V. The p-n junction lowered the excitation threshold effectively and the electrically driven ultraviolet lasing behavior exhibited high monochromaticity: when the applied forward current reached 24 mA, distinct ultraviolet laser emission peaks were obtained at room temperature, and the full width at half maxims were 0.7, 0.9, and 0.5 nm, respectively. The three sharp peaks represented different lasing modes.

Zhang, Jun-Yan; Zhang, Qi-Feng; Deng, Tian-Song; Wu, Jin-Lei

2009-11-01

169

Quality assurance of asymmetric jaw alignment using 2D diode array  

SciTech Connect

Purpose: A method using a 2D diode array is proposed to measure the junction gap (or overlap) and dose with high precision for routine quality assurance of the asymmetric jaw alignment.Methods: The central axis (CAX) of the radiation field was determined with a 15 × 15 cm{sup 2} photon field at four cardinal collimator angles so that the junction gap (or overlap) can be measured with respect to the CAX. Two abutting fields having a field size of 15 cm (length along the axis parallel to the junction) × 7.5 cm (width along the axis perpendicular to the junction) were used to irradiate the 2D diode array (MapCHECK2) with 100 MU delivered at the photon energy of 6 MV. The collimator was slightly rotated at 15° with respect to the beam central axis to increase the number of diodes effective on the measurement of junction gap. The junction gap and dose measured in high spatial resolution were compared to the conventional methods using an electronic portal imaging device (EPID) and radiochromic film, respectively. In addition, the reproducibility and sensitivity of the proposed method to the measurements of junction gap and dose were investigated.Results: The junction gap (or overlap) and dose measured by MapCHECK2 agreed well to those measured by the conventional methods of EPID and film (the differences ranged from ?0.01 to 0 cm and from ?1.34% to 0.6% for the gap and dose, respectively). No variation in the repeat measurements of the junction gap was found whereas the measurements of junction dose were found to vary in quite a small range over the days of measurement (0.21%–0.35%). While the sensitivity of the measured junction gap to the actual junction gap applied was the ideal value of 1 cm/cm as expected, the sensitivity of the junction dose to the actual junction gap increased as the junction gap (or overlap) decreased (maximum sensitivity: 201.7%/cm).Conclusions: The initial results suggest that the method is applicable for a comprehensive quality assurance of the asymmetric jaw alignment.

Kim, Sun Mo [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9, Canada and Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada)] [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9, Canada and Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Chmielewski, Renata; Abbas, Ahmar [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada)] [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada); Yeung, Ivan W. T.; Moseley, Douglas J. [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada) [Department of Medical Physics, Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Ontario L3Y 2P9 (Canada); Radiation Medicine Program, Princess Margaret Hospital/University Health Network, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Ontario M5G 2M9 (Canada)

2013-12-15

170

High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy  

Microsoft Academic Search

Ultraviolet (UV) light-emitting diodes (LEDs) with an InGaN multi-quantum-well (MQW) structure were fabricated on a patterned sapphire substrate (PSS) using a single growth process of metalorganic vapor phase epitaxy. In this study, the PSS with parallel grooves along the sapphire direction was fabricated by standard photolithography and subsequent reactive ion etching (RIE). The GaN layer grown by lateral epitaxy on

Kazuyuki Tadatomo; Hiroaki Okagawa; Youichiro Ohuchi; Takashi Tsunekawa; Yoshiyuki Imada; Munehiro Kato; Tsunemasa Taguchi; H. Kudo

2001-01-01

171

Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates  

Microsoft Academic Search

Ultraviolet (UV) InGaN and GaN single-quantum-well-structure light-emitting diodes (LEDs) were grown on epitaxially laterally overgrown GaN (ELOG) and sapphire substrates. When the emission wavelength of UV InGaN LEDs was shorter than 380 nm, the external quantum efficiency (EQE) of the LED on ELOG was much higher than that on sapphire only under high-current operation. At low-current operation, both LEDs had

Takashi Mukai; Shuji Nakamura

1999-01-01

172

Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes  

Microsoft Academic Search

We report on the development of a large-area few-layer graphene (FLG)--based transparent conductive electrode as a current spreading layer for GaN-based ultraviolet (UV) light-emitting diodes (LEDs). Large-area FLG was deposited on Cu using the chemical vapor deposition (CVD) method and subsequently transferred to the surface of the UV LED. UV light at a peak of 372 nm was emitted through

Byung-Jae Kim; Chongmin Lee; Younghun Jung; Kwang Hyeon Baik; Michael A. Mastro; Jennifer K. Hite; Charles R. Eddy; Jihyun Kim

2011-01-01

173

Combinatorial fabrication and studies of intense efficient ultraviolet--violet organic light-emitting device arrays  

SciTech Connect

Arrays of ultraviolet--violet (indium tin oxide)/[copper phthalocyanine (CuPc)]/[4,4'-bis(9-carbazolyl)biphenyl (CBP)]/[2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4oxadiazole (Bu-PBD)]/CsF/Al organic light-emitting devices, fabricated combinatorially using a sliding shutter technique, are described. Comparison of the OLED electroluminescence and CBP photoluminescence spectra indicates that the emission originates from the bulk of that layer. In arrays of devices in which the thickness of the CuPc and Bu--PBD were varied, but that of CBP was fixed at 50 nm, the optimal radiance R was obtained at CuPc and Bu--PBD thicknesses of 15 and 18 nm, respectively. At 10 mA/cm{sup 2}, R was 0.38 mW/cm{sup 2}, i.e., the external quantum efficiency was 1.25%; R increased to {approx}1.2 mW/cm{sup 2} at 100 mA/cm{sup 2}.

Zou, L.; Savvate'ev, V.; Booher, J.; Kim, C.-H.; Shinar, J.

2001-10-01

174

Lasers solides pompés par diode émettant des impulsions picosecondes à haute cadence dans l'ultraviolet  

NASA Astrophysics Data System (ADS)

De nombreuses applications requièrent des sources lasers impulsionnelles ultraviolettes, présentant des durées d'impulsion et des cadences spécifiques. Grâce à l'utilisation de structures d'oscillateurs et d'amplificateurs originales il est possible de réaliser de telles sources à partir de lasers solides pompés par diodes et de profiter ainsi de la compacité, de l'efficacité et de la robustesse de ces sources. Nous présentons ici la réalisation d'un laser à verrouillage de modes et d'un microlaser déclenché permettant d'obtenir des impulsions ultraviolettes picosecondes à une cadence de quelques MHz en vue d'application à la microscopie de fluorescence résolue en temps, ainsi que la mise en œuvre pour le traitement des matériaux d'un système oscillateur-amplificateur produisant plus de 600 mW de rayonnement UV à 266 ou 355 nm avec des impulsions sub-nanosecondes.

Balembois, F.; Forget, S.; Papadopoulos, D.; Druon, F.; Georges, P.; Devilder, P.-J.; Lefort, L.

2005-06-01

175

Top-Emission Ultraviolet-Light-Emitting Diodes Containing Solution-Processed ZnO Nanocrystals  

NASA Astrophysics Data System (ADS)

Top-emission light-emitting diodes containing nanoparticles (NanoLEDs) were prepared for flexible electronics applications. Transmission electron microscopy images revealed that solution-processed ZnO nanocrystals (NCs) embedded in a printed emission layer were nearly monodisperse with a crystal size of about 10 nm. To improve the UV electroluminescent emission of ZnO excitons and suppress visible emission from surface defects of the NCs, the low-power deposition of indium tin oxide (ITO) top electrodes was examined together with the deposition of a MoO3 layer before ITO. Finally, conversion from UV to green light via a phosphor is demonstrated, revealing the color tunability of the NanoLEDs.

Toyama, Toshihiko; Kawasaki, Hayato; Itatani, Kazuki; Okamoto, Hiroaki

2011-06-01

176

A 48-pixel array of Single Photon Avalanche Diodes for multispot Single Molecule analysis.  

PubMed

In this paper we present an array of 48 Single Photon Avalanche Diodes (SPADs) specifically designed for multispot Single Molecule Analysis. The detectors have been arranged in a 12×4 square geometry with a pitch-to-diameter ratio of ten in order to minimize the collection of the light from non-conjugated excitation spots. In order to explore the trade-offs between the detectors' performance and the optical coupling with the experimental setup, SPADs with an active diameter of 25 and of 50µm have been manufactured. The use of a custom technology, specifically designed for the fabrication of the detectors, allowed us to combine a high photon detection efficiency (peak close to 50% at a wavelength of 550nm) with a low dark count rate compatible with true single molecule detection. In order to allow easy integration into the optical setup for parallel single-molecule analysis, the SPAD array has been incorporated in a compact module containing all the electronics needed for a proper operation of the detectors. PMID:24357913

Gulinatti, Angelo; Rech, Ivan; Maccagnani, Piera; Ghioni, Massimo

2013-02-01

177

A 48-pixel array of single photon avalanche diodes for multispot single molecule analysis  

NASA Astrophysics Data System (ADS)

In this paper we present an array of 48 Single Photon Avalanche Diodes (SPADs) specifically designed for multispot Single Molecule Analysis. The detectors have been arranged in a 12x4 square geometry with a pitch-to-diameter ratio of ten in order to minimize the collection of the light from non-conjugated excitation spots. In order to explore the tradeoffs between the detectors' performance and the optical coupling with the experimental setup, SPADs with an active diameter of 25 and of 50?m have been manufactured. The use of a custom technology, specifically designed for the fabrication of the detectors, allowed us to combine a high photon detection efficiency (peak close to 50% at a wavelength of 550nm) with a low dark count rate compatible with true single molecule detection. In order to allow easy integration into the optical setup for parallel single-molecule analysis, the SPAD array has been incorporated in a compact module containing all the electronics needed for a proper operation of the detectors.

Gulinatti, Angelo; Rech, Ivan; Maccagnani, Piera; Ghioni, Massimo

2013-01-01

178

A 48-pixel array of Single Photon Avalanche Diodes for multispot Single Molecule analysis  

PubMed Central

In this paper we present an array of 48 Single Photon Avalanche Diodes (SPADs) specifically designed for multispot Single Molecule Analysis. The detectors have been arranged in a 12×4 square geometry with a pitch-to-diameter ratio of ten in order to minimize the collection of the light from non-conjugated excitation spots. In order to explore the trade-offs between the detectors’ performance and the optical coupling with the experimental setup, SPADs with an active diameter of 25 and of 50µm have been manufactured. The use of a custom technology, specifically designed for the fabrication of the detectors, allowed us to combine a high photon detection efficiency (peak close to 50% at a wavelength of 550nm) with a low dark count rate compatible with true single molecule detection. In order to allow easy integration into the optical setup for parallel single-molecule analysis, the SPAD array has been incorporated in a compact module containing all the electronics needed for a proper operation of the detectors. PMID:24357913

Rech, Ivan; Maccagnani, Piera; Ghioni, Massimo

2013-01-01

179

Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures  

NASA Astrophysics Data System (ADS)

Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs.

Ryu, Han-Youl

2014-02-01

180

Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures.  

PubMed

Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS: 41.20.Jb; 42.72.Bj; 85.60.Jb. PMID:24495598

Ryu, Han-Youl

2014-01-01

181

Comprehensive Material Study of MOCVD grown Aluminum Indium Nitride and Development of Relaxed Template for Ultraviolet Diode Lasers  

NASA Astrophysics Data System (ADS)

AlGaN based conventional deep ultraviolet (UV) light emitting diodes (LEDs) grown on a sapphire or SiC substrate suffer from high threading dislocation density (TDD) (> 1 x 109 cm-2). The high quality bulk AlN substrate (TDD ˜ 1 x 104 cm-2) has shown promising results for high power deep UV LEDs but the substrates are not readily available yet. The performance of UV laser diodes (LDs) has been rapidly improved over the past few years. However, intrinsic valence band property of c-plane AlN could result in poor optical gain for c-plane LDs, especially in UV-C range. In this work, different approaches have been explored for further development of UV LEDs and LDs. The success of c-plane InGaN LEDs has been attributed to the indium induced local potential minima in a length scale shorter than the dislocation spacing. As a result, high internal quantum efficiency (IQE) can be achieved even with high TDD. UV LEDs could potentially benefit from this phenomenon by using AlInN as an active layer. However, due to the lack of understanding of this alloy, we start from the growth study of AlInN by metal organic chemical vapor deposition (MOCVD). High structural quality Al0.82In0.18N has been achieved on GaN, but large Stokes' shift of ˜0.6 eV and broad photoluminescence (PL) spectrum (˜0.3 eV) were also observed. The time resolved PL study revealed extremely long decay lifetime, suggesting the presence of deep traps. Electrical analysis of AlInN by capacitance -- voltage measurement showed n-type conductivity for UID Al0.82In0.18N, possibly due to oxygen. High quality semipolar (112¯2) Al0.76In 0.24N showed emission energy below the bandgap of GaN, allowing us to obtain the electroluminescence characteristics of AlInN. Appearance of a narrow peak under high injection current could shed a light on the emission property of AlInN. Semipolar substrates offer a number of advantages for UV emitting AlGaInN based laser diodes, including higher gain, an ability to operate with nearly transverse electric (TE) optical modes, and an ability to provide pseudo-substrates with tailorable lattice constants, something unavailable from bulk c-plane AlN substrates. AlInN and AlGaN lavers with various thicknesses and compositions have been grown on (202¯1) and (112¯2) bulk GaN substrates by MOCVD. With increasing thickness and Al composition, various defects -- c-plane misfit dislocations, cracks, and secondary defects -- were observed. The critical thickness of each process has been empirically estimated. We have also grown AlGaN on (202¯1) GaN, step grading to higher aluminum composition to minimize the generation of undesired defects. Multiple quantum wells (MQW) and LEDs were grown on a relaxed AlGaN on (202¯1) GaN. IQE measurements and the diode operation of near UV LEDs (lambda˜385 nm) on the relaxed buffer showed a promising result for device application of relaxed AlGaN template.

Chung, Roy B.

182

Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence.  

PubMed

Almost all electronic devices utilize a pn junction formed by random doping of donor and acceptor impurity atoms. We developed a fundamentally new type of pn junction not formed by impurity-doping, but rather by grading the composition of a semiconductor nanowire resulting in alternating p and n conducting regions due to polarization charge. By linearly grading AlGaN nanowires from 0% to 100% and back to 0% Al, we show the formation of a polarization-induced pn junction even in the absence of any impurity doping. Since electrons and holes are injected from AlN barriers into quantum disk active regions, graded nanowires allow deep ultraviolet LEDs across the AlGaN band-gap range with electroluminescence observed from 3.4 to 5 eV. Polarization-induced p-type conductivity in nanowires is shown to be possible even without supplemental acceptor doping, demonstrating the advantage of polarization engineering in nanowires compared with planar films and providing a strategy for improving conductivity in wide-band-gap semiconductors. As polarization charge is uniform within each unit cell, polarization-induced conductivity without impurity doping provides a solution to the problem of conductivity uniformity in nanowires and nanoelectronics and opens a new field of polarization engineering in nanostructures that may be applied to other polar semiconductors. PMID:22268600

Carnevale, Santino D; Kent, Thomas F; Phillips, Patrick J; Mills, Michael J; Rajan, Siddharth; Myers, Roberto C

2012-02-01

183

Development of an HPLC\\/Diode-Array Detector Method for Simultaneous Determination of Trigonelline, Nicotinic Acid, and Caffeine in Coffee  

Microsoft Academic Search

This paper describes an adequate procedure of reversed-phase HPLC\\/diode-array detector to be used in quality control to simultaneously quantify three nitrogen compounds: trigonelline, nicotinic acid, and caffeine, in coffee samples either in the green or roasted states. The chromatographic separation was achieved using a reversed-phase column (Spherisorb ODS2) with gradient elution of 0.01M phosphate buffer pH 4.0 (A) and methanol

S. Casal; M. B. Oliveira; M. A. Ferreira

1998-01-01

184

Diode-array pumping of Er[sup 3+]\\/Yb[sup 3+] co-doped fiber lasers and amplifiers  

Microsoft Academic Search

The sensitization of erbium-doped fibers with ytterbium is well established as a technique for increasing the choice of pump wavelengths for the erbium system. Single-mode double-clad Er[sup 3+]\\/Yb[sup 3+] co-doped fibers are shown to be suitable for diode array pumping at around 960 nm. A fiber laser with 96 mW output power at 1.53 [mu]M and a power amplifier exhibiting

J. D. Minelly; W. L. Barnes; R. I. Laming; P. R. Morkel; J. E. Townsend; D. N. Payne; S. G. Grubb

1993-01-01

185

Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC  

SciTech Connect

Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs.

Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

1989-05-01

186

High performance liquid chromatography of coal liquefaction process streams using normal-phase separation with diode array detection  

SciTech Connect

Since its introduction as an analytical method in the late 1960s and early 1970s, high performance liquid chromatography (HPLC) has become widely used in environmental studies, especially for the analysis of PAHs. Developments in the last fifteen years of a full spectrum UV absorbance detector (i.e. diode array detector or DAD) enable full spectrum detection of HPLC eluates. A distinct advantage of the diode array HPLC technique, which provides UV spectra of separated fractions as a function of time, is its ability to identify, by spectral comparisons, the molecular components of the eluates, including the isomers of PAHs. In this paper, we demonstrate a sensitive method for the detection and analysis of PAHs in coal liquefaction process stream samples. This is accomplished by the normal-phase separation of PAHs and their alkylated derivatives using a TCPP-modified silica column (Hypersil Green PAH-2) in combination with UV-diode array detection. This method allows for a more sensitive detection and efficient separation of multi-ring PAHs and their isomers without elaborate sample preparations or on-line coupling of a reverse-phase HPLC system.

McKinney, D.E.; Clifford, D.J.; Hou, L. [Penn State Univ., University Park, PA (United States)

1994-12-31

187

Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application  

NASA Astrophysics Data System (ADS)

The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl5 solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance.

Zhang, Fute; Song, Tao; Sun, Baoquan

2012-05-01

188

Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application.  

PubMed

The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl(5) solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance. PMID:22538992

Zhang, Fute; Song, Tao; Sun, Baoquan

2012-05-17

189

Improve beam quality of high-power laser diode array stacks by external-cavity technique  

NASA Astrophysics Data System (ADS)

Because of its own structure's limitation, the beam divergence angle of the semiconductor laser is very large. In the fastaxis direction, the beam plays good quality and can be collimated less than 1° by using cylindrical micro-lens. However, in the slow-axis direction, the beam quality is too poor to be collimated to a small pattern. This could limit its application in the fields which need high beam quality. For high-power laser diode array (LDA), external-cavity technique can make all the emitters working in the same wavelength, and can improve their beam quality. In this paper, direct feedback method was employed to achieve cross-injection between 25 emitters of a LD bar by using a stripe mirror. At a certain cavity length, after the reflection of the external-cavity mirror's reflective stripe, the beam with large slow-axis divergence angle will feedback to the spacer region between the emitters and lose its energy, or would exactly feedback to the neighbor emitter. Simultaneously, the beam with small divergence angle would output from the transparent stripe of the external-cavity mirror. The slow-axis divergence of the stacks with two bars was suppressed from 6°to 2°by using this technique.

Pi, Haoyang; Xin, Guofeng; Qu, Ronghui; Fang, Zujie

2010-11-01

190

Visible light initiated polymerisation of styrenic monolithic stationary phases using 470 nm light emitting diode arrays  

PubMed Central

Poly(styrene-co-divinylbenzene) monolithic stationary phases have been synthesised for the first time by photoinitiated polymerisation. An initiator composed of (+)-S-camphorquinone/ethyl-4-dimethylaminobenzoate/N-methoxy-4-phenylpyridinium tetrafluoroborate was activated using a 470 nm light emitting diode array as the light source. Spatially controlled polymerisation of styrenic monoliths has been achieved within specific sections of a 100 µm i.d. polytetrafluoroethylene (PTFE)-coated fused silica capillary using simple photo-masking. The sharpness of the edges was confirmed by optical microscopy, while scanning electron microscopy was used to verify a typical porous, globular morphology. Flow resistance data was used to assess the permeability of the monoliths and they were found to have good flow through properties with a flow resistance of 0.725 MPa cm?1 at 1 µl min?1 (water, 20°C). Conductivity profiling along the length of the capillary was used to assess their lateral homogeneity. Monoliths which were axially rotated during polymerisation were found to be homogeneous along the whole length of the capillary. The monolithic stationary phases were applied to the reversed phase gradient separation of a mixture of proteins. Column fabrication showed excellent reproducibility with the retention factor (k) having a RSD value of 2.6% for the batch and less than 1.73% on individual columns. PMID:20091717

Walsh, Zarah; Levkin, Pavel A.; Paull, Brett; Svec, Frantisek; Macka, Mirek

2010-01-01

191

Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.  

ERIC Educational Resources Information Center

A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

Jones, Dianna G.

1985-01-01

192

Improved cation valence state in molybdenum oxides by ultraviolet-ozone treatments and its applications in organic light-emitting diodes  

NASA Astrophysics Data System (ADS)

The authors demonstrate a thick MoO3 layer (60 nm) as a good short reduction layer in organic light emitting diodes (OLEDs), which is especially useful for large-area and flexible OLEDs to prevent short circuit issues. The crystallization of organic material and the increase of driving voltage induced by a thick MoO3 layer in OLEDs were resolved by a simple ultraviolet-ozone (UV-ozone) treatment. Ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, contact angle, and atomic force microscope analyses revealed that a longer UV-ozone treatment resulted in an optimized fraction of oxygen vacancies in MoO3, which is responsible for the improved device performance.

Shi, Xiao-Bo; Xu, Mei-Feng; Zhou, Dong-Ying; Wang, Zhao-Kui; Liao, Liang-Sheng

2013-06-01

193

Ultraviolet laser diodes grown on semipolar (202xAF1) GaN substrates by plasma-assisted molecular beam epitaxy  

NASA Astrophysics Data System (ADS)

We demonstrate ultra-violet laser diodes emitting at 388 nm grown by plasma-assisted molecular beam epitaxy on semipolar (202¯1)GaN substrates under metal-rich conditions. The threshold current density and voltage of 13.2 kA/cm2 and 10.8 V were measured at room temperature for devices with the laser ridge waveguide oriented along the [1¯21¯0] direction. We show smooth, atomically flat surface morphology after growth. The excellent structural quality of the laser heterostructure was corroborated by transmission electron microscopy.

Sawicka, M.; Muziol, G.; Turski, H.; Grzanka, S.; Grzanka, E.; Smalc-Koziorowska, J.; Weyher, J. L.; Chèze, C.; Albrecht, M.; Kucharski, R.; Perlin, P.; Skierbiszewski, C.

2013-06-01

194

Low-Temperature Growth of Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Application  

NASA Astrophysics Data System (ADS)

A well-aligned ZnO nanorod array (ZNRA) was successfully grown on an indium tin oxide (ITO) substrate by chemical bath deposition at low temperature. The morphology, crystalline structure, transmittance spectrum and photoluminescence spectrum of as-grown ZNRA were investigated by field emission scanning electron microscopy, x-ray diffraction, ultraviolet-visible spectroscopy and spectrophotometer, respectively. The results of these measurements showed that the ZNRA contained densely packed, aligned nanorods with diameters from 30 nm to 40 nm and a wurtzite structure. The ZNRA exhibited good optical transparency within the visible spectral range, with >80% transmission. Gold (Au) was deposited on top of the ZNRA, and the current-voltage characteristics of the resulting ITO/ZNRA/Au device in the dark were evaluated in detail. The ITO/ZNRA/Au device acted as a Schottky barrier diode with rectifying behaviour, low turn-on voltage (0.6 V), small reverse-bias saturation current (3.73 × 10-6 A), a high ideality factor (3.75), and a reasonable barrier height (0.65 V) between the ZNRA and Au.

Yuan, Zhaolin

2015-04-01

195

Patterning the Cone Mosaic Array in Zebrafish Retina Requires Specification of Ultraviolet-Sensitive Cones  

PubMed Central

Cone photoreceptors in teleost fish are organized in precise, crystalline arrays in the epithelial plane of the retina. In zebrafish, four distinct morphological/spectral cone types occupy specific, invariant positions within a regular lattice. The cone lattice is aligned orthogonal and parallel to circumference of the retinal hemisphere: it emerges as cones generated in a germinal zone at the retinal periphery are incorporated as single-cell columns into the cone lattice. Genetic disruption of the transcription factor Tbx2b eliminates most of the cone subtype maximally sensitive to ultraviolet (UV) wavelengths and also perturbs the long-range organization of the cone lattice. In the tbx2b mutant, the other three cone types (red, green, and blue cones) are specified in the correct proportion, differentiate normally, and acquire normal, planar polarized adhesive interactions mediated by Crumbs 2a and Crumbs 2b. Quantitative image analysis of cell adjacency revealed that the cones in the tbx2b mutant primarily have two nearest neighbors and align in single-cell-wide column fragments that are separated by rod photoreceptors. Some UV cones differentiate at the dorsal retinal margin in the tbx2b mutant, although they are severely dysmorphic and are eventually eliminated. Incorporating loss of UV cones during formation of cone columns at the margin into our previously published mathematical model of zebrafish cone mosaic formation (which uses bidirectional interactions between planar cell polarity proteins and anisotropic mechanical stresses in the plane of the retinal epithelium to generate regular columns of cones parallel to the margin) reproduces many features of the pattern disruptions seen in the tbx2b mutant. PMID:24465536

Raymond, Pamela A.; Colvin, Steven M.; Jabeen, Zahera; Nagashima, Mikiko; Barthel, Linda K.; Hadidjojo, Jeremy; Popova, Lilia; Pejaver, Vivek R.; Lubensky, David K.

2014-01-01

196

Variable FOV optical illumination system with constant aspect ratio for 2-D array lasers diodes  

NASA Astrophysics Data System (ADS)

In this contribution we present a compact system to create an illumination distribution with a constant aspect ratio 3:4 and FOV from 0.4 to 1 degree. Besides, the system must delivery 40 W from 170 individual laser diodes placed in a regular 2-D array distribution of 10 x 20 mm. The main problem that must be solved is the high asymmetry of the individual sources; emission divergence's ratio 3:73 (0.3 vs. 7.4 degree) combined with the flux holes due to the laser's heat drain. In one axis (divergence of 0.3º) the best design strategy approach is a Galileo telescope but in the other axis a collimator configuration is the best solution. To manage both solutions at the same time is the aim of this contribution. Unfortunately for the Galileo strategy, source dimensions are too large so aspheric surfaces are needed, and the collimator configuration requires an EFL that must change from 573 to 1432 mm. The presented solution uses a set of three fixed anamorphic lenses, two of them pure cylinders, combined with a wheel of anamorphic lenses that have the function to change the FOV of the system. The most important contribution of the design is to obtain a constant final ratio 3:4 from an initial ratio of 3:73 with no losses of energy. The proposed solution produces an illumination pattern with peaks and valleys lower than 40%. This pattern distribution might be unacceptable for a standard illumination solution. However, the actual FOV is used to illuminate far away targets thus air turbulence is enough to homogenize the distribution on the target.

Arasa, J.; de la Fuente, M. C.; Ibañez, C.

2008-09-01

197

Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures  

SciTech Connect

Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365?nm (3.4?eV, the bulk bandgap) to below 240?nm (>5.2?eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

Verma, Jai, E-mail: jverma@nd.edu; Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

2014-01-13

198

Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source.  

PubMed

A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol. PMID:19224025

Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming

2009-03-01

199

Near white electroluminescence from self-supporting ZnO nanocone array based heterojunction light-emitting diodes  

NASA Astrophysics Data System (ADS)

Self-supporting ZnO nanocone arrays (NCAs) were fabricated by a low temperature and substrate-free hydrothermal process in open air, and near white electroluminescence (EL) devices with a structure of n-ZnO NCAs/p-Si heterojunction were fabricated. Different EL performances were achieved by controlling the growth time of ZnO nanocone layer and the chromaticity coordinates of the obtained diodes are tunable and can be changed from (0.36, 0.41) to (0.29, 0.32), which is close to (0.33, 0.33) of standard white light. The mechanism of the EL emission phenomenon was discussed.

Wang, Haoning; Long, Hao; Mo, Xiaoming; Chen, Zhao; Li, Songzhan; Huang, Huihui; Liu, Yuping; Fang, Guojia

2015-03-01

200

Diode-array pumping of Er[sup 3+]/Yb[sup 3+] co-doped fiber lasers and amplifiers  

SciTech Connect

The sensitization of erbium-doped fibers with ytterbium is well established as a technique for increasing the choice of pump wavelengths for the erbium system. Single-mode double-clad Er[sup 3+]/Yb[sup 3+] co-doped fibers are shown to be suitable for diode array pumping at around 960 nm. A fiber laser with 96 mW output power at 1.53 [mu]M and a power amplifier exhibiting a small signal gain of 24 dB and a saturated output power of +17 dBm are reported.

Minelly, J.D.; Barnes, W.L.; Laming, R.I.; Morkel, P.R.; Townsend, J.E.; Payne, D.N. (Southampton Univ. (United Kingdom)); Grubb, S.G. (Amoco Technology Co., Naperville, IL (United States))

1993-03-01

201

High-purity hydrogen generation by ultraviolet illumination with the membrane composed of titanium dioxide nanotube array and Pd layer  

NASA Astrophysics Data System (ADS)

High-purity hydrogen generation was observed by using a membrane composed of a bilayer of an anodized titanium dioxide nanotube array (TNA) and a hydrogen permeable metal. This membrane was fabricated by transferring a TNA embedded in a titanium foil onto a sputtered 10-?m-thick palladium film. Alcohols are reformed photocatalytically and concurrently generated hydrogen is purified through the Pd layer. H2 with a purity of more than 99% was obtained from liquid alcohols under ultraviolet illumination onto the membrane. Thus, we demonstrated the integration of photocatalytic hydrogen production and purification within a single membrane.

Hattori, Masashi; Noda, Kei; Matsushige, Kazumi

2011-09-01

202

A Comparative Analysis for Verification of IMRT and VMAT Treatment Plans using a 2-D and 3-D Diode Array  

NASA Astrophysics Data System (ADS)

With the added complexity of current radiation treatment dose delivery modalities such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy), quality assurance (QA) of these plans become multifaceted and labor intensive. To simplify the patient specific quality assurance process, 2D or 3D diode arrays are used to measure the radiation fluence for IMRT and VMAT treatments which can then be quickly and easily compared against the planned dose distribution. Because the arrays that can be used for IMRT and VMAT patient-specific quality assurance are of different geometry (planar vs. cylindrical), the same IMRT or VMAT treatment plan measured by two different arrays could lead to different measured radiation fluences, regardless of the output and performance of linear accelerator. Thus, the purpose of this study is to compare patient specific QA results as measured by the MapCHECK 2 and ArcCHECK diode arrays for the same IMRT and VMAT treatment plans to see if one diode array consistently provides a closer comparison to reference data. Six prostate and three thoracic spine IMRT treatment plans as well as three prostate and three thoracic spine VMAT treatment plans were produced. Radiotherapy plans for this study were generated using the Pinnacle TPS v9.6 (Philips Radiation Oncology Systems, Fitchburg, WI) using 6 MV, 6 MV FFF, and 10 MV x-ray beams from a Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA) with a 120-millenium multi-leaf collimator (MLC). Each IMRT and VMAT therapy plan was measured on Sun Nuclear's MapCHECK 2 and ArcCHECK diode arrays. IMRT measured data was compared with planned dose distribution using Sun Nuclear's 3DVH quality assurance software program using gamma analysis and dose-volume histograms for target volumes and critical structures comparison. VMAT arc plans measured on the MapCHECK 2 and ArcCHECK were compared using beam-by-beam analysis with the gamma evaluation method with Sun Nuclear's SNC Patient (TM) analysis software. MapCHECK 2 showed a slightly better agreement with planned data for IMRT verifications with a mean pass rate of 99.4% for clinically used acceptance criteria of 3%/3mm. MapCHECK 2's 99.4% mean pass rate for IMRT verifications was 1.4% higher than ArcCHECK's mean pass rate. For VMAT verifications, the MapCHECK 2 had a mean pass rate of 99.6% and 100% for each arc respectively, resulting in a 1.25% to 1.92% higher mean passing rates than those measured by the ArcCHECK using an acceptance criteria of 3%/3mm. MapCHECK 2 showed consistently higher ROI-specific mean gamma passing rates, ranging from +0.2% to +5.6%. While neither diode array showed any advantage in regards to D95 measurements within the PTV, MapCHECK 2 again showed closer comparison data in the CTV/GTV with an absolute deviation of -1.14 Gy compared to -3.39 Gy as measured by the ArcCHECK. Lastly, while the MapCHECK 2 and ArcCHECK both closely matched with the reference doses within the PTV and CTV/GTV, the ArcCHECK consistently overestimated the maximum absolute dose to all ROI, from 0.026 Gy to 2.243 Gy. In conclusion, the MapCHECK 2 diode array measured data more closely matched with planned data compared to the ArcCHECK diode array for IMRT verifications. While MapCHECK 2 showed a marginally better gamma passing rates over the ArcCHECK diode array, the ArcCHECK's ability to simultaneously measure flatness, symmetry, output, and MLC positional accuracy as a function of gantry angle make it a more realistic and efficient measurement device for VMAT verifications.

Dance, Michael J.

203

Q-switched Nd:YAG laser alternate symmetric side pumped by diode arrays  

Microsoft Academic Search

The laser diode side-pumped electro-optical Q-switced Nd:YAG laser of high single pulse output energy were studied. Two alternated semicircular LDA module was used to directly side pump the Nd:YAG crystal of a series of two-rod. Each module consists of 30 laser diode which peak power is 100W. KD*P crystals is used as the electro-optic Q switch. And the ABCD law

Xin-Yu Chen; Guang-Yong Jin; Chao Wang; Yong-Ji Yu; Da-Wei Hao

2009-01-01

204

ATTRACTION OF FRANKLINIELLA OCCIDENTALIS, LYGUS HESPERUS, LEAF HOPPERS, CULEX QUINQUEFASCIATUS, AND MUSCA DOMESTICA TO ULTRAVIOLET FLUORESCENT LIGHT AND ULTRAVIOLET EMITTING DIODE TRAPS  

Technology Transfer Automated Retrieval System (TEKTRAN)

The attraction of selected insects to ultraviolet (UV) and blue light traps was studied under laboratory darkroom, greenhouse, and field conditions. Results showed that western lygus bugs, Lygus Hesperus (Knight), were attracted to UV light traps in laboratory studies. Leaf hoppers, mosquitoes, Cu...

205

Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon.  

PubMed

We demonstrate controllable and tunable full color light generation through the monolithic integration of blue, green/yellow, and orange/red InGaN nanowire light-emitting diodes (LEDs). Such multi-color nanowire LED arrays are fabricated directly on Si substrate using a three-step selective area molecular beam epitaxy growth process. The lateral-arranged multi-color subpixels enable controlled light mixing at the chip-level and yield color-tunable light emission with CCT values in the range from 1900 K to 6800 K, while maintaining excellent color rendering capability. This work provides a viable approach for achieving micron and nanoscale tunable full-color LED arrays without the compromise between the device efficiency and light quality associated with conventional phosphor-based LEDs. PMID:25607491

Wang, Renjie; Nguyen, Hieu P T; Connie, Ashfiqua T; Lee, J; Shih, Ishiang; Mi, Zetian

2014-12-15

206

Research progress on a focal plane array ladar system using a laser diode transmitter and FM/cw radar principles  

NASA Astrophysics Data System (ADS)

The Army Research Laboratory is developing scannerless ladar systems for smart munition and reconnaissance applications. Here we report on progress attained over the past year related to the construction of a 32x32 pixel ladar. The 32x32 pixel architecture achieves ranging based on a frequency modulation/continuous wave (FM/cw) technique implemented by directly amplitude modulating a near-IR diode laser transmitter with a radio frequency (rf) subcarrier that is linearly frequency modulated. The diode's output is collected and projected to form an illumination field in the downrange image area. The returned signal is focused onto an array of metal-semiconductor-metal (MSM) detectors where it is detected and mixed with a delayed replica of the laser modulation signal that modulates the responsivity of each detector. The output of each detector is an intermediate frequency (IF) signal (a product of the mixing process) whose frequency is proportional to the target range. This IF signal is continuously sampled over each period of the rf modulation. Following this, a N channel signal processor based-on field-programmable gate arrays calculates the discrete Fourier transform over the IF waveform in each pixel to establish the ranges to all the scatterers and their respective amplitudes. Over the past year, we have built one and two-dimensional self-mixing MSM detector arrays at .8 and 1.55 micrometers , designed and built circuit boards for reading data out of a 32x32 pixel array, and designed an N channel FPGA signal processor for high-speed formation of range gates. In this paper we report on the development and performance of these components and the results of system tests conducted in the laboratory.

Stann, Barry L.; Abou-Auf, Ahmed; Aliberti, Keith; Giza, Mark M.; Ovrebo, Greg; Ruff, William C.; Simon, Deborah R.; Stead, Michael R.

2002-07-01

207

Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection  

NASA Astrophysics Data System (ADS)

A near-infrared photoacoustic glucose monitoring system, which is integrated dual-wavelength pulsed laser diode excitation with eight-element planar annular array detection technique, is designed and fabricated during this study. It has the characteristics of nonivasive, inexpensive, portable, accurate location, and high signal-to-noise ratio. In the system, the exciting source is based on two laser diodes with wavelengths of 905 nm and 1550 nm, respectively, with optical pulse energy of 20 ?J and 6 ?J. The laser beam is optically focused and jointly projected to a confocal point with a diameter of 0.7 mm approximately. A 7.5 MHz 8-element annular array transducer with a hollow structure is machined to capture photoacoustic signal in backward mode. The captured signals excitated from blood glucose are processed with a synthetic focusing algorithm to obtain high signal-to-noise ratio and accurate location over a range of axial detection depth. The custom-made transducer with equal area elements is coaxially collimated with the laser source to improve the photoacoustic excite/receive efficiency. In the paper, we introduce the photoacoustic theory, receive/process technique, and design method of the portable noninvasive photoacoustic glucose monitoring system, which can potentially be developed as a powerful diagnosis and treatment tool for diabetes mellitus.

Zeng, Lvming; Liu, Guodong; Yang, Diwu; Ren, Zhong; Huang, Zhen

2008-12-01

208

Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode  

NASA Technical Reports Server (NTRS)

This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

2009-01-01

209

Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa?-xN active regions.  

PubMed

In this report, we demonstrate band gap tuning of the active region emission wavelength from 365 nm to 250 nm in light emitting diodes fashioned from catalyst-free III-nitride nanowires. Optical characteristics of the nanowire heterostructures and fabricated devices are studied via electroluminescence (EL) and photoluminescence spectroscopy over a wide range of active region compositions. It is observed that for typical nanowire plasma assisted molecular beam epitaxy growth conditions, tuning of emission to wavelengths shorter than 300 nm is hampered by the presence of an optically active defect level. We show that by increasing the AlGaN nanowire growth temperatures this defect emission can be suppressed. These findings are applied to growth of the active region of a nanowire light emitting diode, resulting in a polarization-induced nanowire light emitting diode with peak EL at 250 nm. PMID:25327762

Kent, Thomas F; Carnevale, Santino D; Sarwar, A T M; Phillips, Patrick J; Klie, Robert F; Myers, Roberto C

2014-11-14

210

CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: AlGaN-Based Deep-Ultraviolet Light Emitting Diodes Fabricated on AlN/sapphire Template  

NASA Astrophysics Data System (ADS)

We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AlN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317 nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved.

Sang, Li-Wen; Qin, Zhi-Xin; Fang, Hao; Zhang, Yan-Zhao; Li, Tao; Xu, Zheng-Yu; Yang, Zhi-Jian; Shen, Bo; Zhang, Guo-Yi; Li, Shu-Ping; Yang, Wei-Huang; Chen, Hang-Yang; Liu, Da-Yi; Kang, Jun-Yong

2009-11-01

211

Transparent conductive oxide films mixed with gallium oxide nanoparticle/single-walled carbon nanotube layer for deep ultraviolet light-emitting diodes  

NASA Astrophysics Data System (ADS)

We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs.

Kim, Kyoeng Heon; An, Ho-Myoung; Kim, Hee-Dong; Kim, Tae Geun

2013-12-01

212

Numerical analysis on the effects of multi-quantum last barriers in AlGaN-based ultraviolet light-emitting diodes  

NASA Astrophysics Data System (ADS)

The advantages of AlGaN-based ultraviolet light-emitting diode with AlGaN/AlGaN multi-quantum last barrier (MQLB) are investigated numerically in this work. The light output power, internal quantum efficiency, energy band diagrams, carrier concentrations, radiative recombination rate, and spontaneous emission spectra in the multi-quantum wells are investigated. The simulation results show that the structure with MQLB exhibits higher output power and smaller efficiency droop at high current as compared to the conventional one. Based on the numerical simulation and analysis, these improvements on the device characteristics are attributed to the remarkable improvement of the hole injection efficiency from p-type region, which results from the lower effective barrier height for hole transportation, the lower consumption of holes in the p-side, and the very low hole population in MQLB region.

Chen, Shengchang; Li, Yang; Tian, Wu; Zhang, Min; Li, Senlin; Wu, Zhihao; Fang, Yanyan; Dai, Jiangnan; Chen, Changqing

2015-03-01

213

Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes  

NASA Astrophysics Data System (ADS)

We report on the growth of low-defect thick films of AlN and AlGaN on trenched AlGaN/sapphire templates using migration enhanced lateral epitaxial overgrowth. Incoherent coalescence-related defects were alleviated by controlling the tilt angle of growth fronts and by allowing Al adatoms sufficient residence time to incorporate at the most energetically favorable lattice sites. Deep ultraviolet light emitting diode structures (310nm) deposited over fully coalesced thick AlN films exhibited cw output power of 1.6mW at 50mA current with extrapolated lifetime in excess of 5000hours. The results demonstrate substantial improvement in the device lifetime, primarily due to the reduced density of growth defects.

Jain, R.; Sun, W.; Yang, J.; Shatalov, M.; Hu, X.; Sattu, A.; Lunev, A.; Deng, J.; Shturm, I.; Bilenko, Y.; Gaska, R.; Shur, M. S.

2008-08-01

214

AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency  

NASA Astrophysics Data System (ADS)

We report high-performance AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates (NPSS) using metal-organic chemical vapor deposition. By nanoscale epitaxial lateral overgrowth on NPSS, 4-?m AlN buffer layer has shown strain relaxation and a coalescence thickness of only 2.5 ?m. The full widths at half-maximum of X-ray diffraction (002) and (102) ?-scan rocking curves of AlN on NPSS are only 69.4 and 319.1 arcsec. The threading dislocation density in AlGaN-based multi-quantum wells, which are grown on this AlN/NPSS template with a light-emitting wavelength at 283 nm at room temperature, is reduced by 33% compared with that on flat sapphire substrate indicated by atomic force microscopy measurements, and the internal quantum efficiency increases from 30% to 43% revealed by temperature-dependent photoluminescent measurement.

Dong, Peng; Yan, Jianchang; Zhang, Yun; Wang, Junxi; Zeng, Jianping; Geng, Chong; Cong, Peipei; Sun, Lili; Wei, Tongbo; Zhao, Lixia; Yan, Qingfeng; He, Chenguang; Qin, Zhixin; Li, Jinmin

2014-06-01

215

DETERMINATION OF CARBENDAZIM IN WATER BY HIGH-PERFORMANCE IMMUNOAFFINITY CHROMATOGRAPHY ON-LINE WITH HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH DIODE-ARRAY OR MASS SPECTROMETRIC DETECTION  

EPA Science Inventory

An automated method for the determination of carbendazim in water that combines high-performance immunoaffinity chromatography (HPIAC), high-performance liquid chromatography (HPLC) in the reversed-phase mode, and detection by either UV-Vis diode array detector (DAD) spectroscopy...

216

Application of liquid-phase microextraction for the determination of phoxim in water samples by high performance liquid chromatography with diode array detector  

Microsoft Academic Search

A new method, which involves liquid-phase microextraction (LPME) followed by high performance liquid chromatography (HPLC) with diode array detector (DAD), was developed to determine phoxim in water sample. Experimental parameters affecting the extraction efficiency, such as extraction solvent, solvent volume, agitation speed of the sample and extraction time were investigated. Under the optimal extraction conditions, phoxim was found to yield

Pei Liang; Li Guo; Yan Liu; Shi Liu; Tao-zhi Zhang

2005-01-01

217

On-line identification of phytochemical constituents in botanical extracts by combined high-performance liquid chromatographic–diode array detection–mass spectrometric techniques  

Microsoft Academic Search

It is necessary to determine all of the phytochemical constituents of botanical extracts in order to ensure the reliability and repeatability of pharmacological and clinical research, to understand their bioactivities and possible side effects of active compounds and to enhance product quality control. HPLC chromatographic fingerprints can be applied for this kind of documentation. Combined HPLC-diode array detection–MS techniques can

Xian-Guo He

2000-01-01

218

Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)  

SciTech Connect

Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.

Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming

2014-06-03

219

Triggering GaAs lock-on switches with laser diode arrays  

SciTech Connect

Many of the applications that require the unique capabilities of Photoconductive Semiconductor Switches (PCSS) demand a compact package. We have been able to demonstrate that GaAs switches operated in the high gain mode called lock-on'' meet the required electrical switching parameters of several such applications using small switch sizes. The only light source that has enough power to trigger a PCSS and is compatible with a small package is a laser diode. This paper will describe the progress that leads to the triggering of high power PCSS switches with laser diodes. Our goal is to switch up to 5 kA in a single shot mode and up to 100 MW repetitively at up to 10 kHz. These goals are feasible since the switches can be used in parallel or in series. Low light level triggering became possible after the discovery of a high electric field, high gain switching mode in GaAs (and later in InP). At electric fields below 3 kV/cm GaAs switches are activated by creation of, at most, only one conduction electron- valence hole pair per photon absorbed in the sample. This linear mode demands high laser power and, after the light is extinguished, the carriers live for only a few nanoseconds. At higher electric fields GaAs behaves as a light activated Zener diode. The laser light generates carriers as in the linear mode and the field induces gain such that the amount of light required to trigger the switch is reduced by a factor of up to 500. The gain continues until the field across the sample drops to a material dependent lock-on field. At this point the switch will carry as much current as, and for as long as, the circuit can maintain the lock-on field. The gain in the switch allows for the use of laser diodes. 8 refs., 11 figs.

Loubriel, G.M.; Helgeson, W.D.; McLaughlin, D.L.; O'Malley, M.W.; Zutavern, F.J. (Sandia National Labs., Albuquerque, NM (USA)); Rosen, A.; Stabile, P.J. (David Sarnoff Research Center, Princeton, NJ (USA))

1990-01-01

220

Variable-color light-emitting diodes using GaN microdonut arrays.  

PubMed

Microdonut-shaped GaN/Inx Ga1-x N light-emitting diode (LED) microarrays are fabricated for variable-color emitters. The figure shows clearly donut-shaped light emission from all the individual microdonut LEDs. Furthermore, microdonut LEDs exhibit spatially-resolved blue and green EL colors, which can be tuned by either controlling the external bias voltage or changing the size of the microdonut LED. PMID:24677202

Tchoe, Youngbin; Jo, Janghyun; Kim, Miyoung; Heo, Jaehyuk; Yoo, Geonwook; Sone, Cheolsoo; Yi, Gyu-Chul

2014-05-21

221

High-brightness diode laser arrays integrated with a phase shifter designed for single-lobe far-field pattern.  

PubMed

High-brightness, edge-emitting diode laser arrays integrated with a phase shifter have been designed and fabricated at a wavelength of about 910 nm. Stable out-of-phase mode is generated through coupling evanescently and converted to be nearly in-phase by the phase modulation from the phase shifter. With a very simple manufacture process, stable single-lobe far-field pattern is achieved in the slow axis when the continuous wave output power exceeds 460 mW/facet, and the divergence angle is only 2.7 times the diffraction-limited value. Such device shows a promising future for high-brightness application with low cost and easy fabrication. PMID:23903137

Liu, Lei; Zhang, Jianxin; Ma, Shaodong; Qi, Aiyi; Qu, Hongwei; Zhang, Yejin; Zheng, Wanhua

2013-08-01

222

Floral classification of honey using liquid chromatography-diode array detection-tandem mass spectrometry and chemometric analysis.  

PubMed

A high performance liquid chromatography-diode array detection-tandem mass spectrometry (HPLC-DAD-MS/MS) method for the floral origin traceability of chaste honey and rape honey samples was firstly presented in this study. Kaempferol, morin and ferulic acid were used as floral markers to distinguish chaste honey from rape honey. Chromatographic fingerprinting at 270 nm and 360 nm could be used to characterise chaste honey and rape honey according to the analytical profiles. Principal component analysis (PCA), partial least squares (PLS), partial least squares-discrimination analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA) were applied to classify the honey samples according to their floral origins. The results showed that chaste honey and rape honey could be successfully classified by their floral sources with the analytical methods developed through this study and could be considered encouraging and promising for the honey traceability from unifloral or multifloral nectariferous sources. PMID:24128567

Zhou, Jinhui; Yao, Lihu; Li, Yi; Chen, Lanzhen; Wu, Liming; Zhao, Jing

2014-02-15

223

Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head.  

PubMed

Using photoacoustic laser spectroscopy, the noninvasive determination of blood constituents like hemoglobin and glucose is feasible. The aim of our investigations is the development of a sensor which is suitable for continuously noninvasive monitoring of blood glucose concentrations in diabetic patients. For this purpose a photoacoustic sensor head was developed and coupled via an optical fiber bundle to an array of 8 laser diodes emitting at various wavelengths in the near infrared region. Applying a special modulation scheme, the tiny changes of the absorption coefficient of whole blood caused by the variations of blood glucose concentrations could be measured. A resolution of 70 mg/dl was achieved, a value which is already close to the clinical requirements for a continuously working glucose sensor. PMID:15045401

Spanner, G; Niessner, R

1996-06-01

224

One joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry  

NASA Technical Reports Server (NTRS)

Output of 1.25 J per pulse (1.064 micron) with an absolute optical efficiency of 28 percent and corresponding electrical efficiency of 10 percent was demonstrated in a diode-array-pumped Nd:YAG laser using a side-pumped rod geometry in a master-oscillator/power-amplifier configuration. In Q-switched operation, an output of 0.75 J in a 17-ns pulse was obtained. The fundamental laser output was frequency doubled in KTP with 60 percent conversion efficiency to obtain 0.45 J in a 16-ns pulse at 532 nm. The output beam had high spatial quality with pointing stability better than 40 microrad and a shot-to-shot pulse energy fluctuation of less than +/-3 percent.

Kasinski, Jeffrey J.; Hughes, Will; Dibiase, Don; Bournes, Patrick; Burnham, Ralph

1992-01-01

225

Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.  

PubMed

We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute). PMID:23455517

Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

2013-04-01

226

0/sup 0/ phase mode operation in phased-array laser diode with symmetrically branching waveguide  

SciTech Connect

An AlGaAs phased-array laser with a novel index waveguide structure like the letter ''Y'' is described. In all arrays with such a structure, controllable selection of only 0/sup 0/ phase mode and complete suppression of 180/sup 0/ phase shift mode is achieved up to approx.65 mW in 2%--96% coated devices. The far-field patterns, near-field patterns, and spectra of the array are in good agreement with the theoretical results. The cw threshold currents are approx.100 mA, and the external differential quantum efficiencies are 57% per facet.

Taneya, M.; Matsumoto, M.; Matsui, S.; Yano, S.; Hijikata, T.

1985-08-15

227

Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes  

NASA Technical Reports Server (NTRS)

This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

2011-01-01

228

Electroluminescence of ordered ZnO nanorod array/p-GaN light-emitting diodes with graphene current spreading layer  

NASA Astrophysics Data System (ADS)

Ordered ZnO nanorod array/p-GaN heterojunction light-emitting diodes (LEDs) have been fabricated by introducing graphene as the current spreading layer, which exhibit improved electroluminescence performance by comparison to the LED using a conventional structure (indium-tin-oxide as the current spreading layer). In addition, by adjusting the diameter of ZnO nanorod array in use, the light emission of the ZnO nanorod array/p-GaN heterojunction LEDs was enhanced further. This work has great potential applications in solid-state lighting, high performance optoelectronic devices, and so on.

Dong, Jing-Jing; Hao, Hui-Ying; Xing, Jie; Fan, Zhen-Jun; Zhang, Zi-Li

2014-11-01

229

Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy on semipolar GaN (2021) substrates  

SciTech Connect

Multi-quantum well (MQW) structures and light emitting diodes (LEDs) were grown on semipolar (2021) and polar (0001) GaN substrates by plasma-assisted molecular beam epitaxy. The In incorporation efficiency was found to be significantly lower for the semipolar plane as compared to the polar one. The semipolar MQWs exhibit a smooth surface morphology, abrupt interfaces, and a high photoluminescence intensity. The electroluminescence of semipolar (2021) and polar (0001) LEDs fabricated in the same growth run peaks at 387 and 462 nm, respectively. Semipolar LEDs with additional (Al,Ga)N cladding layers exhibit a higher optical output power but simultaneously a higher turn-on voltage.

Sawicka, M.; Grzanka, S.; Skierbiszewski, C. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland) [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland); TopGaN Sp. z o.o., Sokolowska 29/37, 01-142 Warsaw (Poland); Cheze, C. [TopGaN Sp. z o.o., Sokolowska 29/37, 01-142 Warsaw (Poland) [TopGaN Sp. z o.o., Sokolowska 29/37, 01-142 Warsaw (Poland); Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Turski, H.; Muziol, G.; Krysko, M.; Grzanka, E.; Sochacki, T. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland)] [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland); Hauswald, C.; Brandt, O. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)] [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Siekacz, M. [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland) [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw (Poland); Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Kucharski, R. [Ammono S.A., Czerwonego Krzyza 2/31, 00-377 Warsaw (Poland)] [Ammono S.A., Czerwonego Krzyza 2/31, 00-377 Warsaw (Poland); Remmele, T.; Albrecht, M. [Leibniz Institute for Crystal Growth, Max-Born Strasse 2, Berlin 12489 (Germany)] [Leibniz Institute for Crystal Growth, Max-Born Strasse 2, Berlin 12489 (Germany)

2013-03-18

230

Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode  

SciTech Connect

We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

2014-07-07

231

Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode  

NASA Astrophysics Data System (ADS)

We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

Jung, Mi; Mo Yoon, Dang; Kim, Miyoung; Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Lim, Si-Hyung; Woo, Deokha

2014-07-01

232

Feasibility of High-Power Diode Laser Array Surrogate to Support Development of Predictive Laser Lethality Model  

SciTech Connect

Predictive modeling and simulation of high power laser-target interactions is sufficiently undeveloped that full-scale, field testing is required to assess lethality of military directed-energy (DE) systems. The cost and complexity of such testing programs severely limit the ability to vary and optimize parameters of the interaction. Thus development of advanced simulation tools, validated by experiments under well-controlled and diagnosed laboratory conditions that are able to provide detailed physics insight into the laser-target interaction and reduce requirements for full-scale testing will accelerate development of DE weapon systems. The ultimate goal is a comprehensive end-to-end simulation capability, from targeting and firing the laser system through laser-target interaction and dispersal of target debris; a 'Stockpile Science' - like capability for DE weapon systems. To support development of advanced modeling and simulation tools requires laboratory experiments to generate laser-target interaction data. Until now, to make relevant measurements required construction and operation of very high power and complex lasers, which are themselves costly and often unique devices, operating in dedicated facilities that don't permit experiments on targets containing energetic materials. High power diode laser arrays, pioneered by LLNL, provide a way to circumvent this limitation, as such arrays capable of delivering irradiances characteristic of De weapon requires are self-contained, compact, light weight and thus easily transportable to facilities, such as the High Explosives Applications Facility (HEAF) at Lawrence Livermore National Laboratory (LLNL) where testing with energetic materials can be performed. The purpose of this study was to establish the feasibility of using such arrays to support future development of advanced laser lethality and vulnerability simulation codes through providing data for materials characterization and laser-material interaction models and to validate the accuracy of code predictions. This project was a Feasibility Study under the LLNL Laboratory Directed Research and Development (LDRD) Program.

Lowdermilk, W H; Rubenchik, A M; Springer, H K

2011-01-13

233

High power ultraviolet light emitting diodes based on GaN/AlGaN quantum wells produced by molecular beam epitaxy  

SciTech Connect

In this paper, we report on the growth by molecular beam epitaxy and fabrication of high power nitride-based ultraviolet light emitting diodes emitting in the spectral range between 340 and 350 nm. The devices were grown on (0001) sapphire substrates via plasma-assisted molecular beam epitaxy. The growth of the light emitting diode (LED) structures was preceded by detailed materials studies of the bottom n-AlGaN contact layer, as well as the GaN/AlGaN multiple quantum well (MQW) active region. Specifically, kinetic conditions were identified for the growth of the thick n-AlGaN films to be both smooth and to have fewer defects at the surface. Transmission-electron microscopy studies on identical GaN/AlGaN MQWs showed good quality and well-defined interfaces between wells and barriers. Large area mesa devices (800x800 {mu}m{sup 2}) were fabricated and were designed for backside light extraction. The LEDs were flip-chip bonded onto a Si submount for better heat sinking. For devices emitting at 340 nm, the measured differential on-series resistance is 3 {omega} with electroluminescence spectrum full width at half maximum of 18 nm. The output power under dc bias saturates at 0.5 mW, while under pulsed operation it saturates at approximately 700 mA to a value of 3 mW, suggesting that thermal heating limits the efficiency of these devices. The output power of the investigated devices was found to be equivalent with those produced by the metal-organic chemical vapor deposition and hydride vapor-phase epitaxy methods. The devices emitting at 350 nm were investigated under dc operation and the output power saturates at 4.5 mW under 200 mA drive current.

Cabalu, J. S.; Bhattacharyya, A.; Thomidis, C.; Friel, I.; Moustakas, T. D.; Collins, C. J.; Komninou, Ph. [Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215 and Center of Photonics Research, Boston University, Boston, Massachusetts 02215 (United States); U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States); Physics Department, Aristotle University, 54124 Thessaloniki (Greece)

2006-11-15

234

Monolithic millimeter-wave diode array beam controllers: Theory and experiment  

NASA Technical Reports Server (NTRS)

In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

1992-01-01

235

Multi-Spectral Solar Telescope Array. IV - The soft X-ray and extreme ultraviolet filters  

NASA Technical Reports Server (NTRS)

NASA's Multi-Spectral Solar Telescope Array uses various combinations of thin foil filters composed of Al, C, Te, Be, Mo, Rh, and phthalocyanine to achieve the requisite radiation-rejection characteristics. Such rejection is demanded by the presence of strong EUV radiation at longer wavelengths where the specular reflectivity of multilayer mirrors can cause 'contamination' of the image in the narrow band defined by the Bragg condition.

Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Powell, Forbes R.; Barbee, Troy W., Jr.; Hoover, Richard B.

1991-01-01

236

Photoelectric characteristics of diodes in prototype photosensitive pixels for a monolithic array infrared photodetector  

SciTech Connect

Test photodiodes in the form of mesa structures with different areas from 30 Multiplication-Sign 30 to 100 Multiplication-Sign 100 {mu}m in size are fabricated based on a Cd{sub x}Hg{sub 1-x}Te/Si structure at x = 0.235, grown by molecular-beam epitaxy (MBE). The current-voltage characteristics of the diodes are measured in the dark and under background light conditions. The experimental results are compared with theoretical calculations. It is found that the dependence of the photodiode photocurrent and dark current on the mesa structure size appears in the mesa size ranges from 30 Multiplication-Sign 30 to 80 Multiplication-Sign 80 {mu}m. The dark current decreases and the photocurrent increases with decreasing mesa size. The mechanisms affecting the behavior of current-voltage characteristics are discussed.

Sorochkin, A. V., E-mail: alexandersm@mail.ru; Varavin, V. S.; Predein, A. V.; Sabinina, I. V.; Yakushev, M. V. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

2012-04-15

237

Atomically sharp 318 nm Gd:AlGaN ultraviolet light emitting diodes on Si with low threshold voltage  

SciTech Connect

Self-assembled Al{sub x}Ga{sub 1-x}N polarization-induced nanowire light emitting diodes (PINLEDs) with Gd-doped AlN active regions are prepared by plasma-assisted molecular beam epitaxy on Si substrates. Atomically sharp electroluminescence (EL) from Gd intra-f-shell electronic transitions at 313 nm and 318 nm is observed under forward biases above 5 V. The intensity of the Gd 4f EL scales linearly with current density and increases at lower temperature. The low field excitation of Gd 4f EL in PINLEDs is contrasted with high field excitation in metal/Gd:AlN/polarization-induced n-AlGaN devices; PINLED devices offer over a three fold enhancement in 4f EL intensity at a given device bias.

Kent, Thomas F.; Carnevale, Santino D. [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)] [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Myers, Roberto C. [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States) [Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Deparment of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

2013-05-20

238

Crossbar arrays of nonvolatile, rewritable polymer ferroelectric diode memories on plastic substrates  

NASA Astrophysics Data System (ADS)

In this paper, we demonstrate a scalable and low-cost memory technology using a phase separated blend of a ferroelectric polymer and a semiconducting polymer as data storage medium on thin, flexible polyester foils of only 25 µm thickness. By sandwiching this polymer blend film between rows and columns of metal electrode lines where each intersection makes up one memory cell, we obtained 1 kbit cross bar arrays with bit densities of up to 10 kbit/cm2.

van Breemen, Albert J. J. M.; van der Steen, Jan-Laurens; van Heck, Gert; Wang, Rui; Khikhlovskyi, Vsevolod; Kemerink, Martijn; Gelinck, Gerwin H.

2014-03-01

239

Integrated electronics for time-resolved array of single-photon avalanche diodes  

NASA Astrophysics Data System (ADS)

The Time Correlated Single Photon Counting (TCSPC) technique has reached a prominent position among analytical methods employed in a great variety of fields, from medicine and biology (fluorescence spectroscopy) to telemetry (laser ranging) and communication (quantum cryptography). Nevertheless the development of TCSPC acquisition systems featuring both a high number of parallel channels and very high performance is still an open challenge: to satisfy the tight requirements set by the applications, a fully parallel acquisition system requires not only high efficiency single photon detectors but also a read-out electronics specifically designed to obtain the highest performance in conjunction with these sensors. To this aim three main blocks have been designed: a gigahertz bandwidth front-end stage to directly read the custom technology SPAD array avalanche current, a reconfigurable logic to route the detectors output signals to the acquisition chain and an array of time measurement circuits capable of recording the photon arrival times with picoseconds time resolution and a very high linearity. An innovative architecture based on these three circuits will feature a very high number of detectors to perform a truly parallel spatial or spectral analysis and a smaller number of high performance time-to-amplitude converter offering very high performance and a very high conversion frequency while limiting the area occupation and power dissipation. The routing logic will make the dynamic connection between the two arrays possible in order to guarantee that no information gets lost.

Acconcia, G.; Crotti, M.; Rech, I.; Ghioni, M.

2013-12-01

240

Characterization and calibration of compact array spectrometers in the ultraviolet spectral region  

SciTech Connect

Array-based spectrometers, with their compact size, low weight, low cost, and fast measurement time, are now frequently used in place of both conventional single-channel scanning monochromators, and broadband meters. Their rapid measurement capability makes them an attractive option for routine solar UV spectral measurements, where shortterm variability in signal is a challenge. However, compactness, portability, low cost and high speed are achieved at the expense of the spectrometer's optical and electronic performance. Thus such spectrometers are more prone to measurement error from environmental changes, and more prone to other intrinsic sources of error such as stray light and detector non-linearity, which significantly affect solar UV measurements, than a scanning monochromator. The effects of stray light and non-linearity can be reduced either by improved optical and detector design or by a detailed spectrometer characterization. We present in this paper our investigation of the performance of three different commercial array spectrometers: two mini-spectrometers, and a more elaborate array spectrometer with an on-board image amplifier device. These were tested for a subset of performance parameters: their wavelength accuracy and stability, electronic linearity, responsivity linearity, stray light sensitivity, and mechanical stability and repeatability. With all three spectrometers we found that these parameters, particularly but not limited to stray light, had a significant impact on the measurement of the incoming optical radiation. This meant that, without characterization, the instruments would be unable to accurately measure the UV component of any source with significant visible radiation. We discuss various simple and low-cost solutions for improving the performance of these instruments, and providing a rigorous calibration using a straightforward set-up including optical filters and the quasi-monochromatic light from a double monochromator.

Shindo, Francois [Measurement Standards Laboratory of New Zealand, Industrial Research, Lower Hutt (New Zealand); Woolliams, Emma; Scott, Barry; Harris, Subrena [National Physical Laboratory, Teddington (United Kingdom)

2013-05-10

241

High-resolution pulse-counting array detectors for imaging and spectroscopy at ultraviolet wavelengths  

NASA Technical Reports Server (NTRS)

The performance characteristics of multianode microchannel array (MAMA) detector systems which have formats as large as 256 x 1024 pixels and which have application to imaging and spectroscopy at UV wavelengths are evaluated. Sealed and open-structure MAMA detector tubes with opaque CsI photocathodes can determine the arrival time of the detected photon to an accuracy of 100 ns or better. Very large format MAMA detectors with CsI and Cs2Te photocathodes and active areas of 52 x 52 mm (2048 x 2048 pixels) will be used as the UV solar blind detectors for the NASA STIS.

Timothy, J. Gethyn; Bybee, Richard L.

1986-01-01

242

An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays  

E-print Network

An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide://apl.aip.org/about/rights_and_permissions #12;An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide 2013; published online 8 February 2013) We report phosphorescent organic light-emitting diodes

Demir, Hilmi Volkan

243

Effect of residual compressive stress on near-ultraviolet InGaN/GaN multi-quantum well light-emitting diodes  

NASA Astrophysics Data System (ADS)

Thinning was investigated to reduce the residual compressive stress in GaN-based near-ultraviolet light-emitting diode (NUV-LED) substrates. This stress has a knock-on effect of reducing piezoelectric fields in the LED structure. As the sapphire substrate thickness is reduced, the compressive stress in the GaN layer is released, resulting in wafer bowing. The wafer bowing-induced mechanical stress alters the piezoelectric fields, which in turn reduces the quantum-confined Stark effect in the InGaN/GaN active region of the LED. The electroluminescence spectral peak wavelength was blue-shifted, and the internal quantum efficiency was improved by about 15% at an injection current of 50 mA. The LED with a 45-?m-thick sapphire substrate exhibited the highest light output power of ?29 mW at an injection current of 50 mA, an improvement by about 39% compared to that of a 150-?m-thick sapphire substrate without increasing the operating voltage. The simulation results confirm that the relaxation of the compressive strain in the InGaN/GaN MQW structure results in the reduction of the piezoelectric field and improves the overlap of electron and hole wave functions with a corresponding increase in IQE.

Tawfik, Wael Z.; Bae, Seo-Jung; Ryu, Sang-Wan; Jeong, Tak; Lee, June Key

2014-12-01

244

Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes  

NASA Astrophysics Data System (ADS)

Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.

Moseley, Michael; Allerman, Andrew; Crawford, Mary; Wierer, Jonathan J.; Smith, Michael; Biedermann, Laura

2014-08-01

245

Efficiency improvement of GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate.  

PubMed

The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crystal quality of the GaN epitaxial layers. Utilizing high-resolution X-ray diffraction, the full width at half maximum of the rocking curve shows that the crystalline quality of the epitaxial layer with the (RPD) AlN nucleation layer is better than that with the low-temperature GaN (LT-GaN) nucleation layer. The threading dislocation density (TDD) is estimated by transmission electron microscopy (TEM), which shows the reduction from 6.8?×?10(7) cm(-2) to 2.6?×?10(7) cm(-2). Furthermore, the light output power (LOP) of the LEDs with the RPD AlN nucleation layer has been improved up to 30 % at a forward current of 350 mA compared to that of the LEDs grown on PSS with conventional LT-GaN nucleation layer. PMID:25258616

Lee, Chia-Yu; Tzou, An-Jye; Lin, Bing-Cheng; Lan, Yu-Pin; Chiu, Ching-Hsueh; Chi, Gou-Chung; Chen, Chi-Hsiang; Kuo, Hao-Chung; Lin, Ray-Ming; Chang, Chun-Yen

2014-01-01

246

Transparent conductive oxide films mixed with gallium oxide nanoparticle/single-walled carbon nanotube layer for deep ultraviolet light-emitting diodes  

PubMed Central

We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9?×?10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4?×?105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4?×?10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342

2013-01-01

247

Efficiency improvement of GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate  

PubMed Central

The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crystal quality of the GaN epitaxial layers. Utilizing high-resolution X-ray diffraction, the full width at half maximum of the rocking curve shows that the crystalline quality of the epitaxial layer with the (RPD) AlN nucleation layer is better than that with the low-temperature GaN (LT-GaN) nucleation layer. The threading dislocation density (TDD) is estimated by transmission electron microscopy (TEM), which shows the reduction from 6.8?×?107 cm?2 to 2.6?×?107 cm?2. Furthermore, the light output power (LOP) of the LEDs with the RPD AlN nucleation layer has been improved up to 30 % at a forward current of 350 mA compared to that of the LEDs grown on PSS with conventional LT-GaN nucleation layer. PMID:25258616

2014-01-01

248

Efficiency improvement of GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate  

NASA Astrophysics Data System (ADS)

The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crystal quality of the GaN epitaxial layers. Utilizing high-resolution X-ray diffraction, the full width at half maximum of the rocking curve shows that the crystalline quality of the epitaxial layer with the (RPD) AlN nucleation layer is better than that with the low-temperature GaN (LT-GaN) nucleation layer. The threading dislocation density (TDD) is estimated by transmission electron microscopy (TEM), which shows the reduction from 6.8 × 107 cm-2 to 2.6 × 107 cm-2. Furthermore, the light output power (LOP) of the LEDs with the RPD AlN nucleation layer has been improved up to 30 % at a forward current of 350 mA compared to that of the LEDs grown on PSS with conventional LT-GaN nucleation layer.

Lee, Chia-Yu; Tzou, An-Jye; Lin, Bing-Cheng; Lan, Yu-Pin; Chiu, Ching-Hsueh; Chi, Gou-Chung; Chen, Chi-Hsiang; Kuo, Hao-Chung; Lin, Ray-Ming; Chang, Chun-Yen

2014-09-01

249

Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes  

SciTech Connect

Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al{sub 0.7}Ga{sub 0.3}N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al{sub 0.7}Ga{sub 0.3}N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.

Moseley, Michael, E-mail: mwmosel@sandia.gov; Allerman, Andrew; Crawford, Mary; Wierer, Jonathan J.; Smith, Michael; Biedermann, Laura [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2014-08-07

250

Luminescent properties of Eu2+-doped BaGdF5 glass ceramics a potential blue phosphor for ultra-violet light-emitting diode  

NASA Astrophysics Data System (ADS)

Eu2+ doped transparent oxyfluoride glass ceramics containing BaGdF5 nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd3+ ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu2+ doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd3+ to Eu2+ ions, the energy transfer efficiency from Gd3+ to Eu2+ ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu2+ doped BaGdF5 glass ceramics may be used as a potential blue-emitting phosphor for UV-LED.

Zhang, Weihuan; Zhang, Yuepin; Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

2015-01-01

251

Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect.  

PubMed

ZnO nanowire inorganic/organic hybrid ultraviolet (UV) light-emitting diodes (LEDs) have attracted considerable attention as they not only combine the high flexibility of polymers with the structural and chemical stability of inorganic nanostructures but also have a higher light extraction efficiency than thin film structures. However, up to date, the external quantum efficiency of UV LED based on ZnO nanostructures has been limited by a lack of efficient methods to achieve a balance between electron contributed current and hole contributed current that reduces the nonradiative recombination at interface. Here we demonstrate that the piezo-phototronic effect can largely enhance the efficiency of a hybridized inorganic/organic LED made of a ZnO nanowire/p-polymer structure, by trimming the electron current to match the hole current and increasing the localized hole density near the interface through a carrier channel created by piezoelectric polarization charges on the ZnO side. The external efficiency of the hybrid LED was enhanced by at least a factor of 2 after applying a proper strain, reaching 5.92%. This study offers a new concept for increasing organic LED efficiency and has a great potential for a wide variety of high-performance flexible optoelectronic devices. PMID:23339573

Yang, Qing; Liu, Ying; Pan, Caofeng; Chen, Jun; Wen, Xiaonan; Wang, Zhong Lin

2013-02-13

252

Ultraviolet electroluminescence of light-emitting diodes based on single n-ZnO/p-AlGaN heterojunction nanowires.  

PubMed

We present successful fabrication of single n-ZnO/p-AlGaN heterojunction nanowires with excellent optoelectronic properties. Because of the formation of high-quality interfacial structure, heterojunction nanowire showed a diodelike rectification behavior and an electroluminescence (EL) ultraviolet (UV) emission centered at 394 nm from a single nanowire was observed when the injection current is 4 ?A due to high exciton efficiency in the interfacial layer between ZnO and AlGaN. With the increase of the applied current, the EL peak at 5 ?A becomes weaker revealing an optimal injection current of less than 5 ?A. These results are expected to open up new application possibilities in nanoscale UV light-emitting devices based on single ZnO heterostructure. PMID:24073683

Tang, Xiaobing; Li, Gaomin; Zhou, Shaomin

2013-11-13

253

Electrical switching and memory behaviors in organic diodes based on polymer blend films treated by ultraviolet ozone  

NASA Astrophysics Data System (ADS)

Resistive memory devices with resistive switching characteristics were fabricated based on poly (3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) doping with polyvinyl alcohol. It has been demonstrated that the resistive switching characteristics in the memory device was strongly dependent on the treatment of the polymer blend film by ultraviolet ozone (UV-ozone). The UV-ozone treated device exhibited improved performance with the ON/OFF current ratio of more than 102, and its ON and OFF states can be maintained over 96 h without deterioration. The resistive switching behavior in the UV-ozone treated device was attributed to the formation and rupture of the PEDOT:PSS filaments as well as the narrow conducting paths through the native oxide of aluminum.

Huang, Jinying; Ma, Dongge

2014-09-01

254

Photonic Power Delivery Through Optical Fiber Using Very High Power Laser Diode Arrays  

SciTech Connect

Described is a system that will provide isolated electric power for a circuit that drives the core reset of a pulsed power modulator. This can be accomplished by coupling light from a number of diode laser bars to bundles of 200 um multimode optical fibers. This is then coupled to photo-voltaic power converters that will deliver 16 V 29mA of electricity from 1 watt of optical power. Spot size at the bundle face is a Gausian ellipse with a major axis of 1.4 mm radius and a minor axis of four bundles of 12 fibers generating a total of 24 W of electrical power. Various schemes are used to maximize coupling into the optical filber while limiting the number of optical components, and comparing components such as fresnel and aspheric lenses and lens ducts for effectiveness and cost. This will provide a completely isolated low power source for high voltage, high current environments where tradional isolation techniques yield inadequate isolation or prove too cumbersome.

Heino, Matthew; Saethre, Robert

1999-05-01

255

Simultaneous analysis of coumarins and secoiridoids in Cortex Fraxini by high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry  

Microsoft Academic Search

A high-performance liquid chromatography–diode array UV detection–electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI-MS) method was developed and validated for the simultaneous analysis of seven major constituents in Cortex Fraxini, including esculin, esculetin, fraxetin, fraxin, escuside, oleuropein and ligustroside. The contents of the seven constituents were determined by using HPLC–DAD, and the chemical structures of these constituents were identified by using HPLC–DAD–ESI-MS

Lei Zhou; Jie Kang; Li Fan; Xiao-Chi Ma; Hai-Yu Zhao; Jian Han; Bao-rong Wang; De-An Guo

2008-01-01

256

Simultaneous analysis of alkaloids from Zanthoxylum nitidum by high performance liquid chromatography–diode array detector–electrospray tandem mass spectrometry  

Microsoft Academic Search

The chemical profiles of nine alkaloids in Zanthoxylum nitidum, including berberubine, coptisine, sanguinarine, nitidine, chelerythrine, liriodenine, 6,7,8-trimethoxy-2,3-methylendioxybenzophenantridine, oxyavicine and dihydrochelerythrine, were identified by using high performance liquid chromatography–diode array detector–electrospray tandem mass spectrometry (HPLC–DAD–ESI–MS), and a novel and sensitive HPLC–UV method had been developed to simultaneously determine these alkaloids in 70% methanol extract of Zanthoxylum nitidum. The chromatographic separation was

Mingjin Liang; Weidong Zhang; Jiang Hu; Runhui Liu; Chuan Zhang

2006-01-01

257

Quality evaluation of Rhizoma Belamcandae ( Belamcanda chinensis (L.) DC.) by using high-performance liquid chromatography coupled with diode array detector and mass spectrometry  

Microsoft Academic Search

A high-performance liquid chromatography coupled with diode array detector and mass spectrometry (HPLC–DAD-MS) method was developed to evaluate the quality of Rhizoma Belamcandae (Belamcanda chinensis (L.) DC.) through establishing chromatographic fingerprint and simultaneous determination of seven phenolic compounds. The analysis was achieved on an Alltima C18 analytical column (250mm×4.6mm i.d. 5?m) using linear gradient elution of acetonitrile–0.1% trifluoroacetic acid. The

Jun Li; Winnie Z. M. Li; Wen Huang; Anna W. H. Cheung; Cathy W. C. Bi; Ran Duan; Ava J. Y. Guo; Tina T. X. Dong; Karl W. K. Tsim

2009-01-01

258

Simultaneous determination of 11 active components in two well-known traditional Chinese medicines by HPLC coupled with diode array detection for quality control  

Microsoft Academic Search

A simple and sensitive high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) method was investigated for simultaneous determination of 11 components (chlorogenic acid, coptisine, epiberberine, jatrorrhizine, berberine, palmatine, baicalin, wogonoside, baicalein, wogonin and chrysin) in Qinhuanghouzheng (QHHZ) capsule and Xiaoerqingre (XEQR) tablet, for quality control of these two well-known traditional Chinese medicines (TCMs). The method was established using an

Lianhong Yin; Binan Lu; Yan Qi; Lina Xu; Xu Han; Youwei Xu; Jinyong Peng; Changkai Sun

2009-01-01

259

Simultaneous determination of eight active components in Chinese medicine ‘JiangYaBiFeng’ tablet by HPLC coupled with diode array detection  

Microsoft Academic Search

An effective, accurate and reliable method was developed for the simultaneous separation and determination of eight active components (baicalin, baicalein, sophoricoside, rutin, quercetin, genistein, pargyline and hydrochlorothiazide) in Chinese medicine ‘JiangYaBiFeng’ tablet (JYBF tablet) by high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD). Due to the different UV characteristic of these components, different wavelengths were selected for analysis

Ran Yang; Hua-jin Zeng; Qing-wen Wang; Cheng Guo; Jian-jun Li; Ling-Bo Qu

2011-01-01

260

Identification of amino-tadalafil and rimonabant in electronic cigarette products using high pressure liquid chromatography with diode array and tandem mass spectrometric detection  

Microsoft Academic Search

A high-pressure liquid chromatography-diode array detection and multi-mode ionization tandem mass spectrometry (HPLC-DAD–MMI-MS\\/MS) method was used to identify amino-tadalafil and rimonabant in electronic cigarette (e-cigarette) cartridges. Amino-tadalafil is a drug analogue of the commercially approved Cialis™ (i.e. tadalafil). Rimonabant is a drug that was, at one time, approved for weight loss in Europe (although approval has been retracted), but not

Michael E. Hadwiger; Michael L. Trehy; Wei Ye; Terry Moore; James Allgire; Benjamin Westenberger

261

Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants  

Microsoft Academic Search

Dispersive liquid–liquid microextraction (DLLME) and high performance liquid chromatography-diode array detection (HPLC-DAD) was presented for extraction and determination of Irganox 1010, Irganox 1076 and Irgafos 168 (antioxidants) in aqueous samples. Carbon tetrachloride at microliter volume level and acetonitrile were used as extraction and dispersive solvents, respectively. The main advantages of method are high speed, high enrichment factor, high recovery, good

Mir Ali Farajzadeh; Morteza Bahram; Jan Åke Jönsson

2007-01-01

262

A deuterium-labelling mass spectrometry–tandem diode-array detector screening method for rapid discovery of naturally occurring electrophiles  

Microsoft Academic Search

Because electrophiles regulate many signalling pathways in cells, by modifying cysteine residues in proteins, they have a\\u000a wide range of biological activity. In this study, a deuterium-labelling mass spectrometry–tandem diode-array detector (MS–DAD)\\u000a screening method was established for rapid discovery of naturally occurring electrophiles. Glutathione (GSH) was used as a\\u000a probe and incubated with natural product extracts. To distinguish different types

Xiaoyu Zhang; Liping Luo; Zhongjun Ma

263

Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection  

Microsoft Academic Search

A high-performance liquid chromatographic (HPLC) separation method with photo-diode array (PDA) and mass spectrometric (MS) detection was developed to determine and quantify flavonols, flavones, and flavanones in fruits, vegetables and beverages. The compounds were analysed as aglycones, obtained after acid hydrolysis of freeze-dried food material. Identification was based on retention time, UV and mass spectra by comparison with commercial standards,

Ulla Justesen; Pia Knuthsen; Torben Leth

1998-01-01

264

Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm  

SciTech Connect

We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 ?m active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica; Tisa, Simone; Zappa, Franco [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)] [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

2013-12-15

265

Vacuum ultraviolet radiation and thermal cycling effects on atomic oxygen protective photovoltaic array blanket materials  

NASA Technical Reports Server (NTRS)

The importance of synergistic environmental exposure is demonstrated through the evaluation of DuPont 93-1 in simulated LEO environment. Changes in optical properties, surface condition, and mass loss data are described. The qualitative results indicate the necessity for exposure of materials to a series of simulated LEO environments in order to properly determine synergistic effects and demonstrate the overall LEO durability of candidate materials. It is shown that synergistic effects may occur with vacuum thermal cycling combined with VUV radiation followed by atomic oxygen exposure. Testing the durability of candidate solar array blanket materials in a test sequence with necessary synergistic effects makes it possible to determine the appropriate material for providing structural support and maintaining the proper operating temperature for solar cells in the SSF Photovaltaic Power System.

Brady, J.; Banks, B.

1990-01-01

266

Quantification of polyacetylenes in apiaceous plants by high-performance liquid chromatography coupled with diode array detection.  

PubMed

Polyacetylenes are known for their biofunctional properties in a wide range of organisms. In the present study, the most frequently occurring polyacetylenes, i.e. falcarinol, falcarindiol, and falcarindiol-3-acetate, were determined in six genera of the Apiaceae family. For this purpose, a straightforward and reliable method for the screening and quantification of the polyacetylenes using high-performance liquid chromatography coupled with diode array and mass spectrometric detection without tedious sample clean-up has been developed. Peak assignment was based on retention times, UV spectra, and mass spectral data. Quantification was carried out using calibration curves of authentic standards isolated from turnip-rooted parsley and Ligusticum mutellina, respectively. The references were unambiguously identified by Fourier transform-IR (FT-IR) spectroscopy, GC-MS, HPLC-MSn in the positive ionization mode, and 1H NMR and 13C NMR spectroscopy. To the best of our knowledge, the occurrence of falcarindiol-3-acetate in Anthriscus sylvestris and Pastinaca sativa has been reported for the first time. The data revealed great differences in the polyacetylene contents and varying proportions of individual compounds in the storage roots of Apiaceous plants. The results of the present study may be used as a suitable tool for authenticity control and applied to identify novel sources devoid or particularly rich in polyacetylenes, thus facilitating breeding programs for the selective enrichment and depletion of these plant secondary metabolites, respectively. PMID:21950154

Kramer, Maike; Mühleis, Andrea; Conrad, Jürgen; Leitenberger, Martin; Beifuss, Uwe; Carle, Reinhold; Kammerer, Dietmar R

2011-01-01

267

A simultaneous determination of principal compounds in tokishakuyakusan by high-performance liquid chromatography with diode array detector.  

PubMed

We developed a simultaneous analysis method using high-performance liquid chromatography coupled with diode-array detector (HPLC-DAD) for six principal compounds (atractylenolide III, alisol A, alisol B, paeoniflorin, ferulic acid and (Z)-ligustilide) in a traditional Japanese (Kampo) medicine, tokishakuyakusan (TSS). The HPLC separation was conducted on a reversed-phase TSK-gel ODS-80TS column (4.6 i.d. × 250 mm, 5 µm) at 40°C with a 0.1% phosphoric acid-acetonitrile gradient system. The DAD detection wavelength was set at 205, 232 and 330 nm. Calibration curves for the compounds showed linear regressions with correlation coefficients of >0.999. The intra- and inter-day precision (i.e., the relative standard deviation) were in the range of 0.50-1.55 and 0.70-1.80%, respectively. The average recovery yields of the compounds ranged from 98.3 to 103%. The present results will contribute to shorter analysis times with less organic solvent compared with the individual analysis of each compound for the evaluation of TSS. The application of the established method to TSS will also provide helpful information for the further pharmacological and clinical studies. PMID:24981981

Sumino, Megumi; Saito, Yuko; Ikegami, Fumio; Namiki, Takao

2015-02-01

268

Development and optimization of the SPE procedure for determination of pharmaceuticals in water samples by HPLC-diode array detection.  

PubMed

This paper focuses on the investigation of different types of SPE sorbents for the preconcentration of eight veterinary pharmaceuticals from water samples. The pharmaceuticals studied were sulfamethazine, sulfadiazine, sulfaguanidine, trimethoprim, oxytetracycline, enrofloxacin, norfloxacin and penicillin G/procaine. Five different SPE materials (Strata-X, Strata-X-C, Strata SDB-L, Strata C8 and Strata C18) from Phenomenex were compared with Oasis HLB with a view to obtaining the best cartridges for all pharmaceuticals investigated. Extraction efficiency was determined by HPLC with diode array detection (DAD). HPLC-DAD separation and quantification of the selected pharmaceuticals were carried out under gradient elution by a binary mixture of 0.01 M oxalic acid and ACN based on cyano modified column (LiChrosphere 100 CN) from Merck. Strata-X provided the best results in the preconcentration of 100 mL water samples, yielding average pharmaceutical recoveries of higher than 90%, except for sulfaguanidine (76.1%). The developed Strata-X-HLPC-DAD method was validated and applied, for the efficient investigation of reverse osmosis/nanofiltration membranes and for the removal of these eight pharmaceuticals from the production wastewater samples. NF90 and XLE membranes were shown to be the best for the rejection of all investigated pharmaceuticals. PMID:20041448

Mutavdzi? Pavlovi?, Dragana; Babi?, Sandra; Dolar, Davor; Asperger, Danijela; Kosuti?, Kresimir; Horvat, Alka J M; Kastelan-Macan, Marija

2010-02-01

269

Regularly patterned non-polar InGaN/GaN quantum-well nanorod light-emitting diode array.  

PubMed

The growth and process of a regularly patterned nanorod (NR)- light-emitting diode (LED) array with its emission from sidewall non-polar quantum wells (QWs) are demonstrated. A pyramidal un-doped GaN structure is intentionally formed at the NR top for minimizing the current flow through this portion of the NR such that the injection current can be effectively guided to the sidewall m-plane InGaN/GaN QWs for emission excitation by a conformal transparent conductor (GaZnO). The injected current density at a given applied voltage of the NR LED device is similar to that of a planar c-plane or m-plane LED. The blue-shift trend of NR LED output spectrum with increasing injection current is caused by the non-uniform distributions of QW width and indium content along the height on a sidewall. The photoluminescence spectral shift under reversed bias confirms that the emission of the fabricated NR LED comes from non-polar QWs. PMID:25607494

Tu, Charng-Gan; Liao, Che-Hao; Yao, Yu-Feng; Chen, Horng-Shyang; Lin, Chun-Han; Su, Chia-Ying; Shih, Pei-Ying; Chen, Wei-Han; Zhu, Erwin; Kiang, Yean-Woei; Yang, C C

2014-12-15

270

Self-powered ultraviolet photodetectors based on selectively grown ZnO nanowire arrays with thermal tuning performance.  

PubMed

A self-powered Schottky-type ultraviolet photodetector with Al-Pt interdigitated electrodes has been fabricated based on selectively grown ZnO nanowire arrays. At zero bias, the fabricated photodetector exhibited high sensitivity and excellent selectivity to UV light illumination with a fast response time of 81 ms. By tuning the Schottky barrier height through the thermally induced variation of the interface chemisorbed oxygen, an ultrahigh sensitivity of 3.1 × 10(4) was achieved at 340 K without an external power source, which was 82% higher than that obtained at room temperature. According to the thermionic emission-diffusion theory and the solar cell theory, the changes in the photocurrent of the photodetector at zero bias with various system temperatures were calculated, which agreed well with the experimental data. This work demonstrates a promising approach to modulating the performance of a self-powered photodetector by heating and provides theoretical support for studying the thermal effect on the future photoelectric device. PMID:24728006

Bai, Zhiming; Chen, Xiang; Yan, Xiaoqin; Zheng, Xin; Kang, Zhuo; Zhang, Yue

2014-05-28

271

Chandra, Extreme Ultraviolet Explorer, and Very Large Array Observations of the Active Binary System ?2 Coronae Borealis  

NASA Astrophysics Data System (ADS)

We present the results of a coordinated observing campaign on the short-period RS CVn binary ?2 Coronae Borealis (F6V+G0V Porb=1.14 days) with the Very Large Array, the Extreme Ultraviolet Explorer, and the Chandra X-Ray Observatory High-Energy Transmission Grating Spectrometer. The radio emission is consistent with previously determined quiescent gyrosynchrotron properties. Multiple flares were seen with Extreme Ultraviolet Explorer, five occurring within two consecutive orbital periods. The first of these flares was observed with Chandra. The Chandra observations of ?2 CrB showed no systematic variations of line fluxes, widths, or Doppler shifts with orbital phase, nor any response in line width or offset due to the flare. This is consistent with both stars being equally active coronal emitters. We have developed a self-consistent method of spectral analysis to derive information from the line and continuum emissions concerning the distribution of plasma with temperature and elemental abundances. A bimodal temperature distribution is appropriate for both quiescent and flare intervals, with a stable peak at 6-8 MK and another variable enhancement at higher temperatures, with evidence for significant contribution from temperatures up to 50 MK during the flare, compared to 30 MK during quiescence. The iron abundance is subsolar during quiescence but is enriched by about a factor of 2 during a large flare seen with Chandra. The noble gas elements neon and argon show elevated abundances with respect to iron, but there is no clear evidence for any first ionization potential-based abundance pattern during quiescence or the flare. We have determined coronal electron densities from the helium-like ions O VII, Ne IX, Mg XI, and Si XIII, which imply densities >=1010 cm-3. There is a small enhancement in the electron densities derived for the flare, but it is not statistically significant. We call attention to electron temperature constraints provided by the ratios of 1s2 1S0-1snp 1P1 transitions of the helium-like ions O VII, Ne IX, Mg XI, and Si XIII. The derived coronal electron pressures change by 1-2 orders of magnitude over a 25% change in temperature, implying nonisobaric coronal conditions. We find no evidence for significant departures from the effectively thin coronal assumption. The electron densities inferred from the soft X-ray spectra are inconsistent with cospatial gyrosynchrotron emission; further observations are necessary to discriminate the relative locations of the radio and soft X-ray-emitting plasma.

Osten, Rachel A.; Ayres, Thomas R.; Brown, Alexander; Linsky, Jeffrey L.; Krishnamurthi, Anita

2003-01-01

272

SiMPl—An avalanche diode array with bulk integrated quench resistors for single photon detection  

NASA Astrophysics Data System (ADS)

The so-called silicon photomultipliers (SiPMs, MPPCs, etc.) are already replacing photomultiplier tubes in many applications. Still the reproducibility and the cost requirements are not at the level required for the coverage of many square meters of detector area. Therefore a simple technology is desired which allows a high yield and keeps the detector costs in a reasonable range. In the existing devices the need of high ohmic polysilicon for the quench resistors is one of the most yield and cost driving technological issues. We are proposing a front-side illuminated detector structure with quench resistors integrated into the silicon bulk. In this concept other obstacles for light like metal lines or contacts can be omitted and therefore the fill factor is only limited by the gaps necessary for optical cross-talk suppression. Within the array the entire surface area remains non-structured and can be easily coated with an anti-reflective layer. Compared to existing devices the proposed detector has the potential of higher photon detection efficiency especially in the blue and the UV range, an improved hardness against ionizing radiation and a much simpler processing resulting in a higher production yield and lower costs. The quenching mechanism has been demonstrated in a proof-of-principle production performed in house. The second prototype fabrication on silicon on isolator substrates has been done and allows testing of the device performance. The results from the first measurements are presented.

Ninkovi?, Jelena; Andri?ek, Ladislav; Liemann, Gerhard; Lutz, Gerhard; Moser, Hans-Günther; Richter, Rainer; Schopper, Florian

2010-05-01

273

High performance 380-nm ultraviolet light-emitting-diodes with 3% efficiency droop by using free-standing GaN substrate manufacturing from GaAs substrate  

NASA Astrophysics Data System (ADS)

We investigated the influence of free-standing GaN (FS-GaN) substrates on the performance of ultraviolet light-emitting-diodes (UV-LEDs) grown on top by atmospheric pressure metal-organic chemical vapor deposition. High-resolution double-crystal x-ray diffraction (HRDCXD) analysis demonstrated high-order satellite peaks and clear fringes between them for UV-LEDs grown on the FS-GaN substrate, from which the interface roughness was estimated. In addition, the full width at half maximum of the HRDCXD rocking curve in the (0002) and the (10 1¯ 2) reflections were reduced to below 90 arc sec. The Raman results indicated that the GaN-based epilayer of strain free was grown. Additionally, the effect of the FS-GaN substrate on the crystal quality of the UV-LEDs was examined in detail by transmission electron microscopy (TEM). The TEM characterizations revealed no defects and V-pits were found in the scanned area. Based on the results mentioned above, the light output power of UV-LEDs on the FS-GaN substrate can be enhanced drastically by 80% and 90% at 20 and 100 mA, respectively. Furthermore, an ultralow efficiency degradation of about 3% can be obtained for the UV-LEDs on the FS-GaN substrate at a high injection current. The use of an FS-GaN substrate is suggested to be effective for improving the emission efficiency and droop of UV-LEDs grown thereon.

Shieh, Chen-Yu; Tsai, Ming-Ta; Li, Zhen-Yu; Kuo, Hao-Chung; Chang, Jenq-Yang; Chi, Gou-Chung; Lee, Wei-I.

2014-01-01

274

Influence of free-standing GaN substrate on ultraviolet light-emitting-diodes by atmospheric-pressure metal-organic chemical vapor deposition  

NASA Astrophysics Data System (ADS)

We reported the influence of free-standing (FS) GaN substrate on ultraviolet light-emitting-diodes (UV LEDs) by atmospheric-pressure metal-organic chemical vapor deposition (APMOCVD). The Raman spectrum shows the in-plane compressive stress of the GaN epitaxial structures grown on FS GaN substrate. Besides, the Raman spectrum reveals the relation between the crystal quality and the carrier localization degree in multi-quantum wells (MQWs). High resolution X-ray diffraction (HRXRD) analysis results show that the In0.025Ga0.975N/Al0.08Ga0.92N MQWs grown on FS GaN substrate has higher indium mole fraction than sapphire at the same growth conditions. The higher indium incorporation is corresponding with the red-shift 6 nm (387 nm) of the room temperature photoluminescence (PL) peak. The full widths at half maximum (FWHM) of omega-scan rocking curve in (002) and (102) reflectance on FS GaN substrate (83 arcsec and 77 arcsec) are narrower than UV LEDs grown on sapphire (288 arcsec and 446 arcsec). This superior quality may attribute to homoepitaxial growth structure and better strain relaxation in the FS GaN substrate. An anomalous temperature behavior of PL in UV LEDs designated as an S-shaped peak position dependence and W-shaped linewidth dependence indicate that exciton/carrier motion occurs via photon-assisted tunneling through localized states, what results in incomplete thermalization of localized excitons at low temperature. The Gaussian broadening parameters of carrier localization is about 16.98 meV from the temperature dependent photoluminescence (TDPL) measurement. The saturation temperature from the TDPL linewidth of UV LEDs on FS GaN substrate at about 175 K represents a crossover from a nonthermalized to thermalized energy distribution of excitons.

Shieh, C. Y.; Li, Z. Y.; Chiu, C. H.; Tu, P. M.; Kuo, H. C.; Chi, G. C.

2013-03-01

275

Electroluminescence of ordered ZnO nanorod array/p-GaN light-emitting diodes with graphene current spreading layer  

PubMed Central

Ordered ZnO nanorod array/p-GaN heterojunction light-emitting diodes (LEDs) have been fabricated by introducing graphene as the current spreading layer, which exhibit improved electroluminescence performance by comparison to the LED using a conventional structure (indium-tin-oxide as the current spreading layer). In addition, by adjusting the diameter of ZnO nanorod array in use, the light emission of the ZnO nanorod array/p-GaN heterojunction LEDs was enhanced further. This work has great potential applications in solid-state lighting, high performance optoelectronic devices, and so on. PACS 78.60.Fi; 85.60.Jb; 78.67.Lt; 81.10.Dn PMID:25489284

2014-01-01

276

Determination of pesticides in sunflower seeds by high-performance liquid chromatography coupled with a diode array detector.  

PubMed

The application of RP-HPLC with a diode array detector for identification and quantitative analysis of pesticides in sunflower seed samples is demonstrated. An HPLC procedure on C18 RP column has been developed for analysis of selected pesticides from different chemical groups: simazine, isoproturon, terbuthylazine, linuron, captan, terbutryn, procymidone, fenitrothion, clofentezine, and bromopropylate. We investigated the possibility of expanding the scope of the four analyte extraction procedures for isolation of pesticides from plant matrixes with high levels of lipids. The following procedures were tested: A, ultrasound-assisted solvent extraction (UAE) and SPE; B, dispersive-SPE (d-SPE); C, UAE and d-SPE; and D, UAE/SPE/d-SPE. Average recoveries from spiked samples at different concentrations in the range from 0.1 to 1.40 microg/g in the plant materials and the SDs for C18 cartridges and solvents by the proposed RP-HPLC-DAD method after the extraction procedures are also presented. The efficiency of procedures A-D was evaluated using real food samples from Hungary, Bulgaria, and Poland. The quantity of terbuthylazine determined was in the range of 7.1-12.7 ng/g (n = 6), whereas the quantity of procymidone determined was in the range of 3.7-5.7 ng/g (n = 3) in plant materials. The quantities of pesticides determined in sunflower seeds were below the maximum residue levels (excluding captan) established in the European Union legislation. The method was validated for precision and accuracy. PMID:25145131

Tuzimski, Tomasz; Rejczak, Tomasz

2014-01-01

277

Potentialities of ITP-CZE method with diode array detection for enantiomeric purity control of dexbrompheniramine in pharmaceuticals.  

PubMed

The present work illustrates potentialities of on-line combined isotachophoresis-capillary zone electrophoresis (ITP-CZE) separation techniques coupled with on-capillary diode array detector (DAD) for enantiomeric purity testing of drugs in pharmaceuticals. The general advantages of the proposed method are its (i) high selectivity, (ii) low concentration limit of detection (LOD) obtainable, (iii) enhanced sample loadability, and (iv) enhanced reliability. For separation of brompheniramine (BP) enantiomers, serving as model analytes, carboxyethyl-beta-cyclodextrin (CE-beta-CD) was appropriate chiral selector providing complete enantioresolution. Given by a high sample load capacity (30 microl sample injection volume) and preconcentration of the analytes in ITP stage, concentration LOD of levobrompheniramine (LBP), serving as model impurity, was 2.5 ng/ml (8 x 10(-9)mol/l). Such separation and detection conditions enabled to easily determine LBP in samples containing a 10(3) excess of dexbrompheniramine (DBP). DAD detection in comparison with single wavelength detection can enhance value of analytical information when analytes and interferents have different spectra (distinguishing impurities in analyte zone, confirmation of migration positions of migrants). In this context purity of BP zones was confirmed with higher reliability in pharmaceutical sample. Moreover, distinguishing the trace analyte signal superposed on the baseline noise was provided with sufficient reliability (for this purpose the background correction and smoothing procedure had to be applied to the raw DAD spectra). Successful validation and application of the proposed ITP-CZE-DAD method suggest its routine use for the enantiomeric purity testing of pharmaceuticals. PMID:17618074

Marák, Jozef; Mikus, Peter; Maráková, Katarína; Kaniansky, Dusan; Valásková, Iva; Havránek, Emil

2008-04-14

278

Capillary zone electrophoresis of orotic acid in urine with on-line isotachophoresis sample pretreatment and diode array detection.  

PubMed

Potentialities of capillary zone electrophoresis with on-line isotachophoresis sample pretreatment and diode array detection (ITP-CZE-DAD) to the separation, detection and identification of trace analytes present in biological matrices were investigated. Urine represented a multicomponent, variable and high ionic strength matrix while orotic acid was chosen as a model analyte of a practical clinical relevance in this investigation. Using the ITP-CZE combination in the column-coupling configuration of the separation system ITP provided an enhanced sample load capacity to the separation system (a 30 microl sample injection volume), concentrated the analyte and served as an on-line sample clean up technique. On the other hand, CZE performed a final separation of the analyte from matrix constituents present in the ITP pretreated sample and provided favorable conditions for its detection and identification by DAD. Using current correction and smoothing procedures analytically relevant DAD spectra of orotic acid could be obtained also in instances when this was injected in a model sample at a 2 x 10(-7) mol/l concentration (an estimated limit of determination of orotic acid at a 218 nm detection wavelength). ITP-CZE separations of urine samples (based on differences in acid-base properties and host-guest complexations of the analyte and matrix anionic constituents) led to significant sample clean ups. Consequently, DAD spectra of orotic acid matching its reference spectrum, could be acquired also in instances when the acid was present in urine matrices (loaded in 30 microl injection volumes of 20-fold diluted urine samples) at 4-6 x 10(-7) mol/l concentrations. Here, residual trace matrix interferents prevented a closer approach to the above value attainable for model samples. Although this work was focused only on one analyte and urine matrix it implies very promising potentialities of the ITP-CZE-DAD combination in the identification and quantitation of trace analytes present in biological matrices, in general. PMID:11382286

Danková, M; Strasík, S; Molnárová, M; Kaniansky, D; Marák, J

2001-05-01

279

Ultraviolet Extensions  

NASA Technical Reports Server (NTRS)

[figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of time. In fact, it is one of the 'deepest,' or longest-exposure, images of a nearby galaxy in ultraviolet light. This deeper view shows more clusters of stars, as well as stars in the very remote reaches of the galaxy, up to 140,000 light-years away from its core.

The view at the left is a combination of the ultraviolet picture at the right and data taken by the telescopes of the National Science Foundation's Very Large Array in New Mexico. The radio data, colored here in red, reveal extended galactic arms of gaseous hydrogen atoms, which are raw ingredients for stars. Astronomers are excited that the remote clusters of baby stars match up with the extended arms, because this helps them better understand how stars can be created out in the boondocks of a galaxy.

M83 is located 15 million light-years away in the southern constellation Hydra.

In the Galaxy Evolution Explorer image on the right, near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow and far-ultraviolet light is blue. In the combined image at the left, far-ultraviolet light is blue, near-ultraviolet light is green, and the radio emission at a wavelength of 21 centimeters is red.

2008-01-01

280

Optimizing the accuracy of a helical diode array dosimeter: A comprehensive calibration methodology coupled with a novel virtual inclinometer  

SciTech Connect

Purpose: The goal of any dosimeter is to be as accurate as possible when measuring absolute dose to compare with calculated dose. This limits the uncertainties associated with the dosimeter itself and allows the task of dose QA to focus on detecting errors in the treatment planning (TPS) and/or delivery systems. This work introduces enhancements to the measurement accuracy of a 3D dosimeter comprised of a helical plane of diodes in a volumetric phantom. Methods: We describe the methods and derivations of new corrections that account for repetition rate dependence, intrinsic relative sensitivity per diode, field size dependence based on the dynamic field size determination, and positional correction. Required and described is an accurate ''virtual inclinometer'' algorithm. The system allows for calibrating the array directly against an ion chamber signal collected with high angular resolution. These enhancements are quantitatively validated using several strategies including ion chamber measurements taken using a ''blank'' plastic shell mimicking the actual phantom, and comparison to high resolution dose calculations for a variety of fields: static, simple arcs, and VMAT. A number of sophisticated treatment planning algorithms were benchmarked against ion chamber measurements for their ability to handle a large air cavity in the phantom. Results: Each calibration correction is quantified and presented vs its independent variable(s). The virtual inclinometer is validated by direct comparison to the gantry angle vs time data from machine log files. The effects of the calibration are quantified and improvements are seen in the dose agreement with the ion chamber reference measurements and with the TPS calculations. These improved agreements are a result of removing prior limitations and assumptions in the calibration methodology. Average gamma analysis passing rates for VMAT plans based on the AAPM TG-119 report are 98.4 and 93.3% for the 3%/3 mm and 2%/2 mm dose-error/distance to agreement threshold criteria, respectively, with the global dose-error normalization. With the local dose-error normalization, the average passing rates are reduced to 94.6 and 85.7% for the 3%/3 mm and 2%/2 mm criteria, respectively. Some algorithms in the convolution/superposition family are not sufficiently accurate in predicting the exit dose in the presence of a 15 cm diameter air cavity. Conclusions: Introduction of the improved calibration methodology, enabled by a robust virtual inclinometer algorithm, improves the accuracy of the dosimeter's absolute dose measurements. With our treatment planning and delivery chain, gamma analysis passing rates for the VMAT plans based on the AAPM TG-119 report are expected to be above 91% and average at about 95% level for {gamma}(3%/3 mm) with the local dose-error normalization. This stringent comparison methodology is more indicative of the true VMAT system commissioning accuracy compared to the often quoted dose-error normalization to a single high value.

Kozelka, Jakub; Robinson, Joshua; Nelms, Benjamin; Zhang, Geoffrey; Savitskij, Dennis; Feygelman, Vladimir [Sun Nuclear Corp., Melbourne, Florida 32940 (United States); Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Canis Lupus LLC, Sauk County, Wisconsin 53561 (United States); Division of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Sun Nuclear Corp., Melbourne, Florida 32940 (United States); Division of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

2011-09-15

281

Development of an all-sky-scanning spectroradiometer with a visible diode array and a near-infrared acousto-optic tunable filter.  

PubMed

A sky scanner was developed that collects spectral radiance data over the wavelength range 390-1732 nm by use of two radiometers, the first being a monochromator with a 512-element silicon diode array and the second being a near-infrared acousto-optic tunable filter (AOTF) coupled to an InGaAs detector. The scanner is capable of completing a set of spectral radiance measurements at 146 points in the sky hemisphere in a period of less than 4 min. PMID:18264322

Nield, K M; Bittar, A; Hamlin, J D

1997-10-20

282

Determination of the antifouling booster biocides irgarol 1051 and diuron and their metabolites in seawater by high performance liquid chromatography–diode array detector  

Microsoft Academic Search

A method for the simultaneous determination of two antifouling booster biocides, diuron (1-(3,4 dichlorophenyl) 3,3 dimethyl urea) and irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), and their metabolites, DCPMU (1-(3,4 dichlorophenyl)-3 methyl urea), DCPU (1-(3,4 dichlorophenyl) urea), DCA (3,4 dichloroaniline) and M1 (2-methylthio-4-tert-butylamino-s-triazine) in seawater by high performance liquid chromatography–diode array detector (HPLC–DAD) was developed. The optimization of the extraction procedure included the type

Georgia Gatidou; Anna Kotrikla; Nikolaos S. Thomaidis; Themistokles D. Lekkas

2005-01-01

283

Rapid determination of lidocaine solutions with non-column chromatographic diode array UV spectroscopy and multivariate calibration.  

PubMed

A new method for the rapid determination of pharmaceutical solutions is proposed. A conventional HPLC system with a Diode Array Detector (DAD) was used with no chromatographic column connected. As eluent, purified water (Milli Q) was used. The pump and autosampler of the HPLC system were mainly utilised as an automatic and convenient way of introducing the sample into the DAD. The method was tested on the local anaesthetic compound lidocaine. The UV spectrum (245-290 nm) from the samples analysed in the detector was used for multivariate calibration for the determination of lidocaine solutions. The content was determined with PLS regression. The effect on the predictive ability of three factors: flow, data-collection rate and rise time as well as two ways of exporting a representative UV spectrum from the DAD file collected was investigated by means of an experimental design comprising 11 experiments. For each experiment, 14 solutions containing a known content of lidocaine were analysed (0.02-0.2 mg ml(-1)). From these 14 samples two calibration sets and two test sets were made and as the response in the experimental design the Root Mean Square Error of Prediction (RMSEP) values from the predictions of the two test sets were used. When the factor setting giving the lowest RMSEP was found, this setting was used when analysing a new calibration set of 12 lidocaine samples (0.1-0.2 mg ml(-1)). This calibration model was validated by two external test sets, A and B, analysed on separate occasions for the evaluation of repeatability (test set A) and determination over time (test set B). For comparison, the reference method, liquid chromatography, was also used for analysis of the ten samples in test set B. This comparison of the two methods was done twice on different occasions. The results show that in respect of accuracy, precision and repeatability the new method is comparable to the reference method. The main advantages compared with liquid chromatography are the much shorter time of analysis (<30 s) as well as the automatic and simple analytical procedure and the low consumption of organic solvents. PMID:12467929

Wiberg, Kent; Hagman, Anders; Jacobsson, Sven P

2003-01-01

284

Precision Materials Processing Using Diode-Pumped Solid-  

E-print Network

Precision Materials Processing Using Diode-Pumped Solid- State (DPSS) Lasers Bruce B. Craig CREOL of Diode-Pumped Solid State Laser Technology · Review of Market for Diode-Pumped Solid State Lasers · Applications overview · Ultrafast materials processing #12;4 Diode Receptacle Diode Pump Pump Diode Array

Van Stryland, Eric

285

Liquid chromatography with diode array detection combined with spectral deconvolution for the analysis of some diterpene esters in Arabica coffee brew.  

PubMed

In this manuscript, the separation of kahweol and cafestol esters from Arabica coffee brews was investigated using liquid chromatography with a diode array detector. When detected in conjunction, cafestol, and kahweol esters were eluted together, but, after optimization, the kahweol esters could be selectively detected by setting the wavelength at 290 nm to allow their quantification. Such an approach was not possible for the cafestol esters, and spectral deconvolution was used to obtain deconvoluted chromatograms. In each of those chromatograms, the four esters were baseline separated allowing for the quantification of the eight targeted compounds. Because kahweol esters could be quantified either using the chromatogram obtained by setting the wavelength at 290 nm or using the deconvoluted chromatogram, those compounds were used to compare the analytical performances. Slightly better limits of detection were obtained using the deconvoluted chromatogram. Identical concentrations were found in a real sample with both approaches. The peak areas in the deconvoluted chromatograms were repeatable (intraday repeatability of 0.8%, interday repeatability of 1.0%). This work demonstrates the accuracy of spectral deconvolution when using liquid chromatography to mathematically separate coeluting compounds using the full spectra recorded by a diode array detector. PMID:25521818

Erny, Guillaume L; Moeenfard, Marzieh; Alves, Arminda

2015-02-01

286

High-performance GaSb laser diodes and diode arrays in the 2.1-3.3 micron wavelength range for sensing and defense applications  

NASA Astrophysics Data System (ADS)

Mid-infrared spectral region (2-4 ?m) is gaining significant attention recently due to the presence of numerous enabling applications in the field of gas sensing, medical, and defense applications. Gas sensing in this spectral region is attractive due to the presence of numerous absorption lines for such gases as methane, ethane, ozone, carbon dioxide, carbon monoxide, etc. Sensing of the mentioned gas species is of particular importance for applications such as atmospheric LIDAR, petrochemical industry, greenhouse gas monitoring, etc. Defense applications benefit from the presence of covert atmospheric transmission window in the 2.1-2.3 micron band which is more eye-safe and offers less Rayleigh scattering than the conventional atmospheric windows in the near-infrared. Major requirement to enable these application is the availability of high-performance, continuous-wave laser sources in this window. Type-I GaSb-based laser diodes are ideal candidates for these applications as they offer direct emission possibility, high-gain and continuous wave operation. Moreover, due to the nature of type-I transition, these devices have a characteristic low operation voltage, which results in very low input powers and high wall-plug efficiency. In this work, we present recent results of 2 ?m - 3.0 ?m wavelength room-temperature CW light sources based on type-I GaSb developed at Brolis Semiconductors. We discuss performance of defense oriented high-power multimode laser diodes with < 1 W CW power output with over 30 % WPE as well as ~ 100 mW single TE00 Fabry-Perot chips. In addition, recent development efforts on sensing oriented broad gain superluminescent gain chips will be presented.

Dvinelis, Edgaras; TrinkÅ«nas, Augustinas; Greibus, Mindaugas; Kaušylas, Mindaugas; Žukauskas, Tomas; Å imonytÄ--, Ieva; Songaila, RamÅ«nas; Vizbaras, Augustinas; Vizbaras, Kristijonas

2015-01-01

287

Far ultraviolet sensitivity of silicon CMOS sensors  

NASA Astrophysics Data System (ADS)

We describe vacuum ultraviolet sensitivity measurements of a new high performance silicon-based CMOS sensor from Teledyne Imaging Sensors. These sensors do not require the high voltages of MCP detectors, making them a lower mass and power alternative to the more mature MCP technology. These devices demonstrate up to 40 percent quantum efficiency at vacuum ultraviolet wavelengths, either meeting or greatly exceeding 10 percent quantum efficiency across the entire 100-200 nm wavelength region. As with similar visible sensitive devices, backside illumination results in a higher quantum efficiency than frontside illumination. Measurements of the vacuum ultraviolet sensitivity of the Teledyne silicon PIN detectors were made by directing a known intensity of ultraviolet light at discrete wavelengths onto the test detectors and reading out the resulting photocurrent. The sensitivity of the detector at a given wavelength was then calculated from the intensity and wavelength of the incoming light and the relative photodiode to NIST-traceable calibration diode active areas. A custom electromechanical interface was developed to make these measurements within the SwRI Vacuum Radiometric Calibration Chamber. While still in the single pixel stage, full 1K × 1K focal plane arrays are possible using existing CMOS readout electronics and hold great promise for inclusion in future spaceflight instrument concepts.

Davis, Michael W.; Greathouse, Thomas K.; Retherford, Kurt D.; Winters, Gregory S.; Bai, Yibin; Beletic, James W.

2012-07-01

288

The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance  

SciTech Connect

Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly {sup 192}Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 ?Gy m{sup 2}/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the {sup 192}Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a {sup 192}Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of the epitaxial diodes used in the MP is in good agreement (within 8%) with radial dose function measurements found within the TG-43 protocol, with SDD of up to 70 mm showing a 40% over response. A method for four-dimensional localization of the HDR source was developed, allowing the source dwell position to be derived within 0.50 mm of the expected position. An estimation of the average transit speed for varying step sizes was determined and was found to increase from (12.8 ± 0.3) up to (38.6 ± 0.4) cm/s for a step size of 2.5 and 50 mm, respectively.Conclusions: Our characterization of the designed QA “magic phantom” with MP in realistic HDR photon fields demonstrates the promising performance for real-time source position tracking in four dimensions and measurements of transit times. Further development of this system will allow a full suite for QA in HDR brachytherapy and analysis, and for future in vivo tracking.

Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia)] [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Corde, S.; Jackson, M. [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)] [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)

2013-11-15

289

Dosimetric verification for intensity-modulated arc therapy plans by use of 2D diode array, radiochromic film and radiosensitive polymer gel  

PubMed Central

Several tools are used for the dosimetric verification of intensity-modulated arc therapy (IMAT) treatment delivery. However, limited information is available for composite on-line evaluation of these tools. The purpose of this study was to evaluate the dosimetric verification of IMAT treatment plans using a 2D diode array detector (2D array), radiochromic film (RCF) and radiosensitive polymer gel dosimeter (RPGD). The specific verification plans were created for IMAT for two prostate cancer patients by use of the clinical treatment plans. Accordingly, the IMAT deliveries were performed with the 2D array on a gantry-mounting device, RCF in a cylindrical acrylic phantom, and the RPGD in two cylindrical phantoms. After the irradiation, the planar dose distributions from the 2D array and the RCFs, and the 3D dose distributions from the RPGD measurements were compared with the calculated dose distributions using the gamma analysis method (3% dose difference and 3-mm distance-to-agreement criterion), dose-dependent dose difference diagrams, dose difference histograms, and isodose distributions. The gamma passing rates of 2D array, RCFs and RPGD for one patient were 99.5%, 96.5% and 93.7%, respectively; the corresponding values for the second patient were 97.5%, 92.6% and 92.9%. Mean percentage differences between the RPGD measured and calculated doses in 3D volumes containing PTVs were –0.29 ± 7.1% and 0.97 ± 7.6% for the two patients, respectively. In conclusion, IMAT prostate plans can be delivered with high accuracy, although the 3D measurements indicated less satisfactory agreement with the treatment plans, mainly due to the dosimetric inaccuracy in low-dose regions of the RPGD measurements. PMID:24449714

Hayashi, Naoki; Malmin, Ryan L.; Watanabe, Yoichi

2014-01-01

290

Arrays  

NSDL National Science Digital Library

This interactive Flash applet helps students develop the concept of equal groups as a foundation for multiplication and division. The applet displays an array of dots, some of which are covered by a card. Student use the visible number of rows and columns to determine the total number of dots. Clicking on the card reveals the full array, and a voice announces the total.

2011-01-01

291

Aqueous photochemical reactions of chloride, bromide, and iodide ions in a diode-array spectrophotometer. Autoinhibition in the photolysis of iodide ions.  

PubMed

The aqueous photoreactions of three halide ions (chloride, bromide and iodide) were studied using a diode array spectrophotometer to drive and detect the process at the same time. The concentration and pH dependences of the halogen formation rates were studied in detail. The experimental data were interpreted by improving earlier models where the cage complex of a halogen atom and an electron has a central role. The triiodide ion was shown to exert a strong inhibiting effect on the reaction sequence leading to its own formation. An assumed chemical reaction between the triiodide ion and the cage complex interpreted the strong autoinhibition effect. It is shown that there is a real danger of unwanted interference from the photoreactions of halide ions when halide salts are used as supporting electrolytes in spectrophotometric experiments using a relatively high intensity UV light source. PMID:24492347

Kalmár, József; Dóka, Éva; Lente, Gábor; Fábián, István

2014-03-28

292

A deuterium-labelling mass spectrometry-tandem diode-array detector screening method for rapid discovery of naturally occurring electrophiles.  

PubMed

Because electrophiles regulate many signalling pathways in cells, by modifying cysteine residues in proteins, they have a wide range of biological activity. In this study, a deuterium-labelling mass spectrometry-tandem diode-array detector (MS-DAD) screening method was established for rapid discovery of naturally occurring electrophiles. Glutathione (GSH) was used as a probe and incubated with natural product extracts. To distinguish different types of electrophile, incubation was performed in two reaction solvents, H(2)O and D(2)O. Ten types of naturally occurring electrophile were chosen, on the basis of their properties, to undergo the screening assay. By using this screening method, we successfully discovered the bioactive electrophile 4-hydroxyderricin in an ethanol extract of Angelica keiskei. This electrophile had potent NAD(P)H:quinone oxidoreductase 1 (NQO1)-inducing activity at a concentration of 20 ?mol L(-1). PMID:21544543

Zhang, Xiaoyu; Luo, Liping; Ma, Zhongjun

2011-07-01

293

N-polar GaN etching and approaches to quasi-perfect micro-scale pyramid vertical light-emitting diodes array  

NASA Astrophysics Data System (ADS)

N-polar GaN etching process and mechanism has been investigated in detail by varying the etching parameter (etchant temperature, etchant concentration, and etching duration) in KOH and H3PO4. Quasi-perfect micro-scale hexagonal pyramids vertical light emitting diodes (?-HP VLEDs) array with least active area loss (<12%) has been fabricated by N-polar etching. The ?-HP VLEDs shows massively improved crystal quality with X-ray diffraction full width at half maxima decreased from 442 s to 273 s, and the room temperature minority carriers decay time increased from 252 ps to 747 ps. Temperature dependence of photoluminescence result reveals a ˜30% improved internal quantum efficiency, and transmission electron microscope further reveals its quasi-perfect crystalline quality clearly.

Wang, Liancheng; Ma, Jun; Liu, Zhiqiang; Yi, Xiaoyan; Yuan, Guodong; Wang, Guohong

2013-10-01

294

Simultaneous extraction and analysis by high performance liquid chromatography coupled to diode array and mass spectrometric detectors of bixin and phenolic compounds from annatto seeds.  

PubMed

This study was designed to identify and quantify the carotenoids and phenolic compounds from annatto seeds using high performance liquid chromatography coupled to diode array and mass spectrometer detectors (HPLC-DAD-MS/MS). Furthermore, using response surface methodology, an optimized procedure for simultaneous extraction of these compounds was established. In addition to bixin, known to be the main carotenoid in annatto seeds, hypolaetin and a caffeoyl acid derivative were identified as the main phenolic compounds. The optimized procedure involved 15 extractions using acetone:methanol:water (50:40:10, v/v/v) as solvent, a solid-liquid ratio of 1:9 (m/v) and an extraction time of 5 min. Validation data indicated that the HPLC method proposed provided good linearity, sensitivity, procedure accuracy, system precision and suggested its suitability for the simultaneous analysis of phenolic compounds and carotenoids in annatto seeds. PMID:21111424

Chisté, Renan Campos; Yamashita, Fábio; Gozzo, Fábio Cesar; Mercadante, Adriana Zerlotti

2011-01-01

295

Identification and quantification of flavonoids and chromes in Baeckea frutescens by using HPLC coupled with diode-array detection and quadruple time-of-flight mass spectrometry.  

PubMed

This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens. PMID:25466282

Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang

2014-12-01

296

Color tunable light-emitting diodes based on p+-Si/p-CuAlO2/n-ZnO nanorod array heterojunctions  

NASA Astrophysics Data System (ADS)

Wide-range color tuning from red to blue was achieved in phosphor-free p+-Si/p-CuAlO2/n-ZnO nanorod light-emitting diodes at room temperature. CuAlO2 films were deposited on p+-Si substrates by sputtering followed by annealing. ZnO nanorods were further grown on the annealed p+-Si/p-CuAlO2 substrates by vapor phase transport. The color of the p-CuAlO2/n-ZnO nanorod array heterojunction electroluminescence depended on the annealing temperature of the CuAlO2 film. With the increase of the annealing temperature from 900 to 1050 °C, the emission showed a blueshift under the same forward bias. The origin of the blueshift is related to the amount of Cu concentration diffused into ZnO.

Ling, Bo; Zhao, Jun Liang; Sun, Xiao Wei; Tan, Swee Tiam; Kyaw, Aung Ko Ko; Divayana, Yoga; Dong, Zhi Li

2010-07-01

297

High efficiency 2 micrometer laser utilizing wing-pumped Tm.sup.3+ and a laser diode array end-pumping architecture  

DOEpatents

Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.

Beach, Raymond J. (Livermore, CA)

1997-01-01

298

High efficiency 2 micrometer laser utilizing wing-pumped Tm{sup 3+} and a laser diode array end-pumping architecture  

DOEpatents

Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.

Beach, R.J.

1997-11-18

299

Simultaneous Detection of Sulfamethoxazole, Diclofenac, Carbamazepine, and Bezafibrate by Solid Phase Extraction and High Performance Liquid Chromatography with Diode Array Detection  

NASA Astrophysics Data System (ADS)

A method of solid phase extraction (SPE) coupled with high performance liquid chromatography and diode array detection (HPLC-DAD) was studied for the simultaneous determination of sulfamethoxazole (SMX), diclofenac (DCF), carbamazepine (CBZ), and bezafi brate (BZF) in test solutions. The target compounds were extracted by SPE from samples, and the resulting elutes were analyzed using a HPLC-DAD system at wavelengths of 270, 280, 290, and 230 nm for SMX, DCF, CBZ, and BZF, respectively. This method shows good recoveries for SMX, DCF, CBZ, and BZF with mean recoveries of 89.7 ± 9.3%, 86.1 ± 7.6%, 95.0 ± 6.5%, and 94.0 ± 5.4%, respectively.

Zhou, Z.; Jiang, J.-Q.

2014-05-01

300

Effects of Mg-doped AlN/AlGaN superlattices on properties of p-GaN contact layer and performance of deep ultraviolet light emitting diodes  

SciTech Connect

Mg-doped AlN/AlGaN superlattice (Mg-SL) and Mg-doped AlGaN epilayers have been investigated in the 284 nm deep ultraviolet (DUV) light emitting diodes (LEDs) as electron blocking layers. It was found that the use of Mg-SL improved the material quality of the p-GaN contact layer, as evidenced in the decreased density of surface pits and improved surface morphology and crystalline quality. The performance of the DUV LEDs fabricated using Mg-SL was significantly improved, as manifested by enhanced light intensity and output power, and reduced turn-on voltage. The improved performance is attributed to the enhanced blocking of electron overflow, and enhanced hole injection.

Al tahtamouni, T. M., E-mail: talal@yu.edu.jo [Department of Physics, Yarmouk University, Irbid 21163 (Jordan); Lin, J. Y.; Jiang, H. X. [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)] [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

2014-04-15

301

KOH based selective wet chemical etching of AlN, AlxGa1-xN, and GaN crystals: A way towards substrate removal in deep ultraviolet-light emitting diode  

NASA Astrophysics Data System (ADS)

A controllable and smooth potassium hydroxide-based wet etching technique was developed for the AlGaN system. High selectivity between AlN and AlxGa1-xN (up to 12×) was found to be critical in achieving effective substrate thinning or removal for AlGaN-based deep ultraviolet light emitting diodes, thus increasing light extraction efficiency. The mechanism of high selectivity of AlGaN as a function of Al composition can be explained as related to the formation and dissolution of oxide/hydroxide on top of N-polar surface. Cross-sectional transmission electron microscopic analysis served as ultimate proof that these hillocks were not related to underlying threading dislocations.

Guo, W.; Kirste, R.; Bryan, I.; Bryan, Z.; Hussey, L.; Reddy, P.; Tweedie, J.; Collazo, R.; Sitar, Z.

2015-02-01

302

Self-Injection Locking Of Diode Lasers  

NASA Technical Reports Server (NTRS)

Simple optical coupling scheme locks array of gain-guided diode lasers into oscillation in single mode and with single-lobed output beam. Selective feedback from thin etalon self-injection-locks array into desired mode. One application of new scheme for pumping of neodymium: yttrium aluminum garnet lasers with diode-laser arrays.

Hemmati, H.

1991-01-01

303

High-Speed GaN/GaInN Nanowire Array Light-Emitting Diode on Silicon(111).  

PubMed

The high speed on-off performance of GaN-based light-emitting diodes (LEDs) grown in c-plane direction is limited by long carrier lifetimes caused by spontaneous and piezoelectric polarization. This work demonstrates that this limitation can be overcome by m-planar core-shell InGaN/GaN nanowire LEDs grown on Si(111). Time-resolved electroluminescence studies exhibit 90-10% rise- and fall-times of about 220 ps under GHz electrical excitation. The data underline the potential of these devices for optical data communication in polymer fibers and free space. PMID:25758029

Koester, Robert; Sager, Daniel; Quitsch, Wolf-Alexander; Pfingsten, Oliver; Poloczek, Artur; Blumenthal, Sarah; Keller, Gregor; Prost, Werner; Bacher, Gerd; Tegude, Franz-Josef

2015-04-01

304

Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes  

NASA Astrophysics Data System (ADS)

Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.

Wei, Tongbo; Wu, Kui; Lan, Ding; Sun, Bo; Zhang, Yonghui; Chen, Yu; Huo, Ziqiang; Hu, Qiang; Wang, Junxi; Zeng, Yiping; Li, Jinmin

2014-06-01

305

Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes  

SciTech Connect

Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.

Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Wu, Kui; Sun, Bo; Zhang, Yonghui; Chen, Yu; Huo, Ziqiang; Hu, Qiang; Wang, Junxi; Zeng, Yiping; Li, Jinmin [State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 (China); Lan, Ding [National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080 (China)

2014-06-15

306

Photovoltaic module bypass diode encapsulation  

NASA Technical Reports Server (NTRS)

The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

Shepard, N. J., Jr.

1983-01-01

307

Enhanced light out-coupling of organic light-emitting diode using metallic nanomesh electrodes and microlens array.  

PubMed

A precisely controlled metallic nanomesh was fabricated by using nanosphere lithography to pattern the silver thin film to form hexagonal nanohole arrays with excellent uniformity, high conductivity and good transparency. An Alq(3) based OLED, with the silver nanomesh electrode of high ðll factor of 70.2% demonstrated a considerable luminous efðciency of 4.8 cd/A, which is 60.9% higher than the referenced device with ITO anode. The periodical nanohole array not only increased the transparency but also helped extracting surface plasmonic wave in organic layers. By attaching the microlens array to further extract the trapped light in substrate, the extraction efficiency enhancement of device with nanomesh anode was 73.8% higher than 50.2% of the referenced device with ITO anode. And the overall current efficiency of device with nanomesh anode was 87.7% higher than traditional ITO based device. PMID:23571942

Ho, Yu-Hsuan; Chen, Kuan-Yu; Peng, Kai-Yu; Tsai, Ming-Chih; Tian, Wei-Cheng; Wei, Pei-Kuen

2013-04-01

308

InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode  

Microsoft Academic Search

We markedly improved the extraction efficiency of emission light from the InGaN-based light-emitting diode (LED) chips grown on sapphire substrates. Two new techniques were adopted in the fabrication of these LEDs. One is to grow nitride films on the patterned sapphire substrate (PSS) in order to scatter emission light. Another is to use the Rh mesh electrode for p-GaN contact

Motokazu Yamada; Tomotsugu Mitani; Yukio Narukawa; Shuji Shioji; Isamu Niki; Shinya Sonobe; Kouichiro Deguchi; Masahiko Sano; Takashi Mukai

2002-01-01

309

Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays.  

PubMed

Here we report strong enhancement in ultraviolet-photoluminescence (UV-PL) of ZnO thin films (grown on a SiC substrate) covered by monolayer dielectric fused silica or polystyrene microspheres with diameters ranging from 0.5 to 7.5 ?m. The excited light scatted in the film is collected by the microspheres to stimulate whispering gallery modes, by which the internal quantum efficiency of spontaneous emission is enhanced. Meanwhile, the microsphere monolayer efficiently couples emitted light energy from the luminescent film to the far-field for PL detection. A UV-PL enhancement up to 10-fold via a 5-µm-diameter microsphere monolayer is experimentally demonstrated in this work. The unique optical property of microsphere in photoluminescence (PL) enhancement makes them promising for high-sensitivity PL measurements as well as design of photoelectric devices with low loss and high efficiency. PMID:25321823

Yan, Yinzhou; Zeng, Yong; Wu, Yan; Zhao, Yan; Ji, Lingfei; Jiang, Yijian; Li, Lin

2014-09-22

310

A study of the feasibility and performance of an active/passive imager using silicon focal plane arrays and incoherent continuous wave laser diodes  

NASA Astrophysics Data System (ADS)

This dissertation describes an active/passive imager (API) that provides reliable, nighttime, target acquisition in a man-portable package with effective visual range of about 4 kilometers. The reflective imagery is easier to interpret than currently used thermal imagery. Also, in the active mode, the API provides performance equivalent to the big-aperture, thermal systems used on weapons platforms like tanks and attack helicopters. This dissertation describes the research needed to demonstrate both the feasibility and utility of the API. Part of the research describes implementation of a silicon focal plane array (SFPA) capable of both active and passive imaging. The passive imaging mode exceeds the nighttime performance of currently fielded, man-portable sensors. Further, when scene illumination is insufficient for passive imaging, the low dark current of SFPA makes it possible to use continuous wave laser diodes (CWLD) to add an active imaging mode. CWLD have advantages of size, efficiency, and improved eye safety when compared to high peak-power diodes. Because of the improved eye safety, the API provides user-demanded features like video output and extended range gates in the active as well as passive imaging modes. Like any other night vision device, the API depends on natural illumination of the scene for passive operation. Although it has been known for decades that "starlight" illumination is actually from diffuse airglow emissions, the research described in this dissertation provides the first estimates of the global and temporal variation of ground illumination due to airglow. A third related element of the current research establishes the impact of atmospheric aerosols on API performance. We know from day experience that atmospheric scattering of sunlight into the imager line-of-sight can blind the imager and drastically degrade performance. Atmospheric scattering of sunlight is extensively covered in the literature. However, previous literature did not cover the impact of atmospheric scattering when the target is diffusely illuminated by airglow.

Vollmerhausen, Richard H.

311

Measurement and Simulation of the Variation in Proton-Induced Energy Deposition in Large Silicon Diode Arrays  

NASA Technical Reports Server (NTRS)

The proton induced charge deposition in a well characterized silicon P-i-N focal plane array is analyzed with Monte Carlo based simulations. These simulations include all physical processes, together with pile up, to accurately describe the experimental data. Simulation results reveal important high energy events not easily detected through experiment due to low statistics. The effects of each physical mechanism on the device response is shown for a single proton energy as well as a full proton space flux.

Howe, Christina L.; Weller, Robert A.; Reed, Robert A.; Sierawski, Brian D.; Marshall, Paul W.; Marshall, Cheryl J.; Mendenhall, Marcus H.; Schrimpf, Ronald D.

2007-01-01

312

Evaluation of the sensitivity of two 3D diode array dosimetry systems to setup error for quality assurance (QA) of volumetric-modulated arc therapy (VMAT).  

PubMed

The purpose of this study is to evaluate the sensitivities of 3D diode arrays to setup error for patient-specific quality assurance (QA) of volumetric-modulated arc therapy (VMAT). Translational setup errors of ± 1, ± 2, and ± 3 mm in the RL, SI, and AP directions and rotational setup errors of ± 1° and ± 2° in the pitch, roll, and yaw directions were set up in two phantom systems, ArcCHECK and Delta4, with VMAT plans for 11 patients. Cone-beam computed tomography (CBCT) followed by automatic correction using a HexaPOD 6D treatment couch ensured the position accuracy. Dose distributions of the two phantoms were compared in order to evaluate the agreement between calculated and measured values by using ? analysis with 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria. To determine the impact on setup error for VMAT QA, we evaluated the sensitivity of results acquired by both 3D diode array systems to setup errors in translation and rotation. For the VMAT QA of all patients, the pass rate with the 3%/3 mm criteria exceeded 95% using either phantom. For setup errors of 3 mm and 2°, respectively, the pass rates with the 3%/3mm criteria decreased by a maximum of 14.0% and 23.5% using ArcCHECK, and 14.4% and 5.0% using Delta4. Both systems are sensitive to setup error, and do not have mechanisms to account for setup errors in the software. The sensitivity of both VMAT QA systems was strongly dependent on the patient-specific plan. The sensitivity of ArcCHECK to the rotational error was higher than that of Delta4. In order to achieve less than 3% mean pass rate reduction of VMAT plan QA with the 3%/3 mm criteria, a setup accuracy of 2 mm/1° and 2 mm/2° is required for ArcCheck and Delta4 devices, respectively. The cumulative effect of the combined 2 mm translational and 1° rotational errors caused 3.8% and 2.4% mean pass rates reduction with 3%/3 mm criteria, respectively, for ArcCHECK and Delta4 systems. For QA of VMAT plans for nasopharyngeal cancer (NPC) using the ArcCHECK system, the setup should be more accurate. PMID:24036856

Li, Guangjun; Bai, Sen; Chen, Nianyong; Henderson, Lansdale; Wu, Kui; Xiao, Jianghong; Zhang, Yingjie; Jiang, Qingfeng; Jiang, Xiaoqin

2013-01-01

313

The wavelength beam-combining fiber-coupled diode laser is the first  

E-print Network

The wavelength beam-combining fiber-coupled diode laser is the first direct-diode laser that is bright enough to cut and weld metal. Although diode lasers are the highest efficiency lasers, until of fiber-coupled diode lasers is the diode-laser bar. A diode- laser bar typically consists of an array (e

314

Degradation of the Adhesive Properties of MD-944 Diode Tape by Simulated Low Earth Orbit Environmental Factors  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) solar arrays utilize MD-944 diode tape with silicone pressure-sensitive adhesive to protect the underlying diodes and also provide a high-emittance surface. On-orbit, the silicone adhesive will be exposed and ultimately convert to a glass-like silicate due to atomic oxygen (AO). The current operational plan is to retract ISS solar array P6 and leave it stored under load for a long duration (6 mo or more). The exposed silicone adhesive must not cause the solar array to stick to itself or cause the solar array to fail during redeployment. The Environmental Effects Branch at Marshall Space Flight Center, under direction from the ISS Program Office Environments Team, performed simulated space environment exposures with 5-eV AO, near ultraviolet radiation and ionizing radiation. The exposed diode tape samples were put under preload and then the resulting blocking force was measured using a tensile test machine. Test results indicate that high-energy AO, ultraviolet radiation, and electron ionizing radiation exposure all reduce the blocking force for a silicone-to-silicone bond. AO exposure produces the most significant reduction in blocking force

Albyn, K.; Finckenor, M.

2006-01-01

315

A novel automated hydrophilic interaction liquid chromatography method using diode-array detector/electrospray ionization tandem mass spectrometry for analysis of sodium risedronate and related degradation products in pharmaceuticals.  

PubMed

A simple, sensitive and fast hydrophilic interaction liquid chromatography (HILIC) method using ultraviolet diode-array detector (UV-DAD)/electrospray ionization tandem mass spectrometry was developed for the automated high performance liquid chromatography (HPLC) determination of sodium risedronate (SR) and its degradation products in new pharmaceuticals. The chromatographic separations were performed on Ascentis Express HILIC 2.7?m (150mm×2.1mm, i.d.) stainless steel column (fused core). The mobile phase consisted of formate buffer solution (pH 3.4; 0.03M)/acetonitrile 42:58 and 45:55 (v/v) for granules for oral solution and effervescent tablet analysis, respectively, at a flow-rate of 0.2mL/min, setting the wavelength at 262nm. Stability characteristics of SR were evaluated by performing stress test studies. The main degradation product formed under oxidation conditions corresponding to sodium hydrogen (1-hydroxy-2-(1-oxidopyridin-3-yl)-1-phosphonoethyl)phosphonate was characterized by high performance liquid chromatography-electrospray ionization-mass tandem mass spectrometry (HPLC-ESI-MS/MS). The validation parameters such as linearity, sensitivity, accuracy, precision and selectivity were found to be highly satisfactory. Linear responses were observed in standard and in fortified placebo solutions. Intra-day precision (relative standard deviation, RSD) was ?1.1% for peak area and ?0.2% for retention times (tR) without significant differences between intra- and inter-day data. Recovery studies showed good results for all the examined compounds (from 98.7 to 101.0%) with RSD ranging from 0.6 to 0.7%. The limits of detection (LOD) and quantitation (LOQ) were 1 and 3ng/mL, respectively. The high stability of standard and sample solutions at room temperature means an undoubted advantage of the method allowing the simultaneous preparation of many samples and consecutive chromatographic analyses by using an autosampler. The developed stability indicating method is suitable for the quality control of SR in new and commercial pharmaceutical formulations. PMID:25242223

Bertolini, Tiziana; Vicentini, Lorenza; Boschetti, Silvia; Andreatta, Paolo; Gatti, Rita

2014-10-24

316

Laser diode edge sensors for adaptive optics segmented arrays. Part 1: External cavity coupling and detector current  

SciTech Connect

An analytical study of laser diode (LD) operation coupled to external cavity scattering elements, which function as a variably coupling reflectors (VCRs), is carried out with the purpose of determining the interrelationship between cavity coupling and intracavity optical intensity which determine the current generated at the rear facet PIN detector. If the external cavity coupling is position sensitive it can allow the relative position between the LD and the external cavity to be determined from the PIN or other detector mounted with the LD. If the LD and external cavity element are placed on opposite edges of two adjacent adaptive optics segments they can provide the basis for a self aligning position sensor; the amount of current detected at the PIN or other detector will depend on the relative displacement between the LD and external coupling element. Schematics of the edge sensors, the basic electronic configuration, and the optics of the external cavity are given. The ratio of the internal cavity intensity, I{sub c}, to the saturation intensity, I{sub s}, is plotted as a function of the external cavity coupling. When this ratio approaches one, large signal output is not a linear function of large-signal output. For operation well below saturation, the PIN detector current is directly related to I{sub c} and may serve as a reliable detector.

Remo, J.L. [Quantametrics Inc., St. James, NY (United States)

1994-12-31

317

Simultaneous determination of in total 17 opium alkaloids and opioids in blood and urine by fast liquid chromatography–diode-array detection–fluorescence detection, after solid-phase extraction  

Microsoft Academic Search

A fast liquid chromatographic method with tandem diode array–fluorescence detection for the simultaneous determination of in total 17 opium alkaloids and opioids is presented. Blank blood and urine samples (1 ml) were spiked with different concentrations of a standard mixture, as well as with the internal standard, butorphanol (2000 ng\\/ml). After solid-phase extraction, based on weak cation exchange (Bond Elut®

R Dams; T Benijts; W. E Lambert; A. P De Leenheer

2002-01-01

318

Comparison of an adaptive resonance theory based neural network (ART2a) against other classifiers for rapid sorting of post consumer plastics by remote near-infrared spectroscopic sensing using an InGaAs diode array  

Microsoft Academic Search

An Adaptive Resonance Theory Based Artificial Neural Network (ART-2a) has been compared with Multilayer Feedforward Backpropagation of Error Neural Networks (MLF-BP) and with the SIMCA classifier. All three classifiers were applied to achieve rapid sorting of post-consumer plastics by remote near-infrared (NIR) spectroscopy. A new semiconductor diode array detector based on InGaAs technology has been experimentally tested for measuring the

D. Wienke; W. van den Broek; W. Melssen; L. Buydens; R. Feldhoff; T. Kantimm; T. Huth-Fehre; L. Quick; F. Winter; K. Cammann

1995-01-01

319

Development of a semi-automated high-performance liquid chromatographic-diode array detection system for screening pesticides at trace levels in aquatic systems of the Axios River basin  

Microsoft Academic Search

A semi-automated HPLC-diode array detection (HPLC-DAD) system associated with an on-line sample enrichment device was developed for the analysis of a wide range of pesticides in water samples of the Axios River basin. The system was optimised with respect to the analytical column, the on-line trace enrichment device, the mobile-phase composition and gradient duration, the sample volume and pH, and

E. Papadopoulou-Mourkidou; J. Patsias

1996-01-01

320

Qualitative and quantitative analysis of an alkaloid fraction from Piper longum L. using ultra-high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry.  

PubMed

In a previous research, an alkaloid fraction and 18 alkaloid compounds were prepared from Piper longum L. by series of purification process. In this paper, a qualitative and quantitative analysis method using ultra-high performance liquid chromatography-diode array detector-mass spectrometry (UHPLC-DAD-MS) was developed to evaluate the alkaloid fraction. Qualitative analysis of the alkaloid fraction was firstly completed by UHPLC-DAD method and 18 amide alkaloid compounds were identified. A further qualitative analysis of the alkaloid fraction was accomplished by UHPLC-MS/MS method. Another 25 amide alkaloids were identified according to their characteristic ions and neutral losses. At last, a quantitative method for the alkaloid fraction was established using four marker compounds including piperine, pipernonatine, guineensine and N-isobutyl-2E,4E-octadecadienamide. After the validation of this method, the contents of above four marker compounds in the alkaloid fraction were 57.5mg/g, 65.6mg/g, 17.7mg/g and 23.9mg/g, respectively. Moreover, the relative response factors of other three compounds to piperine were calculated. A comparative study between external standard quantification and relative response factor quantification proved no remarkable difference. UHPLC-DAD-MS method was demonstrated to be a powerful tool for the characterization of the alkaloid fraction from P. longum L. and the result proved that the quality of alkaloid fraction was efficiently improved after appropriate purification. PMID:25746504

Li, Kuiyong; Fan, Yunpeng; Wang, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

2015-05-10

321

White light emission from heterojunction diodes based on surface-oxidized porous Si nanowire arrays and amorphous In-Ga-Zn-O capping.  

PubMed

A novel heterojunction white light emitting diode (LED) structure based on an array of vertically aligned surface-passivated p-type porous Si nanowires (PSiNWs) with n-type amorphous In-Ga-Zn-O (a-IGZO) capping is introduced. PSiNWs were initially synthesized by electroless etching of p-type Si (100) wafers assisted by Ag nanoparticle catalysts and then surface-passivated by thermal oxidation. The nanowires synthesized by metal-assisted electroless etching were found to have longitudinally varying nanoporous morphologies due to differences in the duration of exposure to etching environment. These PSiNWs were optically active with orange red photoluminescence consisting of dark red to yellow emissions attributable to quantum confinement effects and to modified band structures. The LED structures emitted visible white light while exhibiting rectifying current-voltage characteristics. The white light emission was found to be the result of the combination of dark red to yellow emissions originating from the quantum confinement effect within the PSiNWs and green to blue emissions due to the oxygen-deficiency-related recombination centers introduced during the surface oxidation. PMID:24556906

Moon, Kyeong-Ju; Lee, Tae Il; Lee, Woong; Myoung, Jae-Min

2014-04-01

322

Laser-induced breakdown spectra in the infrared region from 750 to 2000 nm using a cooled InGaAs diode array detector.  

PubMed

Emissions from a laser-induced breakdown spectroscopy (LIBS) plasma were examined in the region from 750 nm to 2000 nm. A Nd:YAG laser at 532 nm and 75 mJ per pulse were used to initiate the plasma. The detector was an InGaAs 1024 element diode array cooled to -100 degrees C. An f/4 spectrometer with gratings blazed for this region was used as the dispersive element. Survey spectra of soils, uranium, and other selected samples were taken in air and in a flow cell purged with argon at a local pressure of 0.84 x 10(5) Pa. Strong infrared lines of neutral aluminum, carbon, potassium, silicon, sulfur, and uranium, as well as once ionized lines of calcium, were observed out to 1670 nm. For potassium, the detection limits of the infrared (IR) system were compared with those obtained from a standard intensified charge-coupled device (ICCD) spectrometer arrangement, using the 766-770 nm doublet. Detection limits with the IR system were twice as high as those obtained from the ICCD detector. PMID:18028691

Radziemski, Leon J; Cremers, David A; Bostian, Melissa; Chinni, Rosemarie C; Navarro-Northrup, Claudia

2007-11-01

323

Determination of phenol compounds in surface water matrices by bar adsorptive microextraction-high performance liquid chromatography-diode array detection.  

PubMed

Bar adsorptive microextraction combined with liquid desorption followed by high performance liquid chromatography with diode array detection (BAµE-LD/HPLC-DAD) is proposed for the determination of trace levels of five phenol compounds (3-nitrophenol, 4-nitrophenol, bisphenol-A, 4-n-octylphenol and 4-n-nonylphenol) in surface water matrices. By using a polystyrene-divinylbenzene copolymer (PS-DVB) sorbent phase, high selectivity and efficiency is achieved even against polydimethylsiloxane through stir bar sorptive extraction. Assays performed by BAµE(PS-DVB)-LD/HPLC-DAD on 25 mL water samples spiked at the 10.0 µg/L levels yielded recoveries over 88.0%±5.7% for all five analytes, under optimized experimental conditions. The analytical performance showed good precision (RSD<15%), detection limits of 0.25 µg/L and linear dynamic ranges (1.0-25.0 ?g/L) with determination coefficient higher than 0.9904. By using the standard addition method, the application of the present method to surface water matrices allowed very good performances at the trace level. The proposed methodology proved to be a suitable alternative to monitor phenol compounds in surface water matrices, showing to be easy to implement, reliable, sensitive and requiring a low sample volume. PMID:24995922

Neng, Nuno R; Nogueira, José M F

2014-01-01

324

Determination of chloroacetanilide herbicide metabolites in water using high-performance liquid chromatography-diode array detection and high-performance liquid chromatography/mass spectrometry  

USGS Publications Warehouse

Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: alachlor ethanesulfonic acid (ESA); alachlor oxanilic acid; acetochlor ESA; acetochlor oxanilic acid; metolachlor ESA; and metolachlor oxanilic acid. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The average HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.5 and 2.0 ??g/l ranged from 84 to 112%, with relative standard deviations of 18% or less. The average HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.2 and 2.0 ??g/l ranged from 81 to 118%, with relative standard deviations of 20% or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 ??g/l, whereas the LOQ using the HPLC/MS method was at 0.05 ??g/l. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water. Copyright (C) 2000 Elsevier Science B.V.

Hostetler, K.A.; Thurman, E.M.

2000-01-01

325

Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.  

PubMed

We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy. PMID:23952783

Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

2013-09-24

326

Analysis of alkylamides in Echinacea plant materials and dietary supplements by ultrafast liquid chromatography with diode array and mass spectrometric detection.  

PubMed

Alkylamides are a class of compounds present in plants of the genus Echinacea (Asteraceae), which have been shown to have high bioavailability and immunomodulatory effects. Fast analysis to identify these components in a variety of products is essential to profile products used in clinical trials and for quality control of these products. A method based on ultrafast liquid chromatography (UFLC) coupled with diode array detection and electrospray ionization mass spectrometry was developed for the analysis of alkylamides from the roots of Echinacea angustifolia (DC.) Hell., Echinacea purpurea (L.) Moench, and commercial dietary supplements. A total of 24 alkylamides were identified by LC-MS. The analysis time for these components is 15 min. Compared to the alkylamide profiles determined in the Echinacea root materials, the commercial products showed a more complex profile due to the blending of root and aerial parts of E. purpurea. This versatile method allows for the identification of alkylamides in a variety of Echinacea products and presents the most extensive characterization of alkylamides in E. angustifolia roots so far. PMID:21702479

Mudge, Elizabeth; Lopes-Lutz, Daise; Brown, Paula; Schieber, Andreas

2011-08-10

327

Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants.  

PubMed

Dispersive liquid-liquid microextraction (DLLME) and high performance liquid chromatography-diode array detection (HPLC-DAD) was presented for extraction and determination of Irganox 1010, Irganox 1076 and Irgafos 168 (antioxidants) in aqueous samples. Carbon tetrachloride at microliter volume level and acetonitrile were used as extraction and dispersive solvents, respectively. The main advantages of method are high speed, high enrichment factor, high recovery, good repeatability and extraction solvent volume at microL level. Limit of detection for analytes is between 3 and 7 ng mL(-1). One variable at a time optimization and response surface modeling were used to obtain optimum conditions for microextraction procedure and nearly same experimental conditions were obtained using both optimization methods. Recoveries in the ranges 78-86% and 84-110% were obtained by one variable at a time and response surface modeling, respectively. Using tap water and packed water as matrices do not show any detrimental effect on the extraction recoveries and enrichment factors of analytes. PMID:17456426

Farajzadeh, Mir Ali; Bahram, Morteza; Jönsson, Jan Ake

2007-05-15

328

Direct quantitative determination of amlodipine enantiomers in urine samples for pharmacokinetic study using on-line coupled isotachophoresis-capillary zone electrophoresis separation method with diode array detection.  

PubMed

The present work illustrates possibilities of column-coupling capillary electrophoresis (CE-CE) combined with chiral selector (2-hydroxypropyl-beta-cyclodextrin, HP-beta-CD) and fiber-based diode array detection (DAD) for the direct quantitative enantioselective determination of trace drug (amlodipine, AML) in biological multicomponent ionic matrices (human urine). Capillary isotachophoresis (ITP) served as an ideal injection technique in CE-CE. Moreover, the ITP provided an effective on-line sample pretreatment prior to the capillary zone electrophoresis (CZE) separation. Enhanced separation selectivity due to the combination of different separation mechanisms (ITP vs. CZE-HP-beta-CD) enabled to obtain pure zones of the analytes, suitable for their detection and quantitation. The DAD, unlike single wavelength UV detection, enabled to characterize the purity (i.e. spectral homogeneity) of the analytes zones. A processing of the raw DAD spectra (the background correction and smoothing procedure) was essential when a trace analyte signal was evaluated. Obtained results indicated pure (i.e. spectrally homogeneous) zones of interest confirming effective ITP-CZE separation process. The proposed ITP-CZE-DAD method was characterized by favorable performance parameters (sensitivity, linearity, precision, recovery, accuracy, robustness, selectivity) and successfully applied to an enantioselective pharmacokinetic study of AML. PMID:18599368

Miks, Peter; Maráková, Katarína; Marák, Jozef; Nemec, Igor; Valásková, Iva a; Havránek, Emil

2008-11-01

329

Possibilities of column coupling electrophoresis provided with a fiber-based diode array detection in enantioselective analysis of drugs in pharmaceutical and clinical samples.  

PubMed

The present work illustrated possibilities of column coupling electrophoresis combined with ionizable chiral selector and diode array detection (DAD) for the enantioselective analysis of trace drugs (pheniramine and its analogs) in pharmaceutical and clinical samples. Isotachophoresis (ITP), on-line coupled with capillary zone electrophoresis (CZE), served as an ideal injection technique (high sample load capacity, narrow and sharp drugs zones) of on-line pretreated samples (preseparation, purification and preconcentration of drugs) for the CZE stage. Enhanced (enantio)separation selectivity of CZE with ionizable chiral selector (carboxyethyl-beta-cyclodextrin recognized between drugs enantiomers on one hand as well as between drugs and sample matrix constituents on the other hand) enabled to obtain pure zones of the drugs enantiomers, suitable for their detection and quantitation. DAD in comparison with single wavelength UV detection enhanced value of analytical information verifying purity of drugs enantiomers zones (indicating interferents with different spectra to those of drugs). Obtained results indicated pure zones of interest confirming effective ITP-CZE (enantio)separation process. Distinguishing the trace analytes signals superposed on the baseline noise was provided with sufficient reliability (for this purpose the background correction and smoothing procedure had to be applied to the raw DAD spectra). The proposed ITP-CZE-DAD methods were characterized by favorable performance parameters (sensitivity, linearity, precision, recovery, accuracy, robustness, selectivity) and successfully applied for (i) enantiomeric purity testing of dexbrompheniramine in commercial pharmaceutical tablets and (ii) enantioselective metabolic study of pheniramine in human urine. PMID:17905259

Mikus, Peter; Maráková, Katarína; Marák, Jozef; Kaniansky, Dusan; Valásková, Iva; Havránek, Emil

2008-01-25

330

Development of a method for the analysis of drugs of abuse in vitreous humor by capillary electrophoresis with diode array detection (CE-DAD).  

PubMed

This work presents the development of an analytical method based on capillary electrophoresis with diode array detection for the analysis of drugs of abuse and biotransformation products in vitreous humor. Composition of the background electrolyte, implementation of an online pre-concentration strategy and sample preparation procedures were objects of study. The complete electrophoretic separation of 12 analytes (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyethylamphetamine (MDEA), ketamine, cocaine, cocaethylene, lidocaine, morphine, 6-monoacetylmorphine and heroin) and the internal standard N-methyl-1-(3,4-methylenedioxyphenyl)-2-butamine (MBDB) was obtained within 13min of run. The method was validated presenting good linearity (r(2)>0.99), recovery ?90%, precision better than 12% RSD and acceptable accuracy in the range of 86-118% at three concentration levels (50, 100 and 500ng/mL). LODs and LOQs in the order of 1-5ng/mL and 5-10ng/mL, respectively, were obtained. After validation, the method was applied to eighty-seven vitreous humor samples and the results were compared to those obtained by a liquid chromatography tandem mass spectrometry (LC-MS/MS) screening method, routinely used by the forensic toxicology laboratory of the Sao Paulo State Police, Brazil. Cocaine was detected in 7.1%, cocaethylene in 3.6%, lidocaine in 2.4% and ketamine in 1.2% of the total number of analyzed samples. PMID:24325829

Costa, Jose Luiz; Morrone, Andre Ribeiro; Resende, Rodrigo Ribeiro; Chasin, Alice Aparecida da Matta; Tavares, Marina Franco Maggi

2014-01-15

331

Selective microextraction of mononucleotides from milk using alumina and stannia hollow fibers prior to their determination by hydrophilic interaction liquid chromatography-diode array detection.  

PubMed

Alumina- and stannia-based hollow fibers were synthesized via simple sol-gel procedures and characterized with respect to morphology, crystalline phase and specific surface area. Then, an optimization study was undertaken for the preconcentration of five 5'-mononucleotides using the hollow fibers. The separation and quantification of the analytes were carried out by HILIC with diode array detection, after proper optimization of the chromatographic conditions. The method demonstrated satisfactory linearities over a concentration range of 0.09-50?gmL(-1) with regression coefficients to range from 0.9993 to 0.9997. A range of commercially available 5'-mononucleotide supplemented infant formulas and three human breast milk samples were used to apply alumina hollow fibers, as a proof of concept. Recoveries ranged from 84% to 104%, while the calculated RSDs were from 3.6% to 4.3%. The proposed preconcentration-clean-up method is environmentally friendly and convenient, indicating that alumina and stannia are suitable for the applications by immersing them into milk samples, after removal of proteins. PMID:25872443

Sfakianaki, A G; Stalikas, C D

2015-10-01

332

Simultaneous determination of ten bioactive compaounds from the roots of Cynanchum paniculatum by using high performance liquid chromatography coupled-diode array detector  

PubMed Central

Background: Cynanchum paniculatum Kitagawa belongs to Asclepiadaceae and was used in traditional medicine to invigorate blood, alleviate edema, relieve pain, and relieve toxicity for a long time. Objective: A novel and reliable high performance liquid chromatography coupled with diode array detector method has been established for simultaneous determination of 10 bioactive compounds isolated from Cynanchum paniculatum Kitagawa, one of the herbal medicines. Materials and Methods: The chromatography analysis was performed on a SHISEIDO C18 column (S-5 ?m, 4.6 mm I.D. × 250 mm) at 35°C with a gradient elution of acetonitrile and water at a flow rate of 1ml/min and UV detection at 210, 230, and 280 nm. Results: The method was validated for linearity, precision, and accuracy. All calibration curves showed good linear regression (r2 > 0.9996). Limits of detection (LOD) and limits of quantification (LOQ) fell in the ranges 0.01 - 0.28 ?g/ml and 0.04 - 0.83 ?g/ml, respectively. The relative standard deviation (RSD) of the intra- and inter- day test, precision test were within 1.92% and 2.43%, respectively. The mean recovery of all ranged from 92.82 to 107.96% with RSD values 0.12 - 2.18%. Conclusion: The results of validation appeared that this established method was very accurate and stabilized for the quantification of 10 bioactive compounds isolated from C. paniculatum. PMID:23060698

Weon, Jin Bae; Lee, Bohyoung; Yun, Bo-Ra; Lee, Jiwoo; Ma, Choong Je

2012-01-01

333

Identification and analysis of the constituents in an aqueous extract of Tricholoma matsutake by HPLC coupled with diode array detection/electrospray ionization mass spectrometry.  

PubMed

The main constituents in an aqueous extract of Tricholoma matsutake (Tm) were identified by high-performance liquid chromatography coupled with diode array detection and electrospray ionization time-of-flight mass spectrometry (HPLC-DAD/TOF-MS) and ion trap mass spectrometry (HPLC-DAD/Trap-MSn). The main factors in the extraction process which affect the yields of nutrients were optimized by single-factor experiments and orthogonal experiment design. In total, 12 constituents were identified from the aqueous extract of Tm, including tyrosine, cytidine, uridine, eritadenine, phenylalanine, nicotinamide, inosine, guanosine, tryptophan, adenosine, 5'-deoxy-5'-methylthioadenosine and riboflavin. The optimized extraction conditions were: the ratio of water to sample was 10 : 1 (v/w), Tm was extracted by ultrasonic-assisted extraction for 10 min, followed by water bath heating at 60 °C for 1 h. Among these extraction factors, the heating temperature is significant based on analysis of variance (ANOVA). The yields of nutrients were affected dramatically at high temperature leading to the loss of nutrients, especially for nucleosides and some amino acids. PMID:23957403

Ying, Xuhui; Ma, Jinfang; Liang, Qionglin; Wang, Yiming; Bai, Gang; Luo, Guoan

2013-08-01

334

High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties.  

PubMed

Quantitative analysis of phenolic compounds from four apple varieties (Golden and Red Delicious, Granny Smith and Green Reineta) using high-performance liquid chromatography with diode-array detection was carried out. For each variety, both peel and pulp were analysed. The identification of phenolic compounds was made by comparing their retention times and UV spectra with those of standards. The results revealed differences between pulp and peel in all cases studied. The highest levels of phenolic compounds were found in the peel. High levels of catechins and flavonol glycosides, especially rutin, were found in apple peels. Chlorogenic acid was the major peak in the pulp for all apple varieties studied except for Granny Smith. Significant quantitative differences between the apple varieties were also found, the Golden Delicious variety showing the lowest content of phenolic compounds and Green Reineta variety the highest. The recovery of phenolic compounds from both peel and pulp was measured in all apple varieties. The values ranged between 95 and 105%, indicating close to quantitative recovery for the method used. PMID:9818410

Escarpa, A; González, M C

1998-10-01

335

Dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection for the determination of N-methyl carbamate pesticides in vegetables.  

PubMed

This paper described a simple, rapid and efficient method for the determination of N-methyl carbamate pesticides in tomato, cucumber, carrot and lettuce samples by dispersive liquid-liquid microextraction coupled with HPLC-diode array detection. Some experimental parameters that influenced the extraction efficiency, such as types and volumes of extraction and disperser solvents, extraction time and salt effect were examined and optimized. Under optimum conditions, the LOD of the method were 0.5-3.0 ?g/kg depending on the compounds and the kind of vegetables. The linearities of the method were obtained in the range of 10.0-300 ?g/kg for aldicarb, MTMC, carbofuran and carbaryl, and 20.0-600 ?g/kg for isoprocarb, with the correlation coefficients ranging from 0.9921 to 0.9993. The RSD varied from 2.9 to 7.5% (n=5). The recoveries of the method for the five carbamates from vegetable samples at two different spiking levels were ranged from 77.8 to 98.2%. Results showed that the method we proposed can meet the requirements for the determination of N-methyl carbamate in vegetable samples and was finally applied to the analysis of target pesticides in vegetable samples taken from local markets. PMID:21246726

Lin, Xiangyun; Chen, Xiaohui; Huo, Xin; Yu, Zhiguo; Bi, Kaishun; Li, Qing

2011-01-01

336

Chemical analysis of raw and processed Fructus arctii by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry  

PubMed Central

Background: In traditional Chinese medicine (TCM), raw and processed herbs are used to treat the different diseases. Fructus Arctii, the dried fruits of Arctium lappa l. (Compositae), is widely used in the TCM. Stir-frying is the most common processing method, which might modify the chemical compositions in Fructus Arctii. Materials and Methods: To test this hypothesis, we focused on analysis and identification of the main chemical constituents in raw and processed Fructus Arctii (PFA) by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry. Results: The results indicated that there was less arctiin in stir-fried materials than in raw materials. however, there were higher levels of arctigenin in stir-fried materials than in raw materials. Conclusion: We suggest that arctiin reduced significantly following the thermal conversion of arctiin to arctigenin. In conclusion, this finding may shed some light on understanding the differences in the therapeutic values of raw versus PFA in TCM. PMID:25422559

Qin, Kunming; Liu, Qidi; Cai, Hao; Cao, Gang; Lu, Tulin; Shen, Baojia; Shu, Yachun; Cai, Baochang

2014-01-01

337

Simultaneous determination of 10 components in traditional Chinese medicine Dachaihu Granule by reversed-phase-high-performance liquid chromatographic-diode array detector  

PubMed Central

Background: Dachaihu Granule, commonly used for treating cholecystitis, is derived from a famous traditional Chinese formula named Dachaihu Decoction. No analytical method has been reported for simultaneous determination of 10 bioactive compounds for quality control in Dachaihu Granule so far. Objective: To develop a high-performance liquid chromatographic (HPLC) method with diode array detector (DAD) for simultaneous determination of 10 bioactive compounds (paeoniflorin, aloe-emodin, rhein, emodin, chrysophanol, physcion, naringin, hesperidin, neohesperidin, and baicalin) in traditional Chinese medicine Dachaihu Granule. Materials and Methods The samples were separated on a Kromasil C18 (250 × 4.6 mm,i.d. with 5.0 ?m particle size)column with multi-wavelength detection method by a gradient elution using acetonitrile (A) and 0.2% acetic acid (B) as the mobile phase. The column temperature was maintained at 30°C and the detection wavelength was set at 230 nm for paeoniflorin, 254 nm for aloe-emodin, rhein, emodin, chrysophanol, and physcion, 280 nm for naringin, hesperidin, neohesperidin, and baicalin. Results: The developed method provided satisfactory precision and the accuracy of this method was in the range from 94.0% to 103.1%, all of the 10 compounds showed good linearity (r > 0.999) in a detected concentration range. Conclusion: The validated method was successfully applied to the simultaneously of these active components in Dachaihu Granule from different production batches. PMID:23661991

Hu, Yingfei; Lu, Tulin; Mao, Chunqin; Wu, Hao; Zhang, Xing; Wang, JV; Gu, Juanjuan

2013-01-01

338

Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid-liquid microextraction by high performance liquid chromatography-diode array-fluorescence detection.  

PubMed

A rapid, sensitive and efficient analytical method based on the use of ionic liquids for determination of non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed. High-performance liquid chromatography equipped with a diode array and fluorescence detector was used for quantification of ketoprofen, ibuprofen and diclofenac in tap and river water samples. This new method relies on the use of two ionic liquids with multiple functionalities: one functions as an extraction solvent (1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), and the other changes the polarity in the aqueous medium (1-butyl-3-methylimidazolium tetrafluoroborate, ([BMIM][BF4]). Factors such as the type and volume of the ILs and dispersive solvent, sample volume, and centrifugation time were investigated and optimized. The optimized method exhibited good precision, with relative standard deviation values between 2% and 3%, for the three NSAIDs. Limits of detection achieved for all of the analytes were between 17 and 95ngmL(-1), and the recoveries ranged from 89% to 103%. Furthermore, the enrichment factors ranged from 49 to 57. The proposed method was successfully applied to the analysis of NSAIDs in tap and river water samples. PMID:25618715

Toledo-Neira, Carla; Álvarez-Lueje, Alejandro

2015-03-01

339

Quantitative analysis of the eight major compounds in the Samsoeum using a high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometer  

PubMed Central

Background: Samsoeum was traditionally used for treatment of a respiratory disease. Objective: The simultaneous determination of eight major compounds, ginsenoside Rg3, caffeic acid, puerarin, costunolide, hesperidin, naringin, glycyrrhizin, and 6-gingerol in the Samsoeum using a high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD) and an electrospray ionization mass spectrometer was developed for an accurate and reliable quality assessment. Materials and Methods: Eight compounds were qualitative identified based on their mass spectra and by comparing with standard compounds and quantitative analyzed by HPLC-DAD. Separation of eight compounds was carried out on a LUNA C18 column (S-5 ?m, 4.6 mm i.d. ×250 mm) with gradient elution composed of acetonitrile and 0.1% trifluoroacetic acid. Results: The data showed good linearity (R2 > 0.9996). The limits of detection and the limits of quantification were <0.53 ?g and 1.62 ?g, respectively. Inter- and Intra-day precisions (expressed as relative standard deviation values) were within 1.94% and 1.91%, respectively. The recovery of the method was in the range of 94.24–107.90%. Conclusion: The established method is effective and could be applied to quality control of Samsoeum.

Weon, Jin Bae; Yang, Hye Jin; Lee, Bohyoung; Ma, Jin Yeul; Ma, Choong Je

2015-01-01

340

Evaluation of Drying Process on the Composition of Black Pepper Ethanolic Extract by High Performance Liquid Chromatography With Diode Array Detector  

PubMed Central

Background Black pepper (Piper nigrum) is one of the well-known spices extensively used worldwide especially in India, and Southeast Asia. The presence of alkaloids in the pepper, namely, piperine and its three stereoisomers, isopiperine, chavicine and isochavicine are well noticed. Objectives The current study evaluated the effect of lyophilization and oven drying on the stability and decomposition of constituents of black pepper ethanolic extract. Materials and Methods In the current study ethanolic extract of black pepper obtained by maceration method was dried using two methods. The effect of freeze and oven drying on the chemical composition of the extract especially piperine and its three isomers were evaluated by HPLC analysis of the ethanolic extract before and after drying processes using diode array detector. The UV Vis spectra of the peaks at piperine retention time before and after each drying methods indicated maximum absorbance at 341.2 nm corresponding to standard piperine. Results The results indicated a decrease in intensity of the chromatogram peaks at approximately all retention times after freeze drying, indicating a few percent loss of piperine and its isomers upon lyophilization. Two impurity peaks were completely removed from the extract. Conclusions In oven dried samples two of the piperine stereoisomers were completely removed from the extract and the intensity of piperine peak was increased. PMID:24624176

Namjoyan, Foroogh; Hejazi, Hoda; Ramezani, Zahra

2012-01-01

341

Ultrasound-assisted extraction of phenolic compounds from strawberries prior to liquid chromatographic separation and photodiode array ultraviolet detection.  

PubMed

Ultrasound-assisted extraction was used for the determination of phenolic compounds present in strawberries. The optimization study of the extraction was carried out using spiked samples (100 mg/kg). The sample immersed in an aqueous solution containing hydrochloric acid (0.4 M) was sonicated for 2 min (duty cycle 0.2 s, output amplitude 20% of the nominal amplitude of the converter, applied power 100 W with the probe placed 1cm from the bottom of the water bath and 5 cm from the walls of the precipitate glass). Subsequent separation was carried out by liquid chromatography (LC) with photodiode array UV detection. Calibration curves using the standard addition in green strawberries typically gave linear dynamic ranges of 2-300 mg/l for all analytes; R(2) values exceeded 0.996 in all cases. The method was applied to two types of strawberries to demonstrate the applicability of the proposed method, which is much faster and produces less analyte degradation than methods as solid-liquid, subcritical water and microwave-assisted extraction. PMID:16203008

Herrera, M C; de Castro, M D Luque

2005-12-23

342

Ultraviolet light stable and transparent sol-gel methyl siloxane hybrid material for UV light-emitting diode (UV LED) encapsulant.  

PubMed

An ultraviolet (UV) transparent and stable methyl-siloxane hybrid material was prepared by a facile sol-gel method. The transparency and stability of a UV-LED encapsulant is an important issue because it affects UV light extraction efficiency and long-term reliability. We introduced a novel concept for UV-LED encapsulation using a thermally curable oligosiloxane resin. The encapsulant was fabricated by a hydrosilylation of hydrogen-methyl oligosiloxane resin and vinyl-methyl siloxane resin, and showed a comparable transmittance to polydimethylsiloxane (PDMS) in the UVB (?300 nm) region. Most remarkably, the methyl-siloxane hybrid materials exhibited long-term UV stability under light soaking in UVB (?300 nm) for 1000 h. PMID:25564875

Bae, Jun-Young; Kim, YongHo; Kim, HweaYoon; Kim, YuBae; Jin, Jungho; Bae, Byeong-Soo

2015-01-21

343

Controlling the properties of electrodeposited ZnO nanowire arrays for light emitting diode, photodetector and gas sensor applications  

NASA Astrophysics Data System (ADS)

Electrochemical deposition (ECD) is a versatile technique for the preparation of ZnO nanowires (NWs) and nanorods (NRs) with high structural and optical quality. The bandgap of the ZnO NWs can be engineered by doping. Depending on the doping cation and concentration, the bandgap is increased or decreased in a controlled manner. The NW arrays have been grown on various substrates. The epitaxial growth on single-crystal conducting substrates has been demonstrated. By using p-type GaN layers, heterostructures have been fabricated with a high rectifying electrical behavior. They have been integrated in low-voltage LEDs emitting in the UV or in the visible region depending on the NW composition. For visible-blind UV-photodetector application, ZnO NW ensembles, electrochemically grown on F:SnO2, have been contacted on their top with a transparent graphene sheet. The photodetector had a responsivity larger than 104 A/W at 1V in the near-UV range. ECD ZnO NWs have also been isolated and electrically connected on their both ends by Al contacts. The obtained nanodevice, made of an individual NW, was shown to be a H2 gas sensor with a high selectivity and sensitivity. Moreover, it was shown that Cd-doping of ZnO NWs significantly improved the performance of the sensor.

Pauporté, T.; Lupan, Oleg; Viana, Bruno; Chow, Lee; Tchernycheva, Maria

2014-03-01

344

Near ultraviolet InGaN/AlGaN-based light-emitting diodes with highly reflective tin-doped indium oxide/Al-based reflectors.  

PubMed

The enhanced light output power of a InGaN/AlGaN-based light-emitting diodes (LEDs) using three different types of highly reflective Sn-doped indium oxide (ITO)/Al-based p-type reflectors, namely, ITO/Al, Cu-doped indium oxide (CIO)/s-ITO(sputtered)/Al, and Ag nano-dots(n-Ag)/CIO/s-ITO/Al, is presented. The ITO/Al-based reflectors exhibit lower reflectance (76 - 84% at 365 nm) than Al only reflector (91.1%). However, unlike Al only n-type contact, the ITO/Al-based contacts to p-GaN show good ohmic characteristics. Near-UV (365 nm) InGaN/AlGaN-based LEDs with ITO/Al, CIO/s-ITO/Al, and n-Ag/CIO/s-ITO/Al reflectors exhibit forward-bias voltages of 3.55, 3.48, and 3.34 V at 20 mA, respectively. The LEDs with the ITO/Al and CIO/s-ITO/Al reflectors exhibit 9.5% and 13.5% higher light output power (at 20 mA), respectively, than the LEDs with the n-Ag/CIO/s-ITO/Al reflector. The improved performance of near UV LEDs is attributed to the high reflectance and low contact resistivity of the ITO/Al-based reflectors, which are better than those of conventional Al-based reflectors. PMID:24216898

Choi, Chang-Hoon; Han, Jaecheon; Park, Jae-Seong; Seong, Tae-Yeon

2013-11-01

345

Emissive Liquid-Crystal Display Panels Consisting of Red-Green-Blue Patterned Phosphor Layers and Near-Ultraviolet Light-Emitting-Diode Backlight  

NASA Astrophysics Data System (ADS)

Emissive liquid crystal display (e-LCD) panels consisting of 405 nm near-UV light-emitting-diode (LED) backlight and patterned red-green-blue phosphor layers have been proposed. Improvements in luminous efficiency and lifetime have been systematically attempted. From the results of the accelerated aging test under near-UV irradiation under high temperature and humidity conditions, it has been confirmed that the e-LCD panel has a sufficiently long lifetime for practical use. The light conversion efficiency of the phosphor layer has been significantly improved by using optical filters. Commission Internationale de l'Eclairage (CIE) color coordinates are (0.69, 0.31) for red, (0.27, 0.68) for green and (0.15, 0.04) for blue sub-pixels. The corresponding color gamut is over 100% compared with that of the National Television System Committee. The e-LCD panel also has a considerable wide-viewing-angle property, and its overall luminous efficiency is more than twice higher than those of conventional LCD panels consisting of white-LED and color filters.

Yata, Tatsuya; Miyamoto, Yoshinobu; Ohmi, Koutoku

2012-02-01

346

Determination of chlorophylls in Taraxacum formosanum by high-performance liquid chromatography-diode array detection-mass spectrometry and preparation by column chromatography.  

PubMed

Taraxacum formosanum, a well-known Chinese herb shown to be protective against hepatic cancer as well as liver and lung damage, may be attributed to the presence of abundant carotenoids and chlorophylls. However, the variety and content of chlorophylls remain uncertain. The objectives of this study were to develop an high-performance liquid chromatography-diode array detection-mass spectrometry method for determination of chlorophylls in T. formosanum and preparation by column chromatography. An HyPURITY C18 column and a gradient mobile phase of water (A), methanol (B), acetonitrile (C), and acetone (D) could resolve 10 chlorophylls and an internal standard Fast Green FCF within 30 min with a flow rate at 1 mL/min and detection at 660 nm. Both chlorophylls a and a' were present in the largest amount (1389.6 ?g/g), followed by chlorophylls b and b' (561.2 ?g/g), pheophytins a and a' (31.7 ?g/g), hydroxychlorophyll b (26.5 ?g/g), hydroxychlorophylls a and a' (9.8 ?g/g), and chlorophyllides a and a' (0.35 ?g/g). A glass column containing 52 g of magnesium oxide-diatomaceous earth (1:3, w/w) could elute chlorophylls with 800 mL of acetone containing 50% ethanol at a flow rate of 10 mL/min. Some new chlorophyll derivatives including chlorophyllide b, pyropheophorbide b, hydroxypheophytin a, and hydroxypheophytin a' were generated during column chromatography but accompanied by a 63% loss in total chlorophylls. Thus, the possibility of chlorophyll fraction prepared from T. formosanum as a raw material for future production of functional food needs further investigation. PMID:22656126

Loh, Chin Hoe; Inbaraj, Baskaran Stephen; Liu, Man Hai; Chen, Bing Huei

2012-06-20

347

Development and validation of an high-performance liquid chromatography-diode array detector method for the simultaneous determination of six phenolic compounds in abnormal savda munziq decoction  

PubMed Central

Aims: Given the high-effectiveness and low-toxicity of abnormal savda munziq (ASMQ), its herbal formulation has long been used in traditional Uyghur medicine to treat complex diseases, such as cancer, diabetes, and cardiovascular diseases. Settings and Design: ASMQ decoction by reversed-phase high-performance liquid chromatography coupled with a diode array detector was successfully developed for the simultaneous quality assessment of gallic acid, protocatechuic acid, caffeic acid, rutin, rosmarinic acid, and luteolin. The six phenolic compounds were separated on an Agilent TC-C18 reversed-phase analytical column (4.6 × 250 mm, 5 ?m) by gradient elution using 0.3% aqueous formic acid (v/v) and 0.3% methanol formic acid (v/v) at 1.0 mL/min. Materials and Methods: The plant material was separately ground and mixed at the following ratios (10): Cordia dichotoma (10.6), Anchusa italic (10.6), Euphorbia humifusa (4.9), Adiantum capillus-veneris (4.9), Ziziphus jujube (4.9), Glycyrrhiza uralensis (7.1), Foeniculum vulgare (4.9), Lavandula angustifolia (4.9), Dracocephalum moldavica L. (4.9), and Alhagi pseudoalhagi (42.3). Statistical Analysis Used: The precisions of all six compounds were <0.60%, and the average recoveries ranged from 99.39% to 104.85%. Highly significant linear correlations were found between component concentrations and specific chromatographic peak areas (R2 > 0.999). Results: The proposed method was successfully applied to determine the levels of six active components in ASMQ. Conclusions: Given the simplicity, precision, specificity, and sensitivity of the method, it can be utilized as a quality control approach to simultaneously determining the six phenolic compounds in AMSQ. PMID:25709227

Tian, Shuge; Liu, Wenxian; Liu, Feng; Zhang, Xuejia; Upur, Halmuart

2015-01-01

348

An enhanced multiwavelength ultraviolet biological trigger lidar  

NASA Astrophysics Data System (ADS)

A compact Ultraviolet Biological Trigger Lidar (UBTL) instrument for detection and discrimination of bio-warfare-agent (BWA) simulant aerosol clouds was developed by us [Prasad, et al, 2004] using a 5mW, 375nm semiconductor UV optical source (SUVOS) laser diode. It underwent successful field tests at Dugway Proving Ground and demonstrated measurement ranges of over 300m for elastic scattering and >100m for fluorescence. The UBTL was modified during mid-2004 to enhance its detection and discrimination performance with increased range of operation and sensitivity. The major optical modifications were: 1. increase in telescope collection aperture to 200 mm diameter: 2. addition of 266nm and 977nm laser transmitters: 3. addition of three detection channels for 266nm and 977nm elastic backscatter and fluorescence centered at 330nm. Also the commercial electronics of the original UBTL were replaced with a multi-channel field programmable gate array (FPGA) chip for laser diode modulation and data acquisition that allowed simultaneous and continuous operation of the UBTL sensor on all of its transmitter and receiver wavelengths. A notebook computer was added for data display and storage. Field tests were performed during July 2004 at the Edgewood Chemical and Biological Center in Maryland to establish the enhanced performance of UBTL subsystems. Results of these tests are presented and discussed.

Achey, Alexander; Bufton, Jack; Dawson, Jeffrey; Huang, Wen; Lee, Sangmin; Mehta, Nikhil; Prasad, Coorg R.

2004-12-01

349

Ultraviolet C upconversion fluorescence of trivalent erbium in BaGd2ZnO5 phosphor excited by a visible commercial light-emitting diode.  

PubMed

Multiple ultraviolet (UV) emission bands have been obtained in Er3+ doped BaGd2ZnO5 phosphor under the excitation of a 532 nm solid-state laser, and the emission peaks at 217, 254, 278, 296, 314, 348, 374 and 394 nm were determined to stem from the high-energy states 4D(1/2), 4D(7/2), 2H(9/2), 2P(1/2), 2P(3/2), 4G(7/2), 4G(11/2), 4H(9/2) of trivalent erbium, respectively. Some UV emission bands in the UVC region can be observed when the sample was excited by commercial green (529 nm) and blue (460 nm) LED. In view of the small size, low-drive voltage and price of LED, UVC upconversion phosphor BaGd2ZnO5:Er3+ excited by visible LED has potential application in environmental sciences. PMID:24686659

Yang, Yanmin; Mi, Chao; Su, Xianyuan; Jiao, Fuyun; Liu, Linlin; Zhang, Jiao; Yu, Fang; Li, Xiaodong; Liu, Yanzhou; Mai, Yaohua

2014-04-01

350

Design of a silicon avalanche photodiode pixel with integrated laser diode using back-illuminated crystallographically etched silicon-on-sapphire with monolithically integrated microlens for dual-mode passive and active imaging arrays  

NASA Astrophysics Data System (ADS)

There is a growing need in scientific research applications for dual-mode, passive and active 2D and 3D LADAR imaging methods. To fill this need, an advanced back-illuminated silicon avalanche photodiode (APD) design is presented using a novel silicon-on-sapphire substrate incorporating a crystalline aluminum nitride (AlN) antireflective layer between the silicon and R-plane sapphire. This allows integration of a high quantum efficiency silicon APD with a gallium nitride (GaN) laser diode in each pixel. The pixel design enables single photon sensitive, solid-state focal plane arrays (FPAs) with wide dynamic range, supporting passive and active imaging capability in a single FPA. When (100) silicon is properly etched with TMAH solution, square based pyramidal frustum or mesa arrays result with the four mesa sidewalls of the APD formed by (111) silicon planes that intersect the (100) planes at a crystallographic angle, ? c = 54.7°. The APD device is fabricated in the mesa using conventional silicon processing technology. The GaN laser diode is fabricated by epitaxial growth inside of an inverted, etched cavity in the silicon mesa. Microlenses are fabricated in the thinned, and AR-coated sapphire substrate. The APDs share a common, front-side anode contact, and laser diodes share a common cathode. A low resistance (Al) or (Cu) metal anode grid fills the space between pixels and also inhibits optical crosstalk. SOS-APD arrays are flip-chip bump-bonded to CMOS readout ICs to produce hybrid FPAs. The square 27 ?m emitter-detector pixel achieves SNR > 1 in active detection mode for Lambert surfaces at 1,000 meters.

Stern, Alvin G.

2010-08-01

351

Determination of heterocyclic aromatic amines by capillary high-performance liquid chromatography with diode array detection in ready-to-eat cooked ham treated with electron-beam irradiation  

Microsoft Academic Search

Heterocyclic aromatic amines (HAs) are a group of mutagenic and carcinogenic substances present in significant amounts in\\u000a cooked meat and fish that can potentially be formed during food processing operations. This paper proposes a capillary liquid\\u000a chromatography method with diode array detection for the trace-level determination of three HAs, namely, MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline), norharman (9H-pyrido[3,4-b]indole) and harman (1-methyl-9H-pyrido[3,4-b]indole), in ready-to-eat (RTE)

N. Rosales-Conrado; M. E. León-Gonzáles; L. V. Pérez-Arribas; L. M. Polo-Díez

2008-01-01

352

Nitride deep-ultraviolet light-emitting diodes with microlens array M. Khizar, Z. Y. Fan, K. H. Kim, J. Y. Lin, and H. X. Jianga  

E-print Network

biological and chemical agent detec- tion, high-density data storage, and air-water purification and medical the absorption maxima of the naturally fluorescent amino acids tryptophan and ty- rosine and is widely used materials continues to increase,1­3 the emitted powers and efficiencies of nearly all the devices were

Jiang, Hongxing

353

An improved high performance liquid chromatography-diode array detection-mass spectrometry method for determination of carotenoids and their precursors phytoene and phytofluene in human serum.  

PubMed

An improved high performance liquid chromatography-diode array detection-mass spectrometry method was developed for determination of various carotenoids and their precursors phytoene and phytofluene in human serum. A polymeric C30 column and mobile phase of (A) methanol/acetonitrile/water (84:14:4, v/v/v) and (B) dichloromethane (100%) were employed with the gradient condition of 100% A and 0% B initially, raised to 10% B at 4 min, 18% B at 12 min, 21% B at 17 min, 30% B at 20 min and maintained until 25 min and increased further to 39% B at 28 min, 60% B at 40 min and returned to 100% A and 0% B at 45 min. A total of 30 carotenoids, including 6 all-trans forms, 20 cis-isomers, 2 ?-carotene epoxides, phytoene and phytofluene, were resolved within 45 min at a flow-rate of 1 mL/min, column temperature 25 °C and detection wavelengths 450, 348 and 286 nm. Identification of carotenoids was carried out by comparing retention behavior, absorption and mass spectral data with those of reference standards, isomerized standards and reported values. An internal standard parared was found appropriate for quantitation of all the carotenoids. The developed method provided high sensitivity with low detection and quantitation limits (2-14 and 6-43 ng/mL), high recovery (91-99%), and small intra-day and inter-day variations (0.14-6.01% and 0.31-7.28%). Application of the developed method to Taiwan subjects supplemented with carotenoid-rich capsules revealed ?-carotene plus its cis isomers as well as epoxide derivatives to be present in largest amount (1069.8-2783.1 ng/mL) in serum, followed by lutein plus its cis isomers (511.6-2009.5 ng/mL), phytofluene plus its cis isomer (515.0-1765.0 ng/mL), lycopene plus its cis isomers (551.1-1455.1 ng/mL), ?-cryptoxanthin plus its cis isomers (458.0-965.0 ng/mL), all-trans-zeaxanthin (110.0-177.0 ng/mL), phytoene (41.8-165.0 ng/mL) and all-trans-?-carotene (37.5-95.9 ng/mL). PMID:22622065

Hsu, B Y; Pu, Y S; Inbaraj, B Stephen; Chen, B H

2012-06-15

354

Extending the Astronomical Application of Photon Counting HgCdTe Linear Avalanche Photo-Diode Arrays to Low Background Space Observations.  

NASA Astrophysics Data System (ADS)

The high quantum efficiency and very low dark current, together with the ability to set the wavelength cutoff from one to far beyond 5.5 microns, of large format HAWAII HgCdTe arrays have already made them the workhorse for NASA space astronomy (and related) observations in the 1 to 5.5 micron infrared. They have performed outstandingly on Hubble Wide Field Camera 3 and WISE (and also Deep Impact/EPOXI and OCO-2) and are crucial to the two major NASA Astrophysics missions, JWST and WFIRST, and to Euclid. The proposed investigation seeks to extend these benefits to the most demanding observations those that seek to wring information from only a few photons (starved due to either the intrinsic faintness of the source or the need for high spectral or time resolution) or to discriminate a weak signature against a bright source. We will characterize, and optimize for space astronomy observations, the unique linear avalanche properties of HgCdTe photo-diodes (HgCdTe L-APDs) that allow noiseless (i.e. faithfully preserves the Poisson statistics of the incoming photons) avalanche multiplication of individual photo-electrons. 2.5 micron HgCdTe L-APD technology, developed for infrared eye-safe LIDAR and range gated imaging, is already benefiting infrared wavefront sensing for ground based adaptive optics. In HgCdTe the L-APD gain and the onset voltage for tunneling current are exponential functions of bandgap while also varying with cryogenic operating temperature. The unique HgCdTe bandgap engineering that allows tuning of the cutoff wavelength can be used to critically improve avalanche performance for specific applications. We will thoroughly evaluate avalanche performance at several representative bandgaps so as to allow model prediction of performance over the critical 1 to 5 micron spectral interval. The proposed investigation will hybridize modest 32x32 arrays of HgCdTe L-APDs to photon counting readouts already developed under another award and characterize their infrared photon counting performance at the low and ultra-low backgrounds required for NASA space astronomy missions. Specifically this will involve 1) Measuring the gain normalized dark count rate and avalanche gain of 2.5, 3.3 and 4 micron cutoff HgCdTe at cryogenic temperatures from 30 to 80 K and bias voltages up to 20 V, 2) Using these results to validate and refine models of avalanche gain along with generation- recombination and surface trap induced tunneling current in L-APD HgCdTe and, 3) Modeling the gain normalized dark count rate, surface tunneling current and avalanche gain of 2 to 5 micron cutoff HgCdTe L-APD arrays for astrophysics and other NASA missions. The overall objective of the investigation is to develop the tools to identify the sweet spot in bandgap and cryogenic operating temperature for each specific NASA astrophysics mission and to accurately predict ultimate performance. HgCdTe L-APD technology offers to NASA the ultimate performance for space astronomy in photon starved applications such as: 1) ultra-low background, extra- Zodiacal imaging and faint object spectroscopy from elliptical orbits beyond the asteroid belt with missions such as Extra-Zodiacal Explorer, 2) spectroscopy of the faintest O/IR sources from near earth and L-2 orbit at moderate to high resolution and, 3) time domain astronomy observations (photometric or spectral variations at frequencies above 1 Hz) of sources as diverse as close binaries, accretion disks, compact objects etc. HgCdTe L- APD arrays have the potential to enable new classes of missions and to bring critical observations within reach of the capabilities of the NASA SMD Astrophysics Explorer program. As they utilize the same mature TRL base as the large format JWST HgCdTe arrays, requiring only qualification of n-on-p material operated at higher bias voltages, the path to flight qualification is unusually direct.

Hall, Donald

355

Integrated injection-locked semiconductor diode laser  

DOEpatents

A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

1991-01-01

356

Integrated injection-locked semiconductor diode laser  

DOEpatents

A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

1991-02-19

357

GaN-based light-emitting diodes by laser lift-off with electroplated copper  

NASA Astrophysics Data System (ADS)

This study presents a GaN thin film light-emitting diode (TF-LED) on an electroplated flexible copper substrate to improve thermal conduction effect of the LED. The optoelectronic characteristics and stress effect of the GaN TF-LEDs on the electroplated flexible copper prepared by laser lift-off technique was examined. The surface of the peeled GaN TF-LED after laser lift-off process demonstrated a pore array. The GaN pore array surface was etched by photo-electrochemical method to form hexagonal pyramid hillocks on the surface using KOH solution. Then, freestanding peeled GaN TF-LEDs with the front surface protected by wax were immersed into 3M KOH solution at 10, 20, 30min under ultraviolet illuminations to perform the photo-electrochemical etching. Surface morphologies with and without photo-electrochemical etching were observed by field emission scanning electron microscope (FESEM) (LEO 1530).

Lin, Wun-Wei; Chen, Lung-Chien; Chiou, Chung-An

2013-09-01

358

{sup 129}Xe-Cs (D{sub 1},D{sub 2}) versus {sup 129}Xe-Rb (D{sub 1}) spin-exchange optical pumping at high xenon densities using high-power laser diode arrays  

SciTech Connect

We investigate {sup 129}Xe-Cs (D{sub 1},D{sub 2}) spin exchange optical pumping (SEOP) at high Xe densities ({approx}0.12-2.44 amagat) using newly available high-power (>40 W) laser diode arrays and compare with {sup 129}Xe-Rb D{sub 1} SEOP under similar conditions. At elevated Xe densities, the spin-exchange rate (per alkali-metal atom, {gamma}{sup '}) for Cs-{sup 129}Xe is {approx}1.5-fold greater than that for Rb-{sup 129}Xe. Higher spin-exchange rates and lower {sup 129}Xe spin-destruction rates for Cs-{sup 129}Xe versus Rb-{sup 129}Xe contribute to {approx}twofold improvement in {sup 129}Xe nuclear spin polarization measured at 9.4 T - with the largest gains observed at the highest Xe densities.

Whiting, Nicholas; Eschmann, Neil A.; Goodson, Boyd M.; Barlow, Michael J. [Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901 (United States); Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)

2011-05-15

359

SiC-Based Schottky Diode Gas Sensors  

NASA Technical Reports Server (NTRS)

Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.

Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai

1997-01-01

360

Microwave diode switchable metamaterial reflector/absorber  

NASA Astrophysics Data System (ADS)

We embed diodes as active circuit elements within a metamaterial to implement a switchable metamaterial reflector/absorber at microwave frequencies. Diodes are placed in series with the unit cells of the metamaterial array. This results in just a pair of control lines to actively tune all the diodes in a metamaterial. Diodes can be tuned on and off to switch the function of the metamaterial between a perfect absorber and a reflector. The design, simulation, and experimental results of a switchable reflector/absorber in 2-6 GHz range are presented.

Xu, Wangren; Sonkusale, Sameer

2013-07-01

361

Evaluation of a method based on liquid chromatography-diode array detector-tandem mass spectrometry for a rapid and comprehensive characterization of the fat-soluble vitamin and carotenoid profile of selected plant foods.  

PubMed

The feasibility of using reversed-phase liquid chromatography/diode array/tandem mass spectrometry (LC-DAD-MS/MS) for a rapid and comprehensive profiling of fat soluble vitamins and pigments in some foods of plant origin (maize flour, green and golden kiwi) was evaluated. The instrumental approach was planned for obtaining two main outcomes within the same chromatographic run: (i) the quantitative analysis of ten target analytes, whose standards are commercially available; (ii) the screening of pigments occurring in the selected matrices. The quantitative analysis was performed simultaneously for four carotenoids (lutein, zeaxanthin, ?-cryptoxanthin, and ?-carotene) and six compounds with fat-soluble activity (?-tocopherol, ?-tocopherol, ?-tocopherol, ergocalciferol, phylloquinone and menaquinone-4), separated on a C30 reversed-phase column and detected by atmospheric pressure chemical ionization (APCI) tandem mass spectrometry, operating in Selected Reaction Monitoring (SRM) mode. Extraction procedure was based on matrix solid-phase dispersion with recoveries of all compounds under study exceeding 78 and 60% from maize flour and kiwi, respectively. The method intra-day precision ranged between 3 and 7%, while the inter-day one was below 12%. The mild isolation conditions precluded artefacts creation, such as cis-isomerization phenomena for carotenoids. During the quantitative LC-SRM determination of the ten target analytes, the identification power of the diode array detector joined to that of the triple quadrupole (QqQ) allowed the tentatively identification of several pigments (chlorophylls and carotenoids), without the aid of standards, on the basis of: (i) the UV-vis spectra recorded in the range of 200-700nm; (ii) the expected retention time; (iii) the two SRM transitions, chosen for the target carotenoids but also common to many of isomeric carotenoids occurring in the selected foods. PMID:21190690

Gentili, Alessandra; Caretti, Fulvia

2011-02-01

362

Ionic liquid-based microwave-assisted extraction for the determination of flavonoid glycosides in pigeon pea leaves by high-performance liquid chromatography-diode array detector with pentafluorophenyl column.  

PubMed

In this study, an ionic liquid-based microwave-assisted extraction (ILMAE) followed by high-performance liquid chromatography-diode array detector with a pentafluorophenyl column for the extraction and quantification of eight flavonoid glycosides in pigeon pea leaves is described. Compared with conventional extraction methods, ILMAE is a more effective and environment friendly method for the extraction of nature compounds from herbal plants. Nine different types of ionic liquids with different cations and anions were investigated. The results suggested that varying the anion and cation had significant effects on the extraction of flavonoid glycosides, and 1.0 M 1-butyl-3-methylimidazolium bromide ([C4MIM]Br) solution was selected as solvent. In addition, the extraction procedures were also optimized using a series of single-factor experiments. The optimum parameters were obtained as follows: extraction temperature 60°C, liquid-solid ratio 20:1 mL/g and extraction time 13 min. Moreover, an HPLC method using pentafluorophenyl column was established and validated. Good linearity was observed with the regression coefficients (r(2)) more than 0.999. The limit of detection (LODs) (S/N = 3) and limit of quantification (LOQs) (S/N = 10) for the components were less than 0.41 and 1.47 ?g/mL, respectively. The inter- and intraday precisions that were used to evaluate the reproducibility and relative standard deviation (RSD) values were less than 4.57%. The recoveries were between 97.26 and 102.69%. The method was successfully used for the analysis of samples of pigeon pea leaves. In conclusion, the developed ILMAE-HPLC-diode array detector using pentafluorophenyl column method can be applied for quality control of pigeon pea leaves and related medicinal products. PMID:23001940

Wei, Wei; Fu, Yu-jie; Zu, Yuan-gang; Wang, Wei; Luo, Meng; Zhao, Chun-jian; Li, Chun-ying; Zhang, Lin; Wei, Zuo-fu

2012-11-01

363

High-power laser diodes at various wavelengths  

NASA Astrophysics Data System (ADS)

High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at approximately 730 nm are presented.

Emanuel, Mark A.; Skidmore, Jay A.; Beach, Raymond J.

1997-05-01

364

Semicondictor Diode  

NSDL National Science Digital Library

Presented by the University of Cambridge's Engineering Department, this page contains an interactive semicondictor diode animation. Additionally, a quiz and short exam are attached to help users better understand the concept of this digital model.

365

Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes  

NASA Astrophysics Data System (ADS)

We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ˜1.0 × 1010 cm?2 and 3.0 × 1010 cm?2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ˜600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure.

Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

2012-12-01

366

New diode wavelengths for pumping solid-state lasers  

SciTech Connect

High-power laser-diode arrays have been demonstrated to be viable pump sources for solid-state lasers. The diode bars (fill factor of 0.7) were bonded to silicon microchannel heatsinks for high-average-power operation. Over 12 W of CW output power was achieved from a one cm AlGaInP tensile-strained single-quantum-well laser diode bar. At 690 nm, a compressively-strained single-quantum-well laser-diode array produced 360 W/cm{sup 2} per emitting aperture under CW operation, and 2.85 kW of pulsed power from a 3.8 cm{sup 2} emitting-aperture array. InGaAs strained single-quantum-well laser diodes emitting at 900 nm produced 2.8 kW pulsed power from a 4.4 cm{sup 2} emitting-aperture array.

Skidmore, J.A.; Emanuel, M.A.; Beach, R.J. [and others

1995-01-01

367

Perforated diode neutron sensors  

NASA Astrophysics Data System (ADS)

A novel design of neutron sensor was investigated and developed. The perforated, or micro-structured, diode neutron sensor is a concept that has the potential to enhance neutron sensitivity of a common solid-state sensor configuration. The common thin-film coated diode neutron sensor is the only semiconductor-based neutron sensor that has proven feasible for commercial use. However, the thin-film coating restricts neutron counting efficiency and severely limits the usefulness of the sensor. This research has shown that the perforated design, when properly implemented, can increase the neutron counting efficiency by greater than a factor of 4. Methods developed in this work enable detectors to be fabricated to meet needs such as miniaturization, portability, ruggedness, and adaptability. The new detectors may be used for unique applications such as neutron imaging or the search for special nuclear materials. The research and developments described in the work include the successful fabrication of variant perforated diode neutron detector designs, general explanations of fundamental radiation detector design (with added focus on neutron detection and compactness), as well as descriptive theory and sensor design modeling useful in predicting performance of these unique solid-state radiation sensors. Several aspects in design, fabrication, and operational performance have been considered and tested including neutron counting efficiency, gamma-ray response, perforation shapes and depths, and silicon processing variations. Finally, the successfully proven technology was applied to a 1-dimensional neutron sensor array system.

McNeil, Walter J.

368

Applications of Circular Array Sensors  

E-print Network

The application of the Reticon RO-64 annular photo-diode array to the task of optical tracking of special targets, direct optical focusing, and automatic printed circuit board inspection were studied. In order to facilitate ...

Trawick, Charles D.

369

Simultaneous determination of carbonyl compounds and polycyclic aromatic hydrocarbons in atmospheric particulate matter by liquid chromatography–diode array detection–fluorescence detection  

Microsoft Academic Search

Simultaneous analysis of 24 carbonyl compounds (alkanals, unsaturated, dicarbonylic and aromatic aldehydes and ketones) derivatized with 2,4-dinitrophenylhydrazine and 16 polycyclic aromatic hydrocarbons (PAHs) using a photodiode-array (PDA) and a fluorescence (FL) detector in series is proposed.The separation is carried out with a reversed-phase column and gradient elution using four solvents (acetonitrile, water, tetrahydrofuran and methanol) in less than 35min. Several

M. C. Prieto-Blanco; M. Piñeiro Iglesias; P. López-Mahía; S. Muniategui Lorenzo; D. Prada Rodríguez

2010-01-01

370

Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion  

Microsoft Academic Search

Flip-chip InGaN micro-pixellated LED arrays with high pixel density and improved device performance are presented. The devices, with 64 × 64 elements, each of which have a 20 µm emission aperture on a 50 µm pitch, are fabricated with a matrix-addressable scheme at blue (470 nm) and UV (370 nm) wavelengths, respectively. These devices are then flip-chip bonded onto silicon

Z. Gong; E. Gu; S. R. Jin; D. Massoubre; B. Guilhabert; H. X. Zhang; M. D. Dawson; V. Poher; G. T. Kennedy; P. M. W. French; M. A. A. Neil

2008-01-01

371

Comparison of high-performance liquid chromatography/tandem mass spectrometry and high-performance liquid chromatography/photo-diode array detection for the quantitation of carotenoids, retinyl esters, ?-tocopherol and phylloquinone in chylomicron-rich fractions of human plasma  

PubMed Central

Rationale Bioavailability of essential lipophilic micronutrients and carotenoids is of utmost interest for human health, as the consumption of these compounds may help alleviate major nutritional deficiencies, cardiovascular disease, and cancer. High-performance liquid chromatography/photo-diode array detection (HPLC-PDA) and high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) were compared for the quantitative analysis of ?- and ?-carotene, ?-cryptoxanthin, lutein, lycopene, ?-tocopherol, phylloquinone, and several retinyl esters from chylomicron-containing triglyceride rich lipoprotein (TRL) fractions of human plasma obtained from two clinical trials. Methods After selecting an efficient extraction method for the analytes, both the HPLC/PDA and the HPLC/MS/MS methods were developed and several parameters validated using an HP 1200 series HPLC system interfaced with a HP 1200 series diode-array detector (Agilent Technologies, Santa Clara, CA, USA) and a QTRAP 5500 (AB Sciex, Foster City, CA, USA) via an atmospheric pressure chemical ionization (APCI) probe operated in positive ion mode. Results For lycopene, ?- and ?-carotene, HPLC/MS/MS was up to 37 times more sensitive than HPLC-PDA. PDA detection was shown to be up to 8 times more sensitive for lutein. MS/MS signals were enhanced by matrix components for lutein and ?-cryptoxanthin, as determined by referencing to the matrix-independent PDA signal. In contrast, matrix suppression was observed for retinyl palmitate, ?-carotene, and ?-carotene. Both detectors showed similar suitability for ?-tocopherol, lycopene and retinyl palmitate (representing ~73% of total retinyl esters). MS/MS exclusively allowed the quantitation of minor retinyl esters, phylloquinone, and (Z)-lycopene isomers. Conclusions HPLC/MS/MS was more sensitive than HPLC-PDA for six of the eight analytes and represents a powerful tool for the analysis of chylomicron samples and potentially other biological samples of limited sample size. When internal standards are available for the target carotenoid, employing MS/MS detection may reduce the necessary blood sample volume, which is particularly advantageous for minimizing risk and discomfort to human subjects during clinical studies. PMID:23681818

Kopec, Rachel E.; Schweiggert, Ralf M.; Riedl, Ken M.; Carle, Reinhold; Schwartz, Steven J.

2013-01-01

372

Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes  

E-print Network

of light emitting diodes Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu Citation: Appl. Phys. Lett. 91 extraction in GaN-based light emitting diodes Appl. Phys. Lett. 100, 061107 (2012) Electrically driven nanopyramid green light emitting diode Appl. Phys. Lett. 100, 061106 (2012) Ultraviolet electroluminescence

Gilchrist, James F.

373

Orthogonal array designs for the optimization of liquid-liquid-liquid microextraction of nonsteroidal anti-inflammatory drugs combined with high-performance liquid chromatography-ultraviolet detection.  

PubMed

Orthogonal array designs (OADs) were applied for the first time to optimize liquid-liquid-liquid microextraction (LLLME) conditions for the analysis of three nonsteroidal anti-inflammatory drug residues (2-(4-chlorophenoxy)-2-methylpropionic acid, ketoprofen, and naproxen) in wastewater samples. Six relevant factors were investigated: type of organic solvent, composition of donor phase and acceptor phase, stirring speed, extraction time and salt concentration. In the first stage, mixed-level orthogonal array design, an OA16 (4(1) x 2(12)) matrix was employed to study the effect of six factors, by which the effect of each factor was estimated using individual contributions as response functions. Based on the results of the first stage, 1-octanol was chosen as organic solvent for extraction. The other five factors were selected for further optimization using an OA16 (4(5)) matrix and a 4 x 4 table to locate more exact levels for each variable. The relative standard deviations for the reproducibility of optimized LLLME varied from 6.2 to 7.1%. The coefficients of determination for calibration curves were higher than 0.9950. The method detection limits for drugs spiked in ultrapure water were in the range of 0.03-0.3 ng/mL. The final optimized conditions were applied to the analysis of drug residues in three wastewater samples in Singapore. PMID:16199224

Wu, Jingming; Lee, Hian Kee

2005-10-28

374

A 64 single photon avalanche diode array in 0.18 µm CMOS standard technology with versatile quenching circuit for quick prototyping  

NASA Astrophysics Data System (ADS)

Several works have demonstrated the successfully integration of Single-photon avalanche photodiodes (SPADs) operating in Geiger mode in a standard CMOS circuit for the last 10 years. These devices offer an exceptional temporal resolution as well as a very good optical sensitivity. Nevertheless, it is difficult to predict the expected performances of such a device. Indeed, for a similar structure of SPAD, some parameter values can differ by two orders of magnitude from a technology to another. We proposed here a procedure to identify in just one or two runs the optimal structure of SPAD available for a given technology. A circuit with an array of 64 SPAD has been realized in the Tower-Jazz 0.18 ?m CMOS image sensor process. It encompasses an array of 8 different structures of SPAD reproduced in 8 diameters in the range from 5 ?m up to 40 ?m. According to the SPAD structures, efficient shallow trench insulator and/or P-Well guard ring are used for preventing edge breakdown. Low dark count rate of about 100 Hz are expected thanks to the use of buried n-well layer and a high resistivity substrate. Each photodiode is embedded in a pixel which includes a versatile quenching circuitry and an analog output of its cathode voltage. The quenching system is configurable in four operation modes; the SPAD is disabled, the quenching is completely passive, the reset of the photodiode is active and the quenching is fully active. The architecture of the array makes possible the characterization of every single photodiode individually. The parameters to be measured for a SPAD are the breakdown avalanche voltage, the dark count rate, the dead time, the timing jitter, the photon detection probability and the after-pulsing rate.

Uhring, Wilfried; Le Normand, Jean-Pierre; Zint, Virginie; Dumas, Norbert; Dadouche, Foudil; Malasse, Imane; Scholz, Jeremy

2012-04-01

375

Dispersive liquid-liquid microextraction for the determination of vitamins D and K in foods by liquid chromatography with diode-array and atmospheric pressure chemical ionization-mass spectrometry detection.  

PubMed

A simple and rapid method was developed using reversed-phase liquid chromatography (LC) with both diode array (DAD) and atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection, for the simultaneous analysis of the vitamins ergocalciferol (D2), cholecalciferol (D3), phylloquinone (K1), menaquinone-4 (K2) and a synthetic form of vitamin K, menadione (K3). The Taguchi experimental method, an orthogonal array design (OAD), was used to optimize an efficient and clean preconcentration step based on dispersive liquid-liquid microextraction (DLLME). A factorial design was applied with six factors and three levels for each factor, namely, carbon tetrachloride volume, methanol volume, aqueous sample volume, pH of sample, sodium chloride concentration and time of the centrifugation step. The DLLME optimized procedure consisted of rapidly injecting 3 mL of acetonitrile (disperser solvent) containing 150 µL carbon tetrachloride (extraction solvent) into the aqueous sample, thereby forming a cloudy solution. Phase separation was performed by centrifugation, and the sedimented phase was evaporated with nitrogen, reconstituted with 50 µL of acetonitrile, and injected. The LC analyses were carried out using a mobile phase composed of acetonitrile, 2-propanol and water, under gradient elution. Quantification was carried out by the standard additions method. The APCI-MS spectra, in combination with UV spectra, permitted the correct identification of compounds in the food samples. The method was validated according to international guidelines and using a certified reference material. The validated method was applied for the analysis of vitamins D and K in infant foods and several green vegetables. There was little variability in the forms of vitamin K present in vegetables, with the most abundant vitamer in all the samples being phylloquinone, while menadione could not be detected. Conversely, cholecalciferol, which is present in food of animal origin, was the main form in infant foods, while ergocalciferol was not detected. PMID:24054666

Viñas, Pilar; Bravo-Bravo, María; López-García, Ignacio; Hernández-Córdoba, Manuel

2013-10-15

376

Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes  

SciTech Connect

We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

Lewins, C. J., E-mail: c.j.lewins@bath.ac.uk; Le Boulbar, E. D.; Lis, S. M.; Shields, P. A.; Allsopp, D. W. E., E-mail: d.allsopp@bath.ac.uk [Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Edwards, P. R.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

2014-07-28

377

Use of a bisphenol-A imprinted polymer as a selective sorbent for the determination of phenols and phenoxyacids in honey by liquid chromatography with diode array and tandem mass spectrometric detection.  

PubMed

An extraction-preconcentration procedure based on the use of a molecularly imprinted polymer (MIP) as selective sorbent has been developed for the determination of several phenolic compounds (bisphenol-A, bisphenol-F and 4-nitrophenol) and phenoxyacid herbicides (2,4-D, 2,4,5-T and 2,4,5-TP) in honey samples. Liquid chromatography with diode array detection (LC-DAD) and electrospray ionisation-ion trap mass spectrometry (LC-IT-MS) were used for the separation, identification and quantification of these analytes. The molecularly imprinted polymer was obtained by precipitation polymerisation with bisphenol-A (BPA) as template and 4-vinylpyridine as the functional monomer. The behaviour of this sorbent was compared with those of other materials frequently used in SPE. The selectivity of the BPA-MIP for the target analytes was tested in samples containing other pesticides in common use. The recoveries achieved for all six compounds were in the 81-96% range. By applying the proposed procedure prior to LC-IT-MS, the limits of detection achieved in commercial honey samples were in the 0.1-3.8 ng g(-1) range, with relative standard deviations of 12-24%. PMID:19720192

Herrero-Hernández, E; Carabias-Martínez, R; Rodríguez-Gonzalo, E

2009-09-21

378

A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products.  

PubMed

A new, rapid, selective and sensitive ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-DAD-ESI-Q-ToF-MS) strategy using automatic and simultaneous acquisition of exact mass at high and low collision energy, MS(E), has been developed to obtain polyphenolic profile of apples, apple pomace and apple juice from Asturian cider apples in a single run injection of 22 min. MS(E) spectral data acquisition overcomes chromatographic co-elution problems, performing simultaneous collection of precursor ions as well as other ions produced as a result of their fragmentation, which allows resolving complex spectra from mixtures of precursor ions in an unsupervised way and eases their interpretation. Using this technique, 52 phenolic compounds of five different classes were readily characterized in these apple extracts in both positive and negative ionization modes. The spectral data for phenolic compounds obtained using this acquisition mode are comparable to those obtained by conventional LC-MS/MS as exemplified in this work. Among the 52 phenolic compounds identified in this work, 2 dihydrochalcones and 3 flavonols have been tentatively identified for the first time in apple products. Moreover, 2 flavanols, 4 dihydrochalcones, 9 hydroxycinnamic acids and 4 flavonols had not been previously reported in apple by ToF analysis to our knowledge. PMID:24120027

Ramirez-Ambrosi, M; Abad-Garcia, B; Viloria-Bernal, M; Garmon-Lobato, S; Berrueta, L A; Gallo, B

2013-11-01

379

Methods of analysis by the U.S. Geological Survey Organic Geochemistry Research Group; determination of chloroacetanilide herbicide metabolites in water using high-performance liquid chromatography-diode array detection and high-performance liquid chromatography/mass spectrometry  

USGS Publications Warehouse

Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: acetochlor ethanesulfonic acid (ESA), acetochlor oxanilic acid (OXA), alachlor ESA, alachlor OXA, metolachlor ESA, and metolachlor OXA. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The mean HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.50, and 2.0 mg/L (micrograms per liter) ranged from 84 to 112 percent, with relative standard deviations of 18 percent or less. The mean HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.20, and 2.0 mg/L ranged from 81 to 125 percent, with relative standard deviations of 20 percent or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 mg/L, whereas the LOQ using the HPLC/MS method was 0.05 mg/L. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water.

Zimmerman, L.R.; Hostetler, K.A.; Thurman, E.M.

2000-01-01

380

A novel fourth-order calibration method based on alternating quinquelinear decomposition algorithm for processing high performance liquid chromatography-diode array detection- kinetic-pH data of naptalam hydrolysis.  

PubMed

Five-way high performance liquid chromatography-diode array detection (HPLC-DAD)-kinetic-pH data were obtained by recording the kinetic evolution of HPLC-DAD signals of samples at different pH values and a new fourth-order calibration method, alternating quinquelinear decomposition (AQQLD) based on pseudo-fully stretched matrix forms of the quinquelinear model, was developed. Simulated data were analyzed to investigate the performance of AQQLD in comparison with five-way parallel factor analysis (PARAFAC). The tested results demonstrated that AQQLD has the advantage of faster convergence rate and being insensitive to the excess component number adopted in the model. Then, they have been successfully applied to investigate quantitatively the kinetics of naptalam (NAP) hydrolysis in two practical systems. Additionally, the serious chromatographic peak shifts were accurately corrected by means of chromatographic peak alignment method based on abstract subspace difference. The good recoveries of NAP were obtained in these samples by selecting the time region of chromatogram. The elution time, spectral, kinetic time and pH profiles resolved by the chemometric techniques were in good agreement with experimental observations. It demonstrates the potential for the utilization of fourth-order data for some complex systems, opening up a new approach to fourth-order data generation and subsequent fourth-order calibration. PMID:25702270

Qing, Xiang-Dong; Wu, Hai-Long; Zhang, Xi-Hua; Li, Yong; Gu, Hui-Wen; Yu, Ru-Qin

2015-02-25

381

Identification and determination of 34 water-soluble synthetic dyes in foodstuff by high performance liquid chromatography-diode array detection-ion trap time-of-flight tandem mass spectrometry.  

PubMed

An accurate method combining high performance liquid chromatography (HPLC) with diode array detection (DAD) and ion-trap time-of-flight mass spectrometry (IT-TOF/MS) was developed for simultaneous identification and quantification of 34 water-soluble synthetic dyes in foodstuff. Fragmentation patterns of synthetic dyes were proposed based on IT-TOF/MS. The molecular ion [M+H](+) was not observed in the conventional single-stage mass spectra for most of synthetic dyes. The single-stage mass spectra of synthetic dyes all afforded the diagnostic ions [(M-nNa+nH)+H](+) or [(M-nNa+nH)-H](-) in the positive or negative mode. Doubly charged ions were the characteristic ions of azo dyes. An HPLC-DAD method was developed to analyze 34 synthetic dyes in foodstuffs. The limits of detection (LOD) for the dyes were 0.01-0.05?g/mL. The recoveries were between 76.1% and 105.0% with a RSD ranging from 1.4% to 6.4%. This method was successfully applied to analyzing the 34 water-soluble synthetic dyes in 21 commercial foods. PMID:25842343

Li, Xiu Qin; Zhang, Qing He; Ma, Kang; Li, Hong Mei; Guo, Zhen

2015-09-01

382

Method validation and simultaneous determination of retinol, retinyl palmitate, ?-carotene, ?-tocopherol and vitamin C in rat serum treated with 7,12 dimethylbenz[a]anthracene and Plantago major L. by high- performance liquid chromatography using diode-array detection.  

PubMed

A new and simple high-performance liquid chromatography method was developed and validated for the simultaneous determination of retinol, retinyl palmitate, ?-carotene, ?-tocopherol and vitamin C in rat serum treated with Plantago Major L. and 7,12 dimethylbenz[a]anthracene. High-performance liquid chromatography analysis was performed utilizing an Inertsil ODS3 reversed phase column with methanol-tetrahydrofuran-water as mobile phase under gradient conditions, at 1.5 mL min(-1) flow rate and 25 °C. Diode-array detection was at 325, 450, 290 and 270 nm (retinol and retinyl palmitate), ?-carotene, ?-tocopherol and vitamin C, respectively and runnig time 18 min. The high-performance liquid chromatography assay and extraction procedure proposed are simple, rapid, sensitive and accurate. The method was then applied for the determination of retinol, retinyl palmitate, ?-carotene, ?-tocopherol and vitamin C in rat serum. Results of this study demonstrated that; at 60th day DMBA-treated group, there was a significant decrease in vitamin levels compared to the levels of control group. A significant increase was observed in vitamin levels of 7,12 dimethylbenz[?]anthracene+Plantago Major L.-treated group compared to the DMBA-treated group. Additionally, the results obtained in the study are found to be in agreement with data reported in the literature. PMID:23176060

Levent, Abdulkadi; Oto, Gokhan; Ekin, Suat; Berber, Ismet

2013-02-01

383

Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry.  

PubMed

In the present work, a comparative study between two environmentally friendly and selective extraction techniques, such as supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) have been carried out focusing in the bioactive phenolic compounds present in Rosmarinus officinalis. For the analysis of the SFE and PLE extracts, a new methodology for qualitative characterization has been developed, based on the use of reversed-phase high-performance liquid chromatography (RP-HPLC), equipped with two different detection systems coupled in series: diode array detector (DAD) and time of flight mass spectrometry (TOF-MS) detector connected via an electrospray ionization interface (ESI). The use of a small particle size C(18) column (1.8 ?m) provided a great resolution and made possible the separation of several isomers. Moreover, UV-visible spectrophotometry is a valuable tool for identifying the class of phenolic compounds, whereas MS data enabled to structurally characterize the compounds present in the extracts. The applied methodology was useful for the determination of many well-known phenolic compounds present in R. officinalis, such as carnosol, carnosic acid, rosmadial, rosmanol, genkwanin, homoplantaginin, scutellarein, cirsimaritin and rosmarinic acid, as well as other phenolic compounds present in other species belonging to Lamiaceae family. PMID:21835416

Borrás Linares, I; Arráez-Román, D; Herrero, M; Ibáñez, E; Segura-Carretero, A; Fernández-Gutiérrez, A

2011-10-21

384

Application of a validated method in the stability study of colistin sulfate and methylparaben in a veterinary suspension formulation by high-performance liquid chromatography with a diode array detector.  

PubMed

A methodology following International Cooperation on Harmonization for Veterinary Products (VICH) guidelines for the stability evaluation of colistin sulfate in a nonaqueous suspension pharmaceutical dosage form for veterinary use (via their drinking water) is described. This method monitors the percentage of colistin sulfate during the stability study of the preparation in drinking water and establishes the shelf life of the final product by a new high-performance liquid chromatography method which was developed and validated for the simultaneous determination of colistin sulfate [colistin A (Polymixin E1) and colistin B (Polymixin E2)] and methylparaben (Nipagin) using a diode array detector (DAD). The method uses a Kromasil C18 column and isocratic elution. The mobile phase consisted of an acetonitrile-sodium sulfate anhydrous solution (25 + 75) pumped at a flow rate of 1.5 mL/min. The DAD was set at 215 nm. The validation study was carried out according to the VICH guidelines in order to prove that the new analytical method meets the reliability characteristics, which include the fundamental criteria for validation: selectivity, linearity, precision, accuracy, and sensitivity. The method was applied during the quality control or stability studies of the suspension dosage form in order to quantify the drug (colistin) and preservative, and proved to be suitable for rapid and reliable quality control. PMID:17580623

Pérez-Lozano, Pilar; García-Montoya, Encarna; Orriols, Anna; Miñarro, Montse; Ticó, Josep Ramon; Suñé-Negre, Josep Maria

2007-01-01

385

Multi-responses extraction optimization combined with high-performance liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry and chemometrics techniques for the fingerprint analysis of Aloe barbadensis Miller.  

PubMed

A quality control strategy using high-performance liquid chromatography-diode array detector-electrospray ionization-tandem mass spectrometry (HPLC-DAD-ESI-MS/MS) coupled with chemometrics analysis was proposed for Aloe barbadensis Miller. Firstly, the extraction conditions including methanol concentration, extraction time and solvent-to-material ratio were optimized by multi-responses optimization based on response surface methodology (RSM). The optimum conditions were achieved by Derringer's desirability function and experimental validation implied that the established model exhibited favorable prediction ability. Then, HPLC fingerprint consisting of 27 common peaks was developed among 15 batches of A. barbadensis samples. 25 common peaks were identified using HPLC-DAD-ESI-MS/MS method by their spectral characteristics or comparison with the authentic standards. Chemometrics techniques including similarity analysis (SA), principal components analysis (PCA) and hierarchical clustering analysis (HCA) were implemented to classify A. barbadensis samples. The results demonstrated that all A. barbadensis samples shared similar chromatographic patterns as well as differences. These achievements provided an effective, reliable and comprehensive quality control method for A. barbadensis. PMID:25590942

Zhong, Jia-Sheng; Wan, Jin-Zhi; Ding, Wen-Jing; Wu, Xiao-Fang; Xie, Zhi-Yong

2015-03-25

386

Molecularly imprinted nano particles combined with miniaturized homogenous liquid-liquid extraction for the selective extraction of loratadine in plasma and urine samples followed by high performance liquid chromatography-photo diode array detection.  

PubMed

In this work a molecularly imprinted polymer was developed as a selective sorbent for extraction of loratadine (as a model) in complex matrices followed by miniaturized homogeneous liquid-liquid extraction (MHLLE) for the first time. The molecularly imprinted polymer (MIP) which is based on loratadine as the template was synthesized successfully by precipitation polymerization and was used as a selective sorbent. This technique was applied for preconcentration, sample preparation, and determination of loratadine using high performance liquid chromatography-photo diode array detection (HPLC-PDA). Optimization of various parameters affecting molecular imprinted solid phase extraction (MISPE), such as pH of adsorption, composition and volume of eluent, adsorption and desorption times were investigated. Besides, in the subsequent stage (MHLLE) the type and volume of extraction solvent, sodium hydroxide amount, surfactant concentration, and extraction time were investigated and optimized. Under the optimal condition, maximum enrichment capacity and Langmuir constant were 91mgg(-1) and 0.014Lmg(-1), respectively. Furthermore, enrichment factor and extraction recovery of MIP-MHLLE method were 30 and 90%, respectively. The LOD of the proposed method was 0.2?gL(-1) and a linear dynamic range of 1-1000?gL(-1) was obtained with correlation coefficient of greater than 0.998. The present method was applied for extraction and determination of loratadine in plasma and urine samples in ?gL(-1) levels and satisfactory results were achieved (RSD <8% based on three replicate measurements). PMID:23452800

Ebrahimzadeh, H; Molaei, K; Asgharinezhad, A A; Shekari, N; Dehghani, Z

2013-03-12

387

Characterization of weld (Reseda luteola L.) and spurge flax (Daphne gnidium L.) by high-performance liquid chromatography-diode array detection-mass spectrometry in Arraiolos historical textiles.  

PubMed

The natural dyes, and dye sources, in two seventeenth century Arraiolos carpets from the National Museum of Machado de Castro were analysed by high-performance liquid chromatography with UV-vis diode array detection (HPLC-DAD) and HPLC-mass spectrometry (LC-MS). Weld (Reseda luteola L.), indigo and spurge flax (Daphne gnidium L.) were found to be the dye sources, in agreement with original dyeing recipes collected during the nineteenth century. In order to fully characterize the plant sources, LC-MS conditions were optimized with plant extracts and the chromatographic separation and mass detection were enhanced. Extraction of the dyes, in the Arraiolos carpet samples, was performed using mild conditions that avoid glycoside decomposition. For the blues a dimethylformamide solution proved to be efficient for indigotin recovery. For all the other colours, an improved mild extraction method (with oxalic acid, methanol, acetone and water) was used, enabling to obtain the full dye source fingerprint, namely the flavonoid glycosides in the yellow dyes. PMID:19168183

Marques, Rita; Sousa, Micaela M; Oliveira, Maria C; Melo, Maria J

2009-02-27

388

Computer-aided method for identification of major flavone/flavonol glycosides by high-performance liquid chromatography-diode array detection-tandem mass spectrometry (HPLC-DAD-MS/MS).  

PubMed

A new computational tool is proposed here for tentatively identifying major (UV quantifiable) flavone/flavonol glycoside peaks of high performance liquid chromatogram (HPLC)-diode array detection (DAD)-tandem mass spectrometry (MS/MS) profiles based on a MATLAB-based script implementing an in-house algorithm. The HPLC-DAD-MS/MS profiles of red onion, Chinese lettuce, carrot leaf, and celery seed extracts were analyzed by the proposed computer-aided screening method for identifying possible flavone/flavonol glycoside peaks from the HPLC-UV and MS total ion current (TIC) chromatograms. The number of identified flavone/flavonol glycoside peaks of the HPLC-UV chromatograms is four, four, six, and nine for red onion, Chinese lettuce, carrot leaf, and celery seed, respectively. These results have been validated by human(s) experts. For the batch processing of nine HPLC-DAD-MS/MS profiles of celery seed extract, the entire script execution time was within 15 s while manual calculation of only one HPLC-DAD-MS/MS profile by a flavonoid expert could take hours. Therefore, this MATLAB-based screening method is able to facilitate the HPLC-DAD-MS/MS analysis of flavone/flavonol glycosides in plants to a large extent. PMID:25270867

Wang, Zhengfang; Lin, Longze; Harnly, James M; Harrington, Peter de B; Chen, Pei

2014-11-01

389

EE 321 Diodes 3 Fall 2008 Diodes, Part 3 --Diode and Zener Diode Circuits  

E-print Network

EE 321 Diodes 3 Fall 2008 EE321 Lab Diodes, Part 3 -- Diode and Zener Diode Circuits The purpose of this lab is build and test some interesting non-linear circuits that utilize diodes. Most of them from turning the diode on in the forward direction.) 7 6 4 +15V vouA741 3 2 470 10K Pot R 1N5229 Figure

Wedeward, Kevin

390

Coaxial In(x)Ga(1-x)N/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes.  

PubMed

We report the growth of high-quality nonpolar (m-plane) and semipolar (r-plane) multiple quantum well (MQW) nanowires (NWs) for high internal quantum efficiency light emitting diodes (LEDs) without polarization. Highly aligned and uniform In(x)Ga(1-x)N/GaN MQW layers are grown coaxially on the {1-100} sidewalls of hexagonal c-axis n-GaN NWs on Si(111) substrates by a pulsed flow metal-organic chemical vapor deposition (MOCVD) technique. The photoluminescence (PL) measurements reveal that the wavelength and intensity of an MQW structure with various pairs (2-20) are very stable and possess composition-dependent emission ranging from 369 to 600 nm. The cathodoluminescence (CL) spectrum of individual In(x)Ga(1-x)N/GaN MQW NW is dominated by band-edge emission at 369 and 440 nm with a relatively homogeneous profile of parallel alignment. High-resolution transmission electron microscopy (HR-TEM) studies of coaxial InxGa1-xN/GaN MQW NWs measured along the [0001] and [2-1-10] zone axes reveal that the grown NWs are uniform with six nonpolar m-plane facets without any dislocations and stacking faults. The p-GaN/In(x)Ga(1-x)N/GaN MQW/n-GaN NW coaxial LEDs show a current rectification with a sharp onset voltage at 2.65 V in the forward bias. The linear enhancement of power output could be attributed to the elimination of piezoelectric fields in the In(x)Ga(1-x)N/GaN MQW active region. The superior performance of coaxial NW LEDs is observed in comparison with that of thin film LEDs. Overall, the feasibility of obtaining low defect and strain free m-plane coaxial NWs using pulsed MOCVD can be utilized for the realization of high-power LEDs without an efficiency droop. These kinds of coaxial NWs are viable high surface area MQW structures which can be used to enhance the efficiency of LEDs. PMID:23701263

Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro

2013-08-14

391

The Ultraviolet Spectrum of the Crab Pulsar  

Microsoft Academic Search

The time-averaged ultraviolet spectrum of the Crab pulsar will be measured with the FOS using the G160L grating in the ACCUM mode. The grating covers from 1150 A to 2510 A at a dispersion of 6.87 A\\/diode. The 0.3 arcsec diameter aperture will be used in order to exclude as much as possible of the surrounding nebula. The observed spectrum

Robert Bless

1995-01-01

392

Large-Area Vacuum Ultraviolet Sensors  

NASA Technical Reports Server (NTRS)

Pt/(n-doped GaN) Schottky-barrier diodes having active areas as large as 1 cm square have been designed and fabricated as prototypes of photodetectors for the vacuum ultraviolet portion (wavelengths approximately equal 200 nm) of the solar spectrum. In addition to having adequate sensitivity to photons in this wavelength range, these photodetectors are required to be insensitive to visible and infrared components of sunlight and to have relatively low levels of dark current.

Aslam, Shahid; Franz, David

2012-01-01

393

Local nanotip arrays sculptured by atomic force microscopy to enhance the light-output efficiency of GaN-based light-emitting diode structures.  

PubMed

In this work, local nanotip arrays on GaN-based light-emitting (LED) structures were fabricated through nano-oxidation using an atomic force microscope (AFM). The photoluminescence (PL) intensity of the InGaN/GaN multiple quantum wells (MQWs) active layer and the light extraction efficiency of the LED structure were enhanced by forming this nanotips structure to serve as a graded-refractive index layer, which is further validated by the finite-difference time-domain analysis. The PL emission peak of the MQWs active layer has a blue-shift phenomenon that is caused by a partial reduction of the strain on the InGaN well. It is expected that our approach opens a promising route for simultaneously enhancing both the internal quantum efficiency and the light extraction efficiency of GaN-based LEDs. The proposed AFM-based method will be of importance for local patterning the light emitting components for optoelectronic applications. PMID:24763484

Huang, Chun-Ying; Yao, Yung-Chi; Lee, Ya-Ju; Lin, Tai-Yuan; Kao, Wen-Jang; Shang Hwang, Jih; Yang, Ying-Jay; Shen, Ji-Lin

2014-05-16

394

Spin-exchange optical pumping using a frequency-narrowed high power diode laser  

E-print Network

Spin-exchange optical pumping using a frequency-narrowed high power diode laser I. A. Nelson, B for frequency narrowing commercial high power diode lasers from 2 to 0.1 nm bandwidth with modest loss of power diode arrays for the optical pumping. The poor match between the laser bandwidth 2­3 nm

Walker, Thad G.

395

Photoluminescence and highly selective photoresponse of ZnO nanorod arrays  

NASA Astrophysics Data System (ADS)

Well-aligned ZnO nanorod arrays were grown on the Si substrate via a hydrothermal method. Room-temperature photoluminescence (PL) measurements of the nanorods show that after annealing in air, the green emission enhances whereas the ultraviolet (UV) emission quenches along with the near-infrared emission. The mechanisms for the changes of emissions in the PL spectra were discussed and investigated. A new and simple method was created to fabricate the metal-semiconductor-metal (MSM) photodetectors based on ZnO nanorod arrays. The current-voltage (I-V) curve of the device shows double Schottky diode characteristics in the dark, and it transforms to Ohmic under UV illumination. The photogenerated current under 365-nm UV illumination is almost 25 times higher than that under 254-nm UV illumination, which is due to the easier recombination of electron-hole pairs under 254-nm UV irradiation.

Yi, Fang; Huang, Yunhua; Zhang, Zheng; Zhang, Qi; Zhang, Yue

2013-06-01

396

Simultaneous qualitative and quantitative determination of phenolic compounds in Aloe barbadensis Mill by liquid chromatography-mass spectrometry-ion trap-time-of-flight and high performance liquid chromatography-diode array detector.  

PubMed

An effective and comprehensive method was developed for the simultaneous analysis of phenolic compounds in the dried exudate of Aloe barbadensis Mill by liquid chromatography-mass spectrometry-ion trap-time-of-flight (LCMS-IT-TOF) and high performance liquid chromatography-diode array detector (HPLC-DAD). Qualitative analysis of all the compounds presented in A. barbadensis Mill was performed on LCMS-IT-TOF, and the diagnostic fragmentation patterns of different types of phenolic compounds (chromones, phenyl pyrones, naphthalene derivative, anthrones and anthraquinones) were discussed on the basis of ESI-IT-TOF MS of components in A. barbadensis Mill and eleven authentic standards. Under the optimal HPLC-DAD chromatographic conditions, quantification of 11 typical phenolic compounds in 15 batches of A. barbadensis Mill was achieved on an Agilent TC-C18 column using gradient elution with a solvent system of methanol and water at a flow rate of 1.0mLmin(-1) and detected at 230nm. All calibration curves exhibited good linear relationship (r(2)>0.9991). The relative standard deviation values for intraday precision were less than 2% with accuracies between 98.21% and 104.57%. The recoveries of the eleven analytes ranged from 97.53 to 105.00% with RSDs less than 2%. This is the first simultaneous characterization and quantitative determination of multiple phenolic compounds in A. barbadensis Mill from locally grown cultivars in China by LCMS-IT-TOF and HPLC-DAD, which can be applied to standardize the quality of A. barbadensis Mill and the future design of nutraceutical and cosmetic preparations. PMID:23542732

Wu, Xiaofang; Ding, Wenjing; Zhong, Jiasheng; Wan, Jinzhi; Xie, Zhiyong

2013-06-01

397

Using of liquid chromatography coupled with diode array detector for determination of naphthoquinones in plants and for investigation of influence of pH of cultivation medium on content of plumbagin in Dionaea muscipula.  

PubMed

The interest of many investigators in naphthoquinones is due to their broad-range of biological actions from phytotoxic to fungicidal. The main aim of this work was to investigate the influence of different pH values of cultivation medium on naphthoquinone content in Dionaea muscipula. For this purpose, we optimized the simultaneous analysis of the most commonly occurring naphthoquinones (1,4-naphthoquinone, lawsone, juglone and plumbagin) by high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The most suitable chromatographic conditions were as follows: mobile phase: 0.1 mol l-1 acetic acid:methanol in ratio of 33:67 (%, v/v), flow rate: 0.75 ml min-1 and temperature: 42 degrees C. Moreover, we looked for the most suitable technique for preparation of plant samples (D. muscipula, Juglans regia, Paulownia tomentosa, Impatience glandulifera, Impatience parviflora, Drosera rotundifolia, Drosera spathulata and Drosera capensis) due to their consequent analysis by HPLC-DAD. It clearly follows from the results obtained that sonication were the most suitable technique for preparation of J. regia plants. We also checked the recoveries of the determined naphthoquinones, which were from 96 to 104%. Finally, we investigated the changes in content of plumbagin in D. muscipula plants according to different pH of cultivation medium. The content increased with increasing pH up to 5 and, then, changed gradually. The lower content of plumbagin at lower pH values was of interest to us. Therefore, we determined the content of this naphthoquinone in the cultivation medium, what has not been studied before. We discovered that the lower tissue content of plumbagin was due to secretion of this naphthoquinone into the cultivation medium. PMID:16765109

Babula, Petr; Mikelova, Radka; Adam, Vojtech; Kizek, Rene; Havel, Ladislav; Sladky, Zdenek

2006-09-14

398

High-speed counter-current chromatography coupled online to high performance liquid chromatography-diode array detector-mass spectrometry for purification, analysis and identification of target compounds from natural products.  

PubMed

A challenge in coupling high-speed counter-current chromatography (HSCCC) online with high performance liquid chromatography (HPLC) for purity analysis was their time incompatibility. Consequently, HSCCC-HPLC was conducted by either controlling HPLC analysis time and HSCCC flow rate or using stop-and-go scheme. For natural products containing compounds with a wide range of polarities, the former would optimize experimental conditions, while the latter required more time. Here, a novel HSCCC-HPLC-diode array detector-mass spectrometry (HSCCC-HPLC-DAD-MS) was developed for undisrupted purification, analysis and identification of multi-compounds from natural products. Two six-port injection valves and a six-port switching valve were used as interface for collecting key HSCCC effluents alternatively for HPLC-DAD-MS analysis and identification. The ethyl acetate extract of Malus doumeri was performed on the hyphenated system to verify its efficacy. Five main flavonoids, 3-hydroxyphloridzin (1), phloridzin (2), 4',6'-dihydroxyhydrochalcone-2'-O-?-d-glucopyranoside (3, first found in M. doumeri), phloretin (4), and chrysin (5), were purified with purities over 99% by extrusion elution and/or stepwise elution mode in two-step HSCCC, and 25mM ammonium acetate solution was selected instead of water to depress emulsification in the first HSCCC. The online system shortened manipulation time largely compared with off-line analysis procedure and stop-and-go scheme. The results indicated that the present method could serve as a simple, rapid and effective way to achieve target compounds with high purity from natural products. PMID:25678319

Liang, Xuejuan; Zhang, Yuping; Chen, Wei; Cai, Ping; Zhang, Shuihan; Chen, Xiaoqin; Shi, Shuyun

2015-03-13

399

One- and two-dimensional gas chromatography-mass spectrometry and high performance liquid chromatography-diode-array detector fingerprints of complex substances: a comparison of classification performance of similar, complex Rhizoma Curcumae samples with the aid of chemometrics.  

PubMed

Many complex natural or synthetic products are analysed either by the GC-MS (gas chromatography-mass spectrometry) or HPLC-DAD (high performance liquid chromatography-diode-array detector) technique, each of which produces a one-dimensional fingerprint for a given sample. This may be used for classification of different batches of a product. GC-MS and HPLC-DAD analyses of complex, similar substances represented by the three common types of the TCM (traditional Chinese medicine), Rhizoma Curcumae were analysed in the form of one- and two-dimensional matrices firstly with the use of PCA (Principal component analysis), which showed a reasonable separation of the samples for each technique. However, the separation patterns were rather different for each analytical method, and PCA of the combined data matrix showed improved discrimination of the three types of object; close associations between the GC-MS and HPLC-DAD variables were observed. LDA (linear discriminant analysis), BP-ANN (back propagation-artificial neural networks) and LS-SVM (least squares-support vector machine) chemometrics methods were then applied to classify the training and prediction sets. For one-dimensional matrices, all training models indicated that several samples would be misclassified; the same was observed for each prediction set. However, by comparison, in the analysis of the combined matrix, all models gave 100% classification with the training set, and the LS-SVM calibration also produced a 100% result for prediction, with the BP-ANN calibration closely behind. This has important implications for comparing complex substances such as the TCMs because clearly the one-dimensional data matrices alone produce inferior results for training and prediction as compared to the combined data matrix models. Thus, product samples may be misclassified with the use of the one-dimensional data because of insufficient information. PMID:22177063

Ni, Yongnian; Mei, Minghua; Kokot, Serge

2012-01-27

400

Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry.  

PubMed

A fast liquid chromatography method with diode-array detection (DAD) and time-of-flight mass spectrometry (TOF-MS) has been developed for analysis of constituents in Flos Lonicerae Japonicae (FLJ), a traditional Chinese medicine derived from the flower bud of Lonicera japonica. The chromatographic analytical time decreased to 25 min without sacrificing resolution using a column packed with 1.8-microm porous particles (4.6 x 50 mm), three times faster than the performance of conventional 5.0-microm columns (4.6 x 150 mm). Four major groups of compounds previously isolated from FLJ were structurally characterized by DAD-TOF-MS: iridoid glycosides showed maximum UV absorption at 240 nm; phenolic acids at 217, 242, and 326 nm; flavonoids at 255 and 355 nm; while saponins had no absorption. In electrospray ionization (ESI)-TOF-MS experiments, elimination of a glucose unit (162 Da), and successive losses of H(2)O, CH(3)OH and CO, were generally observed in iridoid glycosides; saponins were characterized by a series of identical aglycone ions; phenolic acids typically generated a base peak at [M-H-caffeoyl](-) by loss of a caffeic acid unit (162 Da) and several marked quinic acid moiety ions; cleavage of the glycosidic bond (loss of 162 or 308 Da), subsequent losses of H(2)O, CO, RDA and C-ring fragmentation were the most possible fragmentation pathways for flavonoids. By accurate mass measurements within 4 ppm error for each molecular ion and subsequent fragment ions, as well as the 'full mass spectral' information of TOF-MS, a total of 41 compounds including 13 iridoid glycosides, 11 phenolic acids, 7 saponins, and 10 flavonoids were identified in a methanolic extract of FLJ. PMID:19725056

Qi, Lian-Wen; Chen, Chun-Yun; Li, Ping

2009-10-01

401

A potential single-phased emission-tunable silicate phosphor Ca3Si2O7:Ce3+,Eu2+ excited by ultraviolet light for white light emitting diodes  

NASA Astrophysics Data System (ADS)

Single-phased Ca3Si2O7:Ce3+,Eu2+ phosphor has been successfully prepared by the high temperature solid-state method. The phosphor shows efficient excitation bands from 200 to 400 nm and adjustable emission bands through the energy transfer from the Ce3+ to Eu2+ ions. The color hues can change from blue towards white ultimately to orange by adjusting the percentage content of doping ions. The investigation reveals that an electric dipole-dipole reaction mechanism should be responsible for the energy transfer from the Ce3+ to Eu2+ ions. The critical distance was obtained from the spectral overlap in terms of Dexter's theory. The developed phosphor Ca3Si2O7:Ce3+,Eu2+ exhibits two bands at 440 and 625 nm, respectively, which reveling that it has a great potentiality to be an UV-convertible phosphor for white-light emitting diodes with low color temperature.

Lv, Wenzhen; Guo, Ning; Jia, Yongchao; Zhao, Qi; You, Hongpeng

2013-03-01

402

Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO2 electron blocking layer  

NASA Astrophysics Data System (ADS)

We demonstrated the capability of realizing enhanced ZnO-related UV emissions by using the low-cost and solution-processable ZnO quantum dots (QDs) with the help of a high-k HfO2 electron blocking layer (EBL) for the ZnO QDs/p-GaN light-emitting diodes (LEDs). Full-width at half maximum of the LED devices was greatly decreased from ˜110 to ˜54 nm, and recombinations related to nonradiative centers were significantly suppressed with inserting HfO2 EBL. The electroluminescence of the ZnO QDs/HfO2/p-GaN LEDs demonstrated an interesting spectral narrowing effect with increasing HfO2 thickness. The Gaussian fitting revealed that the great enhancement of the Zni-related emission at ˜414 nm whereas the deep suppression of the interfacial recombination at ˜477 nm should be the main reason for the spectral narrowing effect.

Mo, Xiaoming; Long, Hao; Wang, Haoning; Li, Songzhan; Chen, Zhao; Wan, Jiawei; Feng, Yamin; Liu, Yuping; Ouyang, Yifang; Fang, Guojia

2014-08-01

403

Optical Spectroscopy Results for the Self-Magnetic Pinch Electron Beam Diode on the ITS-6 Accelerator.  

SciTech Connect

Experiments have been conducted at Sandia National Laboratories' RITS-6 accelerator facility [1] (operating at 7.5 MV and 180 kA) investigating plasma formation and propagation in relativistic electron beam diodes used for flash x-ray radiography. High resolution, visible and ultraviolet spectra were collected in the anode-cathode (A-K) vacuum gap of the Self-Magnetic Pinch (SMP) diode [2-4]. Time and space resolved spectra are compared with time-dependent, collisional-radiative (CR) calculations [5-7] and Lsp, hybrid particle-in-cell code simulations [8,9]. Results indicate the presence of a dense (>1x1017cm-3), low temperature (few eV), on-axis plasma, composed of hydrocarbon and metal ion species, which expands at a rate of several cm/s from the anode to the cathode. In addition, cathode plasmas are observed which extend several millimeters into the A-K gap [10]. It is believed that the interaction of these electrode plasmas cause premature impedance collapse of the diode and subsequent reduction in the total radiation output. Diagnostics include high speed imaging and spectroscopy using nanosecond gated ICCD cameras, streak cameras, and photodiode arrays.

Johnston, Mark D.; Oliver, Bryan V.; Hahn, Kelly; Droemer, Darryl W.; Crain, Marlon D.; Welch, Dale R.; Yitzhak, Maron

2012-06-01

404

Mass transfer ways of ultraviolet printing ink ingredients into foodstuffs.  

PubMed

The case of isopropylthioxanthone (ITX) showed conclusively that the ingredients of ultraviolet printing inks may migrate into packaged foodstuffs. For multilayered materials like beverage cartons, the only way that mass transfer can occur is by the so-called set-off effect. In contrast, in the case of rigid plastics like yoghurt cups, two other methods of mass transfer, permeation and gas phase, have to be considered. In cooperation with producers of ink, plastic cups and yoghurt, a project was conducted in order to elucidate the mass transfer of ink ingredients. In addition, the influence of storage time and the age of ultraviolet lamps on the migration level was examined. The suitability of 50% ethanol as a simulant for yoghurt was also tested. ITX was chosen as a model migrant, as it is easily detectable. Furthermore, the migration of two other substances, the photo-initiator 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MTMP) and the amine synergist ethyl-4-(dimethylamino)benzoate (EDAB), which may be used in combination with ITX, was studied. Before being filled with yoghurt or 50% ethanol, the printed cups were stored under different contact conditions, with and without contact between the inner layer and the printed surfaces, in order to distinguish between the possible mass transfer ways. All analyses were performed by means of high performance liquid chromatography with diode array and fluorescence detection (HPLC-DAD/FLD). It was shown that contamination with ITX and EDAB occurs via set-off and that the degree of migration increases with lamp age and storage time of the unfilled cups. Migration of MTMP was not detectable. The results show that besides the careful selection of the appropriate raw materials for printing ink, a close monitoring of the process also plays a major role in migration control. In addition, the results proved that 50% ethanol is a suitable simulant for yoghurt. PMID:20432097

Jung, T; Simat, T J; Altkofer, W

2010-07-01

405

CMOS ROM arrays programmable by laser beam scanning  

E-print Network

. Delay Time for Several V oo page Table 2. Delay Time of Znverter Array Table 3. Supply Current of Inverter Array Table 4. Leakage Current of s Big Diode Table 5. Timing Response of s 256 ? hit LPROM Table 6. Supply Current of a 256-bit LPROM V1... LIST OF FIGURES Figure 1. T~ical ROM Cells and Array Figure 2. One-diode Cells Figure 3. Modified One-diode Cells Figure 4. Stray Capacitance Effect Figure 5. Two-diode and One-transistor Cells Figure 6. Four Cells sharing an N ? well Figure 7...

Lee, Jongjune

1984-01-01

406

Enhanced ultraviolet electroluminescence and spectral narrowing from ZnO quantum dots/GaN heterojunction diodes by using high-k HfO{sub 2} electron blocking layer  

SciTech Connect

We demonstrated the capability of realizing enhanced ZnO-related UV emissions by using the low-cost and solution-processable ZnO quantum dots (QDs) with the help of a high-k HfO{sub 2} electron blocking layer (EBL) for the ZnO QDs/p-GaN light-emitting diodes (LEDs). Full-width at half maximum of the LED devices was greatly decreased from ?110 to ?54?nm, and recombinations related to nonradiative centers were significantly suppressed with inserting HfO{sub 2} EBL. The electroluminescence of the ZnO QDs/HfO{sub 2}/p-GaN LEDs demonstrated an interesting spectral narrowing effect with increasing HfO{sub 2} thickness. The Gaussian fitting revealed that the great enhancement of the Zn{sub i}-related emission at ?414?nm whereas the deep suppression of the interfacial recombination at ?477?nm should be the main reason for the spectral narrowing effect.

Mo, Xiaoming; Long, Hao; Wang, Haoning; Chen, Zhao; Wan, Jiawei; Liu, Yuping; Fang, Guojia, E-mail: gjfang@whu.edu.cn [Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Li, Songzhan [Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430073 (China); Feng, Yamin [Department of Physics, Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079 (China); Ouyang, Yifang [College of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004 (China)

2014-08-11

407

Individually addressable optoelectronic arrays for optogenetic neural stimulation  

Microsoft Academic Search

Here we demonstrate the use of a micro-Light Emitting Diode Arrays as a powerful tool for complex spatiotemporal control of photosensitized neurons. The array can generate arbitrary, 2D, excitation patterns with millisecond and micrometer resolution. In particular, we describe an active matrix control address system to allow simultaneous control of 256 individual micro light emitting diodes. We present the system

P. Degenaar; B. McGovern; R. Berlinguer-Palmini; N. Vysokov; N. Grossman; V. Pohrer; E. Drakakis; M. Neil

2010-01-01

408

Method for extreme ultraviolet lithography  

DOEpatents

A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

Felter, T. E. (Livermore, CA); Kubiak, Glenn D. (Livermore, CA)

1999-01-01

409

Method for extreme ultraviolet lithography  

DOEpatents

A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

Felter, T. E. (727 Clara St., Livermore, Alameda County, CA 94550); Kubiak, G. D. (475 Maple St., Livermore, Alameda County, CA 94550)

2000-01-01

410

Qualification and Selection of Flight Diode Lasers for Space Applications  

NASA Technical Reports Server (NTRS)

The reliability and lifetime of laser diodes is critical to space missions. The Nuclear Spectroscopic Telescope Array (NuSTAR) mission includes a metrology system that is based upon laser diodes. An operational test facility has been developed to qualify and select, by mission standards, laser diodes that will survive the intended space environment and mission lifetime. The facility is situated in an electrostatic discharge (ESD) certified clean-room and consist of an enclosed temperature-controlled stage that can accommodate up to 20 laser diodes. The facility is designed to characterize a single laser diode, in addition to conducting laser lifetime testing on up to 20 laser diodes simultaneously. A standard laser current driver is used to drive a single laser diode. Laser diode current, voltage, power, and wavelength are measured for each laser diode, and a method of selecting the most adequate laser diodes for space deployment is implemented. The method consists of creating histograms of laser threshold currents, powers at a designated current, and wavelengths at designated power. From these histograms, the laser diodes that illustrate a performance that is outside the normal are rejected and the remaining lasers are considered spaceborne candidates. To perform laser lifetime testing, the facility is equipped with 20 custom laser drivers that were designed and built by California Institute of Technology specifically to drive NuSTAR metrology lasers. The laser drivers can be operated in constant-current mode or alternating-current mode. Situated inside the enclosure, in front of the laser diodes, are 20 power-meter heads to record laser power throughout the duration of lifetime testing. Prior to connecting a laser diode to the current source for characterization and lifetime testing, a background program is initiated to collect current, voltage, and resistance. This backstage data collection enables the operational test facility to have full laser diode traceablity.

Liebe, Carl C.; Dillon, Robert P.; Gontijo, Ivair; Forouhar, Siamak; Shapiro, Andrew A.; Cooper, Mark S.; Meras, Patrick L.

2010-01-01

411

White electroluminescence from ZnO nanorods/p-GaN heterojunction light-emitting diodes under reverse bias  

NASA Astrophysics Data System (ADS)

Heterojunction light-emitting diodes (LEDs) based on arrays of ZnO nanorods were fabricated on p-GaN films by the hydrothermal method. Without any phosphors, white-light electroluminescence (EL) from ZnO nanorods/p-GaN heterojunction LEDs operated at reverse breakdown bias was observed. The EL spectra are composed of an ultraviolet (UV) emission centered at 382 nm, a blue light located at 431 nm and a broadband yellow-green light at around 547 nm, which originated from band-edge emission in ZnO, the Mg acceptor levels in p-GaN and the deep-level states near the ZnO/GaN interface, respectively. The chromaticity coordinates of EL spectrum are very close to the (0.333, 0.333) of standard white light. The origin of these emissions has been discussed and the tunneling effect in the interface is probably the mechanism to explain EL emission.

Zhang, Lichun; Li, Qingshan; Qu, Chong; Zhang, Zhongjun; Huang, Ruizhi; Zhao, Fengzhou

2013-02-01

412

Energy transfer from Sm3+ to Eu3+ in red-emitting phosphor LaMgAl11O19:Sm3+, Eu3+ for solar cells and near-ultraviolet white light-emitting diodes.  

PubMed

The red-emitting phosphor LaMgAl11O19:Sm(3+), Eu(3+) was prepared by solid-state reaction at 1600 °C for 4 h. The phase formation, luminescence properties, and energy transfer from Sm(3+) to Eu(3+) were studied. With the addition of 5 mol % Sm(3+) as the sensitizer, the excitation wavelength of LaMgAl11O19:Eu(3+) phosphor was extended from 464 to 403 nm, and the emission intensity under the excitation at 403 nm was also enhanced. The host material LaMgAl11O19 could contain the high doping content of Eu(3+) (20 mol %) without concentration quenching. This energy transfer from Sm(3+) to Eu(3+) was confirmed by the decay times of energy donor Sm(3+). The mechanism of energy transfer (Sm(3+) ? Eu(3+)) was proved to be quadrupole-quadrupole interaction. Under the 403 nm excitation at 150 °C, the emission intensities of the characteristic peaks of Sm(3+) and Eu(3+) in LaMgAl11O19:0.05Sm(3+), 0.2Eu(3+) phosphor were decreased to 65% and 56% of the initial intensities at room temperature, and the relatively high activation energy proved that this phosphor had a good thermal stability. The CIE coordinate was calculated to be (x = 0.601, y = 0.390). The LaMgAl11O19:0.05Sm(3+), 0.2Eu(3+) phosphor is a candidate for copper phthalocyanine-based solar cells and white light-emitting diodes. PMID:24884208

Min, Xin; Huang, Zhaohui; Fang, Minghao; Liu, Yan-Gai; Tang, Chao; Wu, Xiaowen

2014-06-16

413

Ba(1.3)Ca(0.7)SiO4:Eu(2+),Mn(2+): a promising single-phase, color-tunable phosphor for near-ultraviolet white-light-emitting diodes.  

PubMed

In this paper, Eu(2+)-doped and Eu(2+)/Mn(2+)-codoped Ba1.3Ca0.7SiO4 phosphors were synthesized by means of a conventional solid-state reaction process. The single-phase purity was checked by means of X-ray diffraction and the Rietveld method. Under excitation at 390 nm, the emission spectra of the Eu(2+)-doped phosphors exhibit a broad-band emission centered at 500 nm caused by the electric dipole allowed transition of the Eu(2+) ions. The emission spectra of codoped phosphors show one more broad emission centered at 600 nm attributable to the transitions from the (4)T1((4)G) ? (6)A1((6)S) of Mn(2+) ions. The luminescent color of the codoped phosphors can be easily adjusted from blue to red with variation of the Mn(2+) content. The energy transfer mechanism from the Eu(2+) to Mn(2+) ions in Ba1.3Ca0.7SiO4 phosphors has been confirmed to be the resonant type via dipole-quadrupole interaction, and the critical distance has been calculated quantitatively. All these results demonstrate that the Eu(2+)/Mn(2+)-codoped Ba1.3Ca0.7SiO4 phosphors can be a promising single-phase, color-tunable phosphor for near-UV white-light-emitting diodes after a further optimization process. Additionally, a great red shift from 593 to 620 nm has been observed following the increase of Mn(2+) content, and the phenomenon has been discussed in relation to the changes in the crystal field surrounding the Mn(2+) ions and the exchange interactions caused by the formation of Mn(2+) pairs. PMID:25260073

Lv, Wenzhen; Jiao, Mengmeng; Zhao, Qi; Shao, Baiqi; Lü, Wei; You, Hongpeng

2014-10-20

414

Simultaneous determination of 10 components in bu-zhong-yi-qi wan by solid phase extraction-high performance liquid chromatography with diode array detection and evaporative light scattering detection.  

PubMed

An effective, accurate and reliable method for the simultaneous separation and determination of 10 major components in Chinese medicine Bu-Zhong-Yi-Qi Wan (BZYQW) was developed and validated using solid phase extraction column-high performance liquid chromatography-diode array detection-evaporative light scattering detection (SPE-HPLC-DAD-ELSD). The chromatographic separation was performed on a Spursil™ C18 column (250 mm × 4.6 mm, 5 µm) at 30°C with an acetonitrile-water gradient as mobile phase. The DAD detection wavelength 254 nm was utilized for the quantitative analysis. The drift tube temperature and the carrier gas flow rate of the ELSD detection was set at 110.5°C and 3.1 mL/min. The total run time is 103 min, these determined components peak out within 81 min. Excellent linear behaviors over the investigated concentration ranges were observed with the values of r(2) higher than 0.9990 for all the analytes. The Linear range over hesperidin, senkyunolide I, senkyunolide H, ononin, calycosin, formononetin, ligustilide, butylene phthalide, astragaloside IV, astragaloside I is 4.50-94.50 µg/mL, 22.75-364.00 µg/mL, 2.30-45.00 µg/mL, 11.76-125.14 µg/mL, 4.62-50.35 µg/mL, 1.90-28.93 µg/mL, 1.29-159.00 µg/mL, 2.90-36.00 µg/mL, 35.40-192.40 µg/mL, 41.40-96.60 µg/mL, respectively. The method was validated by its repeatability [relative standard deviation (RSD) < 3.54%] and intra-day (RSD < 2.11%) and inter-day precision (RSD < 3.45%). The limits of detection and quantification of each component were in the ranges of 0.04-10.24 and 0.12-39.22 µg/mL, respectively. The average recovery yields of the 10 compounds ranged from 95.79 to 101.25%. The validated method was successfully applied to the simultaneous determination of these principal components in 10 commercial samples of BZYQW from different manufacturers. PMID:25214498

Hu, Fang; Zhu, Ruijuan; Liu, Xiaohua; Yang, Yinglai; Li, Can; Feng, Shilan; Li, Yingdong

2015-05-01

415

Photovoltaic-module bypass-diode encapsulation. Annual report  

SciTech Connect

The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented in this annual report. A comprehensive survey of available pad-mounted PN junction and Schottky diodes led to the selection of Semicon PN junction diode cells for this application. Diode junction-to-heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1/sup 0/C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150/sup 0/C. Based on the results of a detailed thermal analysis, which covered the range of bypass currents from 2 to 20 amperes, three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed and fabricated. Thermal testing of these modules has enabled the formation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally-mounted packaged diodes. An assessment of bypass diode reliability, which relies heavily on rectifying diode failure rate data, leads to the general conclusion that, when proper designed and installed, these devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

Not Available

1983-06-20

416

Diode pumped Nd:YAG laser development  

NASA Technical Reports Server (NTRS)

A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

Reno, C. W.; Herzog, D. G.

1976-01-01

417

Optical communication with laser diode arrays  

NASA Technical Reports Server (NTRS)

The performance of a direct-detection optical communication system in which the laser transmitter sends short optical pulses of selected nonoverlapping center frequencies is analysed. This modulation format, in which a single light pulse is sent in one of M time slots at one of N optical center frequencies, is referred to as color coded optical pulse position modulation (CCPPM). The optimum energy-efficiency of this system, as measured by the channel capacity in nats per photon, exceeds that of ordinary optical pulse position modulation which uses a pulsed laser of fixed optical frequency. Reliable communication at optimal energy efficiency is easily achieved through the use of modest block length Reed-Solomon codes with the code words represented as CCPPM symbols.

Davidson, F.

1984-01-01

418

Diode and Diode Circuits, a Programmed Text.  

ERIC Educational Resources Information Center

This programed text on diode and diode circuits was developed under contract with the United States Office of Education as Number 4 in a series of materials for use in an electrical engineering sequence. It is intended as a supplement to a regular text and other instructional material. (DH)

Balabanian, Norman; Kirwin, Gerald J.

419

Diode pumped solid-state laser oscillators for spectroscopic applications  

NASA Technical Reports Server (NTRS)

The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

1987-01-01

420

Galileo Ultraviolet Spectrometer experiment  

Microsoft Academic Search

The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113–432 nm with a wavelength

C. W. Hord; A. I. F. Stewart; C. A. Barth; L. W. Esposito; G. E. Thomas; B. R. Sandel; D. M. Hunten; A. L. Broadfoot; D. E. Shemansky; J. M. Ajello; R. A. West

1992-01-01

421

Galileo Ultraviolet Spectrometer experiment  

Microsoft Academic Search

The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength

C. W. Hord; W. E. McClintock; A. I. F. Stewart; C. A. Barth; L. W. Esposito; G. E. Thomas; B. R. Sandel; D. M. Hunten; A. L. Broadfoot; D. E. Shemansky

1992-01-01

422

Lighting with laser diodes  

NASA Astrophysics Data System (ADS)

Contemporary white light-emitting diodes (LEDs) are much more efficient than compact fluorescent lamps and hence are rapidly capturing the market for general illumination. LEDs are also replacing halogen lamps or even newer xenon based lamps in automotive headlamps. Because laser diodes are inherently much brighter and often more efficient than corresponding LEDs, there is great research interest in developing laser diode based illumination systems. Operating at higher current densities and with smaller form factors, laser diodes may outperform LEDs in the future. This article reviews the possibilities and challenges in the integration of visible laser diodes in future illumination systems.

Basu, Chandrajit; Meinhardt-Wollweber, Merve; Roth, Bernhard

2013-08-01

423

Confirmation of malachite green, gentian violet and their leuco analogs in catfish and trout tissue by high-performance liquid chromatography utilizing electrochemistry with ultraviolet-visible diode array detection and fluorescence detection  

Microsoft Academic Search

A sensitive analytical procedure for the confirmation of residues of malachite green (MG), gentian violet (GV) and their leuco analogs (LMG and LGV) in catfish and trout tissue at 10 ng\\/g is described. Frozen (?20°C) fish fillets were cut into small pieces and homogenized in Waring blendors. The compounds of interest were extracted from 20-g amounts of homogenized fish tissue

Larry G. Rushing; Eugene B. Hansen

1997-01-01

424

n-ZnO nanorods/p+-Si (111) heterojunction light emitting diodes  

PubMed Central

In this study, we report the effects of thermal annealing in nitrogen ambient on the optical and electrical properties of zinc oxide (ZnO) nanorod (NR) arrays for the application in light emission diodes (LED). The single-crystalline ZnO NR array was synthesized on p+-Si (111) substrate without seed layer using simple, low-cost, and low-temperature hydrothermal method. The substrate surface was functionalized by hydrofluoric acid and self-assembled monolayer of octadecyltrimethoxysilane ((CH3 (CH2)17Si(OCH3)3). ZnO NRs were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and micro-photoluminescence (micro-PL). The results of FESEM and XRD indicate that single crystalline ZnO NRs with (002) preferred orientation along the substrate surface is successfully grown on functionalized p+-Si (111) substrate. The current–voltage and electroluminescence (EL) characteristics of the LED show that the most suitable annealing temperature ranges from 400°C to 600°C. Both PL and EL spectra show broadband emissions, ultraviolet and visible (green-yellow) light. The white-like light emission is able to be observed by naked eyes. PMID:23216651

2012-01-01

425

GaAs laser diode pumped Nd:YAG laser  

Microsoft Academic Search

A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness

L. C. Conant; C. W. Reno

1974-01-01

426

The Junction Diode Basic Operation  

E-print Network

The Junction Diode Basic Operation The diode is fabricated of a semiconductor material, usually section of the diode. The junction is the dividing line between the n-type and p-type sides. Thermal the electric field sweeps them out. Figure 1: (a) Diode cross section. (b) Reverse biased diode. (c) Forward

Leach Jr.,W. Marshall

427

Double Light-Emitting Diode  

NASA Technical Reports Server (NTRS)

Two GaAs light-emitting diodes packaged as single unit offer greater reliability than conventional single-diode package. One diode is primary light source. If it fails, backup diode switched in. Each diode has separate power lead, so either or both switched on or off at same time.

Johnson, R. L.; Hall, T. C.

1985-01-01

428

Photoresist composition for extreme ultraviolet lithography  

DOEpatents

A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

Felter, T. E. (Alameda County, CA); Kubiak, G. D. (Alameda County, CA)

1999-01-01