Sample records for undergraduate biochemistry laboratory

  1. Circular Dichroism Spectroscopy: Enhancing a Traditional Undergraduate Biochemistry Laboratory Experience

    ERIC Educational Resources Information Center

    Lewis, Russell L.; Seal, Erin L.; Lorts, Aimee R.; Stewart, Amanda L.

    2017-01-01

    The undergraduate biochemistry laboratory curriculum is designed to provide students with experience in protein isolation and purification protocols as well as various data analysis techniques, which enhance the biochemistry lecture course and give students a broad range of tools upon which to build in graduate level laboratories or once they…

  2. Circular dichroism spectroscopy: Enhancing a traditional undergraduate biochemistry laboratory experience.

    PubMed

    Lewis, Russell L; Seal, Erin L; Lorts, Aimee R; Stewart, Amanda L

    2017-11-01

    The undergraduate biochemistry laboratory curriculum is designed to provide students with experience in protein isolation and purification protocols as well as various data analysis techniques, which enhance the biochemistry lecture course and give students a broad range of tools upon which to build in graduate level laboratories or once they begin their careers. One of the most common biochemistry protein purification experiments is the isolation and characterization of cytochrome c. Students across the country purify cytochrome c, lysozyme, or some other well-known protein to learn these common purification techniques. What this series of experiments lacks is the use of sophisticated instrumentation that is rarely available to undergraduate students. To give students a broader background in biochemical spectroscopy techniques, a new circular dichroism (CD) laboratory experiment was introduced into the biochemistry laboratory curriculum. This CD experiment provides students with a means of conceptualizing the secondary structure of their purified protein, and assessments indicate that students' understanding of the technique increased significantly. Students conducted this experiment with ease and in a short time frame, so this laboratory is conducive to merging with other data analysis techniques within a single laboratory period. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):515-520, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  3. Known structure, unknown function: An inquiry-based undergraduate biochemistry laboratory course.

    PubMed

    Gray, Cynthia; Price, Carol W; Lee, Christopher T; Dewald, Alison H; Cline, Matthew A; McAnany, Charles E; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year-long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three-dimensional structure. The first half of the course is inquiry-based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  4. Known structure, unknown function: An inquiry‐based undergraduate biochemistry laboratory course

    PubMed Central

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.

    2015-01-01

    Abstract Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry‐ and research‐based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year‐long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three‐dimensional structure. The first half of the course is inquiry‐based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 43(4):245–262, 2015. PMID:26148241

  5. Known Structure, Unknown Function: An Inquiry-Based Undergraduate Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's…

  6. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  7. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  8. A Curriculum Skills Matrix for Development and Assessment of Undergraduate Biochemistry and Molecular Biology Laboratory Programs

    ERIC Educational Resources Information Center

    Caldwell, Benjamin; Rohlman, Christopher; Benore-Parsons, Marilee

    2004-01-01

    We have designed a skills matrix to be used for developing and assessing undergraduate biochemistry and molecular biology laboratory curricula. We prepared the skills matrix for the Project Kaleidoscope Summer Institute workshop in Snowbird, Utah (July 2001) to help current and developing undergraduate biochemistry and molecular biology program…

  9. Forensic Analysis of Canine DNA Samples in the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Carson, Tobin M.; Bradley, Sharonda Q.; Fekete, Brenda L.; Millard, Julie T.; LaRiviere, Frederick J.

    2009-01-01

    Recent advances in canine genomics have allowed the development of highly distinguishing methods of analysis for both nuclear and mitochondrial DNA. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify hypervariable regions of DNA from dog hair and saliva…

  10. Green Fluorescent Protein-Focused Bioinformatics Laboratory Experiment Suitable for Undergraduates in Biochemistry Courses

    ERIC Educational Resources Information Center

    Rowe, Laura

    2017-01-01

    An introductory bioinformatics laboratory experiment focused on protein analysis has been developed that is suitable for undergraduate students in introductory biochemistry courses. The laboratory experiment is designed to be potentially used as a "stand-alone" activity in which students are introduced to basic bioinformatics tools and…

  11. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    PubMed

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin. © 2015 The International Union of Biochemistry and Molecular Biology.

  12. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  13. Glycobiology, how to sugar-coat an undergraduate advanced biochemistry laboratory.

    PubMed

    McReynolds, Katherine D

    2006-09-01

    A second semester biochemistry laboratory has been implemented as an independent projects course at California State University, Sacramento since 1999. To incorporate aspects of carbohydrate biochemistry, or glycobiology, into our curriculum, projects in lectin isolation and purification were undertaken over the course of two semesters. Through this modification in course content, this class now offers a diverse, hands-on treatment of not only standard protein purification techniques but also carbohydrate techniques, specifically the study of carbohydrate-protein interactions through hemagglutination assays, a novel commercial assay known as the Instant™Chek assay, and the generation and use of appropriate affinity chromatography matrices. Throughout the semester, the students are in charge of all aspects of their projects, from planning to execution and completion. Specific examples of student projects are highlighted such that the breadth of protein-carbohydrate chemistry pursued in a 15-week semester can be appreciated. The feedback of the course was very favorable, indicating that the students came away with skills necessary for them to be successful in their future careers. Most importantly, however, aspects of glycobiology have now been incorporated effectively into a mainstream undergraduate biochemistry laboratory class. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  14. Purification and Characterization of Taq Polymerase: A 9-Week Biochemistry Laboratory Project for Undergraduate Students

    ERIC Educational Resources Information Center

    Bellin, Robert M.; Bruno, Mary K.; Farrow, Melissa A.

    2010-01-01

    We have developed a 9-week undergraduate laboratory series focused on the purification and characterization of "Thermus aquaticus" DNA polymerase (Taq). Our aim was to provide undergraduate biochemistry students with a full-semester continuing project simulating a research-like experience, while having each week's procedure focus on a single…

  15. A Survey on Faculty Perspectives on the Transition to a Biochemistry Course-Based Undergraduate Research Experience Laboratory

    ERIC Educational Resources Information Center

    Craig, Paul A.

    2017-01-01

    It will always remain a goal of an undergraduate biochemistry laboratory course to engage students hands-on in a wide range of biochemistry laboratory experiences. In 2006, our research group initiated a project for "in silico" prediction of enzyme function based only on the 3D coordinates of the more than 3800 proteins "of unknown…

  16. Analyzing Exonuclease-Induced Hyperchromicity by Uv Spectroscopy: An Undergraduate Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ackerman, Megan M.; Ricciardi, Christopher; Weiss, David; Chant, Alan; Kraemer-Chant, Christina M.

    2016-01-01

    An undergraduate biochemistry laboratory experiment is described that utilizes free online bioinformatics tools along with readily available exonucleases to study the effects of base stacking and hydrogen bonding on the UV absorbance of DNA samples. UV absorbance of double-stranded DNA at the ?[subscript max] is decreased when the DNA bases are…

  17. Bring Your Own Device: A Digital Notebook for Undergraduate Biochemistry Laboratory Using a Free, Cross-Platform Application

    ERIC Educational Resources Information Center

    Van Dyke, Aaron R.; Smith-Carpenter, Jillian

    2017-01-01

    The majority of undergraduates own a smartphone, yet fewer than half view it as a valuable learning technology. Consequently, a digital laboratory notebook (DLN) was developed for an upper-division undergraduate biochemistry laboratory course using the free mobile application Evernote. The cloud-based DLN capitalized on the unique features of…

  18. Immobilized alpha-Galactosidase in the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Mulimani, V. H.; Dhananjay, K.

    2007-01-01

    This laboratory experiment was designed to demonstrate the application of immobilized galactosidase in food industry to hydrolyze raffinose family oligosaccharides in soymilk. This laboratory experiment was conducted for postgraduate students of biochemistry and developed for graduate and undergraduate students of biochemistry, biotechnology,…

  19. A survey on faculty perspectives on the transition to a biochemistry course-based undergraduate research experience laboratory.

    PubMed

    Craig, Paul A

    2017-09-01

    It will always remain a goal of an undergraduate biochemistry laboratory course to engage students hands-on in a wide range of biochemistry laboratory experiences. In 2006, our research group initiated a project for in silico prediction of enzyme function based only on the 3D coordinates of the more than 3800 proteins "of unknown function" in the Protein Data Bank, many of which resulted from the Protein Structure Initiative. Students have used the ProMOL plugin to the PyMOL molecular graphics environment along with BLAST, Pfam, and Dali to predict protein functions. As young scientists, these undergraduate research students wanted to see if their predictions were correct and so they developed an approach for in vitro testing of predicted enzyme function that included literature exploration, selection of a suitable assay and the search for commercially available substrates. Over the past two years, a team of faculty members from seven different campuses (California Polytechnic San Luis Obispo, Hope College, Oral Roberts University, Rochester Institute of Technology, St. Mary's University, Ursinus College, and Purdue University) have transferred this approach to the undergraduate biochemistry teaching laboratory as a Course-based Undergraduate Research Experience. A series of ten course modules and eight instructional videos have been created (www.promol.org/home/basil-modules-1) and the group is now expanding these resources, creating assessments and evaluating how this approach helps student to grow as scientists. The focus of this manuscript will be the logistical implications of this transition on campuses that have different cultures, expectations, schedules, and student populations. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):426-436, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  20. The Determination of Vitamin D-Dependent Calcium Binding Protein in Chick Intesting: An Undergraduate Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Lessard, George M.

    1980-01-01

    Described is an experiment used in an undergraduate biochemistry laboratory involving inducing rickets in chicks and correlating the disease to a reduction in vitamin D-dependent calcium binding protein. Techniques involved are hormone induction, protein isolation, and radioisotope methodology. (Author/DS)

  1. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  2. Identification of Forensic Samples via Mitochondrial DNA in the Undergraduate Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Millard, Julie T.; Pilon, André M.

    2003-04-01

    A recent forensic approach for identification of unknown biological samples is mitochondrial DNA (mtDNA) sequencing. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify a 440 base pair hypervariable region of human mtDNA from a variety of "crime scene" samples (e.g., teeth, hair, nails, cigarettes, envelope flaps, toothbrushes, and chewing gum). Amplification is verified via agarose gel electrophoresis and then samples are subjected to cycle sequencing. Sequence alignments are made via the program CLUSTAL W, allowing students to compare samples and solve the "crime."

  3. A Kinetic Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Palmer, Richard E.

    1986-01-01

    Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)

  4. Medical Biochemistry as Subdiscipline of Laboratory Medicine in Serbia.

    PubMed

    Jovičić, Snežana; Majkić-Singh, Nada

    2017-04-01

    Medical biochemistry is the usual name for clinical biochemistry or clinical chemistry in Serbia, and medical biochemist is the official name for the clinical chemist (or clinical biochemist). This is the largest sub-discipline of the laboratory medicine in Serbia. It includes all aspects of clinical chemistry, and also laboratory hematology with coagulation, immunology, etc. Medical biochemistry laboratories in Serbia and medical biochemists as a profession are part of Health Care System and their activities are regulated through: the Health Care Law and rules issued by the Chamber of Medical Biochemists of Serbia. The first continuous and organized education for Medical Biochemists (Clinical Chemists) in Serbia dates from 1945, when the Department of Medical Biochemistry was established at the Pharmaceutical Faculty in Belgrade. In 1987 at the same Faculty a five years undergraduate study program was established, educating Medical Biochemists under a special program. Since the academic year 2006/2007 the new five year undergraduate (according to Bologna Declaration) and four-year postgraduate program according to EC4 European Syllabus for Postgraduate Training in Clinical Chemistry and Laboratory Medicine has been established. The Ministry of Education and Ministry of Public Health accredited these programs. There are four requirements for practicing medical biochemistry in the Health Care System: University Diploma of the Faculty of Pharmacy (Study of Medical Biochemistry), successful completion of the professional exam at the Ministry of Health after completion of one additional year of obligatory practical training in the medical biochemistry laboratories, membership in the Serbian Chamber of Medical Biochemists and licence for skilled work issued by the Serbian Chamber of Medical Biochemists. In order to present laboratory medical biochemistry practice in Serbia this paper will be focused on the following: Serbian national legislation, healthcare services

  5. Medical Biochemistry as Subdiscipline of Laboratory Medicine in Serbia

    PubMed Central

    Jovičić, Snežana

    2017-01-01

    Summary Medical biochemistry is the usual name for clinical biochemistry or clinical chemistry in Serbia, and medical biochemist is the official name for the clinical chemist (or clinical biochemist). This is the largest sub-discipline of the laboratory medicine in Serbia. It includes all aspects of clinical chemistry, and also laboratory hematology with coagulation, immunology, etc. Medical biochemistry laboratories in Serbia and medical biochemists as a profession are part of Health Care System and their activities are regulated through: the Health Care Law and rules issued by the Chamber of Medical Biochemists of Serbia. The first continuous and organized education for Medical Biochemists (Clinical Chemists) in Serbia dates from 1945, when the Department of Medical Biochemistry was established at the Pharmaceutical Faculty in Belgrade. In 1987 at the same Faculty a five years undergraduate study program was established, educating Medical Biochemists under a special program. Since the academic year 2006/2007 the new five year undergraduate (according to Bologna Declaration) and four-year postgraduate program according to EC4 European Syllabus for Postgraduate Training in Clinical Chemistry and Laboratory Medicine has been established. The Ministry of Education and Ministry of Public Health accredited these programs. There are four requirements for practicing medical biochemistry in the Health Care System: University Diploma of the Faculty of Pharmacy (Study of Medical Biochemistry), successful completion of the professional exam at the Ministry of Health after completion of one additional year of obligatory practical training in the medical biochemistry laboratories, membership in the Serbian Chamber of Medical Biochemists and licence for skilled work issued by the Serbian Chamber of Medical Biochemists. In order to present laboratory medical biochemistry practice in Serbia this paper will be focused on the following: Serbian national legislation, healthcare

  6. Uncovering protein-protein interactions through a team-based undergraduate biochemistry course.

    PubMed

    Cookmeyer, David L; Winesett, Emily S; Kokona, Bashkim; Huff, Adam R; Aliev, Sabina; Bloch, Noah B; Bulos, Joshua A; Evans, Irene L; Fagre, Christian R; Godbe, Kerilyn N; Khromava, Maryna; Konstantinovsky, Daniel M; Lafrance, Alexander E; Lamacki, Alexandra J; Parry, Robert C; Quinn, Jeanne M; Thurston, Alana M; Tsai, Kathleen J S; Mollo, Aurelio; Cryle, Max J; Fairman, Robert; Charkoudian, Louise K

    2017-11-01

    How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Community Page, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins. Finally, we address the community and invite others to join us in making a larger impact on undergraduate education and the field of biochemistry by coordinating efforts to integrate research and teaching across campuses.

  7. Uncovering protein–protein interactions through a team-based undergraduate biochemistry course

    PubMed Central

    Cookmeyer, David L.; Winesett, Emily S.; Kokona, Bashkim; Huff, Adam R.; Aliev, Sabina; Bloch, Noah B.; Bulos, Joshua A.; Evans, Irene L.; Fagre, Christian R.; Godbe, Kerilyn N.; Khromava, Maryna; Konstantinovsky, Daniel M.; Lafrance, Alexander E.; Lamacki, Alexandra J.; Parry, Robert C.; Quinn, Jeanne M.; Thurston, Alana M.; Tsai, Kathleen J. S.; Mollo, Aurelio; Cryle, Max J.; Fairman, Robert

    2017-01-01

    How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Community Page, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins. Finally, we address the community and invite others to join us in making a larger impact on undergraduate education and the field of biochemistry by coordinating efforts to integrate research and teaching across campuses. PMID:29091712

  8. Glycobiology, How to Sugar-Coat an Undergraduate Advanced Biochemistry Laboratory

    ERIC Educational Resources Information Center

    McReynolds, Katherine D.

    2006-01-01

    A second semester biochemistry laboratory has been implemented as an independent projects course at California State University, Sacramento since 1999. To incorporate aspects of carbohydrate biochemistry, or glycobiology, into our curriculum, projects in lectin isolation and purification were undertaken over the course of two semesters. Through…

  9. Raising environmental awareness through applied biochemistry laboratory experiments.

    PubMed

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise. © 2013 by The International Union of Biochemistry and Molecular Biology.

  10. A Two-Week Guided Inquiry Protein Separation and Detection Experiment for Undergraduate Biochemistry

    ERIC Educational Resources Information Center

    Carolan, James P.; Nolta, Kathleen V.

    2016-01-01

    A laboratory experiment for teaching protein separation and detection in an undergraduate biochemistry laboratory course is described. This experiment, performed in two, 4 h laboratory periods, incorporates guided inquiry principles to introduce students to the concepts behind and difficulties of protein purification. After using size-exclusion…

  11. An "in Silico" DNA Cloning Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Elkins, Kelly M.

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced…

  12. An Inexpensive, Relatively Green, and Rapid Method to Purify Genomic DNA from "Escherichia Coli": An Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Sims, Paul A.; Branscum, Katie M.; Kao, Lydia; Keaveny, Virginia R.

    2010-01-01

    A method to purify genomic DNA from "Escherichia coli" is presented. The method is an amalgam of published methods but has been modified and optimized for use in the undergraduate biochemistry laboratory. Specifically, the method uses Tide Free 2x Ultra laundry detergent, which contains unspecified proteases and lipases, "n"-butanol, 2-propanol,…

  13. A Survey of Final-year Undergraduate Laboratory Projects in Biochemistry and Related Degrees in Great Britain.

    ERIC Educational Resources Information Center

    Austin, Caroline A.

    1997-01-01

    Analyzes undergraduate research projects in biochemistry and related subjects at British universities. Discusses the trend toward students doing less research as part of their undergraduate study. Reasons cited for this trend include increased student numbers and costs. (DDR)

  14. From Gene to Structure: "Lactobacillus Bulgaricus" D-Lactate Dehydrogenase from Yogurt as an Integrated Curriculum Model for Undergraduate Molecular Biology and Biochemistry Laboratory Courses

    ERIC Educational Resources Information Center

    Lawton, Jeffrey A.; Prescott, Noelle A.; Lawton, Ping X.

    2018-01-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the "ldhA" gene from the yogurt-fermenting bacterium "Lactobacillus bulgaricus," which encodes the enzyme d-lactate dehydrogenase. The molecular…

  15. Differentiating Biochemistry Course Laboratories Based on Student Experience

    ERIC Educational Resources Information Center

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  16. An Undergraduate Biochemistry Laboratory Course with an Emphasis on a Research Experience

    ERIC Educational Resources Information Center

    Caspers, Mary Lou; Roberts-Kirchhoff, Elizabeth S.

    2003-01-01

    In their junior or senior year, biochemistry majors at the University of Detroit Mercy are required to take a two-credit biochemistry laboratory course. Five years ago, the format of this course was changed from structured experiments to a more project-based approach. Several structured experiments were included at the beginning of the course…

  17. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    PubMed

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature. Copyright © 2013 Wiley Periodicals, Inc.

  18. Kinetics of Carboxylesterase: An Experiment for Biochemistry and Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Nichols, C. S.; Cromartie, T. H.

    1979-01-01

    Describes a convenient, inexpensive experiment in enzyme kinetics developed for the undergraduate biochemistry laboratory at the University of Virginia. Required are a single beam visible spectrophotometer with output to a recorder, a constant temperature, a commercially available enzyme, substrates, and buffers. (BT)

  19. Integrating Internet Assignments into a Biochemistry/Molecular Biology Laboratory Course

    ERIC Educational Resources Information Center

    Kaspar, Roger L.

    2002-01-01

    A main challenge in educating undergraduate students is to introduce them to the Internet and to teach them how to effectively use it in research. To this end, an Internet assignment was developed that introduces students to websites related to biomedical research at the beginning of a biochemistry/molecular biology laboratory course. The basic…

  20. A Biochemistry of Human Disease Course for Undergraduate and Graduate Students.

    ERIC Educational Resources Information Center

    Glew, Robert H.; VanderJagt, David L.

    2001-01-01

    Describes the experiences of a medical school faculty who have been offering for more than 10 years a two-course series in the biochemistry of human disease to undergraduate students majoring in biochemistry, biology, or chemistry. Recommends the teaching of specialized, advanced courses to undergraduate, pre-professional students. (DDR)

  1. The Kinetics and Inhibition of Gamma-Glutamyl Transpeptidase: A Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; Sohl, Julie

    1988-01-01

    Discusses an enzyme kinetics laboratory experiment involving a two substrate system for undergraduate biochemistry. Uses the enzyme gamma-glutamyl transpeptidase as this enzyme in blood serum is of clinical significance. Notes elevated levels are seen in liver disease, alcoholism, and epilepsy. Uses a spectrophotometer for the analysis. (MVL)

  2. Exploring Protein Structure and Dynamics through a Project-Oriented Biochemistry Laboratory Module

    ERIC Educational Resources Information Center

    Lipchock, James M.; Ginther, Patrick S.; Douglas, Bonnie B.; Bird, Kelly E.; Loria, J. Patrick

    2017-01-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant…

  3. Incorporation of Bioinformatics Exercises into the Undergraduate Biochemistry Curriculum

    ERIC Educational Resources Information Center

    Feig, Andrew L.; Jabri, Evelyn

    2002-01-01

    The field of bioinformatics is developing faster than most biochemistry textbooks can adapt. Supplementing the undergraduate biochemistry curriculum with data-mining exercises is an ideal way to expose the students to the common databases and tools that take advantage of this vast repository of biochemical information. An integrated collection of…

  4. Immobilized Lactase in the Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Allison, Matthew J.; Bering, C. Larry

    1998-10-01

    Immobilized enzymes have many practical applications. They may be used in clinical, industrial, and biotechnological laboratories and in many clinical diagnostic kits. For educational purposes, use of immobilized enzymes can easily be taught at the undergraduate or even secondary level. We have developed an immobilized enzyme experiment that combines many practical techniques used in the biochemistry laboratory and fits within a three-hour time frame. In this experiment, lactase from over-the-counter tablets for patients with lactose intolerance is immobilized in polyacrylamide, which is then milled into small beads and placed into a chromatography column. A lactose solution is added to the column and the eluant is assayed using the glucose oxidase assay, available as a kit. We have determined the optimal conditions to give the greatest turnover of lactose while allowing the immobilized enzymes to be active for long periods at room temperature.

  5. Need assessment of enhancing the weightage of applied biochemistry in the undergraduate curriculum at MGIMS, sevagram.

    PubMed

    Kumar, Satish; Jena, Lingaraja; Vagha, Jayant

    2016-05-06

    In order to review the need assessment of enhancing the weightage of Applied Biochemistry in the undergraduate curriculum at Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sevagram, a validated questionnaire was sent to 453 participants which include 387 undergraduate students, 11 interns, 23 postgraduate students, and 32 faculty members. A web-based data collection and analysis tool was designed for online questionnaire distribution, data collection, and analysis. Response rate was 100%. Most of the respondents agreed that the subject Biochemistry has relevance in clinical practice (81.24%) and applied based learning of Biochemistry by medical undergraduates would help in overall improvement in the health standards/patients care (83.44%). According to 65.12% respondents, most of the medical undergraduates read Biochemistry just for examination purpose only. Nearly half of the respondents agreed that minute details of biochemical reactions were not much useful in clinical practice (53.86%) and the vast majority of diagrammatic cycles memorized by the medical undergraduates had no relevance in clinical practice (51.21%), the decreased interest in learning the Applied Biochemistry was due to more amount of clinically irrelevant information taught to medical undergraduates (73.51%), there was a need to rethink for removing the diagrammatic biochemical cycles from curriculum for medical undergraduates (48.12%), the less learning of Applied Biochemistry or competencies would affect the clinical skills and knowledge of medical undergraduates (70.42%). The result of this study suggests that there is need for restructuring the Biochemistry curriculum with more clinical relevance. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:230-240, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  7. Drug Synthesis and Analysis on a Dime: A Capstone Medicinal Chemistry Experience for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Streu, Craig N.; Reif, Randall D.; Neiles, Kelly Y.; Schech, Amanda J.; Mertz, Pamela S.

    2016-01-01

    Integrative, research-based experiences have shown tremendous potential as effective pedagogical approaches. Pharmaceutical development is an exciting field that draws heavily on organic chemistry and biochemistry techniques. A capstone drug synthesis/analysis laboratory is described where biochemistry students synthesize azo-stilbenoid compounds…

  8. An SDS-PAGE Examination of Protein Quaternary Structure and Disulfide Bonding for a Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Powers, Jennifer L.; Andrews, Carla S.; St. Antoine, Caroline C.; Jain, Swapan S.; Bevilacqua, Vicky L. H.

    2005-01-01

    Electrophoresis is a valuable tool for biochemists, yet this technique is often not included in biochemistry laboratory curricula owing to time constraints or lack of equipment. Protein structure is also a topic of interest in many disciplines, yet most undergraduate lab experiments focus only on primary structure. In this experiment, students use…

  9. Education in Medical Biochemistry in Serbia

    PubMed Central

    2010-01-01

    Medical biochemistry is the usual name for clinical biochemistry or clinical chemistry in Serbia. Medical biochemistry laboratories and medical biochemists as a profession are part of Health Care System and are regulated through: the Health Care Law and rules issued by the Chamber of Medical Biochemists of Serbia. The first continuous and organized education for Medical Biochemists in Serbia dates from 1945, when Department of Medical Biochemistry was established at Pharmaceutical Faculty in Belgrade. In 1987 at the same Faculty a five years undergraduate branch was established, educating Medical Biochemists under a special program. Since 2006 the new five year undergraduate (according to Bologna Declaration) and postgraduate program of four-year specialization according to EC4 European Syllabus for Post-Graduate Training in Clinical Chemistry and Laboratory Medicine has been established. The Ministry of Education and Ministry of Public Health accredits the programs. There are four requirements for practicing medical biochemistry in the Health Care System: University Diploma of the Faculty of Pharmacy (Medical Biochemistry), successful completion of the profession exam at the Ministry of Health after completion of one additional year of obligatory practical training in medical laboratories, membership in the Serbian Chamber of Medical Biochemists and licence for skilled work issued by Serbian Chamber of Medical Biochemists. PMID:27683360

  10. Education in Medical Biochemistry in Serbia.

    PubMed

    Majkic-Sing, Nada

    2010-06-01

    Medical biochemistry is the usual name for clinical biochemistry or clinical chemistry in Serbia. Medical biochemistry laboratories and medical biochemists as a profession are part of Health Care System and are regulated through: the Health Care Law and rules issued by the Chamber of Medical Biochemists of Serbia. The first continuous and organized education for Medical Biochemists in Serbia dates from 1945, when Department of Medical Biochemistry was established at Pharmaceutical Faculty in Belgrade. In 1987 at the same Faculty a five years undergraduate branch was established, educating Medical Biochemists under a special program. Since 2006 the new five year undergraduate (according to Bologna Declaration) and postgraduate program of four-year specialization according to EC4 European Syllabus for Post-Graduate Training in Clinical Chemistry and Laboratory Medicine has been established. The Ministry of Education and Ministry of Public Health accredits the programs. There are four requirements for practicing medical biochemistry in the Health Care System: University Diploma of the Faculty of Pharmacy (Medical Biochemistry), successful completion of the profession exam at the Ministry of Health after completion of one additional year of obligatory practical training in medical laboratories, membership in the Serbian Chamber of Medical Biochemists and licence for skilled work issued by Serbian Chamber of Medical Biochemists.

  11. Biochemistry in Undergraduate Health Courses: Structure and Organization

    ERIC Educational Resources Information Center

    Silva, Irani F.; Batista, Nildo A.

    2003-01-01

    This article describes the following aspects of teaching biochemistry in undergraduate health courses: objectives, number of hours, time in which the subject is studied, selection of content, teaching strategies, and evaluation methodologies used. Fifty-three courses distributed in 13 areas within the health field and offered by 12 institutions…

  12. From gene to structure: Lactobacillus bulgaricus D-lactate dehydrogenase from yogurt as an integrated curriculum model for undergraduate molecular biology and biochemistry laboratory courses.

    PubMed

    Lawton, Jeffrey A; Prescott, Noelle A; Lawton, Ping X

    2018-05-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the ldhA gene from the yogurt-fermenting bacterium Lactobacillus bulgaricus, which encodes the enzyme d-lactate dehydrogenase. The molecular biology module, which consists of nine experiments carried out over eleven sessions, begins with the isolation of genomic DNA from L. bulgaricus in yogurt and guides students through the process of cloning the ldhA gene into a prokaryotic expression vector, followed by mRNA isolation and characterization of recombinant gene expression levels using RT-PCR. The biochemistry module, which consists of nine experiments carried out over eight sessions, begins with overexpression of the cloned ldhA gene and guides students through the process of affinity purification, biochemical characterization of the purified LdhA protein, and analysis of enzyme kinetics using various substrates and an inhibitor, concluding with a guided inquiry investigation of structure-function relationships in the three-dimensional structure of LdhA using molecular visualization software. Students conclude by writing a paper describing their work on the project, formatted as a manuscript to be submitted for publication in a scientific journal. Overall, this curriculum, with its emphasis on experiential learning, provides hands-on training with a variety of common laboratory techniques in molecular biology and biochemistry and builds experience with the process of scientific reasoning, along with reinforcement of essential transferrable skills such as critical thinking, information literacy, and written communication, all within the framework of an extended project having the look and feel of a research experience. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):270-278, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  13. Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.

    PubMed

    Lipchock, James M; Ginther, Patrick S; Douglas, Bonnie B; Bird, Kelly E; Patrick Loria, J

    2017-09-01

    Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant human enzyme, protein tyrosine phosphatase 1B (PTP1B). Over the course of the semester students guide their own mutant of PTP1B from conception to characterization in a cost-effective manner and gain exposure to fundamental techniques in biochemistry, including site-directed DNA mutagenesis, bacterial recombinant protein expression, affinity column purification, protein quantitation, SDS-PAGE, and enzyme kinetics. This project-based approach allows an instructor to simulate a research setting and prepare students for productive research beyond the classroom. Potential modifications to expand or contract this module are also provided. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):403-410, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. Comparing Amide-Forming Reactions Using Green Chemistry Metrics in an Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Fennie, Michael W.; Roth, Jessica M.

    2016-01-01

    In this laboratory experiment, upper-division undergraduate chemistry and biochemistry majors investigate amide-bond-forming reactions from a green chemistry perspective. Using hydrocinnamic acid and benzylamine as reactants, students perform three types of amide-forming reactions: an acid chloride derivative route; a coupling reagent promoted…

  15. A 13-Week Research-Based Biochemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Lefurgy, Scott T.; Mundorff, Emily C.

    2017-01-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with…

  16. Small Laccase from "Streptomyces Coelicolor"--An Ideal Model Protein/Enzyme for Undergraduate Laboratory Experience

    ERIC Educational Resources Information Center

    Cook, Ryan; Hannon, Drew; Southard, Jonathan N.; Majumdar, Sudipta

    2018-01-01

    A one semester undergraduate biochemistry laboratory experience is described for an understanding of recombinant technology from gene cloning to protein characterization. An integrated experimental design includes three sequential modules: molecular cloning, protein expression and purification, and protein analysis and characterization. Students…

  17. Outcomes of a Research-Driven Laboratory and Literature Course Designed to Enhance Undergraduate Contributions to Original Research

    ERIC Educational Resources Information Center

    Rasche, Madeline E.

    2004-01-01

    This work describes outcomes of a research-driven advanced microbiology laboratory and literature research course intended to enhance undergraduate preparation for and contributions to original research. The laboratory section was designed to teach fundamental biochemistry and molecular biology techniques in the context of an original research…

  18. Collaborating with Undergraduates To Contribute to Biochemistry Community Resources.

    PubMed

    Haas, Kathryn L; Heemstra, Jennifer M; Medema, Marnix H; Charkoudian, Louise K

    2018-01-30

    Course-based undergraduate research experiences (CUREs) have gained traction as effective ways to expand the impact of undergraduate research while fulfilling pedagogical goals. In this Perspective, we present innovative ways to incorporate fundamental benefits and principles of CUREs into a classroom environment through information/technology-based research projects that lead to student-generated contributions to digital community resources (CoRes). These projects represent an attractive class of CUREs because they are less resource-intensive than laboratory-based CUREs, and the projects align with the expectations of today's students to create rapid and publicly accessible contributions to society. We provide a detailed discussion of two example types of CoRe projects that can be implemented in courses to impact research and education at the chemistry-biology interface: bioinformatics annotations and development of educational tools. Finally, we present current resources available for faculty interested in incorporating CUREs or CoRe projects into their pedagogical practices. In sharing these stories and resources, we hope to lower the barrier for widespread adoption of CURE and CoRe approaches and generate discussions about how to utilize the classroom experience to make a positive impact on our students and the future of the field of biochemistry.

  19. An in silico DNA cloning experiment for the biochemistry laboratory.

    PubMed

    Elkins, Kelly M

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced high school biology classes. Students begin by examining a plasmid map with the goal of identifying which restriction enzymes may be used to clone a piece of foreign DNA containing a gene of interest into the vector. From the National Center for Biotechnology Initiative website, students are instructed to retrieve a protein sequence and use Expasy's Reverse Translate program to reverse translate the protein to cDNA. Students then use Integrated DNA Technologies' OligoAnalyzer to predict the complementary DNA strand and obtain DNA recognition sequences for the desired restriction enzymes from New England Biolabs' website. Students add the appropriate DNA restriction sequences to the double-stranded foreign DNA for cloning into the plasmid and infecting Escherichia coli cells. Students are introduced to computational biology tools, molecular biology terminology and the process of DNA cloning in this valuable single session, in silico experiment. This project develops students' understanding of the cloning process as a whole and contrasts with other laboratory and internship experiences in which the students may be involved in only a piece of the cloning process/techniques. Students interested in pursuing postgraduate study and research or employment in an academic biochemistry or molecular biology laboratory or industry will benefit most from this experience. Copyright © 2010 Wiley Periodicals, Inc.

  20. Equilibrium Gel Filtration Chromatography for the Measurement of Protein-Ligand Binding in the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Craig, Douglas B.

    2005-01-01

    A laboratory exercise used in the senior biochemistry course at the University of Winnipeg for three years is discussed. It combines liquid chromatography and absorbance spectroscopy and also allows the students to produce a quantitative result within a single three-hour period.

  1. A Streamlined Molecular Biology Module for Undergraduate Biochemistry Labs

    ERIC Educational Resources Information Center

    Muth, Gregory W.; Chihade, Joseph W.

    2008-01-01

    Site-directed mutagenesis and other molecular biology techniques, including plasmid manipulation and restriction analysis, are commonly used tools in the biochemistry research laboratory. In redesigning our biochemistry lab curricula, we sought to integrate these techniques into a term-long, project-based course. In the module presented here,…

  2. Team-Based Learning, Faculty Research, and Grant Writing Bring Significant Learning Experiences to an Undergraduate Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Evans, Hedeel Guy; Heyl, Deborah L.; Liggit, Peggy

    2016-01-01

    This biochemistry laboratory course was designed to provide significant learning experiences to expose students to different ways of succeeding as scientists in academia and foster development and improvement of their potential and competency as the next generation of investigators. To meet these goals, the laboratory course employs three…

  3. A course designed for undergraduate biochemistry students to learn about cultural diversity issues.

    PubMed

    Benore-Parsons, Marilee

    2006-09-01

    Biology, biochemistry, and other science students are well trained in science and familiar with how to conduct and evaluate scientific experiments. They are less aware of cultural issues or how these will impact their careers in research, education, or as professional health care workers. A course was developed for advanced undergraduate science majors to learn about diversity issues in a context that would be relevant to them, entitled "Diversity Issues in Health Care: Treatment and Research." Learning objectives included: developing awareness of current topics concerning diversity issues in health care; learning how research is carried out in health care, including pharmaceutical research, clinical trials, and social research; and learning about health care practices. Lectures and projects included readings on laboratory and clinical research, as well as literature on legal, race, gender, language, age, and income issues in health care research and clinical practice. Exams, papers, and a service learning project were used to determine the final course grade. Assessment indicated student understanding of diversity issues was improved, and the material was relevant. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  4. Purification and Characterization of Enzymes from Yeast: An Extended Undergraduate Laboratory Sequence for Large Classes

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.; McIntyre, Neil R.; Thompson, Marleesa

    2013-01-01

    Providing a project-based experience in an undergraduate biochemistry laboratory class can be complex with large class sizes and limited resources. We have designed a 6-week curriculum during which students purify and characterize the enzymes invertase and phosphatase from bakers yeast. Purification is performed in two stages via ethanol…

  5. Synthesis, Characterization, and Secondary Structure Determination of a Silk-Inspired, Self-Assembling Peptide: A Laboratory Exercise for Organic and Biochemistry Courses

    ERIC Educational Resources Information Center

    Albin, Tyler J.; Fry, Melany M.; Murphy, Amanda R.

    2014-01-01

    This laboratory experiment gives upper-division organic or biochemistry undergraduate students a comprehensive look at the synthesis, chemical characterization, self-assembly, and secondary structure determination of small, N-acylated peptides inspired by the protein structure of silkworm silk. All experiments can be completed in one 4 h lab…

  6. Effective Laboratory Work in Biochemistry Subject: Students' and Lecturers' Perspective in Indonesia

    ERIC Educational Resources Information Center

    Anwar, Yunita Arian Sani; Senam; Laksono F. X., Endang Widjajanti

    2017-01-01

    Biochemistry subject had problem in learning and teaching, especially in laboratory work. We explored laboratory learning implementation in Biochemistry subject. Participants of this research were 195 students who took biochemistry subject and 4 lecturers of biochemistry in three universities in Indonesia. We obtained data using questionnaires and…

  7. Guaiacol peroxidase zymography for the undergraduate laboratory.

    PubMed

    Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M; Kurz, Liliana

    2014-01-01

    This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically detect peroxidase activity and furthermore, to analyze the total protein profile. After the assay, students may estimate the apparent molecular mass of the enzyme and discuss its structure. After the 4-h experiment, students gain knowledge concerning biological sample preparation, gel preparation, electrophoresis, and the importance of specific staining procedures for the detection of enzymatic activity. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.

  8. Teaching Structure: Student Use of Software Tools for Understanding Macromolecular Structure in an Undergraduate Biochemistry Course

    ERIC Educational Resources Information Center

    Jaswal, Sheila S.; O'Hara, Patricia B.; Williamson, Patrick L.; Springer, Amy L.

    2013-01-01

    Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of…

  9. Assessment of Molecular Construction in Undergraduate Biochemistry

    ERIC Educational Resources Information Center

    Booth, Deborah; Bateman, Robert C., Jr.; Sirochman, Rudy; Richardson, David C.; Richardson, Jane S.; Weiner, Steven W.; Farwell, Mary; Putnam-Evans, Cindy

    2005-01-01

    White and group used a two question, open-ended tests to separately evaluate students' learning of specific biochemical concepts in the general biology lecture and laboratory, in the first performance assessment of molecular visualization in teaching biochemistry. Two studies were devoted to protein structure using globins followed by one…

  10. Titration of Alanine Monitored by NMR Spectroscopy: A Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Waller, Francis J.; And Others

    1977-01-01

    The experiment described here involves simultaneous monitoring of pH and NMR chemical shifts during an aqueous titration of alpha- and beta-alanine. This experiment is designed for use in an undergraduate biochemistry course. (MR)

  11. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    PubMed Central

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. PMID:27810870

  12. A 13-week research-based biochemistry laboratory curriculum.

    PubMed

    Lefurgy, Scott T; Mundorff, Emily C

    2017-09-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):437-448, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  13. A biosafety level 2 virology lab for biotechnology undergraduates.

    PubMed

    Matza-Porges, Sigal; Nathan, Dafna

    2017-11-01

    Medical, industrial, and basic research relies heavily on the use of viruses and vectors. Therefore, it is important that bioscience undergraduates learn the practicalities of handling viruses. Teaching practical virology in a student laboratory setup presents safety challenges, however. The aim of this article is to describe the design and implementation of a virology laboratory, with emphasis on student safety, for biotechnology undergraduates. Cell culture techniques, animal virus infection, quantification, and identification are taught at a biosafety level 2 for a diverse group of undergraduates ranging from 20 to 50 students per group. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):537-543, 2017. © 2017 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  14. Need Assessment of Enhancing the Weightage of Applied Biochemistry in the Undergraduate Curriculum at MGIMS, Sevagram

    ERIC Educational Resources Information Center

    Kumar, Satish; Jena, Lingaraja; Vagha, Jayant

    2016-01-01

    In order to review the need assessment of enhancing the weightage of Applied Biochemistry in the undergraduate curriculum at Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sevagram, a validated questionnaire was sent to 453 participants which include 387 undergraduate students, 11 interns, 23 postgraduate students, and 32 faculty members. A…

  15. Doing That Thing That Scientists Do: A Discovery-Driven Module on Protein Purification and Characterization for the Undergraduate Biochemistry Laboratory Classroom

    ERIC Educational Resources Information Center

    Garrett, Teresa A.; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer

    2015-01-01

    In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module,…

  16. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes.

    PubMed

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L; Chechenova, Maria B; Guerin, Paul; Cripps, Richard M

    2016-05-06

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a three-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:263-275, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  17. Marine Biochemistry: A New Interdisciplinary Course for the Interim

    ERIC Educational Resources Information Center

    Goldberg, Arthur S.

    1976-01-01

    Discusses an undergraduate course which includes lectures, laboratory, and field trips and is designed for the interim winter semester. The course is interdisciplinary, involving a study of the biochemistry, pharmacology, and physiological significance of compounds from marine flora and fauna. (MLH)

  18. The Views of Undergraduates about Problem-Based Learning Applications in a Biochemistry Course

    ERIC Educational Resources Information Center

    Tarhan, Leman; Ayyildiz, Yildizay

    2015-01-01

    The effect of problem-based learning (PBL) applications in an undergraduate biochemistry course on students' interest in this course was investigated through four modules during one semester. Students' views about active learning and improvement in social skills were also collected and evaluated. We conducted the study with 36 senior students from…

  19. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  20. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  1. Doing that thing that scientists do: A discovery-driven module on protein purification and characterization for the undergraduate biochemistry laboratory classroom.

    PubMed

    Garrett, Teresa A; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer

    2015-01-01

    In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module, students develop research skills through work on an original research project and gain confidence in their ability to design and execute an experiment while faculty can enhance their scholarly pursuits through the acquisition of original data in the classroom laboratory. Students are prepared for a 6-8 week discovery-driven project on the purification of the Escherichia coli cytidylate kinase (CMP kinase) through in class problems and other laboratory exercises on bioinformatics and protein structure analysis. After a minimal amount of guidance on how to perform the CMP kinase in vitro enzyme assay, SDS-PAGE, and the basics of protein purification, students, working in groups of three to four, develop a protein purification protocol based on the scientific literature and investigate some aspect of CMP kinase that interests them. Through this process, students learn how to implement a new but perhaps previously worked out procedure to answer their research question. In addition, they learn the importance of keeping a clear and thorough laboratory notebook and how to interpret their data and use that data to inform the next set of experiments. Following this module, students had increased confidence in their ability to do basic biochemistry techniques and reported that the "self-directed" nature of this lab increased their engagement in the project. © 2015 The International Union of Biochemistry and Molecular Biology.

  2. Using an ePortfolio System as an Electronic Laboratory Notebook in Undergraduate Biochemistry and Molecular Biology Practical Classes

    ERIC Educational Resources Information Center

    Johnston, Jill; Kant, Sashi; Gysbers, Vanessa; Hancock, Dale; Denyer, Gareth

    2014-01-01

    Despite many apparent advantages, including security, back-up, remote access, workflow, and data management, the use of electronic laboratory notebooks (ELNs) in the modern research laboratory is still developing. This presents a challenge to instructors who want to give undergraduate students an introduction to the kinds of data curation and…

  3. Myoglobin structure and function: A multiweek biochemistry laboratory project.

    PubMed

    Silverstein, Todd P; Kirk, Sarah R; Meyer, Scott C; Holman, Karen L McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure, students work with computer modeling and visualization of myoglobin and its homologues, after which they spectroscopically characterize its thermal denaturation. Students also study protein function (ligand binding equilibrium) and are instructed on topics in data analysis (calibration curves, nonlinear vs. linear regression). This upper division biochemistry laboratory project is a challenging and rewarding one that not only exposes students to a wide variety of important biochemical laboratory techniques but also ties those techniques together to work with a single readily available and easily characterized protein, myoglobin. © 2015 International Union of Biochemistry and Molecular Biology.

  4. Detection of the "cp4 epsps" Gene in Maize Line NK603 and Comparison of Related Protein Structures: An Advanced Undergraduate Experiment

    ERIC Educational Resources Information Center

    Swope, Nicole K.; Fryfogle, Patrick J.; Sivy, Tami L.

    2015-01-01

    A flexible, rigorous laboratory experiment for upper-level biochemistry undergraduates is described that focuses on the Roundup Ready maize line. The work is appropriate for undergraduate laboratory courses that integrate biochemistry, molecular biology, or bioinformatics. In this experiment, DNA is extracted and purified from maize kernel and…

  5. Identification of the students' critical thinking skills through biochemistry laboratory work report

    NASA Astrophysics Data System (ADS)

    Anwar, Yunita Arian Sani; Senam, Laksono, Endang W.

    2017-08-01

    This work aims to (1) identify the critical thinking skills of student based on their ability to set up laboratory work reports, and (2) analyze the implementation of biochemistry laboratory work. The method of quantitative content analysis was employed. Quantitative data were in the form of critical thinking skills through the assessment of students' laboratory work reports and questionnaire data. Hoyo rubric was used to measure critical thinking skills with 10 indicators, namely clarity, accuracy, precision, consistency, relevance, evidence, reason, depth, breadth, and fairness. The research sample consisted of 105 students (35 male, 70 female) of Mataram University who took a Biochemistry course and 2 lecturers of Biochemistry course. The results showed students' critical thinking skills through laboratory work reports were still weak. Analysis of the questionnaire showed that three indicators become the biggest problems during the laboratory work implementation, namely, lecturers' involved in laboratory work implementation, the integration of laboratory work implementation of learning in the classroom has not been done optimally and laboratory work implementation as an effort to train critical thinking skills is not optimal yet.

  6. Biochemistry for dietetic students: course content and format.

    PubMed

    Sirota, L H

    1984-12-01

    This article presents the results of a survey of the 251 undergraduate dietetic programs for course content and level of the biochemistry course most frequently used to satisfy competencies in biochemistry under Plan IV of the ADA in 1979-80. It showed that a common core of information was stressed by all biochemistry instructors, but there was great variability in content and level of material covered and the textbook chosen, depending on whether the biochemistry course was offered to dietetic majors only, in classes with other nonchemistry majors, or in classes with chemistry majors. Variability was also seen in the time allotted for biochemistry--39 to 280 hours (total lecture and required laboratory hours); laboratory requirements--only 71%; and departmental affiliation of the instructor--17 different departments, primarily of chemistry (80%), biology (8%), and home economics (4%). Topics given greatest emphasis were descriptive ones, such as definitions, simple structures, and reactions of intermediary metabolism in general terms. Topics given least emphasis were those involving mechanistic and quantitative biochemistry, such as respiratory quotient (RQ), enzyme kinetics, calculations of energy from fat and carbohydrates, and specific structures of vitamins, ketones, and metabolic intermediates. The lack of communication between biochemistry and nutrition instructors and the great differences in the preparation of dietetic majors in biochemistry are sources of concern.

  7. A Static Method as an Alternative to Gel Chromatography: An Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Burum, Alex D.; Splittgerber, Allan G.

    2008-01-01

    This article describes a static method as an alternative to gel chromatography, which may be used as an undergraduate laboratory experiment. In this method, a constant mass of Sephadex gel is swollen in a series of protein solutions. UV-vis spectrophotometry is used to find a partition coefficient, KD, that indicates the fraction of the interior…

  8. Comparison of two different techniques of cooperative learning approach: Undergraduates' conceptual understanding in the context of hormone biochemistry.

    PubMed

    Mutlu, Ayfer

    2018-03-01

    The purpose of the research was to compare the effects of two different techniques of the cooperative learning approach, namely Team-Game Tournament and Jigsaw, on undergraduates' conceptual understanding in a Hormone Biochemistry course. Undergraduates were randomly assigned to Group 1 (N = 23) and Group 2 (N = 29). Instructions were accomplished using Team-Game Tournament in Group 1 and Jigsaw in Group 2. Before the instructions, all groups were informed about cooperative learning and techniques, their responsibilities in the learning process and accessing of resources. Instructions were conducted under the guidance of the researcher for nine weeks and the Hormone Concept Test developed by the researcher was used before and after the instructions for data collection. According to the results, while both techniques improved students' understanding, Jigsaw was more effective than Team-Game Tournament. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(2):114-120, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  9. An Undergraduate Investigation into the 10-23 DNA Enzyme that Cleaves RNA: DNA Can Cut It in the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Flynn-Charlebois, Amber; Burns, Jamie; Chapelliquen, Stephanie; Sanmartino, Holly

    2011-01-01

    A low-cost biochemistry experiment is described that demonstrates current techniques in the use of catalytic DNA molecules and introduces a nonradioactive, nonfluorescent, inexpensive, fast, and safe method for monitoring these nucleic acid reactions. The laboratory involves the exploration of the 10-23 DNA enzyme as it cleaves a specific RNA…

  10. Tagging and purifying proteins to teach molecular biology and advanced biochemistry.

    PubMed

    Roecklein-Canfield, Jennifer A; Lopilato, Jane

    2004-11-01

    Two distinct courses, "Molecular Biology" taught by the Biology Department and "Advanced Biochemistry" taught by the Chemistry Department, complement each other and, when taught in a coordinated and integrated way, can enhance student learning and understanding of complex material. "Molecular Biology" is a comprehensive lecture-based course with a 3-h laboratory once a week, while "Advanced Biochemistry" is a completely laboratory-based course with lecture fully integrated around independent student projects. Both courses emphasize and utilize cutting-edge technology. Teaching across departmental boundaries allows students access to faculty expertise and techniques rarely used at the undergraduate level, namely the tagging of proteins and their use in protein purification. Copyright © 2004 International Union of Biochemistry and Molecular Biology, Inc.

  11. A Proposal for Teaching Undergraduate Chemistry Students Carbohydrate Biochemistry by Problem-Based Learning Activities

    ERIC Educational Resources Information Center

    Figueira, Angela C. M.; Rocha, Joao B. T.

    2014-01-01

    This article presents a problem-based learning (PBL) approach to teaching elementary biochemistry to undergraduate students. The activity was based on "the foods we eat." It was used to engage students' curiosity and to initiate learning about a subject that could be used by the future teachers in the high school. The experimental…

  12. Comparison of Two Different Techniques of Cooperative Learning Approach: Undergraduates' Conceptual Understanding in the Context of Hormone Biochemistry

    ERIC Educational Resources Information Center

    Mutlu, Ayfer

    2018-01-01

    The purpose of the research was to compare the effects of two different techniques of the cooperative learning approach, namely Team-Game Tournament and Jigsaw, on undergraduates' conceptual understanding in a Hormone Biochemistry course. Undergraduates were randomly assigned to Group 1 (N = 23) and Group 2 (N = 29). Instructions were accomplished…

  13. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology.

    PubMed

    Kowalski, Jennifer R; Hoops, Geoffrey C; Johnson, R Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members' research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students' experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. © 2016 J. R. Kowalski et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. The Importance of Undergraduate General and Organic Chemistry to the Study of Biochemistry in Medical School.

    ERIC Educational Resources Information Center

    Scimone, Anthony; Scimone, Angelina A.

    1996-01-01

    Investigates chemistry topics necessary to facilitate the study of biochemistry in U.S. medical schools. Lists topics considered especially important and topics considered especially unimportant in general chemistry and organic chemistry. Suggests that in teaching undergraduate general or organic chemistry, the topics categorized as exceptionally…

  15. Better understanding of homologous recombination through a 12-week laboratory course for undergraduates majoring in biotechnology.

    PubMed

    Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai

    2017-07-08

    Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  16. Use of mushroom tyrosinase to introduce michaelis-menten enzyme kinetics to biochemistry students.

    PubMed

    Flurkey, William H; Inlow, Jennifer K

    2017-05-01

    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is collected in the absence and presence of the inhibitor. A Microsoft Excel template is used to plot the data and to fit the Michaelis-Menten equation to the data to determine the kinetic parameters V max and K m . The exercise is designed to clarify and reinforce concepts covered in an accompanying biochemistry lecture course. It has been used with positive results in an upper-level biochemistry laboratory course for junior/senior students majoring in chemistry or biology. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):270-276, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  17. A Laboratory Course in Clinical Biochemistry Emphasizing Interest and Relevance

    ERIC Educational Resources Information Center

    Schwartz, Peter L.

    1975-01-01

    Ten laboratory experiments are described which are used in a successful clinical biochemistry laboratory course (e.g. blood alcohol, glucose tolerance, plasma triglycerides, coronary risk index, gastric analysis, vitamin C and E). Most of the experiments are performed on the students themselves using simple equipment with emphasis on useful…

  18. Automation in clinical biochemistry: core, peripheral, STAT, and specialist laboratories in Australia.

    PubMed

    Streitberg, George S; Angel, Lyndall; Sikaris, Kenneth A; Bwititi, Phillip T

    2012-10-01

    Pathology has developed substantially since the 1990s with the introduction of total laboratory automation (TLA), in response to workloads and the need to improve quality. TLA has enhanced core laboratories, which evolved from discipline-based laboratories. Work practices have changed, with central reception now loading samples onto the Inlet module of the TLA. It is important to continually appraise technology. This study looked at the impact of technology using a self-administered survey to seniors in clinical biochemistry in NATA GX/GY-classified laboratories in Australia. The responses were yes, no, or not applicable and are expressed as percentages of responses. Some of the questions sourced for descriptive answers. Eighty-one laboratories responded, and the locations were 63%, 33%, and 4% in capital cities, regional cities, and country towns, respectively. Forty-two percent were public and 58% private. Clinical biochemistry was in all core laboratories of various sizes, and most performed up to 20 tests per sample. Thirty percent of the 121 surveyed laboratories had plans to install an automated line. Fifty-eight percent had hematology and biochemistry instrumentations in their peripheral laboratory, and 16% had a STAT laboratory on the same site as the core laboratory. There were varied instruments in specialist laboratories, and analyzers with embedded computers were in all laboratories. Medium and large laboratories had workstations with integrated instruments, and some large laboratories had TLA. Technology evolution and rising demand for pathology services make it imperative for laboratories to embrace such changes and reorganize the laboratories to take into account point-of-care testing and the efficiencies of core laboratories and TLA.

  19. Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory.

    PubMed

    Militello, Kevin T; Lazatin, Justine C

    2017-05-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):262-269, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  20. A semester-long project-oriented biochemistry laboratory based on Helicobacter pylori urease.

    PubMed

    Farnham, Kate R; Dube, Danielle H

    2015-01-01

    Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme--Helicobacter pylori (Hp) urease--the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. © 2015 The International Union of Biochemistry and Molecular Biology.

  1. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    ERIC Educational Resources Information Center

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  2. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    PubMed

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work. © 2015 The International Union of Biochemistry and Molecular Biology.

  3. A survey validation and analysis of undergraduate medical biochemistry practical curriculum in maharashtra, India.

    PubMed

    Dandekar, Sucheta P; Maksane, Shalini N; McKinley, Danette

    2012-01-01

    In order to review the strengths and weaknesses of medical biochemistry practical curriculum for undergraduates and to generate ideas to improve it, a questionnaire was sent to 50 biochemistry faculty members selected (through simple random sampling method) from 42 medical colleges of Maharashtra, India. 39 responded to the questionnaire, representing a 78% response rate. The internal consistency of the questionnaire sections was found to be satisfactory (>0.7). The respondents did not agree that the ongoing curriculum was in alignment with learning outcomes (8%), that it encouraged active learning (28%), helped to apply knowledge to clinical situations (18%) and promoted critical thinking and problem solving skills (28%). There were a number of qualitative experiments that were rated 'irrelevant'. Qualitative and quantitative experiments related to recent advances were suggested to be introduced by the respondents. Checklists for the practicals and new curriculum objectives provided in the questionnaire were also approved. The results of the curriculum evaluation suggest a need for re-structuring of practical biochemistry curriculum and introduction of a modified curriculum with more clinical relevance.

  4. Teaching structure: student use of software tools for understanding macromolecular structure in an undergraduate biochemistry course.

    PubMed

    Jaswal, Sheila S; O'Hara, Patricia B; Williamson, Patrick L; Springer, Amy L

    2013-01-01

    Because understanding the structure of biological macromolecules is critical to understanding their function, students of biochemistry should become familiar not only with viewing, but also with generating and manipulating structural representations. We report a strategy from a one-semester undergraduate biochemistry course to integrate use of structural representation tools into both laboratory and homework activities. First, early in the course we introduce the use of readily available open-source software for visualizing protein structure, coincident with modules on amino acid and peptide bond properties. Second, we use these same software tools in lectures and incorporate images and other structure representations in homework tasks. Third, we require a capstone project in which teams of students examine a protein-nucleic acid complex and then use the software tools to illustrate for their classmates the salient features of the structure, relating how the structure helps explain biological function. To ensure engagement with a range of software and database features, we generated a detailed template file that can be used to explore any structure, and that guides students through specific applications of many of the software tools. In presentations, students demonstrate that they are successfully interpreting structural information, and using representations to illustrate particular points relevant to function. Thus, over the semester students integrate information about structural features of biological macromolecules into the larger discussion of the chemical basis of function. Together these assignments provide an accessible introduction to structural representation tools, allowing students to add these methods to their biochemical toolboxes early in their scientific development. © 2013 by The International Union of Biochemistry and Molecular Biology.

  5. Probing Changes in the Conformation of tRNA[superscript Phe]: An Integrated Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.; Taylor, Buck L. H.

    2008-01-01

    We have designed a new guided-inquiry laboratory for an advanced biochemistry course. This integrated laboratory focuses on the biomolecule tRNA[superscript Phe] and combines elements of bioorganic and bioinorganic chemistry with biochemistry. Throughout the semester students work together to study tRNA[superscript Phe] structure and ligand…

  6. Guided Inquiry in a Biochemistry Laboratory Course Improves Experimental Design Ability

    ERIC Educational Resources Information Center

    Goodey, Nina M.; Talgar, Cigdem P.

    2016-01-01

    Many biochemistry laboratory courses expose students to laboratory techniques through pre-determined experiments in which students follow stepwise protocols provided by the instructor. This approach fails to provide students with sufficient opportunities to practice experimental design and critical thinking. Ten inquiry modules were created for a…

  7. Physiology undergraduate degree requirements in the U.S.

    PubMed

    VanRyn, Valerie S; Poteracki, James M; Wehrwein, Erica A

    2017-12-01

    Course-level learning objectives and core concepts for undergraduate physiology teaching exist. The next step is to consider how these resources fit into generalizable program-level guidelines for Bachelor of Science (BS) degrees in Physiology. In the absence of program-level guidelines for Physiology degree programs, we compiled a selective internal report to review degree requirements from 18 peer BS programs entitled "Physiology" in the United States (U.S.). There was a range of zero to three required semesters of math, physics, physics laboratory, general biology, biology laboratory, general chemistry, chemistry laboratory, organic chemistry, organic chemistry laboratory, biochemistry, biochemistry laboratory, anatomy, anatomy laboratory, core systems physiology, and physiology laboratory. Required upper division credits ranged from 11 to 31 and included system-specific, exercise and environmental, clinically relevant, pathology/disease-related, and basic science options. We hope that this information will be useful for all programs that consider themselves to be physiology, regardless of name. Reports such as this can serve as a starting point for collaboration among BS programs to improve physiology undergraduate education and best serve our students. Copyright © 2017 the American Physiological Society.

  8. Predictors of performance of students in biochemistry in a doctor of chiropractic curriculum.

    PubMed

    Shaw, Kathy; Rabatsky, Ali; Dishman, Veronica; Meseke, Christopher

    2014-01-01

    Objective : This study investigated the effect of completion of course prerequisites, undergraduate grade point average (GPA), undergraduate degree, and study habits on the performance of students in the biochemistry course at Palmer College of Chiropractic Florida. Methods : Students self-reported information regarding academic preparation at the beginning of the semester using a questionnaire. Final exam grade and final course grade were noted and used as measures of performance. Multivariate analysis of variance was used to determine if number of prerequisites completed, undergraduate GPA, undergraduate degree, hours spent studying in undergraduate study, and hours spent studying in the first quarter of the chiropractic program were associated significantly with the biochemistry final exam grade or the final grade for the biochemistry course. Results : The number of prerequisites completed, undergraduate degree, hours spent studying in undergraduate study, and hours spent studying in the first quarter of the chiropractic program did not significantly affect the biochemistry final exam grade or the final grade for the biochemistry course, but undergraduate GPA did. Subsequent univariate analysis and Tukey's post hoc comparisons revealed that students with an undergraduate GPA in the 3.5 to 3.99 range earned significantly higher final course grades than students with an undergraduate GPA in the 2.5 to 2.99 range. Conclusion : No single variable was determined to be a factor that determines student success in biochemistry. The interrelationship between the factors examined warrants further investigation to understand fully how to predict the success of a student in the biochemistry course.

  9. Preparative Protein Production from Inclusion Bodies and Crystallization: A Seven-Week Biochemistry Sequence

    ERIC Educational Resources Information Center

    Peterson, Megan J.; Snyder, W. Kalani; Westerman, Shelley; McFarland, Benjamin J.

    2011-01-01

    We describe how to produce and purify proteins from "Escherichia coli" inclusion bodies by adapting versatile, preparative-scale techniques to the undergraduate laboratory schedule. This 7-week sequence of experiments fits into an annual cycle of research activity in biochemistry courses. Recombinant proteins are expressed as inclusion bodies,…

  10. Undergraduate research as curriculum.

    PubMed

    Dolan, Erin L

    2017-07-08

    To date, national interests, policies, and calls for transformation of undergraduate education have been the main drivers of research integration into the undergraduate curriculum, briefly described here. The New Horizons in Biochemistry and Molecular Biology Education conference at the Weizmann Institute of Science (Israel) this fall presents an exciting opportunity to discuss integration of undergraduate research into the curriculum and other cutting-edge topics in biochemistry and molecular biology education from a cross-national perspective. I look forward to exploring prospects for international collaboration on research and development of course-based undergraduate research experiences and on STEM education in general. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):293-298, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  11. Incorporating a collaborative web-based virtual laboratory in an undergraduate bioinformatics course.

    PubMed

    Weisman, David

    2010-01-01

    Face-to-face bioinformatics courses commonly include a weekly, in-person computer lab to facilitate active learning, reinforce conceptual material, and teach practical skills. Similarly, fully-online bioinformatics courses employ hands-on exercises to achieve these outcomes, although students typically perform this work offsite. Combining a face-to-face lecture course with a web-based virtual laboratory presents new opportunities for collaborative learning of the conceptual material, and for fostering peer support of technical bioinformatics questions. To explore this combination, an in-person lecture-only undergraduate bioinformatics course was augmented with a remote web-based laboratory, and tested with a large class. This study hypothesized that the collaborative virtual lab would foster active learning and peer support, and tested this hypothesis by conducting a student survey near the end of the semester. Respondents broadly reported strong benefits from the online laboratory, and strong benefits from peer-provided technical support. In comparison with traditional in-person teaching labs, students preferred the virtual lab by a factor of two. Key aspects of the course architecture and design are described to encourage further experimentation in teaching collaborative online bioinformatics laboratories. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  12. Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students

    ERIC Educational Resources Information Center

    Flurkey, William H.; Inlow, Jennifer K.

    2017-01-01

    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…

  13. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  14. Fighting Tuberculosis in an Undergraduate Laboratory: Synthesizing, Evaluating and Analyzing Inhibitors

    ERIC Educational Resources Information Center

    Daniels, David; Berkes, Charlotte; Nekoie, Arjan; Franco, Jimmy

    2015-01-01

    A drug discovery project has been successfully implemented in a first-year general, organic, and biochemistry (GOB) health science course and second-year organic undergraduate chemistry course. This project allows students to apply the fundamental principles of chemistry and biology to a problem of medical significance, practice basic laboratory…

  15. Identification of Threshold Concepts for Biochemistry

    PubMed Central

    Green, David; Lewis, Jennifer E.; Lin, Sara; Minderhout, Vicky

    2014-01-01

    Threshold concepts (TCs) are concepts that, when mastered, represent a transformed understanding of a discipline without which the learner cannot progress. We have undertaken a process involving more than 75 faculty members and 50 undergraduate students to identify a working list of TCs for biochemistry. The process of identifying TCs for biochemistry was modeled on extensive work related to TCs across a range of disciplines and included faculty workshops and student interviews. Using an iterative process, we prioritized five concepts on which to focus future development of instructional materials. Broadly defined, the concepts are steady state, biochemical pathway dynamics and regulation, the physical basis of interactions, thermodynamics of macromolecular structure formation, and free energy. The working list presented here is not intended to be exhaustive, but rather is meant to identify a subset of TCs for biochemistry for which instructional and assessment tools for undergraduate biochemistry will be developed. PMID:25185234

  16. The Biochemistry of the Muscle Contraction Process: An Undergraduate Laboratory Experiment Using Viscosity to Follow the Progress of a Reaction.

    ERIC Educational Resources Information Center

    Belliveau, James F.; And Others

    1981-01-01

    Describes an undergraduate laboratory experiment using viscosity to follow the progress of the contractile process in muscles. This simple, short experiment illustrates the action of ATP as the source of energy in the contractile process and the catalytic effect of calcium ions as a control in the energy producing process. (CS)

  17. A Semester-Long Project-Oriented Biochemistry Laboratory Based on "Helicobacter pylori" Urease

    ERIC Educational Resources Information Center

    Farnham, Kate R.; Dube, Danielle H.

    2015-01-01

    Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically…

  18. A Semester-Long Project-Oriented Biochemistry Laboratory Based on Helicobacter pylori Urease

    PubMed Central

    Farnham, Kate R.; Dube, Danielle H.

    2015-01-01

    Here we present the development of a thirteen-week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme – Helicobacter pylori (Hp) urease – the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. PMID:26173574

  19. Vesicle Stability and Dynamics: An Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Del Bianco, Cristina; Torino, Domenica; Mansy, Sheref S.

    2014-01-01

    A laboratory exercise is described that helps students learn about lipid self-assembly by making vesicles under different solution conditions. Concepts covering the chemical properties of different lipids, the dynamics of lipids, and vesicle stability are explored. Further, the described protocol is easy and cheap to implement. One to two…

  20. Television Medical Dramas as Case Studies in Biochemistry

    ERIC Educational Resources Information Center

    Millard, Julie T.

    2009-01-01

    Several case studies from popular television medical dramas are described for use in an undergraduate biochemistry course. These cases, which illustrate fundamental principles of biochemistry, are used as the basis for problems that can be discussed further in small groups. Medical cases provide an interesting context for biochemistry with video…

  1. A biosafety level 2 virology lab for biotechnology undergraduates

    PubMed Central

    Matza‐Porges, Sigal

    2017-01-01

    Abstract Medical, industrial, and basic research relies heavily on the use of viruses and vectors. Therefore, it is important that bioscience undergraduates learn the practicalities of handling viruses. Teaching practical virology in a student laboratory setup presents safety challenges, however. The aim of this article is to describe the design and implementation of a virology laboratory, with emphasis on student safety, for biotechnology undergraduates. Cell culture techniques, animal virus infection, quantification, and identification are taught at a biosafety level 2 for a diverse group of undergraduates ranging from 20 to 50 students per group. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):537–543, 2017. PMID:28758332

  2. [External quality assessment in clinical biochemistry laboratories: pilot study in 11 laboratories of Lomé (Togo)].

    PubMed

    Kouassi, Kafui; Fétéké, Lochina; Assignon, Selom; Dorkenoo, Ameyo; Napo-Koura, Gado

    2015-01-01

    This study aims to evaluate the performance of a few biochemistry analysis and make recommendations to the place of the stakeholders. It is a cross-sectional study conducted between the October 1(st), 2012 and the July 31, 2013 bearing on the results of 5 common examinations of clinical biochemistry, provided by 11 laboratories volunteers opening in the public and private sectors. These laboratories have analysed during the 3 cycles, 2 levels (medium and high) of serum concentration of urea, glucose, creatinine and serum aminotransferases. The performance of laboratories have been determined from the acceptable limits corresponding to the limits of total errors, defined by the French Society of Clinical Biology (SFBC). A system of internal quality control is implemented by all laboratories and 45% of them participated in international programs of external quality assessment (EQA). The rate of acceptable results for the entire study was of 69%. There was a significant difference (p<0.002) between the performance of the group of laboratories engaged in a quality approach and the group with default implementation of the quality approach. Also a significant difference was observed between the laboratories of the central level and those of the peripheral level of our health system (p<0.047). The performance of the results provided by the laboratories remains relatively unsatisfactory. It is important that the Ministry of Health put in place a national program of EQA with mandatory participation.

  3. CUREs in biochemistry-where we are and where we should go.

    PubMed

    Bell, Jessica K; Eckdahl, Todd T; Hecht, David A; Killion, Patrick J; Latzer, Joachim; Mans, Tamara L; Provost, Joseph J; Rakus, John F; Siebrasse, Erica A; Ellis Bell, J

    2017-01-02

    Integration of research experience into classroom is an important and vital experience for all undergraduates. These course-based undergraduate research experiences (CUREs) have grown from independent instructor lead projects to large consortium driven experiences. The impact and importance of CUREs on students at all levels in biochemistry was the focus of a National Science Foundation funded think tank. The state of biochemistry CUREs and suggestions for moving biochemistry forward as well as a practical guide (supplementary material) are reported here. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):7-12, 2017. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  4. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  5. An inquiry-based biochemistry laboratory structure emphasizing competency in the scientific process: a guided approach with an electronic notebook format.

    PubMed

    L Hall, Mona; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students through their laboratory work at a steady pace that encourages them to focus on quality observations, careful data collection and thought processes surrounding the chemistry involved. It motivates students to work in a collaborative manner with frequent opportunities for feedback, reflection, and modification of their ideas. Each laboratory activity has four stages to keep the students' efforts on track: pre-lab work, an in-lab discussion, in-lab work, and a post-lab assignment. Students are guided at each stage by an instructor created template that directs their learning while giving them the opportunity and flexibility to explore new information, ideas, and questions. These templates are easily transferred into an electronic journal (termed the E-notebook) and form the basic structural framework of the final lab reports the students submit electronically, via a learning management system. The guided-inquiry based approach presented here uses a single laboratory activity for undergraduate Introductory Biochemistry as an example. After implementation of this guided learning approach student surveys reported a higher level of course satisfaction and there was a statistically significant improvement in the quality of the student work. Therefore we firmly believe the described format to be highly effective in promoting student learning and engagement. © 2013 by The International Union of Biochemistry and Molecular Biology.

  6. Measuring meaningful learning in the undergraduate chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Galloway, Kelli R.

    The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from

  7. Genesis of "Biochemistry: A Problems Approach"

    ERIC Educational Resources Information Center

    Wood, William B.

    2002-01-01

    When the author began teaching as a young assistant professor at Caltech in 1966, his assignment was to take over the undergraduate biochemistry course taught for many years by Henry Borsook, who was about to retire. Students dreaded this course. Having delighted in biochemistry during his graduate training at Stanford, he was determined to put…

  8. A Combustion Laboratory for Undergraduates.

    ERIC Educational Resources Information Center

    Peters, James E.

    1985-01-01

    Describes a combustion laboratory facility and experiments for a senior-level (undergraduate) course in mechanical engineering. The experiment reinforces basic thermodynamic concepts and provides many students with their first opportunity to work with a combustion system. (DH)

  9. A Virtual Embedded Microcontroller Laboratory for Undergraduate Education: Development and Evaluation

    ERIC Educational Resources Information Center

    Richardson, Jeffrey J.; Adamo-Villani, Nicoletta

    2010-01-01

    Laboratory instruction is a major component of the engineering and technology undergraduate curricula. Traditional laboratory instruction is hampered by several factors including limited access to resources by students and high laboratory maintenance cost. A photorealistic 3D computer-simulated laboratory for undergraduate instruction in…

  10. Web Camera Use in Developing Biology, Molecular Biology and Biochemistry Laboratories

    ERIC Educational Resources Information Center

    Ogren, Paul J.; Deibel, Michael; Kelly, Ian; Mulnix, Amy B.; Peck, Charlie

    2004-01-01

    The use of a network-ready color camera is described which is primarily marketed as a security device and is used for experiments in developmental biology, genetics and biochemistry laboratories and in special student research projects. Acquiring and analyzing project and archiving images is very important in microscopy, electrophoresis and…

  11. The Most Proficient Enzyme as the Central Theme in an Integrated, Research-based Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    Smiley, Jeffrey A.

    2002-01-01

    The enzyme orotidine-5'-monophosphate decarboxylase is an attractive choice for the central theme of an integrated, research-based biochemistry laboratory course. A series of laboratory exercises common to most instructional laboratories, including enzyme assays, protein purification, enzymatic characterization, elementary kinetics, and…

  12. A Multistep Synthesis for an Advanced Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chang Ji; Peters, Dennis G.

    2006-01-01

    Multistep syntheses are often important components of the undergraduate organic laboratory experience and a three-step synthesis of 5-(2-sulfhydrylethyl) salicylaldehyde was described. The experiment is useful as a special project for an advanced undergraduate organic chemistry laboratory course and offers opportunities for students to master a…

  13. Design and Implementation of an Undergraduate Laboratory Course in Psychophysiology

    ERIC Educational Resources Information Center

    Thibodeau, Ryan

    2011-01-01

    Most psychology curricula require the completion of coursework on the physiological bases of behavior. However, delivery of this critical content in a laboratory format is somewhat rare at the undergraduate level. To fill this gap, this article describes the design and implementation of an undergraduate laboratory course in psychophysiology at a…

  14. Undergraduate Laboratory Exercises Specific to Food Spoilage Microbiology

    ERIC Educational Resources Information Center

    Snyder, Abigail B.; Worobo, Randy W.; Orta-Ramirez, Alicia

    2016-01-01

    Food spoilage has an enormous economic impact, and microbial food spoilage plays a significant role in food waste and loss; subsequently, an equally significant portion of undergraduate food microbiology instruction should be dedicated to spoilage microbiology. Here, we describe a set of undergraduate microbiology laboratory exercises that focus…

  15. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  16. Working with Enzymes - Where Is Lactose Digested? An Enzyme Assay for Nutritional Biochemistry Laboratories

    NASA Astrophysics Data System (ADS)

    Pope, Sandi R.; Tolleson, Tonya D.; Williams, R. Jill; Underhill, Russell D.; Deal, S. Todd

    1998-06-01

    At Georgia Southern University, we offer a sophomore-level introductory biochemistry course that is aimed at nutrition and chemistry education majors. The laboratory portion of this course has long lacked an experimental introduction to enzymes. We have developed a simple enzyme assay utilizing lactase enzyme from crushed LactAid tablets and a 5% lactose solution ("synthetic milk"). In the experiment, the students assay the activity of the enzyme on the "synthetic milk" at pHs of approximately 1, 6, and 8 with the stated goal of determining where lactose functions in the digestive tract. The activity of the lactase may be followed chromatographically or spectrophotometrically. The experiment, which is actually a simple pH assay, is easily implemented in allied health chemistry laboratory courses and readily lends itself to adaptation for more complex kinetic assays in upper-level biochemistry laboratory courses. The experimental details, including a list of required supplies and hints for implementation, are provided.

  17. Glycoprotein Biochemistry--Some Clinical Aspects of Interest to Biochemistry Students.

    ERIC Educational Resources Information Center

    Smith, Christopher A.; And Others

    1991-01-01

    Authors describe some clinical features of glycoprotein biochemistry, including recognition, selected blood glycoproteins, glycated proteins, histochemistry, and cancer. The material presented has largely been taught to medical laboratory students; however, it can be used to teach premedical students and pure biochemistry students. Includes two…

  18. Using Microcomputers in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Hovancik, John R.

    1986-01-01

    A computer-controlled experimental psychology investigation suitable for use in an undergraduate laboratory is described. The investigation examines the relationship between aesthetic preference and speed of reaction in making choices between colors generated on a video monitor. (Author)

  19. Identification of threshold concepts for biochemistry.

    PubMed

    Loertscher, Jennifer; Green, David; Lewis, Jennifer E; Lin, Sara; Minderhout, Vicky

    2014-01-01

    Threshold concepts (TCs) are concepts that, when mastered, represent a transformed understanding of a discipline without which the learner cannot progress. We have undertaken a process involving more than 75 faculty members and 50 undergraduate students to identify a working list of TCs for biochemistry. The process of identifying TCs for biochemistry was modeled on extensive work related to TCs across a range of disciplines and included faculty workshops and student interviews. Using an iterative process, we prioritized five concepts on which to focus future development of instructional materials. Broadly defined, the concepts are steady state, biochemical pathway dynamics and regulation, the physical basis of interactions, thermodynamics of macromolecular structure formation, and free energy. The working list presented here is not intended to be exhaustive, but rather is meant to identify a subset of TCs for biochemistry for which instructional and assessment tools for undergraduate biochemistry will be developed. © 2014 J. Loertscher et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Teaching Receptor Theory to Biochemistry Undergraduates

    ERIC Educational Resources Information Center

    Benore-Parsons, Marilee; Sufka, Kenneth J.

    2003-01-01

    Receptor:ligand interactions account for numerous reactions critical to biochemistry and molecular biology. While students are typically exposed to some examples, such as hemoglobin binding of oxygen and signal transduction pathways, the topic could easily be expanded. Theory and kinetic analysis, types of receptors, and the experimental assay…

  1. [Blood volume for biochemistry determinations--laboratory needs and everyday practice].

    PubMed

    Sztefko, Krystyna; Mamica, Katarzyna; Bugajska, Jolanta; Maziarz, Barbara; Tomasik, Przemysław

    2014-01-01

    Blood loss due to diagnostic phlebotomy jest a very serious problem, especially for newborn, infants and critically ill patients on intensive care units. Although single blood loss can be easily tolerated in adults, in small babies and in patients who are frequently monitored based on laboratory tests iatrogenic anaemia can occur. To evaluate the blood volume drawn for routine biochemistry tests in relation to patient age and the number of parameters requested. Blood volume drawn for routine biochemistry measurements from patients hospitalized in University Children's Hospital (N = 2980, children age from one day to 18 years) and in University Hospital (N = 859, adults, aged > 1.8 years) in Cracow has been analyzed. Blood volume was calculated based on regular tube diameter and blood heights in the tube. In case of microvettes the blood volume was 0.2 ml. Statistical analysis has been performed by using PRISM 5.0. The statistical significance was set at p < 0.05. The mean values of blood volume were 3.02 +/- 0.92 ml and 4.12 +/- 0.68 ml in children and adults, respectively. Analyzing blood volume drawn in children using both microvettes and regular tubes, significant correlation between blood volume and patient age (p < 0.001) as well the number of requested parameters (p < 0.001). The latest relationship was true only for up to five parameters. However, analyzing the blood volume drawn into only into regular tubes blood volume was not related to patients age and number of laboratory tests requested. The proportion of microvettes used for blood collection was highest for newborns and infants, and in all cases where only one to three laboratory tests were requested. 1. All educational programs for nurses and doctors should include the information about current laboratory automation and methods miniaturization; 2) The amount of blood volume needed by laboratory for the requested number of tests should always be taken into account when diagnostic phlebotomy is

  2. Course-based undergraduate research experiences in molecular biosciences-patterns, trends, and faculty support.

    PubMed

    Wang, Jack T H

    2017-08-15

    Inquiry-driven learning, research internships and course-based undergraduate research experiences all represent mechanisms through which educators can engage undergraduate students in scientific research. In life sciences education, the benefits of undergraduate research have been thoroughly evaluated, but limitations in infrastructure and training can prevent widespread uptake of these practices. It is not clear how faculty members can integrate complex laboratory techniques and equipment into their unique context, while finding the time and resources to implement undergraduate research according to best practice guidelines. This review will go through the trends and patterns in inquiry-based undergraduate life science projects with particular emphasis on molecular biosciences-the research-aligned disciplines of biochemistry, molecular cell biology, microbiology, and genomics and bioinformatics. This will provide instructors with an overview of the model organisms, laboratory techniques and research questions that are adaptable for semester-long projects, and serve as starting guidelines for course-based undergraduate research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. A guide to using case-based learning in biochemistry education.

    PubMed

    Kulak, Verena; Newton, Genevieve

    2014-01-01

    Studies indicate that the majority of students in undergraduate biochemistry take a surface approach to learning, associated with rote memorization of material, rather than a deep approach, which implies higher cognitive processing. This behavior relates to poorer outcomes, including impaired course performance and reduced knowledge retention. The use of case-based learning (CBL) into biochemistry teaching may facilitate deep learning by increasing student engagement and interest. Abundant literature on CBL exists but clear guidance on how to design and implement case studies is not readily available. This guide provides a representative review of CBL uses in science and describes the process of developing CBL modules to be used in biochemistry. Included is a framework to implement a directed CBL assisted with lectures in a content-driven biochemistry course regardless of class size. Moreover, this guide can facilitate adopting CBL to other courses. Consequently, the information presented herein will be of value to undergraduate science educators with an interest in active learning pedagogies. © 2014 The International Union of Biochemistry and Molecular Biology.

  4. Development of a Green Fluorescent Protein-Based Laboratory Curriculum

    ERIC Educational Resources Information Center

    Larkin, Patrick D.; Hartberg, Yasha

    2005-01-01

    A laboratory curriculum has been designed for an undergraduate biochemistry course that focuses on the investigation of the green fluorescent protein (GFP). The sequence of procedures extends from analysis of the DNA sequence through PCR amplification, recombinant plasmid DNA synthesis, bacterial transformation, expression, isolation, and…

  5. Application of indices Cp and Cpk to improve quality control capability in clinical biochemistry laboratories.

    PubMed

    Chen, Ming-Shu; Wu, Ming-Hsun; Lin, Chih-Ming

    2014-04-30

    The traditional criteria for acceptability of analytic quality may not be objective in clinical laboratories. To establish quality control procedures intended to enhance Westgard multi-rules for improving the quality of clinical biochemistry tests, we applied the Cp and Cpk quality-control indices to monitor tolerance fitting and systematic variation of clinical biochemistry test results. Daily quality-control data of a large Taiwanese hospital in 2009 were analyzed. The test items were selected based on an Olympus biochemistry machine and included serum albumin, aspartate aminotransferase, cholesterol, glucose and potassium levels. Cp and Cpk values were calculated for normal and abnormal levels, respectively. The tolerance range was estimated with data from 50 laboratories using the same instruments and reagents. The results showed a monthly trend of variation for the five items under investigation. The index values of glucose were lower than those of the other items, and their values were usually <2. In contrast to the Cp value for cholesterol, Cpk of cholesterol was lower than 2, indicating a systematic error that should be further investigated. This finding suggests a degree of variation or failure to meet specifications that should be corrected. The study indicated that Cp and Cpk could be applied not only for monitoring variations in quality control, but also for revealing inter-laboratory qualitycontrol capability differences.

  6. A computer-managed undergraduate physics laboratory

    NASA Astrophysics Data System (ADS)

    Kalman, C. S.

    1987-01-01

    Seventeen one-semester undergraduate laboratory courses are managed by a microcomputer system at Concordia University. Students may perform experiments at any time during operating hours. The computer administers pre- and post-tests. Considerable savings in manpower costs is achieved. The system also provides many pedagogical advantages.

  7. Environmental Chemistry in the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  8. Measuring Dynamic Kidney Function in an Undergraduate Physiology Laboratory

    ERIC Educational Resources Information Center

    Medler, Scott; Harrington, Frederick

    2013-01-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on…

  9. Evaluating performance in sweat testing in medical biochemistry laboratories in Croatia.

    PubMed

    Aralica, Merica; Krleza, Jasna Lenicek

    2017-02-15

    Sweat test has a diagnostic role in evaluation of cystic fibrosis. Its performance includes sweat stimulation, collection and analysis. All listed may be sources of inconsistencies in everyday practice. The aim of this study was an evaluation of external quality assessment (EQA) of sweat chloride measurement including sweat test performance in medical biochemistry laboratories in Croatia. EQA for sweat chloride measurement was provided by Croatian Centre for Quality Assessment in Laboratory Medicine (CROQALM) in five consecutive exercises to medical biochemistry laboratories (MBL) that offered sweat testing. A questionnaire regarding all phases of testing was mailed to involved MBL (N = 10). Survey results were compared to current guidelines for sweat test performance. Reported results of EQA in 2015 exercises showed coefficients of variation (CV) from 28.9%, 29.0% to 35.3%, respectively. An introduction of uniform sweat chloride measurement protocol resulted in CV of 15.5% and 14.7% reported in following two exercises in 2016. All MBL included in this study replied to the questionnaire. Results reported by MBL indicated: lack of patient information policy (7/10), use of unacceptable electrodes (6/9), misuse of minimum of acceptable sweat weight (6/9), lack of internal quality assessment (5/9) and recommended reference ranges (5/9 and 4/9). Agreements to guidelines were found in approach to unsuitable patients (9/10) and sweat collection (8/9). Presented results indicate major weak points of current practice in sweat test performance in Croatian MBL and stress the need for its standardization on a national level.

  10. Evaluating performance in sweat testing in medical biochemistry laboratories in Croatia

    PubMed Central

    Aralica, Merica; Krleza, Jasna Lenicek

    2017-01-01

    Introduction Sweat test has a diagnostic role in evaluation of cystic fibrosis. Its performance includes sweat stimulation, collection and analysis. All listed may be sources of inconsistencies in everyday practice. The aim of this study was an evaluation of external quality assessment (EQA) of sweat chloride measurement including sweat test performance in medical biochemistry laboratories in Croatia. Materials and methods EQA for sweat chloride measurement was provided by Croatian Centre for Quality Assessment in Laboratory Medicine (CROQALM) in five consecutive exercises to medical biochemistry laboratories (MBL) that offered sweat testing. A questionnaire regarding all phases of testing was mailed to involved MBL (N = 10). Survey results were compared to current guidelines for sweat test performance. Results Reported results of EQA in 2015 exercises showed coefficients of variation (CV) from 28.9%, 29.0% to 35.3%, respectively. An introduction of uniform sweat chloride measurement protocol resulted in CV of 15.5% and 14.7% reported in following two exercises in 2016. All MBL included in this study replied to the questionnaire. Results reported by MBL indicated: lack of patient information policy (7/10), use of unacceptable electrodes (6/9), misuse of minimum of acceptable sweat weight (6/9), lack of internal quality assessment (5/9) and recommended reference ranges (5/9 and 4/9). Agreements to guidelines were found in approach to unsuitable patients (9/10) and sweat collection (8/9). Conclusion Presented results indicate major weak points of current practice in sweat test performance in Croatian MBL and stress the need for its standardization on a national level. PMID:28392735

  11. Development of paediatric biochemistry centile charts as a complement to laboratory reference intervals.

    PubMed

    Loh, Tze Ping; Antoniou, Georgia; Baghurst, Peter; Metz, Michael P

    2014-06-01

    Age-specific paediatric reference intervals are used in interpretation of laboratory results. However, interpretation may be problematic when a child just crosses an age bracket and the difference between the original and the subsequent age-specific reference interval is large. Moreover, details about the physiological changes with age may be masked. For the 12 months ending 30 September 2013, results of 16 common clinical biochemistry tests of ambulatory paediatric patients aged 0-19, requested by primary care physicians, were retrospectively collected in a large pathology service, and used to construct smoothed centile charts using a penalised maximum likelihood method. From the developed centile charts, the concentrations of sodium, bicarbonate, creatinine, urate, total protein, and albumin all increased with increasing age of the children. In contrast, the concentrations of potassium, chloride, anion gap, calcium, phosphate and lactate dehydrogenase decreased with increasing age of the children. Changes in the concentrations of urea, alkaline phosphatase, glucose, and total cholesterol varied by age. Generally, the boys and girls shared similar trend patterns until 10-15 years of age, when variations in the age of onset of puberty and development caused the trends of some biochemical measures to differ. The paediatric biochemistry centile charts are intuitive tools to use. They complement age-specific reference intervals in the tracking, interpretation and discussion of laboratory results. They also enhance the understanding of underlying physiological changes in biochemistry in children.

  12. Characterizing Instructional Practices in the Laboratory: The Laboratory Observation Protocol for Undergraduate STEM

    ERIC Educational Resources Information Center

    Velasco, Jonathan B.; Knedeisen, Adam; Xue, Dihua; Vickrey, Trisha L.; Abebe, Marytza; Stains, Marilyne

    2016-01-01

    Chemistry laboratories play an essential role in the education of undergraduate Science, Technology, Engineering, and Mathematics (STEM) and non-STEM students. The extent of student learning in any educational environment depends largely on the effectiveness of the instructors. In chemistry laboratories at large universities, the instructors of…

  13. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  14. A pharmacy practice laboratory exercise to apply biochemistry concepts.

    PubMed

    Harrold, Marc W; McFalls, Marsha A

    2010-10-11

    To develop exercises that allow pharmacy students to apply foundational knowledge discussed in a first-professional year (P1) biochemistry course to specific disease states and patient scenarios. A pharmacy practice laboratory exercise was developed to accompany a lecture sequence pertaining to purine biosynthesis and degradation. The assignment required students to fill a prescription, provide patient counseling tips, and answer questions pertaining to the disease state, the underlying biochemical problem, and the prescribed medication. Students were graded on the accuracy with which they filled the prescription, provided patient counseling, and answered the questions provided. Overall, students displayed mastery in all of these areas. Additionally, students completed a course survey on which they rated this exercise favorably, noting that it helped them to integrate basic science concepts and pharmacy practice. A laboratory exercise provided an opportunity for P1 students to apply foundational pharmacy knowledge to a patient case and can serve as a template for the design of additional exercises.

  15. Commentary: Why Abandoning Undergraduate Laboratories Is Not an Option

    ERIC Educational Resources Information Center

    Costa, Manuel Joao

    2010-01-01

    Laboratory exercises (labs) are sometimes regarded as dispensable in biochemistry and molecular biology (BMB) education for various reasons including a combination of increased class costs and small budget allocations, pressing demands for more time to lecture to fit in new BMB discoveries within constant time span of courses, and the fact that…

  16. Information Management Systems in the Undergraduate Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Merrer, Robert J.

    1985-01-01

    Discusses two applications of Laboratory Information Management Systems (LIMS) in the undergraduate laboratory. They are the coulometric titration of thiosulfate with electrogenerated triiodide ion and the atomic absorption determination of calcium using both analytical calibration curve and standard addition methods. (JN)

  17. Prepare, Do, Review: A skills-based approach for laboratory practical classes in biochemistry and molecular biology.

    PubMed

    Arthur, Peter; Ludwig, Martha; Castelli, Joane; Kirkwood, Paul; Attwood, Paul

    2016-05-06

    A new laboratory practical system is described which is comprised of a number of laboratory practical modules, each based around a particular technique or set of techniques, related to the theory part of the course but not designed to be dependent on it. Each module comprises an online recorded pre-lab lecture, the laboratory practical itself and a post-lab session in which students make oral presentations on different aspects of the practical. Each part of the module is assessed with the aim of providing rapid feedback to staff and students. Each laboratory practical is the responsibility of a single staff member and through this "ownership," continual review and updating is promoted. Examples of changes made by staff to modules as a result of student feedback are detailed. A survey of students who had experienced both the old-style laboratory course and the new one provided evidence of increased satisfaction with the new program. The assessment of acquired shills in the new program showed that it was much more effective than the old course. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:276-287, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  18. Using Myoglobin Denaturation to Help Biochemistry Students Understand Protein Structure

    ERIC Educational Resources Information Center

    Miao, Yilan; Thomas, Courtney L.

    2017-01-01

    Analyzing and understanding data directly from primary literature can be a daunting task for undergraduates. However, if information is put into context, students will be more successful when developing data analysis skills. A classroom activity is presented using protein denaturation to help undergraduate biochemistry students examine myoglobin…

  19. Teaching of biochemistry in medical school: A well-trodden pathway?

    PubMed

    Mathews, Michael B; Stagnaro-Green, Alex

    2008-11-01

    Biochemistry and molecular biology occupy a unique place in the medical school curriculum. They are frequently studied prior to medical school and are fundamental to the teaching of biomedical sciences in undergraduate medical education. These two circumstances, and the trend toward increased integration among the disciplines, have led to reconsideration of biochemistry instruction in many medical schools. We conducted a survey to explore the evolving trends in biochemistry education. A broad diversity was evident in parameters including course content, faculty, governance, prerequisites, and teaching methods. Notably, sharp differences were apparent between freestanding biochemistry courses and those in which biochemistry is integrated with other subjects. Furthermore, the data imply a likely trend toward increased integration of biochemistry with other disciplines in the medical school curriculum. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.

  20. Teaching Protein Purification and Characterization Techniques: A Student-Initiated, Project-Oriented Biochemistry Laboratory Course

    ERIC Educational Resources Information Center

    MacDonald, Gina

    2008-01-01

    This report describes a biochemistry laboratory that is completely project-oriented. Upper-level biology and chemistry majors work in teams to purify a protein of their choice. After the student groups have completed literature searches, ordered reagents, and made buffers they continue to learn basic protein purification and biochemical techniques…

  1. Status of Undergraduate Pharmacology Laboratories in Colleges of Pharmacy in the United States

    ERIC Educational Resources Information Center

    Katz, Norman L.; And Others

    1978-01-01

    U.S. colleges of pharmacy were surveyed in 1976 to determine whether a trend exists in continuing, discontinuing, or restructuring laboratory time in pharmaceutical education. Data regarding core undergraduate pharmacology courses, undergraduate pharmacology laboratory status, and pharmacology faculty are presented. (LBH)

  2. Simple Laboratory Exercise for Induction of Beta-Mannanase from "Aspergillus niger"

    ERIC Educational Resources Information Center

    Mulimani, V. H.; Naganagouda, K.

    2010-01-01

    This laboratory experiment was designed for Biochemistry, Biotechnology, Microbiology, and Food Technology students of undergraduate and postgraduate courses. The experiment shows the advantages of using agricultural waste, copra mannan as potent inducer of [beta]-mannanase. The students were able to compare the enzyme induction by commercial…

  3. Foundational concepts and underlying theories for majors in "biochemistry and molecular biology".

    PubMed

    Tansey, John T; Baird, Teaster; Cox, Michael M; Fox, Kristin M; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3) foundational skills that undergraduate majors in biochemistry and molecular biology must understand to complete their major coursework. Using information gained from these workshops, as well as from the ASBMB accreditation working group and the NSF Vision and Change report, the Core Concepts working group has developed a consensus list of learning outcomes and objectives based on five foundational concepts (evolution, matter and energy transformation, homeostasis, information flow, and macromolecular structure and function) that represent the expected conceptual knowledge base for undergraduate degrees in biochemistry and molecular biology. This consensus will aid biochemistry and molecular biology educators in the development of assessment tools for the new ASBMB recommended curriculum. © 2013 by The International Union of Biochemistry and Molecular Biology.

  4. A proposal for teaching undergraduate chemistry students carbohydrate biochemistry by problem-based learning activities.

    PubMed

    Figueira, Angela C M; Rocha, Joao B T

    2014-01-01

    This article presents a problem-based learning (PBL) approach to teaching elementary biochemistry to undergraduate students. The activity was based on "the foods we eat." It was used to engage students' curiosity and to initiate learning about a subject that could be used by the future teachers in the high school. The experimental activities (8-12 hours) were related to the questions: (i) what does the Benedict's Reagent detect? and (ii) What is determined by glucose oxidase (GOD)? We also ask the students to compare the results with those obtained with the Lugol reagent, which detects starch. Usually, students inferred that the Benedict reagent detects reducing sugars, while GOD could be used to detect glucose. However, in GOD assay, an open question was left, because the results could be due to contamination of the sugars (particularly galactose) with glucose. Though not stressed, GOD does not oxidize the carbohydrates tested and all the positive results are due to contamination. The activities presented here can be easily done in the high school, because they are simple and non-expensive. Furthermore, in the case of Benedict reaction, it is possible to follow the reduction of Cu (II) "macroscopically" by following the formation of the brick-orange precipitate. The concrete observation of a chemical reaction can motivate and facilitate students understanding about chemistry of life. Copyright © 2013 by The International Union of Biochemistry and Molecular Biology.

  5. The Use of Contextual Learning to Teach Biochemistry to Dietetic Students

    ERIC Educational Resources Information Center

    Macaulay, J. O.; Van Damme, M. -P.; Walker, K. Z.

    2009-01-01

    This article describes the use of contextualized and "blended" learning to teach biochemistry to dietetic students during the second year of their professional training in a 4-year undergraduate degree (Bachelor of Nutrition and Dietetics). Contextualized content was used to engage students and motivate them to learn biochemistry, which many…

  6. Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment

    PubMed Central

    Millard, Julie T.; Chuang, Edward; Lucas, James S.; Nagy, Erzsebet E.; Davis, Griffin T.

    2013-01-01

    A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context. PMID:24363455

  7. Undergraduate medical academic performance is improved by scientific training.

    PubMed

    Zhang, Lili; Zhang, Wei; Wu, Chong; Liu, Zhongming; Cai, Yunfei; Cao, Xingguo; He, Yushan; Liu, Guoxiang; Miao, Hongming

    2017-09-01

    The effect of scientific training on course learning in undergraduates is still controversial. In this study, we investigated the academic performance of undergraduate students with and without scientific training. The results show that scientific training improves students' test scores in general medical courses, such as biochemistry and molecular biology, cell biology, physiology, and even English. We classified scientific training into four levels. We found that literature reading could significantly improve students' test scores in general courses. Students who received scientific training carried out experiments more effectively and published articles performed better than their untrained counterparts in biochemistry and molecular biology examinations. The questionnaire survey demonstrated that the trained students were more confident of their course learning, and displayed more interest, motivation and capability in course learning. In summary, undergraduate academic performance is improved by scientific training. Our findings shed light on the novel strategies in the management of undergraduate education in the medical school. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):379-384, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  8. Designing Polymerase Chain Reaction (PCR) Primer Multiplexes in the Forensic Laboratory

    ERIC Educational Resources Information Center

    Elkins, Kelly M.

    2011-01-01

    The polymerase chain reaction (PCR) is a common experiment in upper-level undergraduate biochemistry, molecular biology, and forensic laboratory courses as reagents and thermocyclers have become more affordable for institutions. Typically, instructors design PCR primers to amplify the region of interest and the students prepare their samples for…

  9. Kinetics of Carbaryl Hydrolysis: An Undergraduate Environmental Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hawker, Darryl

    2015-01-01

    Kinetics is an important part of undergraduate environmental chemistry curricula and relevant laboratory exercises are helpful in assisting students to grasp concepts. Such exercises are also useful in general chemistry courses because students can see relevance to real-world issues. The laboratory exercise described here involves determination of…

  10. Guaiacol Peroxidase Zymography for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M.; Kurz, Liliana

    2014-01-01

    This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically…

  11. Digital Storage Oscilloscopes in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    Digital storage oscilloscopes (DSOs) are now easily available to undergraduate laboratories. In many cases, a DSO can replace a data-acquisition system. Seven such experiments/demonstrations are considered: (i) families of "I-V" characteristics of electronic devices (bipolar junction transistor), (ii) the "V-I" curve of a high-temperature…

  12. Affordable Hands-On DNA Sequencing and Genotyping: An Exercise for Teaching DNA Analysis to Undergraduates

    ERIC Educational Resources Information Center

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C…

  13. Varying Iron Release from Transferrin and Lactoferrin Proteins. A Laboratory Experiment

    ERIC Educational Resources Information Center

    Carmona, Fernando; González, Ana; Sánchez, Manu; Gálvez, Natividad; Cuesta, Rafael; Capdevila, Mercè; Dominguez-Vera, Jose M.

    2017-01-01

    Iron metabolism is an important subject of study for undergraduate students of chemistry and biochemistry. Relevant laboratory exercises are scarce in the literature but would be very helpful in assisting students grasp key concepts. The experiment described here deals with different iron release mechanisms of two protagonists in iron metabolism:…

  14. Identification of Threshold Concepts for Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer; Green, David; Lewis, Jennifer E.; Lin, Sara; Minderhout, Vicky

    2014-01-01

    Threshold concepts (TCs) are concepts that, when mastered, represent a transformed understanding of a discipline without which the learner cannot progress. We have undertaken a process involving more than 75 faculty members and 50 undergraduate students to identify a working list of TCs for biochemistry. The process of identifying TCs for…

  15. Measuring Stellar Temperatures: An Astrophysical Laboratory for Undergraduate Students

    ERIC Educational Resources Information Center

    Cenadelli, D.; Zeni, M.

    2008-01-01

    While astrophysics is a fascinating subject, it hardly lends itself to laboratory experiences accessible to undergraduate students. In this paper, we describe a feasible astrophysical laboratory experience in which the students are guided to take several stellar spectra, using a telescope, a spectrograph and a CCD camera, and perform a full data…

  16. Conceptualization, Development and Validation of an Instrument for Investigating Elements of Undergraduate Physics Laboratory Learning Environments: The UPLLES (Undergraduate Physics Laboratory Learning Environment Survey)

    ERIC Educational Resources Information Center

    Thomas, Gregory P; Meldrum, Al; Beamish, John

    2013-01-01

    First-year undergraduate physics laboratories are important physics learning environments. However, there is a lack of empirically informed literature regarding how students perceive their overall laboratory learning experiences. Recipe formats persist as the dominant form of instructional design in these sites, and these formats do not adequately…

  17. Approaching the thermodynamic view of protein folding through the reproduction of Anfinsen's experiment by undergraduate physical biochemistry students.

    PubMed

    Fernandez-Reche, Andres; Cobos, Eva S; Luque, Irene; Ruiz-Sanz, Javier; Martinez, Jose C

    2018-01-04

    In 1972 Christian B. Anfinsen received the Nobel Prize in Chemistry for "…his work on ribonuclease, especially concerning the connection between the amino acid sequence and the biologically active conformation." The understanding of this principle is crucial for physical biochemistry students, since protein folding studies, bio-computing sciences and protein design approaches are founded on such a well-demonstrated connection. Herein, we describe a detailed and easy-to-follow experiment to reproduce the most relevant assays carried out at Anfinsen's laboratory in the 60s. This experiment provides students with a platform to interpret by themselves the structural and kinetic experiments conceived to understand the protein folding problem. In addition, this three-day experiment brings students a nice opportunity for protein manipulation as well as for the setting up of spectroscopic and chromatographic techniques. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  18. Video Episodes and Action Cameras in the Undergraduate Chemistry Laboratory: Eliciting Student Perceptions of Meaningful Learning

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2016-01-01

    A series of quantitative studies investigated undergraduate students' perceptions of their cognitive and affective learning in the undergraduate chemistry laboratory. To explore these quantitative findings, a qualitative research protocol was developed to characterize student learning in the undergraduate chemistry laboratory. Students (N = 13)…

  19. 1985 Employment Outlook: Undergraduate Studies.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1984

    1984-01-01

    Provides data (obtained from an American Chemical Society survey) on undergraduate studies in chemistry. Lists and discusses chemistry, elective chemistry, and supporting courses (such as writing and physics) considered to be important by professional chemists. Also recommends that undergraduates pursue studies in biochemistry, polymer chemistry,…

  20. Development of a Semester-Long, Inquiry-Based Laboratory Course in Upper-Level Biochemistry and Molecular Biology

    ERIC Educational Resources Information Center

    Murthy, Pushpalatha P. N.; Thompson, Martin; Hungwe, Kedmon

    2014-01-01

    A semester-long laboratory course was designed and implemented to familiarize students with modern biochemistry and molecular biology techniques. The designed format involved active student participation, evaluation of data, and critical thinking, and guided students to become independent researchers. The first part of the course focused on…

  1. Magnetic Braking Revisited: Activities for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ireson, Gren; Twidle, John

    2008-01-01

    This paper revisits the demonstration of Lenz by dropping magnets down a non-magnetic tube. Recent publications are reviewed and ideas for undergraduate laboratory investigations are suggested. Finally, an example of matching theory to observation is presented. (Contains 4 tables, 5 figures and 3 footnotes.)

  2. An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Russo, D.; Fagan, R. D.; Hesjedal, T.

    2011-01-01

    The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…

  3. Regional and supraregional biochemistry services in Scotland: a survey of hospital laboratory users.

    PubMed Central

    Murphy, M J; Dryburgh, F J; Shepherd, J

    1994-01-01

    AIM--To ascertain the views of Scottish hospital laboratory users on aspects of regional and supraregional biochemical services offered by the Institute of Biochemistry at Glasgow Royal Infirmary. METHODS--A questionnaire was circulated asking questions or inviting opinions under various headings, including current patterns of usage of the services provided, availability of information on specimen collection requirements and reference ranges, current arrangements for transport of specimens, turnaround times for delivery of reports, layout and content of request and report forms, quantity and quality of interpretive advice, potential changes in laboratory services, and overall impression of the services provided. Opportunities were provided for free text comment. The questionnaire was circulated in 1992 to heads of department in 23 Scottish hospital biochemistry laboratories. RESULTS--Twenty one replies were received. Services used widely included trace metals/vitamins (n = 20) and specialised endocrine tests (n = 19). Other services also used included specialised lipid tests (n = 13), toxicology (n = 12), thyroid function tests (n = nine), and tumour markers (n = eight). Fifteen laboratories used one or more of the services at least weekly. Most (n = 20) welcomed the idea of a handbook providing information on specimen collection and reference ranges. Nine identified loss of specimens as a problem. Other perceived problems included the absence of reference ranges from report forms, quantity and quality of interpretive advice, and turnaround times of some tests. Overall impressions of the service(s) offered were very good (n = 12); adequate (n = seven); poor (n = one). CONCLUSIONS--Useful information was obtained about patterns of use and transport arrangements. Areas identified as requiring follow up included provision of information, alternative ways of communicating reports, and improvement in quantity and quality of interpretive advice. PMID:8027390

  4. Measuring dynamic kidney function in an undergraduate physiology laboratory.

    PubMed

    Medler, Scott; Harrington, Frederick

    2013-12-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty.

  5. Simple and rapid system for two-dimensional gel electrophoresis technique: A laboratory exercise for high school students.

    PubMed

    Maurye, Praveen; Basu, Arpita; Biswas, Jayanta Kumar; Bandyopadhyay, Tapas Kumar; Naskar, Malay

    2018-02-28

    Polyacrylamide gel electrophoresis (PAGE) is the most classical technique favored worldwide for resolution of macromolecules in many biochemistry laboratories due to its incessant advanced developments and wide modifications. These ever-growing advancements in the basic laboratory equipments lead to emergence of many expensive, complex, and tricky laboratory equipments. Practical courses of biochemistry at high school or undergraduate levels are often affected by these complications. Two dimensional gel electrophoresis technique (2D-PAGE) used for resolving thousands of proteins in a gel is a combination of isoelectric focusing (first dimension gel electrophoresis technique) and sodium-dodecylsulphate PAGE (second dimension gel electrophoresis technique or SDS-PAGE). Two different laboratory equipments are needed to carry out effective 2D-PAGE technique, which also invites extra burden to the school laboratory. Here, we describe a low cost, time saving and simple gel cassette for protein 2D-PAGE technique that uses easily fabricated components and routine off-the-shelf materials. The performance of the apparatus was verified in a practical exercise by a group of high school students with positive outcomes. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  6. Undergraduate Performance in Solving Ill-Defined Biochemistry Problems

    ERIC Educational Resources Information Center

    Sensibaugh, Cheryl A.; Madrid, Nathaniel J.; Choi, Hye-Jeong; Anderson, William L.; Osgood, Marcy P.

    2017-01-01

    With growing interest in promoting skills related to the scientific process, we studied performance in solving ill-defined problems demonstrated by graduating biochemistry majors at a public, minority-serving university. As adoption of techniques for facilitating the attainment of higher-order learning objectives broadens, so too does the need to…

  7. Upper-Level Undergraduate Chemistry Students' Goals for Their Laboratory Coursework

    ERIC Educational Resources Information Center

    DeKorver, Brittland K.; Towns, Marcy H.

    2016-01-01

    Efforts to reform undergraduate chemistry laboratory coursework typically focus on the curricula of introductory-level courses, while upper-level courses are bypassed. This study used video-stimulated recall to interview 17 junior- and senior- level chemistry majors after they carried out an experiment as part of a laboratory course. It is assumed…

  8. New Ideas for an Old Enzyme: A Short, Question-Based Laboratory Project for the Purification and Identification of an Unknown LDH Isozyme

    ERIC Educational Resources Information Center

    Coleman, Aaron B.

    2010-01-01

    Enzyme purification projects are an excellent way to introduce many aspects of protein biochemistry, but can be difficult to carry out under the constraints of a typical undergraduate laboratory course. We have designed a short laboratory project for the purification and identification of an "unknown" lactate dehydrogenase (LDH) isozyme that can…

  9. Seed storage proteins as a system for teaching protein identification by mass spectrometry in biochemistry laboratory.

    PubMed

    Wilson, Karl A; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed, requiring more time and expertise than instructors of large laboratory classes can devote. We have developed an experimental module for our Biochemistry Laboratory course that engages students in MS-based protein identification following protein separation by one-dimensional SDS-PAGE, a technique that is usually taught in this type of course. The module is based on soybean seed storage proteins, a relatively simple mixture of proteins present in high levels in the seed, allowing the identification of the main protein bands by MS/MS and in some cases, even by peptide mass fingerprinting. Students can identify their protein bands using software available on the Internet, and are challenged to deduce post-translational modifications that have occurred upon germination. A collection of mass spectral data and tutorials that can be used as a stand-alone computer-based laboratory module were also assembled. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  10. Analysis of graphical representation among freshmen in undergraduate physics laboratory

    NASA Astrophysics Data System (ADS)

    Adam, A. S.; Anggrayni, S.; Kholiq, A.; Putri, N. P.; Suprapto, N.

    2018-03-01

    Physics concept understanding is the importance of the physics laboratory among freshmen in the undergraduate program. These include the ability to interpret the meaning of the graph to make an appropriate conclusion. This particular study analyses the graphical representation among freshmen in an undergraduate physics laboratory. This study uses empirical study with quantitative approach. The graphical representation covers 3 physics topics: velocity of sound, simple pendulum and spring system. The result of this study shows most of the freshmen (90% of the sample) make a graph based on the data from physics laboratory. It means the transferring process of raw data which illustrated in the table to physics graph can be categorised. Most of the Freshmen use the proportional principle of the variable in graph analysis. However, Freshmen can't make the graph in an appropriate variable to gain more information and can't analyse the graph to obtain the useful information from the slope.

  11. An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin

    ERIC Educational Resources Information Center

    Bailey, James A.

    2011-01-01

    Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…

  12. Integrating grant-funded research into the undergraduate biology curriculum using IMG-ACT.

    PubMed

    Ditty, Jayna L; Williams, Kayla M; Keller, Megan M; Chen, Grischa Y; Liu, Xianxian; Parales, Rebecca E

    2013-01-01

    It has become clear in current scientific pedagogy that the emersion of students in the scientific process in terms of designing, implementing, and analyzing experiments is imperative for their education; as such, it has been our goal to model this active learning process in the classroom and laboratory in the context of a genuine scientific question. Toward this objective, the National Science Foundation funded a collaborative research grant between a primarily undergraduate institution and a research-intensive institution to study the chemotactic responses of the bacterium Pseudomonas putida F1. As part of the project, a new Bioinformatics course was developed in which undergraduates annotate relevant regions of the P. putida F1 genome using Integrated Microbial Genomes Annotation Collaboration Toolkit, a bioinformatics interface specifically developed for undergraduate programs by the Department of Energy Joint Genome Institute. Based on annotations of putative chemotaxis genes in P. putida F1 and comparative genomics studies, undergraduate students from both institutions developed functional genomics research projects that evolved from the annotations. The purpose of this study is to describe the nature of the NSF grant, the development of the Bioinformatics lecture and wet laboratory course, and how undergraduate student involvement in the project that was initiated in the classroom has served as a springboard for independent undergraduate research projects. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  13. Undergraduate Performance in Solving Ill-Defined Biochemistry Problems

    PubMed Central

    Sensibaugh, Cheryl A.; Madrid, Nathaniel J.; Choi, Hye-Jeong; Anderson, William L.; Osgood, Marcy P.

    2017-01-01

    With growing interest in promoting skills related to the scientific process, we studied performance in solving ill-defined problems demonstrated by graduating biochemistry majors at a public, minority-serving university. As adoption of techniques for facilitating the attainment of higher-order learning objectives broadens, so too does the need to appropriately measure and understand student performance. We extended previous validation of the Individual Problem Solving Assessment (IPSA) and administered multiple versions of the IPSA across two semesters of biochemistry courses. A final version was taken by majors just before program exit, and student responses on that version were analyzed both quantitatively and qualitatively. This mixed-methods study quantifies student performance in scientific problem solving, while probing the qualitative nature of unsatisfactory solutions. Of the five domains measured by the IPSA, we found that average graduates were only successful in two areas: evaluating given experimental data to state results and reflecting on performance after the solution to the problem was provided. The primary difficulties in each domain were quite different. The most widespread challenge for students was to design an investigation that rationally aligned with a given hypothesis. We also extend the findings into pedagogical recommendations. PMID:29180350

  14. Synthesis of Vitamin K Expoxide: An Undergraduate Biochemistry Experiment.

    ERIC Educational Resources Information Center

    Thierry-Palmer, M.

    1984-01-01

    Provides procedures for synthesizing and purifying a vitamin K metabolite (2,3-epoxide) to introduce many of the techniques used in lipid biochemistry. Includes typical results obtained as well as an optional experiment designed to test the purity of the epoxide obtained. (JM)

  15. qPCR for second year undergraduates: A short, structured inquiry to illustrate differential gene expression.

    PubMed

    McCauslin, Christine Seitz; Gunn, Kathryn Elaine; Pirone, Dana; Staiger, Jennifer

    2015-01-01

    We describe a structured inquiry laboratory exercise that examines transcriptional regulation of the NOS2 gene under conditions that simulate the inflammatory response in macrophages. Using quantitative PCR and the comparative CT method, students are able determine whether transcriptional activation of NOS2 occurs and to what degree. The exercise is aimed at second year undergraduates who possess basic knowledge of gene expression events. It requires only 4-5 hr of dedicated laboratory time and focuses on use of the primary literature, data analysis, and interpretation. Importantly, this exercise provides a mechanism to introduce the concept of differential gene expression and provides a starting point for development of more complex guided or open inquiry projects for students moving into upper level molecular biology, immunology, and biochemistry course work. © 2015 The International Union of Biochemistry and Molecular Biology.

  16. A Microcomputer-Based Data Acquisition System for Use in Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Johnson, Ray L.

    1982-01-01

    A laboratory computer system based on the Commodore PET 2001 is described including three applications for the undergraduate analytical chemistry laboratory: (1) recording a UV-visible absorption spectrum; (2) recording and use of calibration curves; and (3) recording potentiometric data. Lists of data acquisition programs described are available…

  17. An Appraisal of a New Undergraduate Biochemistry Research Project.

    ERIC Educational Resources Information Center

    Adamson, Ishola

    1980-01-01

    Described is the first part of a two-term project involving final-year students in biochemistry. Listed are the required experiments compiled to test students' abilities to search biochemical literature, extract experiments from journals and carry them out, generate data, and interpret results. (CS)

  18. Advanced Undergraduate Laboratory Experiment in Inelastic Electron Tunneling Spectroscopy.

    ERIC Educational Resources Information Center

    White, H. W.; Graves, R. J.

    1982-01-01

    An advanced undergraduate laboratory experiment in inelastic electron tunneling spectroscopy is described. Tunnel junctions were fabricated, the tunneling spectra of several molecules absorbed on the surface of aluminum oxide measured, and mode assignments made for several of the prominent peaks in spectra using results obtained from optical…

  19. A Simple Laboratory Scale Model of Iceberg Dynamics and its Role in Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; MacAyeal, D. R.; Nakamura, N.

    2011-12-01

    Lab-scale models of geophysical phenomena have a long history in research and education. For example, at the University of Chicago, Dave Fultz developed laboratory-scale models of atmospheric flows. The results from his laboratory were so stimulating that similar laboratories were subsequently established at a number of other institutions. Today, the Dave Fultz Memorial Laboratory for Hydrodynamics (http://geosci.uchicago.edu/~nnn/LAB/) teaches general circulation of the atmosphere and oceans to hundreds of students each year. Following this tradition, we have constructed a lab model of iceberg-capsize dynamics for use in the Fultz Laboratory, which focuses on the interface between glaciology and physical oceanography. The experiment consists of a 2.5 meter long wave tank containing water and plastic "icebergs". The motion of the icebergs is tracked using digital video. Movies can be found at: http://geosci.uchicago.edu/research/glaciology_files/tsunamigenesis_research.shtml. We have had 3 successful undergraduate interns with backgrounds in mathematics, engineering, and geosciences perform experiments, analyze data, and interpret results. In addition to iceberg dynamics, the wave-tank has served as a teaching tool in undergraduate classes studying dam-breaking and tsunami run-up. Motivated by the relatively inexpensive cost of our apparatus (~1K-2K dollars) and positive experiences of undergraduate students, we hope to serve as a model for undergraduate research and education that other universities may follow.

  20. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  1. A Project-Based Biochemistry Laboratory Promoting the Understanding and Uses of Fluorescence Spectroscopy in the Study of Biomolecular Structures and Interactions

    ERIC Educational Resources Information Center

    Briese, Nicholas; Jakubowsk, Henry V.

    2007-01-01

    A laboratory project for a first semester biochemistry course is described, which integrates the traditional classroom study of the structure and function of biomolecules with the laboratory study of these molecules using fluorescence spectroscopy. Students are assigned a specific question addressing the stability/function of lipids, proteins, or…

  2. The performance assessment of undergraduate students in physics laboratory by using guided inquiry

    NASA Astrophysics Data System (ADS)

    Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.

    2018-03-01

    The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.

  3. Development of a structured undergraduate research experience: Framework and implications.

    PubMed

    Brown, Anne M; Lewis, Stephanie N; Bevan, David R

    2016-09-10

    Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process. Modernizing the current life sciences research environment to accommodate the growing demand by students for experiential learning is needed. By developing and implementing a structured, theory-based approach to undergraduate research in the life sciences, specifically biochemistry, it has been successfully shown that more students can be provided with a high-quality, high-impact research experience. The structure of this approach allowed students to develop novel, independent projects in a computational molecular modeling lab. Students engaged in an experience in which career goals, problem-solving skills, time management skills, and independence in a research lab were developed. After experiencing this approach to undergraduate research, students reported feeling challenged to think critically and prepared for future career paths. The approach allowed for a progressive learning environment where more undergraduate students could participate in publishable research. Future areas for development include implementation in a bench-top lab and extension to disciplines beyond biochemistry. In this study, it has been shown that utilizing the structured approach to undergraduate research could allow for more students to experience undergraduate research and develop into more confident, independent life scientists well prepared for graduate schools and professional research environments. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):463-474, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  4. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    NASA Astrophysics Data System (ADS)

    Williams, J. R.; Clark, J. C.; Isaacs-Smith, T.

    2001-07-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed.

  5. Green Chemistry Decision-Making in an Upper-Level Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Edgar, Landon J. G.; Koroluk, Katherine J.; Golmakani, Mehrnaz; Dicks, Andrew P.

    2014-01-01

    A self-directed independent synthesis experiment was developed for a third-year undergraduate organic laboratory. Students were provided with the CAS numbers of starting and target compounds and devised a synthetic plan to be executed over two 4.5 h laboratory periods. They consulted the primary literature in order to develop and carry out an…

  6. Using Assessment to Improve Learning in the Biochemistry Classroom

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2010-01-01

    In recent years, major drivers of undergraduate science education reform including the National Science Foundation (NSF) and the Howard Hughes Medical Institute (HHMI) have called on college and university instructors to take a more scientific approach to their teaching. Although many biochemistry instructors are gaining confidence in using…

  7. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  8. A Sensitive and Robust Enzyme Kinetic Experiment Using Microplates and Fluorogenic Ester Substrates

    ERIC Educational Resources Information Center

    Johnson, R. Jeremy; Hoops, Geoffrey C.; Savas, Christopher J.; Kartje, Zachary; Lavis, Luke D.

    2015-01-01

    Enzyme kinetics measurements are a standard component of undergraduate biochemistry laboratories. The combination of serine hydrolases and fluorogenic enzyme substrates provides a rapid, sensitive, and general method for measuring enzyme kinetics in an undergraduate biochemistry laboratory. In this method, the kinetic activity of multiple protein…

  9. An Undergraduate Laboratory Exercise for Studying Kinetics of Batch Crystallization

    ERIC Educational Resources Information Center

    Louhi­-Kultanen, Marjatta; Han, Bing; Nurkka, Annikka; Hatakka, Henry

    2015-01-01

    The present work describes an undergraduate laboratory exercise for improving understanding of fundamental phenomena in cooling crystallization. The exercise of nucleation and crystal growth kinetics supports learning of theories and models presented in lectures and calculation exercises. The teaching methodology incorporates precepts the…

  10. Measuring Meaningful Learning in the Undergraduate Chemistry Laboratory: A National, Cross-Sectional Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on laboratory learning points to the need to better understand what and how students learn in the undergraduate chemistry laboratory. The Meaningful Learning in the Laboratory Instrument (MLLI) was administered to general and organic chemistry students from 15 colleges and universities across the United States in order to measure the…

  11. Experiences of mentors training underrepresented undergraduates in the research laboratory.

    PubMed

    Prunuske, Amy J; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors' experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students' experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research.

  12. Experiences of Mentors Training Underrepresented Undergraduates in the Research Laboratory

    PubMed Central

    Prunuske, Amy J.; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors’ experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students’ experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research. PMID:24006389

  13. A Guide to Using Case-Based Learning in Biochemistry Education

    ERIC Educational Resources Information Center

    Kulak, Verena; Newton, Genevieve

    2014-01-01

    Studies indicate that the majority of students in undergraduate biochemistry take a surface approach to learning, associated with rote memorization of material, rather than a deep approach, which implies higher cognitive processing. This behavior relates to poorer outcomes, including impaired course performance and reduced knowledge retention. The…

  14. Ion Exchange and Thin Layer Chromatographic Separation and Identification of Amino Acids in a Mixture: An Experiment for General Chemistry and Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Caslavka, Katelyn E.; Van Groningen, Karinne

    2014-01-01

    A multiday laboratory exercise is described that is suitable for first-year undergraduate chemistry, biochemistry, or biotechnology students. Students gain experience in performing chromatographic separations of biomolecules, in both a column and thin layer chromatography (TLC) format. Students chromatographically separate amino acids (AA) in an…

  15. Clinical biochemistry education in Spain.

    PubMed

    Queraltó, J M

    1994-12-31

    Clinical biochemistry in Spain was first established in 1978 as an independent specialty. It is one of several clinical laboratory sciences specialties, together with haematology, microbiology, immunology and general laboratory (Clinical analysis, análisis clinicos). Graduates in Medicine, Pharmacy, Chemistry and Biological Sciences can enter post-graduate training in Clinical Chemistry after a nation-wide examination. Training in an accredited Clinical Chemistry department is 4 years. A national committee for medical and pharmacist specialties advises the government on the number of trainees, program and educational units accreditation criteria. Technical staff includes nurses and specifically trained technologists. Accreditation of laboratories is developed at different regional levels. The Spanish Society for Clinical Biochemistry and Molecular Pathology (SECQ), the national representative in the IFCC, has 1600 members, currently publishes a scientific journal (Química Clinica) and a newsletter. It organizes a continuous education program, a quality control program and an annual Congress.

  16. A Coastal Environment Field and Laboratory Activity for an Undergraduate Geomorphology Course

    ERIC Educational Resources Information Center

    Ellis, Jean T.; Rindfleisch, Paul R.

    2006-01-01

    A field and laboratory exercise for an undergraduate geomorphology class is described that focuses on the beach. The project requires one day of fieldwork and two laboratory sessions. In the field, students measure water surface fluctuations (waves) with a pressure sensor, survey beach profiles, collect sediment samples, and observe the beach…

  17. Hairy Root as a Model System for Undergraduate Laboratory Curriculum and Research

    ERIC Educational Resources Information Center

    Keyes, Carol A.; Subramanian, Senthil; Yu, Oliver

    2009-01-01

    Hairy root transformation has been widely adapted in plant laboratories to rapidly generate transgenic roots for biochemical and molecular analysis. We present hairy root transformations as a versatile and adaptable model system for a wide variety of undergraduate laboratory courses and research. This technique is easy, efficient, and fast making…

  18. Teaching Undergraduate Research: The One-Room Schoolhouse Model

    ERIC Educational Resources Information Center

    Henderson, LaRhee; Buising, Charisse; Wall, Piper

    2008-01-01

    Undergraduate research in the biochemistry, cell, and molecular biology program at Drake University uses apprenticeship, cooperative-style learning, and peer mentoring in a cross-disciplinary and cross-community educational program. We call it the one-room schoolhouse approach to teaching undergraduate research. This approach is cost effective,…

  19. Terrella for Advanced Undergraduate Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Reardon, Jim; Endrizzi, Douglass; Forest, Cary; Oliva, Steven

    2017-10-01

    A terrella has been in use in the Advanced Laboratory for undergraduates in the Physics Department at the University of Wisconsin-Madison since spring 2016. Our terrella is a permanent magnet on a pedestal which may be biased in various ways. In the vacuum region B <= 200 gauss; for typical operation p10-4 Torr. Plasma may be created by thermionic emission from a filament or by an S-band magnetron. Students are guided through diagnosis of the terrella plasma using spectroscopy and swept Langmuir probes. A suite of supporting experiments has been developed to introduce basic plasma phenomena, such as the Child-Langmuir law. University of Wisconsin-Madison.

  20. The development of Metacognition test in genetics laboratory for undergraduate students

    NASA Astrophysics Data System (ADS)

    A-nongwech, Nattapong; Pruekpramool, Chaninan

    2018-01-01

    The purpose of this research was to develop a Metacognition test in a Genetics Laboratory for undergraduate students. The participants were 30 undergraduate students of a Rajabhat university in Rattanakosin group in the second semester of the 2016 academic year using purposive sampling. The research instrument consisted of 1) Metacognition test and 2) a Metacognition test evaluation form for experts focused on three main points which were an accurate evaluation form of content, a consistency between Metacognition experiences and questions and the appropriateness of the test. The quality of the test was analyzed by using the Index of Consistency (IOC), discrimination and reliability. The results of developing Metacognition test were summarized as 1) The result of developing Metacognition test in a Genetics Laboratory for undergraduate students found that the Metacognition test contained 56 items of open - ended questions. The test composed of 1) four scientific situations, 2) fourteen items of open - ended questions in each scientific situation for evaluating components of Metacognition. The components of Metacognition consisted of Metacognitive knowledge, which were divided into person knowledge, task knowledge and strategy knowledge and Metacognitive experience, which were divided into planning, monitoring and evaluating, and 3) fourteen items of scoring criteria divided into four scales. 2) The results of the item analysis of Metacognition in Genetics Laboratory for undergraduate students found that Index of Consistency between Metacognitive experiences and questions were in the range between 0.75 - 1.00. An accuracy of content equaled 1.00. The appropriateness of the test equaled 1.00 in all situations and items. The discrimination of the test was in the range between 0.00 - 0.73. Furthermore, the reliability of the test equaled 0.97.

  1. Teaching of Biochemistry in Medical School: A Well-Trodden Pathway?

    ERIC Educational Resources Information Center

    Mathews, Michael B.; Stagnaro-Green, Alex

    2008-01-01

    Biochemistry and molecular biology occupy a unique place in the medical school curriculum. They are frequently studied prior to medical school and are fundamental to the teaching of biomedical sciences in undergraduate medical education. These two circumstances, and the trend toward increased integration among the disciplines, have led to…

  2. The Use of Multiple Tools for Teaching Medical Biochemistry

    ERIC Educational Resources Information Center

    Se, Alexandre B.; Passos, Renato M.; Ono, Andre H.; Hermes-Lima, Marcelo

    2008-01-01

    In this work, we describe the use of several strategies employing the philosophies of active learning and problem-based learning (PBL) that may be used to improve the teaching of metabolic biochemistry to medical and nutritional undergraduate students. The main activities are as follows: 1) a seminar/poster system in a mini-congress format (using…

  3. A Laboratory Course for Teaching Laboratory Techniques, Experimental Design, Statistical Analysis, and Peer Review Process to Undergraduate Science Students

    ERIC Educational Resources Information Center

    Gliddon, C. M.; Rosengren, R. J.

    2012-01-01

    This article describes a 13-week laboratory course called Human Toxicology taught at the University of Otago, New Zealand. This course used a guided inquiry based laboratory coupled with formative assessment and collaborative learning to develop in undergraduate students the skills of problem solving/critical thinking, data interpretation and…

  4. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    ERIC Educational Resources Information Center

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  5. An Operationally Simple Sonogashira Reaction for an Undergraduate Organic Chemistry Laboratory Class

    ERIC Educational Resources Information Center

    Cranwell, Philippa B.; Peterson, Alexander M.; Littlefield, Benjamin T. R.; Russell, Andrew T.

    2015-01-01

    An operationally simple, reliable, and cheap Sonogashira reaction suitable for an undergraduate laboratory class that can be completed within a day-long (8 h) laboratory session has been developed. Cross-coupling is carried out between 2-methyl-3-butyn-2-ol and various aryl iodides using catalytic amounts of bis(triphenylphosphine)palladium(II)…

  6. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    PubMed

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  7. Undergraduate Medical Academic Performance is Improved by Scientific Training

    ERIC Educational Resources Information Center

    Zhang, Lili; Zhang, Wei; Wu, Chong; Liu, Zhongming; Cai, Yunfei; Cao, Xingguo; He, Yushan; Liu, Guoxiang; Miao, Hongming

    2017-01-01

    The effect of scientific training on course learning in undergraduates is still controversial. In this study, we investigated the academic performance of undergraduate students with and without scientific training. The results show that scientific training improves students' test scores in general medical courses, such as biochemistry and…

  8. Validating the Collision-Dominated Child-Langmuir Law for a DC Discharge Cathode Sheath in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Lisovskiy, V.; Yegorenkov, V.

    2009-01-01

    In this paper, we propose a simple method of observing the collision-dominated Child-Langmuir law in the course of an undergraduate laboratory work devoted to studying the properties of gas discharges. To this end we employ the dc gas discharge whose properties are studied in sufficient detail. The undergraduate laboratory work itself is reduced…

  9. The beer and biofuels laboratory: A report on implementing and supporting a large, interdisciplinary, yeast-focused course-based undergraduate research experience.

    PubMed

    Pedwell, Rhianna K; Fraser, James A; Wang, Jack T H; Clegg, Jack K; Chartres, Jy D; Rowland, Susan L

    2018-01-31

    Course-integrated Undergraduate Research Experiences (CUREs) involve large numbers of students in real research. We describe a late-year microbiology CURE in which students use yeast to address a research question around beer brewing or synthesizing biofuel; the interdisciplinary student-designed project incorporates genetics, bioinformatics, biochemistry, analytical chemistry, and microbiology. Students perceived significant learning gains around multiple technical and "becoming a scientist" aspects of the project. The project is demanding for both the students and the academic implementers. We examine the rich landscape of support and interaction that this CURE both encourages and requires while also considering how we can support the exercise better and more sustainably. The findings from this study provide a picture of a CURE implementation that has begun to reach the limits of both the students' and the academics' capacities to complete it. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  10. Synthesis and Characterization of Silver Nanoparticles for an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Orbaek, Alvin W.; McHale, Mary M.; Barron, Andrew R.

    2015-01-01

    The aim of this simple, quick, and safe laboratory exercise is to provide undergraduate students an introduction to nanotechnology using nanoparticle (NP) synthesis. Students are provided two procedures that allow for the synthesis of different yet controlled sizes of silver NPs. After preparing the NPs, the students perform UV-visible…

  11. Blog construction as an effective tool in biochemistry active learning.

    PubMed

    Cubas Rolim, Estêvão; Martins de Oliveira, Julia; Dalvi, Luana T; Moreira, Daniel C; Garcia Caldas, Natasha; Fernandes Lobo, Felipe; André Polli, Démerson; Campos, Élida G; Hermes-Lima, Marcelo

    2017-05-01

    To boost active learning in undergraduate students, they were given the task of preparing blogs on topics of clinical biochemistry. This "experiment" lasted for 12 teaching-semesters (from 2008 to 2013), and included a survey on the blogs' usefulness at the end of each semester. The survey (applied in the 2008-2010 period) used a Likert-like questionnaire with eight questions and a 1-to-6 scale, from "totally disagree" to "fully agree." Answers of 428 students were analyzed and indicated overall approval of the blog activity: 86% and 35% of the responses scored 4-to-6 and 6, respectively. Considering the survey results, the high grades obtained by students on their blogs (averaging 8.3 in 2008-2010), and the significant increase in average grades of the clinical biochemistry exam after the beginning of the blog system (from 5.5 in 2007 to 6.4 in 2008-2010), we concluded that blogging activity on biochemistry is a promising tool for boosting active learning. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):205-215, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  12. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    PubMed Central

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  13. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    ERIC Educational Resources Information Center

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  14. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  15. Chemical Analysis of Soils: An Environmental Chemistry Laboratory for Undergraduate Science Majors.

    ERIC Educational Resources Information Center

    Willey, Joan D.; Avery, G. Brooks, Jr.; Manock, John J.; Skrabal, Stephen A.; Stehman, Charles F.

    1999-01-01

    Describes a laboratory exercise for undergraduate science students in which they evaluate soil samples for various parameters related to suitability for crop production and capability for retention of contaminants. (Contains 18 references.) (WRM)

  16. Spectroscopic Instrumentation in Undergraduate Astronomy Laboratories

    NASA Astrophysics Data System (ADS)

    Ludovici, Dominic; Mutel, Robert Lucien; Lang, Cornelia C.

    2017-01-01

    We have designed and built two spectrographs for use in undergraduate astronomy laboratories at the University of Iowa. The first, a low cost (appx. $500) low resolution (R ~ 150 - 300) grating-prism (grism) spectrometer consists of five optical elements and is easily modified to other telescope optics. The grism spectrometer is designed to be used in a modified filter wheel. This type of spectrometer allows students to undertake projects requiring sensitive spectral measurements, such as determining the redshifts of quasars. The second instrument is a high resolution (R ~ 8000), moderate cost (appx. $5000) fiber fed echelle spectrometer. The echelle spectrometer will allow students to conduct Doppler measurements such as those used to study spectroscopic binaries. Both systems are designed to be used with robotic telescope systems. The availability of 3D printing enables both of these spectrographs to be constructed in hands-on instrumentation courses where students build and commission their own instruments. Additionally, these instruments enable introductory majors and non-majors laboratory students to gain experience conducting their own spectroscopic observations.

  17. Using PyMOL to Explore the Effects of pH on Noncovalent Interactions between Immunoglobulin G and Protein A: A Guided-Inquiry Biochemistry Activity.

    PubMed

    Roche Allred, Zahilyn D; Tai, Heeyoung; Bretz, Stacey Lowery; Page, Richard C

    2017-11-01

    Students' understandings of foundational concepts such as noncovalent interactions, pH and pK a are crucial for success in undergraduate biochemistry courses. We developed a guided-inquiry activity to aid students in making connections between noncovalent interactions and pH/pK a . Students explore these concepts by examining the primary and tertiary structures of immunoglobulin G (IgG) and Protein A. Students use PyMOL, an open source molecular visualization application, to (1) identify hydrogen bonds and salt bridges between and within the proteins at physiological pH and (2) apply their knowledge of pH/pK a to association rate constant data for these proteins at pH 4 and pH 11. The laboratory activity was implemented within a one semester biochemistry laboratory for students majoring in allied health disciplines, engineering, and biological sciences. Several extensions for more advanced students are discussed. Students' overall performance highlighted their ability to successfully complete tasks such as labeling and identifying noncovalent interactions and revealed difficulties with analyzing noncovalent interactions under varying pH/pK a conditions. Students' evaluations after completing the activity indicated they felt challenged but also recognized the potential of the activity to help them gain meaningful understanding of the connections between noncovalent interactions, pH, pK a , and protein structure. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):528-536, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  18. Blog Construction as an Effective Tool in Biochemistry Active Learning

    ERIC Educational Resources Information Center

    Cubas Rolim, Estêvão; Martins de Oliveira, Julia; Dalvi, Luana T.; Moreira, Daniel C.; Garcia Caldas, Natasha; Fernandes Lobo, Felipe; André Polli, Démerson; Campos, Élida G.; Hermes-Lima, Marcelo

    2017-01-01

    To boost active learning in undergraduate students, they were given the task of preparing blogs on topics of clinical biochemistry. This "experiment" lasted for 12 teaching-semesters (from 2008 to 2013), and included a survey on the blogs' usefulness at the end of each semester. The survey (applied in the 2008-2010 period) used a…

  19. On the Integration of Remote Experimentation into Undergraduate Laboratories-Technical Implementation

    ERIC Educational Resources Information Center

    Esche, Sven K.

    2006-01-01

    This article presents how Stevens Institute of Technology (SIT) has adopted an Internet-based approach to implement its undergraduate student laboratories. The approach allowed student interaction with the experimental devices from remote locations at any time. Furthermore, it enabled instructors to include demonstrations of sophisticated…

  20. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: Measuring Mass

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The study explains the quartz-crystal microbalance (QCM) technique, which is often used as an undergraduate laboratory experiment for measuring the mass of a system. QCM can be used as a mass sensor only when the measured mass is rigidly attached to the surface.

  1. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  2. Reciprocity within biochemistry and biology service-learning.

    PubMed

    Santas, Amy J

    2009-05-01

    Service-learning has become a popular pedagogy because of its numerous and far-reaching benefits (e.g. student interest, engagement, and retention). In part, the benefits are a result of the student learning while providing a service that reflects a true need-not simply an exercise. Although service-learning projects have been developed in the areas of Biochemistry and Biology, many do not require reciprocity between the student and those being served. A reciprocal relationship enables a depth in learning as students synthesize and integrate their knowledge while confronting a real-life need. A novel reciprocal service-learning project within a three-semester undergraduate research course in the areas of Biochemistry and Biology is presented. The goal of the project was agreed upon through joint meetings with the partner institution (The Wilds) to develop an in-house competitive ELISA pregnane diol assay. Student progress and achievements were followed through the use of rubrics and progress-meetings with The Wilds. A portfolio provided a visual of progress as it contained both the written assignments as well as the rubric. The article describes a specific reciprocal biochemistry and biology service-learning project and provides recommendations on how to adapt this service-learning design for use in other research courses. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  3. A Metabolic Murder Mystery: A Case-Based Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Childs-Disney, Jessica L.; Kauffmann, Andrew D.; Poplawski, Shane G.; Lysiak, Daniel R.; Stewart, Robert J.; Arcadi, Jane K.; Dinan, Frank J.

    2010-01-01

    In 1990, a woman was wrongly convicted of poisoning her infant son and was sentenced to life in prison. Her conviction was based on laboratory work that wrongly identified ethylene glycol as present in her son's blood and in the formula he drank prior to his death. The actual cause of the infant's death, a metabolic disease, was eventually…

  4. Pharmacology and biochemistry undergraduate students' concern for a healthy diet and nutrition knowledge.

    PubMed

    Bernardes Spexoto, Maria Claudia; Garcia Ferin, Giovana; Duarte Bonini Campos, Juliana Alvares

    2015-04-01

    To estimate the concern for a healthy diet and the nutrition knowledge of undergraduate students of a pharmacology and biochemistry program and their associations with the variables of interest. This cross-sectional study administered the Nutrition Knowledge Scale and the How is your diet? questionnaire to 381 students. The associations between concern for a healthy diet and nutrition knowledge and between these two factors and the demographic variables were measured by the chi-square test (χ2) or Fisher's exact test. The significance level was set at 5%. The mean age of the students was 20.6 (standard deviation [SD] = 2.7) years; 78.2% were female students; their mean body mass index was 22.6 (SD = 3.7) kg/m²; and 73.5% had an appropriate body mass index-related nutritional status. Most students fell within the category "pay attention to your diet" (77.1%) and "moderate nutrition knowledge" (79.7%). Concern for a healthy diet was significantly associated with program year (p = 0.024), socioeconomic class (p = 0.012), and physical activity (p <0.001). Nutrition knowledge was associated only with program year (p < 0.001). Concern for a healthy diet was not associated with nutrition knowledge (p = 0.808). Physically inactive, first-year students from socioeconomic class B (US$ 1,046 - 1,872) were less concerned with a healthy diet. Such concern was not related to the students' nutrition knowledge. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Bacterial Production of Poly(3-hydroxybutyrate): An Undergraduate Student Laboratory Experiment

    ERIC Educational Resources Information Center

    Burns, Kristi L.; Oldham, Charlie D.; May, Sheldon W.

    2009-01-01

    As part of a multidisciplinary course that is cross-listed between five departments, we developed an undergraduate student laboratory experiment for culturing, isolating, and purifying the biopolymer, poly(3-hydroxybutyrate), PHB. This biopolyester accumulates in the cytoplasm of bacterial cells under specific growth conditions, and it has…

  6. Undergraduate Introductory Quantitative Chemistry Laboratory Course: Interdisciplinary Group Projects in Phytoremediation

    ERIC Educational Resources Information Center

    Van Engelen, Debra L.; Suljak, Steven W.; Hall, J. Patrick; Holmes, Bert E.

    2007-01-01

    The laboratory course around the phytoremediation is designed to develop both individual skills and promote cooperative learning while starting students work on projects in a specific area of environmental chemistry and analysis. Many research-active undergraduate institutions have developed courses, which are interdisciplinary in nature that…

  7. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  8. Measurement of the sound absorption coefficient for an advanced undergraduate physics laboratory

    NASA Astrophysics Data System (ADS)

    Macho-Stadler, E.; Elejalde-García, M. J.

    2017-09-01

    We present a simple experiment that allows advanced undergraduates to learn the basics of the acoustic properties of materials. The impedance tube-standing wave method is applied to study the normal absorption coefficient of acoustics insulators. The setup includes a tube, a speaker, a microphone, a digital function generator and an oscilloscope, material available in an undergraduate laboratory. Results of the change of the absorption coefficient with the frequency, the sample thickness and the sample density are analysed and compared with those obtained with a commercial system.

  9. Screening for Saponins Using the Blood Hemolysis Test. An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Sotheeswaran, Subramaniam

    1988-01-01

    Describes an experiment for undergraduate chemistry laboratories involving a chemical found in plants and some sea animals. Discusses collection and identification of material, a hemolysis test, preparation of blood-coated agar plates, and application of samples. (CW)

  10. Preparative Protein Production from Inclusion Bodies and Crystallization: A Seven-Week Biochemistry Sequence

    PubMed Central

    Peterson, Megan J.; Snyder, W. Kalani; Westerman, Shelley; McFarland, Benjamin J.

    2011-01-01

    We describe how to produce and purify proteins from E. coli inclusion bodies by adapting versatile, preparative-scale techniques to the undergraduate laboratory schedule. This seven-week sequence of experiments fits into an annual cycle of research activity in biochemistry courses. Recombinant proteins are expressed as inclusion bodies, which are collected, washed, then solubilized in urea. Stepwise dialysis to dilute urea over the course of a week produces refolded protein. Column chromatography is used to purify protein into fractions, which are then analyzed with gel electrophoresis and concentration assays. Students culminate the project by designing crystallization trials in sitting-drop trays. Student evaluation of the experience has been positive, listing 5–12 new techniques learned, which are transferrable to graduate research in academia and industry. PMID:21691428

  11. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory

    PubMed Central

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K.; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V. McNeil; Segarra, Verónica A.

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented—one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research. PMID:28861134

  12. Undergraduate Laboratory on a Turbulent Impinging Jet

    NASA Astrophysics Data System (ADS)

    Ivanosky, Arnaud; Brezzard, Etienne; van Poppel, Bret; Benson, Michael

    2017-11-01

    An undergraduate thermal sciences laboratory exercise that includes both experimental fluid mechanics and heat transfer measurements of an impinging jet is presented. The flow field is measured using magnetic resonance velocimetry (MRV) of a water flow, while IR thermography is used in the heat transfer testing. Flow Reynolds numbers for both the heat transfer and fluid mechanics tests range from 20,000-50,000 based on the jet diameter for a fully turbulent flow condition, with target surface temperatures in the heat transfer test reaching a maximum of approximately 50 Kelvin. The heat transfer target surface is subject to a measured uniform Joule heat flux, a well-defined boundary condition that allows comparison to existing correlations. The MRV generates a 3-component 3-dimensional data set, while the IR thermography provides a 2-dimensional heat transfer coefficient (or Nusselt number) map. These data sets can be post-processed and compared to existing correlations to verify data quality, and the sets can be juxtaposed to understand how flow features drive heat transfer. The laboratory setup, data acquisition, and analysis procedures are described for the laboratory experience, which can be incorporated as fluid mechanics, experimental methods, and heat transfer courses

  13. The impact of collaborative groups versus individuals in undergraduate inquiry-based astronomy laboratory learning exercises

    NASA Astrophysics Data System (ADS)

    Sibbernsen, Kendra J.

    One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However, recent research has shown that learners in traditional undergraduate science laboratory environments are not developing a sufficiently meaningful understanding of scientific inquiry. Recently, astronomy laboratory activities have been developed that intentionally scaffold a student from guided activities to open inquiry ones and preliminary results show that these laboratories are successful for supporting students to understand the nature of scientific inquiry (Slater, S., Slater, T. F., & Shaner, 2008). This mixed-method quasi-experimental study was designed to determine how students in an undergraduate astronomy laboratory increase their understanding of inquiry working in relative isolation compared to working in small collaborative learning groups. The introductory astronomy laboratory students in the study generally increased their understanding of scientific inquiry over the course of the semester and this held true similarly for students working in groups and students working individually in the laboratories. This was determined by the examining the change in responses from the pretest to the posttest administration of the Views of Scientific Inquiry (VOSI) survey, the increase in scores on laboratory exercises, and observations from the instructor. Because the study was successful in determining that individuals in the astronomy laboratory do as well at understanding inquiry as those who complete their exercises in small groups, it would be appropriate to offer these inquiry-based exercises in an online format.

  14. Simple & Rapid Generation of Complex DNA Profiles for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Kass, David H.

    2007-01-01

    Deoxyribonucleic acid (DNA) profiles can be generated by a variety of techniques incorporating different types of DNA markers. Simple methods are commonly utilized in the undergraduate laboratory, but with certain drawbacks. In this article, the author presents an advancement of the "Alu" dimorphism technique involving two tetraplex polymerase…

  15. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    ERIC Educational Resources Information Center

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  16. A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2005-01-01

    The green polymerization of aspartic acid carried out during an organic-inorganic synthesis laboratory course for undergraduate students is described. The procedure is based on work by Donlar Corporation, a Peru, Illinois-based company that won a Green Chemistry Challenge Award in 1996 in the Small Business category for preparing thermal…

  17. Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C.

    2007-01-01

    We present a laboratory procedure, suitable for high school and undergraduate students, for preparing and studying propane clathrate hydrate. Because of their gas storage potential and large natural deposits, gas clathrate hydrates may have economic importance both as an energy source and a transportation medium. Similar to pure ice, the gas…

  18. Spectroscopy 101: A Practical Introduction to Spectroscopy and Analysis for Undergraduate Organic Chemistry Laboratories

    ERIC Educational Resources Information Center

    Morrill, Lucas A.; Kammeyer, Jacquelin K.; Garg, Neil K.

    2017-01-01

    An undergraduate organic chemistry laboratory that provides an introduction to various spectroscopic techniques is reported. Whereas organic spectroscopy is most often learned and practiced in the context of reaction analyses, this laboratory experiment allows students to become comfortable with [superscript 1]H NMR, [superscript 13]C NMR, and IR…

  19. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  20. National survey on turnaround time of clinical biochemistry tests in 738 laboratories in China.

    PubMed

    Zhang, Xiaoyan; Fei, Yang; Wang, Wei; Zhao, Haijian; Wang, Minqi; Chen, Bingquan; Zhou, Jie; Wang, Zhiguo

    2018-02-01

    This survey was initiated to estimate the current status of turnaround time (TAT) monitoring of clinical biochemistry in China, provide baseline data for establishment of quality specifications and analyze the impact factors of TAT. 738 laboratories were included. Questionnaires involved general information and data of related indicators of TAT during 1 week were provided to participating laboratories. Nine quality indicators were covered, which were medians, 90th and outlier rates of pre-examination, examination, and post-examination TAT. The 25th percentile, median, and 75th percentile of TATs were calculated as optimum, desirable, and minimum quality specifications. Percentages and sigma values were used to describe the outlier rates. Mann-Whitney and Kruskal-Wallis tests were used to identify the potential impacts of TAT. Response rate of this survey was 46.44%. More than 50% of the laboratories indicated they had set up target TATs in three time intervals and monitored TATs generally. The post-examination TAT of most laboratories was 0min, while the pre-examination and examination TAT varied. Sigma values of outlier rates for 45%~60% of laboratories were above 4, while 15%~20% of labs whose sigma values were below 3. Group comparisons suggested nurse or mechanical pipeline transportation, link laboratory information system with hospital information system, and using computer reporting instead of printing report were related to shorter TATs. Despite of the remarkable progresses of TATs in China, there was also room to improve. Laboratories should strengthen the construction of information systems, identify reasons for TAT delay to improve the service quality continuously. © 2017 Wiley Periodicals, Inc.

  1. Croatian Society of Medical Biochemistry and Laboratory Medicine: national recommendations for venous blood sampling

    PubMed Central

    Nikolac, Nora; Šupak-Smolčić, Vesna; Šimundić, Ana-Maria; Ćelap, Ivana

    2013-01-01

    Phlebotomy is one of the most complex medical procedures in the diagnosis, management and treatment of patients in healthcare. Since laboratory test results are the basis for a large proportion (60–80%) of medical decisions, any error in the phlebotomy process could have serious consequences. In order to minimize the possibility of errors, phlebotomy procedures should be standardised, well-documented and written instructions should be available at every workstation. Croatia is one of the few European countries that have national guidelines for phlebotomy, besides the universally used CLSI (Clinical Laboratory Standards Institute) H3-A6 Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture; approved Standard-Sixth Edition (CLSI, 2007) and WHO (World Health Organization) guidelines on drawing blood: best practices in phlebotomy (WHO, 2010). However, the growing body of evidence in importance of preanalytical phase management resulted in a need for evidence based revision and expansion of existing recommendations. The Croatian Society for Medical Biochemistry and Laboratory Medicine, Working Group for the Preanalytical Phase issued this recommendation. This document is based on the CLSI guideline H3-A6, with significant differences and additional information. PMID:24266294

  2. Croatian Society of Medical Biochemistry and Laboratory Medicine: national recommendations for venous blood sampling.

    PubMed

    Nikolac, Nora; Supak-Smolcić, Vesna; Simundić, Ana-Maria; Celap, Ivana

    2013-01-01

    Phlebotomy is one of the most complex medical procedures in the diagnosis, management and treatment of patients in healthcare. Since laboratory test results are the basis for a large proportion (60-80%) of medical decisions, any error in the phlebotomy process could have serious consequences. In order to minimize the possibility of errors, phlebotomy procedures should be standardised, well-documented and written instructions should be available at every workstation. Croatia is one of the few European countries that have national guidelines for phlebotomy, besides the universally used CLSI (Clinical Laboratory Standards Institute) H3-A6 Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture; approved Standard-Sixth Edition (CLSI, 2007) and WHO (World Health Organization) guidelines on drawing blood: best practices in phlebotomy (WHO, 2010). However, the growing body of evidence in importance of preanalytical phase management resulted in a need for evidence based revision and expansion of existing recommendations. The Croatian Society for Medical Biochemistry and Laboratory Medicine, Working Group for the Preanalytical Phase issued this recommendation. This document is based on the CLSI guideline H3-A6, with significant differences and additional information.

  3. Bringing the excitement and motivation of research to students; Using inquiry and research-based learning in a year-long biochemistry laboratory : Part II-research-based laboratory-a semester-long research approach using malate dehydrogenase as a research model.

    PubMed

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A; Provost, Joseph J

    2010-09-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester. This style of laboratory replaces a variety of shorter labs in favor of an in depth research-based learning experience. The concept is to allow students to function in independent research groups. The research projects are focused on a series of wild-type and mutant clones of malate dehydrogenase. A common research theme for the laboratory helps instructors administer the course and is key to delivering a research opportunity to a large number of students. The outcome of this research-based learning laboratory results in students who are much more confident and skilled in critical areas in biochemistry and molecular biology. Students with research experience have significantly higher confidence and motivation than those students without a previous research experience. We have also found that all students performed better in advanced courses and in the workplace. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  4. Blended learning within an undergraduate exercise physiology laboratory.

    PubMed

    Elmer, Steven J; Carter, Kathryn R; Armga, Austin J; Carter, Jason R

    2016-03-01

    In physiological education, blended course formats (integration of face-to-face and online instruction) can facilitate increased student learning, performance, and satisfaction in classroom settings. There is limited evidence on the effectiveness of using blending course formats in laboratory settings. We evaluated the impact of blended learning on student performance and perceptions in an undergraduate exercise physiology laboratory. Using a randomized, crossover design, four laboratory topics were delivered in either a blended or traditional format. For blended laboratories, content was offloaded to self-paced video demonstrations (∼15 min). Laboratory section 1 (n = 16) completed blended laboratories for 1) neuromuscular power and 2) blood lactate, whereas section 2 (n = 17) completed blended laboratories for 1) maximal O2 consumption and 2) muscle electromyography. Both sections completed the same assignments (scored in a blinded manner using a standardized rubric) and practicum exams (evaluated by two independent investigators). Pre- and postcourse surveys were used to assess student perceptions. Most students (∼79%) watched videos for both blended laboratories. Assignment scores did not differ between blended and traditional laboratories (P = 0.62) or between sections (P = 0.91). Practicum scores did not differ between sections (both P > 0.05). At the end of the course, students' perceived value of the blended format increased (P < 0.01) and a greater percentage of students agreed that learning key foundational content through video demonstrations before class greatly enhanced their learning of course material compared with a preassigned reading (94% vs. 78%, P < 0.01). Blended exercise physiology laboratories provided an alternative method for delivering content that was favorably perceived by students and did not compromise student performance. Copyright © 2016 The American Physiological Society.

  5. Testing Plastic Deformations of Materials in the Introductory Undergraduate Mechanics Laboratory

    ERIC Educational Resources Information Center

    Romo-Kroger, C. M.

    2012-01-01

    Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for…

  6. Microfluidic Gel Electrophoresis in the Undergraduate Laboratory Applied to Food Analysis

    ERIC Educational Resources Information Center

    Chao, Tzu-Chiao; Bhattacharya, Sanchari; Ros, Alexandra

    2012-01-01

    A microfluidics-based laboratory experiment for the analysis of DNA fragments in an analytical undergraduate course is presented. The experiment is set within the context of food species identification via amplified DNA fragments. The students are provided with berry samples from which they extract DNA and perform polymerase chain reaction (PCR)…

  7. A Survey of the Practices, Procedures, and Techniques in Undergraduate Organic Chemistry Teaching Laboratories

    ERIC Educational Resources Information Center

    Martin, Christopher B.; Schmidt, Monica; Soniat, Michael

    2011-01-01

    A survey was conducted of four-year institutions that teach undergraduate organic chemistry laboratories in the United States. The data include results from over 130 schools, describes the current practices at these institutions, and discusses the statistical results such as the scale of the laboratories performed, the chemical techniques applied,…

  8. Argumentation in Undergraduate Chemistry Laboratories

    ERIC Educational Resources Information Center

    Walker, Joi Phelps

    2011-01-01

    To address the need for reform in undergraduate science education a new instructional model called "Argument-Driven Inquiry" (ADI) was developed and then implemented in a undergraduate chemistry course at a community college in the southeastern United States (Sampson, Walker, & Grooms, 2009; Walker, Sampson, & Zimmerman, in press). The ADI…

  9. BOREAS TE-9 NSA Canopy Biochemistry

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Charest, Martin; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves. This data set contains canopy biochemistry data collected in 1994 in the NSA at the YJP, OJR, OBS, UBS, and OA sites, including biochemistry lignin, nitrogen, cellulose, starch, and fiber concentrations. These data were collected to study the spatial and temporal changes in the canopy biochemistry of boreal forest cover types and how a high-resolution radiative transfer model in the mid-infrared could be applied in an effort to obtain better estimates of canopy biochemical properties using remote sensing. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. What are undergraduates doing at biological field stations and marine laboratories?

    Treesearch

    Janet Hodder

    2009-01-01

    Biological field stations and marine laboratories (FSMLs) serve as places to study the natural environment in a variety of ways, from the level of the molecule to the globe. Undergraduate opportunities at FSMLs reflect the diversity of study options -- formal courses, research and service internships, and field-trip experiences -- and students are responding to those...

  11. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  12. Correlation, necessity, and sufficiency: Common errors in the scientific reasoning of undergraduate students for interpreting experiments.

    PubMed

    Coleman, Aaron B; Lam, Diane P; Soowal, Lara N

    2015-01-01

    Gaining an understanding of how science works is central to an undergraduate education in biology and biochemistry. The reasoning required to design or interpret experiments that ask specific questions does not come naturally, and is an essential part of the science process skills that must be learned for an understanding of how scientists conduct research. Gaps in these reasoning skills make it difficult for students to become proficient in reading primary scientific literature. In this study, we assessed the ability of students in an upper-division biochemistry laboratory class to use the concepts of correlation, necessity, and sufficiency in interpreting experiments presented in a format and context that is similar to what they would encounter when reading a journal article. The students were assessed before and after completion of a laboratory module where necessary vs. sufficient reasoning was used to design and interpret experiments. The assessment identified two types of errors that were commonly committed by students when interpreting experimental data. When presented with an experiment that only establishes a correlation between a potential intermediate and a known effect, students frequently interpreted the intermediate as being sufficient (causative) for the effect. Also, when presented with an experiment that tests only necessity for an intermediate, they frequently made unsupported conclusions about sufficiency, and vice versa. Completion of the laboratory module and instruction in necessary vs. sufficient reasoning showed some promise for addressing these common errors. © 2015 The International Union of Biochemistry and Molecular Biology.

  13. Improvement of Student Understanding of How Kinetic Data Facilitates the Determination of Amino Acid Catalytic Function through an Alkaline Phosphatase Structure/Mechanism Bioinformatics Exercise

    ERIC Educational Resources Information Center

    Grunwald, Sandra K.; Krueger, Katherine J.

    2008-01-01

    Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…

  14. Concept mapping enhances learning of biochemistry.

    PubMed

    Surapaneni, Krishna M; Tekian, Ara

    2013-03-05

    Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, p<0.001). The students gave high positive ratings for the innovative course (93-100% agreement). The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.

  15. Concept mapping enhances learning of biochemistry

    PubMed Central

    Surapaneni, Krishna M.; Tekian, Ara

    2013-01-01

    Background Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Methods Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Results Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13–8.28 vs. 12.33–13.93, p<0.001). The students gave high positive ratings for the innovative course (93–100% agreement). Conclusion The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry. PMID:23464600

  16. Concept mapping enhances learning of biochemistry.

    PubMed

    Surapaneni, KrishnaM; Tekian, Ara

    2013-01-01

    Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, p<0.001). The students gave high positive ratings for the innovative course (93-100% agreement). The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.

  17. 3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers

    ERIC Educational Resources Information Center

    Meyer, Scott C.

    2015-01-01

    An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…

  18. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    ERIC Educational Resources Information Center

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  19. Developing and Supporting Students' Autonomy to Plan, Perform, and Interpret Inquiry-Based Biochemistry Experiments

    ERIC Educational Resources Information Center

    Silva, Thanuci; Galembeck, Eduardo

    2017-01-01

    Laboratory sessions are designed to develop the experimental skills and the acquaintance with instruments that may contribute to a successful career in Biochemistry and associated fields. This study is a report on improving a traditional Biochemistry course by devising the laboratory sessions as an inquiry-based environment to develop the…

  20. Issues with Tissues: A Tale of Gameful Learning in an Introductory Undergraduate Biology Laboratory Course

    ERIC Educational Resources Information Center

    Owens, David

    2017-01-01

    An introductory undergraduate biology laboratory session about vertebrate tissues was gamified to elucidate the effects of gameful learning on students' perceptions of their own learning and motivation. Student groups were randomly assigned a vertebrate tissue, including corresponding slides and content from the laboratory manual, and tasked with…

  1. A Green Starting Material for Electrophilic Aromatic Substitution for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Jones-Wilson, T. Michelle; Burtch, Elizabeth A.

    2005-01-01

    Electrophilic aromatic substitution (EAS) experiment is designed for the second-semester and undergraduate organic chemistry laboratory. In the EAS experiment, the principles of green chemistry are discussed and illustrated in conjunction with the presentation of electrophilic aromatic substitution.

  2. Analysis of a p53 Mutation Associated with Cancer Susceptibility for Biochemistry and Genetic Laboratory Courses

    ERIC Educational Resources Information Center

    Soto-Cruz, Isabel; Legorreta-Herrera, Martha

    2009-01-01

    We have devised and implemented a module for an upper division undergraduate laboratory based on the amplification and analysis of a p53 polymorphism associated with cancer susceptibility. First, students collected a drop of peripheral blood cells using a sterile sting and then used FTA cards to extract the genomic DNA. The p53 region is then PCR…

  3. Making Microscopy Motivating, Memorable, & Manageable for Undergraduate Students with Digital Imaging Laboratories

    ERIC Educational Resources Information Center

    Weeks, Andrea; Bachman. Beverly; Josway, Sarah; North, Brittany; Tsuchiya, Mirian T.N.

    2013-01-01

    Microscopy and precise observation are essential skills that are challenging to teach effectively to large numbers of undergraduate biology students. We implemented student-driven digital imaging assignments for microscopy in a large enrollment laboratory for organismal biology. We detail how we promoted student engagement with the material and…

  4. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: I. Fundamentals and Instrumentation

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The fundamentals, as well as the instrumentation of the quartz-crystal microbalance (QCM) technique that is used in an undergraduate laboratory experiment are being described. The QCM response can be easily used to change the properties of any system.

  5. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  6. Medical biochemistry in Macedonia: a profession for physicians and natural scientists.

    PubMed

    Traikovska, S; Dzhekova-Stojkova, S

    2001-06-01

    Medical biochemistry or clinical chemistry in its roots is an interdisciplinary science between natural sciences and medicine. The largest part of medical biochemistry is natural science (chemistry, biochemistry, biology, physics, mathematics), which is very well integrated in deduction of medical problems. Medical biochemistry throughout the world, including Macedonia, should be a professional field open to both physicians and natural scientists, according to its historical development, theoretical characteristics and applied practice. Physicians and natural scientists follow the same route in clinical chemistry during the postgraduate training of specialization in medical biochemistry/clinical chemistry. However, in Macedonia the specialization in medical biochemistry/clinical chemistry is today regulated by law only for physicians and pharmacists. The study of clinical chemistry in Europe has shown its interdisciplinary character. In most European countries different professions, such as physicians, chemists/biochemists, pharmacists, biologists and others could specialize in clinical chemistry. The question for the next generation of specialists in Macedonia is whether to accept the present conditions or to attempt to change the law to include chemists/biochemists and biologists as well. The latter used to be a practice in Macedonia 20 years ago, and still is in many European countries. Such change in law would also result in changes in the postgraduate educational program in medical biochemistry in Macedonia. The new postgraduate program has to follow the European Syllabus, recommended by EC4. To obtain sufficient knowledge in clinical chemistry, the duration of vocational training (undergraduate and postgraduate) for all trainees (physicians, pharmaceutics, chemists/biochemists and biologists) should be 8 years.

  7. Bioinformatics in Undergraduate Education: Practical Examples

    ERIC Educational Resources Information Center

    Boyle, John A.

    2004-01-01

    Bioinformatics has emerged as an important research tool in recent years. The ability to mine large databases for relevant information has become increasingly central to many different aspects of biochemistry and molecular biology. It is important that undergraduates be introduced to the available information and methodologies. We present a…

  8. Do Teaching Assistants Matter? Investigating Relationships between Teaching Assistants and Student Outcomes in Undergraduate Science Laboratory Classes

    ERIC Educational Resources Information Center

    Wheeler, Lindsay B.; Maeng, Jennifer L.; Chiu, Jennie L.; Bell, Randy L.

    2017-01-01

    This study explores the relationship between teaching assistants (TAs) and student learning in undergraduate science laboratory classes. TAs typically instruct laboratory courses, yet little, if any, research examines professional development (PD) for TAs or relationships between instructors and students in laboratory settings. The use of…

  9. Lignin biochemistry and soil N determine crop residue decomposition and soil priming

    USDA-ARS?s Scientific Manuscript database

    Cropping history can affect soil properties, including available N, but little is known about the interactive effects of residue biochemistry, temperature and cropping history on residue decomposition. A laboratory incubation examined the role of residue biochemistry and temperature on the decomposi...

  10. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  11. Teaching biochemistry to medical students in Singapore--from organic chemistry to problem-based learning.

    PubMed

    Khoo, H E

    2005-07-01

    The medical faculty in the National University of Singapore started in 1905 but the Chair in Biochemistry was only established in 1927. For many years the biochemistry course consisted of the teaching of the organic chemistry of substances of physiological importance, nutrition, metabolism and hormones. In 1961, clinical biochemistry was introduced and in the 1980s, genetics and molecular biology were included. By then, most of the organic chemistry content had been removed as greater emphasis was placed on clinical correlation. Laboratory classes consisted of mock glucose tolerance tests and the measurement of various enzymes. By the 1990s, students were no longer interested in such practical classes, so a bold decision was made around 1995 to remove laboratory classes from the curriculum. Unfortunately, this meant that the medical students who might have been interested in laboratory work could no longer do such work. However, the new curriculum in 1999 gave the department an opportunity to offer a laboratory course as an elective for interested students. This new curriculum adopted an integrated approach with Genetics being taught as part of Paediatrics, and a new module (Structural and Cell Biology) comprising aspects of cell biology and biochemistry was introduced. This module is currently taught by staff from Anatomy, Physiology and Biochemistry. Some biochemistry content is now incorporated into the clinical problem scenarios of problem-based learning such as jaundice, diabetes mellitus, anorexia nervosa, etc. So the evolution of teaching biochemistry to medical students in Singapore has paralleled worldwide trends and moved from the didactic teaching of organic chemistry of biomolecules to problem-based learning using clinical cases.

  12. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory.

    PubMed

    Hie, Liana; Chang, Jonah J; Garg, Neil K

    2015-03-10

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories.

  13. The PASCO Wireless Smart Cart: A Game Changer in the Undergraduate Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Connor, Rainor

    2018-03-01

    With the introduction of the Wireless Smart Cart by PASCO scientific in April 2016, we expect a paradigm shift in undergraduate physics laboratory instruction. We have evaluated the feasibility of using the smart cart by carrying out experiments that are usually performed using traditional PASCO equipment. The simplicity, convenience, and cost-saving achieved by replacing a plethora of traditional laboratory sensors, wires, and equipment clutter with the smart cart are reported here.

  14. Update on Improved Undergraduate Astronomy Laboratories with a Modern Telescope Control System

    NASA Astrophysics Data System (ADS)

    Jacobi, Ian; Broder, D.; Finn, R.; Milano, A. J.; Newberg, H.; Weatherwax, A.; Whittet, D.

    2007-12-01

    We are completing a cooperative astronomy education project designed to improve undergraduate laboratories at RPI (a PhD granting institution) and Siena College (a nearby liberal arts college). Following the overhaul of a 40-year-old, 16" B&C telescope on the RPI campus, we have made it available for use for hundreds of students at both schools and once per week to the public. This telescope has been integrated into studio-style, hands-on, inquiry-based laboratories designed to challenge student misconceptions. An assessment test was designed and distributed to the students taking the course at the beginning and end of the Fall 2007 semester, the results of which we compare to a baseline study undertaken in Fall 2006 and Spring 2007 to determine the efficacy of the laboratories in improving undergraduate astronomy education. In order to handle a large number of students using the main telescope and a limited number of smaller telescopes, we have cycled students through concurrent activites. This has been enabled by the rapid acquisition and imaging of targets made possible by the upgrade to the control system of our 16" telescope. We show preliminary results of the Fall 2007 assessments and comparisons to the baseline assessment. This project is funded by an NSF CCLI grant, 05-11340.

  15. Argumentation in undergraduate chemistry laboratories

    NASA Astrophysics Data System (ADS)

    Walker, Joi Phelps

    To address the need for reform in undergraduate science education a new instructional model called Argument-Driven Inquiry (ADI) was developed and then implemented in a undergraduate chemistry course at a community college in the southeastern United States (Sampson, Walker, & Grooms, 2009; Walker, Sampson, & Zimmerman, in press). The ADI instructional model is designed to give a more central place to argumentation and the role of argument in the social construction of scientific knowledge. This research investigated the growth in the quality of the student generated arguments and the scientific argumentation that took place over the course of a semester. Students enrolled in two sections of General Chemistry I laboratory at the community college participated in this study. The students worked in collaborative groups of three or four. The students were given a variation of the same performance task three times during the semester in order to measure individual ability to use evidence and justify their choice of evidence with appropriate rationale. Five ADI investigations took place during the semester and the laboratory reports for each were collected from each student and the argument section of each report was scored. All the student groups were video recorded five times during the semester as they generated and evaluated arguments and the quality of the group argumentation was assessed using an instrument called the Assessment of Scientific Argumentation in the Classroom (ASAC) observation protocol. As time was the independent variable in this study a repeated measure ANOVA was used to evaluate the significance of student improvement in each area (argumentation, written argument and performance task) over the course of the semester (Trochim, 1999). In addition, a multiple regression analysis was conducted to evaluate how well the ASAC scores predicted individual scores on both the performance task and the written arguments (Green & Salkind, 2005). There was

  16. Development, Implementation, and Analysis of a National Survey of Faculty Goals for Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bruck, Aaron D.; Towns, Marcy

    2013-01-01

    This work reports the development of a survey for laboratory goals in undergraduate chemistry, the analysis of reliable and valid data collected from a national survey of college chemistry faculty, and a synthesis of the findings. The study used a sequential exploratory mixed-methods design. Faculty goals for laboratory emerged across seven…

  17. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    ERIC Educational Resources Information Center

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  18. Investigation of the Regioselectivity of Alkene Hydrations for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bichler, Katherine A.; Van Ornum, Scott G.; Franz, Margaret C.; Imhoff, Andrea M.

    2015-01-01

    Due to a lack of time and, thus, an inability to present every possibility in a chemical reaction, organic chemistry professors tend to present each reaction with a single outcome. In practice, this is clearly not the case. A first-semester, three-week laboratory experiment designed for undergraduate organic chemistry students is described in…

  19. Biochemistry of Neuromuscular Diseases: A Course for Undergraduate Students

    ERIC Educational Resources Information Center

    Ohlendieck, Kay

    2002-01-01

    This article outlines an undergraduate course focusing on supramolecular membrane protein complexes involved in the molecular pathogenesis of neuromuscular disorders. The emphasis of this course is to introduce students to the key elements involved in the ion regulation and membrane stabilization during muscle contraction and the role of these…

  20. DNA Fingerprint Analysis of Three Short Tandem Repeat (STR) Loci for Biochemistry and Forensic Science Laboratory Courses

    ERIC Educational Resources Information Center

    McNamara-Schroeder, Kathleen; Olonan, Cheryl; Chu, Simon; Montoya, Maria C.; Alviri, Mahta; Ginty, Shannon; Love, John J.

    2006-01-01

    We have devised and implemented a DNA fingerprinting module for an upper division undergraduate laboratory based on the amplification and analysis of three of the 13 short tandem repeat loci that are required by the Federal Bureau of Investigation Combined DNA Index System (FBI CODIS) data base. Students first collect human epithelial (cheek)…

  1. Pencil-and-Paper Neural Networks: An Undergraduate Laboratory Exercise in Computational Neuroscience

    PubMed Central

    Crisp, Kevin M.; Sutter, Ellen N.; Westerberg, Jacob A.

    2015-01-01

    Although it has been more than 70 years since McCulloch and Pitts published their seminal work on artificial neural networks, such models remain primarily in the domain of computer science departments in undergraduate education. This is unfortunate, as simple network models offer undergraduate students a much-needed bridge between cellular neurobiology and processes governing thought and behavior. Here, we present a very simple laboratory exercise in which students constructed, trained and tested artificial neural networks by hand on paper. They explored a variety of concepts, including pattern recognition, pattern completion, noise elimination and stimulus ambiguity. Learning gains were evident in changes in the use of language when writing about information processing in the brain. PMID:26557791

  2. Varying iron release from transferrin and lactoferrin proteins. A laboratory experiment.

    PubMed

    Carmona, Fernando; González, Ana; Sánchez, Manu; Gálvez, Natividad; Cuesta, Rafael; Capdevila, Mercè; Dominguez-Vera, Jose M

    2017-11-01

    Iron metabolism is an important subject of study for undergraduate students of chemistry and biochemistry. Relevant laboratory exercises are scarce in the literature but would be very helpful in assisting students grasp key concepts. The experiment described here deals with different iron release mechanisms of two protagonists in iron metabolism: serum transferrin (Tf) and lactoferrin (Lf). Despite having very similar structures and iron-binding sites, Tf releases practically all its iron at pH 5.5 while Lf requires a significantly lower pH of 3. This difference in behavior is directly related to their respective biological functions as Tf blood-borne iron into the cell, while Lf competes with pathogens to sequester iron in biological fluids at more acidic pHs.  During this experiment, the students will carry out iron loading and unloading on both human Lf and Tf and monitor the iron release at different pHs using UV-Vis spectroscopy. With this simple approach, the students will discover the different patterns of iron release of Tf and Lf and how this variance in behavior relates to their biological functions. Furthermore, this laboratory practice can be expanded to allow students to investigate a variety of iron proteins. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):521-527, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  3. Enhanced podcasts for teaching biochemistry to veterinary students.

    PubMed

    Gough, Kevin C

    2011-01-01

    The teaching of biochemistry within medical disciplines presents certain challenges; firstly to relay a large body of complex facts and abstract concepts, and secondly to motivate students that this relatively difficult topic is worth their time to study. Here, nutrient biochemistry was taught within a multidisciplinary module as part of an undergraduate veterinary curriculum. The teaching approach was initially focussed on a mixture of didactic lectures and student-centred activities such as directed group/self learning. In subsequent years the core didactic lectures were replaced with enhanced podcasts covering the same material, along with the introduction of student presentations delivered within groups with both peer and facilitator assessment. These changes were accompanied by an increase in the time dedicated to this topic to allow sufficient time for students to work through podcasts and prepare presentations. The combination of these changes resulted in significant improvements in student performance within an in-course biochemistry long essay. These changes in the teaching approach, and particularly the introduction of extensive podcasts, was well received by students who perceived the process of going through the podcasts as time consuming but allowing them flexibility in both the pace that they studied this topic as well as the location and times that they studied it. Copyright © 2011 Wiley Periodicals, Inc.

  4. Incorporation of Gas Chromatography-Mass Spectrometry into the Undergraduate Organic Chemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Giarikos, Dimitrios G.; Patel, Sagir; Lister, Andrew; Razeghifard, Reza

    2013-01-01

    Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical tool for detection, identification, and quantification of many volatile organic compounds. However, many colleges and universities have not fully incorporated this technique into undergraduate teaching laboratories despite its wide application and ease of use in organic…

  5. Borohydride Reduction of Estrone: Demonstration of Diastereoselectivity in the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Aditya, Animesh; Nichols, David E.; Loudon, G. Marc

    2008-01-01

    This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity in an undergraduate organic chemistry laboratory. Chiral hindered ketones such as estrone, undergo facile reduction with sodium borohydride in a highly diastereoselective manner. The diastereomeric estradiols produced in the reaction can be analyzed and…

  6. The Use of Case Studies in an Undergraduate Biochemistry Course

    NASA Astrophysics Data System (ADS)

    Cornely, Kathleen

    1998-04-01

    Most college biochemistry courses are taught in a format in which the professor lectures and the student memorizes. Although this is the best method for conveying large amounts of material, it puts the student in the position of passive learner. The lecture-based format has not been abandoned, but has been supplemented with case study projects assigned to the students upon completion of the intermediary metabolism unit. The case study assignment is modeled on similar exercises carried out in medical school biochemistry courses in the US and around the world. A description of the assignment follows: a group of 4-5 students is given a case study which gives the medical history of a patient with an inherited metabolic disease. The group is asked to provide biochemical explanations for the patient's symptoms and to suggest an effective course of treatment. The evaluation consists of a short paper that the students write as a group. The assignment provides the opportunity for small group interaction within a larger class and emphasizes cooperative-collaborative learning. Students learn by researching the topic on their own and debating it in small group discussions, and in so doing, gain a sense of confidence in themselves and the material they have learned over the course of the semester. Solving a "real-life" problem helps develop analytical and higher-order thinking skills and allows the students to see how biochemical concepts they have learned apply to a clinical situation.

  7. Common student misconceptions in exercise physiology and biochemistry.

    PubMed

    Morton, James P; Doran, Dominic A; Maclaren, Don P M

    2008-06-01

    The present study represents a preliminary investigation designed to identify common misconceptions in students' understanding of physiological and biochemical topics within the academic domain of sport and exercise sciences. A specifically designed misconception inventory (consisting of 10 multiple-choice questions) was administered to a cohort of level 1, 2, and 3 undergraduate students enrolled in physiology and biochemistry-related modules of the BSc Sport Science degree at the authors' institute. Of the 10 misconceptions proposed by the authors, 9 misconceptions were confirmed. Of these nine misconceptions, only one misconception appeared to have been alleviated by the current teaching strategy employed during the progression from level 1 to 3 study. The remaining eight misconceptions prevailed throughout the course of the degree program, suggesting that students enter and leave university with the same misconceptions in certain areas of exercise physiology and biochemistry. The possible origins of these misconceptions are discussed, as are potential teaching strategies to prevent and/or remediate them for future years.

  8. An Alternative Approach for Preparing and Standardizing Some Common Aqueous Reagents Used in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Melaku, Samuel; Dabke, Rajeev B.

    2014-01-01

    A guide for instructors and laboratory assistants to prepare some common aqueous reagents used in an undergraduate laboratory is presented. Dilute reagents consisting of H[superscript +](aq), I[subscript 3][superscript-](aq), Ce[superscript 4+](aq), and Ag[superscript+](aq) were prepared by electrolytic oxidation of respective precursors.…

  9. Minority Undergraduate Research in Prostate Cancer: Bridging Opportunities for Postbaccalaureate Education

    DTIC Science & Technology

    2012-03-01

    students  were  assigned  to  read  both  popular  and   scientific  literature  regarding  the   genetic ,  socio...Biochemistry, Soma Jobbagy, BS Biochemistry, and Erica Boetefuer, Biological Sciences Judging Rubrics for the ASBMB Undergraduate Poster Competition 2007...Bruce Boman, Biological Sciences Role of miRNAs in Regulating Colon Cancer Stem Cells 37) Carrie Barnum and Jennifer Sabatino, Genetics Zohra Ali-Khan

  10. AFHRL/FT [Air Force Human Resources Laboratory/Flight Training] Capabilities in Undergraduate Pilot Training Simulation Research: Executive Summary.

    ERIC Educational Resources Information Center

    Matheny, W. G.; And Others

    The document presents a summary description of the Air Force Human Resource Laboratory's Flying Training Division (AFHRL/FT) research capabilities for undergraduate pilot training. One of the research devices investigated is the Advanced Simulator for Undergraduate Pilot Training (ASUPT). The equipment includes the ASUPT, the instrumented T-37…

  11. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part I--Fundamentals and Examples

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. Several examples of the use of FTIR-ATR spectroscopy in different undergraduate chemistry laboratory courses are presented here. These…

  12. Greenbeards in Yeast: An Undergraduate Laboratory Exercise to Teach the Genetics of Cooperation

    ERIC Educational Resources Information Center

    Ågren, J. Arvid; Williamson, Robert J.; Campitelli, Brandon E.; Wheeler, Jill

    2017-01-01

    Recent years have seen a dramatic increase in our understanding of the social behaviour of microbes. Here, we take advantage of these developments to present an undergraduate laboratory exercise that uses the cooperative flocculating behaviour of yeast ("Saccharomyces sp.") to introduce the concept of inclusive fitness and teach the…

  13. A course-based undergraduate research experience investigating p300 bromodomain mutations.

    PubMed

    Shanle, Erin K; Tsun, Ian K; Strahl, Brian D

    2016-01-01

    Course-based undergraduate research experiences (CUREs) provide an opportunity for students to engage in experiments with outcomes that are unknown to both the instructor and students. These experiences allow students and instructors to collaboratively bridge the research laboratory and classroom, and provide research experiences for a large number of students relative to traditional individual mentored research. Here, we describe a molecular biology CURE investigating the impact of clinically relevant mutations found in the bromodomain of the p300 transcriptional regulator on acetylated histone interaction. In the CURE, students identified missense mutations in the p300 bromodomain using the Catalogue of Somatic Mutations in Cancer (COSMIC) database and hypothesized the effects of the mutation on the acetyl-binding function of the domain. They cloned and purified the mutated bromodomain and performed peptide pulldown assays to define its potential to bind to acetylated histones. Upon completion of the course, students showed increased confidence performing molecular techniques and reported positively on doing a research project in class. In addition, results generated in the classroom were further validated in the research laboratory setting thereby providing a new model for faculty to engage in both course-based and individual undergraduate research experiences. © 2015 The International Union of Biochemistry and Molecular Biology.

  14. Why should biochemistry students be introduced to molecular dynamics simulations--and how can we introduce them?

    PubMed

    Elmore, Donald E

    2016-01-01

    Molecular dynamics (MD) simulations play an increasingly important role in many aspects of biochemical research but are often not part of the biochemistry curricula at the undergraduate level. This article discusses the pedagogical value of exposing students to MD simulations and provides information to help instructors consider what software and hardware resources are necessary to successfully introduce these simulations into their courses. In addition, a brief review of the MD-based activities in this issue and other sources are provided. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    The dilemma of designing an advanced undergraduate laboratory lies in the desire to teach and reinforce basic principles and techniques while at the same time exposing students to the excitement of research. We report here on a one-semester, project-based biochemistry laboratory that combines the best features of a cookbook approach (high success rate, achievement of defined goals) with those of an investigative, discovery-based approach (student involvement in the experimental design, excitement of real research). Individual modules may be selected and combined to meet the needs of different courses and different institutions. The central theme of this lab is protein purification and design. This laboratory accompanies the first semester of biochemistry (Structure and Function of Macromolecules, a course taken mainly by junior and senior chemistry and biological chemistry majors). The protein chosen as the object of study is the enzyme lysozyme, which is utilized in all projects. It is suitable for a student lab because it is easily and inexpensively obtained from egg white and is extremely stable, and its high isoelectric point (pI = 11) allows for efficient separation from other proteins by ion-exchange chromatography. Furthermore, a literature search conducted by the resourceful student reveals a wealth of information, since lysozyme has been the subject of numerous studies. It was the first enzyme whose structure was determined by crystallography (1). Hendrickson et al. (2) have previously described an intensive one-month laboratory course centered around lysozyme, although their emphasis is on protein stability rather than purification and engineering. Lysozyme continues to be the focus of much exciting new work on protein folding and dynamics, structure and activity (3 - 5). This lab course includes the following features: (i) reinforcement of basic techniques, such as preparation of buffers, simple enzyme kinetics, and absorption spectroscopy; (ii

  16. Let There Be Light: Hypothesis-Driven Investigation of Ligand Effects in Photoredox Catalysis for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chen, Shuming

    2018-01-01

    An undergraduate organic chemistry laboratory experiment that provides an introduction to the concepts and practices of photoredox catalysis is reported. While undergraduate-level photochemistry experiments typically place emphasis on analytical properties of catalysts rather than synthetic applications, this experiment showcases the power and…

  17. Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary

    1999-05-01

    Enzyme kinetics experiments are popular in the undergraduate laboratory. These experiments have pedagogic value because they reinforce the concepts of Michaelis-Menten kinetics covered in the lecture portion of the course and give students the experience of calculating kinetic constants from data they themselves have generated. In this experiment, we investigate the kinetics of the thiol protease papain. The source of the papain is commercially available papaya latex. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained. If time permits, students carry out additional investigations in which e of p-nitroaniline is measured, the enzyme solution protein concentration is measured, the enzyme purity is evaluated by SDS-PAGE, and a pH-rate profile is constructed from experimental data.

  18. [superscript 31]P NMR of the Pyruvate Kinase Reaction: An Undergraduate Experiment in Enzyme Kinetics

    ERIC Educational Resources Information Center

    Werner, R. Marshall; Johnson, Austin

    2017-01-01

    Understanding how to perform an enzyme assay is a critical learning skill in the undergraduate biochemistry curriculum. Students in biochemistry typically have been exposed to the use of NMR spectroscopy as a tool to determine chemical structure, but rarely are they exposed to the utility of NMR to evaluate enzyme kinetics. Furthermore, coverage…

  19. Introduction of Digital Computer Technology Into the Undergraduate Chemistry Laboratory. Final Technical Report.

    ERIC Educational Resources Information Center

    Perone, Sam P.

    The objective of this project has been the development of a successful approach for the incorporation of on-line computer technology into the undergraduate chemistry laboratory. This approach assumes no prior programing, electronics or instrumental analysis experience on the part of the student; it does not displace the chemistry content with…

  20. The PASCO Wireless Smart Cart: A Game Changer in the Undergraduate Physics Laboratory

    ERIC Educational Resources Information Center

    Shakur, Asif; Connor, Rainor

    2018-01-01

    With the introduction of the Wireless Smart Cart by PASCO scientific in April 2016, we expect a paradigm shift in undergraduate physics laboratory instruction. We have evaluated the feasibility of using the smart cart by carrying out experiments that are usually performed using traditional PASCO equipment. The simplicity, convenience, and…

  1. Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol-Ene Reaction Using Visible Light

    ERIC Educational Resources Information Center

    Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.

  2. Raman Investigation of Temperature Profiles of Phospholipid Dispersions in the Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.

    2015-06-01

    The temperature dependence of self-assembled, cell-like dispersions of phospholipids is investigated with Raman spectroscopy in the biochemistry laboratory. Vibrational modes in the hydrocarbon interiors of phospholipid bilayers are strongly Raman active, whereas the vibrations of the polar head groups and the water matrix have little Raman activity. From Raman spectra increases in fluidity of the hydrocarbon chains can be monitored with intensity changes as a function of temperature in the CH-stretching region. The experiment uses detection of scattered 1064-nm laser light (Nicolet NXR module) by a Fourier transform infrared spectrometer (Nicolet 6700). A thermoelectric heater-cooler device (Melcor) gives convenient temperature control from 5 to 95°C for samples in melting point capillaries. Use of deuterium oxide instead of water as the matrix avoids some absorption of the exciting laser light and interference with intensity observations in the CH-stretching region. Phospholipids studied range from dimyristoylphosphotidyl choline (C14, transition T = 24°C) to dibehenoylphosphotidyl choline (C22, transition T = 74°C).

  3. Promoting Inquiry-Based Teaching in Laboratory Courses: Are We Meeting the Grade?

    PubMed Central

    Butler, Amy; Burke da Silva, Karen

    2014-01-01

    Over the past decade, repeated calls have been made to incorporate more active teaching and learning in undergraduate biology courses. The emphasis on inquiry-based teaching is especially important in laboratory courses, as these are the courses in which students are applying the process of science. To determine the current state of research on inquiry-based teaching in undergraduate biology laboratory courses, we reviewed the recent published literature on inquiry-based exercises. The majority of studies in our data set were in the subdisciplines of biochemistry, cell biology, developmental biology, genetics, and molecular biology. In addition, most exercises were guided inquiry, rather than open ended or research based. Almost 75% of the studies included assessment data, with two-thirds of these studies including multiple types of assessment data. However, few exercises were assessed in multiple courses or at multiple institutions. Furthermore, assessments were rarely based on published instruments. Although the results of the studies in our data set show a positive effect of inquiry-based teaching in biology laboratory courses on student learning gains, research that uses the same instrument across a range of courses and institutions is needed to determine whether these results can be generalized. PMID:25185228

  4. Toward a global approach of biochemistry in hospitals.

    PubMed

    Boigne, J M; Moisdon, J C; Tonneau, D

    1985-01-01

    This article summarizes three different presentations delivered at the CRESGE congress by three members of GREBIO, a reflection group about biochemistry; created in the Paris hospitals, this group was concerned with these problems at a time of great technological change. Physicians, biochemists and administrators have been working in GREBIO for 7 years, with the methodological assistance of management from the School of Mines; they used new approaches, and careful investigations on the field and proposed analyses sometimes upsetting but always enriching the questionings. Starting from these results, briefly described, GREBIO proposed the creation of an observatory for biochemistry, that could take into account both the complexity and diversity in the laboratories. It also proposed that current reform in analytical accountancy allow biochemistry to work its own managing tools separately from accountancy purposes.

  5. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification.

    PubMed

    Danielson, Kathryn I; Tanner, Kimberly D

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. © 2015 K. I. Danielson and K. D. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Undergraduate virology exercises demonstrate conventional and real-time PCR using commercially available HIV primers and noninfectious target.

    PubMed

    Sulzinski, Michael A; Wasilewski, Melissa A; Farrell, James C; Glick, David L

    2009-07-01

    It is an extraordinary challenge to offer an undergraduate laboratory course in virology that teaches hands-on, relevant molecular biology techniques using nonpathogenic models of human virus detection. To our knowledge, there exists no inexpensive kits or reagent sets that are appropriate for demonstrating real-time PCR (RT-PCR) in an undergraduate laboratory course in virology. Here we describe simple procedures for student exercises that demonstrate the PCR detection of an HIV target nucleic acid. Our procedures combine a commercially available kit for conventional PCR with a modification for RT-PCR using the same reagents in the kit, making it possible for an instructor with access to a LightCycler® instrument to implement a relevant student exercise on RT-PCR detection of HIV nucleic acid targets. This combination of techniques is useful for demonstrating and comparing conventional PCR amplification and detection with agarose gel electrophoresis, with real-time PCR over a series of three laboratory periods. The series of laboratory periods also is used to provide the foundation for teaching the concept of PCR primer design, optimization of PCR detection systems, and introduction to nucleic acid queries using NCBI-BLAST to find and identify primers, amplicons, and other potential amplification targets within the HIV viral genome. The techniques were successfully implemented at the Biology 364 undergraduate virology course at the University of Scranton during the Fall 2008 semester. The techniques are particularly targeted to students who intend to pursue either postgraduate technical employment or graduate studies in the molecular life sciences. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  7. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  8. Current practice in laboratory diagnostics of autoimmune diseases in Croatia. 
Survey of the Working group for laboratory diagnostics of autoimmune diseases of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Kuna, Andrea Tešija; Đerek, Lovorka; Kozmar, Ana; Drvar, Vedrana

    2016-10-15

    With the trend of increasing incidence of autoimmune diseases, laboratories are faced with exponential growth of the requests for tests relating the diagnosis of these diseases. Unfortunately, the lack of laboratory personnel experienced in this specific discipline of laboratory diagnostic, as well as an unawareness of a method limitation often results in confusion for clinicians. The aim was to gain insight into number and type of Croatian laboratories that perform humoral diagnostics with the final goal to improve and harmonize laboratory diagnostics of autoimmune diseases in Croatia. In order to get insight into current laboratory practice two questionnaires, consisting of 42 questions in total, were created. Surveys were conducted using SurveyMonkey application and were sent to 88 medical biochemistry laboratories in Croatia for the first survey. Out of 33 laboratories that declared to perform diagnostic from the scope, 19 were selected for the second survey based on the tests they pleaded to perform. The survey comprised questions regarding autoantibody hallmarks of systemic autoimmune diseases while regarding organ-specific autoimmune diseases was limited to diseases of liver, gastrointestinal and nervous system. Response rate was high with 80 / 88 (91%) laboratories which answered the first questionnaire, and 19 / 19 (1.0) for the second questionnaire. Obtained results of surveys indicate high heterogeneity in the performance of autoantibody testing among laboratories in Croatia. Results indicate the need of creating recommendations and algorithms in order to harmonize the approach to laboratory diagnostics of autoimmune diseases in Croatia.

  9. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  10. Room-Temperature C-H Functionalization Sequence under Benchtop Conditions for the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chen, Shuming

    2018-01-01

    An iridium(III)-mediated C-H functionalization sequence involving a concerted cyclometalation-deprotonation/migratory insertion pathway is reported for the undergraduate chemistry laboratory. The air- and water-stable iridacycle intermediates are readily isolated and characterized by NMR spectroscopy. Both steps of the experiment are performed at…

  11. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  12. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Ledbetter, Mary Lee S.; Lippert, Malcolm J.

    2002-01-01

    Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…

  13. The use of multiple tools for teaching medical biochemistry.

    PubMed

    Sé, Alexandre B; Passos, Renato M; Ono, André H; Hermes-Lima, Marcelo

    2008-03-01

    In this work, we describe the use of several strategies employing the philosophies of active learning and problem-based learning (PBL) that may be used to improve the teaching of metabolic biochemistry to medical and nutritional undergraduate students. The main activities are as follows: 1) a seminar/poster system in a mini-congress format (using topics of applied biochemistry); 2) a true/false applied biochemistry exam (written by peer tutors); 3) a 9-h exam on metabolism (based in real publications); 4) the Advanced Biochemistry course (directed to peer tutors, where students learn how to read and criticize real medical papers); 5) experiments about nutrition and metabolism, using students as volunteers, and about free radicals (real science for students); 6) the BioBio blog (taking advantage of the "web age," this enhances out of class exchanges of information between the professor, students, and peer tutors); 7) student lectures on public health issues and metabolic disorders directed to the community and lay people; and 8) the BioBio quiz show. The main objective of these activities is to provide students with a more practical and interesting approach to biochemistry, such as the application of theoretical knowledge to real situations (diseases, experiments, media information, and scientific discoveries). In addition, we emphasize the importance of peer tutor activities for optimized learning of both students and peer tutors, the importance of a closer interaction between students and teaching staff, and the necessity to initiate students precociously in two broad fields of medical activity: "real" basic science and contact with the public (also helping students--future doctors and nutritionists--to be able to communicate with lay people). Most activities were evaluated by the students through written questionnaires and informal conversations, along various semesters, indicating good acceptance and approval of these methods. Good student scores in the

  14. Capillary blood sampling: national recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Krleza, Jasna Lenicek; Dorotic, Adrijana; Grzunov, Ana; Maradin, Miljenka

    2015-01-01

    Capillary blood sampling is a medical procedure aimed at assisting in patient diagnosis, management and treatment, and is increasingly used worldwide, in part because of the increasing availability of point-of-care testing. It is also frequently used to obtain small blood volumes for laboratory testing because it minimizes pain. The capillary blood sampling procedure can influence the quality of the sample as well as the accuracy of test results, highlighting the need for immediate, widespread standardization. A recent nationwide survey of policies and practices related to capillary blood sampling in medical laboratories in Croatia has shown that capillary sampling procedures are not standardized and that only a small proportion of Croatian laboratories comply with guidelines from the Clinical Laboratory Standards Institute (CLSI) or the World Health Organization (WHO). The aim of this document is to provide recommendations for capillary blood sampling. This document has been produced by the Working Group for Capillary Blood Sampling within the Croatian Society of Medical Biochemistry and Laboratory Medicine. Our recommendations are based on existing available standards and recommendations (WHO Best Practices in Phlebotomy, CLSI GP42-A6 and CLSI C46-A2), which have been modified based on local logistical, cultural, legal and regulatory requirements. We hope that these recommendations will be a useful contribution to the standardization of capillary blood sampling in Croatia. PMID:26524965

  15. Development of a competency based training programme to support multidisciplinary working in a combined biochemistry/haematology laboratory

    PubMed Central

    Woods, R; Longmire, W; Galloway, M; Smellie, W

    2000-01-01

    The aim of this study was to develop a competency based training programme to support multidisciplinary working in a combined biochemistry and haematology laboratory. The training programme was developed to document that staff were trained in the full range of laboratory tests that they were expected to perform. This programme subsequently formed the basis for the annual performance review of all staff. All staff successfully completed the first phase of the programme. This allowed laboratory staff to work unsupervised at night as part of a partial shift system. All staff are now working towards achieving a level of competence equivalent to the training level required for state registration by the Council for Professions Supplementary to Medicine. External evaluation of the training programme has included accreditation by the Council for Professions Supplementary to Medicine and reinspection by Clinical Pathology Accreditation (UK) Ltd. The development of a competency based training system has facilitated the introduction of multidisciplinary working in the laboratory. In addition, it enables the documentation of all staff to ensure that they are fully trained and are keeping up to date, because the continuing professional development programme in use in our laboratory has been linked to this training scheme. This approach to documentation of training facilitated a recent reinspection by Clinical Pathology Accreditation (UK) Ltd. Key Words: Keyword: multidisciplinary working • competency based training PMID:10889827

  16. Capillary blood sampling: national recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Krleza, Jasna Lenicek; Dorotic, Adrijana; Grzunov, Ana; Maradin, Miljenka

    2015-01-01

    Capillary blood sampling is a medical procedure aimed at assisting in patient diagnosis, management and treatment, and is increasingly used worldwide, in part because of the increasing availability of point-of-care testing. It is also frequently used to obtain small blood volumes for laboratory testing because it minimizes pain. The capillary blood sampling procedure can influence the quality of the sample as well as the accuracy of test results, highlighting the need for immediate, widespread standardization. A recent nationwide survey of policies and practices related to capillary blood sampling in medical laboratories in Croatia has shown that capillary sampling procedures are not standardized and that only a small proportion of Croatian laboratories comply with guidelines from the Clinical Laboratory Standards Institute (CLSI) or the World Health Organization (WHO). The aim of this document is to provide recommendations for capillary blood sampling. This document has been produced by the Working Group for Capillary Blood Sampling within the Croatian Society of Medical Biochemistry and Laboratory Medicine. Our recommendations are based on existing available standards and recommendations (WHO Best Practices in Phlebotomy, CLSI GP42-A6 and CLSI C46-A2), which have been modified based on local logistical, cultural, legal and regulatory requirements. We hope that these recommendations will be a useful contribution to the standardization of capillary blood sampling in Croatia.

  17. So These Numbers Really Mean Something? A Role Playing Scenario-Based Approach to the Undergraduate Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Grannas, Amanda M.; Lagalante, Anthony F.

    2010-01-01

    A new curricular approach in our undergraduate second-year instrumental analysis laboratory was implemented. Students work collaboratively on scenarios in diverse fields including pharmaceuticals, forensics, gemology, art conservation, and environmental chemistry. Each laboratory section (approximately 12 students) is divided into three groups…

  18. The quality and scope of information provided by medical laboratories to patients before laboratory testing: Survey of the Working Group for Patient Preparation of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Nikolac, Nora; Simundic, Ana-Maria; Kackov, Sanja; Serdar, Tihana; Dorotic, Adrijana; Fumic, Ksenija; Gudasic-Vrdoljak, Jelena; Klenkar, Kornelija; Sambunjak, Jadranka; Vidranski, Valentina

    2015-10-23

    The aim of this work was to evaluate to what extent the scope and content of information provided to patients is standardized across medical biochemistry laboratories in Croatia. Two on-line self-report surveys were sent out: Survey A regarding attitudes on importance of patient preparation and Survey B on the contents of patient preparation instructions. 13/118 laboratories (11%) do not provide written instructions to patients on how to prepare for laboratory testing, and 36 (40%) do not include information about water intake in their instructions. Only half of laboratories provide instructions for prostate-specific antigen (53.8%), female sex hormones (53.7%) and therapeutic drug monitoring (TDM) (52.5%). Inadequate information about fasting status (55.0%) and 24 hour urine collection (77.9%) were frequent errors with high severity and were associated with the greatest potential to cause patient harm. Laboratory professionals in Croatia have a positive attitude towards the importance of patient preparation for laboratory testing. However, the information for laboratory testing is not standardized and frequently lacks guidance for tests related to TDM, coagulation and endocrinology. This study highlights the need for standardized, updated and evidence-based recommendations for patient preparation in order to minimize the risk for patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. "Anisakis Simplex" Infection in Mackerel: A Reliable Laboratory Exercise to Demonstrate Important Principles in Parasitology to Undergraduates

    ERIC Educational Resources Information Center

    Coombs, I.; Tatner, M.; Paterson, V.

    2013-01-01

    Practical laboratory work in parasitology can be very limited, due to the difficulty in maintaining multi-host parasite life cycles, especially for a large, once-yearly undergraduate laboratory class for life science students. The use of mackerel, "Scomber scombrus," bought from a local fishmonger, is an ideal model to investigate important…

  20. Microwave-Enhanced Organic Syntheses for the Undergraduate Laboratory: Diels-Alder Cycloaddition, Wittig Reaction, and Williamson Ether Synthesis

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Falcone, Danielle; Gordon, Christopher

    2010-01-01

    Microwave heating enhanced the rate of three reactions typically performed in our undergraduate organic chemistry laboratory: a Diels-Alder cycloaddition, a Wittig salt formation, and a Williamson ether synthesis. Ninety-minute refluxes were shortened to 10 min using a laboratory-grade microwave oven. In addition, yields improved for the Wittig…

  1. Continuous Flow Science in an Undergraduate Teaching Laboratory: Bleach-Mediated Oxidation in a Biphasic System

    ERIC Educational Resources Information Center

    Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.

  2. Exploring Power Distribution and Its Influence on the Process of Argumentation in a POGIL Biochemistry Classroom

    ERIC Educational Resources Information Center

    Prince, Annabel N.; Pitts, Wesley B.; Parkin, David W.

    2018-01-01

    In this exploratory case study, we consider how students in an undergraduate biochemistry class engaged in the process of argumentation within an inquiry-oriented learning environment to investigate a chemical mechanism in a particular part of the tricarboxylic acid cycle. Audio/video recordings of student groups during the mechanism discussion…

  3. Resource Letter SPE-1: Single-Photon Experiments in the Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Galvez, Enrique J.

    2014-11-01

    This Resource Letter lists undergraduate-laboratory adaptations of landmark optical experiments on the fundamentals of quantum physics. Journal articles and websites give technical details of the adaptations, which offer students unique hands-on access to testing fundamental concepts and predictions of quantum mechanics. A selection of the original research articles that led to the implementations is included. These developments have motivated a rethinking of the way quantum mechanics is taught, so this Resource Letter also lists textbooks that provide these new approaches.

  4. Planning an objective and need based curriculum: the logistics with reference to the undergraduate medical education in biochemistry.

    PubMed

    Ramasamy, Ramesh; Gopal, Niranjan; Srinivasan, A R; Murugaiyan, Sathish Babu

    2013-03-01

    The medical education is recently being transformed into several domains in order to adapt to the need and the value based academics which is required for the quality doctors who serve the community. Presently, the biochemistry curricula for the graduate students of medicine have been questioned by as many experts, because of their multiple lacunae. In this review, we would like to highlight the scenario which is related to the existing biochemistry curricula for graduate medical students, which have been followed in several medical schools and universities and we also hope to share our ideas for implementing objective and pragmatic curricula. Evidence based research, wherein the articles which are related to innovative teaching-learning tools are collected and the pros and cons which are related to the different methods analyzed in biochemistry point of view. Rapid changes in the content of the curriculum may not be required, but a gradual introduction of the novel approach and the methods of teaching biochemistry can be adopted into the curriculum.

  5. An Undergraduate Course and Laboratory in Digital Signal Processing with Field Programmable Gate Arrays

    ERIC Educational Resources Information Center

    Meyer-Base, U.; Vera, A.; Meyer-Base, A.; Pattichis, M. S.; Perry, R. J.

    2010-01-01

    In this paper, an innovative educational approach to introducing undergraduates to both digital signal processing (DSP) and field programmable gate array (FPGA)-based design in a one-semester course and laboratory is described. While both DSP and FPGA-based courses are currently present in different curricula, this integrated approach reduces the…

  6. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    ERIC Educational Resources Information Center

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  7. Aligning Biochemistry to the Interests of Biology Students Using Haloperoxidase to Illustrate Reactions of Environmental and Biomedical Importance

    ERIC Educational Resources Information Center

    Jervis, Les; Jervis, Loretta M.; Giovannelli, Donato

    2005-01-01

    Undergraduate degree programs in the biosciences almost always include elements of biochemistry. In the United Kingdom, biosciences programs often have optional pathways to accommodate students of diverse interests. These programs rarely require students to demonstrate any school-level chemistry knowledge, and many students find biochemistry…

  8. 75 FR 8147 - Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 030-05154; NRC-2010-0056] Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry Laboratories, Inc. Sanitary Lagoon... license amendment to Byproduct Material License No. 24- 13365-01 issued to Analytical Bio-Chemistry...

  9. Current practice in laboratory diagnostics of autoimmune diseases in Croatia. 
Survey of the Working group for laboratory diagnostics of autoimmune diseases of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Kuna, Andrea Tešija; Đerek, Lovorka; Kozmar, Ana; Drvar, Vedrana

    2016-01-01

    Introduction With the trend of increasing incidence of autoimmune diseases, laboratories are faced with exponential growth of the requests for tests relating the diagnosis of these diseases. Unfortunately, the lack of laboratory personnel experienced in this specific discipline of laboratory diagnostic, as well as an unawareness of a method limitation often results in confusion for clinicians. The aim was to gain insight into number and type of Croatian laboratories that perform humoral diagnostics with the final goal to improve and harmonize laboratory diagnostics of autoimmune diseases in Croatia. Materials and methods In order to get insight into current laboratory practice two questionnaires, consisting of 42 questions in total, were created. Surveys were conducted using SurveyMonkey application and were sent to 88 medical biochemistry laboratories in Croatia for the first survey. Out of 33 laboratories that declared to perform diagnostic from the scope, 19 were selected for the second survey based on the tests they pleaded to perform. The survey comprised questions regarding autoantibody hallmarks of systemic autoimmune diseases while regarding organ-specific autoimmune diseases was limited to diseases of liver, gastrointestinal and nervous system. Results Response rate was high with 80 / 88 (91%) laboratories which answered the first questionnaire, and 19 / 19 (1.0) for the second questionnaire. Obtained results of surveys indicate high heterogeneity in the performance of autoantibody testing among laboratories in Croatia. Conclusions Results indicate the need of creating recommendations and algorithms in order to harmonize the approach to laboratory diagnostics of autoimmune diseases in Croatia. PMID:27812306

  10. Development of an Assessment Tool to Measure Students' Meaningful Learning in the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on learning in the undergraduate chemistry laboratory necessitates an understanding of students' perspectives of learning. Novak's Theory of Meaningful Learning states that the cognitive (thinking), affective (feeling), and psychomotor (doing) domains must be integrated for meaningful learning to occur. The psychomotor domain is the…

  11. Teaching foundational topics and scientific skills in biochemistry within the conceptual framework of HIV protease.

    PubMed

    Johnson, R Jeremy

    2014-01-01

    HIV protease has served as a model protein for understanding protein structure, enzyme kinetics, structure-based drug design, and protein evolution. Inhibitors of HIV protease are also an essential part of effective HIV/AIDS treatment and have provided great societal benefits. The broad applications for HIV protease and its inhibitors make it a perfect framework for integrating foundational topics in biochemistry around a big picture scientific and societal issue. Herein, I describe a series of classroom exercises that integrate foundational topics in biochemistry around the structure, biology, and therapeutic inhibition of HIV protease. These exercises center on foundational topics in biochemistry including thermodynamics, acid/base properties, protein structure, ligand binding, and enzymatic catalysis. The exercises also incorporate regular student practice of scientific skills including analysis of primary literature, evaluation of scientific data, and presentation of technical scientific arguments. Through the exercises, students also gain experience accessing computational biochemical resources such as the protein data bank, Proteopedia, and protein visualization software. As these HIV centered exercises cover foundational topics common to all first semester biochemistry courses, these exercises should appeal to a broad audience of undergraduate students and should be readily integrated into a variety of teaching styles and classroom sizes. © 2014 The International Union of Biochemistry and Molecular Biology.

  12. Student perceptions of an upper-level, undergraduate human anatomy laboratory course without cadavers.

    PubMed

    Wright, Shirley J

    2012-01-01

    Several programs in health professional education require or are considering requiring upper-level human anatomy as prerequisite for their applicants. Undergraduate students are confronted with few institutions offering such a course, in part because of the expense and logistical issues associated with a cadaver-based human anatomy course. This study describes the development of and student reactions to an upper-level human anatomy laboratory course for undergraduate students that used a regional approach and contemporary, alternative teaching methods to a cadaver-based course. The alternative pedagogy to deliver the curriculum included use of commercially available, three-dimensional anatomical virtual dissection software, anatomical models coupled with a learning management system to offer Web-based learning, and a new laboratory manual with collaborative exercises designed to develop the student's anatomical skills and collaborative team skills. A Likert-scale survey with open-ended questions was used to ascertain student perceptions of the course and its various aspects. Students perceived that the noncadaver-based, upper-level human anatomy course with an engaging, regional approach is highly valuable in their learning of anatomy. anatomy. Copyright © 2012 American Association of Anatomists.

  13. Planning an Objective and Need Based Curriculum: The Logistics with Reference to the Undergraduate Medical Education in Biochemistry

    PubMed Central

    Ramasamy, Ramesh; Gopal, Niranjan; Srinivasan, A R; Murugaiyan, Sathish Babu

    2013-01-01

    Purpose: The medical education is recently being transformed into several domains in order to adapt to the need and the value based academics which is required for the quality doctors who serve the community. Presently, the biochemistry curricula for the graduate students of medicine have been questioned by as many experts, because of their multiple lacunae. In this review, we would like to highlight the scenario which is related to the existing biochemistry curricula for graduate medical students, which have been followed in several medical schools and universities and we also hope to share our ideas for implementing objective and pragmatic curricula. Evidence based research, wherein the articles which are related to innovative teaching-learning tools are collected and the pros and cons which are related to the different methods analyzed in biochemistry point of view. Conclusion: Rapid changes in the content of the curriculum may not be required, but a gradual introduction of the novel approach and the methods of teaching biochemistry can be adopted into the curriculum. PMID:23634431

  14. Peer Mentor Program for the General Chemistry Laboratory Designed to Improve Undergraduate STEM Retention

    ERIC Educational Resources Information Center

    Damkaci, Fehmi; Braun, Timothy F.; Gublo, Kristin

    2017-01-01

    We describe the design and implementation of an undergraduate peer mentor program that can overlay an existing general chemistry laboratory and is designed to improve STEM student retention. For the first four freshman cohorts going through the program, year-to-year retention improved by a four-year average of 20% for students in peer-mentored…

  15. Correlation of preadmission organic chemistry courses and academic performance in biochemistry at a midwest chiropractic doctoral program.

    PubMed

    McRae, Marc P

    2010-01-01

    Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p < .001) and 60.9% and 79.4% for organic chemistry 2 (p < .001). This study shows that organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry.

  16. Cross-Disciplinary Thermoregulation and Sweat Analysis Laboratory Experiences for Undergraduate Chemistry and Exercise Science Students

    ERIC Educational Resources Information Center

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A.

    2011-01-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two…

  17. Detecting Estrogenic Ligands in Personal Care Products using a Yeast Estrogen Screen Optimized for the Undergraduate Teaching Laboratory.

    PubMed

    Edwards, Thea M; Morgan, Howard E; Balasca, Coralia; Chalasani, Naveen K; Yam, Lauren; Roark, Alison M

    2018-01-01

    The Yeast Estrogen Screen (YES) is used to detect estrogenic ligands in environmental samples and has been broadly applied in studies of endocrine disruption. Estrogenic ligands include both natural and manmade "Environmental Estrogens" (EEs) found in many consumer goods including Personal Care Products (PCPs), plastics, pesticides, and foods. EEs disrupt hormone signaling in humans and other animals, potentially reducing fertility and increasing disease risk. Despite the importance of EEs and other Endocrine Disrupting Chemicals (EDCs) to public health, endocrine disruption is not typically included in undergraduate curricula. This shortcoming is partly due to a lack of relevant laboratory activities that illustrate the principles involved while also being accessible to undergraduate students. This article presents an optimized YES for quantifying ligands in personal care products that bind estrogen receptors alpha (ERα) and/or beta (ERβ). The method incorporates one of the two colorimetric substrates (ortho-nitrophenyl-β-D-galactopyranoside (ONPG) or chlorophenol red-β-D-galactopyranoside (CPRG)) that are cleaved by β-galactosidase, a 6-day refrigerated incubation step to facilitate use in undergraduate laboratory courses, an automated application for LacZ calculations, and R code for the associated 4-parameter logistic regression analysis. The protocol has been designed to allow undergraduate students to develop and conduct experiments in which they screen products of their choosing for estrogen mimics. In the process, they learn about endocrine disruption, cell culture, receptor binding, enzyme activity, genetic engineering, statistics, and experimental design. Simultaneously, they also practice fundamental and broadly applicable laboratory skills, such as: calculating concentrations; making solutions; demonstrating sterile technique; serially diluting standards; constructing and interpolating standard curves; identifying variables and controls; collecting

  18. Detecting Estrogenic Ligands in Personal Care Products using a Yeast Estrogen Screen Optimized for the Undergraduate Teaching Laboratory

    PubMed Central

    Edwards, Thea M.; Morgan, Howard E.; Balasca, Coralia; Chalasani, Naveen K.; Yam, Lauren; Roark, Alison M.

    2018-01-01

    The Yeast Estrogen Screen (YES) is used to detect estrogenic ligands in environmental samples and has been broadly applied in studies of endocrine disruption. Estrogenic ligands include both natural and manmade "Environmental Estrogens" (EEs) found in many consumer goods including Personal Care Products (PCPs), plastics, pesticides, and foods. EEs disrupt hormone signaling in humans and other animals, potentially reducing fertility and increasing disease risk. Despite the importance of EEs and other Endocrine Disrupting Chemicals (EDCs) to public health, endocrine disruption is not typically included in undergraduate curricula. This shortcoming is partly due to a lack of relevant laboratory activities that illustrate the principles involved while also being accessible to undergraduate students. This article presents an optimized YES for quantifying ligands in personal care products that bind estrogen receptors alpha (ERα) and/or beta (ERβ). The method incorporates one of the two colorimetric substrates (ortho-nitrophenyl-β-D-galactopyranoside (ONPG) or chlorophenol red-β-D-galactopyranoside (CPRG)) that are cleaved by β-galactosidase, a 6-day refrigerated incubation step to facilitate use in undergraduate laboratory courses, an automated application for LacZ calculations, and R code for the associated 4-parameter logistic regression analysis. The protocol has been designed to allow undergraduate students to develop and conduct experiments in which they screen products of their choosing for estrogen mimics. In the process, they learn about endocrine disruption, cell culture, receptor binding, enzyme activity, genetic engineering, statistics, and experimental design. Simultaneously, they also practice fundamental and broadly applicable laboratory skills, such as: calculating concentrations; making solutions; demonstrating sterile technique; serially diluting standards; constructing and interpolating standard curves; identifying variables and controls; collecting

  19. Is the Undergraduate Research Experience (URE) Always Best? The Power of Choice in a Bifurcated Practical Stream for a Large Introductory Biochemistry Class

    ERIC Educational Resources Information Center

    Rowland, Susan L.; Lawrie, Gwen A.; Behrendorff, James B. Y. H.; Gillam, Elizabeth M. J.

    2012-01-01

    Science undergraduate courses typically cater to a mixed-learner cohort, with a diversity of motivations and skills. This diversity introduces pressure for designers of the practical laboratory curriculum. Students who are struggling with the course need a series of tasks that begin simply, and transition to more conceptually difficult material.…

  20. Creative Exercises (CEs) in the Biochemistry Domain: An Analysis of Students' Linking of Chemical and Biochemical Concepts

    ERIC Educational Resources Information Center

    Warfa, Abdi-Rizak M.; Odowa, N.

    2015-01-01

    Creative exercises (CEs), a specific form of open-ended assessment tools, have been shown to promote students' linking of prior and newly learned concepts within a course. In this study, we examined how often students in an upper-division undergraduate biochemistry course linked prior chemical concepts to biochemical ones in response to CE…

  1. Predictors of Nursing Students' Performance in a One-Semester Organic and Biochemistry Course

    NASA Astrophysics Data System (ADS)

    van Lanen, Robert J.; Lockie, Nancy M.; McGannon, Thomas

    2000-06-01

    In an effort to empower nursing students to successfully persist in chemistry, predictors of success for undergraduate nursing students enrolled in a one-semester organic and biochemistry course were identified. The sample consisted of 308 undergraduate nursing students enrolled in Chemistry 108 (Principles of Organic and Biochemistry) during a period of seven semesters. In this study, Supplemental Instruction (SI) is a nonremedial academic support program offered for Chemistry 108 students. Placement tests in Mathematics, Reading, and English are required of all entering students. The English Placement Test assesses proficiency in analytical reading and writing; the Nelson Denny Reading Test (Form E) assesses the student's understanding of written vocabulary and the mastery of reading comprehension, and the Mathematics Placement Test measures the student's mastery of arithmetic and algebraic calculations. Both demographic and academic variables were examined. For the entire sample, five predictor variables were identified: Mathematics Placement Test score, Chemistry 107 grade (a prerequisite), total number of SI sessions attended, Nelson Denny Reading Test (Form E) score, and age. Predictors for various subpopulations of the sample were also identified. Predictors for students of traditional age were Mathematics Placement Test score, total number of SI sessions attended, and Chemistry 107 grade. The best predictors for continuing education students were Chemistry 107 grade and Nelson Denny Test score.

  2. Policies and practices in haemostasis testing among laboratories in Croatia: a survey on behalf of a Working Group for Laboratory Coagulation of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Bronić, Ana; Herak, Desiree Coen; Margetić, Sandra; Milić, Marija

    2017-02-15

    The objective of this survey was to assess current policies and practice in haemostasis testing among both hospital and outpatient laboratories in Republic of Croatia. A questionnaire with seventy questions divided into nine sections was created in May 2015. Participants were asked about their practice related to test request form, sample collection, prothrombin time (PT) and activated partial thromboplastin time assays, other individual haemostasis assays, point-of-care testing (POCT), reporting of coagulation tests results and quality assurance of procedures, the personnel and other laboratory resources, as well as on issues related to education and implementation of additional coagulation assays in their laboratory. The survey was administered and data were collected between June and September 2015. A total survey response rate was 104/170 (61.2%). Most respondents were faced with incomplete information on prescribed therapy and diagnosis on the test request or inappropriate samples withdrawn on distant locations, but also do not have protocols for handling samples with high haematocrit values. Reporting of PT-INR and D-dimer results was different between laboratories. Although almost all laboratories developed a critical value reporting system, reporting a value to general practitioners is still a problem. Result on coagulation POCT testing showed that not all devices were supervised by laboratories, which is not in compliance with Croatian Chamber of Medical Biochemistry acts. Obtained results highlighted areas that need improvement and different practice patterns in particular field of haemostasis testing among laboratories. A harmonization of the overall process of haemostasis testing at national level should be considered and undertaken.

  3. Taking a new biomarker into routine use – A perspective from the routine clinical biochemistry laboratory

    PubMed Central

    Sturgeon, Catharine; Hill, Robert; Hortin, Glen L; Thompson, Douglas

    2010-01-01

    There is increasing pressure to provide cost-effective healthcare based on “best practice.” Consequently, new biomarkers are only likely to be introduced into routine clinical biochemistry departments if they are supported by a strong evidence base and if the results will improve patient management and outcome. This requires convincing evidence of the benefits of introducing the new test, ideally reflected in fewer hospital admissions, fewer additional investigations and/or fewer clinic visits. Carefully designed audit and cost-benefit studies in relevant patient groups must demonstrate that introducing the biomarker delivers an improved and more effective clinical pathway. From the laboratory perspective, pre-analytical requirements must be thoroughly investigated at an early stage. Good stability of the biomarker in relevant physiological matrices is essential to avoid the need for special processing. Absence of specific timing requirements for sampling and knowledge of the effect of medications that might be used to treat the patients in whom the biomarker will be measured is also highly desirable. Analytically, automation is essential in modern high-throughput clinical laboratories. Assays must therefore be robust, fulfilling standard requirements for linearity on dilution, precision and reproducibility, both within- and between-run. Provision of measurements by a limited number of specialized reference laboratories may be most appropriate, especially when a new biomarker is first introduced into routine practice. PMID:21137030

  4. Merging of Research and Teaching in Developmental Biology: Adaptation of Current Scientific Research Papers for Use in Undergraduate Laboratory Exercises

    ERIC Educational Resources Information Center

    Lee, H. H.; and others

    1970-01-01

    Describes two laboratory exercises adopted from current research papers for use in an undergraduate developmental biology course. Gives methods, summary of student results, and student comments. Lists lecture topics, text and reprint assignments, and laboratory exercises for course. (EB)

  5. Correlation of Preadmission Organic Chemistry Courses and Academic Performance in Biochemistry at a Midwest Chiropractic Doctoral Program*

    PubMed Central

    McRae, Marc P.

    2010-01-01

    Purpose: Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Methods: Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. Results: For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p < .001) and 60.9% and 79.4% for organic chemistry 2 (p < .001). Conclusion: This study shows that organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry PMID:20480012

  6. Microfluidics in the Undergraduate Laboratory: Device Fabrication and an Experiment to Mimic Intravascular Gas Embolism

    ERIC Educational Resources Information Center

    Jablonski, Erin L.; Vogel, Brandon M.; Cavanagh, Daniel P.; Beers, Kathryn L.

    2010-01-01

    A method to fabricate microfluidic devices and an experimental protocol to model intravascular gas embolism for undergraduate laboratories are presented. The fabrication process details how to produce masters on glass slides; these masters serve as molds to pattern channels in an elastomeric polymer that can be adhered to a substrate, resulting in…

  7. Development of a Web-Enabled Learning Platform for Geospatial Laboratories: Improving the Undergraduate Learning Experience

    ERIC Educational Resources Information Center

    Mui, Amy B.; Nelson, Sarah; Huang, Bruce; He, Yuhong; Wilson, Kathi

    2015-01-01

    This paper describes a web-enabled learning platform providing remote access to geospatial software that extends the learning experience outside of the laboratory setting. The platform was piloted in two undergraduate courses, and includes a software server, a data server, and remote student users. The platform was designed to improve the quality…

  8. The Impact of Collaborative Groups versus Individuals in Undergraduate Inquiry-Based Astronomy Laboratory Learning Exercises

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra J.

    2010-01-01

    One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However,…

  9. An Integrated Approach to Teaching Biochemistry for Pharmacy Students.

    ERIC Educational Resources Information Center

    Poirier, Therese I.; Borke, Mitchell L.

    1982-01-01

    A Duquesne course integrating biochemistry lectures, clinical applications lectures, and laboratory sessions has the objectives of (1) making the course more relevant to students' perceived needs; (2) enhancing the learning process; (3) introducing clinical applications early in the students' program; and (4) demonstrating additional…

  10. What Skills Should Students of Undergraduate Biochemistry and Molecular Biology Programs Have upon Graduation?

    ERIC Educational Resources Information Center

    White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis

    2013-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of…

  11. Red Seaweed Enzyme-Catalyzed Bromination of Bromophenol Red: An Inquiry-Based Kinetics Laboratory Experiment for Undergraduates

    ERIC Educational Resources Information Center

    Jittam, Piyachat; Boonsiri, Patcharee; Promptmas, Chamras; Sriwattanarothai, Namkang; Archavarungson, Nattinee; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Haloperoxidase enzymes are of interest for basic and applied bioscientists because of their increasing importance in pharmaceutical industry and environmental cleanups. In a guided inquiry-based laboratory experiment for life-science, agricultural science, and health science undergraduates, the bromoperoxidase from a red seaweed was used to…

  12. Detection of ATP and NADH: A Bioluminescent Experience.

    ERIC Educational Resources Information Center

    Selig, Ted C.; And Others

    1984-01-01

    Described is a bioluminescent assay for adenosine triphosphate (ATP) and reduced nicotineamide-adenine dinucleotide (NADH) that meets the requirements of an undergraduate biochemistry laboratory course. The 3-hour experiment provides students with experience in bioluminescence and analytical biochemistry yet requires limited instrumentation,…

  13. Policies and practices in haemostasis testing among laboratories in Croatia: a survey on behalf of a Working Group for Laboratory Coagulation of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Bronić, Ana; Herak, Desiree Coen; Margetić, Sandra; Milić, Marija

    2017-01-01

    Introduction The objective of this survey was to assess current policies and practice in haemostasis testing among both hospital and outpatient laboratories in Republic of Croatia. Materials and methods A questionnaire with seventy questions divided into nine sections was created in May 2015. Participants were asked about their practice related to test request form, sample collection, prothrombin time (PT) and activated partial thromboplastin time assays, other individual haemostasis assays, point-of-care testing (POCT), reporting of coagulation tests results and quality assurance of procedures, the personnel and other laboratory resources, as well as on issues related to education and implementation of additional coagulation assays in their laboratory. The survey was administered and data were collected between June and September 2015. Results A total survey response rate was 104/170 (61.2%). Most respondents were faced with incomplete information on prescribed therapy and diagnosis on the test request or inappropriate samples withdrawn on distant locations, but also do not have protocols for handling samples with high haematocrit values. Reporting of PT-INR and D-dimer results was different between laboratories. Although almost all laboratories developed a critical value reporting system, reporting a value to general practitioners is still a problem. Result on coagulation POCT testing showed that not all devices were supervised by laboratories, which is not in compliance with Croatian Chamber of Medical Biochemistry acts. Conclusion Obtained results highlighted areas that need improvement and different practice patterns in particular field of haemostasis testing among laboratories. A harmonization of the overall process of haemostasis testing at national level should be considered and undertaken. PMID:28392741

  14. Undergraduate basic science preparation for dental school.

    PubMed

    Humphrey, Sue P; Mathews, Robert E; Kaplan, Alan L; Beeman, Cynthia S

    2002-11-01

    In the Institute of Medicines report Dental Education at the Crossroads, it was suggested that dental schools across the country move toward integrated basic science education for dental and medical students in their curricula. To do so, dental school admission requirements and recommendations must be closely reviewed to ensure that students are adequately prepared for this coursework. The purpose of our study was twofold: 1) to identify student dentists' perceptions of their predental preparation as it relates to course content, and 2) to track student dentists' undergraduate basic science course preparation and relate that to DAT performance, basic science course performance in dental school, and Part I and Part II National Board performance. In the first part of the research, a total of ninety student dentists (forty-five from each class) from the entering classes of 1996 and 1997 were asked to respond to a survey. The survey instrument was distributed to each class of students after each completed the largest basic science class given in their second-year curriculum. The survey investigated the area of undergraduate major, a checklist of courses completed in their undergraduate preparation, the relevance of the undergraduate classes to the block basic science courses, and the strength of requiring or recommending the listed undergraduate courses as a part of admission to dental school. Results of the survey, using frequency analysis, indicate that students felt that the following classes should be required, not recommended, for admission to dental school: Microbiology 70 percent, Biochemistry 54.4 percent, Immunology 57.78 percent, Anatomy 50 percent, Physiology 58.89 percent, and Cell Biology 50 percent. The second part of the research involved anonymously tracking undergraduate basic science preparation of the same students with DAT scores, the grade received in a representative large basic science course, and Part I and Part II National Board performance

  15. Understanding Our Energy Footprint: Undergraduate Chemistry Laboratory Investigation of Environmental Impacts of Solid Fossil Fuel Wastes

    ERIC Educational Resources Information Center

    Berger, Michael; Goldfarb, Jillian L.

    2017-01-01

    Engaging undergraduates in the environmental consequences of fossil fuel usage primes them to consider their own anthropogenic impact, and the benefits and trade-offs of converting to renewable fuel strategies. This laboratory activity explores the potential contaminants (both inorganic and organic) present in the raw fuel and solid waste…

  16. The Cyclohexanol Cycle and Synthesis of Nylon 6,6: Green Chemistry in the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly; Arena, Anthony F.

    2012-01-01

    A one-term synthesis project that incorporates many of the principles of green chemistry is presented for the undergraduate organic laboratory. In this multistep scheme of reactions, students react, recycle, and ultimately convert cyclohexanol to nylon 6,6. The individual reactions in the project employ environmentally friendly methodologies, and…

  17. Ab Initio Determinations of Photoelectron Spectra Including Vibronic Features: An Upper-Level Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.

    2008-01-01

    We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…

  18. Combining content and elements of communication into an upper-level biochemistry course.

    PubMed

    Whittington, Carli P; Pellock, Samuel J; Cunningham, Rebecca L; Cox, James R

    2014-01-01

    This report describes how a science communication module was incorporated into an advanced biochemistry course. Elements of communication were taught synergistically with biochemistry content in this course in an effort to expose students to a variety of effective oral communication strategies. Students were trained to use these established techniques and incorporated them into various presentations throughout the course. Three students describe their use of specific resources and how the skills learned relate to their future career. The importance and relevance of science communication are receiving unprecedented national attention. The academic scientific community must respond by incorporating more communication-centered instruction and opportunities in the classroom and laboratory. © 2013 by The International Union of Biochemistry and Molecular Biology.

  19. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  20. Bringing the Excitement and Motivation of Research to Students; Using Inquiry and Research-Based Learning in a Year-Long Biochemistry Laboratory: Part II--Research-Based Laboratory--A Semester-Long Research Approach Using Malate Dehydrogenase as a Research Model

    ERIC Educational Resources Information Center

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A.; Provost, Joseph J.

    2010-01-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments…

  1. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    ERIC Educational Resources Information Center

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  2. The Relevance of Student Seminars on Clinically Related Subjects in a Biochemistry Course for Medical and Nutrition Students

    ERIC Educational Resources Information Center

    Hermes-Lima, Marcelo; Muniz, Karinne C.; Coutinho, Iracema S.

    2002-01-01

    The aim of this study was to determine the value of a system of seminars on clinically related biochemistry topics for undergraduate students in medicine and nutrition at the University of Brasilia, Brazil. During the second semester of 1998 (1998-2), the teaching staff decided to establish new and stricter rules for the seminar method and to…

  3. Assessing students' ability to critically evaluate evidence in an inquiry-based undergraduate laboratory course.

    PubMed

    Colthorpe, Kay; Mehari Abraha, Hyab; Zimbardi, Kirsten; Ainscough, Louise; Spiers, Jereme G; Chen, Hsiao-Jou Cortina; Lavidis, Nickolas A

    2017-03-01

    The ability to critically evaluate and use evidence from one's own work or from primary literature is invaluable to any researcher. These skills include the ability to identify strengths and weakness of primary literature, to gauge the impact of research findings on a field, to identify gaps in a field that require more research, and to contextualize findings within a field. This study developed a model to examine undergraduate science students' abilities to critically evaluate and use evidence through an analysis of laboratory reports from control and experimental groups in nonresearch-aligned and research-aligned inquiry-based laboratory classes, respectively, and contrasted these with published scientific research articles. The reports analyzed ( n = 42) showed that students used evidence in a variety of ways, most often referring to literature indirectly, and least commonly highlighting limitations of literature. There were significant positive correlations between grade awarded and the use of references, evidence, and length, but there were no significant differences between control and experimental groups, so data were pooled. The use of evidence in scientific research articles ( n = 7) was similar to student reports except that expert authors were more likely to refer to their own results and cite more references. Analysis showed that students, by the completion of the second year of their undergraduate degree, had expertise approaching that of published authors. These findings demonstrate that it is possible to provide valuable broad-scale undergraduate research experiences to all students in a cohort, giving them exposure to the methods and communication processes of research as well as an opportunity to hone their critical evaluation skills. Copyright © 2017 the American Physiological Society.

  4. A flexible e-learning resource promoting the critical reading of scientific papers for science undergraduates.

    PubMed

    Letchford, Julie; Corradi, Hazel; Day, Trevor

    2017-11-01

    An important aim of undergraduate science education is to develop student skills in reading and evaluating research papers. We have designed, developed, and implemented an on-line interactive resource entitled "Evaluating Scientific Research literature" (ESRL) aimed at students from the first 2 years of the undergraduate program. In this article, we describe the resource, then use student data collected from questionnaire surveys to evaluate the resource within 2 years of its launch. Our results add to those reported previously and indicate that ESRL can enable students to start evaluating research articles when used during their undergraduate program. We conclude maximal learning is likely to occur when the resource can be embedded in the curriculum such that students have a clearly articulated context for the resource's activities, can see their relevance in relation to assessed assignments and can be encouraged to think deeply about the activities in conversation with one another and/or with staff. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):483-490, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  5. Influence of study approaches and course design on academic success in the undergraduate anatomy laboratory.

    PubMed

    Eleazer, Courtney D; Scopa Kelso, Rebecca

    2018-01-04

    Many pre-health professional programs require completion of an undergraduate anatomy course with a laboratory component, yet grades in these courses are often low. Many students perceive anatomy as a more challenging subject than other coursework, and the resulting anxiety surrounding this perception may be a significant contributor to poor performance. Well-planned and deliberate guidance from instructors, as well as thoughtful course design, may be necessary to assist students in finding the best approach to studying for anatomy. This article assesses which study habits are associated with course success and whether course design influences study habits. Surveys (n = 1,274) were administered to students enrolled in three undergraduate human anatomy laboratory courses with varying levels of cooperative learning and structured guidance. The surveys collected information on potential predictors of performance, including student demographics, educational background, self-assessment ability, and study methods (e.g., flashcards, textbooks, diagrams). Compared to low performers, high performers perceive studying in laboratory, asking the instructor questions, quizzing alone, and quizzing others as more effective for learning. Additionally, students co-enrolled in a flipped, active lecture anatomy course achieve higher grades and find active learning activities (e.g., quizzing alone and in groups) more helpful for their learning in the laboratory. These results strengthen previous research suggesting that student performance is more greatly enhanced by an active classroom environment that practices successful study strategies rather than one that simply encourages students to employ such strategies inside and outside the classroom. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  6. Controlled Synthesis of Nanomaterials at the Undergraduate Laboratory: Cu(OH)[subscript 2] and CuO Nanowires

    ERIC Educational Resources Information Center

    da Silva, Anderson G. M.; Rodrigues, Thenner S.; Parussulo, Andre´ L. A.; Candido, Eduardo G.; Geonmonond, Rafael S.; Brito, Hermi F.; Toma, Henrique E.; Camargo, Pedro H. C.

    2017-01-01

    Undergraduate-level laboratory experiments that involve the synthesis of nanomaterials with well-defined/controlled shapes are very attractive under the umbrella of nanotechnology education. Herein we describe a low-cost and facile experiment for the synthesis of Cu(OH)[subscript 2] and CuO nanowires comprising three main parts: (i) synthesis of…

  7. Measuring the spatial resolution of an optical system in an undergraduate optics laboratory

    NASA Astrophysics Data System (ADS)

    Leung, Calvin; Donnelly, T. D.

    2017-06-01

    Two methods of quantifying the spatial resolution of a camera are described, performed, and compared, with the objective of designing an imaging-system experiment for students in an undergraduate optics laboratory. With the goal of characterizing the resolution of a typical digital single-lens reflex (DSLR) camera, we motivate, introduce, and show agreement between traditional test-target contrast measurements and the technique of using Fourier analysis to obtain the modulation transfer function (MTF). The advantages and drawbacks of each method are compared. Finally, we explore the rich optical physics at work in the camera system by calculating the MTF as a function of wavelength and f-number. For example, we find that the Canon 40D demonstrates better spatial resolution at short wavelengths, in accordance with scalar diffraction theory, but is not diffraction-limited, being significantly affected by spherical aberration. The experiment and data analysis routines described here can be built and written in an undergraduate optics lab setting.

  8. Improved Undergraduate Astronomy Laboratories with A Modern Telescope Control System

    NASA Astrophysics Data System (ADS)

    Milano, Anthony J.; Broder, D.; Finn, R.; Newberg, H.; Weatherwax, A.; Whittet, D.

    2006-12-01

    We are in the middle of a cooperative astronomy education project to improve undergraduate laboratories at RPI (a PhD granting institution) and Siena College (a nearby liberal arts college). We have completed an overhaul of a 40-year-old, 16" B&C telescope on the RPI campus, and have made it available for hundreds of students at both schools, and once per week to the public. We have written an assessment test which was distributed to the students at the beginning and end of the Fall 2006 semester, which will be used as a baseline to determine whether the laboratory activities, which are currently under development, improve student learning in the Fall 2007 semester next year. The studio-style, hands-on, inquiry-based laboratories will be designed to challenge student misconceptions. In order to handle a large number of students using the main telescope and a limited number of smaller telescopes, we will cycle students through concurrent activities. This is enabled by the rapid acquisition and imaging of targets made possible by the upgrade to the control system of our 16" telescope. We demonstrate the productivity of our newly refurbished telescope, show the baseline results of our assessment, and present samples of activities under development. This project is funded by an NSF CCLI grant, 05-11340.

  9. Oxorhenium Complexes for Catalytic Hydrosilylation and Hydrolytic Hydrogen Production: A Multiweek Advanced Laboratory Experiment for Undergraduate Students

    ERIC Educational Resources Information Center

    Ison, A.; Ison, E. A.; Perry, C. M.

    2017-01-01

    An effective way of teaching undergraduates a full complement of research skills is through a multiweek advanced laboratory experiment. Here we outline a comprehensive set of experiments adapted from current primary literature focusing on organic and inorganic synthesis, catalysis, reactivity, and reaction kinetics. The catalyst,…

  10. Group-effort applied research: expanding opportunities for undergraduate research through original, class-based research projects.

    PubMed

    Moore, Sean D; Teter, Ken

    2014-01-01

    Undergraduate research clearly enriches the educational development of participating students, but these experiences are limited by the inherent inefficiency of the standard one student-one mentor model for undergraduate research. Group-effort applied research (GEAR) was developed as a strategy to provide substantial numbers of undergraduates with meaningful research experiences. The GEAR curriculum delivers concept-driven lecture material and provides hands-on training in the context of an active research project from the instructor's laboratory. Because GEAR is structured as a class, participating students benefit from intensive, supervised research training that involves a built-in network of peer support and abundant contact with faculty mentors. The class format also ensures a relatively standardized and consistent research experience. Furthermore, meaningful progress toward a research objective can be achieved more readily with GEAR than with the traditional one student-one mentor model of undergraduate research because sporadic mistakes by individuals in the class are overshadowed by the successes of the group as a whole. Three separate GEAR classes involving three distinct research projects have been offered to date. In this article, we provide an overview of the GEAR format and review some of the recurring themes for GEAR instruction. We propose GEAR can serve as a template to expand student opportunities for life science research without sacrificing the quality of the mentored research experience. © 2014 The International Union of Biochemistry and Molecular Biology.

  11. A Measure of the Effectiveness of Incorporating 3D Human Anatomy into an Online Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hilbelink, Amy J.

    2009-01-01

    Results of a study designed to determine the effectiveness of implementing three-dimensional (3D) stereo images of a human skull in an undergraduate human anatomy online laboratory were gathered and analysed. Mental model theory and its applications to 3D relationships are discussed along with the research results. Quantitative results on 62 pairs…

  12. Studying epigenetic DNA modifications in undergraduate laboratories using complementary bioinformatic and molecular approaches.

    PubMed

    Militello, Kevin T

    2013-01-01

    Epigenetic inheritance is the inheritance of genetic information that is not based on DNA sequence alone. One type of epigenetic information that has come to the forefront in the last few years is modified DNA bases. The most common modified DNA base in nature is 5-methylcytosine. Herein, we describe a laboratory experiment that combines bioinformatic and molecular approaches to study the presence and abundance of 5-methylcytosine in different organisms. Students were originally provided with the protein sequence of the Xenopus laevis DNMT1 cytosine-5 DNA methyltransferase and used BLASTP searches to detect the presence of protein orthologs in the genomes of several organisms including Homo sapiens, Mus musculus, Plasmodium falciparum, Drosophila melanogaster, Saccharomyces cerevisiae, Arabidopsis thaliana, and Caenorhabditis elegans. Students generated hypotheses regarding the presence and abundance of 5-methylcytosine in these organisms based on their bioinformatics data, and directly tested their predictions on a subset of DNAs using restriction enzyme isoschizomer assays. A southern blotting assay to answer the same question is also presented. In addition to exposure to the field of epigenetics, the strengths of the laboratory are students are able to make predictions using bioinformatic tools and quickly test them in the laboratory. In addition, students are exposed to two potential misinterpretations of bioinformatic search data. The laboratory is easily modified to incorporate outside research interests in epigenetics. © 2013 by The International Union of Biochemistry and Molecular Biology.

  13. An undergraduate laboratory activity on molecular dynamics simulations.

    PubMed

    Spitznagel, Benjamin; Pritchett, Paige R; Messina, Troy C; Goadrich, Mark; Rodriguez, Juan

    2016-01-01

    Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD. © 2016 The International Union of Biochemistry and Molecular Biology.

  14. Low-cost nonlinear optics experiment for undergraduate instructional laboratory and lecture demonstration

    NASA Astrophysics Data System (ADS)

    Turchiello, Rozane de F.; Pereira, Luiz A. A.; Gómez, Sergio L.

    2017-07-01

    This paper presents a simple and affordable experiment on the thermal lens effect, suitable for an undergraduate educational laboratory or as a tabletop demonstration in a lecture on nonlinear optics. Such an experiment exploits the formation of a lens in an absorbing medium illuminated by a laser beam with a Gaussian intensity profile. As an absorber, we use a commercial soy sauce, which exhibits a strong thermal lensing effect. Additionally, we show how to measure the radius of a Gaussian beam using the knife-edge method, and how to estimate the focal length of the induced thermal lens.

  15. Kinetics of Hydrolysis of Acetic Anhydride by In-Situ FTIR Spectroscopy: An Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Haji, Shaker; Erkey, Can

    2005-01-01

    A reaction kinetics experiment for the chemical engineering undergraduate laboratory course was developed in which in-situ Fourier Transfer Infrared spectroscopy was used to measure reactant and product concentrations. The kinetics of the hydrolysis of acetic anhydride was determined by experiments carried out in a batch reactor. The results…

  16. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    ERIC Educational Resources Information Center

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  17. Hypothetical Biotechnology Companies: A Role-Playing Student Centered Activity for Undergraduate Science Students

    ERIC Educational Resources Information Center

    Chuck, Jo-Anne

    2011-01-01

    Science students leaving undergraduate programs are entering the biotechnology industry where they are presented with issues which require integration of science content. Students find this difficult as through-out their studies, most content is limited to a single subdiscipline (e.g., biochemistry, immunology). In addition, students need…

  18. A Graphical Simulation of Vapor-Liquid Equilibrium for Use as an Undergraduate Laboratory Experiment and to Demonstrate the Concept of Mathematical Modeling.

    ERIC Educational Resources Information Center

    Whitman, David L.; Terry, Ronald E.

    1985-01-01

    Demonstrating petroleum engineering concepts in undergraduate laboratories often requires expensive and time-consuming experiments. To eliminate these problems, a graphical simulation technique was developed for junior-level laboratories which illustrate vapor-liquid equilibrium and the use of mathematical modeling. A description of this…

  19. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  20. Enhancing Hispanic Minority Undergraduates' Botany Laboratory Experiences: Implementation of an Inquiry-Based Plant Tissue Culture Module Exercise

    ERIC Educational Resources Information Center

    Siritunga, Dimuth; Navas, Vivian; Diffoot, Nanette

    2012-01-01

    Early involvement of students in hands-on research experiences are known to demystify research and promote the pursuit of careers in science. But in large enrollment departments such opportunities for undergraduates to participate in research are rare. To counteract such lack of opportunities, inquiry-based laboratory module in plant tissue…

  1. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    ERIC Educational Resources Information Center

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  2. SIPCAn (Separation, Isolation, Purification, Characterization, and Analysis): A One-Term, Integrated Project for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly A.; Arena, Anthony F.

    2011-01-01

    SIPCAn, an acronym for separation, isolation, purification, characterization, and analysis, is presented as a one-term, integrated project for the first-term undergraduate organic laboratory course. Students are assigned two mixtures of unknown organic compounds--a mixture of two liquid compounds and a mixture of two solid compounds--at the…

  3. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  4. Introducing Undergraduates to a Research Laboratory

    ERIC Educational Resources Information Center

    Weinberg, Robert

    1974-01-01

    Discusses a student project which is intended to teach undergraduates concepts and techniques of nuclear physics, experimental methods used in particle detection, and provide experience in a functioning research environment. Included are detailed procedures for carrying out the project. (CC)

  5. Improvement of the quality of work in a biochemistry laboratory via measurement system analysis.

    PubMed

    Chen, Ming-Shu; Liao, Chen-Mao; Wu, Ming-Hsun; Lin, Chih-Ming

    2016-10-31

    An adequate and continuous monitoring of operational variations can effectively reduce the uncertainty and enhance the quality of laboratory reports. This study applied the evaluation rule of the measurement system analysis (MSA) method to estimate the quality of work conducted in a biochemistry laboratory. Using the gauge repeatability & reproducibility (GR&R) approach, variations in quality control (QC) data among medical technicians in conducting measurements of five biochemical items, namely, serum glucose (GLU), aspartate aminotransferase (AST), uric acid (UA), sodium (Na) and chloride (Cl), were evaluated. The measurements of the five biochemical items showed different levels of variance among the different technicians, with the variances in GLU measurements being higher than those for the other four items. The ratios of precision-to-tolerance (P/T) for Na, Cl and GLU were all above 0.5, implying inadequate gauge capability. The product variation contribution of Na was large (75.45% and 31.24% in normal and abnormal QC levels, respectively), which showed that the impact of insufficient usage of reagents could not be excluded. With regard to reproducibility, high contributions (of more than 30%) of variation for the selected items were found. These high operator variation levels implied that the possibility of inadequate gauge capacity could not be excluded. The analysis of variance (ANOVA) of GR&R showed that the operator variations in GLU measurements were significant (F=5.296, P=0.001 in the normal level and F=3.399, P=0.015 in the abnormal level, respectively). In addition to operator variations, product variations of Na were also significant for both QC levels. The heterogeneity of variance for the five technicians showed significant differences for the Na and Cl measurements in the normal QC level. The accuracy of QC for five technicians was identified for further operational improvement. This study revealed that MSA can be used to evaluate product and

  6. Research Opportunities for Undergraduate Students at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Vargas, W.; Hallar, G.

    2009-12-01

    GRASP (Geoscience Research at Storm Peak) is a program providing field research experiences for a diverse group of undergraduate students. GRASP is funded by the National Science Foundation. Its mission is to recruit students from underrepresented groups within the geoscience community allowing students to work and live at the Storm Peak Laboratory (SPL). Data previously collected at the facility forms the basis for continuing research projects that addresses climate change, atmospheric pollution, and cloud formation. Prior to arriving at SPL, students travel to the National Center for Atmospheric Research (NCAR) to learn about supercomputing, mathematical modeling, and scientific visualization. GRASP participants met at the campus of Howard University for a reunion workshop and presented their results in November 2008. This poster illustrates the given task and methods used to analyze an increased concentration of organic carbon detected between April 4 and 5, 2008 at SPL located at the summit of Mt. Warner in Steamboat Springs, Colorado at an elevation of 3,202 meters.

  7. Chiral Compounds and Green Chemistry in Undergraduate Organic Laboratories: Reduction of a Ketone by Sodium Borohydride and Baker's Yeast

    NASA Astrophysics Data System (ADS)

    Pohl, Nicola; Clague, Allen; Schwarz, Kimberly

    2002-06-01

    We describe an integrated set of experiments for the undergraduate organic laboratory that allows students to compare and contrast biological and chemical means of introducing chirality into a molecule. The racemic reduction of ethyl acetoacetate with sodium borohydride and the same reduction in the presence of a tartaric acid ligand are described, and a capillary gas chromatography column packed with a chiral material for product analysis is introduced. The results of these two hydride reactions are compared with the results of a common undergraduate experiment, the baker's yeast reduction of ethyl acetoacetate.

  8. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  9. A new method of measuring gravitational acceleration in an undergraduate laboratory program

    NASA Astrophysics Data System (ADS)

    Wang, Qiaochu; Wang, Chang; Xiao, Yunhuan; Schulte, Jurgen; Shi, Qingfan

    2018-01-01

    This paper presents a high accuracy method to measure gravitational acceleration in an undergraduate laboratory program. The experiment is based on water in a cylindrical vessel rotating about its vertical axis at a constant speed. The water surface forms a paraboloid whose focal length is related to rotational period and gravitational acceleration. This experimental setup avoids classical source errors in determining the local value of gravitational acceleration, so prevalent in the common simple pendulum and inclined plane experiments. The presented method combines multiple physics concepts such as kinematics, classical mechanics and geometric optics, offering the opportunity for lateral as well as project-based learning.

  10. Introducing ethics to chemistry students in a "Research Experiences for Undergraduates" (REU) program.

    PubMed

    Hanson, Mark J

    2015-01-01

    A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and class discussion on a variety of issues. Students learned about the relevance of ethics to research, skills in moral reasoning, and the array of ethical issues facing various aspects of scientific research. © 2015 The International Union of Biochemistry and Molecular Biology.

  11. Activity Coefficients of Acetone-Chloroform Solutions: An Undergraduate Experiment. Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Ozog, J. Z.; Morrison, J. A.

    1983-01-01

    Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)

  12. A national comparison of biochemistry and molecular biology capstone experiences.

    PubMed

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the American Society for Biochemistry and Molecular Biology (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end, ASBMB conducted a series of regional workshops to build a BMB Concept Inventory containing validated assessment tools, based on foundational and discipline-specific knowledge and essential skills, for the community to use. A culminating activity, which integrates the educational experience, is often part of undergraduate molecular life science programs. These "capstone" experiences are commonly defined as an attempt to measure student ability to synthesize and integrate acquired knowledge. However, the format, implementation, and approach to outcome assessment of these experiences are quite varied across the nation. Here we report the results of a nation-wide survey on BMB capstone experiences and discuss this in the context of published reports about capstones and the findings of the workshops driving the development of the BMB Concept Inventory. Both the survey results and the published reports reveal that, although capstone practices do vary, certain formats for the experience are used more frequently and similarities in learning objectives were identified. The use of rubrics to measure student learning is also regularly reported, but details about these assessment instruments are sparse in the literature and were not a focus of our survey. Finally, we outline commonalities in the current practice of capstones and suggest the next steps needed to elucidate best practices. © 2015 The International Union of Biochemistry and Molecular Biology.

  13. Embedding responsible conduct in learning and research into an Australian undergraduate curriculum.

    PubMed

    Fernandes, Lynette B

    2017-01-02

    Responsible conduct in learning and research (RCLR) was progressively introduced into the pharmacology curriculum for undergraduate science students at The University of Western Australia. In the second year of this undergraduate curriculum, a lecture introduces students to issues such as the use of animals in teaching and responsible conduct of research. Third year student groups deliver presentations on topics including scientific integrity and the use of human subjects in research. Academic and research staff attending these presentations provide feedback and participate in discussions. Students enrolled in an optional capstone Honours year complete an online course on the responsible conduct of research and participate in an interactive movie. Once RCLR became established in the curriculum, a survey of Likert-scaled and open-ended questions examined student and staff perceptions. Data were expressed as Approval (% of responses represented by Strongly Agree and Agree). RCLR was found to be relevant to the study of pharmacology (69-100% Approval), important for one's future career (62-100% Approval), and stimulated further interest in this area (32-75% Approval). Free entry comments demonstrated the value of RCLR and constructive suggestions for improvement have now been incorporated. RCLR modules were found to be a valuable addition to the pharmacology undergraduate curriculum. This approach may be used to incorporate ethics into any science undergraduate curriculum, with the use of discipline-specific topics. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):53-59, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  14. Validating the Goldstein-Wehner Law for the Stratified Positive Column of DC Discharge in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Lisovskiy, V. A.; Koval, V. A.; Artushenko, E. P.; Yegorenkov, V. D.

    2012-01-01

    In this paper we suggest a simple technique for validating the Goldstein-Wehner law for a stratified positive column of dc glow discharge while studying the properties of gas discharges in an undergraduate laboratory. To accomplish this a simple device with a pre-vacuum mechanical pump, dc source and gas pressure gauge is required. Experiments may…

  15. Creation and implementation of a flipped jigsaw activity to stimulate interest in biochemistry among medical students.

    PubMed

    Williams, Charlene; Perlis, Susan; Gaughan, John; Phadtare, Sangita

    2018-05-06

    Learner-centered pedagogical methods that are based on clinical application of basic science concepts through active learning and problem solving are shown to be effective for improving knowledge retention. As the clinical relevance of biochemistry is not always apparent to health-profession students, effective teaching of medical biochemistry should highlight the implications of biochemical concepts in pathology, minimize memorization, and make the concepts memorable for long-term retention. Here, we report the creation and successful implementation of a flipped jigsaw activity that was developed to stimulate interest in learning biochemistry among medical students. The activity combined the elements of a flipped classroom for learning concepts followed by a jigsaw activity to retrieve these concepts by solving clinical cases, answering case-based questions, and creating concept maps. The students' reception of the activity was very positive. They commented that the activity provided them an opportunity to review and synthesize information, helped to gage their learning by applying this information and work with peers. Students' improved performance especially for answering the comprehension-based questions correctly in the postquiz as well as the depth of information included in the postquiz concept maps suggested that the activity helped them to understand how different clinical scenarios develop owing to deviations in basic biochemical pathways. Although this activity was created for medical students, the format of this activity can also be useful for other health-professional students as well as undergraduate and graduate students. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  16. The Synthesis of 1-Phenyl-1,2,3,4-tetrahydroisoquinolines: An Undergraduate Organic Laboratory Experiment and Class Project.

    ERIC Educational Resources Information Center

    Letcher, R. M.; Sammes, M. P.

    1985-01-01

    Describes an undergraduate organic chemistry experiment (requiring three/four 3-hour laboratory sessions) involving a four-stage synthesis of 1-phenyl-1,2,3,4-tetrahydroisoquinolines via the Pictet-Spengler route. In addition, the experiment allows students to study the spectra and properties of aklaloid-like materials while completing several…

  17. A Solvent-Free Baeyer-Villiger Lactonization for the Undergraduate Organic Laboratory: Synthesis of Gamma-T-Butyl-Epsilon-Caprolactone

    ERIC Educational Resources Information Center

    Esteb, John J.; Hohman, Nathan J.; Schlamandinger, Diana E.; Wilson, Anne M.

    2005-01-01

    The solvent-free or solid-state reaction systems like the Baeyer-Villiger rearrangement have become popular in the synthetic organic community and viable option for undergraduate laboratory series to reduce waste and cost and simplify reaction process. The reaction is an efficient method to transform ketones to esters and lactones.

  18. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  19. Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates.

    PubMed

    Thurtle-Schmidt, Deborah M; Lo, Te-Wen

    2018-03-01

    Disrupting a gene to determine its effect on an organism's phenotype is an indispensable tool in molecular biology. Such techniques are critical for understanding how a gene product contributes to the development and cellular identity of organisms. The explosion of genomic sequencing technologies combined with recent advances in genome-editing techniques has elevated the possibilities of genetic manipulations in numerous organisms in which these experiments were previously not readily accessible or possible. Introducing the next generation of molecular biologists to these emerging techniques is key in the modern biology classroom. This comprehensive review introduces undergraduates to CRISPR/Cas9 editing and its uses in genetic studies. The goals of this review are to explain how CRISPR functions as a prokaryotic immune system, describe how researchers generate mutations with CRISPR/Cas9, highlight how Cas9 has been adapted for new functions, and discuss ethical considerations of genome editing. Additionally, anticipatory guides and questions for discussion are posed throughout the review to encourage active exploration of these topics in the classroom. Finally, the supplement includes a study guide and practical suggestions to incorporate CRISPR/Cas9 experiments into lab courses at the undergraduate level. © 2018 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 46(2):195-205, 2018. © 2018 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  20. Atomic spectroscopy and holography: A combined laboratory experiment at the intermediate undergraduate level

    NASA Astrophysics Data System (ADS)

    Bates, Harry E.

    1984-05-01

    Holography is a new and exciting field that has found many applications in physics and engineering. Atomic spectroscopy has been the experimental cornerstone of modern physics and chemistry. This paper reports on an intermediate undergraduate laboratory experiment that combines fundamental ideas and techniques of both fields. The student utilizes holographic techniques to make a small sinusoidal diffraction grating and then uses this grating to analyze the spectrum of hydrogen. The Rydberg constant can be determined from the wavelength, the angle between the laser beams used to make the grating, and the observed diffractions angles of lines of the Balmer series.

  1. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  2. Affordable hands-on DNA sequencing and genotyping: an exercise for teaching DNA analysis to undergraduates.

    PubMed

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C Sanger sequencing reactions. They prepare and run the gels, perform Southern blots (which require only 10 min), and detect sequencing ladders using a colorimetric detection system. Students enlarge their sequencing ladders from digital images of their small nylon membranes, and read the sequence manually. They compare their reads with the actual DNA sequence using BLAST2. After mastering the DNA sequencing system, students prepare their own DNA from a cheek swab, polymerase chain reaction-amplify a region of their DNA that encompasses a SNP of interest, and perform sequencing to determine their genotype at the SNP position. A family pedigree can also be constructed. The SNP chosen by the instructor was rs17822931, which is in the ABCC11 gene and is the determinant of human earwax type. Genotypes at the rs178229931 site vary in different ethnic populations. © 2013 by The International Union of Biochemistry and Molecular Biology.

  3. Research and Teaching: Blooming, SOLO Taxonomy, and Phenomenography as Assessment Strategies in Undergraduate Science Education

    ERIC Educational Resources Information Center

    Newton, Genevieve; Martin, Elizabeth

    2013-01-01

    Three alternative approaches to assessment of exam responses were applied in an undergraduate biochemistry course. First, phenomenography was used to categorize written exam responses into an inclusive hierarchy. Second, responses to the same question were similarly categorized according to the Structure of Observed Learning Outcome (SOLO)…

  4. Plasma biochemistry RIs and age effect in European Strigiformes.

    PubMed

    Agusti Montolio, Susana; Cuenca Valera, Rafaela; Lavín González, Santiago; Cray, Carolyn; Molina López, Rafael; Ferron, Emmanuel Serrano; Francisco, Olga Nicolás; Marco Sánchez, Ignasi; Casas-Díaz, Encarna

    2018-03-01

    Blood biochemistry and hematology are essential in the laboratory diagnosis of disease. In Strigiformes, little information regarding reference values and influence of different preanalytic factors is available, while age is known to have an effect on some biochemistry analytes, especially in early life characterized by a rapid growth rate and increase in body mass. The objective of this study was to determine baseline data for 29 blood biochemistry variables in 5 species of Iberian Strigiformes assigned to different age classes. Healthy nocturnal birds living in wildlife health centers of Catalonia, Northeastern Spain were assigned to different age classes (chicks, juveniles, adults where possible and available) and their blood was collected and analyzed for different standard biochemistry variables. Species included Tawny owls, Little owls, Long-eared owls, Scop owls, and Barn owls. A total of 276 clinically healthy animals were sampled, including between 179 chicks, 52 juveniles, and 45 adults. The RIs of cholesterol, albumin, and osmolality were the only variables that did not show interspecific variability. Common trends between age class groups were observed in 4 species. Phosphorus and calcium concentrations and ALP activities decreased with increasing age, while concentrations of sodium and γ-globulins tended to increase in the Strigidae family. Differences were concentrated in chicks and no differences were observed between juveniles and adults in any variable. Our results demonstrate the importance of defining biochemical RIs specific for certain age classes. © 2018 American Society for Veterinary Clinical Pathology.

  5. Using PyMOL to Explore the Effects of ph on Noncovalent Interactions between Immunoglobulin G and Protein A: A Guided-Inquiry Biochemistry Activity

    ERIC Educational Resources Information Center

    Roche Allred, Zahilyn D.; Tai, Heeyoung; Bretz, Stacey Lowery; Page, Richard C.

    2017-01-01

    Students' understandings of foundational concepts such as noncovalent interactions, pH and pK[subscript a] are crucial for success in undergraduate biochemistry courses. We developed a guided-inquiry activity to aid students in making connections between noncovalent interactions and pH/pK[subscript a]. Students explore these concepts by examining…

  6. Use of Molecular Models for Active Learning in Biochemistry Lecture Courses

    ERIC Educational Resources Information Center

    Hageman, James H.

    2010-01-01

    The pedagogical value of having biochemistry and organic chemistry students build and manipulate physical models of chemical species is well established in the literature. Nevertheless, for the most part, the use of molecular models is generally limited to several laboratory exercises or to demonstrations in the classroom setting. A simple…

  7. Undergraduate Skills Laboratories at Sonoma State University

    NASA Astrophysics Data System (ADS)

    Gill, Amandeep; Zack, K.; Mills, H.; Cunningham, B.; Jackowski, S.

    2014-01-01

    Due to the current economic climate, funding sources for many laboratory courses have been cut from university budgets. However, it is still necessary for undergraduates to master laboratory skills to be prepared and competitive applicants when entering the professional world and/or graduate school. In this context, student-led programs may be able to compensate for this lack of formal instruction and reinforce concepts from lecture by applying research techniques to develop hands-on comprehension. The Sonoma State University Chapter of Society of Physics Students has established a peer-led skills lab to teach research techniques in the fields of astronomy and physics. The goal is to alleviate the pressures of both independently learning and efficiently applying techniques to junior and senior-level research projects. These skill labs are especially valuable for nontraditional students who, due to work or family duties, may not get a chance to fully commit to research projects. For example, a topic such as Arduino programming has a multitude of applications in both astronomy and physics, but is not taught in traditional university courses. Although some programming and electronics skills are taught in (separate) classes, they are usually not applied to actual research projects, which combined expertise is needed. For example, in astronomy, there are many situations involving programming telescopes and taking data with electronic cameras. Often students will carry out research using these tools but when something goes wrong, the students will not have the skills to trouble shoot and fix the system. Another astronomical topic to be taught in the skills labs is the analysis of astronomical data, including running remote telescopes, analyzing photometric variability, and understanding the concepts of star magnitudes, flat fields, and biases. These workshops provide a setting in which the student teacher may strengthen his or her understanding of the topic by presenting

  8. Graduate Teaching Assistants; Critical Colleagues or Casual Components in the Undergraduate Laboratory Learning? An Exploration of the Role of the Postgraduate Teacher in the Sciences

    ERIC Educational Resources Information Center

    Ryan, Barry J.

    2014-01-01

    Laboratory training is key to many science subjects and those that teach the practical laboratory skills maintain a pivotal role in undergraduate science training. Graduate Teaching Assistants (GTAs) are regularly used in higher education institutes to teach these practical lab skills. The GTA can be involved in both laboratory teaching and…

  9. Does the Use of Case-Based Learning Impact the Retention of Key Concepts in Undergraduate Biochemistry?

    ERIC Educational Resources Information Center

    Kulak, Verena; Newton, Genevieve; Sharma, Rahul

    2017-01-01

    Objective: Enhanced knowledge retention and a preference towards a deep learning approach are desirable pedagogical outcomes of case-based learning (CBL). The CBL literature is sparse with respect to these outcomes, and this is especially so in the area of biochemistry. The present study determined the effect of CBL vs. non CBL on knowledge…

  10. Blood gas testing and related measurements: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Dukić, Lora; Kopčinović, Lara Milevoj; Dorotić, Adrijana; Baršić, Ivana

    2016-10-15

    Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard - fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline - second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing.

  11. Blood gas testing and related measurements: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Dukić, Lora; Kopčinović, Lara Milevoj; Dorotić, Adrijana; Baršić, Ivana

    2016-01-01

    Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard – fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline – second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing. PMID:27812301

  12. A unique large-scale undergraduate research experience in molecular systems biology for non-mathematics majors.

    PubMed

    Kappler, Ulrike; Rowland, Susan L; Pedwell, Rhianna K

    2017-05-01

    Systems biology is frequently taught with an emphasis on mathematical modeling approaches. This focus effectively excludes most biology, biochemistry, and molecular biology students, who are not mathematics majors. The mathematical focus can also present a misleading picture of systems biology, which is a multi-disciplinary pursuit requiring collaboration between biochemists, bioinformaticians, and mathematicians. This article describes an authentic large-scale undergraduate research experience (ALURE) in systems biology that incorporates proteomics, bacterial genomics, and bioinformatics in the one exercise. This project is designed to engage students who have a basic grounding in protein chemistry and metabolism and no mathematical modeling skills. The pedagogy around the research experience is designed to help students attack complex datasets and use their emergent metabolic knowledge to make meaning from large amounts of raw data. On completing the ALURE, participants reported a significant increase in their confidence around analyzing large datasets, while the majority of the cohort reported good or great gains in a variety of skills including "analysing data for patterns" and "conducting database or internet searches." An environmental scan shows that this ALURE is the only undergraduate-level system-biology research project offered on a large-scale in Australia; this speaks to the perceived difficulty of implementing such an opportunity for students. We argue however, that based on the student feedback, allowing undergraduate students to complete a systems-biology project is both feasible and desirable, even if the students are not maths and computing majors. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):235-248, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  13. Undergraduate Biology Students' Attitudes towards the Use of Curriculum-Based Reader's Theater in a Laboratory Setting

    ERIC Educational Resources Information Center

    Cross, Chrissy J.

    2017-01-01

    In the undergraduate biology laboratory, many freshmen are apathetic towards the content of the course. Curriculum based reader's theater (CRBT) is an instructional method that can increase interest the students in the content of the course while improving student communication, collaboration and understanding. This research is an examination of…

  14. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    ERIC Educational Resources Information Center

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically,…

  15. Student-Led Development of an Interactive and Free Biochemical Methods eBook

    ERIC Educational Resources Information Center

    Hill, Alyssa C.; Nickels, Logan M.; Sims, Paul A.

    2016-01-01

    An approach to create an interactive and inexpensive electronic book (eBook) for an undergraduate biochemistry laboratory course is presented. This approach featured the involvement of an undergraduate student in the lead role of designing and developing the eBook using Apple's iBooks Author application. The eBook, entitled "Introduction to…

  16. Determining the Transference Number of H[superscript +](aq) by a Modified Moving Boundary Method: A Directed Study for the Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Padelford, Jonathan

    2012-01-01

    A directed study for the undergraduate physical chemistry laboratory for determining the transference number of H[superscript +](aq) using a modified moving boundary method is presented. The laboratory study combines Faraday's laws of electrolysis with mole ratios and the perfect gas equation. The volume of hydrogen gas produced at the cathode is…

  17. Chemoenzymatic Synthesis of an Enantiomerically Pure Lactone: A Three-Step Synthesis for Undergraduate Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    McClure, Cynthia K.; Chenault, H. Keith

    1996-05-01

    A three-step laboratory sequence for the undergraduate organic laboratory is described. This series of experiments requires a student to use the product from one reaction as the starting material for a subsequent reaction, and thus the affords the student a "real world" experience of multistep synthesis. Thermal extrusion of sulfur dioxide from sulfolene is used to generate 1,3-butadiene in situ for a Diels-Alder cyclization with maleic anhydride. The anhydride is then reduced to the diol with lithium aluminum hydride. Oxidation of the diol to the chiral lactone is catalyzed by horse-liver alcohol dehydrogenase. This enzymatic oxidation illustrates in situ cofactor regeneration and allows students to measure simple enzyme kinetics.

  18. Cell migration analysis: A low-cost laboratory experiment for cell and developmental biology courses using keratocytes from fish scales.

    PubMed

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R

    2017-11-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level do not often take into account the time dimension. In this article, we provide a laboratory exercise focused in cell migration, aiming to stimulate thinking in time and space dimensions through a simplification of more complex processes occurring in cell or developmental biology. The use of open-source tools for the analysis, as well as the whole package of raw results (available at http://github.com/danielprieto/keratocyte) make it suitable for its implementation in courses with very diverse budgets. Aiming to facilitate the student's transition from science-students to science-practitioners we propose an exercise of scientific thinking, and an evaluation method. This in turn is communicated here to facilitate the finding of common caveats and weaknesses in the process of producing simple scientific communications describing the results achieved. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):475-482, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  19. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  20. COED Transactions, Vol. XI, No. 12, December 1979. Some Alternate Applications of Microprocessor Trainers in Support of Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Mitchell, Eugene E., Ed.

    Ways are described for the use of a microprocessor trainer in undergraduate laboratories. Listed are microcomputer applications that have been used as demonstrations and which provide signals for other experiments which are not related to microprocessors. Information and figures are provided for methods to do the following: direct generation of…

  1. Site-Directed Mutagenesis Study of an Antibiotic-Sensing Noncoding RNA Integrated into a One-Semester Project-Based Biochemistry Lab Course

    ERIC Educational Resources Information Center

    Gerczei, Timea

    2017-01-01

    A laboratory sequence is described that is suitable for upper-level biochemistry or molecular biology laboratories that combines project-based and traditional laboratory experiments. In the project-based sequence, the individual laboratory experiments are thematically linked and aim to show how a bacterial antibiotic sensing noncoding RNA (the…

  2. A New Model for Transitioning Students from the Undergraduate Teaching Laboratory to the Research Laboratory

    ERIC Educational Resources Information Center

    Hollenbeck, Jessica J.; Wixson, Emily N.; Geske, Grant D.; Dodge, Matthew W.; Tseng, T. Andrew; Clauss, Allen D.; Blackwell, Helen E.

    2006-01-01

    The transformation of 346 chemistry courses into a training experience that could provide undergraduate students with a skill set essential for a research-based chemistry career is presented. The course has an innovative structure that connects undergraduate students with graduate research labs at the semester midpoint and also includes new,…

  3. New Edition of Chinese Biochemistry Textbook.

    ERIC Educational Resources Information Center

    Jian-Chuan, Ma

    1988-01-01

    Discusses the four previous editions of the biochemistry medical textbooks called the "Nationwide Unified Textbooks." Notes the new (1989) edition is much smaller, is organized differently, has new material, has a reorganized Dynamic Biochemistry core, and shows great importance to clinical biochemistry. (MVL)

  4. Comprehensive experiment-clinical biochemistry: determination of blood glucose and triglycerides in normal and diabetic rats.

    PubMed

    Jiao, Li; Xiujuan, Shi; Juan, Wang; Song, Jia; Lei, Xu; Guotong, Xu; Lixia, Lu

    2015-01-01

    For second year medical students, we redesigned an original laboratory experiment and developed a combined research-teaching clinical biochemistry experiment. Using an established diabetic rat model to detect blood glucose and triglycerides, the students participate in the entire experimental process, which is not normally experienced during a standard clinical biochemistry exercise. The students are not only exposed to techniques and equipment but are also inspired to think more about the biochemical mechanisms of diseases. When linked with lecture topics about the metabolism of carbohydrates and lipids, the students obtain a better understanding of the relevance of abnormal metabolism in relation to diseases. Such understanding provides a solid foundation for the medical students' future research and for other clinical applications. © 2014 Biochemistry and Molecular Biology Education.

  5. Promoting inquiry-based teaching in laboratory courses: are we meeting the grade?

    PubMed

    Beck, Christopher; Butler, Amy; da Silva, Karen Burke

    2014-01-01

    Over the past decade, repeated calls have been made to incorporate more active teaching and learning in undergraduate biology courses. The emphasis on inquiry-based teaching is especially important in laboratory courses, as these are the courses in which students are applying the process of science. To determine the current state of research on inquiry-based teaching in undergraduate biology laboratory courses, we reviewed the recent published literature on inquiry-based exercises. The majority of studies in our data set were in the subdisciplines of biochemistry, cell biology, developmental biology, genetics, and molecular biology. In addition, most exercises were guided inquiry, rather than open ended or research based. Almost 75% of the studies included assessment data, with two-thirds of these studies including multiple types of assessment data. However, few exercises were assessed in multiple courses or at multiple institutions. Furthermore, assessments were rarely based on published instruments. Although the results of the studies in our data set show a positive effect of inquiry-based teaching in biology laboratory courses on student learning gains, research that uses the same instrument across a range of courses and institutions is needed to determine whether these results can be generalized. © 2014 C. Beck et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Metabolomics for undergraduates: Identification and pathway assignment of mitochondrial metabolites.

    PubMed

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E N; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening approach to identify all the metabolites in a given biological system is called metabolic fingerprinting. Using high-resolution and high-mass accuracy mass spectrometry, large metabolome coverage, sensitivity, and specificity can be attained. Although the theoretical concepts of this methodology are usually provided in life-science programs, hands-on laboratory experiments are not usually accessible to undergraduate students. Even if the instruments are available, there are not simple laboratory protocols created specifically for teaching metabolomics. We designed a straightforward hands-on laboratory experiment to introduce students to this methodology, relating it to biochemical knowledge through metabolic pathway mapping of the identified metabolites. This study focuses on mitochondrial metabolomics since mitochondria have a well-known, medium-sized cellular sub-metabolome. These features facilitate both data processing and pathway mapping. In this experiment, students isolate mitochondria from potatoes, extract the metabolites, and analyze them by high-resolution mass spectrometry (using an FT-ICR mass spectrometer). The resulting mass list is submitted to an online program for metabolite identification, and compounds associated with mitochondrial pathways can be highlighted in a metabolic network map. © 2015 The International Union of Biochemistry and Molecular Biology.

  7. Isolation and Culture of Bovine Oviductal Epithelial Cells for Use in the Anatomy and Physiology Laboratory and Undergraduate Research

    ERIC Educational Resources Information Center

    Way, Amy L.

    2006-01-01

    This article presents methods for the isolation and culture of epithelial cells from the bovine oviduct for use in both research and the teaching laboratory and provides examples of ways that an oviductal cell culture can be incorporated into an undergraduate research program. Cow reproductive tracts are readily available from area butchers, and…

  8. [Research activity in clinical biochemistry].

    PubMed

    Jørgensen, Henrik L; Larsen, Birger; Ingwersen, Peter; Rehfeld, Jens F

    2008-09-01

    Quantitative bibliometric measurements of research activity are frequently used, e.g. for evaluating applicants for academic positions. The purpose of this investigation is to assess research activity within the medical speciality of Clinical Biochemistry by comparing it with a matched control group from other medical specialities in Denmark. A list of all physicians registered in Denmark (23,127 persons) was drawn from the database "Laeger.dk". Of these, 5,202 were generalists (not included) while 11,691 were from other specialities. Of the 126 specialists from Clinical Biochemistry, 57 fulfilled the inclusion criteria. Each of these 57 was matched according to medical title with two randomly chosen specialists from other specialities, totaling 114. Using Medline and the Web of Science, the number of publications and the number of citations were then ascertained. 25% of the 11,691 specialists held a PhD degree or doctoral degree, DMSci, (Clinical Biochemistry: 61%). The 171 specialists included in the study had 9,823 papers in Medline and 10,140 papers in the Web of Science. The number of Medline papers per specialist was 71 for Clinical Biochemistry compared to 51 for the control group. The number of citations per specialist was 1,844 for Clinical Biochemistry compared to 816 for the control group. The top ten H-indices (of which 8 were in Clinical Biochemistry) ranged from 30 to 69. Both the number of papers and the number of citations were higher for Clinical Biochemistry than for the control group. The difference was most pronounced among professors.

  9. Synthesis and Catalytic Activity of Ruthenium-Indenylidene Complexes for Olefin Metathesis: Microscale Experiments for the Undergraduate Inorganic or Organometallic Laboratories

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.

    2007-01-01

    A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…

  10. Improving undergraduate biology education in a large research university.

    PubMed Central

    Bender, C; Ward, S; Wells, M A

    1994-01-01

    The campus-wide Undergraduate Biology Research Program (UBRP) at the University of Arizona improves undergraduate science education by expanding student opportunities for independent research in faculty laboratories. Within the supportive community of a research laboratory, underclassmen, nonscience majors, and those aspiring to scientific careers all learn to appreciate the process of science. The Program impacts more than the students, promoting departmental cooperation, interdisciplinary collaborations, and improvements in undergraduate science education throughout a Research I University. PMID:8018999

  11. [A Perspective on Innovation for Efficient Medical Practice in View of Undergraduate and Postgraduate Education and Training in Laboratory Medicine].

    PubMed

    Kawai, Tadashi

    2015-10-01

    Continuous advances in medical laboratory technology have driven major changes in the practice of laboratory medicine over the past two decades. The importance of the overall quality of a medical laboratory has been ever-increasing in order to improve and ensure the quality and safety of clinical practice by physicians in any type of medical facility. Laboratory physicians and professional staff should challenge themselves more than ever in various ways to cooperate and contribute with practicing physicians for the appropriate utilization of laboratory testing. This will certainly lead to a decrease in inappropriate or unnecessary laboratory testing, resulting in reducing medical costs. In addition, not only postgraduate, but also undergraduate medical education/training systems must be markedly innovated, considering recent rapid progress in electronic information and communication technologies.

  12. Toward a Conceptual Framework for Measuring the Effectiveness of Course-Based Undergraduate Research Experiences in Undergraduate Biology

    ERIC Educational Resources Information Center

    Brownell, Sara E.; Kloser, Matthew J.

    2015-01-01

    Recent calls for reform have advocated for extensive changes to undergraduate science lab experiences, namely providing more authentic research experiences for students. Course-based Undergraduate Research Experiences (CUREs) have attempted to eschew the limitations of traditional "cookbook" laboratory exercises and have received…

  13. Biochemistry

    USDA-ARS?s Scientific Manuscript database

    Part of the framework for effective control or management of cyst nematodes depends upon the detailed understanding of their biology. This chapter summarizes fundamental knowledge and recent discoveries about the biochemistry of cyst nematodes, particularly areas related to lipids, carbohydrates and...

  14. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    ERIC Educational Resources Information Center

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  15. A First Laboratory Utilizing NMR for Undergraduate Education: Characterization of Edible Fats and Oils by Quantitative [superscript 13]C NMR

    ERIC Educational Resources Information Center

    Fry, Charles G.; Hofstetter, Heike; Bowman, Matthew D.

    2017-01-01

    Quantitative [superscript 13]C NMR provides a straightforward method of analyzing edible oils in undergraduate chemistry laboratories. [superscript 13]C spectra are relatively easy to understand, and are much simpler to analyze and workup than corresponding [superscript 1]H spectra. Average chain length, degree of saturation, and average…

  16. Undergraduate research in geochemistry at a larger university: developing a community of undergraduate and graduate researchers.

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.

    2003-12-01

    Faculty at state research universities can find the paired requirements of establishing research programs and developing a "pipeline" of graduate students to be the most challenging aspects of their jobs, especially with shrinking pools of graduate applicants. These problems may be more acute for laboratory-based geochemists, as few graduate candidates possess the requisite quantitative and chemical backgrounds. The need to "get my research going" at the University of South Florida led me to work primarily with undergraduates, as a) they were available and interested, b) they required no more laboratory training than M.S. students; and c) small-dollar funds were available to support them, both in-house and via NSF REU Supplements. Some senior colleagues argued that this approach would hinder my developing a graduate program as is necessary for tenure. This contention turned out to be untrue. My success in undergraduate research draws funding (in NSF REU Site and disciplinary research grants), has attracted outside MS and Ph.D. candidates, and has retained quality in-house students seeking MS degrees. Students working with me join a laboratory community in which undergraduate and graduate researchers are on equal footing in terms of access to instrumentation and other facilities. I work with all my students, irrespective of rank, as members of a cooperative research group. I encourage and expect that technical instruction I provide to any individual will be passed on to their colleagues, which helps develop a "lab culture" of best practices, and ingrains new knowledge and skills through the act of teaching them to others. Maintaining this research environment requires active recruitment of capable graduate AND undergraduate students, regular monitoring of laboratory practices, and ready availability for consultation and mentoring. One must be cognizant of the differing time commitment issues of undergraduates and graduates, and set research goals appropriately

  17. Undergraduate Organic Chemistry Laboratory Safety

    NASA Astrophysics Data System (ADS)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  18. Automated scanning probe lithography with n-alkanethiol self assembled monolayers on Au(111): Application for teaching undergraduate laboratories

    PubMed Central

    Brown, Treva T.; LeJeune, Zorabel M.; Liu, Kai; Hardin, Sean; Li, Jie-Ren; Rupnik, Kresimir; Garno, Jayne C.

    2010-01-01

    Controllers for scanning probe instruments can be programmed for automated lithography to generate desired surface arrangements of nanopatterns of organic thin films, such as n-alkanethiol self-assembled monolayers (SAMs). In this report, atomic force microscopy (AFM) methods of lithography known as nanoshaving and nanografting are used to write nanopatterns within organic thin films. Commercial instruments provide software to control the length, direction, speed, and applied force of the scanning motion of the tip. For nanoshaving, higher forces are applied to an AFM tip to selectively remove regions of the matrix monolayer, exposing bare areas of the gold substrate. Nanografting is accomplished by force-induced displacement of molecules of a matrix SAM, followed immediately by the surface self-assembly of n-alkanethiol molecules from solution. Advancements in AFM automation enable rapid protocols for nanolithography, which can be accomplished within the tight time restraints of undergraduate laboratories. Example experiments with scanning probe lithography (SPL) will be described in this report that were accomplished by undergraduate students during laboratory course activities and research internships in the chemistry department of Louisiana State University. Students were introduced to principles of surface analysis and gained “hands-on” experience with nanoscale chemistry. PMID:21483651

  19. The Alcohol Dehydrogenase Kinetics Laboratory: Enhanced Data Analysis and Student-Designed Mini-Projects

    ERIC Educational Resources Information Center

    Silverstein, Todd P.

    2016-01-01

    A highly instructive, wide-ranging laboratory project in which students study the effects of various parameters on the enzymatic activity of alcohol dehydrogenase has been adapted for the upper-division biochemistry and physical biochemistry laboratory. Our two main goals were to provide enhanced data analysis, featuring nonlinear regression, and…

  20. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  1. A Research-Based Undergraduate Organic Laboratory Project: Investigation of a One-Pot, Multicomponent, Environmentally Friendly Prins-Friedel-Crafts-Type Reaction

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Maresh, Justin J.; Kinzie, Charles R.; Arena, Anthony F.; Speltz, Thomas

    2012-01-01

    Students in the undergraduate organic laboratory synthesize tetrahydro-2-(4-nitrophenyl)-4-phenyl-2"H"-pyran via the Montmorillonite K10 clay-catalyzed reaction of p-nitrobenzaldehye with methanol, 3-buten-1-ol, and benzene. The synthesis comprises an environmentally friendly tandem Prins-Friedel-Crafts-type multicomponent reaction (MCR) and sets…

  2. A Nitrogen Balance Experiment Using Simulated Urine Samples

    ERIC Educational Resources Information Center

    Sadighi, Mehri; Reichman, Nurit; Wilson, Kaye; Carne, Alan; Thompson, Mary P.

    2006-01-01

    We describe an undergraduate laboratory experiment that combines the advantages of problem-based learning with the need for biochemistry students to become proficient in practical laboratory skills. It also avoids the need to obtain ethical approval for recruiting volunteers and eliminates any possible biosafety issues with the handling and…

  3. From Gene Mutation to Protein Characterization

    ERIC Educational Resources Information Center

    Moffet, David A.

    2009-01-01

    A seven-week "gene to protein" laboratory sequence is described for an undergraduate biochemistry laboratory course. Student pairs were given the task of introducing a point mutation of their choosing into the well studied protein, enhanced green fluorescent protein (EGFP). After conducting literature searches, each student group chose the…

  4. Using HeLa cell stress response to introduce first year students to the scientific method, laboratory techniques, primary literature, and scientific writing.

    PubMed

    Resendes, Karen K

    2015-01-01

    Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular biology course that couples inquiry-based experimental design with extensive scientific writing was designed at Westminster College to expose first year students to these concepts early in their undergraduate career. In the module students used scientific literature to design and then implement an experiment on the effect of cellular stress on protein expression in HeLa cells. In parallel the students developed a research paper in the style of the undergraduate journal BIOS to report their results. HeLa cells were used to integrate the research experience with the Westminster College "Next Chapter" first year program, in which the students explored the historical relevance of HeLa cells from a sociological perspective through reading The Immortal Life of Henrietta Lacks by Rebecca Skloot. In this report I detail the design, delivery, student learning outcomes, and assessment of this module, and while this exercise was designed for an introductory course at a small primarily undergraduate institution, suggestions for modifications at larger universities or for upper division courses are included. Finally, based on student outcomes suggestions are provided for improving the module to enhance the link between teaching students skills in experimental design and execution with developing student skills in information literacy and writing. © 2015 The International Union of Biochemistry and Molecular Biology.

  5. Demand for interdisciplinary laboratories for physiology research by undergraduate students in biosciences and biomedical engineering.

    PubMed

    Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J

    2008-12-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.

  6. Laboratory testing of extravascular body fluids in Croatia: a survey of the Working group for extravascular body fluids of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    PubMed

    Kopcinovic, Lara Milevoj; Vogrinc, Zeljka; Kocijan, Irena; Culej, Jelena; Aralica, Merica; Jokic, Anja; Antoncic, Dragana; Bozovic, Marija

    2016-10-15

    We hypothesized that extravascular body fluid (EBF) analysis in Croatia is not harmonized and aimed to investigate preanalytical, analytical and postanalytical procedures used in EBF analysis in order to identify key aspects that should be addressed in future harmonization attempts. An anonymous online survey created to explore laboratory testing of EBF was sent to secondary, tertiary and private health care Medical Biochemistry Laboratories (MBLs) in Croatia. Statements were designed to address preanalytical, analytical and postanalytical procedures of cerebrospinal, pleural, peritoneal (ascites), pericardial, seminal, synovial, amniotic fluid and sweat. Participants were asked to declare the strength of agreement with proposed statements using a Likert scale. Mean scores for corresponding separate statements divided according to health care setting were calculated and compared. The survey response rate was 0.64 (58 / 90). None of the participating private MBLs declared to analyse EBF. We report a mean score of 3.45 obtained for all statements evaluated. Deviations from desirable procedures were demonstrated in all EBF testing phases. Minor differences in procedures used for EBF analysis comparing secondary and tertiary health care MBLs were found. The lowest scores were obtained for statements regarding quality control procedures in EBF analysis, participation in proficiency testing programmes and provision of interpretative comments on EBF's test reports. Although good laboratory EBF practice is present in Croatia, procedures for EBF analysis should be further harmonized to improve the quality of EBF testing and patient safety.

  7. Laboratory testing of extravascular body fluids in Croatia: a survey of the Working group for extravascular body fluids of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Kopcinovic, Lara Milevoj; Vogrinc, Zeljka; Kocijan, Irena; Culej, Jelena; Aralica, Merica; Jokic, Anja; Antoncic, Dragana; Bozovic, Marija

    2016-01-01

    Introduction We hypothesized that extravascular body fluid (EBF) analysis in Croatia is not harmonized and aimed to investigate preanalytical, analytical and postanalytical procedures used in EBF analysis in order to identify key aspects that should be addressed in future harmonization attempts. Materials and methods An anonymous online survey created to explore laboratory testing of EBF was sent to secondary, tertiary and private health care Medical Biochemistry Laboratories (MBLs) in Croatia. Statements were designed to address preanalytical, analytical and postanalytical procedures of cerebrospinal, pleural, peritoneal (ascites), pericardial, seminal, synovial, amniotic fluid and sweat. Participants were asked to declare the strength of agreement with proposed statements using a Likert scale. Mean scores for corresponding separate statements divided according to health care setting were calculated and compared. Results The survey response rate was 0.64 (58 / 90). None of the participating private MBLs declared to analyse EBF. We report a mean score of 3.45 obtained for all statements evaluated. Deviations from desirable procedures were demonstrated in all EBF testing phases. Minor differences in procedures used for EBF analysis comparing secondary and tertiary health care MBLs were found. The lowest scores were obtained for statements regarding quality control procedures in EBF analysis, participation in proficiency testing programmes and provision of interpretative comments on EBF’s test reports. Conclusions Although good laboratory EBF practice is present in Croatia, procedures for EBF analysis should be further harmonized to improve the quality of EBF testing and patient safety. PMID:27812307

  8. Utility of Self-Made Crossword Puzzles as an Active Learning Method to Study Biochemistry in Undergraduate Education

    ERIC Educational Resources Information Center

    Coticone, Sulekha Rao

    2013-01-01

    To incorporate an active learning component in a one-semester biochemistry course, students were asked to create crossword puzzles using key concepts. Student observations on the use of self-made crossword puzzles as an active-learning instructional tool were collected using a 5-point Likert survey at the end of the semester. A majority of the…

  9. Chymotrypsin effects on the determination of sperm parameters and seminal biochemistry markers.

    PubMed

    Chen, Fang; Lu, Jin-Chun; Xu, Hui-Ru; Huang, Yu-Feng; Lu, Nian-Qing

    2006-01-01

    Few reports of the effects of treatment with chymotrypsin on the determination of sperm parameters and seminal biochemistry markers are documented. Sperm parameters of 63 liquefied and 27 non-liquefied samples, untreated or treated with chymotrypsin, were evaluated using computer-assisted semen analysis. In addition, biochemistry markers such as gamma-glutamyltranspeptidase, alpha-glucosidase and fructose in 50 liquefied and 39 non-liquefied samples, untreated or treated with chymotrypsin, were determined. Treatment with chymotrypsin had no effect on sperm concentration, motility, motility a and b, straightness, curvilinear velocity, straight line velocity, average path velocity and beat cross frequency in both liquefied and non-liquefied semen. However, linearity (p=0.025) decreased and the amplitude of the lateral head (p=0.029) increased significantly in non-liquefied semen after treatment with chymotrypsin. The levels of gamma-glutamyltranspeptidase, alpha-glucosidase and fructose in seminal plasma were unaffected by chymotrypsin, regardless of liquefaction status. Chymotrypsin had no effects on the detection of sperm parameters and biochemistry markers, and could be used to treat non-liquefied samples before semen analysis in the andrology laboratory.

  10. A Study in Enzyme Kinetics Using an Ion-Specific Electrode.

    ERIC Educational Resources Information Center

    Turchi, Sandra; And Others

    1989-01-01

    Describes an undergraduate biochemistry laboratory experiment on enzyme kinetics using the D-amino acid oxidase system and an ammonia electrode. Preparation of an ammonia standard curve, a sample preparation, and inhibition studies are discussed. (YP)

  11. Audit of an emergency biochemistry service.

    PubMed Central

    Smellie, W S; Murphy, M J; Galloway, P J; Hinnie, J; McIlroy, J; Dryburgh, F J

    1995-01-01

    AIM--To examine a model for the evaluation of appropriateness of testing in an emergency biochemistry laboratory. METHODS--A model was devised in which incoming emergency test requests were categorised as appropriate or inappropriate. Explicit criteria were used to define eight minor categories, which were chosen to reflect accurately current working practice within the hospital and laboratory. Five junior medical staff each undertook a prospective 24 hour assessment, during which time all incoming requests were monitored and categorised according to these criteria. Concordance between monitors was evaluated before and during assessments. RESULTS--Of 509 requests, 384 (75%) were appropriate and 125 (25%) were inappropriate according to the criteria used to define categories. Inappropriate requests fell into three main groups: preoperative samples (43.2% (54/125) of all inappropriate requests), missed routine samples (33.6% (42/125)) and accelerated (priority) analyses (16% (20/125)). Various other reasons accounted for the remaining 7.2% (9/125). CONCLUSION--This model may be used to obtain valid information about current clinical and laboratory practice. Strategies to reduce the number of inappropriate requests have been identified in order to reserve the emergency service for situations of true need. PMID:8568000

  12. Correlation, Necessity, and Sufficiency: Common Errors in the Scientific Reasoning of Undergraduate Students for Interpreting Experiments

    ERIC Educational Resources Information Center

    Coleman, Aaron B.; Lam, Diane P.; Soowal, Lara N.

    2015-01-01

    Gaining an understanding of how science works is central to an undergraduate education in biology and biochemistry. The reasoning required to design or interpret experiments that ask specific questions does not come naturally, and is an essential part of the science process skills that must be learned for an understanding of how scientists conduct…

  13. The Biochemistry Tetrahedron and the Development of the Taxonomy of Biochemistry External Representations (TOBER)

    ERIC Educational Resources Information Center

    Towns, Marcy H.; Raker, Jeffrey R.; Becker, Nicole; Harle, Marissa; Sutcliffe, Jonathan

    2012-01-01

    Visual literacy, the ability to interpret and create external representations (ERs), is essential to success in biochemistry. Studies have been conducted that describe students' abilities to use and interpret specific types of ERs. However, a framework for describing ERs derived through a naturalistic inquiry of biochemistry classrooms has not…

  14. Studies of biochemistry and clinical biochemistry. Studies at sample medical schools in 13 EU countries regarding biochemistry and clinical biochemistry teaching.

    PubMed

    Stern, Petr; Sebesta, Ivan; Trnkova, Bohuslava; Zima, Tomas

    2008-07-01

    The study summarizes the results obtained during personal visits to 53 medical schools in the 13 original EU countries during 2004--2006. Data from the Czech Republic is shown for comparison. The possibilities of acquiring information from the websites of the medical schools in the local language and English are assessed. The admission process to medical schools and the organization of studies of medicine, dentistry, and non-medical healthcare fields are briefly characterized. Significant attention is paid to the forms of education in biochemistry and clinical (bio)chemistry in the medical study field. The position of these subjects in the studies of dentistry and non-medical healthcare fields is also noted. In addition, the course of subject exams is described. The methods of funding and postgraduate studies at the medical schools are also briefly addressed.

  15. Utilizing Mechanistic Cross-Linking Technology to Study Protein-Protein Interactions: An Experiment Designed for an Undergraduate Biochemistry Lab

    ERIC Educational Resources Information Center

    Finzel, Kara; Beld, Joris; Burkart, Michael D.; Charkoudian, Louise K.

    2017-01-01

    Over the past decade, mechanistic cross-linking probes have been used to study protein-protein interactions in natural product biosynthetic pathways. This approach is highly interdisciplinary, combining elements of protein biochemistry, organic chemistry, and computational docking. Herein, we described the development of an experiment to engage…

  16. Of responsible research-Exploring the science-society dialogue in undergraduate training within the life sciences.

    PubMed

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-02

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in the scientific agenda. Developing abilities in this regard seems particularly relevant to training in the life sciences, as new developments in this area somehow evoke the involvement of all of us citizens, our engagement to debate and take part in processes of change. The present analysis draws from the implementation of a curricular unit focused on science-society dialogue, an optional course included in the Biochemistry Degree study plan offered at the University of Porto. This curricular unit was designed to be mostly an exploratory activity for the students, enabling them to undertake in-depth study in areas/topics of their specific interest. Mapping topics from students' final papers provided a means of analysis and became a useful tool in the exploratory collaborative construction of the course. We discuss both the relevance and the opportunity of thinking and questioning the science-society dialogue. As part of undergraduate training, this pedagogical practice was deemed successful. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):46-52, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  17. Argument-Driven Inquiry: Using the Laboratory to Improve Undergraduates' Science Writing Skills through Meaningful Science Writing, Peer-Review, and Revision

    ERIC Educational Resources Information Center

    Walker, Joi Phelps; Sampson, Victor

    2013-01-01

    This paper presents preliminary evidence supporting the use of peer review in undergraduate science as a means to improve student writing and to alleviate barriers, such as lost class time, by incorporation of the peer-review process into the laboratory component of the course. The study was conducted in a single section of an undergraduate…

  18. Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones: An Inquiry-Based Experiment in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald

    2007-01-01

    An experiment for the undergraduate chemistry laboratory in which students perform the aldol condensation on an unknown aldehyde and an unknown ketone is described. The experiment involves the use of techniques such as TLC, column chromatography, and recrystallization, and compounds are characterized by [to the first power]H NMR, GC-MS, and FTIR.…

  19. Agreement of serum potassium measured by blood gas and biochemistry analyzer in patients with moderate to severe hyperkalemia.

    PubMed

    Acikgoz, Seyyid Bilal; Genc, Ahmet Bilal; Sipahi, Savas; Yildirim, Mehmet; Cinemre, Behice; Tamer, Ali; Solak, Yalcin

    2016-05-01

    Several studies investigated the agreement between central laboratory biochemistry analyzers and blood gas analyzers for potassium measurements. However, data are scarce when the potassium level is moderate to severely high. We aimed to evaluate the agreement between central laboratory biochemistry analyzers and blood gas analyzer in terms of serum potassium level measurement because differences in potassium at this level translate into very different clinical actions. This was a retrospective medical record review study in which patients who presented to the emergency department and had serum potassium levels ≥6mmol/L were included. Patients who did not have simultaneous potassium measurement by blood gas analyzer were excluded. We included all patients meeting potassium criteria irrespective of their underlying disease or comorbidities. We evaluated agreement between the measurement methods with Pearson correlation, Bland-Altman plot, and Sign test. A total of 118 blood sample pairs were included. The mean serum potassium level measured by biochemistry analyzer was 6.78±0.79mmol/L, whereas it was 6.16±0.86mmol/L by blood gas analyzer (P<.001, Sign test). There was a strong correlation (P<.001, r=0.864) between the 2 methods, but agreement was relatively poor. Blood gas analyzer tended to measure potassium significantly lower than measured by biochemistry analyzer. The mean difference between the methods was 0.62±0.43mmol/L. In patients with moderate to severe hyperkalemia, blood gas analyzer and biochemistry analyzer gives significantly different serum potassium results which may be clinically important. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Laboratory blood analysis in Strigiformes-Part II: plasma biochemistry reference intervals and agreement between the Abaxis Vetscan V2 and the Roche Cobas c501.

    PubMed

    Ammersbach, Mélanie; Beaufrère, Hugues; Gionet Rollick, Annick; Tully, Thomas

    2015-03-01

    Limited plasma biochemical information is available in Strigiformes. Only one study investigated the agreement between a point-of-care with a reference laboratory analyzer for biochemistry variables in birds. The objective was to report reference intervals (RI) for plasma biochemistry variables in Strigiformes, and to assess agreement between the Abaxis Vetscan V2 and Roche Cobas c501. A prospective study was designed to assess plasma biochemistry RI for concentration of calcium, phosphorus, total protein, albumin, globulin, glucose, bilirubin, uric acid, bile acids, sodium, potassium, and chloride, and activities of AST, GGT, CK, amylase, lipase, LDH, and GLDH. In addition, the agreement between the Vetscan and the Cobas in owl species was assessed. A total of 190 individuals were sampled belonging to 12 Strigiformes species including Barn Owls, Barred Owls, Great Horned Owls, Eurasian Eagle Owls, Spectacled Owls, Eastern Screech Owls, Long-Eared Owls, Short-Eared Owls, Great Gray Owls, Snowy Owls, Northern Saw-Whet Owls, and Northern Hawk-Owls. Order-, species-, and method-specific RI were determined on both analyzers. Although Vetscan data were not equivalent to the Cobas, 4 analytes (glucose, AST, CK, and total protein, with correction for bias) were within acceptable agreement, 3 analytes (uric acid, calcium, and phosphorus) were within close agreement, and the remaining analytes were in strong disagreement. Species-specific differences were observed notably for the concentration of glucose in Barn Owls and electrolytes in Northern Saw-Whet Owls. Overall, this study suggests that the Vetscan has acceptable clinical performance in Strigiformes for some analytes and highlights discrepancies for several analytes. © 2015 American Society for Veterinary Clinical Pathology.

  1. Laboratory diagnostics of chronic kidney disease in Croatia: state of the art

    PubMed Central

    Honović, Lorena; Matica, Jasminka; Knežević, Branka; Vojak, Sanela Šimić

    2015-01-01

    Introduction Early identification and management of chronic kidney disease (CKD) is highly cost-effective and can reduce the risk of kidney failure progression and cardiovascular disease. In 2014, the Joint Croatian Working Group (JCWG) for laboratory diagnostic of CKD on the behalf of Croatian society of medical biochemistry and laboratory medicine (CSMBLM) and Croatian chamber of medical biochemists (CCMB) conducted a survey across Croatian medical-biochemistry laboratories to assess the current practice in this area of laboratory medicine. The aim of this study was to present the data collected through the survey and to give insight about laboratory diagnostics of chronic kidney disease in Croatia. Materials and methods An invitation to participate in the survey was sent to all Croatian medical-biochemistry laboratories (N = 196). The questionnaire was designed in a form of questions and statements, with possible multiple answers, comprising 24 questions. Results The response rate was 80/196 (40.8%). 39 answers were from primary medical-biochemistry laboratories. 31/78 (0.40) laboratories measure creatinine with non-standardized method (uncompensated Jaffe method). 58/78 (0.74) of laboratories that measure creatinine do not report eGFR values. Similar number of laboratories (58/80, 0.73) do not measure urine albumin or protein. Conclusions There is a large heterogeneity among Croatian laboratories regarding measuring methods, reporting units and reference intervals (cut-off values), both for creatinine and urine albumin or protein. The two key prerequisites for CKD screening, automatic reporting of eGFR and albuminuria or proteinuria assessment, are not implemented nationwide. There is a need for harmonization in laboratory diagnostics of CKD in Croatia. PMID:25672470

  2. Environmental Regulation of Plant Gene Expression: An Rt-qPCR Laboratory Project for an Upper-Level Undergraduate Biochemistry or Molecular Biology Course

    ERIC Educational Resources Information Center

    Eickelberg, Garrett J.; Fisher, Alison J.

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the "FLOWERING LOCUS C" gene, a key regulator of floral timing in "Arabidopsis thaliana" plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate…

  3. A research project-based and self-determined teaching system of molecular biology techniques for undergraduates.

    PubMed

    Zhang, Shuping

    2008-05-01

    Molecular biology techniques play a very important role in understanding the biological activity. Students who major in biology should know not only how to perform experiments, but also the reasons for performing them. Having the concept of conducting research by integrating various techniques is especially important. This paper introduces a research project-based and self-determined teaching system of molecular biology techniques for undergraduates. Its aim is to create an environment mimicking real research programs and to help students build up confidence in their research skills. The students are allowed to explore a set of commonly used molecular biology techniques to solve some fundamental problems about genes on their own. They find a gene of interest, write a mini-proposal, and give an oral presentation. This course provides students a foundation before entering the research laboratory and allows them to adapt easily to real research programs. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.

  4. The Sweetness of Aspartame: A Biochemistry Lab for Health Science Chemistry Courses

    NASA Astrophysics Data System (ADS)

    Stein, Paul J.

    1997-09-01

    A laboratory exercise for Health Science Biochemistry students to study the effect of aspartame concentration on sweetness has been developed. The concentration dependence of the absorbance of aspartame at 257 nm is also studied. Data from all members of the class are averaged and plotted on the same graph as absorbance and taste rating vs. [aspartame]. The absorbance plot follows Beer's law while the taste rating plot displays the typical hyperbolic response of protein-ligand binding plots. This laboratory exercise illustrates the concept of binding saturation to students.

  5. Biochemistry Textbooks for Effective Learning.

    ERIC Educational Resources Information Center

    Vella, F.

    1992-01-01

    Suggests that more attention be paid by biochemistry textbook authors to the breadth of contemporary learning strategies, given the fact that an increasing number of medical schools have adopted an integrated, self-paced, problem-based curriculum. Discusses the theoretical characteristics desirable in the ideal biochemistry textbook. (JJK)

  6. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  7. Neurogaming Technology Meets Neuroscience Education: A Cost-Effective, Scalable, and Highly Portable Undergraduate Teaching Laboratory for Neuroscience

    PubMed Central

    de Wit, Bianca; Badcock, Nicholas A.; Grootswagers, Tijl; Hardwick, Katherine; Teichmann, Lina; Wehrman, Jordan; Williams, Mark; Kaplan, David Michael

    2017-01-01

    Active research-driven approaches that successfully incorporate new technology are known to catalyze student learning. Yet achieving these objectives in neuroscience education is especially challenging due to the prohibitive costs and technical demands of research-grade equipment. Here we describe a method that circumvents these factors by leveraging consumer EEG-based neurogaming technology to create an affordable, scalable, and highly portable teaching laboratory for undergraduate courses in neuroscience. This laboratory is designed to give students hands-on research experience, consolidate their understanding of key neuroscience concepts, and provide a unique real-time window into the working brain. Survey results demonstrate that students found the lab sessions engaging. Students also reported the labs enhanced their knowledge about EEG, their course material, and neuroscience research in general. PMID:28690430

  8. Teaching biochemistry online at Oregon State University.

    PubMed

    Ahern, Kevin

    2017-01-02

    A strategy for growing online biochemistry courses is presented based on successes in ecampus at Oregon State University. Four free drawing cards were key to the effort-YouTube videos, iTunes U online free course content, an Open Educational Resource textbook-Biochemistry Free and Easy, and a fun set of educational songs known as the Metabolic Melodies. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):25-30, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  9. Journal of Undergraduate Research, Volume IX, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiner, K. S.; Graham, S.; Khan, M.

    Each year more than 600 undergraduate students are awarded paid internships at the Department of Energy’s (DOE) National Laboratories. Th ese interns are paired with research scientists who serve as mentors in authentic research projects. All participants write a research abstract and present at a poster session and/or complete a fulllength research paper. Abstracts and selected papers from our 2007–2008 interns that represent the breadth and depth of undergraduate research performed each year at our National Laboratories are published here in the Journal of Undergraduate Research. The fields in which these students worked included: Biology; Chemistry; Computer Science; Engineering; Environmentalmore » Science; General Science; Materials Science; Medical and Health Sciences; Nuclear Science; Physics; Science Policy; and Waste Management.« less

  10. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  11. Peer Assessment in Large Undergraduate Classes: An Evaluation of a Procedure for Marking Laboratory Reports and a Review of Related Practices

    ERIC Educational Resources Information Center

    Harris, Judy R.

    2011-01-01

    This study provides evidence that peer marking can be a reliable tool for assessing laboratory reports in large cohorts. It was conducted over a 4-yr period with first-year undergraduates ([asymptotically equivalent to]180 students/cohort) taking a mammalian physiology course, but the procedure adopted would be applicable to any other…

  12. Searching for Alien Life Having Unearthly Biochemistry

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2003-01-01

    The search for alien life in the solar system should include exploring unearth-like environments for life having an unearthly biochemistry. We expect alien life to conform to the same basic chemical and ecological constraints as terrestrial life, since inorganic chemistry and the laws of ecosystems appear to be universal. Astrobiologists usually assume alien life will use familiar terrestrial biochemistry and therefore hope to find alien life by searching near water or by supplying hydrocarbons. The assumption that alien life is likely to be based on carbon and water is traditional and plausible. It justifies high priority for missions to search for alien life on Mars and Europa, but it unduly restricts the search for alien life. Terrestrial carbon-water biochemistry is not possible on most of the bodies of our solar system, but all alien life is not necessarily based on terrestrial biochemistry. If alien life has a separate origin from Earth life, and if can survive in an environment extremely different from Earth's, then alien life may have unearthly biochemistry. There may be other solvents than water that support alien life and other elements than carbon that form complex life enabling chain molecules. Rather than making the exploration-restricting assumption that all life requires carbon, water, and terrestrial biochemistry, we should make the exploration-friendly assumption that indigenous, environmentally adapted, alien life forms might flourish using unearthly biochemistry in many places in the solar system. Alien life might be found wherever there is free energy and a physical/chemical system capable of using that energy to build living structures. Alien life may be discovered by the detection of some general non-equilibrium chemistry rather than of terrestrial biochemistry. We should explore all the potential abodes of life in the solar system, including those where life based on terrestrial biochemistry can not exist.

  13. Middle/high school students in the research laboratory: A summer internship program emphasizing the interdisciplinary nature of biology.

    PubMed

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M

    2006-03-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For the laboratory-based program, selected students from Baltimore City Schools working in groups of three were teamed with undergraduate research assistants at Morgan State University. Teams were assigned a project that was indirectly related to our laboratory research on the characterization of gene expression in Caenorhabditis elegans. At the end of the program, teams prepared posters detailing their accomplishments, and presented their findings to parents and faculty members during a mini-symposium. The posters were also submitted to the respective schools and the interns were offered a presentation of their research at local high school science fairs. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  14. Correction factors in determining speed of sound among freshmen in undergraduate physics laboratory

    NASA Astrophysics Data System (ADS)

    Lutfiyah, A.; Adam, A. S.; Suprapto, N.; Kholiq, A.; Putri, N. P.

    2018-03-01

    This paper deals to identify the correction factor in determining speed of sound that have been done by freshmen in undergraduate physics laboratory. Then, the result will be compared with speed of sound that determining by senior student. Both of them used the similar instrument, namely resonance tube with apparatus. The speed of sound indicated by senior was 333.38 ms-1 with deviation to the theory about 3.98%. Meanwhile, for freshmen, the speed of sound experiment was categorised into three parts: accurate value (52.63%), middle value (31.58%) and lower value (15.79%). Based on analysis, some correction factors were suggested: human error in determining first and second harmonic, end correction of tube diameter, and another factors from environment, such as temperature, humidity, density, and pressure.

  15. Use of a Laboratory Exercise on Molar Absorptivity to Help Students Understand the Authority of the Primary Literature

    ERIC Educational Resources Information Center

    Soundararajan, Madhavan; Bailey, Cheryl P.; Markwell, John

    2008-01-01

    To promote understanding of the authority of the primary literature in students taking our biochemistry laboratory courses, a biochemistry laboratory exercise on the determination of an acceptable molar absorptivity value of 2-nitrophenol (2-NP) was developed. This made the laboratory course much more relevant by linking to a thematic thread,…

  16. Becoming a scientist: A qualitative study of the educational experience of undergraduates working in an American and a Brazilian research laboratory

    NASA Astrophysics Data System (ADS)

    Pascoa, Maria Beatriz Amorim

    Because the production of scientific and technological innovations has been at the center of debates for economic growth, scientists are recognized as important actors in the current global market. In this study, I will examine the undergraduate education of future scientists by focusing on students working in research projects of faculty members. This research activity has been promoted by American and Brazilian public agencies as an attempt to attract more college students to scientific careers as well as to improve their future performance in science. Evaluations of these programs have focused on important quantitative indicators focusing mainly on the amount of students that later choose to pursue scientific careers. However, these studies fail to address important educational aspects of undergraduates' experience. In this research, I explore the educational processes taking place as students are introduced to the making of science in order to understand how and what they are learning. Three bodies of literature illuminates the formulation and the analysis of the research questions: (1) theories of globalization situate the education of scientists within the dynamics of a broader social, economic, cultural, and historical framework; (2) the critical pedagogy of Paulo Freire is the basis for the understanding of the pedagogical processes shaping undergraduate students' experiences within the research site; (3) Critical and Cultural Studies of Science and Technology illuminate the analysis of the complex interactions and practices constructed within the laboratory. In order to understand the educational processes shaping the experiences of undergraduate students engaged in research activities, I conducted a qualitative investigation based on participant-observation and in-depth interviews in an American and a Brazilian laboratories. The two sites constituted insightful case studies that illuminated the understanding of inquires about the training of students in

  17. Comprehensive Experiment--Clinical Biochemistry: Determination of Blood Glucose and Triglycerides in Normal and Diabetic Rats

    ERIC Educational Resources Information Center

    Jiao, Li; Xiujuan, Shi; Juan, Wang; Song, Jia; Lei, Xu; Guotong, Xu; Lixia, Lu

    2015-01-01

    For second year medical students, we redesigned an original laboratory experiment and developed a combined research-teaching clinical biochemistry experiment. Using an established diabetic rat model to detect blood glucose and triglycerides, the students participate in the entire experimental process, which is not normally experienced during a…

  18. Myoglobin Structure and Function: A Multiweek Biochemistry Laboratory Project

    ERIC Educational Resources Information Center

    Silverstein, Todd P.; Kirk, Sarah R.; Meyer, Scott C.; Holman, Karen L. McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure,…

  19. [Fundamentals of quality control systems in medical-biochemical laboratories--the role of marketing].

    PubMed

    Topić, E; Turek, S

    2000-01-01

    The basic criterion for the overall quality system in medical biochemistry laboratories concerning equipment, premises and laboratory staff in primary health care (PHC) (Regulations on quality systems and good laboratory practice of the Croatian Medical Biochemists Chamber, 1995, Regulations on categorization of medical biochemistry laboratories of the Croatian Medical Biochemists Chamber, 1996, EC4: Essential criteria for quality systems in medical laboratories. Eur J Clin Chem Clin Biochem 1997 in medical biochemical laboratories included in the First Croatia health project, Primary health care subproject, has been met by the marketing approach to the project. The equipment ensuring implementation of the complete laboratory program (NN/96), more accurate and precise analytical procedures, and higher reliability of laboratory test results compared with previous equipment, has been purchased by an international tender. Uniform technology and methods of analysis have ensured high standards of good laboratory services, yielding test results than can be transferred from primary to secondary health care level. The new equipment has improved organization between central and detached medical biochemistry laboratory units, while the high quality requirement has led to improvement in the staff structure, e.g., medical biochemists have been employed in laboratories that had previously worked without such a professional. Equipment renewal has been accompanied by proper education for all levels of PHC professionals.

  20. Notable Expressions: Transcriptional Regulation from Biochemistry to Immunology | Center for Cancer Research

    Cancer.gov

    Dinah Singer, Ph.D., came to NCI in 1975 as a Postdoctoral Fellow in the Laboratory of Biochemistry, but soon created a career for herself in the Experimental Immunology Branch. Her interest in how genes are regulated to control biological function led her to focus on major histocompatibility complex class I genes (MHC Class I)—molecules critical to immune system function—as a