These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Understanding of Brain Function Multivariate Pattern Analysis  

E-print Network

of multivariate pattern analysis techniques to fMRI datasets is in- troduced. PyMVPA makes use of Python's ability goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive analyses of fMRI data. This in turn prevents the adoption of these methods by a large number of research

Bucci, David J.

2

Complex Networks - A Key to Understanding Brain Function  

SciTech Connect

The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

Sporns, Olaf (Indiana University) [Indiana University

2008-01-23

3

Complex Networks - A Key to Understanding Brain Function  

ScienceCinema

The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

Olaf Sporns

2010-01-08

4

Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain*†  

PubMed Central

Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function. PMID:25309643

Simpson, Sean L.; Bowman, F. DuBois; Laurienti, Paul J.

2014-01-01

5

Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces  

PubMed Central

Historically, cerebral processing has been conceptualized as a framework based on statically localized functions. However, a growing amount of evidence supports a hodotopical (delocalized) and flexible organization. A number of studies have reported absence of a permanent neurological deficit after massive surgical resections of eloquent brain tissue. These results highlight the tremendous plastic potential of the brain. Understanding anatomo-functional correlates underlying this cerebral reorganization is a prerequisite to restore brain functions through brain-computer interfaces (BCIs) in patients with cerebral diseases, or even to potentiate brain functions in healthy individuals. Here, we review current knowledge of neural networks that could be utilized in the BCIs that enable movements and language. To this end, intraoperative electrical stimulation in awake patients provides valuable information on the cerebral functional maps, their connectomics and plasticity. Overall, these studies indicate that the complex cerebral circuitry that underpins interactions between action, cognition and behavior should be throughly investigated before progress in BCI approaches can be achieved. PMID:24834030

Mandonnet, Emmanuel; Duffau, Hugues

2014-01-01

6

Applications of transcranial direct current stimulation for understanding brain function.  

PubMed

In recent years there has been an exponential rise in the number of studies employing transcranial direct current stimulation (tDCS) as a means of gaining a systems-level understanding of the cortical substrates underlying behaviour. These advances have allowed inferences to be made regarding the neural operations that shape perception, cognition, and action. Here we summarise how tDCS works, and show how research using this technique is expanding our understanding of the neural basis of cognitive and motor training. We also explain how oscillatory tDCS can elucidate the role of fluctuations in neural activity, in both frequency and phase, in perception, learning, and memory. Finally, we highlight some key methodological issues for tDCS and suggest how these can be addressed. PMID:25189102

Filmer, Hannah L; Dux, Paul E; Mattingley, Jason B

2014-12-01

7

Understanding brain networks and brain organization  

NASA Astrophysics Data System (ADS)

What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. However, as others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal “true” subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different “slices” of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks.

Pessoa, Luiz

2014-09-01

8

Human Functional Brain Imaging  

E-print Network

Human Functional Brain Imaging 1990­2009 September 2011 Portfolio Review Summary Brain Imaging #12 Dale ­ one of our first Trustees. Understanding the brain remains one of our key strategic aims today three-fold: · to identify the key landmarks and influences on the human functional brain imaging

Rambaut, Andrew

9

Pursuing basic research to understand brain function in health and disease. Generating trained human resources with the capability to carry out inter-disciplinary research in neuro-  

E-print Network

MANDATE Pursuing basic research to understand brain function in health and disease. Generating the need for complete understanding of brain function and better treatment and preventive care of brain-related disorders is well acknowledged. Brain research can enhance the development of our children and help them

Dhingra, Narender K.

10

nAture methods | VOL.11 NO.9 | SEPTEMBER2014 | 941 understanding brain function requires monitoring and  

E-print Network

Articles nAture methods | VOL.11 NO.9 | SEPTEMBER2014 | 941 understanding brain function requires on the open-source Apache spark platform for large-scale distributed computing. the library implements and behavior, run in minutes or less and can be used on a private cluster or in the cloud. our open

Cai, Long

11

Understanding Brain Tumors  

MedlinePLUS

... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth? ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

12

Multimodal Magnetic Resonance Imaging: The Coordinated Use of Multiple, Mutually Informative Probes to Understand Brain Structure and Function  

PubMed Central

Differing imaging modalities provide unique channels of information to probe differing aspects of the brain’s structural or functional organization. In combination, differing modalities provide complementary and mutually informative data about tissue organization that is more than their sum. We acquired and spatially coregistered data in four MRI modalities – anatomical MRI, functional MRI, diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS) – from 20 healthy adults to understand how inter-individual variability in measures from one modality account for variability in measures from other modalities at each voxel of the brain. We detected significant correlations of local volumes with the magnitude of functional activation, suggesting that underlying variation in local volumes contributes to individual variability in functional activation. We also detected significant inverse correlations of NAA (a putative measure of neuronal density and viability) with volumes of white matter in the frontal cortex, with DTI-based measures of tissue organization within the superior longitudinal fasciculus, and with the magnitude of functional activation and default-mode activity during simple visual and motor tasks, indicating that substantial variance in local volumes, white matter organization, and functional activation derives from an underlying variability in the number or density of neurons in those regions. Many of these imaging measures correlated with measures of intellectual ability within differing brain tissues and differing neural systems, demonstrating that the neural determinants of intellectual capacity involve numerous and disparate features of brain tissue organization, a conclusion that could be made with confidence only when imaging the same individuals with multiple MRI modalities. PMID:22076792

Hao, Xuejun; Xu, Dongrong; Bansal, Ravi; Dong, Zhengchao; Liu, Jun; Wang, Zhishun; Kangarlu, Alayar; Liu, Feng; Duan, Yunsuo; Shova, Satie; Gerber, Andrew J.; Peterson, Bradley S.

2014-01-01

13

Understanding brain dysfunction in sepsis  

PubMed Central

Sepsis often is characterized by an acute brain dysfunction, which is associated with increased morbidity and mortality. Its pathophysiology is highly complex, resulting from both inflammatory and noninflammatory processes, which may induce significant alterations in vulnerable areas of the brain. Important mechanisms include excessive microglial activation, impaired cerebral perfusion, blood–brain-barrier dysfunction, and altered neurotransmission. Systemic insults, such as prolonged inflammation, severe hypoxemia, and persistent hyperglycemia also may contribute to aggravate sepsis-induced brain dysfunction or injury. The diagnosis of brain dysfunction in sepsis relies essentially on neurological examination and neurological tests, such as EEG and neuroimaging. A brain MRI should be considered in case of persistent brain dysfunction after control of sepsis and exclusion of major confounding factors. Recent MRI studies suggest that septic shock can be associated with acute cerebrovascular lesions and white matter abnormalities. Currently, the management of brain dysfunction mainly consists of control of sepsis and prevention of all aggravating factors, including metabolic disturbances, drug overdoses, anticholinergic medications, withdrawal syndromes, and Wernicke’s encephalopathy. Modulation of microglial activation, prevention of blood–brain-barrier alterations, and use of antioxidants represent relevant therapeutic targets that may impact significantly on neurologic outcomes. In the future, investigations in patients with sepsis should be undertaken to reduce the duration of brain dysfunction and to study the impact of this reduction on important health outcomes, including functional and cognitive status in survivors. PMID:23718252

2013-01-01

14

Brain imaging and brain function  

SciTech Connect

This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

Sokoloff, L.

1985-01-01

15

Understanding complexity in the human brain  

E-print Network

Understanding complexity in the human brain Danielle S. Bassett1 and Michael S. Gazzaniga2 1 the ultimate aim of neuroscientific enquiry is to gain an understanding of the brain and how its work- ings of mind­brain mechanisms if the cumulative findings from these neu- roscientific studies are coupled

Gazzaniga, Michael

16

The olivo-cerebellar system: a key to understanding the functional significance of intrinsic oscillatory brain properties.  

PubMed

The reflexological view of brain function (Sherrington, 1906) has played a crucial role in defining both the nature of connectivity and the role of the synaptic interactions among neuronal circuits. One implicit assumption of this view, however, has been that CNS function is fundamentally driven by sensory input. This view was questioned as early as the beginning of the last century when a possible role for intrinsic activity in CNS function was proposed by Thomas Graham Brow (Brown, 1911, 1914). However, little progress was made in addressing intrinsic neuronal properties in vertebrates until the discovery of calcium conductances in vertebrate central neurons leading dendritic electroresponsiveness (Llinás and Hess, 1976; Llinás and Sugimori, 1980a,b) and subthreshold neuronal oscillation in mammalian inferior olive (IO) neurons (Llinás and Yarom, 1981a,b). This happened in parallel with a similar set of findings concerning invertebrate neuronal system (Marder and Bucher, 2001). The generalization into a more global view of intrinsic rhythmicity, at forebrain level, occurred initially with the demonstration that the thalamus has similar oscillatory properties (Llinás and Jahnsen, 1982) and the ionic properties responsible for some oscillatory activity were, in fact, similar to those in the IO (Jahnsen and Llinás, 1984; Llinás, 1988). Thus, lending support to the view that not only motricity, but cognitive properties, are organized as coherent oscillatory states (Pare et al., 1992; Singer, 1993; Hardcastle, 1997; Llinás et al., 1998; Varela et al., 2001). PMID:24478634

Llinás, Rodolfo R

2013-01-01

17

The olivo-cerebellar system: a key to understanding the functional significance of intrinsic oscillatory brain properties  

PubMed Central

The reflexological view of brain function (Sherrington, 1906) has played a crucial role in defining both the nature of connectivity and the role of the synaptic interactions among neuronal circuits. One implicit assumption of this view, however, has been that CNS function is fundamentally driven by sensory input. This view was questioned as early as the beginning of the last century when a possible role for intrinsic activity in CNS function was proposed by Thomas Graham Brow (Brown, 1911, 1914). However, little progress was made in addressing intrinsic neuronal properties in vertebrates until the discovery of calcium conductances in vertebrate central neurons leading dendritic electroresponsiveness (Llinás and Hess, 1976; Llinás and Sugimori, 1980a,b) and subthreshold neuronal oscillation in mammalian inferior olive (IO) neurons (Llinás and Yarom, 1981a,b). This happened in parallel with a similar set of findings concerning invertebrate neuronal system (Marder and Bucher, 2001). The generalization into a more global view of intrinsic rhythmicity, at forebrain level, occurred initially with the demonstration that the thalamus has similar oscillatory properties (Llinás and Jahnsen, 1982) and the ionic properties responsible for some oscillatory activity were, in fact, similar to those in the IO (Jahnsen and Llinás, 1984; Llinás, 1988). Thus, lending support to the view that not only motricity, but cognitive properties, are organized as coherent oscillatory states (Pare et al., 1992; Singer, 1993; Hardcastle, 1997; Llinás et al., 1998; Varela et al., 2001). PMID:24478634

Llinás, Rodolfo R.

2014-01-01

18

COPPER AND BRAIN FUNCTION  

Technology Transfer Automated Retrieval System (TEKTRAN)

Increasing evidence shows that brain development and function are impaired when the brain is deprived of copper either through dietary copper deficiency or through genetic defects in copper transport. A number of copper-dependent enzymes whose activities are lowered by copper deprivation form the ba...

19

Functional Brain Imaging  

PubMed Central

Executive Summary Objective The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer’s disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson’s disease (PD). Clinical Need: Target Population and Condition Alzheimer’s disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be due to a combination of etiologies, including genetic and environmental components. The prevalence of MS in Canada is 240 cases per 100,000 people. Parkinson’s disease is the most prevalent movement disorder; it affects an estimated 100,000 Canadians. Currently, the standard for measuring disease progression is through the use of scales, which are subjective measures of disease progression. Functional brain imaging may provide an objective measure of disease progression, differentiation between parkinsonian syndromes, and response to therapy. The Technology Being Reviewed Functional Brain Imaging Functional brain imaging technologies measure blood flow and metabolism. The results of these tests are often used in conjunction with structural imaging (e.g., MRI or CT). Positron emission tomography and MRS identify abnormalities in brain tissues. The former measures abnormalities through uptake of radiotracers in the brain, while the latter measures chemical shifts in metabolite ratios to identify abnormalities. The potential role of functional MRI (fMRI) is to identify the areas of the brain responsible for language, sensory and motor function (sensorimotor cortex), rather than identifying abnormalities in tissues. Magnetoencephalography measures magnetic fields of the electric currents in the brain, identifying aberrant activity. Magnetoencephalography may have the potential to localize seizure foci and to identify the sensorimotor cortex, visual cortex and auditory cortex. In terms of regulatory status, MEG and PET are licensed by Health Canada. Both MRS and fMRI use a MRI platform; thus, they do not have a separate licence from Health Canada. The radiotracers used in PET scanning are not licensed by Health Canada for general use but can be used through a Clinical Trials Application. Review Strategy The literature published up to September 2006 was searched in the following databases: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews, CENTRAL, and International Network of Agencies for H

2006-01-01

20

Understanding the Mind by Measuring the Brain  

E-print Network

movements, verbal behavior, or physiological changes) into the mental has been fraught with difficulty. Over, verbal behavior, or physio- logical changes) into the mental has been marked with unfore- seen problemsUnderstanding the Mind by Measuring the Brain Lessons From Measuring Behavior (Commentary on Vul et

Barrett, Lisa Feldman

21

Modulating Brain Oscillations to Drive Brain Function  

PubMed Central

Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions. PMID:25549340

Thut, Gregor

2014-01-01

22

Avian brains and a new understanding of vertebrate brain evolution  

Microsoft Academic Search

We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current

Onur Güntürkün; Laura Bruce; András Csillag; Harvey Karten; Wayne Kuenzel; Loreta Medina; George Paxinos; David J. Perkel; Toru Shimizu; Georg Striedter; J. Martin Wild; Gregory F. Ball; Jennifer Dugas-Ford; Sarah E. Durand; Gerald E. Hough; Scott Husband; Lubica Kubikova; Diane W. Lee; Claudio V. Mello; Alice Powers; Connie Siang; Tom V. Smulders; Kazuhiro Wada; Stephanie A. White; Keiko Yamamoto; Jing Yu; Anton Reiner; Ann B. Butler; Erich D. Jarvis

2005-01-01

23

Understanding Brain, Mind and Soul: Contributions from Neurology and Neurosurgery  

PubMed Central

Treatment of diseases of the brain by drugs or surgery necessitates an understanding of its structure and functions. The philosophical neurosurgeon soon encounters difficulties when localising the abstract concepts of mind and soul within the tangible 1300-gram organ containing 100 billion neurones. Hippocrates had focused attention on the brain as the seat of the mind. The tabula rasa postulated by Aristotle cannot be localised to a particular part of the brain with the confidence that we can localise spoken speech to Broca’s area or the movement of limbs to the contralateral motor cortex. Galen’s localisation of imagination, reasoning, judgement and memory in the cerebral ventricles collapsed once it was evident that the functional units–neurones–lay in the parenchyma of the brain. Experiences gained from accidental injuries (Phineas Gage) or temporal lobe resection (William Beecher Scoville); studies on how we see and hear and more recent data from functional magnetic resonance studies have made us aware of the extensive network of neurones in the cerebral hemispheres that subserve the functions of the mind. The soul or atman, credited with the ability to enliven the body, was located by ancient anatomists and philosophers in the lungs or heart, in the pineal gland (Descartes), and generally in the brain. When the deeper parts of the brain came within the reach of neurosurgeons, the brainstem proved exceptionally delicate and vulnerable. The concept of brain death after irreversible damage to it has made all of us aware of ‘the cocktail of brain soup and spark’ in the brainstem so necessary for life. If there be a soul in each of us, surely, it is enshrined here. PMID:21694966

Pandya, Sunil K.

2011-01-01

24

The Brain Prize 2014: complex human functions.  

PubMed

Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? PMID:25303794

Grigaityte, Kristina; Iacoboni, Marco

2014-11-01

25

Fostering Literacy through Understanding Brain Mechanisms.  

ERIC Educational Resources Information Center

Some current ideas concerning the brain mechanisms of reading are presented. An impediment to educational applications of brain research is the remoteness of the classroom from brain research laboratories. An international plan is outlined to bring scientists and educators together to examine current knowledge about brain mechanisms involved in…

McCandliss, Bruce D.; Posner, Michael I.

2003-01-01

26

Radiotracers for functional brain imaging  

SciTech Connect

The rapid growth of nuclear medicine 25 years ago was in large part related to the success of brain tumor imaging using radiopharmaceuticals designed to detect changes in the blood-brain barrier (BBB). The success of computed tomography, and more recently nuclear magnetic resonance, in imaging these lesions has all but eliminated the use of radioactive agents for brain tumor detection. But, in recent years there has been a new wave of interest in isotope studies of the brain. The recent emphasis has been on agents which enter the brain across the BBB and are designed to provide functional data ranging from regional perfusion and metabolism to the distribution of binding sites for neuroactive compounds. While none of these new radiopharmaceuticals has yet come into widespread clinical application, the research results already achieved clearly indicate that brain imaging will again be an important aspect of nuclear medicine practice. 51 references.

Blau, M.

1985-10-01

27

Methods for functional brain imaging  

E-print Network

Magnetic resonance imaging (MRI) has demonstrated the potential for non-invasive mapping of structure and function (fMRI) in the human brain. In this thesis, we propose a series of methodological developments towards ...

Witzel, Thomas, Ph. D. Massachusetts Institute of Technology

2011-01-01

28

Challenges in understanding RLK function  

Microsoft Academic Search

Plants use receptor-like kinases (RLKs) to transduce extracellular signals into the cell. Recent advancements in RLK research include the cloning of the BRASSINOSTEROID INSENSITIVE1 and CLAVATA1 genes, revealing RLK roles in development. Our understanding of RLK function has also been broadened by transgenic approaches in the study of the RLKs pollen receptor kinase 1, and wall associated kinase 1. These

Kevin Lease; Erika Ingham; John C. Walker

1998-01-01

29

Students' Understanding of Trigonometric Functions  

ERIC Educational Resources Information Center

In this article students' understanding of trigonometric functions in the context of two college trigonometry courses is investigated. The first course was taught by a professor unaffiliated with the study in a lecture-based course, while the second was taught using an experimental instruction paradigm based on Gray and Tall's (1994) notion of…

Weber, Keith

2005-01-01

30

Understanding autism: insights from mind and brain.  

PubMed Central

Autism is a developmental disorder characterized by impaired social interaction and communication as well as repetitive behaviours and restricted interests. The consequences of this disorder for everyday life adaptation are extremely variable. The general public is now more aware of the high prevalence of this lifelong disorder, with ca. 0.6% of the population being affected. However, the signs and symptoms of autism are still puzzling. Since a biological basis of autism was accepted, approaches from developmental cognitive neuroscience have been applied to further our understanding of the autism spectrum. The study of the behavioural and underlying cognitive deficits in autism has advanced ahead of the study of the underlying brain abnormalities and of the putative genetic mechanisms. However, advances in these fields are expected as methodological difficulties are overcome. In this paper, recent developments in the field of autism are outlined. In particular, we review the findings of the three main neuro-cognitive theories of autism: theory-of-mind deficit, weak central coherence and executive dysfunction. PMID:12639326

Hill, Elisabeth L; Frith, Uta

2003-01-01

31

UNDERSTANDING AND TREATING ARM MOVEMENT IMPAIRMENT AFTER CHRONIC BRAIN INJURY  

E-print Network

, and over 2,000,000 persons chronically affected (1). In addition, traumatic brain injury impairs after stroke and traumatic brain injury, with approximately 85% of stroke patients incurring acute armUNDERSTANDING AND TREATING ARM MOVEMENT IMPAIRMENT AFTER CHRONIC BRAIN INJURY: PROGRESS

32

Understanding Alterations in Brain Connectivity in Attention-Deficit/Hyperactivity Disorder Using  

E-print Network

COMMENTARY Understanding Alterations in Brain Connectivity in Attention of neural systems and brain connections is an important new area of research to understand both normal brain connectivity and alterations in brain connectivity in neuropsychiatric disorders. The study of brain

33

Brain Structure & Function Structure Function  

E-print Network

, perception of stimuli (e.g. touch, pain, temperature) Temporal lobe Hearing, speech, memory Choroid plexus Learning and memory, spatial orientation Hypothalamus 4Fs (feeding, fleeing, fighting, making love) Lateral (oblongata) Maintaining vital body functions (e.g. breathing, heart beat) Olfactory bulb Sense olfactory

Hull, Elaine

34

The Energetic Brain: Understanding and Managing ADHD  

ERIC Educational Resources Information Center

ADHD affects millions of people-some 3 to 5% of the general population. Written by a neuroscientist who has studied ADHD, a clinician who has diagnosed and treated it for 30 years, and a special educator who sees it daily, "The Energetic Brain" provides the latest information from neuroscience on how the ADHD brain works and shows how to harness…

Reynolds, Cecil R.; Vannest, Kimberly J.; Harrison, Judith R.

2012-01-01

35

Understanding Traumatic Brain Injury: An Introduction  

ERIC Educational Resources Information Center

This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

2009-01-01

36

Regulation of brain function by exercise  

Microsoft Academic Search

The effect of excercise on brain function was investigated through animal experiments. Exercise leads to increased serum calcium levels, and the calcium is transported to the brain. This in turn enhances brain dopamine synthesis through a calmodulin-dependent system, and increased dopamine levels regulate various brain functions. There are abnormally low levels of dopamine in the neostriatum and nucleus accumbens of

Den’etsu Sutoo; Kayo Akiyama

2003-01-01

37

Individual diversity of functional brain network economy.  

PubMed

On average, brain network economy represents a trade-off between communication efficiency, robustness and connection cost, though, an analogous understanding on an individual level is largely missing. Evaluating resting-state networks of 42 healthy participants with 7 Tesla functional MRI and graph theory revealed that not even half of all possible connections were common across subjects. The strongest similarities among individuals were observed for interhemispheric and/or short-range connections, which may relate to the essential feature of the human brain to develop specialized systems within each hemisphere. Despite this marked variability in individual network architecture, all subjects exhibited equal small-world properties. Furthermore, interdependency between four major network economy metrics was observed across healthy individuals. The characteristic path length was associated with the clustering coefficient (r=0.93), the response to network attacks (peak correlation r=-0.97) and the physical connection cost in 3D space (r=-0.62). On the other hand, clustering was negatively related to attack response (r=-0.75) and connection cost (r=-0.59). Finally, increased connection cost was associated with better response to attacks (r=0.65). This indicates that functional brain networks with high global information transfer also exhibit strong network resilience. However, it seems that these advantages come at the cost of decreased local communication efficiency and increased physical connection cost. Except for wiring length, the results were replicated on a subsample at 3 Tesla (n=20). These findings highlight the finely tuned interrelationships between different parameters of brain network economy. Moreover, the understanding of the individual diversity of functional brain network economy may provide further insights in the vulnerability to mental and neurological disorders. PMID:25411715

Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Ganger, Sebastian; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

2014-11-20

38

[Neurosteroid dehydroepiandrosterone and brain function].  

PubMed

For last 30 years it became clear that DHEA and DHEAS are synthesized de novo in brain. Steroids synthesized in brain structures, were received the name "neurosteroids". In the review are submitted data on a biosynthesis and metabolism of DHEA(S) including its metabolism in fatty tissue where it serves as substrate for intracellular formation of its biologically active metabolites--estradiol and testosterone. The role of a sulfatase and sulfotransferase in mutual transformations of DHEA and DHEA-sulfate are analysed. Specific differences in DHEA synthesis in adrenals are surveyed. The adrenals of primates, both human beings and monkeys, produce free DHEA and DHEA-sulphate in large quantity. Their synthesis proceeds on ?5-pathways: cholesterol-pregnenolone-17-hydroxypregnenolone-DHEA. Adrenals of other animas species, including rats and mice, don't synthesize DHEA. From the authors point of view, process of DHEAS penetration in brain structures include two mechanisms: transformation under steroid sulfatase action DHEAS in DHEA which freely gets through a blood-brain barrier and DHEAS passing through a hypothalamus which isn't protected by a blood-brain barrier. Results of researches on clinical application of DHEA as neurosteroid, with the analysis of its role in a course of Alzheimer's disease, distrurbances of cognitive function and other disorders of a CBS are presented also. The main neurobiological effects of DHEA(S) on brain structures which are studied on various models of animals include: neuroprotection, neurogenesis and neuronal survival, apoptosis, catecholamine synthesis and secretion. Neurosteroids have also antioxidant, anti-inflammatory and anti-glucocorticoid effects. PMID:25509179

Goncharov, N P; Katsia, G V

2013-01-01

39

Biochemical and Physiological Processes in Brain Function and Drug Actions  

Microsoft Academic Search

An understanding of the basic elements of neurotransmission in the brain is an important foundation for any consideration of the clinical use and future development of antidepressants. However, attempts to describe the influ- ences of drugs on brain and neuronal function have become increasingly com- plex, and it is now clear that neuronal processes are complex molecular events involving multiple

W. D. Horst

40

Functional Imaging: Is the Resting Brain Resting?  

E-print Network

actually rest, idly waiting to process new information from the environment? A number of brain imaging being processed [2]. One approach to visualising the resting brain has been to compare the patternFunctional Imaging: Is the Resting Brain Resting? It is often assumed that the human brain only

Miall, Chris

41

Retinoic Acid Signaling in the Functioning Brain  

NSDL National Science Digital Library

Retinoic acid, an active form of vitamin A, regulates gene expression throughout the body, and many components of the signaling system through which it acts are present in the brain. Very little is known, however, about how retinoic acid functions in neurobiological systems. Several studies have provided evidence that retinoic acid plays a role in sleep, learning, and memory, but the precise mechanisms through which it influences these processes remain unclear. All of these processes involve local or long-range inhibition and synchronized neuronal activity between separate locations in the brain. A critical component in the generation of the synchronized firing of cortical neurons (cortical synchrony) is a network of inhibitory interneurons containing parvalbumin, a cell population affected by retinoid perturbations, such as exposure to a vitamin A overdose. An understanding of the role of retinoids in normal brain function would provide clues to the long-standing question of whether abnormalities in retinoic acid signaling contribute to the pathogenesis of some brain diseases with uncertain etiologies that involve both genetic and environmental factors.

Ursula C. Drager (University of Massachusetts Medical School;Eunice Kennedy Shriver Center REV)

2006-02-28

42

Functional brain imaging of appetite.  

PubMed

Obesity is a neurobehavioral disorder that results from a combination of overeating and insufficient physical activity. Finely tuned mechanisms exist to match food intake to caloric expenditure. However, faced with abundant inexpensive and calorie-dense foods, many humans (and perhaps most) have a tendency to consume beyond their caloric needs. The brain controls food intake by sensing internal energy-balance signals and external cues of food availability, and by controlling feeding behavior; it is therefore at the centre of the obesity problem. This article reviews the recent use of functional brain imaging in humans to study the neural control of appetite, and how the neural systems involved may cause vulnerability to overeating in the obesogenic environment. PMID:22483361

Dagher, Alain

2012-05-01

43

A default mode of brain function  

Microsoft Academic Search

A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain

Marcus E. Raichle; Ann Mary MacLeod; Abraham Z. Snyder; William J. Powers; Debra A. Gusnard; Gordon L. Shulman

2001-01-01

44

Brain foods: the effects of nutrients on brain function  

Microsoft Academic Search

It has long been suspected that the relative abundance of specific nutrients can affect cognitive processes and emotions. Newly described influences of dietary factors on neuronal function and synaptic plasticity have revealed some of the vital mechanisms that are responsible for the action of diet on brain health and mental function. Several gut hormones that can enter the brain, or

Fernando Gómez-Pinilla

2008-01-01

45

Understanding the Executive Functioning Heterogeneity in Schizophrenia  

ERIC Educational Resources Information Center

Schizophrenia is characterized by heterogeneous brain abnormalities involving cerebral regions implied in the executive functioning. The dysexecutive syndrome is one of the most prominent and functionally cognitive features of schizophrenia. Nevertheless, it is not clear to what extend executive deficits are heterogeneous in schizophrenia…

Raffard, Stephane; Bayard, Sophie

2012-01-01

46

Diffusion tensor imaging for understanding brain development in early life.  

PubMed

The human brain rapidly develops during the final weeks of gestation and in the first two years following birth. Diffusion tensor imaging (DTI) is a unique in vivo imaging technique that allows three-dimensional visualization of the white matter anatomy in the brain. It has been considered to be a valuable tool for studying brain development in early life. In this review, we first introduce the DTI technique. We then review DTI findings on white matter development at the fetal stage and in infancy as well as DTI applications for understanding neurocognitive development and brain abnormalities in preterm infants. Finally, we discuss limitations of DTI and potential valuable imaging techniques for studying white matter myelination. PMID:25559117

Qiu, Anqi; Mori, Susumu; Miller, Michael I

2015-01-01

47

Aging and Functional Brain Networks  

PubMed Central

Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the “default-mode” network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis we evaluated resting-state datasets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping, a voxelwise and data-driven approach together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that in addition to the DMN the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging. PMID:21727896

Tomasi, Dardo; Volkow, Nora D.

2011-01-01

48

Aging and functional brain networks  

SciTech Connect

Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

Tomasi D.; Tomasi, D.; Volkow, N.D.

2011-07-11

49

Aging and functional brain networks.  

PubMed

Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging. PMID:21727896

Tomasi, D; Volkow, N D

2012-05-01

50

Brain dynamics promotes function Carlos Lourenco  

E-print Network

Brain dynamics promotes function Carlos Louren¸co 1 Faculty of Sciences of the University of Lisbon, 1049-001 Lisboa - Portugal Abstract. Dynamical structure in the brain promotes biological func- tion. Computational scientists have new opportunities to receive 'algorithmic' inspiration from brain processes

Lisboa, Universidade Técnica de

51

Imaging genetic influences in human brain function.  

PubMed

The association between genes and brain function using functional brain imaging techniques is an emerging and promising area of research that will help to better characterize the influence of genes on cognition and behavior as well as the link between genetic susceptibility and neuropsychiatric disorders. Neurophysiological imaging provides information regarding the effect of genes on brain function at the level of information processing, and neurochemical imaging provides information on the intrinsic mechanisms on how these genes affect the brain response. In this review, we highlight recent studies that have begun to explore the influence of genetic mutations on brain function with these techniques. The results, even from these few studies, illustrate the potential of these techniques to provide a more sensitive assay than behavioral measures used alone. The results also show that neuroimaging techniques can elucidate the influence of genes on brain function in relatively small sample populations, sometimes even in the absence of significant differences in behavioral measures. PMID:15082331

Mattay, Venkata S; Goldberg, Terry E

2004-04-01

52

Effect of disease and recovery on functional anatomy in brain tumor patients: insights from functional MRI and diffusion tensor imaging  

PubMed Central

Patients with brain tumors provide a unique opportunity to understand functional brain plasticity. Using advanced imaging techniques, such as functional MRI and diffusion tensor imaging, we have gained tremendous knowledge of brain tumor behavior, transformation, infiltration and destruction of nearby structures. Using these advanced techniques as an adjunct with more proven techniques, such as direct cortical stimulation, intraoperative navigation and advanced microsurgical techniques, we now are able to better formulate safer resection trajectories, perform larger resections at reduced risk and better counsel patients and their families about possible complications. Brain mapping in patients with brain tumors and other lesions has shown us that the old idea of fixed function of the adult cerebral cortex is not entirely true. Improving care for patients with brain lesions in the future will depend on better understanding of the functional organization and plasticity of the adult brain. Advanced noninvasive brain imaging will undoubtedly play a role in advancing this understanding. PMID:24660024

Abd-El-Barr, Muhammad M; Saleh, Emam; Huang, Raymond Y; Golby, Alexandra J

2014-01-01

53

Manganese action in brain function  

Microsoft Academic Search

Manganese, an essential trace metal, is supplied to the brain via both the blood–brain and the blood–cerebrospinal fluid barriers. There are some mechanisms in this process and transferrin may be involved in manganese transport into the brain. A large portion of manganese is bound to manganese metalloproteins, especially glutamine synthetase in astrocytes. A portion of manganese probably exists in the

Atsushi Takeda

2003-01-01

54

David's Understanding of Functions and Periodicity  

ERIC Educational Resources Information Center

This is a study of David, a senior enrolled in a high school precalculus course. David's understandings of functions and periodicity was explored, through clinical interviews and contextualized through classroom observations. Although David's precalculus class was traditional his understanding of periodic functions was unconventional David engaged…

Gerson, Hope

2008-01-01

55

Brain function assessment in different conscious states  

PubMed Central

Background The study of brain functioning is a major challenge in neuroscience fields as human brain has a dynamic and ever changing information processing. Case is worsened with conditions where brain undergoes major changes in so-called different conscious states. Even though the exact definition of consciousness is a hard one, there are certain conditions where the descriptions have reached a consensus. The sleep and the anesthesia are different conditions which are separable from each other and also from wakefulness. The aim of our group has been to tackle the issue of brain functioning with setting up similar research conditions for these three conscious states. Methods In order to achieve this goal we have designed an auditory stimulation battery with changing conditions to be recorded during a 40 channel EEG polygraph (Nuamps) session. The stimuli (modified mismatch, auditory evoked etc.) have been administered both in the operation room and the sleep lab via Embedded Interactive Stimulus Unit which was developed in our lab. The overall study has provided some results for three domains of consciousness. In order to be able to monitor the changes we have incorporated Bispectral Index Monitoring to both sleep and anesthesia conditions. Results The first stage results have provided a basic understanding in these altered states such that auditory stimuli have been successfully processed in both light and deep sleep stages. The anesthesia provides a sudden change in brain responsiveness; therefore a dosage dependent anesthetic administration has proved to be useful. The auditory processing was exemplified targeting N1 wave, with a thorough analysis from spectrogram to sLORETA. The frequency components were observed to be shifting throughout the stages. The propofol administration and the deeper sleep stages both resulted in the decreasing of N1 component. The sLORETA revealed similar activity at BA7 in sleep (BIS 70) and target propofol concentration of 1.2 µg/mL. Conclusions The current study utilized similar stimulation and recording system and incorporated BIS dependent values to validate a common approach to sleep and anesthesia. Accordingly the brain has a complex behavior pattern, dynamically changing its responsiveness in accordance with stimulations and states. PMID:20522267

2010-01-01

56

Brain Functional Network for Chewing of Gum  

Microsoft Academic Search

\\u000a Recent studies showed that gum-chewing induced significant increases in cerebral blood flow and blood-oxygenation level in\\u000a the widespread brain regions. However, little is known about the underlying mechanism of chewing-induced regional interconnection\\u000a and interaction within the brain. In this study, we investigated the human brain functional network during chewing of gum\\u000a by using functional magnetic resonance imaging and complex network

Ming Ke; Hui Shen; Zongtan Zhou; Xiaolin Zhou; Dewen Hu; Xuhui Chen

57

[Usefulness of SPECT images in helping radiologists understand brain diseases].  

PubMed

Nuclear brain imaging is able to show functional abnormalities of lesions that are not detectable by CT and MR images. The diagnostic keys of nuclear-imaging in terms of clinical usefulness are its early detection of lesions and determination of the efficacy of drug and surgical therapies. In dementic patients, F-18 FDG brain images can be diagnosed as Alzheimer's disease 12 months earlier than is possible on CT and MRI images, and can provide information for effective drug therapy. O-15 water CBF images can predict the effect of Nicholin by assessing transient increases in cerebral blood flow (CBF), thereby facilitating improvement in higher brain functions such as orientation. In stroke patients, brain SPECT images with Tc-99m HMPAO can predict fatal cerebral hemorrhage caused by anti-thrombic therapy by showing the decrease in count ratio (count ratio of infarcted to contralateral area of < 0.34) in the acute phase and identifying disruption of the blood brain barrier by showing hyperfixation in the subacute phase. Brain SPECT with I-123 IMP can also identify "misery" perfused areas resulting from reduced CBF and decreased vasoreactivity in the chronic phase. This criterion is utilized for patient selection for extracranial/intracranial bypass surgery, because patients with areas of poor perfusion might be indicated for such surgery. Since nuclear medicine images can accurately select candidates for drug or surgical therapies, they will be beneficial in reducing Medicare costs as well as in enhancing patients' quality of life as a result of the successful treatment. With the advancement of technology, nuclear medicine units that can simultaneously obtain CT images and can combine functional with anatomical images will provide more useful information for the diagnosis of brain disease. PMID:11398344

Hayashida, K

2001-04-01

58

Immune responses at brain barriers and implications for brain development and neurological function in later life  

PubMed Central

For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognized that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signaling or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signaling at the brain barriers that may be an important part of the body's response to damage or infection. This signaling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed. PMID:23986663

Stolp, Helen B.; Liddelow, Shane A.; Sá-Pereira, Inês; Dziegielewska, Katarzyna M.; Saunders, Norman R.

2013-01-01

59

Functional Data Analysis in Brain Imaging Studies  

PubMed Central

Functional data analysis (FDA) considers the continuity of the curves or functions, and is a topic of increasing interest in the statistics community. FDA is commonly applied to time-series and spatial-series studies. The development of functional brain imaging techniques in recent years made it possible to study the relationship between brain and mind over time. Consequently, an enormous amount of functional data is collected and needs to be analyzed. Functional techniques designed for these data are in strong demand. This paper discusses three statistically challenging problems utilizing FDA techniques in functional brain imaging analysis. These problems are dimension reduction (or feature extraction), spatial classification in functional magnetic resonance imaging studies, and the inverse problem in magneto-encephalography studies. The application of FDA to these issues is relatively new but has been shown to be considerably effective. Future efforts can further explore the potential of FDA in functional brain imaging studies. PMID:21833205

Tian, Tian Siva

2010-01-01

60

Ad cerebrum per scientia: Ira Hirsh, psychoacoustics, and new approaches to understanding the human brain  

NASA Astrophysics Data System (ADS)

As Research Director of CID, Ira emphasized the importance of combining information from biology with rigorous studies of behavior, such as psychophysics, to better understand how the brain and body accomplish the goals of everyday life. In line with this philosophy, my doctoral dissertation sought to explain brain functional asymmetries (studied with dichotic listening) in terms of the physical dimensions of a library of test sounds designed to represent a speech-music continuum. Results highlighted individual differences plus similarities in terms of patterns of relative ear advantages, suggesting an organizational basis for brain asymmetries depending on physical dimensions of stimulus and gesture with analogs in auditory, visual, somatosensory, and motor systems. My subsequent work has employed a number of noninvasive methods (OAEs, EPs, qEEG, PET, MRI) to explore the neurobiological bases of individual differences in general and functional asymmetries in particular. This research has led to (1) the AXS test battery for assessing the neurobiology of human sensory-motor function; (2) the handshaking model of brain function, describing dynamic relations along all three body/brain axes; (3) the four-domain EPIC model of functional asymmetries; and (4) the trimodal brain, a new model of individual differences based on psychoimmunoneuroendocrinology.

Lauter, Judith

2002-05-01

61

[Calcium signaling and brain functions].  

PubMed

Calcium signaling plays a critical role in various cell types by activation of receptors and Ca2+ channels in response to neurotransmitters, hormones, growth, factors etc. Although a variety of functions of intracellular Ca2+ are reported, Ca2+/calmodulin-dependent protein kinases (CaMK) are involved in their mediation. We have been studying on CaMK I, II, III, IV and K in the dynamic regulation in the cells in relation to functions. In this study, we elucidated the structures of the isoforms of CaMKII subunits with nuclear translocation signal (NTS). NTS is included in the variable domain following the regulatory domain with a sequence of KKRK. The isoforms of CaMK subunits such as alpha B, gamma A, gamma A.B, delta 3 and delta 7 contain NTS in the sequences of the structures. Transfection of the isoforms with NTS into NG108-15 cells stimulated the expression of brain-derived neurotrophic factor in the cytoplasm. Activation of CaMKII and IV and mitogen-activated protein kinase (MAPK) was observed during long-term potentiation (LTP) induction in the CA1 area of hippocampus. The activation of CaMKII was sustained for a long period, whereas that of CaMKIV and MAPK was transient. The results suggest that CaMKII is involved in LTP induction, while CaMKIV and MAPK are rather involved in LTP maintenance. We present and discuss our recent studies on regulation of CaMKs in neuronal functions. PMID:12491766

Miyamoto, E; Fukunaga, K; Takeuchi, Y; Yamamoto, H; Kasahara, J; Liu, Jie

2002-11-01

62

Regulation of brain function by exercise.  

PubMed

The effect of excercise on brain function was investigated through animal experiments. Exercise leads to increased serum calcium levels, and the calcium is transported to the brain. This in turn enhances brain dopamine synthesis through a calmodulin-dependent system, and increased dopamine levels regulate various brain functions. There are abnormally low levels of dopamine in the neostriatum and nucleus accumbens of epileptic mice (El mice strain) and spontaneously hypertensive rats (SHR). The low dopamine levels in those animals were improved following intracerebroventricular administration of calcium chloride. Dopamine levels and blood pressure in SHR were also normalized by exercise. In epileptic El mice, convulsions normalized dopamine levels and physiologic function. These findings suggest that exercise or convulsions affect brain function through calcium/calmodulin-dependent dopamine synthesis. This leads to the possibility that some symptoms of Parkinson's disease or senile dementia might be improved by exercise. PMID:12758062

Sutoo, Den'etsu; Akiyama, Kayo

2003-06-01

63

Energetic cost of brain functional connectivity  

PubMed Central

The brain's functional connectivity is complex, has high energetic cost, and requires efficient use of glucose, the brain's main energy source. It has been proposed that regions with a high degree of functional connectivity are energy efficient and can minimize consumption of glucose. However, the relationship between functional connectivity and energy consumption in the brain is poorly understood. To address this neglect, here we propose a simple model for the energy demands of brain functional connectivity, which we tested with positron emission tomography and MRI in 54 healthy volunteers at rest. Higher glucose metabolism was associated with proportionally larger MRI signal amplitudes, and a higher degree of connectivity was associated with nonlinear increases in metabolism, supporting our hypothesis for the energy efficiency of the connectivity hubs. Basal metabolism (in the absence of connectivity) accounted for 30% of brain glucose utilization, which suggests that the spontaneous brain activity accounts for 70% of the energy consumed by the brain. The energy efficiency of the connectivity hubs was higher for ventral precuneus, cerebellum, and subcortical hubs than for cortical hubs. The higher energy demands of brain communication that hinges upon higher connectivity could render brain hubs more vulnerable to deficits in energy delivery or utilization and help explain their sensitivity to neurodegenerative conditions, such as Alzheimer’s disease. PMID:23898179

Tomasi, Dardo; Wang, Gene-Jack; Volkow, Nora D.

2013-01-01

64

[Modern methods of functional tomographic brain imaging for brain function reseaching in norm and pathology].  

PubMed

For many years the modern methods of functional tomographic brain imaging (fMRI and PET) were actively used not only for the research of basic brain functions, but also in clinical practice. In present paper we described the basic characteristics of the signal registered with fMRI and PET, the principles of image reconstruction, as well as the methodological requirements, which are necessary to obtain reliable results. The advantages and limitations of modem tomographic methods of the brain functions investigation are discussed. The need of the complex approach use in brain study is emphasized and methods for the study of functional integration of the brain are suggested. PMID:23659056

Kireev, M V; Zakhs, D V; Korotkov, A D; Medvedev, S V

2013-01-01

65

Constructing Human Brain-Function Association Models from fMRI Literature  

Microsoft Academic Search

Toward the goal of understanding the human brain function, we have developed a web-based human brain functional mapping knowledge base (HBFMKB) system to mining human brain-function association model from vast Medline abstracts. Since nomenclature and relationships among cognitive functions have no consensus yet, we use rule-based natural language processing methods to extract behavioral task and cognitive function and do n-gram

Mei-Yu Hsiao; Der-Yow Chen; Jyh-Horng Chen

2007-01-01

66

Understanding adolescent brain development and its implications for the clinician.  

PubMed

Contrary to long-held beliefs about brain development, widespread changes occur in the brain during the adolescent years. These changes involve a shift in control over behavior away from regions geared toward emotional processing, such as the amygdala and reward system, toward the frontal lobes, which are involved in making plans for the future, suppressing impulses, weighing options, and other critical cognitive skills needed to function in the adult world. Experience-dependant sculpting of these developing circuits ensures that each adolescent will be customized to fit the demands of his or her environment, healthy or otherwise. As adolescent brain development unfolds, risk-taking, substance use, and the emergence of psychological pathologies are common. Many recreational and prescription drugs affect adolescents and adults differently, both short-term and long-term. In this review, the changes that take place in the brain during the adolescent years are explored. What happens, how these changes can go awry, and how to help keep adolescent brain development on track will he axamined PMID:19492692

White, Aaron M

2009-04-01

67

Surface mapping brain function on 3D models  

Microsoft Academic Search

A flexible graphics system for displaying functional and anatomic data on arbitrary collections of surfaces on or within the brain is presented. The system makes it possible to show complex, convoluted surfaces with the shading cues necessary to understand their shapes; to vary viewpoint, object position, illumination, and perspective easily; to show multiple-objects in one view, with or without transparency,

Bradley A. Payne; Arthur W. Toga

1990-01-01

68

Simple models of human brain functional networks.  

PubMed

Human brain functional networks are embedded in anatomical space and have topological properties--small-worldness, modularity, fat-tailed degree distributions--that are comparable to many other complex networks. Although a sophisticated set of measures is available to describe the topology of brain networks, the selection pressures that drive their formation remain largely unknown. Here we consider generative models for the probability of a functional connection (an edge) between two cortical regions (nodes) separated by some Euclidean distance in anatomical space. In particular, we propose a model in which the embedded topology of brain networks emerges from two competing factors: a distance penalty based on the cost of maintaining long-range connections; and a topological term that favors links between regions sharing similar input. We show that, together, these two biologically plausible factors are sufficient to capture an impressive range of topological properties of functional brain networks. Model parameters estimated in one set of functional MRI (fMRI) data on normal volunteers provided a good fit to networks estimated in a second independent sample of fMRI data. Furthermore, slightly detuned model parameters also generated a reasonable simulation of the abnormal properties of brain functional networks in people with schizophrenia. We therefore anticipate that many aspects of brain network organization, in health and disease, may be parsimoniously explained by an economical clustering rule for the probability of functional connectivity between different brain areas. PMID:22467830

Vértes, Petra E; Alexander-Bloch, Aaron F; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; Bullmore, Edward T

2012-04-10

69

Wavelet analysis for brain-function imaging  

Microsoft Academic Search

The authors present a new algorithmic procedure for the analysis of brain images. This procedure is specifically designed to image the activity and functional organization of the brain. The authors' results are tested on data collected and previously analyzed with the technique known as in vivo optical imaging of intrinsic signals. The authors' procedure enhances the applicability of this technique

R. A. Carmona; Wen L. Hwang; Ron D. Frostig

1995-01-01

70

Dietary Saturated Fatty Acids and Brain Function  

Microsoft Academic Search

The degree to which fatty acids modulate brain function beyond periods of rapid brain growth is poorly understood. Nevertheless, recent evidence suggests that dietary fatty acid composition influences numerous behaviors including body temperature regulation, pain sensitivity, feeding behavior including macronutrient selection, and cognitive performance. Importantly, alterations are observed in the absence of essential fatty acid (EFA) deficiency, beyond periods of

Randall J. Kaplan; Carol E. Greenwood

1998-01-01

71

Multistability and metastability: understanding dynamic coordination in the brain  

PubMed Central

Multistable coordination dynamics exists at many levels, from multifunctional neural circuits in vertebrates and invertebrates to large-scale neural circuitry in humans. Moreover, multistability spans (at least) the domains of action and perception, and has been found to place constraints upon, even dictating the nature of, intentional change and the skill-learning process. This paper reviews some of the key evidence for multistability in the aforementioned areas, and illustrates how it has been measured, modelled and theoretically understood. It then suggests how multistability—when combined with essential aspects of coordination dynamics such as instability, transitions and (especially) metastability—provides a platform for understanding coupling and the creative dynamics of complex goal-directed systems, including the brain and the brain–behaviour relation. PMID:22371613

Kelso, J. A. Scott

2012-01-01

72

Order and disorder in the brain function.  

PubMed

The interest in studying the brain electrical activity as a function of the development of intelligence has been spurred by the need to understand how the brain responds to environmental information. The description of sleep in mentally retarded children reveals deviant patterns of the EEG-spindles and of the eye movement activity (REM sleep) when compared to normal children. The patterns may be considered as a valuable index of mental function. According to experimental evidence, the distribution of the eye movements of sleep appears either as random or ordered. The latter are altered in the mentally handicapped in whom the appearance out of chaos, of the order which is needed for intelligence and memory to function, is altered. The sleep signs are redundant as from birth. Their pattern is also related to the psychomotor development of the infant. If their distribution remains random, or appears in long uninterrupted sequences of waves as in epilepsy, intelligence does not develop. A similar strategy appears to function in the foetus when nature organizes the structures that will lead to the development of intelligence. The eye movement patterns of sleep change in the pregnant women as a function of term and resemble those of premature babies of a similar gestational age. They also change as a function of the menstrual cycle and more generally as a function of age. The hypothesis that attention is the diurnal equivalent of REM sleep is discussed. Attempts at modelling the eye movement patterns of REM sleep as a function of near zero gravity environments have been made. 1) By means of a Montecarlo simulation using the semi Markov model during the Spacelab 1 flight. 2) With the method of the single and multiple g-phase transition analysis of the strange attractor dimension (d) during parabolic flights. The implication of the latter for the neural processes involved in learning is that the central nervous system can preserve intact, from input to output, over a period of several days, all the information it receives 3) The relation between spindles and eye movements has also been viewed by a quantum approach which is another medium between the information and the way of describing it. PMID:14523349

Quadens, Olga

2003-01-01

73

Astrocytes and Brain Function: Implications for Reproduction  

Microsoft Academic Search

Recent evidence suggests that astrocytes have important neu- roregulatory functions in addition to their classic functions of support and segregation of neurons. These newly revealed functions include regulation of neuron communication, neuro- secretion, and synaptic plasticity. Although these actions occur throughout the brain, this review will focus on astrocyte- neuron interactions in the hypothalamus, particularly with re- spect to their

KRISHNAN M. DHANDAPANI; B. MAHESH; DARRELL W. BRANN

2003-01-01

74

Disrupted Functional Brain Connectivity in Partial Epilepsy: A Resting-State fMRI Study  

Microsoft Academic Search

Examining the spontaneous activity to understand the neural mechanism of brain disorder is a focus in recent resting-state fMRI. In the current study, to investigate the alteration of brain functional connectivity in partial epilepsy in a systematical way, two levels of analyses (functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis) were carried out on

Cheng Luo; Chuan Qiu; Zhiwei Guo; Jiajia Fang; Qifu Li; Xu Lei; Yang Xia; Yongxiu Lai; Qiyong Gong; Dong Zhou; Dezhong Yao

2012-01-01

75

A PROPOSITIONAL REPRESENTATION MODEL OF ANATOMICAL AND FUNCTIONAL BRAIN DATA  

E-print Network

A PROPOSITIONAL REPRESENTATION MODEL OF ANATOMICAL AND FUNCTIONAL BRAIN DATA Pablo MATURANA as a methodological tool to examine brain network organization, topology and complex dynamics, as well brain data and neuropsychological assessments linked to the functions explored in these assessments

Paris-Sud XI, Université de

76

Vitamins Deficiencies and Brain Function  

Microsoft Academic Search

\\u000a The consequences of malnutrition on the central nervous system are diverse and depend to a significant extent on the stage\\u000a of development or maturity of the brain as well as on the severity of the nutritional deficiency. For example, vitamin deficiencies\\u000a result in a wide range of neuropathology and neuropsychiatric symptomatology depending upon the nature and extent of the vitamin

Chantal Bémeur; Jane A. Montgomery; Roger F. Butterworth

77

Culture, Executive Function, and Social Understanding  

ERIC Educational Resources Information Center

Much of the evidence from the West has shown links between children's developing self-control (executive function), their social experiences, and their social understanding (Carpendale & Lewis, 2006, chapters 5 and 6), across a range of cultures including China. This chapter describes four studies conducted in three Oriental cultures, suggesting…

Lewis, Charlie; Koyasu, Masuo; Oh, Seungmi; Ogawa, Ayako; Short, Benjamin; Huang, Zhao

2009-01-01

78

Toward discovery science of human brain function.  

PubMed

Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints of a priori hypotheses. Resting-state functional MRI (R-fMRI) constitutes a candidate approach capable of addressing this challenge. Imaging the brain during rest reveals large-amplitude spontaneous low-frequency (<0.1 Hz) fluctuations in the fMRI signal that are temporally correlated across functionally related areas. Referred to as functional connectivity, these correlations yield detailed maps of complex neural systems, collectively constituting an individual's "functional connectome." Reproducibility across datasets and individuals suggests the functional connectome has a common architecture, yet each individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships, will require multicenter collaborative datasets. Here we initiate this endeavor by gathering R-fMRI data from 1,414 volunteers collected independently at 35 international centers. We demonstrate a universal architecture of positive and negative functional connections, as well as consistent loci of inter-individual variability. Age and sex emerged as significant determinants. These results demonstrate that independent R-fMRI datasets can be aggregated and shared. High-throughput R-fMRI can provide quantitative phenotypes for molecular genetic studies and biomarkers of developmental and pathological processes in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/. PMID:20176931

Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian; Gohel, Suril; Kelly, Clare; Smith, Steve M; Beckmann, Christian F; Adelstein, Jonathan S; Buckner, Randy L; Colcombe, Stan; Dogonowski, Anne-Marie; Ernst, Monique; Fair, Damien; Hampson, Michelle; Hoptman, Matthew J; Hyde, James S; Kiviniemi, Vesa J; Kötter, Rolf; Li, Shi-Jiang; Lin, Ching-Po; Lowe, Mark J; Mackay, Clare; Madden, David J; Madsen, Kristoffer H; Margulies, Daniel S; Mayberg, Helen S; McMahon, Katie; Monk, Christopher S; Mostofsky, Stewart H; Nagel, Bonnie J; Pekar, James J; Peltier, Scott J; Petersen, Steven E; Riedl, Valentin; Rombouts, Serge A R B; Rypma, Bart; Schlaggar, Bradley L; Schmidt, Sein; Seidler, Rachael D; Siegle, Greg J; Sorg, Christian; Teng, Gao-Jun; Veijola, Juha; Villringer, Arno; Walter, Martin; Wang, Lihong; Weng, Xu-Chu; Whitfield-Gabrieli, Susan; Williamson, Peter; Windischberger, Christian; Zang, Yu-Feng; Zhang, Hong-Ying; Castellanos, F Xavier; Milham, Michael P

2010-03-01

79

IMPLICATION OF ATP RECEPTORS IN BRAIN FUNCTIONS  

Microsoft Academic Search

The possible implication of P2-purinoceptors in brain functions is reviewed. Involvement of P2-purinoceptors in memory and learning (Section 2) is suggested by ATP release from hippocampal slices [Wieraszko et al. (1989)Brain Res. 485, 244–250], induction of fast synaptic currents in cultured hippocampal neurons [Inoue et al. (1992a)Neurosci. Lett. 134, 294–299] and long-lasting enhancement of the population spikes [Wieraszko and Seyfried

KAZUHIDE INOUE; SCHUICHI KOIZUMI; SHINYA UENO

1996-01-01

80

Structural and functional clusters of complex brain networks  

NASA Astrophysics Data System (ADS)

Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex.

Zemanová, Lucia; Zhou, Changsong; Kurths, Jürgen

2006-12-01

81

[Localization of language function in the brain].  

PubMed

Since the first report of an aphasic patient by Paul Broca, the localization of brain function has been disputed for 150 years. In lesion studies, double dissociation has been a key concept to show the localization of particular cognitive functions. The advancement of non-invasive brain imaging methods enables us to investigate the brain activities under well-controlled conditions, further promoting the studies on the localization of the cognitive functions, including language function. Brain imaging studies, together with subtraction and correlation analyses, have accumulated evidence that syntax, phonology, and sentence comprehension are separately processed by modules in different cortical regions. More specifically, it has been clarified that the module for syntax localizes in the left lateral premotor cortex and the opercular/triangular parts of the left inferior frontal gyrus. This modular structure further suggests that aphasia is interpreted as deficits in either syntactic or phonological processing. Therefore, the classical model of contrasting speech production and comprehension should be updated. According to theoretical linguistics, on the other hand, the recursive computation of syntactic structures is an essential feature of human language faculty. One direction of research would be to contrast human beings and animals for the abilities of processing symbolic sequences. Another direction is to clarify that the human brain is indeed specialized in language processing, which can be revealed by well-controlled language tasks and functional imaging techniques. Here we will review recent studies that demonstrate the existence of grammar center in the left frontal cortex. The future studies in the neuroscience of language will eventually elucidate the cortical localization of language function in a more precise way, i.e., what is really computed in the human brain. PMID:22147453

Miyashita, Hiroyuki; Sakai, Kuniyoshi L

2011-12-01

82

Progesterone Receptors: Form and Function in Brain  

PubMed Central

Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPR? and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and / or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging. PMID:18374402

Brinton, Roberta Diaz; Thompson, Richard F.; Foy, Michael R.; Baudry, Michel; Wang, JunMing; Finch, Caleb E; Morgan, Todd E.; Stanczyk, Frank Z.; Pike, Christian J.; Nilsen, Jon

2008-01-01

83

Sustained deep-tissue pain alters functional brain connectivity Jieun Kim a,  

E-print Network

Sustained deep-tissue pain alters functional brain connectivity Jieun Kim a, , Marco L. Loggia a connec- tivity change to more clinically relevant sustained deep-tissue pain. Connectivity in specific connectivity a b s t r a c t Recent functional brain connectivity studies have contributed to our understanding

Napadow, Vitaly

84

Changes in Connectivity after Visual Cortical Brain Damage Underlie Altered Visual Function  

ERIC Educational Resources Information Center

The full extent of the brain's ability to compensate for damage or changed experience is yet to be established. One question particularly important for evaluating and understanding rehabilitation following brain damage is whether recovery involves new and aberrant neural connections or whether any change in function is due to the functional

Bridge, Holly; Thomas, Owen; Jbabdi, Saad; Cowey, Alan

2008-01-01

85

Brain imaging methods used in experimental brain research such as Positron Emission Tomography (PET) and Functional  

E-print Network

ABSTRACT Brain imaging methods used in experimental brain research such as Positron Emission and are best understood in the context of the underlying 3D brain anatomy. In this paper, we present a novel Brain Mapping, Functional Imaging 1 INTRODUCTION Although the human brain is no longer the black box

Mueller, Klaus

86

Integrating Retinoic Acid Signaling with Brain Function  

ERIC Educational Resources Information Center

The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

2009-01-01

87

Integrating Retinoic Acid Signaling With Brain Function  

Microsoft Academic Search

The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to unknown means through which

Tuanlian Luo; Elisabeth Wagner; Ursula C. Dräger

2009-01-01

88

Understanding the Functions of Proteins and DNA  

NSDL National Science Digital Library

This overview provides a sequence of learning activities to help students understand that proteins and DNA are not just abstract concepts in biology textbooks, but rather crucial components of our bodies that affect functions and characteristics that students are familiar with. Students learn about how proteins contribute to the digestion of food and to characteristics such as albinism, sickle cell anemia and hemophilia. Then, students learn about the relationship between the genetic information in DNA and the different versions of these proteins. The discussion, web-based, and hands-on learning activities presented are appropriate for an introductory unit on biological molecules or as an introduction to a unit on molecular biology.

Waldron, Ingrid

89

Fetal functional imaging portrays heterogeneous development of emerging human brain networks  

E-print Network

The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous ...

Schwartz, Ernst

90

Modulatory Interactions of Resting-State Brain Functional Connectivity  

PubMed Central

The functional brain connectivity studies are generally based on the synchronization of the resting-state functional magnetic resonance imaging (fMRI) signals. Functional connectivity measures usually assume a stable relationship over time; however, accumulating studies have reported time-varying properties of strength and spatial distribution of functional connectivity. The present study explored the modulation of functional connectivity between two regions by a third region using the physiophysiological interaction (PPI) technique. We first identified eight brain networks and two regions of interest (ROIs) representing each of the networks using a spatial independent component analysis. A voxel-wise analysis was conducted to identify regions that showed modulatory interactions (PPI) with the two ROIs of each network. Mostly, positive modulatory interactions were observed within regions involved in the same system. For example, the two regions of the dorsal attention network revealed modulatory interactions with the regions related to attention, while the two regions of the extrastriate network revealed modulatory interactions with the regions in the visual cortex. In contrast, the two regions of the default mode network (DMN) revealed negative modulatory interactions with the regions in the executive network, and vice versa, suggesting that the activities of one network may be associated with smaller within network connectivity of the competing network. These results validate the use of PPI analysis to study modulation of resting-state functional connectivity by a third region. The modulatory effects may provide a better understanding of complex brain functions. PMID:24023609

Di, Xin; Biswal, Bharat B.

2013-01-01

91

Functional craniology and brain evolution: from paleontology to biomedicine  

PubMed Central

Anatomical systems are organized through a network of structural and functional relationships among their elements. This network of relationships is the result of evolution, it represents the actual target of selection, and it generates the set of rules orienting and constraining the morphogenetic processes. Understanding the relationship among cranial and cerebral components is necessary to investigate the factors that have influenced and characterized our neuroanatomy, and possible drawbacks associated with the evolution of large brains. The study of the spatial relationships between skull and brain in the human genus has direct relevance in cranial surgery. Geometrical modeling can provide functional perspectives in evolution and brain physiology, like in simulations to investigate metabolic heat production and dissipation in the endocranial form. Analysis of the evolutionary constraints between facial and neural blocks can provide new information on visual impairment. The study of brain form variation in fossil humans can supply a different perspective for interpreting the processes behind neurodegeneration and Alzheimer’s disease. Following these examples, it is apparent that paleontology and biomedicine can exchange relevant information and contribute at the same time to the development of robust evolutionary hypotheses on brain evolution, while offering more comprehensive biological perspectives with regard to the interpretation of pathological processes. PMID:24765064

Bruner, Emiliano; de la Cuétara, José Manuel; Masters, Michael; Amano, Hideki; Ogihara, Naomichi

2014-01-01

92

Transcranial brain stimulation to promote functional recovery after stroke  

PubMed Central

Purpose of review Noninvasive brain stimulation (NIBS) is increasingly used to enhance the recovery of function after stroke. The purpose of this review is to highlight and discuss some unresolved questions that need to be addressed to better understand and exploit the potential of NIBS as a therapeutic tool. Recent findings Recent meta-analyses showed that the treatment effects of NIBS in patients with stroke are rather inconsistent across studies and the evidence for therapeutic efficacy is still uncertain. This raises the question of how NIBS can be developed further to improve its therapeutic efficacy. Summary This review addressed six questions: How does NIBS facilitate the recovery of function after stroke? Which brain regions should be targeted by NIBS? Is there a particularly effective NIBS modality that should be used? Does the location of the stroke influence the therapeutic response? How often should NIBS be repeated? Is the functional state of the brain during or before NIBS relevant to therapeutic efficacy of NIBS? We argue that these questions need to be tackled to obtain sufficient mechanistic understanding of how NIBS facilitates the recovery of function. This knowledge will be critical to fully unfold the therapeutic effects of NIBS and will pave the way towards adaptive NIBS protocols, in which NIBS is tailored to the individual patient. PMID:24296641

Raffin, Estelle; Siebner, Hartwig R.

2014-01-01

93

Structure and function of complex brain networks  

PubMed Central

An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

Sporns, Olaf

2013-01-01

94

Understanding paroxysmal sympathetic hyperactivity after traumatic brain injury  

PubMed Central

Background: Paroxysmal sympathetic hyperactivity (PSH) is a condition occurring in a small percentage of patients with severe traumatic brain injury (TBI). It is characterized by a constellation of symptoms associated with excessive adrenergic output, including tachycardia, hypertension, tachypnea, and diaphoresis. Diagnosis is one of exclusion and, therefore, is often delayed. Treatment is aimed at minimizing triggers and pharmacologic management of symptoms. Methods: A literature review using medline and cinahl was conducted to identify articles related to PSH. Search terms included paroxysmal sympathetic hyperactivity, autonomic storming, diencephalic seizures, and sympathetic storming. Reference lists of pertinent articles were also reviewed and these additional papers were included. Results: The literature indicates that the understanding of PSH following TBI is in its infancy. The majority of information is based on small case series. The review revealed treatments that may be useful in treating PSH. Conclusions: Nurses play a critical role in the identification of at-risk patients, symptom complexes, and in the education of family. Early detection and treatment is likely to decrease overall morbidity and facilitate recovery. Further research is needed to establish screening tools and treatment algorithms for PSH. PMID:25506508

Meyer, Kimberly S.

2014-01-01

95

Electromagnetic inverse applications for functional brain imaging  

SciTech Connect

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addresses an important mathematical and computational problem in functional brain imaging, namely the electromagnetic {open_quotes}inverse problem.{close_quotes} Electromagnetic brain imaging techniques, magnetoencephalography (MEG) and electroencephalography (EEG), are based on measurements of electrical potentials and magnetic fields at hundreds of locations outside the human head. The inverse problem is the estimation of the locations, magnitudes, and time-sources of electrical currents in the brain from surface measurements. This project extends recent progress on the inverse problem by combining the use of anatomical constraints derived from magnetic resonance imaging (MRI) with Bayesian and other novel algorithmic approaches. The results suggest that we can achieve significant improvements in the accuracy and robustness of inverse solutions by these two approaches.

Wood, C.C.

1997-10-01

96

Homological scaffolds of brain functional networks  

PubMed Central

Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

2014-01-01

97

Effect of tumor resection on the characteristics of functional brain networks  

NASA Astrophysics Data System (ADS)

Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted network analysis to understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically significant changes in network features have been discovered in the beta (13-30 Hz) band after neurosurgery: the link weight correlation around nodes and within triangles increases which implies improvement in local efficiency of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger, which enhances the global transport capability; and the decrease in the synchronization or virus spreading threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the improvement of information dissemination.

Wang, H.; Douw, L.; Hernández, J. M.; Reijneveld, J. C.; Stam, C. J.; van Mieghem, P.

2010-08-01

98

Cross-hemispheric functional connectivity in the human fetal brain  

PubMed Central

Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC. PMID:23427244

Thomason, ME; Dassanayake, MT; Shen, S; Katkuri, Y; Alexis, M; Anderson, AL; Yeo, L; Mody, S; Hernandez-Andrade, E; Hassan, SS; Studholme, C; Jeong, JW; Romero, R

2013-01-01

99

Functional brain imaging of tobacco use and dependence  

PubMed Central

While most cigarette smokers endorse a desire to quit smoking, only about 14% to 49% will achieve abstinence after 6 months or more of treatment. A greater understanding of the effects of smoking on brain function may (in conjunction with other lines of research) result in improved pharmacological (and behavioral) interventions. Many research groups have examined the effects of acute and chronic nicotine/cigarette exposure on brain activity using functional imaging; the purpose of this paper is to synthesize findings from such studies and present a coherent model of brain function in smokers. Responses to acute administration of nicotine/smoking include: a reduction in global brain activity; activation of the prefrontal cortex, thalamus, and visual system; activation of the thalamus and visual cortex during visual cognitive tasks; and increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens. Responses to chronic nicotine/cigarette exposure include decreased monoamine oxidase (MAO) A and B activity in the basal ganglia and a reduction in ?4?2 nicotinic acetylcholine receptor (nAChR) availability in the thalamus and putamen. Taken together, these findings indicate that smoking enhances neurotransmission through cortico-basal ganglia-thalamic circuits either by direct stimulation of nAChRs, indirect stimulation via DA release or MAO inhibition, or a combination of these factors. Activation of this circuitry may be responsible for the effects of smoking seen in tobacco dependent subjects, such as improvements in attentional performance, mood, anxiety, and irritability. PMID:15979645

Brody, Arthur L.

2010-01-01

100

The formation and function of the brain ventricular system  

E-print Network

The brain ventricular system is composed of a highly conserved set of cavities that contain cerebrospinal fluid (CSF), a protein-rich fluid essential for brain function. However, little is known about the function of ...

Chang, Jessica T. (Jessica Tzung-Min)

2012-01-01

101

Non-Invasive Brain-to-Brain Interface (BBI): Establishing Functional Links between Two Brains  

PubMed Central

Transcranial focused ultrasound (FUS) is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI). In conjunction with the use of brain-to-computer interface (BCI) techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat), thus creating a brain-to-brain interface (BBI). The implementation was aimed to non-invasively translate the human volunteer’s intention to stimulate a rat’s brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP) with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer’s intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration) to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications. PMID:23573251

Yoo, Seung-Schik; Kim, Hyungmin; Filandrianos, Emmanuel; Taghados, Seyed Javid; Park, Shinsuk

2013-01-01

102

O R IGINAL AR T ICLE Order and disorder in the brain function  

Microsoft Academic Search

The interest in studying the brain electrical activity as a function of the develop- ment of intelligence has been spurred by the need to understand how the brain responds to environmental information. The description of sleep in mentally retarded children reveals deviant patterns of the EEG-spindles and of the eye movement activity (REM sleep) when compared to normal children. The

Olga Quadens

103

Social Functioning in Children with Brain Insult  

PubMed Central

Social dysfunction is commonly reported by survivors of brain insult, and is often rated as the most debilitating of all sequelae, impacting on many areas of daily life, as well as overall quality of life. Within the early brain insult (EBI) literature, physical and cognitive domains have been of primary interest and social skills have received scant attention. As a result it remains unclear how common these problems are, and whether factors predictive of recovery (insult severity, lesion location, age at insult, environment) in other functional domains (motor, speech, cognition) also contribute to social outcome. This study compared social outcomes for children sustaining EBI at different times from gestation to late childhood to determine whether EBI was associated with an increased risk of problems. Children with focal brain insults were categorized according to timing of brain insult: (i) Congenital (n?=?38): EBI: first–second trimester; (ii) Perinatal (n?=?33); EBI: third trimester to 1-month post-natal; (iii) Infancy (n?=?23): EBI: 2?months–2?years post-birth; (iv) Preschool (n?=?19): EBI: 3–6?years; (v) Middle Childhood (n?=?31): EBI: 7–9?years; and (vi) Late Childhood (n?=?19): EBI: after age 10. Children's teachers completed questionnaires measuring social function (Strengths and Difficulties Questionnaire, Walker–McConnell Scale of Social Competence and School Adjustment). Results showed that children with EBI were at increased risk for social impairment compared to normative expectations. EBI before age 2?years was associated with most significant social impairment, while children with EBI in the preschool years and in late childhood recorded scores closer to normal. Lesion location and laterality were not predictive of social outcome, and nor was social risk. In contrast, presence of disability (seizures) and family function were shown to contribute to aspects of social function. PMID:20631858

Greenham, Mardee; Spencer-Smith, Megan M.; Anderson, Peter J.; Coleman, Lee; Anderson, Vicki A.

2009-01-01

104

Social functioning in children with brain insult.  

PubMed

Social dysfunction is commonly reported by survivors of brain insult, and is often rated as the most debilitating of all sequelae, impacting on many areas of daily life, as well as overall quality of life. Within the early brain insult (EBI) literature, physical and cognitive domains have been of primary interest and social skills have received scant attention. As a result it remains unclear how common these problems are, and whether factors predictive of recovery (insult severity, lesion location, age at insult, environment) in other functional domains (motor, speech, cognition) also contribute to social outcome. This study compared social outcomes for children sustaining EBI at different times from gestation to late childhood to determine whether EBI was associated with an increased risk of problems. Children with focal brain insults were categorized according to timing of brain insult: (i) Congenital (n = 38): EBI: first-second trimester; (ii) Perinatal (n = 33); EBI: third trimester to 1-month post-natal; (iii) Infancy (n = 23): EBI: 2 months-2 years post-birth; (iv) Preschool (n = 19): EBI: 3-6 years; (v) Middle Childhood (n = 31): EBI: 7-9 years; and (vi) Late Childhood (n = 19): EBI: after age 10. Children's teachers completed questionnaires measuring social function (Strengths and Difficulties Questionnaire, Walker-McConnell Scale of Social Competence and School Adjustment). Results showed that children with EBI were at increased risk for social impairment compared to normative expectations. EBI before age 2 years was associated with most significant social impairment, while children with EBI in the preschool years and in late childhood recorded scores closer to normal. Lesion location and laterality were not predictive of social outcome, and nor was social risk. In contrast, presence of disability (seizures) and family function were shown to contribute to aspects of social function. PMID:20631858

Greenham, Mardee; Spencer-Smith, Megan M; Anderson, Peter J; Coleman, Lee; Anderson, Vicki A

2010-01-01

105

Scale-Free Brain Functional Networks Victor M. Eguiluz,1  

E-print Network

Scale-Free Brain Functional Networks Victor M. Egui´luz,1 Dante R. Chialvo,2 Guillermo A. Cecchi,3 is used to extract functional networks connecting correlated human brain sites. Analysis of the resulting-world networks, reflect important functional information about brain states. DOI: 10.1103/PhysRevLett.94

Oro, Daniel

106

When “altering brain function” becomes “mind control”  

PubMed Central

Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS) technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. “Under what conditions does ‘altering brain function’ qualify as ‘mind control’?” In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control. PMID:25352789

Koivuniemi, Andrew; Otto, Kevin

2014-01-01

107

Partial sleep in the context of augmentation of brain function  

PubMed Central

Inability to solve complex problems or errors in decision making is often attributed to poor brain processing, and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high order cortical areas. This is why complex problem solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioreceptors during wakefulness, switch to the processing of interoceptive information during sleep. It became clear that during sleep all “computational power” of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a normal total sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the “intellectual power” and the restorative function of sleep for visceral organs. PMID:24822040

Pigarev, Ivan N.; Pigareva, Marina L.

2014-01-01

108

Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network  

PubMed Central

Background There is evidence for augmented processing of pain and impaired endogenous pain inhibition in Fibromyalgia syndrome (FM). In order to fully understand the mechanisms involved in FM pathology, there is a need for closer investigation of endogenous pain modulation. In the present study, we compared the functional connectivity of the descending pain inhibitory network in age-matched FM patients and healthy controls (HC). We performed functional magnetic resonance imaging (fMRI) in 42 subjects; 14 healthy and 28 age-matched FM patients (2 patients per HC), during randomly presented, subjectively calibrated pressure pain stimuli. A seed-based functional connectivity analysis of brain activity was performed. The seed coordinates were based on the findings from our previous study, comparing the fMRI signal during calibrated pressure pain in FM and HC: the rostral anterior cingulate cortex (rACC) and thalamus. Results FM patients required significantly less pressure (kPa) to reach calibrated pain at 50?mm on a 0–100 visual analogue scale (p?brain’s pain inhibitory network during calibrated pressure pain, compared to healthy controls. The present study provides brain-imaging evidence on how brain regions involved in homeostatic control of pain are less connected in FM patients. It is possible that the dysfunction of the descending pain modulatory network plays an important role in maintenance of FM pain and our results may translate into clinical implications by using the functional connectivity of the pain modulatory network as an objective measure of pain dysregulation. PMID:22537768

2012-01-01

109

Perinatal Choline Influences Brain Structure and Function  

PubMed Central

Choline is derived not only from the diet, but also from de novo synthesis. It is important for methyl-group metabolism, the formation of membranes, kidney function, and neurotransmission. When deprived of dietary choline, most adult men and postmenopausal women develop signs of organ dysfunction (fatty liver or muscle damage) and have a decreased capacity to convert homocysteine to methionine. Choline is critical during fetal development, when it influences stem cell proliferation and apoptosis, thereby altering brain structure and function (memory is permanently enhanced in rodents exposed to choline during the latter part of gestation). PMID:16673755

Zeisel, Steven H.; Niculescu, Mihai D.

2008-01-01

110

[Regulation, structure and function of brain aquaporin].  

PubMed

Discovery of aquaporin water channel proteins has provided insight into the molecular mechanism of membrane water permeability. In mammalian brain, Aquaporin-4 (AQP4) is the main water channel and is distributed with highest density in the perivascular and subpial astrocyte end-feet. AQP4 is a critical component of an integrated water and potassium homeostasis. Indeed, AQP4 has been implicated in several neurologic conditions, such as brain edema, seizure and even mood disorders. Expression and regulation of AQP4 have been studied to understand the roles of AQP4 in physiological and pathological conditions. Here we discuss about the mechanisms how AQP4 is dynamically regulated at different levels; channel gating, subcellular distribution, phosphorylation, protein-protein interactions and orthogonal array formation. Interestingly, AQP4 has been identified as a target antigen of autoimmune attack in neuromyelitis optica (NMO). We have evaluated putative epitopes on AQP4 for NMO-IgG binding. We have also studied Drosophila Big Brain (Bib), since Bib has high sequence homology to AQP-4, and play an important role for Drosophila neurogenesis. AQP4 may be a potential therapeutic target in several neurologic conditions. Further studies from different aspects are required to develop new drugs against AQP4. PMID:20030210

Masato, Yasui

2009-11-01

111

Transgenerational epigenetic effects on brain functions.  

PubMed

Psychiatric diseases are multifaceted disorders with complex etiology, recognized to have strong heritable components. Despite intense research efforts, genetic loci that substantially account for disease heritability have not yet been identified. Over the last several years, epigenetic processes have emerged as important factors for many brain diseases, and the discovery of epigenetic processes in germ cells has raised the possibility that they may contribute to disease heritability and disease risk. This review examines epigenetic mechanisms in complex diseases and summarizes the most illustrative examples of transgenerational epigenetic inheritance in mammals and their relevance for brain function. Environmental factors that can affect molecular processes and behavior in exposed individuals and their offspring, and their potential epigenetic underpinnings, are described. Possible routes and mechanisms of transgenerational transmission are proposed, and the major questions and challenges raised by this emerging field of research are considered. PMID:23062885

Bohacek, Johannes; Gapp, Katharina; Saab, Bechara J; Mansuy, Isabelle M

2013-02-15

112

Tracking of EEG activity using motion estimation to understand brain wiring.  

PubMed

The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes. PMID:25381107

Nisar, Humaira; Malik, Aamir Saeed; Ullah, Rafi; Shim, Seong-O; Bawakid, Abdullah; Khan, Muhammad Burhan; Subhani, Ahmad Rauf

2015-01-01

113

Functional Geometry Alignment and Localization of Brain Areas  

E-print Network

Functional Geometry Alignment and Localization of Brain Areas Georg Langs, Polina Golland Computer@bwh.harvard.edu, lrigolo@bwh.harvard.edu agolby@bwh.harvard.edu Abstract Matching functional brain regions across. It is particularly difficult, but highly relevant, for patients with pathologies such as brain tumors, which can

Golland, Polina

114

Split My Brain A Case Study of Seizure Disorder and Brain Function  

NSDL National Science Digital Library

This case study involves a couple deciding whether or not their son should undergo brain surgery to treat a severe seizure disorder. In examining this dilemma, students apply knowledge of brain anatomy and function. They also learn about brain scanning techniques and discuss the plasticity of the brain. The case was written for an introductory psychology course, but could be adapted for any course that covers brain anatomy, neurological disorders, or rehabilitation therapies.

Omarzu, Julia

2004-01-01

115

Functional Interactions as Big Data in the Human Brain  

PubMed Central

Noninvasive studies of human brain function hold great potential to unlock mysteries of the human mind. The complexity of data generated by such studies, however, has prompted various simplifying assumptions during analysis. Although this has enabled considerable progress, our current understanding is partly contingent upon these assumptions. An emerging approach embraces the complexity, accounting for the fact that neural representations are widely distributed, neural processes involve interactions between regions, interactions vary by cognitive state, and the space of interactions is massive. Because what you see depends on how you look, such unbiased approaches provide the greatest flexibility for discovery. PMID:24179218

Turk-Browne, Nicholas B.

2014-01-01

116

Violent Video Games Alter Brain Function in Young Men  

MedlinePLUS

... RSNA Annual Meeting November 30, 2011 Violent Video Games Alter Brain Function in Young Men CHICAGO—A ... analysis of long-term effects of violent video game play on the brain has found changes in ...

117

The mechanism by which exercise modifies brain function  

Microsoft Academic Search

The effect of exercise on central nervous system function was investigated in relation to the mechanism of calcium-calmodulin-dependent dopamine synthesis in the brain. It is shown here through animal experiments that exercise leads to an increase in the calcium level in the brain. This in turn enhances brain dopamine synthesis, and through this increased dopamine modifies and\\/or affects brain function,

Den'etsu Sutoo; Kayo Akiyama

1996-01-01

118

THE CONTRIBUTION OF NOVEL BRAIN IMAGING TECHNIQUES TO UNDERSTANDING THE  

E-print Network

, Stanford University, Stanford, California Studying the biological mechanisms underlying mental retardation Wiley-Liss, Inc. MRDD Research Reviews 2005;11:331­339. Key Words: mental retardation; developmental that mental retardation is a clinical manifesta- tion in 1,228 genetic syndromes. Brain abnormalities

Bellugi, Ursula

119

Functional transcranial brain imaging by optical-resolution photoacoustic microscopy  

NASA Astrophysics Data System (ADS)

Optical-resolution photoacoustic microscopy (OR-PAM) is applied to functional brain imaging in living mice. A near-diffraction-limited bright-field optical illumination is employed to achieve micrometer lateral resolution, and a dual-wavelength measurement is utilized to extract the blood oxygenation information. The variation in hemoglobin oxygen saturation (sO2) along vascular branching has been imaged in a precapillary arteriolar tree and a postcapillary venular tree, respectively. To the best of our knowledge, this is the first report on in vivo volumetric imaging of brain microvascular morphology and oxygenation down to single capillaries through intact mouse skulls. It is anticipated that: (i) chronic imaging enabled by this minimally invasive procedure will advance the study of cortical plasticity and neurological diseases; (ii) revealing the neuroactivity-dependent changes in hemoglobin concentration and oxygenation will facilitate the understanding of neurovascular coupling at the capillary level; and (iii) combining functional OR-PAM and high-resolution blood flowmetry will have the potential to explore cellular pathways of brain energy metabolism.

Hu, Song; Maslov, Konstantin; Tsytsarev, Vassiliy; Wang, Lihong V.

2009-07-01

120

The Brain: Understanding Neurobiology Through the Study of Addiction  

NSDL National Science Digital Library

They're finally here! The NIH Office of Science Education has recently launched Web versions of curriculum supplements from its series of "interactive teaching units that combine cutting-edge research discoveries from the National Institutes of Health with state-of-the-art instructional materials." "The Brain" is intended for grades 9-12. The supplement provides detailed, downloadable lesson plans, fantastic multimedia features, teachers' guides with downloadable worksheets, and loads of other excellent resources.

121

Brain Maps on the Go: Functional Imaging During Motor Challenge in Animals  

PubMed Central

Brain mapping in the freely-moving animal is useful for studying motor circuits, not only because it avoids the potential confound of sedation or restraints, but because activated brain states may serve to accentuate differences that only manifest partially while a subject is in the resting state. Perfusion or metabolic mapping using autoradiography allows one to examine changes in brain function at the circuit level across the entire brain with a spatial resolution (?100 microns) appropriate for the rat or mouse brain, and a temporal resolution (seconds – minutes) sufficient for capturing acute brain changes. Here we summarize the application of these methods to the functional brain mapping of behaviors involving locomotion of small animals, methods for the three dimensional reconstruction of the brain from autoradiographic sections, voxel based analysis of the whole brain, and generation of maps of the flattened rat cortex. Application of these methods in animal models promises utility in improving our understanding of motor function in the normal brain, and of the effects of neuropathology and treatment interventions such as exercise have on the reorganization of motor circuits. PMID:18554522

Holschneider, DP; Maarek, J-M I

2008-01-01

122

Kappa-opioid receptor signaling and brain reward function  

PubMed Central

The dynorphin-like peptides have profound effects on the state of the brain reward system and human and animal behavior. The dynorphin-like peptides affect locomotor activity, food intake, sexual behavior, anxiety-like behavior, and drug intake. Stimulation of kappa-opioid receptors, the endogenous receptor for the dynorphin-like peptides, inhibits dopamine release in the striatum (nucleus accumbens and caudate putamen) and induces a negative mood state in humans and animals. The administration of drugs of abuse increases the release of dopamine in the striatum and mediates the concomitant release of dynorphin-like peptides in this brain region. The reviewed studies suggest that chronic drug intake leads to an upregulation of the brain dynorphin system in the striatum and in particular in the dorsal part of the striatum/caudate putamen. This might inhibit drug-induced dopamine release and provide protection against the neurotoxic effects of high dopamine levels. After the discontinuation of chronic drug intake these neuroadaptations remain unopposed which has been suggested to contribute to the negative emotional state associated with drug withdrawal and increased drug intake. Kappa-opioid receptor agonists have also been shown to inhibit calcium channels. Calcium channel inhibitors have antidepressant-like effects and inhibit the release of norepinephrine. This might explain that in some studies kappa-opioid receptor agonists attenuate nicotine and opioid withdrawal symptomatology. A better understanding of the role of dynorphins in the regulation of brain reward function might contribute to the development of novel treatments for mood disorders and other disorders that stem from a dysregulation of the brain reward system. PMID:19804796

Bruijnzeel, Adrie W.

2009-01-01

123

Imaging structural and functional brain networks in temporal lobe epilepsy  

PubMed Central

Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

2013-01-01

124

Maturation of Widely Distributed Brain Function Subserves Cognitive Development  

Microsoft Academic Search

Cognitive and brain maturational changes continue throughout late childhood and adolescence. During this time, increasing cognitive control over behavior enhances the voluntary suppression of reflexive\\/impulsive response tendencies. Recently, with the advent of functional MRI, it has become possible to characterize changes in brain activity during cognitive development. In order to investigate the cognitive and brain maturation subserving the ability to

Beatriz Luna; Keith R. Thulborn; Douglas P. Munoz; Elisha P. Merriam; Krista E. Garver; Nancy J. Minshew; Matcheri S. Keshavan; Christopher R. Genovese; William F. Eddy; John A. Sweeney

2001-01-01

125

Mapping distributed brain function and networks with diffuse optical tomography.  

PubMed

Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging. PMID:25083161

Eggebrecht, Adam T; Ferradal, Silvina L; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S; Dehghani, Hamid; Snyder, Abraham Z; Hershey, Tamara; Culver, Joseph P

2014-06-01

126

Mapping distributed brain function and networks with diffuse optical tomography  

NASA Astrophysics Data System (ADS)

Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

2014-06-01

127

Abnormal structural and functional brain connectivity in gray matter heterotopia  

E-print Network

Purpose:? Periventricular nodular heterotopia (PNH) is a malformation of cortical development associated with epilepsy and dyslexia. Evidence suggests that heterotopic gray matter can be functional in brain malformations ...

Christodoulou, Joanna

128

Effects of the diet on brain function  

NASA Technical Reports Server (NTRS)

The rates of synthesis by brain neurons of the neurotransmitters serotonin, acetylcholine, and the catecholamines depend on the brain levels of the respective precursor molecules. Brain levels of each precursor are influenced by their blood concentration, and for the amino acid precursors, by the blood levels of other amino acids as well. Since diet readily alters blood concentrations of each of these precursors, it thereby also influences the brain formation of their neutrotransmitter products.

Fernstrom, J. D.

1981-01-01

129

Gut microbial communities modulating brain development and function  

PubMed Central

Mammalian brain development is initiated in utero and internal and external environmental signals can affect this process all the way until adulthood. Recent observations suggest that one such external cue is the indigenous microbiota which has been shown to affect developmental programming of the brain. This may have consequences for brain maturation and function that impact on cognitive functions later in life. This review discusses these recent findings from a developmental perspective. PMID:22743758

Al-Asmakh, Maha; Anuar, Farhana; Zadjali, Fahad; Rafter, Joseph; Pettersson, Sven

2012-01-01

130

Brief Report: Brain Mechanisms in Autism: Functional and Structural Abnormalities.  

ERIC Educational Resources Information Center

This paper summarizes results of research on functional and structural abnormalities of the brain in autism. The current concept of causation is seen to involve multiple biologic levels. A consistent profile of brain function and dysfunction across methods has been found and specific neuropathologic findings have been found; but some research…

Minshew, Nancy J.

1996-01-01

131

Spatiotemporal brain imaging and modeling  

E-print Network

This thesis integrates hardware development, data analysis, and mathematical modeling to facilitate our understanding of brain cognition. Exploration of these brain mechanisms requires both structural and functional knowledge ...

Lin, Fa-Hsuan, 1972-

2004-01-01

132

Structure-function relationships in human brain development  

E-print Network

The integration of anatomical, functional, and developmental approaches in cognitive neuroscience is essential for generating mechanistic explanations of brain function. In this thesis, I first establish a proof-of-principle ...

Saygin, Zeynep Mevhibe

2012-01-01

133

Understanding Beth, the particulate mass functional  

NASA Astrophysics Data System (ADS)

A geometric relationship between "loop" quantum gravity and partitioned (triangulated) string theory is discussed. Combinatorial analysis reveals that three spatial and three intrinsic curvature dimensions are necessary and sufficient to describe all Standard Model particles and interactions. This analysis has established that particulate mass is determined by a functional relationship involving these six extra dimensions, using the Hebrew symbol Beth. The combinatorial analysis is derived using non-commutative 3D-matrix algebra which forms the mathematical underpinnings of Dirac notation. The complete 3D-matrix algebra description of quarks and their interactions opens a fertile area of mathematical analysis. The commutative functional Beth requires Randall-Sundrum (exponential) scaling and, through the proper interpretation of complex gravity, yields a cyclic cosmology. The specific formulation of cyclic cosmology inherently involves observed "dark energy". Thus, a self-consistent theory is constructed upon fundamental theorems which qualitatively models both oscillating neutrinos and the current epoch of mini-inflation. Ref: http://www.dpf2000.org/String.htm

Lundberg, Wayne R.

2002-04-01

134

Brain serotonin and pituitary-adrenal functions  

NASA Technical Reports Server (NTRS)

It had been concluded by Scapagnini et al. (1971) that brain serotonin (5-HT) was involved in the regulation of the diurnal rhythm of the pituitary-adrenal system but not in the stress response. A study was conducted to investigate these findings further by evaluating the effects of altering brain 5-HT levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. In a number of experiments brain 5-HT synthesis was inhibited with parachlorophenylalanine. In other tests it was tried to raise the level of brain 5-HT with precursors.

Vernikos-Danellis, J.; Berger, P.; Barchas, J. D.

1973-01-01

135

Highlighting the structure-function relationship of the brain with the Ising model and graph theory.  

PubMed

With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model) or global dynamics (e.g., the Ising model) have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions. PMID:25276772

Das, T K; Abeyasinghe, P M; Crone, J S; Sosnowski, A; Laureys, S; Owen, A M; Soddu, A

2014-01-01

136

Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory  

PubMed Central

With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model) or global dynamics (e.g., the Ising model) have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions. PMID:25276772

Das, T. K.; Abeyasinghe, P. M.; Crone, J. S.; Sosnowski, A.; Laureys, S.; Owen, A. M.; Soddu, A.

2014-01-01

137

Insulin regulates brain function, but how does it get there?  

PubMed

We have learned over the last several decades that the brain is an important target for insulin action. Insulin in the central nervous system (CNS) affects feeding behavior and body energy stores, the metabolism of glucose and fats in the liver and adipose, and various aspects of memory and cognition. Insulin may even influence the development or progression of Alzheimer disease. Yet, a number of seemingly simple questions (e.g., What is the pathway for delivery of insulin to the brain? Is insulin's delivery to the brain mediated by the insulin receptor and is it a regulated process? Is brain insulin delivery affected by insulin resistance?) are unanswered. Here we briefly review accumulated findings affirming the importance of insulin as a CNS regulatory peptide, examine the current understanding of how peripheral insulin is delivered to the brain, and identify key gaps in the current understanding of this process. PMID:25414013

Gray, Sarah M; Meijer, Rick I; Barrett, Eugene J

2014-12-01

138

Manifold learning on brain functional networks in aging.  

PubMed

We propose a new analysis framework to utilize the full information of brain functional networks for computing the mean of a set of brain functional networks and embedding brain functional networks into a low-dimensional space in which traditional regression and classification analyses can be easily employed. For this, we first represent the brain functional network by a symmetric positive matrix computed using sparse inverse covariance estimation. We then impose a Log-Euclidean Riemannian manifold structure on brain functional networks whose norm gives a convenient and practical way to define a mean. Finally, based on the fact that the computation of linear operations can be done in the tangent space of this Riemannian manifold, we adopt Locally Linear Embedding (LLE) to the Log-Euclidean Riemannian manifold space in order to embed the brain functional networks into a low-dimensional space. We show that the integration of the Log-Euclidean manifold with LLE provides more efficient and succinct representation of the functional network and facilitates regression analysis, such as ridge regression, on the brain functional network to more accurately predict age when compared to that of the Euclidean space of functional networks with LLE. Interestingly, using the Log-Euclidean analysis framework, we demonstrate the integration and segregation of cortical-subcortical networks as well as among the salience, executive, and emotional networks across lifespan. PMID:25476411

Qiu, Anqi; Lee, Annie; Tan, Mingzhen; Chung, Moo K

2015-02-01

139

The Dynamic Dielectric at a Brain Functional Site and an EM Wave Approach to Functional Brain Imaging  

PubMed Central

Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging. PMID:25367217

Li, X. P.; Xia, Q.; Qu, D.; Wu, T. C.; Yang, D. G.; Hao, W. D.; Jiang, X.; Li, X. M.

2014-01-01

140

Ultrafast method for mapping local functional connectivity hubs in the human brain.  

PubMed

Brain networks with energy-efficient hubs might support the high cognitive performance of humans and a better understanding of their organization is of relevance not only for studying normal brain development and plasticity but also neuropsychiatric disorders. Here we propose an ultra-fast method to map the distribution of the functional connectivity density (FCD) in the human brain. The method was tested in 972 subjects from a large repository of magnetic resonance imaging (MRI) time series collected in resting conditions. Consistently across research sites, a region located in the ventral precuneus was the area with the highest FCD, which suggest that this is a prominent functional hub in the brain. In addition regions located in the paracentral lobule, cuneus, inferior parietal, and posterior cingulate cortices had localized high FCD, suggesting that these regions also include prominent functional connectivity hubs. PMID:21095749

Tomasi, Dardo; Volkow, Nora D

2010-01-01

141

Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome.  

PubMed

Research in Down syndrome has substantially progressed in the understanding of the effect of gene overexpression at the molecular level, but there is a paucity of information on the ultimate consequences on overall brain functional organization. We have assessed the brain functional status in Down syndrome using functional connectivity MRI. Resting-state whole-brain connectivity degree maps were generated in 20 Down syndrome individuals and 20 control subjects to identify sites showing anomalous synchrony with other areas. A subsequent region-of-interest mapping served to detail the anomalies and to assess their potential contribution to poor adaptive behavior. Down syndrome individuals showed higher regional connectivity in a ventral brain system involving the amygdala/anterior temporal region and the ventral aspect of both the anterior cingulate and frontal cortices. By contrast, lower functional connectivity was identified in dorsal executive networks involving dorsal prefrontal and anterior cingulate cortices and posterior insula. Both functional connectivity increases and decreases contributed to account for patient scoring on adaptive behavior related to communication skills. The data overall suggest a distinctive functional organization with system-specific anomalies associated with reduced adaptive efficiency. Opposite effects were identified on distinct frontal and anterior temporal structures and relative sparing of posterior brain areas, which is generally consistent with Down syndrome cognitive profile. Relevantly, measurable connectivity changes, as a marker of the brain functional anomaly, could have a role in the development of therapeutic strategies addressed to improve the quality of life in Down syndrome individuals. PMID:25461715

Pujol, Jesus; Del Hoyo, Laura; Blanco-Hinojo, Laura; de Sola, Susana; Macià, Dídac; Martínez-Vilavella, Gerard; Amor, Marta; Deus, Joan; Rodríguez, Joan; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

2014-10-28

142

Functional specificity in the human brain: A window into the functional architecture of the mind  

E-print Network

Functional specificity in the human brain: A window into the functional architecture of the mind for review February 22, 2010) Is the human mind/brain composed of a set of highly specialized components, proponents of specialized organs or modules of the mind and brain--from the phrenologists to Broca to Chomsky

Kanwisher, Nancy

143

Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis  

Microsoft Academic Search

Cognitive dysfunction (affecting particularly attention and working memory) occurs early in patients with multiple sclerosis. Previous studies have focused on identifying potentially adaptive functional reorganization through recruitment of new brain regions that could limit expression of these deficits. However, lesion studies remind us that functional specializations in the brain make certain brain regions necessary for a given task. We therefore

Sarah Cader; Alberto Cifelli; Yasir Abu-Omar; Jacqueline Palace; Paul M. Matthews

2006-01-01

144

Understanding the Evolution of Mammalian Brain Structures; the Need for a (New) Cerebrotype Approach  

PubMed Central

The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular (“mosaic evolution”) to coordinated changes in brain structure size (“concerted evolution”) or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a “taxon cerebrotype”. In other taxa, no clear pattern is found, reflecting heterogeneity of the species’ lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex “space” of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution. PMID:24962772

Willemet, Romain

2012-01-01

145

State-related functional integration and functional segregation brain networks in schizophrenia  

PubMed Central

Altered topological properties of brain connectivity networks have emerged as important features of schizophrenia. The aim of this study was to investigate how the state-related modulations to graph measures of functional integration and functional segregation brain networks are disrupted in schizophrenia. Firstly, resting state and auditory oddball discrimination (AOD) fMRI data of healthy controls (HCs) and schizophrenia patients (SZs) were decomposed into spatially independent components (ICs) by group independent component analysis (ICA). Then, weighted positive and negative functional integration (inter-component networks) and functional segregation (intra-component networks) brain networks were built in each subject. Subsequently, connectivity strength, clustering coefficient, and global efficiency of all brain networks were statistically compared between groups (HCs and SZs) in each state and between states (rest and AOD) within group. We found that graph measures of negative functional integration brain network and several positive functional segregation brain networks were altered in schizophrenia during AOD task. The metrics of positive functional integration brain network and one positive functional segregation brain network were higher during the resting state than during the AOD task only in HCs. These findings imply that state-related characteristics of both functional integration and functional segregation brain networks are impaired in schizophrenia which provides new insight into the altered brain performance in this brain disorder. PMID:24094882

Yu, Qingbao; Sui, Jing; Kiehl, Kent A.; Pearlson, Godfrey; Calhoun, Vince D.

2013-01-01

146

Functional connectivity of the rodent brain using optical imaging  

NASA Astrophysics Data System (ADS)

The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis showed a decreasing trend of homologous correlation in the motor and cingulate cortices. Graph analyses showed a randomization of the cortex functional networks, suggesting a loss of connectivity, more specifically in the motor cortex ipsilateral to the treated carotid; however these changes are not reflected in differentiated metabolic estimates. Confounds remain due to the fact that carotid rigidification gives rise to neural decline in the hippocampus as well as unilateral alteration of vascular pulsatility; however the results support the need to look at several hemodynamic parameters when imaging the brain after arterial remodeling. The third article of this thesis studies a model of inflammatory injury on the newborn rat. Oxygen saturation and functional connectivity were assessed with photoacoustic tomography. Oxygen saturation was decreased in the site of the lesion and on the cortex ipsilateral to the injury; however this decrease is not fully explained by hypovascularization revealed by histology. Seed-based functional connectivity analysis showed that inter-hemispheric connectivity is not affected by inflammatory injury.

Guevara Codina, Edgar

147

The Role of Noise in Brain Function  

NASA Astrophysics Data System (ADS)

Noise plays a fundamental role in all living organisms from the earliest prokaryotes to advanced mammalian forms, such as ourselves. In the context of living organisms, the term 'noise' usually refers to the variance amongst measurements obtained from repeated identical experimental conditions, or from output signals from these systems. It is noteworthy that both these conditions are universally characterized by the presence of background fluctuations. In non-biological systems, such as electronics or in communications sciences, where the aim is to send error-free messages, noise was generally regarded as a problem. The discovery of Stochastic Resonances (SR) in non-linear dynamics brought a shift of perception where noise, rather than representing a problem, became fundamental to system function, especially so in biology. The question now is: to what extent is biological function dependent on random noise. Indeed, it seems feasible that noise also plays an important role in neuronal communication and oscillatory synchronization. Given this approach, it follows that determining Fisher information content could be relevant in neuronal communication. It also seems possible that the principle of least time, and that of the sum over histories, could be important basic principles in understanding the coherence dynamics responsible for action and perception. Ultimately, external noise cancellation combined with intrinsic noise signal embedding and, the use of the principle of least time may be considered an essential step in the organization of central nervous system (CNS) function.

Roy, S.; Llinás, R.

2012-12-01

148

NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.  

PubMed

The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships 'hidden' in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed. PMID:24508754

Kasabov, Nikola K

2014-04-01

149

Hierarchical organization of brain functional networks during visual tasks  

NASA Astrophysics Data System (ADS)

The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

2011-09-01

150

Functional photoacoustic tomography of animal brains  

E-print Network

This research is primarily focused on laser-based non-invasive photoacoustic tomography of small animal brains. Photoacoustic tomography, a novel imaging modality, was applied to visualize the distribution of optical absorptions in small...

Wang, Xueding

2005-11-01

151

Mapping cognitive brain function with modern high-resolution electroencephalography  

Microsoft Academic Search

High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. While electroencephalography (EEG) provides temporal resolution in the millisecond range, which would seem to make it an ideal complement to other imaging modalities, traditional EEG technology and practice provides insufficient spatial detail to identify relationships between brain electrical events and structures and

Alan Gevins; Harrison Leong; Michael E. Smith; Jian Le; Robert Du

1995-01-01

152

Correspondence of the brain's functional architecture during activation and rest  

E-print Network

identified. These distinct patterns can be separated from each other from a single resting FMRI dataset ``active'' even when at ``rest.'' brain connectivity BrainMap FMRI functional connectivity resting (FMRI) since it was first noted that, even with the subject at rest, the FMRI time series from one part

Miall, Chris

153

Near to the Brain: Functional Near-Infrared Spectroscopy as a Lightweight Brain Imaging Technique for Visualization  

E-print Network

Near to the Brain: Functional Near-Infrared Spectroscopy as a Lightweight Brain Imaging Technique the use of cumbersome or expensive brain imaging equipment. In recent years, functional near-infrared near-infrared spectroscopy (fNIRS) is an emerging technology for brain imaging being developed

Tomkins, Andrew

154

Brain Chemistry and Behaviour: An Update on Neuroscience Research and Its Implications for Understanding Drug Addiction  

ERIC Educational Resources Information Center

Psychiatric disorders such as drug addiction represent one of the biggest challenges to society. This article reviews clinical and basic science research to illustrate how developments in research methodology have enabled neuroscientists to understand more about the brain mechanisms involved in addiction biology. Treating addiction represents a…

Robinson, Emma S. J.

2011-01-01

155

Brain Responses to Acupuncture Are Probably Dependent on the Brain Functional Status  

PubMed Central

In recent years, neuroimaging studies of acupuncture have explored extensive aspects of brain responses to acupuncture in finding its underlying mechanisms. Most of these studies have been performed on healthy adults. Only a few studies have been performed on patients with diseases. Brain responses to acupuncture in patients with the same disease at different pathological stages have not been explored, although it may be more important and helpful in uncovering its underlying mechanisms. In the present study, we used fMRI to compare brain responses to acupuncture in patients with Bell's palsy at different pathological stages with normal controls and found that the brain response to acupuncture varied at different pathological stages of Bell's palsy. The brain response to acupuncture decreased in the early stages, increased in the later stages, and nearly returned to normal in the recovered group. All of the changes in the brain response to acupuncture could be explained as resulting from the changes in the brain functional status. Therefore, we proposed that the brain response to acupuncture is dependent on the brain functional status, while further investigation is needed to provide more evidence in support of this proposition. PMID:23737817

Sun, Jinbo; Xu, Chunsheng; Zhu, Yuanqiang; Qin, Wei; Tian, Jie

2013-01-01

156

Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies.  

PubMed

Despite significant advances in multimodal imaging techniques and analysis approaches, unimodal studies are still the predominant way to investigate brain changes or group differences, including structural magnetic resonance imaging (sMRI), functional MRI (fMRI), diffusion tensor imaging (DTI) and electroencephalography (EEG). Multimodal brain studies can be used to understand the complex interplay of anatomical, functional and physiological brain alterations or development, and to better comprehend the biological significance of multiple imaging measures. To examine the function-structure associations of the brain in a more comprehensive and integrated manner, we reviewed a number of multimodal studies that combined two or more functional (fMRI and/or EEG) and structural (sMRI and/or DTI) modalities. In this review paper, we specifically focused on multimodal neuroimaging studies on cognition, aging, disease and behavior. We also compared multiple analysis approaches, including univariate and multivariate methods. The possible strengths and limitations of each method are highlighted, which can guide readers when selecting a method based on a given research question. In particular, we believe that multimodal fusion approaches will shed further light on the neuronal mechanisms underlying the major structural and functional pathophysiological features of both the healthy brain (e.g. development) or the diseased brain (e.g. mental illness) and, in the latter case, may provide a more sensitive measure than unimodal imaging for disease classification, e.g. multimodal biomarkers, which potentially can be used to support clinical diagnosis based on neuroimaging techniques. PMID:24084066

Sui, Jing; Huster, Rene; Yu, Qingbao; Segall, Judith M; Calhoun, Vince D

2014-11-15

157

Functional geometry alignment and localization of brain areas  

E-print Network

Matching functional brain regions across individuals is a challenging task, largely due to the variability in their location and extent. It is particularly difficult, but highly relevant, for patients with pathologies such ...

Langs, Georg

158

Neuron-glia networks: integral gear of brain function  

E-print Network

Astrocytes, the most abundant glial cell in the brain, play critical roles in metabolic and homeostatic functions of the Nervous System; however, their participation in coding information and cognitive processes has been ...

Perea, Gertrudis

159

Weighted Functional Brain Network Modeling via Network Filtration  

E-print Network

), 26 autism spectrum disorder (ASD) and 11 pediatric control (PedCon) children ob- tained through Learning #12;Figure 1: Schematic diagram of proposed functional brain network filtration framework using

Chung, Moo K.

160

Functional brain imaging studies of youth depression: A systematic review?  

PubMed Central

Background There is growing interest in understanding the neurobiology of major depressive disorder (MDD) in youth, particularly in the context of neuroimaging studies. This systematic review provides a timely comprehensive account of the available functional magnetic resonance imaging (fMRI) literature in youth MDD. Methods A literature search was conducted using PubMED, PsycINFO and Science Direct databases, to identify fMRI studies in younger and older youth with MDD, spanning 13–18 and 19–25 years of age, respectively. Results Twenty-eight studies focusing on 5 functional imaging domains were identified, namely emotion processing, cognitive control, affective cognition, reward processing and resting-state functional connectivity. Elevated activity in “extended medial network” regions including the anterior cingulate, ventromedial and orbitofrontal cortices, as well as the amygdala was most consistently implicated across these five domains. For the most part, findings in younger adolescents did not differ from those in older youth; however a general comparison of findings in both groups compared to adults indicated differences in the domains of cognitive control and affective cognition. Conclusions Youth MDD is characterized by abnormal activations in ventromedial frontal regions, the anterior cingulate and amygdala, which are broadly consistent with the implicated role of medial network regions in the pathophysiology of depression. Future longitudinal studies examining the effects of neurodevelopmental changes and pubertal maturation on brain systems implicated in youth MDD will provide a more comprehensive neurobiological model of youth depression. PMID:24455472

Kerestes, Rebecca; Davey, Christopher G.; Stephanou, Katerina; Whittle, Sarah; Harrison, Ben J.

2013-01-01

161

Oxytocin enhances brain function in children with autism  

PubMed Central

Following intranasal administration of oxytocin (OT), we measured, via functional MRI, changes in brain activity during judgments of socially (Eyes) and nonsocially (Vehicles) meaningful pictures in 17 children with high-functioning autism spectrum disorder (ASD). OT increased activity in the striatum, the middle frontal gyrus, the medial prefrontal cortex, the right orbitofrontal cortex, and the left superior temporal sulcus. In the striatum, nucleus accumbens, left posterior superior temporal sulcus, and left premotor cortex, OT increased activity during social judgments and decreased activity during nonsocial judgments. Changes in salivary OT concentrations from baseline to 30 min postadministration were positively associated with increased activity in the right amygdala and orbitofrontal cortex during social vs. nonsocial judgments. OT may thus selectively have an impact on salience and hedonic evaluations of socially meaningful stimuli in children with ASD, and thereby facilitate social attunement. These findings further the development of a neurophysiological systems-level understanding of mechanisms by which OT may enhance social functioning in children with ASD. PMID:24297883

Gordon, Ilanit; Vander Wyk, Brent C.; Bennett, Randi H.; Cordeaux, Cara; Lucas, Molly V.; Eilbott, Jeffrey A.; Zagoory-Sharon, Orna; Leckman, James F.; Feldman, Ruth; Pelphrey, Kevin A.

2013-01-01

162

Efficiency and Cost of Economical Brain Functional Networks  

Microsoft Academic Search

Brain anatomical networks are sparse, complex, and have economical small-world properties. We investigated the efficiency and cost of human brain functional networks measured using functional magnetic resonance imaging (fMRI) in a factorial design: two groups of healthy old (N ¼11; mean age ¼66.5 years) and healthy young (N ¼15; mean age ¼ 24.7 years) volunteers were each scanned twice in

Sophie Achard; Ed Bullmore

2007-01-01

163

Theory of mind and the social brain: implications for understanding the genetic basis of schizophrenia.  

PubMed

Genome-wide association studies in schizophrenia have recently made significant progress in our understanding of the complex genetic architecture of this disorder. Many genetic loci have been identified and now require functional investigation. One approach involves studying their correlation with neuroimaging and neurocognitive endophenotypes. Theory of Mind (ToM) deficits are well established in schizophrenia and they appear to fulfill criteria for being considered an endophenotype. We aim to review the behavioral and neuroimaging-based studies of ToM in schizophrenia, assess its suitability as an endophenotype, discuss current findings, and propose future research directions. Suitable research articles were sourced from a comprehensive literature search and from references identified through other studies. ToM deficits are repeatable, stable, and heritable: First-episode patients, those in remission and unaffected relatives all show deficits. Activation and structural differences in brain regions believed important for ToM are also consistently reported in schizophrenia patients at all stages of illness, although no research to date has examined unaffected relatives. Studies using ToM as an endophenotype are providing interesting genetic associations with both single nucleotide polymorphisms (SNPs) and specific copy number variations (CNVs) such as the 22q11.2 deletion syndrome. We conclude that ToM is an important cognitive endophenotype for consideration in future studies addressing the complex genetic architecture of schizophrenia, and may help identify more homogeneous clinical sub-types for further study. PMID:23927712

Martin, A K; Robinson, G; Dzafic, I; Reutens, D; Mowry, B

2014-01-01

164

Generating Text from Functional Brain Images  

PubMed Central

Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., “Apartment’’) while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., “door,” “window” for “Apartment’’). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively. PMID:21927602

Pereira, Francisco; Detre, Greg; Botvinick, Matthew

2011-01-01

165

Imaging of Brain Function Using SPECT  

Microsoft Academic Search

Single photon emission computed tomography (SPECT) is a technique widely used in nuclear medicine for the imaging of the many organs including the skeleton and heart, as well as for whole body imaging for the detection of tumors. The use of tracers of cerebral perfusion and more recently brain neurotransmitter systems has resulted in the development of a number of

James M. Warwick

2004-01-01

166

Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging  

Microsoft Academic Search

Functional magnetic resonance imaging (FMRI) was used to identify candidate language processing areas in the intact hu- man brain. Language was defined broadly to include both phonological and lexical-semantic functions and to exclude sensory, motor, and general executive functions. The language activation task required phonetic and semantic analysis of aurally presented words and was compared with a control task involving

Jeffrey R. Binder; Julie A. Frost; Thomas A. Hammeke; Robert W. Cox; Stephen M. Rao; Thomas Prieto

1997-01-01

167

Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes  

PubMed Central

Adolescence is a transitional period between childhood and adulthood that encompasses vast changes within brain systems that parallel some, but not all, behavioral changes. Elevations in emotional reactivity and reward processing follow an inverted U shape in terms of onset and remission, with the peak occurring during adolescence. However, cognitive processing follows a more linear course of development. This review will focus on changes within key structures and will highlight the relationships between brain changes and behavior, with evidence spanning from functional magnetic resonance imaging (fMRI) in humans to molecular studies of receptor and signaling factors in animals. Adolescent changes in neuronal substrates will be used to understand how typical and atypical behaviors arise during adolescence. We draw upon clinical and preclinical studies to provide a neural framework for defining adolescence and its role in the transition to adulthood. PMID:21600919

Brenhouse, Heather C.; Andersen, Susan L.

2011-01-01

168

Human brain activity with functional NIR optical imager  

NASA Astrophysics Data System (ADS)

In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

Luo, Qingming

2001-08-01

169

Understanding the Role of Nutrition in the Brain & Behavioral Development of Toddlers and Preschool Children: Identifying and Overcoming Methodological Barriers  

PubMed Central

The pre-school years (i.e., 1–5 years of age) is a time of rapid and dramatic postnatal brain development, i.e., neural plasticity, and of fundamental acquisition of cognitive development i.e., working memory, attention and inhibitory control. Also, it is a time of transition from a direct maternal mediation/selection of diet-based nutrition to food selection that is more based on self-selection and self-gratification. However, there have been fewer published studies in pre-school children than in infants or school-aged children that examined the role of nutrition in brain/mental development (i.e., 125 studies vs. 232 and 303 studies, respectively during the last 28 years, Figure 1). This may arise because of age-related variability, in terms of individual differences in temperament, linguistic ability, and patterns of neural activity that may affect assessment of neural and cognitive development in pre-school children. In this review, we suggest several approaches for assessing brain function in children that can be refined. It would be desirable if the discipline developed some common elements to be included in future studies of diet and brain function, with the idea that they would complement more targeted measures based on time of exposure and understanding of data from animal models. Underlining this approach is the concepts of “window of sensitivity” during which nutrients may affect postnatal neural development: investigators and expert panels need to specifically look for region-specific changes and do so with understanding of the likely time window during which the nutrient was, or was not available. (244 words) PMID:19761650

Rosales, Francisco J.; Reznick, J. Steven; Zeisel, Steven H.

2009-01-01

170

Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through Neuregulin-1–ErbB4 and DISC1  

PubMed Central

Schizophrenia (SZ) is primarily an adult psychiatric disorder in which disturbances elicited by susceptibility genes and environmental insults during early neurodevelopment initiate over a long time course neurophysiological changes that culminate in the onset of full-blown disease nearly two decades later. Aberrant postnatal brain maturation is an essential mechanism underlying the disease. Currently symptoms of SZ are treated with anti-psychotic medications that have variable efficacy and severe side effects. There has been much interest in the prodromal phase and the possibility of preventing SZ by interfering with the aberrant postnatal brain maturation associated with this disorder. It follows that it is crucial to understand the mechanisms that underlie the long-term progression to full disease manifestation to identify the best targets and approaches towards this goal. We believe that studies of certain SZ genetic susceptibility factors with neurodevelopmental implications will be key tools for this effort. Accumulating evidence suggests that Neuregulin-1 (NRG1) and DISC1 are likely to functionally converge and play key roles in brain development. We provide an update on the role of these emerging concepts in understanding the complex time-course of SZ from early neurodevelopmental disturbances to later onset, and suggest ways of testing them in the future. PMID:19712980

Jaaro-Peled, Hanna; Hayashi-Takagi, Akiko; Seshadri, Saurav; Kamiya, Atsushi; Brandon, Nicholas J.; Sawa, Akira

2009-01-01

171

The impact of alcohol dependence on social brain function.  

PubMed

The impact of alcoholism (ALC) or alcohol dependence on the neural mechanisms underlying cognitive and affective empathy (i.e. the different routes to understanding other people's minds) in schizophrenic patients and non-schizophrenic subjects is still poorly understood. We therefore aimed at determining the extent to which the ability to infer other people's mental states and underlying neural mechanisms were affected by ALC. We examined 48 men, who suffered either from ALC, schizophrenia, both disorders or none of these disorders, using functional magnetic resonance imaging while performing on a mind reading task that involves both cognitive and affective aspects of empathy. Using voxel-based morphometry, we additionally examined whether between-group differences in functional activity were associated with deficits in brain structural integrity. During mental state attribution, all clinical groups as compared with healthy controls exhibited poor performance as well as reduced right-hemispheric insular function with the highest error rate and insular dysfunction seen in the schizophrenic patients without ALC. Accordingly, both behavioral performance and insular functioning revealed schizophrenia × ALC interaction effects. In addition, schizophrenic patients relative to non-schizophrenic subjects (regardless of ALC) exhibited deficits in structural integrity and task-related recruitment of the left ventrolateral prefrontal cortex (vlPFC). Our data suggest that ALC-related impairment in the ability to infer other people's mental states is limited to insular dysfunction and thus deficits in affective empathy. By contrast, mentalizing in schizophrenia (regardless of ALC) may be associated with insular dysfunction as well as a combination of structural and functional deficits in the left vlPFC. PMID:22340281

Gizewski, Elke R; Müller, Bernhard W; Scherbaum, Norbert; Lieb, Bodo; Forsting, Michael; Wiltfang, Jens; Leygraf, Norbert; Schiffer, Boris

2013-01-01

172

The role of tumor necrosis factor receptor superfamily members in mammalian brain development, function and homeostasis  

PubMed Central

Tumor necrosis factor receptor superfamily (TNFRSF) members were initially identified as immunological mediators, and are still commonly perceived as immunological molecules. However, our understanding of the diversity of TNFRSF members’ roles in mammalian physiology has grown significantly since the first discovery of TNFRp55 (TNFRSF1) in 1975. In particular, the last decade has provided evidence for important roles in brain development, function and the emergent field of neuronal homeostasis. Recent evidence suggests that TNFRSF members are expressed in an overlapping regulated pattern during neuronal development, participating in the regulation of neuronal expansion, growth, differentiation and regional pattern development. This review examines evidence for non-immunological roles of TNFRSF members in brain development, function and maintenance under normal physiological conditions. In addition, several aspects of brain function during inflammation will also be described, when illuminating and relevant to the non-immunological role of TNFRSF members. Finally, key questions in the field will be outlined. PMID:21861782

Twohig, Jason P.; Cuff, Simone M.; Yong, Audrey A.; Wang, Eddie C.Y.

2012-01-01

173

Risk, adaptation and the functional teenage brain.  

PubMed

Over the last decade, the propensity for young people to take risks has been a particular focus of neuroscientific inquiries into human development. Taking population-level data about teenagers' involvement in drinking, smoking, dangerous driving and unprotected sex as indicative, a consensus has developed about the association between risk-taking and the temporal misalignment in the development of reward-seeking and executive regions of the brain. There are epistemological difficulties in this theory. Risk, the brain, and adolescence are different kinds of objects, and bringing them into the same frame for analysis is not unproblematic. In particular, risk is inextricably contextual and value-driven. The assessment of adolescent behaviour and decision-making as 'sub-optimal', and the implication that the developmental schedule of the teenage brain is dysfunctional, is also reassessed in terms of evolutionary development of the individual, the family and the human community. The paper proposes a view of adolescent development as adaptive, and a focus on young people's capacities in the profile of the needs of the community as a whole. PMID:24468052

Sercombe, Howard

2014-08-01

174

Noradrenaline and 5-hydroxytryptamine modulation of brain dopamine function  

PubMed Central

1 Dopamine deficiency in the brain is the prime biochemical deficit in Parkinson's disease, but loss of noradrenaline and 5HT also may contribute. 2 In rats, 5HT-containing neurones originating from the dorsal and median raphe nuclei innervate forebrain dopamine-containing areas so as to impose an inhibitory regulatory tone on dopamine function. However, this interaction between brain dopamine and 5HT-containing neuronal systems is complex, and the effect produced appears dependent on the relative activity of each system. 3. Anatomical evidence for innervation of dopamine-containing brain regions by noradrenaline fibres in the rat is scanty, but functional studies suggest the existence of inputs which facilitate dopamine function. 4 Drug therapy designed to increase or decrease brain 5HT function has had no consistent effect in Parkinson's disease. 5 Manipulation of brain noradrenergic activity in Parkinson's disease had little effect, although the noradrenaline precursor L-threo-DOPS may reduce freezing attacks. 6 Until more specific drug molecules are available the role of brain noradrenergic and 5HT mechanisms in Parkinson's disease remains uncertain. PMID:6337612

Jenner, P.; Sheehy, M.; Marsden, C. D.

1983-01-01

175

Understanding well-being in the evolutionary context of brain development.  

PubMed Central

Much of the work on well-being and positive emotions has tended to focus on the adult, partly because this is when problems are manifest and well-being often becomes an issue by its absence. However, it is pertinent to ask if early life events might engender certain predispositions that have consequences for adult well-being. The human brain undergoes much of its growth and development postnatally until the age of seven and continues to extend its synaptic connections well into the second decade. Indeed, the prefrontal association cortex, areas of the brain concerned with forward planning and regulatory control of emotional behaviour, continue to develop until the age of 20. In this article, I consider the significance of this extended postnatal developmental period for brain maturation and how brain evolution has encompassed certain biological changes and predispositions that, with our modern lifestyle, represent risk factors for well-being. An awareness of these sensitive phases in brain development is important in understanding how we might facilitate secure relationships and high self-esteem in our children. This will provide the firm foundations on which to develop meaningful lifestyles and relationships that are crucial to well-being. PMID:15347526

Keverne, Eric B

2004-01-01

176

Brain glycogen—new perspectives on its metabolic function and regulation at the subcellular level  

PubMed Central

Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia. In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies—it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential component in the intermolecular mechanisms of glycogen metabolism, we suggest that glycogen metabolism in astrocytes is compartmentalized at the subcellular level. As a consequence, the meaning and importance of conventional terms used to describe glycogen metabolism (e.g., turnover) is challenged. Overall, this review represents an overview of contemporary knowledge about brain glycogen and its metabolism and function. However, it also has a sharp focus on what we do not know, which is perhaps even more important for the future quest of uncovering the roles of glycogen in brain physiology and pathology. PMID:22403540

Obel, Linea F.; Müller, Margit S.; Walls, Anne B.; Sickmann, Helle M.; Bak, Lasse K.; Waagepetersen, Helle S.; Schousboe, Arne

2012-01-01

177

Transforming Growth Factor-? in Brain Functions and Dysfunctions  

Microsoft Academic Search

Transforming growth factor-?s (TGF-?s) belong to a superfamily of related peptides that play pivotal roles in intercellular\\u000a communication. Among these biological agents, TGF-?1 has been involved in a number of brain functions and dysfunctions throughout\\u000a life, ranging from neurogenesis to neurodegeneration. Animal models mimicking some aspects of human brain pathologies have\\u000a led to the idea that TGF-? may be a

Denis Vivien; Karim Benchenane; Carine Ali

178

Drug addiction: Functional neurotoxicity of the brain reward systems  

Microsoft Academic Search

Drug addiction is a chronic relapsing brain disorder characterized by a compulsion to take a drug with loss of control over\\u000a drug intake. The hypothesis under discussion here is that chronic drug use produces long-lasting dysfunctions in neurons associated\\u000a with the brain reward circuitry, and this “functional neurotoxicity” of drugs of abuse leads to vulnerability to relapse and\\u000a continued drug

Friedbert Weiss; George F. Koob

2001-01-01

179

Functional Brain Networks Develop from a “Local to Distributed” Organization  

Microsoft Academic Search

The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze

Damien A. Fair; Alexander L. Cohen; Jonathan D. Power; Nico U. F. Dosenbach; Jessica A. Church; Francis M. Miezin; Bradley L. Schlaggar; Steven E. Petersen

2009-01-01

180

Early Bifrontal Brain Injury: Disturbances in Cognitive Function Development  

PubMed Central

We describe six psychomotor, language, and neuropsychological sequential developmental evaluations in a boy who sustained a severe bifrontal traumatic brain injury (TBI) at 19 months of age. Visuospatial, drawing, and writing skills failed to develop normally. Gradually increasing difficulties were noted in language leading to reading and spontaneous speech difficulties. The last two evaluations showed executive deficits in inhibition, flexibility, and working memory. Those executive abnormalities seemed to be involved in the other impairments. In conclusion, early frontal brain injury disorganizes the development of cognitive functions, and interactions exist between executive function and other cognitive functions during development. PMID:21188227

Bonnier, Christine; Costet, Aurélie; Hmaimess, Ghassan; Catale, Corinne; Maillart, Christelle; Marique, Patricia

2010-01-01

181

Hemodynamic impairment as a stimulus for functional brain reorganization  

Microsoft Academic Search

We used functional magnetic resonance imaging to investigate whether hemispheral hemodynamic impairment can play an independent role in the functional reorganization of motor-related activity in the brain. Fourteen patients with large vessel occlusion but no infarct performed a simple motor task with the hand contralateral to the occluded vessel. Statistical parametric maps of regional activity were generated to compare the

Randolph S Marshall; John W Krakauer; Theresa Matejovsky; Eric Zarahn; Anna Barnes; Ronald M Lazar; Joy Hirsch

2006-01-01

182

Magnetic resonance imaging of brain function and neurochemistry  

Microsoft Academic Search

In the past decade, magnetic resonance imaging (MRI) research has been focused on the acquisition of physiological and biochemical information noninvasively. Probably the most notable accomplishment in this general effort has been the introduction of the MR approaches to map brain function. This capability, often referred to as functional magnetic resonance imaging, or fMRI, is based on the sensitivity of

KAMIL UGURBIL; DAE-SHIK KIM; TIM DUONG; XIAOPING HU; SEIJI OGAWA; ROLF GRUETTER; WEI CHEN; SEONG-GI KIM; XIAO-HUNG ZHU; ESSA YACOUB; PIERRE-FRANCOIS VAN DE MOORTELE; AMIR SHMUEL; JOSEF PFEUFFER; HELLMUT MERKLE; PETER ANDERSEN; GREGOR ADRIANY

2001-01-01

183

Functional magnetic resonance imaging (FMRI) of the human brain  

Microsoft Academic Search

Functional magnetic resonance imaging (FMRI) can provide detailed images of human brain that reflect localized changes in cerebral blood flow and oxygenation induced by sensory, motor, or cognitive tasks. This review presents methods for gradient-recalled echo-planar functional magnetic resonance imaging (FMRI). Also included is a discussion of the hypothesized basis of FMRI, imaging hardware, a unique visual stimulation apparatus, image

Edgar A. DeYoe; Peter Bandettini; Jay Neitz; David Miller; Paula Winans

1994-01-01

184

Stereotactic PET atlas of the human brain: Aid for visual interpretation of functional brain images  

SciTech Connect

In the routine analysis of functional brain images obtained by PET, subjective visual interpretation is often used for anatomic localization. To enhance the accuracy and consistency of the anatomic interpretation, a PET stereotactic atlas and localization approach was designed for functional brain images. The PET atlas was constructed from a high-resolution [{sup 18}F]fluorodeoxyglucose (FDG) image set of a normal volunteer (a 41-yr-ld woman). The image set was reoriented stereotactically, according to the intercommissural (anterior and posterior commissures) line and transformed to the standard stereotactic atlas coordinates. Cerebral structures were annotated on the transaxial planes using a proportional grid system and surface-rendered images. The stereotactic localization technique was applied to image sets from patients with Alzheimer`s disease, and areas of functional alteration were localized visually by referring to the PET atlas. Major brain structures were identified on both transaxial planes and surface-rendered images. In the stereotactic system, anatomic correspondence between the PET atlas and stereotactically reoriented individual image sets of patients with Alzheimer`s disease facilitated both indirect and direct localization of the cerebral structures. Because rapid stereotactic alignment methods for PET images are now available for routine use, the PET atlas will serve as an aid for visual interpretation of functional brain images in the stereotactic system. Widespread application of stereotactic localization may be used in functional brain images, not only in the research setting, but also in routine clinical situations. 41 refs., 3 figs.

Minoshima, S.; Koeppe, R.A.; Frey, A.; Ishihara, M.; Kuhl, D.E. [Univ. of Michigan, Ann Arbor, MI (United States)

1994-06-01

185

The modulation of brain functional connectivity with manual acupuncture in healthy subjects: An electroencephalograph case study  

NASA Astrophysics Data System (ADS)

Manual acupuncture is widely used for pain relief and stress control. Previous studies on acupuncture have shown its modulatory effects on the functional connectivity associated with one or a few preselected brain regions. To investigate how manual acupuncture modulates the organization of functional networks at a whole-brain level, we acupuncture at ST36 of a right leg to obtain electroencephalograph (EEG) signals. By coherence estimation, we determine the synchronizations between all pairwise combinations of EEG channels in three acupuncture states. The resulting synchronization matrices are converted into functional networks by applying a threshold, and the clustering coefficients and path lengths are computed as a function of threshold. The results show that acupuncture can increase functional connections and synchronizations between different brain areas. For a wide range of thresholds, the clustering coefficient during acupuncture and post-acupuncture period is higher than that during the pre-acupuncture control period, whereas the characteristic path length is shorter. We provide further support for the presence of “small-world" network characteristics in functional networks by using acupuncture. These preliminary results highlight the beneficial modulations of functional connectivity by manual acupuncture, which could contribute to the understanding of the effects of acupuncture on the entire brain, as well as the neurophysiological mechanisms underlying acupuncture. Moreover, the proposed method may be a useful approach to the further investigation of the complexity of patterns of interrelations between EEG channels.

Yi, Guo-Sheng; Wang, Jiang; Han, Chun-Xiao; Deng, Bin; Wei, Xi-Le; Li, Nuo

2013-02-01

186

Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.  

PubMed

Understanding the intrinsic circuit-level functional organization of the brain has benefited tremendously from the advent of resting-state fMRI (rsfMRI). In humans, resting-state functional network has been consistently mapped and its alterations have been shown to correlate with symptomatology of various neurological or psychiatric disorders. To date, deciphering the mouse brain functional connectivity (MBFC) with rsfMRI remains a largely underexplored research area, despite the plethora of human brain disorders that can be modeled in this specie. To pave the way from pre-clinical to clinical investigations we characterized here the intrinsic architecture of mouse brain functional circuitry, based on rsfMRI data acquired at 7T using the Cryoprobe technology. High-dimensional spatial group independent component analysis demonstrated fine-grained segregation of cortical and subcortical networks into functional clusters, overlapping with high specificity onto anatomical structures, down to single gray matter nuclei. These clusters, showing a high level of stability and reliability in their patterning, formed the input elements for computing the MBFC network using partial correlation and graph theory. Its topological architecture conserved the fundamental characteristics described for the human and rat brain, such as small-worldness and partitioning into functional modules. Our results additionally showed inter-modular interactions via "network hubs". Each major functional system (motor, somatosensory, limbic, visual, autonomic) was found to have representative hubs that might play an important input/output role and form a functional core for information integration. Moreover, the rostro-dorsal hippocampus formed the highest number of relevant connections with other brain areas, highlighting its importance as core structure for MBFC. PMID:24718287

Mechling, Anna E; Hübner, Neele S; Lee, Hsu-Lei; Hennig, Jürgen; von Elverfeldt, Dominik; Harsan, Laura-Adela

2014-08-01

187

UNDERSTANDING GENE AND ALLELE FUNCTION WITH TWO-HYBRID METHODS  

Microsoft Academic Search

Two-hybrid schemes for detecting protein-protein interactions have deepened our understanding of biology by allowing scientists to identify individual important proteins. Recent developments will allow biologists to chart regulatory networks and to rapidly generate hypotheses for the function of genes, allelic variants, and the connections between proteins that make up these networks. Future devel- opments will allow biologists to test inferences

Roger Brent; Russell L. Finley Jr

1997-01-01

188

Spatial variability of functional brain networks in early-blind and sighted subjects.  

PubMed

To further the understanding how the human brain adapts to early-onset blindness, we searched in early-blind and normally-sighted subjects for functional brain networks showing the most and least spatial variabilities across subjects. We hypothesized that the functional networks compensating for early-onset blindness undergo cortical reorganization. To determine whether reorganization of functional networks affects spatial variability, we used functional magnetic resonance imaging to compare brain networks, derived by independent component analysis, of 7 early-blind and 7 sighted subjects while they rested or listened to an audio drama. In both conditions, the blind compared with sighted subjects showed more spatial variability in a bilateral parietal network (comprising the inferior parietal and angular gyri and precuneus) and in a bilateral auditory network (comprising the superior temporal gyri). In contrast, a vision-related left-hemisphere-lateralized occipital network (comprising the superior, middle and inferior occipital gyri, fusiform and lingual gyri, and the calcarine sulcus) was less variable in blind than sighted subjects. Another visual network and a tactile network were spatially more variable in the blind than sighted subjects in one condition. We contemplate whether our results on inter-subject spatial variability of brain networks are related to experience-dependent brain plasticity, and we suggest that auditory and parietal networks undergo a stronger experience-dependent reorganization in the early-blind than sighted subjects while the opposite is true for the vision-related occipital network. PMID:24680867

Boldt, Robert; Seppä, Mika; Malinen, Sanna; Tikka, Pia; Hari, Riitta; Carlson, Synnöve

2014-07-15

189

Sustained deep-tissue pain alters functional brain connectivity  

PubMed Central

Recent functional brain connectivity studies have contributed to our understanding of the neurocircuitry supporting pain perception. However, evoked-pain connectivity studies have employed cutaneous and/or brief stimuli, which induce sensations that differ appreciably from the clinical pain experience. Sustained myofascial pain evoked by pressure cuff affords an excellent opportunity to evaluate functional connectivity change to more clinically-relevant sustained deep-tissue pain. Connectivity in specific networks known to be modulated by evoked pain (sensorimotor, salience, dorsal attention, fronto-parietal control and default mode networks; SMN, SLN, DAN, FCN and DMN) was evaluated with functional-connectivity MRI, both at rest and during a sustained (6-minute) pain state in healthy adults. We found that pain was stable with no significant changes of subjects’ pain ratings over the stimulation period. Sustained pain reduced connectivity between the SMN and the contralateral leg primary sensorimotor (S1/M1) representation. Such SMN-S1/M1 connectivity decreases were also accompanied by and correlated with increased SLN-S1/M1 connectivity, suggesting recruitment of activated S1/M1 from SMN to SLN. Sustained pain also increased DAN connectivity to pain processing regions such as mid-cingulate cortex, posterior insula and putamen. Moreover, greater connectivity during pain between contralateral S1/M1 and posterior insula, thalamus, putamen, and amygdala, was associated with lower cuff pressures needed to reach the targeted pain sensation. These results demonstrate that sustained pain disrupts resting S1/M1 connectivity by shifting it to a network known to process stimulus salience. Furthermore, increased connectivity between S1/M1 and both sensory and affective processing areas may be an important contribution to inter-individual differences in pain sensitivity. PMID:23718988

Kim, Jieun; Loggia, Marco L.; Edwards, Robert; Wasan, Ajay D.; Gollub, Randy L.; Napadow, Vitaly

2013-01-01

190

Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity  

PubMed Central

Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of ?6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of ?6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of ?6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

2014-01-01

191

Assortative mixing in functional brain networks during epileptic seizures  

NASA Astrophysics Data System (ADS)

We investigate assortativity of functional brain networks before, during, and after one-hundred epileptic seizures with different anatomical onset locations. We construct binary functional networks from multi-channel electroencephalographic data recorded from 60 epilepsy patients; and from time-resolved estimates of the assortativity coefficient, we conclude that positive degree-degree correlations are inherent to seizure dynamics. While seizures evolve, an increasing assortativity indicates a segregation of the underlying functional network into groups of brain regions that are only sparsely interconnected, if at all. Interestingly, assortativity decreases already prior to seizure end. Together with previous observations of characteristic temporal evolutions of global statistical properties and synchronizability of epileptic brain networks, our findings may help to gain deeper insights into the complicated dynamics underlying generation, propagation, and termination of seizures.

Bialonski, Stephan; Lehnertz, Klaus

2013-09-01

192

Democratic reinforcement: A principle for brain function  

SciTech Connect

We introduce a simple ``toy`` brain model. The model consists of a set of randomly connected, or layered integrate-and-fire neurons. Inputs to and outputs from the environment are connected randomly to subsets of neurons. The connections between firing neurons are strengthened or weakened according to whether the action was successful or not. Unlike previous reinforcement learning algorithms, the feedback from the environment is democratic: it affects all neurons in the same way, irrespective of their position in the network and independent of the output signal. Thus no unrealistic back propagation or other external computation is needed. This is accomplished by a global threshold regulation which allows the system to self-organize into a highly susceptible, possibly ``critical`` state with low activity and sparse connections between firing neurons. The low activity permits memory in quiescent areas to be conserved since only firing neurons are modified when new information is being taught.

Stassinopoulos, D.; Bak, P. [Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Brookhaven National Laboratory, Upton, New York 11973 (United States)

1995-05-01

193

Understanding the benefits of musical training: effects on oscillatory brain activity.  

PubMed

A number of studies suggest that musical training has benefits for other cognitive domains, such as language and mathematics, and studies of children and adults indicate structural as well as functional differences between the brains of musicians and nonmusicians. The induced gamma-band response has been associated with attentional, expectation, memory retrieval, and integration of top-down, bottom-up, and multisensory processes. Here we report data indicating that the induced gamma-band response to musical sounds is larger in adult musicians than in nonmusicians and that it develops in children after 1 year of musical training beginning at age 4.5 years, but not in children of this age who are not engaged in musical lessons. We conclude that musical training affects oscillatory networks in the brain associated with executive functions, and that superior executive functioning could enhance learning and performance in many cognitive domains. PMID:19673769

Trainor, Laurel J; Shahin, Antoine J; Roberts, Larry E

2009-07-01

194

Rising stars: Modulation of brain functions by astroglial type-1 cannabinoid receptors.  

PubMed

The type-1-cannabinoid (CB1 ) receptor is amongst the most widely expressed G protein-coupled receptors in the brain. In few decades, CB1 receptors have been shown to regulate a large array of functions from brain cell development and survival to complex cognitive processes. Understanding the cellular mechanisms underlying these functions of CB1 is complex due to the heterogeneity of the brain cell types on which the receptor is expressed. Although the large majority of CB1 receptors act on neurons, early studies pointed to a direct control of CB1 receptors over astroglial functions including brain energy supply and neuroprotection. In line with the growing concept of the tripartite synapse highlighting astrocytes as direct players in synaptic plasticity, astroglial CB1 receptor signaling recently emerged as the mediator of several forms of synaptic plasticity associated to important cognitive functions. Here, we shortly review the current knowledge on CB1 receptor-mediated astroglial functions. This functional spectrum is large and most of the mechanisms by which CB1 receptors control astrocytes, as well as their consequences in vivo, are still unknown, requiring innovative approaches to improve this new cannabinoid research field. GLIA 2015;63:353-364. PMID:25452006

Metna-Laurent, Mathilde; Marsicano, Giovanni

2015-03-01

195

Hierarchical Organization Unveiled by Functional Connectivity in Complex Brain Networks  

NASA Astrophysics Data System (ADS)

How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks.

Zhou, Changsong; Zemanová, Lucia; Zamora, Gorka; Hilgetag, Claus C.; Kurths, Jürgen

2006-12-01

196

Functional understanding facilitates learning about tools in human children.  

PubMed

Human children benefit from a possibly unique set of adaptations facilitating the acquisition of knowledge about material culture. They represent artifacts (human-made objects) as tools with specific functions and seek for functional information about novel objects. Even young infants pay attention to functionally relevant features of objects, and learn tool use and infer tool functions from others' goal-directed actions and demonstrations. Children tend to imitate causally irrelevant elements of tool use demonstrations, which helps them to acquire means actions even before they fully understand their causal role in bringing about the desired goal. Although non-human animals use and make tools, and recognize causally relevant features of objects in a given task, they - unlike human children - do not appear to form enduring functional representations of tools as being for achieving particular goals when they are not in use. PMID:19477630

Hernik, Mikolaj; Csibra, Gergely

2009-02-01

197

Hyperbaric oxygen therapy improves cognitive functioning after brain injury  

PubMed Central

Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats’ spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was significantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly improves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is mediated by metabolic changes and nerve cell restoration in the hippocampal CA3 region. PMID:25206655

Liu, Su; Shen, Guangyu; Deng, Shukun; Wang, Xiubin; Wu, Qinfeng; Guo, Aisong

2013-01-01

198

Toward discovery science of human brain function  

E-print Network

Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating ...

Gabrieli, Susan

199

Evaluation of traumatic brain injury: brain potentials in diagnosis, function, and prognosis.  

PubMed

The focus of this review is an analysis of the use of event-related brain potential (ERP) abnormalities as indices of functional pathophysiology in survivors of traumatic brain injury (TBI). TBI may be the most prevalent but least understood neurological disorder in both civilian and military populations. In the military, thousands of new brain injuries occur yearly; this lends considerable urgency to the use of highly sensitive ERP tools to illuminate brain changes and to address remediation issues. We review the processes thought to be indexed by the cognitive components of the ERP and outline the rationale for applying ERPs to evaluate deficits after TBI. Studies in which ERPs were used to clarify the nature of cognitive complaints of TBI survivors are reviewed, emphasizing impairment in attention, information processing, and cognitive control. Also highlighted is research on the application of ERPs to predict emergence from coma and eventual outcome. We describe primary blast injury, the leading cause of TBI for active duty military personnel in present day warfare. The review concludes with a description of an ongoing investigation of mild TBI, aimed at using indices of brain structure and function to predict the course of posttraumatic stress disorder. An additional goal of this ongoing investigation is to characterize the structural and functional sequelae of blast injury. PMID:21356253

Duncan, Connie C; Summers, Angela C; Perla, Elizabeth J; Coburn, Kerry L; Mirsky, Allan F

2011-10-01

200

Reduced functional brain connectivity prior to and after disease onset in Huntington's disease???  

PubMed Central

Background Huntington's disease (HD) is characterised by both regional and generalised neuronal cell loss in the brain. Investigating functional brain connectivity patterns in rest in HD has the potential to broaden the understanding of brain functionality in relation to disease progression. This study aims to establish whether brain connectivity during rest is different in premanifest and manifest HD as compared to controls. Methods At the Leiden University Medical Centre study site of the TRACK-HD study, 20 early HD patients (disease stages 1 and 2), 28 premanifest gene carriers and 28 healthy controls underwent 3 T MRI scanning. Standard and high-resolution T1-weighted images and a resting state fMRI scan were acquired. Using FSL, group differences in resting state connectivity were examined for eight networks of interest using a dual regression method. With a voxelwise correction for localised atrophy, group differences in functional connectivity were examined. Results Brain connectivity of the left middle frontal and pre-central gyrus, and right post central gyrus with the medial visual network was reduced in premanifest and manifest HD as compared to controls (0.05 > p > 0.0001). In manifest HD connectivity of numerous widespread brain regions with the default mode network and the executive control network were reduced (0.05 > p > 0.0001). Discussion Brain regions that show reduced intrinsic functional connectivity are present in premanifest gene carriers and to a much larger extent in manifest HD patients. These differences are present even when the potential influence of atrophy is taken into account. Resting state fMRI could potentially be used for early disease detection in the premanifest phase of HD and for monitoring of disease modifying compounds. PMID:24179791

Dumas, Eve M.; van den Bogaard, Simon J.A.; Hart, Ellen P.; Soeter, Roelof P.; van Buchem, Mark A.; van der Grond, Jeroen; Rombouts, Serge A.R.B.; Roos, Raymund A.C.

2013-01-01

201

Psychotropic medication, psychiatric disorders, and higher brain functions  

PubMed Central

Conventional psychiatric diagnosis is founded on symptom description; this then governs the choice of psychotropic medication. This purely descriptive approach resembles a description of diphtheria from the premicrobiology era. Based on current advances in basic and clinical neuroscience, we propose inserting an intermediate level of analysis between psychiatric symptoms and pharmacologic modes of action. Paradigm 1 is to analyze psychiatric symptoms in terms of which higher brain function(s) is (are) abnormal, ie, symptoms should be analyzed as higher brain dysfunction: a case study in obsessive-compulsive disorder reveals pointers in four common symptoms to the higher functions of working memory, emotional overlay, absence of voluntary control, and the ability to evaluate personal mental phenomena. Paradigm 2 is to view psychotropic drugs as modifying normal higher brain functions, rather than merely treating symptoms, which they do only secondarily: thus depression may respond to agents that act on related aspects of mental life derived from higher brain functions, eg, the ability to enhance bonding. We advocate a strategy in which psychiatric illness is progressively reclassified through knowledge in clinical neuroscience and treatment targets are revised accordingly. PMID:22034249

Schulz, Pierre; Steimer, Thierry

2000-01-01

202

The Role of Sleep in Emotional Brain Function  

PubMed Central

Rapidly emerging evidence continues to describe an intimate and causal relationship between sleep and emotional brain function. These findings are mirrored by longstanding clinical observations demonstrating that nearly all mood and anxiety disorders co-occur with one or more sleep abnormalities. This review aims to (1) provide a synthesis of recent findings describing the emotional brain and behavioral benefits triggered by sleep, and conversely, the detrimental impairments following a lack of sleep, (2) outline a proposed framework in which sleep, and specifically rapid-eye movement (REM) sleep, supports a process of affective brain homeostasis, optimally preparing the organism for next-day social and emotional functioning, and (3) describe how this hypothesized framework can explain the prevalent relationships between sleep and psychiatric disorders, with a particular focus on post-traumatic stress disorder and major depression. PMID:24499013

Goldstein, Andrea N.; Walker, Matthew P.

2014-01-01

203

USEFULLNESS OF FUNCTIONAL MRI ASSOCIATED WITH PET SCAN AND EVOKED POTENTIALS IN THE EVALUATION OF BRAIN FUNCTIONS AFTER  

E-print Network

USEFULLNESS OF FUNCTIONAL MRI ASSOCIATED WITH PET SCAN AND EVOKED POTENTIALS IN THE EVALUATION CEREBRALES GRAVES : résultats préliminaires. Key Words : brain injury, coma, MRI, functional imaging usefulness of functional MRI (fMRI) for the evaluation of brain functions after severe brain injury, when

Paris-Sud XI, Université de

204

Memory Function Before and After Whole Brain Radiotherapy in Patients With and Without Brain Metastases  

SciTech Connect

Purpose: To prospectively compare the effect of prophylactic and therapeutic whole brain radiotherapy (WBRT) on memory function in patients with and without brain metastases. Methods and Materials: Adult patients with and without brain metastases (n = 44) were prospectively evaluated with serial cognitive testing, before RT (T0), after starting RT (T1), at the end of RT (T2), and 6-8 weeks (T3) after RT completion. Data were obtained from small-cell lung cancer patients treated with prophylactic cranial irradiation, patients with brain metastases treated with therapeutic cranial irradiation (TCI), and breast cancer patients treated with RT to the breast. Results: Before therapy, prophylactic cranial irradiation patients performed worse than TCI patients or than controls on most test scores. During and after WBRT, verbal memory function was influenced by pretreatment cognitive status (p < 0.001) and to a lesser extent by WBRT. Acute (T1) radiation effects on verbal memory function were only observed in TCI patients (p = 0.031). Subacute (T3) radiation effects on verbal memory function were observed in both TCI and prophylactic cranial irradiation patients (p = 0.006). These effects were more pronounced in patients with above-average performance at baseline. Visual memory and attention were not influenced by WBRT. Conclusions: The results of our study have shown that WBRT causes cognitive dysfunction immediately after the beginning of RT in patients with brain metastases only. At 6-8 weeks after the end of WBRT, cognitive dysfunction was seen in patients with and without brain metastases. Because cognitive dysfunction after WBRT is restricted to verbal memory, patients should not avoid WBRT because of a fear of neurocognitive side effects.

Welzel, Grit [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany)], E-mail: grit.welzel@radonk.ma.uni-heidelberg.de; Fleckenstein, Katharina [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schaefer, Joerg; Hermann, Brigitte; Kraus-Tiefenbacher, Uta; Mai, Sabine K.; Wenz, Frederik [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany)

2008-12-01

205

Nutrition, brain function and cognitive performance  

Microsoft Academic Search

Military interest in the effects of nutritional factors on cognitive function has stimulated considerable research on a variety of food constituents. This paper will review the research on the amino acids tryptophan and tyrosine, caffeine and carbohydrate. It will focus on research that addresses the potential utility of these compounds in military applications, particularly the acute, as opposed to chronic,

Harris R Lieberman

2003-01-01

206

Predictors of physical functioning in postoperative brain tumor patients.  

PubMed

A cross-sectional predictive design was used to study the relationships among recovery symptoms, mood state, and physical functioning and to identify predictors of physical functioning in patients who underwent surgery for brain tumor at the first follow-up visit (2 weeks) after hospital discharge. The sample included 88 patients who were 18 years or older, had full level of consciousness, and underwent first-time surgery for brain tumor without other adjuvant treatments from a tertiary hospital in Bangkok, Thailand. Descriptive statistics, Pearson product-moment correlation coefficient, and multiple regression were used for data analysis. The results revealed that most participants were women (75%) with an average age of 45.18 ± 11.49 years, having benign brain tumors (91%) and pathological results as meningioma (48.9%). The most common recovery symptoms were pain (mean = 3.2, SD = 2.6) and sleep disturbance (mean = 3.1, SD = 3.0). As for mood state, the problem of confusion was found the most (mean = 4.6, SD = 2.7). The physical functioning problem found the most was work aspect (mean = 66.3, SD = 13.3). Recovery symptoms had positive relationships with physical functioning and mood state (r = .406, .716; p < .01), respectively. At the same time, mood state had positive relationships with physical functioning (r = .288, p < .01). Recovery symptoms, total mood disturbance, fatigue, and vigor were statistically significant predictors of physical functioning and could explain variance of postoperative physical functioning in these patients at 2 weeks after discharge by 35%. Total mood disturbance was the strongest predictor of physical functioning followed by vigor, fatigue, and recovery symptom, respectively. Interventions to improve physical functioning in postoperative brain tumor patients during home recovery should account for not only recovery symptom management but also mood state. PMID:25565598

Tankumpuan, Thitipong; Utriyaprasit, Ketsarin; Chayaput, Prangtip; Itthimathin, Parunut

2015-02-01

207

Understanding tumor heterogeneity as functional compartments - superorganisms revisited  

PubMed Central

Compelling evidence broadens our understanding of tumors as highly heterogeneous populations derived from one common progenitor. In this review we portray various stages of tumorigenesis, tumor progression, self-seeding and metastasis in analogy to the superorganisms of insect societies to exemplify the highly complex architecture of a neoplasm as a system of functional "castes." Accordingly, we propose a model in which clonal expansion and cumulative acquisition of genetic alterations produce tumor compartments each equipped with distinct traits and thus distinct functions that cooperate to establish clinically apparent tumors. This functional compartment model also suggests mechanisms for the self-construction of tumor stem cell niches. Thus, thinking of a tumor as a superorganism will provide systemic insight into its functional compartmentalization and may even have clinical implications. PMID:21619636

2011-01-01

208

Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients  

PubMed Central

Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal, and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however, are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding. PMID:24910603

Urgesi, Cosimo; Candidi, Matteo; Avenanti, Alessio

2014-01-01

209

Predicting premorbid neuropsychological functioning following pediatric traumatic brain injury  

Microsoft Academic Search

This study examined the prediction of premorbid neuropsychological functioning using data from an ongoing prospective study of traumatic brain injuries (TBI) in children ages 6 to 12 years. Prediction equations were derived based on 80 children with orthopedic injuries (OI), who served as a comparison group for the children with TBI. Collectively, parent ratings of premorbid school performance, maternal ethnicity,

Keith Owen Yeates; H. Gerry Taylor

1997-01-01

210

Automated Talairach Atlas Labels For Functional Brain Mapping  

E-print Network

Automated Talairach Atlas Labels For Functional Brain Mapping Jack L. Lancaster,* Marty G. Woldorff, Lawrence M. Parsons, Mario Liotti, Catarina S. Freitas, Lacy Rainey, Peter V. Kochunov, Dan Nickerson Talairach Atlas, called the Talairach Daemon (TD), was previously introduced [Lancaster et al., 1997

211

Ethical issues of brain functional imaging: reading your mind.  

PubMed

Neuroimaging practice and research are overviewed in this paper through an ethics lens. The main ethical implications in biomedical research concerning functional brain imaging are discussed with the focus on issues related to imaging of personal information and privacy. Specific norms and guidelines will be eventually formed in the future under the umbrella of the new discipline of Neuroethics. PMID:18560092

Karanasiou, Irene S; Biniaris, Christos G; Marsh, Andrew J

2008-01-01

212

Fractal analysis of resting state functional connectivity of the brain  

E-print Network

Fractal analysis of resting state functional connectivity of the brain Wonsang You1 , Sophie Achard, Germany 2 GIPSA-lab, CNRS, UMR 5216, Grenoble, France 3 Biosystems Engineering, Fraunhofer neuroimaging data tend to exhibit fractal behavior where their power spectrums follow power-law scaling

213

Functional Improvement Between Brain Death Declaration and Organ Harvesting  

Microsoft Academic Search

IntroductionThe quality of harvested organs is crucial for graft survival and for posttransplant evolution. This study sought to investigate the evolution of the functional status of brain death (BD) patients during the period between declaration and organ harvesting (BD duration).

I. Grigoras; M. Blaj; O. Chelarescu; C. Craus; G. Florin

2010-01-01

214

SYNAPSES IN NORMAL AND DISEASED BRAIN FUNCTION Roberto Malinow  

E-print Network

in normal and abnormal brain function. To achieve this end we combine electrophysiolgical, imaging plasticity. Another series of studies is examining the effects of beta amyloid, a peptide thought to play have found that neural activity enhances beta amyloid formation; in turn beta amyloid taps into normal

Gruen, Sonja

215

Functional brain mapping of the relaxation response and meditation  

Microsoft Academic Search

Meditation is a conscious mental process that induces a set of integrated physiologic changes termed the relaxation response. Functional magnetic resonance imaging (fMRI) was used to identify and characterize the brain regions that are active during a simple form of meditation. Significant ( p , 10?7) signal increases were observed in the group-averaged data in the dorsolateral prefrontal and parietal

Sara W. Lazar; George Bush; Randy L. Gollub; Gregory L. Fricchione; Gurucharan Khalsa; Herbert Benson

2000-01-01

216

Internship MASTER 2012 Joint estimation of primary brain functional territories from BOLD functional  

E-print Network

. Requirements: Matlab, C/C++, good knowledge in statistics. Prior experience with medical imaging data replication to functional ASL. The internship work will be dedicated to adapt different image processing, Brain perfusion, Image processing, Statistical detection, Brain imaging , Cerveau, IRM, Traitements d'images

Dobigeon, Nicolas

217

Brain miner: a 3D visual interface for the investigation of functional relationships in the brain  

NASA Astrophysics Data System (ADS)

Brain imaging methods used in experimental brain research such as Positron Emission Tomography (PET) and Functional Magnetic Resonance (fMRI) require the analysis of large amounts of data. Statistical methods are necessary to obtain a reliable measure of a given effect. Typically, researchers report their findings by listing those regions which show significant statistical activity in a group of subjects under some experimental condition or task. A number of methods create statistical parametric maps (SPMs) of the brain on a voxel- basis. However, a major limitation of the voxel-based technique is the inaccuracy of the transformation into a stereotaxic space (e.g., Talairach-Tournoux) given the wide variability in human brain structure. In order to account for this, researchers have turned to computing the statistics not on individual voxels but on predefined anatomical regions-of- interest (ROIs). A correlation coefficient is used to quantify similarity in response for various regions during an experimental setting. Since the functional inter-relationships can become rather complex, they are best understood in the context of the underlying 3-D brain anatomy. In this paper, we present a novel 3-D interface that allows the interactive exploration of the correlation datasets within a common stereotaxic atlas.

Welsh, Tom F.; Mueller, Klaus D.; Zhu, Wei; Meade, Jeffrey R.; Volkow, Nora

2001-05-01

218

Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone  

PubMed Central

Stress and corticosteroids dynamically modulate the expression of synaptic plasticity at glutamatergic synapses in the developed brain. Together with alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid receptors (AMPAR), N-methyl-D-aspartate receptors (NMDAR) are critical mediators of synaptic function and are essential for the induction of many forms of synaptic plasticity. Regulation of NMDAR function by cortisol/corticosterone (CORT) may be fundamental to the effects of stress on synaptic plasticity. Recent reports of the efficacy of NMDAR antagonists in treating certain stress-associated psychopathologies further highlight the importance of understanding the regulation of NMDAR function by CORT. Knowledge of how corticosteroids regulate NMDAR function within the adult brain is relatively sparse, perhaps due to a common belief that NMDAR function is stable in the adult brain. We review recent results from our laboratory and others demonstrating dynamic regulation of NMDAR function by CORT in the adult brain. In addition, we consider the issue of how differences in the early life environment may program differential sensitivity to modulation of NMDAR function by CORT and how this may influence synaptic function during stress. Findings from these studies demonstrate that NMDAR function in the adult hippocampus remains sensitive to even brief exposures to CORT and that the capacity for modulation of NMDAR may be programmed, in part, by the early life environment. Modulation of NMDAR function may contribute to dynamic regulation of synaptic plasticity and adaptation in the face of stress, however, enhanced NMDAR function may be implicated in mechanisms of stress-related psychopathologies including depression. PMID:22408607

Tse, Yiu Chung; Bagot, Rosemary C.; Wong, Tak Pan

2012-01-01

219

The Functional Connectivity Landscape of the Human Brain  

PubMed Central

Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment. PMID:25350370

Fatima, Zainab; Jonides, John; McIntosh, Anthony R.

2014-01-01

220

Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis  

PubMed Central

OBJECTIVE—To support the hypothesis about the potential compensatory role of ipsilateral corticofugal pathways when the contralateral pathways are impaired by brain tumours.?METHODS—Retrospective analysis was carried out on the results of functional MRI (fMRI) of a selected group of five paretic patients with Rolandic brain tumours who exhibited an abnormally high ipsilateral/contralateral ratio of activation—that is, movements of the paretic hand activated predominately the ipsilateral cortex. Brain activation was achieved with a flexion extension of the fingers. Statistical parametric activation was obtained using a t test and a threshold of p<0.001. These patients, candidates for tumour resection, also underwent cortical intraoperative stimulation that was correlated to the fMRI spatial data using three dimensional reconstructions of the brain. Three patients also had postoperative control fMRI.?RESULTS—The absence of fMRI activation of the primary sensorimotor cortex normally innervating the paretic hand for the threshold chosen, was correlated with completely negative cortical responses of the cortical hand area during the operation. The preoperative fMRI activation of these patients predominantly found in the ipsilateral frontal and primary sensorimotor cortices could be related to the residual ipsilateral hand function. Postoperatively, the fMRI activation returned to more classic patterns of activation, reflecting the consequences of therapy.?CONCLUSION—In paretic patients with brain tumours, ipsilateral control could be implicated in the residual hand function, when the normal primary pathways are impaired. The possibility that functional tissue still remains in the peritumorous sensorimotor cortex even when the preoperative fMRI and the cortical intraoperative stimulations are negative, should be taken into account when planning the tumour resection and during the operation.?? PMID:10990503

Roux, F; Boulanouar, K; Ibarrola, D; Tremoulet, M; Chollet, F; Berry, I

2000-01-01

221

Beyond genotype: serotonin transporter epigenetic modification predicts human brain function.  

PubMed

We examined epigenetic regulation in regards to behaviorally and clinically relevant human brain function. Specifically, we found that increased promoter methylation of the serotonin transporter gene predicted increased threat-related amygdala reactivity and decreased mRNA expression in postmortem amygdala tissue. These patterns were independent of functional genetic variation in the same region. Furthermore, the association with amygdala reactivity was replicated in a second cohort and was robust to both sampling methods and age. PMID:25086606

Nikolova, Yuliya S; Koenen, Karestan C; Galea, Sandro; Wang, Chiou-Miin; Seney, Marianne L; Sibille, Etienne; Williamson, Douglas E; Hariri, Ahmad R

2014-09-01

222

Reentry: a key mechanism for integration of brain function  

PubMed Central

Reentry in nervous systems is the ongoing bidirectional exchange of signals along reciprocal axonal fibers linking two or more brain areas. The hypothesis that reentrant signaling serves as a general mechanism to couple the functioning of multiple areas of the cerebral cortex and thalamus was first proposed in 1977 and 1978 (Edelman, 1978). A review of the amount and diversity of supporting experimental evidence accumulated since then suggests that reentry is among the most important integrative mechanisms in vertebrate brains (Edelman, 1993). Moreover, these data prompt testable hypotheses regarding mechanisms that favor the development and evolution of reentrant neural architectures. PMID:23986665

Edelman, Gerald M.; Gally, Joseph A.

2013-01-01

223

Totally tubular: the mystery behind function and origin of the brain ventricular system  

E-print Network

Totally tubular: the mystery behind function and origin of the brain ventricular system Laura Anne School, 240 Longwood Ave, Boston, MA, USA A unique feature of the vertebrate brain is the ventricular by neu- roepithelium. While CSF is critical for both adult brain function and embryonic brain development

Lowery, Laura Anne

224

Hintz et al, Real-time neonatal optical functional brain imaging 335 J. Perinat. Med. Bedside functional imaging of the premature infant brain  

E-print Network

-infrared light can pass easily through structures such as the skull, penetrating the brain and allowing GmbH & Co. KG Berlin · New York Adult human brain functional imaging studies have previously been

225

Memory and the developing brain: short-term and long-term memory function and the heterogeneity of brain maturation.  

E-print Network

??In this thesis, the developmental brain structure and development of memory functions are investigated, both separately and conjointly. First, the different developmental trajectories of cortical… (more)

Østby, Ylva

2011-01-01

226

Functional MRI and the Study of Human Consciousness & Functional brain imaging offers new opportunities for the  

E-print Network

analysis of multiple experimental datasets. Here, four preprocessed datasets from the National fMRI Data functional brain imaging, offers new prospects for a science of consciousness. Most PET and fMRI research

Gordon, Geoffrey J.

227

Cross-Validation of Deformable Registration With Field Maps in Functional Magnetic Resonance Brain Imaging  

Microsoft Academic Search

The localization of brain functional activity with respect to brain anatomy requires registration between a functional image and a reference high-resolution anatomical image. The fast functional magnetic resonance brain images acquired via echo planar imaging (EPI) in functional magnetic resonance imaging (fMRI) suffer from local geometric distortions. After performing standard rigid or affine registration, local nonlinear distortions of up to

Ali Gholipour; Nasser Kehtarnavaz; Kaundinya Gopinath; Richard Briggs

2008-01-01

228

Do you know what I mean? Brain oscillations and the understanding of communicative intentions.  

PubMed

Pointing gesture allows children to communicate their intentions before the acquisition of language. In particular, two main purposes seem to underlie the gesture: to request a desired object (imperative pointing) or to share attention on that object (declarative pointing). Since the imperative pointing has an instrumental goal and the declarative has an interpersonal one, only the latter gesture is thought to signal the infant's awareness of the communicative partner as a mental agent. The present study examined the neural responses of adult subjects with the aim to test the hypothesis that declarative rather than imperative pointing reflects mentalizing skills. Fourteen subjects were measured in a magnetoencephalographic environment including four conditions, based on the goal of the pointing - imperative or declarative - and the role of the subject - sender or receiver of pointing. Time-frequency modulations of brain activity in each condition (declarative production and comprehension, imperative production and comprehension) were analyzed. Both low beta and high beta power were stronger during declarative than imperative condition in anterior cingulated cortex and right posterior superior temporal sulcus, respectively. Furthermore, high gamma activity was higher in right temporo-parietal junction during the sender than receiving condition. This suggests that communicative pointing modulated brain regions previously described in neuroimaging research as linked to social cognitive skills and that declarative pointing is more capable of eliciting that activation than imperative. Our results contribute to the understanding of the roles of brain rhythm dynamics in social cognition, thus supporting neural research on that topic during developmental both in typical and atypical conditions, such as autism spectrum disorder. In particular, the identification of relevant regions in a mature brain may stimulate a future work on the developmental changes of neural activation in the same regions. PMID:24550813

Brunetti, Marcella; Zappasodi, Filippo; Marzetti, Laura; Perrucci, Mauro Gianni; Cirillo, Simona; Romani, Gian Luca; Pizzella, Vittorio; Aureli, Tiziana

2014-01-01

229

Do You Know What I Mean? Brain Oscillations and the Understanding of Communicative Intentions  

PubMed Central

Pointing gesture allows children to communicate their intentions before the acquisition of language. In particular, two main purposes seem to underlie the gesture: to request a desired object (imperative pointing) or to share attention on that object (declarative pointing). Since the imperative pointing has an instrumental goal and the declarative has an interpersonal one, only the latter gesture is thought to signal the infant’s awareness of the communicative partner as a mental agent. The present study examined the neural responses of adult subjects with the aim to test the hypothesis that declarative rather than imperative pointing reflects mentalizing skills. Fourteen subjects were measured in a magnetoencephalographic environment including four conditions, based on the goal of the pointing – imperative or declarative – and the role of the subject – sender or receiver of pointing. Time–frequency modulations of brain activity in each condition (declarative production and comprehension, imperative production and comprehension) were analyzed. Both low beta and high beta power were stronger during declarative than imperative condition in anterior cingulated cortex and right posterior superior temporal sulcus, respectively. Furthermore, high gamma activity was higher in right temporo-parietal junction during the sender than receiving condition. This suggests that communicative pointing modulated brain regions previously described in neuroimaging research as linked to social cognitive skills and that declarative pointing is more capable of eliciting that activation than imperative. Our results contribute to the understanding of the roles of brain rhythm dynamics in social cognition, thus supporting neural research on that topic during developmental both in typical and atypical conditions, such as autism spectrum disorder. In particular, the identification of relevant regions in a mature brain may stimulate a future work on the developmental changes of neural activation in the same regions. PMID:24550813

Brunetti, Marcella; Zappasodi, Filippo; Marzetti, Laura; Perrucci, Mauro Gianni; Cirillo, Simona; Romani, Gian Luca; Pizzella, Vittorio; Aureli, Tiziana

2014-01-01

230

Neurocognitive function after radiotherapy for paediatric brain tumours.  

PubMed

The brain is highly vulnerable to neurotoxic agents during the prime learning period of a child's life. Paediatric patients with brain tumours who are treated with cranial radiation therapy (CRT) often go on to develop neurocognitive deficits, which are reflected in poor academic achievement and impaired memory, attention and processing speed. The extent of these delayed effects varies with radiation dose, brain volume irradiated, and age at treatment, and might also be influenced by genetic factors and individual susceptibility. CRT-induced impairment involves axonal damage and disruption of white matter growth, and can affect brain structures implicated in memory function and neurogenesis, such as the hippocampus. In this article, we review the underlying mechanisms and clinical consequences of CRT-induced neurocognitive damage in survivors of paediatric brain tumours. We discuss the recent application of neuroimaging technologies to identify white matter injury following CRT, and highlight new radiation techniques, pharmacological and neurological interventions, as well as rehabilitation programmes that have potential to minimize neurocognitive impairment following CRT. PMID:22964509

Padovani, Laetitia; André, Nicolas; Constine, Louis S; Muracciole, Xavier

2012-10-01

231

Totally Tubular: The Mystery behind Function and Origin of the Brain Ventricular System  

PubMed Central

Summary A unique feature of the vertebrate brain is the brain ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system develops from the lumen of the neural tube, as the neuroepithelium undergoes morphogenesis. The molecular mechanisms underlying this ontogeny are described. We discuss possible functions of both adult and embryonic brain ventricles, as well as major brain defects that are associated with CSF and brain ventricular abnormalities. We conclude that vertebrates have taken advantage of their neural tube to form the essential brain ventricular system. PMID:19274662

Lowery, Laura Anne; Sive, Hazel

2010-01-01

232

Analysis of functional neuronal connectivity in the Drosophila brain  

PubMed Central

Drosophila melanogaster is a valuable model system for the neural basis of complex behavior, but an inability to routinely interrogate physiologic connections within central neural networks of the fly brain remains a fundamental barrier to progress in the field. To address this problem, we have introduced a simple method of measuring functional connectivity based on the independent expression of the mammalian P2X2 purinoreceptor and genetically encoded Ca2+ and cAMP sensors within separate genetically defined subsets of neurons in the adult brain. We show that such independent expression is capable of specifically rendering defined sets of neurons excitable by pulses of bath-applied ATP in a manner compatible with high-resolution Ca2+ and cAMP imaging in putative follower neurons. Furthermore, we establish that this approach is sufficiently sensitive for the detection of excitatory and modulatory connections deep within larval and adult brains. This technically facile approach can now be used in wild-type and mutant genetic backgrounds to address functional connectivity within neuronal networks governing a wide range of complex behaviors in the fly. Furthermore, the effectiveness of this approach in the fly brain suggests that similar methods using appropriate heterologous receptors might be adopted for other widely used model systems. PMID:22539819

Yao, Zepeng; Macara, Ann Marie; Lelito, Katherine R.; Minosyan, Tamara Y.

2012-01-01

233

Recruiting specialized macrophages across the borders to restore brain functions  

PubMed Central

Although is well accepted that the central nervous system has an immune privilege protected by the blood–brain barrier (BBB) and maintained by the glia, it is also known that in homeostatic conditions, peripheral immune cells are able to penetrate to the deepest regions of brain without altering the structural integrity of the BBB. Nearly all neurological diseases, including degenerative, autoimmune or infectious ones, compromising brain functions, develop with a common pattern of inflammation in which macrophages and microglia activation have been regarded often as the “bad guys.” However, recognizing the huge heterogeneity of macrophage populations and also the different expression properties of microglia, there is increasing evidence of alternative conditions in which these cells, if primed and addressed in the correct direction, could be essential for reparative and regenerative functions. The main proposal of this review is to integrate studies about macrophage’s biology at the brain borders where the ultimate challenge is to penetrate through the BBB and contribute to change or even stop the course of disease. Thanks to the efforts made in the last century, this special wall is currently recognized as a highly regulated cooperative structure, in which their components form neurovascular units. This new scenario prompted us to review the precise cross-talk between the mind and body modes of immune response. PMID:25228859

Corraliza, Inés

2014-01-01

234

A systematic review of the evidence that brain structure is related to muscle structure and their relationship to brain and muscle function in humans over the lifecourse  

PubMed Central

Background An association between cognition and physical function has been shown to exist but the roles of muscle and brain structure in this relationship are not fully understood. A greater understanding of these relationships may lead to identification of the underlying mechanisms in this important area of research. This systematic review examines the evidence for whether: a) brain structure is related to muscle structure; b) brain structure is related to muscle function; and c) brain function is related to muscle structure in healthy children and adults. Methods Medline, Embase, CINAHL and PsycINFO were searched on March 6th 2014. A grey literature search was performed using Google and Google Scholar. Hand searching through citations and references of relevant articles was also undertaken. Results 53 articles were included in the review; mean age of the subjects ranged from 8.8 to 85.5 years old. There is evidence of a positive association between both whole brain volume and white matter (WM) volume and muscle size. Total grey matter (GM) volume was not associated with muscle size but some areas of regional GM volume were associated with muscle size (right temporal pole and bilateral ventromedial prefrontal cortex). No evidence was found of a relationship between grip strength and whole brain volume however there was some evidence of a positive association with WM volume. Conversely, there is evidence that gait speed is positively associated with whole brain volume; this relationship may be driven by total WM volume or regional GM volumes, specifically the hippocampus. Markers of brain ageing, that is brain atrophy and greater accumulation of white matter hyperintensities (WMH), were associated with grip strength and gait speed. The location of WMH is important for gait speed; periventricular hyperintensities and brainstem WMH are associated with gait speed but subcortical WMH play less of a role. Cognitive function does not appear to be associated with muscle size. Conclusion There is evidence that brain structure is associated with muscle structure and function. Future studies need to follow these interactions longitudinally to understand potential causal relationships. PMID:25011478

2014-01-01

235

Normalizing hematocrit in dialysis patients improves brain function  

Microsoft Academic Search

Recombinant human erythropoietin (rHuEPO) treatment has been shown to improve brain and cognitive function in anemic dialysis patients. Significant debate continues, however, regarding the appropriate target hematocrit (Hct) that will lead to the greatest benefits while considering possible side effects and costs of rHuEPO. Current practice results in an Hct averaging only 31% to 32% in dialysis patients, a level

Janiece L. Pickett; David C. Theberge; Warren S. Brown; Suzanne U. Schweitzer; Allen R. Nissenson

1999-01-01

236

The Apolipoprotein E Gene, Attention, and Brain Function  

Microsoft Academic Search

The ?4 allele of the apolipoprotein E (ApoE) gene is associated with alterations in brain function and is a risk factor for Alzheimer's disease (AD). Changes in components of visuospatial attention with ApoE-?4, aging, and AD are described. Healthy middle-aged adults without dementia who have the ApoE-?4 gene show deficits in spatial attention and working memory that are qualitatively similar

Raja Parasuraman; Pamela M. Greenwood; Trey Sunderland

2002-01-01

237

Molecular Diversity of Glutamate Receptors and Implications for Brain Function  

Microsoft Academic Search

The glutamate receptors mediate excitatory neurotransmission in the brain and are important in memory acquisition, learning, and some neurodegenerative disorders. This receptor family is classified in three groups: the N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-kainate, and metabotropic receptors. Recent molecular studies have shown that many receptor subtypes exist in all three groups of the receptors and exhibit heterogeneity in function and expression

Shigetada Nakanishi

1992-01-01

238

Cytokines for Psychologists: Implications of Bidirectional Immune-to-Brain Communication for Understanding Behavior, Mood, and Cognition  

Microsoft Academic Search

The brain and immune system form a bidirectional communication network in which the immune system operates as a diffuse sense organ, informing the brain about events in the body. This allows the activation of immune cells to produce physiological, behavioral, affective, and cognitive changes that are collectively called sickness, which function to promote recuperation. Fight–flight evolved later and coopted this

Steven F. Maier; Linda R. Watkins

1998-01-01

239

Cluster Structure and Localization of Brain Functional Networks Based on the ERP Signals of Auditory Task  

Microsoft Academic Search

The brain functional networks derived from multi-channel ERP signals are analyzed based on the phase synchronization theory. The nodes of brain functional networks are represented by the channels of ERP signals, and the connectivity of brain functional networks is described by the interaction among the channels. The edge between two different channels exists only if the phase coupling index is

Zhao Zhuo; Shi-Min Cai; Zhong-Qian Fu; Pei-Ling Zhou

2010-01-01

240

This is Your Brain on Interfaces: Enhancing Usability Testing with Functional Near-Infrared Spectroscopy  

E-print Network

This is Your Brain on Interfaces: Enhancing Usability Testing with Functional Near a non-invasive brain sensing technique called functional near infrared spectroscopy (fNIRS) to record it in functional terms as: The load placed on various cogni- tive resources in the brain in order to complete

Jacob, Robert J.K.

241

Changes in Regional Brain Perfusion During Functional Brain Activation: Comparison of [64Cu]-PTSM with [14C]-Iodoantipyrine  

PubMed Central

A dilemma in behavioral brain mapping is that conventional techniques immobilize the subject, extinguishing all but the simplest behaviors. This is avoided if brain activation is imaged after completion of the behavior and tissue capture of the tracer. A single-pass flow tracer proposed for positron emission tomography (PET) is a radiolabeled copper(II) complex of pyruvaldehyde bis(N4-methylthiosemicarbazone), [Cu64]-PTSM. [Cu64]-PTSM reaches steady-state cerebral distribution more rapidly than the metabolic tracer [18F]-fluorodeoxyglucose, allowing imaging with substantially greater temporal resolution. Using dual-label autoradiography, this study compares the relative regional cerebral blood flow tracer distribution (CBF-TR) of [64Cu]-PTSM to that of the classic perfusion tracer [14C]-iodoantipyrine in a rat model during treadmill walking. Rats were exposed to continuous walking on a treadmill and compared to quiescent controls. [64Cu]-PTSM was bolus injected (iv) after 1 minute, followed by a 5 minute uptake and subsequent bolus injection of [14C]-iodoantipyrine. CBF-TR was quantified by autoradiography and analyzed in the three-dimensionally reconstructed brain by statistical parametric mapping, as well as by region-of-interest analysis. A high homology was found between the [64Cu]-PTSM and [14C]-iodoantipyrine patterns of cerebral activation in cortical and subcortical regions. For white matter, however, [64Cu]-PTSM showed lower perfusion than [14Cu]-iodoantipyrine. [64Cu]-PTSM is a useful tracer for functional brain mapping in freely-moving subjects. Its application in conjunction with PET promises to increase our understanding of the neural circuitry of behaviors dependent on locomotion. PMID:18687316

Holschneider, DP; Yang, J; Sadler, TR; Galifianakis, NB; Bozorgzadeh, MH; Bading, JR; Conti, PS; Maarek, J-M I

2008-01-01

242

How Should Educational Neuroscience Conceptualise the Relation between Cognition and Brain Function? Mathematical Reasoning as a Network Process  

ERIC Educational Resources Information Center

Background: There is increasing interest in applying neuroscience findings to topics in education. Purpose: This application requires a proper conceptualization of the relation between cognition and brain function. This paper considers two such conceptualizations. The area focus understands each cognitive competency as the product of one (and only…

Varma, Sashank; Schwartz, Daniel L.

2008-01-01

243

A new algorithm for spatiotemporal analysis of brain functional connectivity.  

PubMed

Specific networks of interacting neuronal assemblies distributed within and across distinct brain regions underlie brain functions. In most cognitive tasks, these interactions are dynamic and take place at the millisecond time scale. Among neuroimaging techniques, magneto/electroencephalography - M/EEG - allows for detection of very short-duration events and offers the single opportunity to follow, in time, the dynamic properties of cognitive processes (sub-millisecond temporal resolution). In this paper, we propose a new algorithm to track the functional brain connectivity dynamics. During a picture naming task, this algorithm aims at segmenting high-resolution EEG signals (hr-EEG) into functional connectivity microstates. The proposed algorithm is based on the K-means clustering of the connectivity graphs obtained from the phase locking value (PLV) method applied on hr-EEG. Results show that the analyzed evoked responses can be divided into six clusters representing distinct networks sequentially involved during the cognitive task, from the picture presentation and recognition to the motor response. PMID:25583381

Mheich, A; Hassan, M; Khalil, M; Berrou, C; Wendling, F

2015-03-15

244

Functional connectivity and alterations in baseline brain state in humans  

PubMed Central

This work examines the influence of changes in baseline activity on the intrinsic functional connectivity fMRI (fc-fMRI) in humans. Baseline brain activity was altered by inducing anesthesia (sevoflurane end-tidal concentration 1%) in human volunteers and fc-fMRI maps between the pre-anesthetized and anesthetized conditions were compared across different brain networks. We particularly focused on low-level sensory areas (primary somatosensory, visual, auditory cortices), the thalamus, and pain (insula), memory (hippocampus) circuits, and the default mode network (DMN), the latter three to examine higher order brain regions. The results indicate that, while fc-fMRI patterns did not significantly differ (p<0.005; 20-voxel cluster threshold) in sensory cortex and in the DMN between the pre- and anesthetized conditions, fc-fMRI in high-order cognitive regions (i.e. memory and pain circuits) was significantly altered by anesthesia. These findings provide further evidence that fc-fMRI reflects intrinsic brain properties, while also demonstrating that 0.5 MAC sevoflurane anesthesia preferentially modulates higher-order connections. PMID:19631277

Martuzzi, Roberto; Ramani, Ramachandran; Qiu, Maolin; Rajeevan, Nallakkandi; Constable, R. Todd

2009-01-01

245

The prairie vole: an emerging model organism for understanding the social brain  

PubMed Central

Unlike most mammalian species, the prairie vole is highly affiliative, forms enduring social bonds between mates, and displays biparental behavior. Over two decades of research in this species has enhanced our understanding of the neurobiological basis not only of monogamy, social attachment and nurturing behaviors, but also other aspects of social cognition. Because social cognitive deficits are hallmarks of many psychiatric disorders, discoveries made in prairie voles may direct novel treatment strategies for disorders such as autism spectrum disorder and schizophrenia. With the ongoing development of molecular, genetic and genomic tools for this species, prairie voles will likely maintain their current trajectory becoming an unprecedented model organism for basic and translational research focusing on the biology of the social brain. PMID:20005580

McGraw, Lisa A.; Young, Larry J.

2009-01-01

246

Scientists Probe Immune System's Role in Brain Function and Neurological Disease  

E-print Network

Scientists Probe Immune System's Role in Brain Function and Neurological Disease Bridget M. Kuehn E in normal brain development and in the healthy adult brain. Studies also suggest that per- turbations of these roles may under- lie some neurological diseases. Contrary to dogma that the blood- brain barrier

Boulanger, Lisa

247

Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury  

ERIC Educational Resources Information Center

Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

2010-01-01

248

Brain basis of early parent–infant interactions: psychology, physiology, and in vivo functional neuroimaging studies  

PubMed Central

Parenting behavior critically shapes human infants’ current and future behavior. The parent–infant relationship provides infants with their first social experiences, forming templates of what they can expect from others and how to best meet others’ expectations. In this review, we focus on the neurobiology of parenting behavior, including our own functional magnetic resonance imaging (fMRI) brain imaging experiments of parents. We begin with a discussion of background, perspectives and caveats for considering the neurobiology of parent–infant relationships. Then, we discuss aspects of the psychology of parenting that are significantly motivating some of the more basic neuroscience research. Following that, we discuss some of the neurohormones that are important for the regulation of social bonding, and the dysregulation of parenting with cocaine abuse. Then, we review the brain circuitry underlying parenting, proceeding from relevant rodent and nonhuman primate research to human work. Finally, we focus on a study-by-study review of functional neuroimaging studies in humans. Taken together, this research suggests that networks of highly conserved hypothalamic–midbrain–limbic–paralimbic–cortical circuits act in concert to support aspects of parent response to infants, including the emotion, attention, motivation, empathy, decision-making and other thinking that are required to navigate the complexities of parenting. Specifically, infant stimuli activate basal forebrain regions, which regulate brain circuits that handle specific nurturing and caregiving responses and activate the brain’s more general circuitry for handling emotions, motivation, attention, and empathy – all of which are crucial for effective parenting. We argue that an integrated understanding of the brain basis of parenting has profound implications for mental health. PMID:17355399

Swain, James E.; Lorberbaum, Jeffrey P.; Kose, Samet; Strathearn, Lane

2015-01-01

249

Functional brain networks: great expectations, hard times and the big leap forward.  

PubMed

Many physical and biological systems can be studied using complex network theory, a new statistical physics understanding of graph theory. The recent application of complex network theory to the study of functional brain networks has generated great enthusiasm as it allows addressing hitherto non-standard issues in the field, such as efficiency of brain functioning or vulnerability to damage. However, in spite of its high degree of generality, the theory was originally designed to describe systems profoundly different from the brain. We discuss some important caveats in the wholesale application of existing tools and concepts to a field they were not originally designed to describe. At the same time, we argue that complex network theory has not yet been taken full advantage of, as many of its important aspects are yet to make their appearance in the neuroscience literature. Finally, we propose that, rather than simply borrowing from an existing theory, functional neural networks can inspire a fundamental reformulation of complex network theory, to account for its exquisitely complex functioning mode. PMID:25180303

Papo, David; Zanin, Massimiliano; Pineda-Pardo, José Angel; Boccaletti, Stefano; Buldú, Javier M

2014-10-01

250

Integrating functional brain neuroimaging and developmental cognitive neuroscience in child psychiatry research  

PubMed Central

Objective To provide an overview of clinical research aiming to develop a mechanistic understanding of brain dysfunction in child psychiatric disorders. Method Technological, conceptual and translational approaches relevant to the investigation of brain function in pediatric psychiatric illnesses are explored. Research in the area of pediatric bipolar disorder is used as a prototypic model illustrating the use of complementary techniques of functional magnetic neuroimaging and neurocognitive studies to identify abnormalities in neural circuitry function. Results Studies of bipolar youth indicate impairment in cognitive and affective neural systems and in the interface of these two circuits. This evolving field paves a future pathway for identifying diagnostic biomarkers for the disorder, providing tools for monitoring response to pharmacotherapy, examining illness-associated alterations in developmental trajectory, and facilitating the use of animal research for guiding the development of novel treatment strategies. Conclusion Studies of brain function in child psychiatry are establishing a platform of knowledge and methods that offer promise for revolutionizing both models of illness pathophysiology as well as future diagnostic and therapeutic practice. PMID:18827719

Pavuluri, Mani N; Sweeney, John A

2009-01-01

251

The effects of methylphenidate on whole brain intrinsic functional connectivity.  

PubMed

Methylphenidate (MPH) is an indirect dopaminergic and noradrenergic agonist that is used to treat attention deficit hyperactivity disorder and that has shown therapeutic potential in neuropsychiatric diseases such as depression, dementia, and Parkinson's disease. While effects of MPH on task-induced brain activation have been investigated, little is known about how MPH influences the resting brain. To investigate the effects of 40 mg of oral MPH on intrinsic functional connectivity, we used resting state fMRI in 54 healthy male subjects in a double-blind, randomized, placebo-controlled study. Functional connectivity analysis employing ICA revealed seven resting state networks (RSN) of interest. Connectivity strength between the dorsal attention network and the thalamus was increased after MPH intake. Other RSN located in association cortex areas, such as the left and right frontoparietal networks and the executive control network, showed MPH-induced connectivity increase to sensory-motor and visual cortex regions and connectivity decrease to cortical and subcortical components of cortico-striato-thalamo-cortical circuits (CST). RSN located in sensory-motor cortex areas showed the opposite pattern with MPH-induced connectivity increase to CST components and connectivity decrease to sensory-motor and visual cortex regions. Our results provide evidence that MPH does not only alter intrinsic connectivity between brain areas involved in sustained attention, but that it also induces significant changes in the cortico-cortical and cortico-subcortical connectivity of many other cognitive and sensory-motor RSN. PMID:24862742

Mueller, Sophia; Costa, Anna; Keeser, Daniel; Pogarell, Oliver; Berman, Albert; Coates, Ute; Reiser, Maximilian F; Riedel, Michael; Möller, Hans-Jürgen; Ettinger, Ulrich; Meindl, Thomas

2014-11-01

252

Heritability of human brain functioning as assessed by electroencephalography  

SciTech Connect

To study the genetic and environmental contributions to individual differences in CNS functioning, the electroencephalogram (EEG) was measured in 213 twin pairs age 16 years. EEG was measured in 91 MZ and 122 DZ twins. To quantify sex differences in the genetic architecture, EEG was measured in female and male same-sex twins and in opposite-sex twins. EEG was recorded on 14 scalp positions during quiet resting with eyes closed. Spectral powers were calculated for four frequency bands: delta, theta, alpha, and beta. Twin correlations pointed toward high genetic influences for all these powers and scalp locations. Model fitting confirmed these findings; the largest part of the variance of the EEG is explained by additive genetic factors. The averaged heritabilities for the delta, theta, alpha, and beta frequencies was 76%, 89%, 89%, and 86%, respectively. Multivariate analyses suggested that the same genes for EEG alpha rhythm were expressed in different brain areas in the left and right hemisphere. This study shows that brain functioning, as indexed by rhythmic brain-electrical activity, is one of the most heritable characteristics in humans. 44 refs., 5 figs., 4 tabs.

Beijsterveldt, C.E.M. van; Geus, E.J.C. de; Boomsma, D.I. [and others

1996-03-01

253

Heritability of human brain functioning as assessed by electroencephalography.  

PubMed Central

To study the genetic and environmental contributions to individual differences in CNS functioning, the electroencephalogram (EEG) was measured in 213 twin pairs age 16 years. EEG was measured in 91 MZ and 122 DZ twins. To quantify sex differences in the genetic architecture, EEG was measured in female and male same-sex twins and in opposite-sex twins. EEG was recorded on 14 scalp positions during quiet resting with eyes closed. Spectral powers were calculated for four frequency bands: delta, theta, alpha, and beta. Twin correlations pointed toward high genetic influences for all these powers and scalp locations. Model fitting confirmed these findings; the largest part of the variance of the EEG is explained by additive genetic factors. The averaged heritabilites for the delta, theta, alpha and beta frequencies was 76%, 89%, 89%, and 86%, respectively. Multivariate analyses suggested that the same genes for EEG alpha rhythm were expressed in different brain areas in the left and right hemisphere. This study shows that brain functioning, as indexed by rhythmic brain-electrical activity, is one of the most heritable characteristics in humans. PMID:8644716

van Beijsterveldt, C. E.; Molenaar, P. C.; de Geus, E. J.; Boomsma, D. I.

1996-01-01

254

Sleep-disordered breathing: effects on brain structure and function  

PubMed Central

Sleep-disordered breathing is accompanied by neural injury that affects a wide range of physiological systems which include processes for sensing chemoreception and airflow, driving respiratory musculature, timing circuitry for coordination of breathing patterning, and integration of blood pressure mechanisms with respiration. The damage also occurs in regions mediating emotion and mood, as well as areas regulating memory and cognitive functioning, and appears in structures that serve significant glycemic control processes. The injured structures include brain areas involved in hormone release and action of major neurotransmitters, including those playing a role in depression. The injury is reflected in a range of structural magnetic resonance procedures, and also appears as functional distortions of evoked activity in brain areas mediating vital autonomic and breathing functions. The damage is preferentially unilateral, and includes axonal projections; the asymmetry of the injury poses unique concerns for sympathetic discharge and potential consequences for arrhythmia. Sleep-disordered breathing should be viewed as a condition that includes central nervous system injury and impaired function; the processes underlying injury remain unclear. PMID:23643610

Harper, Ronald M.; Kumar, Rajesh; Ogren, Jennifer A.; Macey, Paul M.

2013-01-01

255

Towards a mechanistic understanding of lipodystrophy and seipin functions  

PubMed Central

CGL (Congenital generalized lipodystrophy) is a genetic disorder characterized by near complete loss of adipose tissue along with increased ectopic fat storage in other organs including liver and muscle. Of the four CGL types, BSCL2 (Berardinelli–Seip Congenital lipodystrophy type 2), resulting from mutations in the BSCL2/seipin gene, exhibits the most severe lipodystrophic phenotype with loss of both metabolic and mechanical adipose depots. The majority of Seipin mutations cause C-terminal truncations, along with a handful of point mutations. Seipin localizes to the ER and is composed of a conserved region including a luminal loop and two transmembrane domains, plus cytosolic N- and C-termini. Animal models deficient in seipin recapitulate the human lipodystrophic phenotype. Cells isolated from seipin knockout mouse models also exhibit impaired adipogenesis. Mechanistically, seipin appears to function as a scaffolding protein to bring together interacting partners essential for lipid metabolism and LD (lipid droplet) formation during adipocyte development. Moreover, cell line and genetic studies indicate that seipin functions in a cell-autonomous manner. Here we will provide a brief overview of the genetic association of the CGLs, and focus on the current understanding of differential contributions of distinct seipin domains to lipid storage and adipogenesis. We will also discuss the roles of seipin-interacting partners, including lipin 1 and 14-3-3?, in mediating seipin-dependent regulation of cellular pathways such as actin cytoskeletal remodelling. PMID:25195639

Wee, Kenneth; Yang, Wulin; Sugii, Shigeki; Han, Weiping

2014-01-01

256

Performance on an episodic encoding task yields further insight into functional brain development  

E-print Network

Performance on an episodic encoding task yields further insight into functional brain development August 2006 To further characterize changes in functional brain development that are associated in the direction predicted by the endpoint analysis. We conclude that the patterns of brain activation associated

257

Hubs of brain functional networks are radically reorganized in comatose patients  

E-print Network

Hubs of brain functional networks are radically reorganized in comatose patients S. Achard , C Human brain networks have topological properties in common with many other complex systems, prompting the question: what aspects of brain network organization are critical for distinctive functional properties

Boyer, Edmond

258

Predictive Modeling of fMRI Brain States using Functional Canonical Correlation Analysis  

E-print Network

Predictive Modeling of fMRI Brain States using Functional Canonical Correlation Analysis S Abstract. We present a novel method for predictive modeling of human brain states from functional for prediction of naturalistic stimuli from unknown fMRI data shows that the method nds highly predictive brain

Smeulders, Arnold

259

Effects of alcohol intake on brain structure and function in non-alcohol-dependent drinkers  

Microsoft Academic Search

About 85% of the adult population in the Netherlands regularly drinks alcohol. Chronic excessive alcohol intake in alcohol-dependent individuals is known to have damaging effects on brain structure and function. Relatives of alcohol-dependent individuals display differences in brain function that are similar to those found in alcoholics, even if they have never been drinking alcohol. This suggests that brain damage

Eveline Astrid de Bruin

2005-01-01

260

Studying brain function with near-infrared spectroscopy concurrently with electroencephalography  

E-print Network

Studying brain function with near-infrared spectroscopy concurrently with electroencephalography Y an electroencephalography (EEG) standard multi-channel cap, we can perform functional brain mapping of hemodynamic response-infrared spectroscopy, electroencephalography, evoked potentials, brain imaging 1. INTRODUCTION NIRS and EEG are non

Fantini, Sergio

261

Dynamic reconfiguration of human brain functional networks through neurofeedback.  

PubMed

Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. PMID:23684872

Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri

2013-11-01

262

Fetal functional imaging portrays heterogeneous development of emerging human brain networks  

PubMed Central

The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

2014-01-01

263

Disrupted Functional Brain Connectivity and Its Association to Structural Connectivity in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease  

PubMed Central

Although anomalies in the topological architecture of whole-brain connectivity have been found to be associated with Alzheimer’s disease (AD), our understanding about the progression of AD in a functional connectivity (FC) perspective is still rudimentary and few study has explored the function-structure relations in brain networks of AD patients. By using resting-state functional MRI (fMRI), this study firstly investigated organizational alternations in FC networks in 12 AD patients, 15 amnestic mild cognitive impairment (aMCI) patients, and 14 age-matched healthy aging subjects and found that all three groups exhibit economical small-world network properties. Nonetheless, we found a decline of the optimal architecture in the progression of AD, represented by a more localized modular organization with less efficient local information transfer. Our results also show that aMCI forms a boundary between normal aging and AD and represents a functional continuum between healthy aging and the earliest signs of dementia. Moreover, we revealed a dissociated relationship between the overall FC and structural connectivity (SC) in AD patients. In this study, diffusion tensor imaging tractography was used to map the structural network of the same individuals. The decreased FC-SC coupling may be indicative of more stringent and less dynamic brain function in AD patients. Our findings provided insightful implications for understanding the pathophysiological mechanisms of brain dysfunctions in aMCI and AD patients and demonstrated that functional disorders can be characterized by multimodal neuroimaging-based metrics. PMID:24806295

Yan, Xiaoxiao; Wang, Ying; Bezerianos, Anastasios; Tang, Huidong; Miao, Fei; Sun, Junfeng

2014-01-01

264

Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury  

PubMed Central

Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects. PMID:21354974

Bardin, Jonathan C.; Fins, Joseph J.; Katz, Douglas I.; Hersh, Jennifer; Heier, Linda A.; Tabelow, Karsten; Dyke, Jonathan P.; Ballon, Douglas J.; Schiff, Nicholas D.

2011-01-01

265

Evolutionarily novel functional networks in the human brain?  

PubMed

Primate evolution has been accompanied by complex reorganizations in brain anatomy and function. Little is known, however, about the relationship between anatomical and functional changes induced through primate evolution. Using functional magnetic resonance imaging, we assessed spatial and temporal correspondences of cortical networks in humans and monkeys. We provided evidence for topologically and functionally correspondent networks in sensory-motor and attention regions. More specifically, we revealed a possible monkey equivalent of the human ventral attention network. For other human networks, such as the language and the default-mode networks, we detected topological correspondent networks in the monkey, but with different functional signatures. Furthermore, we observed two lateralized human frontoparietal networks in the cortical regions displaying the greatest evolutionary expansion, having neither topological nor functional monkey correspondents. This finding may indicate that these two human networks are evolutionarily novel. Thus, our findings confirm the existence of networks where evolution has conserved both topology and function but also suggest that functions of structurally preserved networks can diverge over time and that novel, hence human-specific networks, have emerged during human evolution. PMID:23426655

Mantini, Dante; Corbetta, Maurizio; Romani, Gian Luca; Orban, Guy A; Vanduffel, Wim

2013-02-20

266

Sex Differences in the Brain: the Relation between Structure and Function  

PubMed Central

In the fifty years since the organizational hypothesis was proposed, many sex differences have been found in behavior as well as structure of the brain that depend on the organizational effects of gonadal hormones early in development. Remarkably, in most cases we do not understand how the two are related. This paper makes the case that overstating the magnitude or constancy of sex differences in behavior and too narrowly interpreting the functional consequences of structural differences are significant roadblocks in resolving this issue. PMID:19446075

de Vries, Geert J.; Södersten, Per

2014-01-01

267

Microinfarcts, brain atrophy, and cognitive function: the HAAS autopsy study  

PubMed Central

Objectives To study the association of microinfarcts (MBI) to ante-mortem global cognitive function (CF), and to investigate whether brain weight (BW), Alzheimer’s lesions (neurofibrillary tangles (NFT) or neuritic plaques (NP) mediate the association. Methods Subjects are 437 well-characterized male decedents from the Honolulu Asia Aging Autopsy Study. Brain pathology was ascertained with standardized methods, CF was measured by the Cognitive Abilities Screening Instrument (CASI)and data were analyzed using formal mediation analyses, adjusted for age at death, time between last CF measure and death, education, and head size. Based on ante-mortem diagnoses, demented and non-demented subjects were examined together and separately. Results In those with no dementia, MBI were strongly associated with the last ante-mortem CF score; this was significantly mediated by BW, and not NFT or NP. In contrast, among those with an ante-mortem diagnosis of dementia, NFT had the strongest associations with BW and with CF, and MIB were modestly associated with CF. Interpretation This suggests microinfarct pathology is a significant and independent factor contributing to brain atrophy and cognitive impairment, particularly before dementia is clinically evident. The role of vascular damage as initiator, stimulator, or additive contributor to neurodegeneration may differ depending on when in the trajectory towards dementia the lesions develop. PMID:22162060

Launer, Lenore J; Hughes, Timothy M; White, Lon R

2011-01-01

268

Mitochondrial activity and brain functions during cortical depolarization  

NASA Astrophysics Data System (ADS)

Cortical depolarization (CD) of the cerebral cortex could be developed under various pathophysiological conditions. In animal models, CD was recorded under partial or complete ischemia as well as when cortical spreading depression (SD) was induced externally or by internal stimulus. The development of CD in patients and the changes in various metabolic parameters, during CD, was rarely reported. Brain metabolic, hemodynamic, ionic and electrical responses to the CD event are dependent upon the O2 balance in the tissue. When the O2 balance is negative (i.e. ischemia), the CD process will be developed due to mitochondrial dysfunction, lack of energy and the inhibition of Na+-K+-ATPase. In contradiction, when oxygen is available (i.e. normoxia) the development of CD after induction of SD will accelerate mitochondrial respiration for retaining ionic homeostasis and normal brain functions. We used the multiparametric monitoring approach that enable real time monitoring of mitochondrial NADH redox state, microcirculatory blood flow and oxygenation, extracellular K+, Ca2+, H+ levels, DC steady potential and electrocorticogram (ECoG). This monitoring approach, provide a unique tool that has a significant value in analyzing the pathophysiology of the brain when SD developed under normoxia, ischemia, or hypoxia. We applied the same monitoring approach to patients suffered from severe head injury or exposed to neurosurgical procedures.

Mayevsky, Avraham; Sonn, Judith

2008-12-01

269

Operating Characteristics of Executive Functioning Tests Following Traumatic Brain Injury  

PubMed Central

The primary purposes of this study were to determine if controls, mild, and moderate/severe traumatic brain injury (TBI) patients performed differently on a battery of executive functioning (EF) tests, and to identify the operating characteristics of EF tests in this population. Participants consisted of 46 brain injured individuals and 24 healthy controls. All participants completed an extensive battery of EF tests. Results showed that mild TBI participants performed worse than controls on the Trail Making Test Part B, and that moderate/severe TBI participants consistently performed worse than either group on a variety of EF measures. Tests of EF exhibited a wide range of operating characteristics, suggesting that some EF tests are better than others in identifying TBI-related neurocognitive impairment. Predictive values were better for individuals with moderate/severe TBI than mild TBI. Overall, the Digit Span Backward Test showed the best positive predictive power in differentiating TBI. Our results provide useful data that may guide test selection in evaluating EF in patients with traumatic brain injury. PMID:21069617

Demery, Jason A.; Larson, Michael J.; Dixit, Neha K.; Bauerand, Russell M.; Perlstein, William M.

2010-01-01

270

Functional Brain Correlates of Upper Limb Spasticity and Its Mitigation following Rehabilitation in Chronic Stroke Survivors.  

PubMed

Background. Arm spasticity is a challenge in the care of chronic stroke survivors with motor deficits. In order to advance spasticity treatments, a better understanding of the mechanism of spasticity-related neuroplasticity is needed. Objective. To investigate brain function correlates of spasticity in chronic stroke and to identify specific regional functional brain changes related to rehabilitation-induced mitigation of spasticity. Methods. 23 stroke survivors (>6 months) were treated with an arm motor learning and spasticity therapy (5?d/wk for 12 weeks). Outcome measures included Modified Ashworth scale, sensory tests, and functional magnetic resonance imaging (fMRI) for wrist and hand movement. Results. First, at baseline, greater spasticity correlated with poorer motor function (P = 0.001) and greater sensory deficits (P = 0.003). Second, rehabilitation produced improvement in upper limb spasticity and motor function (P < 0.0001). Third, at baseline, greater spasticity correlated with higher fMRI activation in the ipsilesional thalamus (rho = 0.49, P = 0.03). Fourth, following rehabilitation, greater mitigation of spasticity correlated with enhanced fMRI activation in the contralesional primary motor (r = -0.755, P = 0.003), premotor (r = -0.565, P = 0.04), primary sensory (r = -0.614, P = 0.03), and associative sensory (r = -0.597, P = 0.03) regions while controlling for changes in motor function. Conclusions. Contralesional motor regions may contribute to restoring control of muscle tone in chronic stroke. PMID:25101190

Pundik, Svetlana; Falchook, Adam D; McCabe, Jessica; Litinas, Krisanne; Daly, Janis J

2014-01-01

271

Brain function in patients with cerebral fat embolism evaluated using somatosensory and brain-stem auditory evoked potentials  

Microsoft Academic Search

In two victims of traffic accidents with broken bones and fat embolism, serial recordings of somatosensory evoked potentials (SEPs) and brain-stem auditory evoked potentials (BAEPs) were examined to assess brain function. Initial SEPs and BAEPs revealed normal subcortical components, while the late cortical components of SEPs were abolished, findings indicative of diffuse dysfunction of grey rather than of white matter.

T. Morioka; H. Yagi

1989-01-01

272

Delta opioid receptors in brain function and diseases  

PubMed Central

Evidence that the delta opioid receptor (DOR) is an attractive target for the treatment of brain disorders has strengthened in recent years. This receptor is broadly expressed in the brain, binds endogenous opioid peptides, and shows as functional profile highly distinct from those of mu and kappa opioid receptors. Our knowledge of DOR function has enormously progressed from in vivo studies using pharmacological tools and genetic approaches. The important role of this receptor in reducing chronic pain has been extensively overviewed; therefore this review focuses on facets of delta receptor activity relevant to psychiatric and other neurological disorders. Beneficial effects of DOR agonists are now well established in the context of emotional responses and mood disorders. DOR activation also regulates drug reward, inhibitory controls and learning processes, but whether delta compounds may represent useful drugs in the treatment of drug abuse remains open. Epileptogenic and locomotor-stimulating effects of delta agonists appear drug-dependent, and the possibility of biased agonism at DOR for these effects is worthwhile further investigations to increase benefit/risk ratio of delta therapies. Neuroprotective effects of DOR activity represent a forthcoming research area. Future developments in DOR research will benefit from in-depth investigations of DOR function at cellular and circuit levels. PMID:23764370

Chung, Paul Chu Sin; Kieffer, Brigitte L.

2013-01-01

273

Delta opioid receptors in brain function and diseases.  

PubMed

Evidence that the delta opioid receptor (DOR) is an attractive target for the treatment of brain disorders has strengthened in recent years. This receptor is broadly expressed in the brain, binds endogenous opioid peptides, and shows as functional profile highly distinct from those of mu and kappa opioid receptors. Our knowledge of DOR function has enormously progressed from in vivo studies using pharmacological tools and genetic approaches. The important role of this receptor in reducing chronic pain has been extensively overviewed; therefore this review focuses on facets of delta receptor activity relevant to psychiatric and other neurological disorders. Beneficial effects of DOR agonists are now well established in the context of emotional responses and mood disorders. DOR activation also regulates drug reward, inhibitory controls and learning processes, but whether delta compounds may represent useful drugs in the treatment of drug abuse remains open. Epileptogenic and locomotor-stimulating effects of delta agonists appear drug-dependent, and the possibility of biased agonism at DOR for these effects is worthwhile further investigations to increase benefit/risk ratio of delta therapies. Neuroprotective effects of DOR activity represent a forthcoming research area. Future developments in DOR research will benefit from in-depth investigations of DOR function at cellular and circuit levels. PMID:23764370

Chu Sin Chung, Paul; Kieffer, Brigitte L

2013-10-01

274

Alcohol: Effects on Neurobehavioral Functions and the Brain  

PubMed Central

Alcoholism results from an interplay between genetic and environmental factors, and is linked to brain defects and associated cognitive, emotional, and behavioral impairments. A confluence of findings from neuroimaging, physiological, neuropathological, and neuropsychological studies of alcoholics indicate that the frontal lobes, limbic system, and cerebellum are particularly vulnerable to damage and dysfunction. An integrative approach employing a variety of neuroscientific technologies is essential for recognizing the interconnectivity of the different functional systems affected by alcoholism. In that way, relevant experimental techniques can be applied to assist in determining the degree to which abstinence and treatment contribute to the reversal of atrophy and dysfunction. PMID:17874302

Oscar-Berman, Marlene; Marinkovi?, Ksenija

2014-01-01

275

Functional connectivity architecture of the human brain: not all the same.  

PubMed

Imaging studies suggest that individual differences in cognition and behavior might relate to differences in brain connectivity, particularly in the higher order association regions. Understanding the extent to which two brains can differ is crucial in clinical and basic neuroscience research. Here we highlight two major sources of variance that contribute to intersubject variability in connectivity measurements but are often mixed: the spatial distribution variability and the connection strength variability. We then offer a hypothesis about how the cortical surface expansion during human evolution may have led to remarkable intersubject variability in brain connectivity. We propose that a series of changes in connectivity architecture occurred in response to the pressure for processing efficiency in the enlarged brain. These changes not only distinguish us from our evolutionary ancestors, but also enable each individual to develop more uniquely. This hypothesis may gain support from the significant spatial correlations among evolutionary cortical expansion, the density of long-range connections, hemispheric functional specialization, and intersubject variability in connectivity. PMID:25030990

Wang, Danhong; Liu, Hesheng

2014-10-01

276

Using Proton Magnetic Resonance Imaging and Spectroscopy to Understand Brain "Activation"  

ERIC Educational Resources Information Center

Upon stimulation, areas of the brain associated with specific cognitive processing tasks may undergo observable physiological changes, and measures of such changes have been used to create brain maps for visualization of stimulated areas in task-related brain "activation" studies. These perturbations usually continue throughout the period of the…

Baslow, Morris H.; Guilfoyle, David N.

2007-01-01

277

A Functional Conceptualization of Understanding Science in the News  

ERIC Educational Resources Information Center

The idea that the public should have the capacity for understanding science in the news has been embraced by scientists, educators, and policymakers alike. An oft-cited goal of contemporary science education, in fact, is to enhance students' understanding of science in the news. But what exactly does it "mean" to understand science…

Anderson, Megan M.

2012-01-01

278

Changes in brain functional network connectivity after stroke.  

PubMed

Studies have shown that functional network connection models can be used to study brain network changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlated to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea-lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke. PMID:25206743

Li, Wei; Li, Yapeng; Zhu, Wenzhen; Chen, Xi

2014-01-01

279

New understanding of adolescent brain development; relevance to transitional healthcare for young people with long term conditions  

PubMed Central

Summary Whether or not adolescence should be treated as a special period, there is now no doubt that the brain changes much during adolescence. From an evolutionary perspective, the idea of an under developed brain which is not fit for purpose until adulthood is illogical. Rather, the adolescent brain is likely to support the challenges specific to that period of life. New imaging techniques show unequivocal, striking changes in the white and gray matter which take place between 11 and 25 years of age. There is increased connectivity between brain regions, and increased dopaminergic activity in the pre-frontal cortices, the striatum and limbic system and the pathways linking them. The brain is dynamic, with some areas developing faster and becoming more dominant until other areas catch up. Plausible mechanisms can be postulated for linking these changes to the cognitive and behavioural features of adolescence. The changing brain may lead to abrupt behavioural change with the attendant risks; but it also produces a brain which is flexible and able to respond quickly and imaginatively. Society sets a context and environment that allows adolescent exuberance and creativity to be bounded and explored in relative safety. Whilst these changes apply to all young people, in healthcare settings they are especially relevant to young people with long term conditions in the context of their transition to young adult life; such young people need to learn to manage their health condition and their health care providers need to understand how to facilitate this. PMID:23986559

Colver, Allan; Longwell, Sarah

2014-01-01

280

Brain Atrophy Correlates with Functional Outcome in a Murine Model of Multiple Sclerosis  

PubMed Central

White matter (WM) lesions are the classic pathological hallmarks of multiple sclerosis (MS). However, MRI-based WM lesion load shows relatively poor correlation with functional outcome, resulting in the “clinico-radiological paradox” of MS. Unlike lesion based measures, volumetric MRI assessment of brain atrophy shows a strong correlation with functional outcome, and the presence of early atrophy predicts a worse disease course. While extensive literature exists describing MRI characteristics of atrophy in MS, the exact pathogenesis and the substrate of atrophy - gray vs WM loss, axonal/neuronal damage vs demyelination, or a combination of the above – remain unclear. Animal models of atrophy would allow for detailed investigations of the pathomechanism, and would contribute to an enhanced understanding of structural-functional connections in this complex disease. We now report that in the Theiler’s Murine Encephalitis Virus (TMEV) model of MS in SJL/J mice, significant brain atrophy accompanies the development of the progressive MS-like disease. We conducted volumetric MRI studies in 8 cases and 4 age, gender and strain matched control mice. While in controls we did not detect any brain atrophy, significant atrophy developed as early as 3 months into the disease course, and reached its peak by 6 months, resulting in ventricular enlargement by 118% (p= 0.00003). A strong correlation (r=?0.88) between atrophy and disability, as assessed by rotarod assay, was also demonstrated. We earlier reported another neurodegenerative feature in this model, the presence of deep gray matter T2 hypointensity in thalamic nuclei. Future studies utilizing this model will allow us to investigate key components of MRI detectable neurodegenerative feature development, their tissue correlations and associations with functional outcome measures. These studies are expected to pave the way to a better understanding of the substrate of disability in MS models. PMID:20817104

Pirko, I.; Johnson, A.J.; Chen, Yi; Lindquist, D. M.; Lohrey, A. K.; Ying, J.; Dunn, R. Scott

2010-01-01

281

ay 1 Mysteries of Brain : Come and `learn about the brain'. Have you wondered, "What is our brain like?" "How do we sense things around us?" and "How do we react to our environment?"  

E-print Network

of Brain : Come and `learn about the brain'. Have you wondered, "What is our brain like?" "How do we sense about `neuron' as a basic unit of the brain, structure of the brain, functions closely associated with brain lobes and hemispheres and understanding the nervous system Special Focus: Brain Hemispheres

Narayanan, H.

282

Functional Tissue Pulsatility Imaging of the Brain during Visual Stimulation  

PubMed Central

Functional tissue pulsatility imaging (fTPI) is a new ultrasonic technique being developed to map brain function by measuring changes in tissue pulsatility due to changes in blood flow with neuronal activation. The technique is based in principle on plethysmography, an older, non-ultrasound technology for measuring expansion of a whole limb or body part due to perfusion. Perfused tissue expands by a fraction of a percent early in each cardiac cycle when arterial inflow exceeds venous outflow and relaxes later in the cardiac cycle when venous drainage dominates. Tissue pulsatility imaging (TPI) uses tissue Doppler signal processing methods to measure this pulsatile “plethysmographic” signal from hundreds or thousands of sample volumes in an ultrasound image plane. A feasibility study was conducted to determine if TPI could be used to detect regional brain activation during a visual contrast-reversing checkerboard block paradigm study. During a study, ultrasound data were collected transcranially from the occipital lobe as a subject viewed alternating blocks of a reversing checkerboard (stimulus condition) and a static, gray screen (control condition). Multivariate Analysis of Variance (MANOVA) was used to identify sample volumes with significantly different pulsatility waveforms during the control and stimulus blocks. In 7 out 14 studies, consistent regions of activation were detected from tissue around the major vessels perfusing the visual cortex. PMID:17346872

Kucewicz, John C.; Dunmire, Barbrina; Leotta, Daniel F.; Panagiotides, Heracles; Paun, Marla; Beach, Kirk W.

2007-01-01

283

Brain imaging methods used in experimental brain research such as Positron Emission Tomography (PET) and Functional  

E-print Network

ABSTRACT Brain imaging methods used in experimental brain research such as Positron Emission of methods create statistical parametric maps (SPMs) of the brain on a voxel- basis. In our approach, they are best understood in the context of the underly- ing 3-D brain anatomy. However, despite the power

Mueller, Klaus

284

Long-Term Enhancement of Brain Function and Cognition Using Cognitive Training and Brain Stimulation  

PubMed Central

Summary Noninvasive brain stimulation has shown considerable promise for enhancing cognitive functions by the long-term manipulation of neuroplasticity [1–3]. However, the observation of such improvements has been focused at the behavioral level, and enhancements largely restricted to the performance of basic tasks. Here, we investigate whether transcranial random noise stimulation (TRNS) can improve learning and subsequent performance on complex arithmetic tasks. TRNS of the bilateral dorsolateral prefrontal cortex (DLPFC), a key area in arithmetic [4, 5], was uniquely coupled with near-infrared spectroscopy (NIRS) to measure online hemodynamic responses within the prefrontal cortex. Five consecutive days of TRNS-accompanied cognitive training enhanced the speed of both calculation- and memory-recall-based arithmetic learning. These behavioral improvements were associated with defined hemodynamic responses consistent with more efficient neurovascular coupling within the left DLPFC. Testing 6 months after training revealed long-lasting behavioral and physiological modifications in the stimulated group relative to sham controls for trained and nontrained calculation material. These results demonstrate that, depending on the learning regime, TRNS can induce long-term enhancement of cognitive and brain functions. Such findings have significant implications for basic and translational neuroscience, highlighting TRNS as a viable approach to enhancing learning and high-level cognition by the long-term modulation of neuroplasticity. PMID:23684971

Snowball, Albert; Tachtsidis, Ilias; Popescu, Tudor; Thompson, Jacqueline; Delazer, Margarete; Zamarian, Laura; Zhu, Tingting; Cohen Kadosh, Roi

2013-01-01

285

Functional significance of the rapid regulation of brain estrogens: Where do the estrogens come from?  

PubMed Central

Estrogens exert a wide variety of actions on reproductive and non-reproductive functions. These effects are mediated by slow and long lasting genomic as well as rapid and transient non-genomic mechanisms. Besides the host of studies demonstrating the role of genomic actions at the physiological and behavioral level, mounting evidence highlights the functional significance of non-genomic effects. However, the source of the rapid changes in estrogen availability that are necessary to sustain their fast actions is rarely questioned. For example, the rise of plasma estrogens at pro-estrus that represents one of the fastest documented changes in plasma estrogen concentration appears too slow to explain these actions. Alternatively, estrogen can be synthesized in the brain by the enzyme aromatase providing a source of locally high concentrations of the steroid. Furthermore, recent studies demonstrate that brain aromatase can be rapidly modulated by afferent inputs, including glutamatergic afferents. A role for rapid changes in estrogen production in the central nervous system is supported by experiments showing that acute aromatase inhibition affects nociception as well as male sexual behavior and that preoptic aromatase activity is rapidly (within min) modulated following mating. Such mechanisms thus fulfill the gap existing between the fast actions of estrogen and their mode of production and open new avenues for the understanding of estrogenic effects on the brain. PMID:16978590

Cornil, Charlotte A.; Ball, Gregory F.; Balthazart, Jacques

2012-01-01

286

Electromagnetic brain mapping  

Microsoft Academic Search

There has been tremendous advances in our ability to produce images of human brain function. Applications of functional brain imaging extend from improving our understanding of the basic mechanisms of cognitive processes to better characterization of pathologies that impair normal function. Magnetoencephalography (MEG) and electroencephalography (EEG) (MEG\\/EEG) localize neural electrical activity using noninvasive measurements of external electromagnetic signals. Among the

S. Baillet; J. C. Mosher; R. M. Leahy

2001-01-01

287

Understanding density functional theory (DFT) and completing it in practice  

NASA Astrophysics Data System (ADS)

We review some salient points in the derivation of density functional theory (DFT) and of the local density approximation (LDA) of it. We then articulate an understanding of DFT and LDA that seems to be ignored in the literature. We note the well-established failures of many DFT and LDA calculations to reproduce the measured energy gaps of finite systems and band gaps of semiconductors and insulators. We then illustrate significant differences between the results from self consistent calculations using single trial basis sets and those from computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Unlike the former, the latter calculations verifiably attain the absolute minima of the occupied energies, as required by DFT. These minima are one of the reasons for the agreement between their results and corresponding, experimental ones for the band gap and a host of other properties. Further, we note predictions of DFT BZW-EF calculations that have been confirmed by experiment. Our subsequent description of the BZW-EF method ends with the application of the Rayleigh theorem in the selection, among the several calculations the method requires, of the one whose results have a full, physics content ascribed to DFT. This application of the Rayleigh theorem adds to or completes DFT, in practice, to preserve the physical content of unoccupied, low energy levels. Discussions, including implications of the method, and a short conclusion follow the description of the method. The successive augmentation of the basis set in the BZW-EF method, needed for the application of the Rayleigh theorem, is also necessary in the search for the absolute minima of the occupied energies, in practice.

Bagayoko, Diola

2014-12-01

288

Developing high-performance cross-functional teams: Understanding motivations, functional loyalties, and teaming fundamentals  

SciTech Connect

Teamwork is the key to the future of effective technology management. Today`s technologies and markets have become too complex for individuals to work alone. Global competition, limited resources, cost consciousness, and time pressures have forced organizations and project managers to encourage teamwork. Many of these teams will be cross-functional teams that can draw on a multitude of talents and knowledge. To develop high-performing cross-functional teams, managers must understand motivations, functional loyalties, and the different backgrounds of the individual team members. To develop a better understanding of these issues, managers can learn from experience and from literature on teams and teaming concepts. When studying the literature to learn about cross-functional teaming, managers will find many good theoretical concepts, but when put into practice, these concepts have varying effects. This issue of varying effectiveness is what drives the research for this paper. The teaming concepts were studied to confirm or modify current understanding. The literature was compared with a {open_quotes}ground truth{close_quotes}, a survey of the reality of teaming practices, to examine the teaming concepts that the literature finds to be critical to the success of teams. These results are compared to existing teams to determine if such techniques apply in real-world cases.

Miller, M.A.

1996-08-01

289

Functional specificity in the human brain: a window into the functional architecture of the mind.  

PubMed

Is the human mind/brain composed of a set of highly specialized components, each carrying out a specific aspect of human cognition, or is it more of a general-purpose device, in which each component participates in a wide variety of cognitive processes? For nearly two centuries, proponents of specialized organs or modules of the mind and brain--from the phrenologists to Broca to Chomsky and Fodor--have jousted with the proponents of distributed cognitive and neural processing--from Flourens to Lashley to McClelland and Rumelhart. I argue here that research using functional MRI is beginning to answer this long-standing question with new clarity and precision by indicating that at least a few specific aspects of cognition are implemented in brain regions that are highly specialized for that process alone. Cortical regions have been identified that are specialized not only for basic sensory and motor processes but also for the high-level perceptual analysis of faces, places, bodies, visually presented words, and even for the very abstract cognitive function of thinking about another person's thoughts. I further consider the as-yet unanswered questions of how much of the mind and brain are made up of these functionally specialized components and how they arise developmentally. PMID:20484679

Kanwisher, Nancy

2010-06-22

290

Quetiapine modulates functional connectivity in brain aggression networks.  

PubMed

Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. PMID:23501053

Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

2013-07-15

291

Structure function relationship in complex brain networks expressed by hierarchical synchronization  

NASA Astrophysics Data System (ADS)

The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

Zhou, Changsong; Zemanová, Lucia; Zamora-López, Gorka; Hilgetag, Claus C.; Kurths, Jürgen

2007-06-01

292

Desensitization of myocardial ?-adrenergic receptors and deterioration of left ventricular function after brain death  

Microsoft Academic Search

Brain death often results in a series of hemodynamic alterations that complicate the treatment of potential organ donors before transplantation. The deterioration of myocardial performance after brain death has been described; however, the pathophysiologic process of the myocardial dysfunction that occurs after brain death has not been elucidated. This study was designed to analyze the function of the myocardial ?-adrenergic

Thomas A. D'Amico; Cary H. Meyers; Theodore C. Koutlas; David S. Peterseim; David C. Sabiston; Peter Van Trigt; Debra A. Schwinn

1995-01-01

293

Pathophysiological Response to Experimental Diffuse Brain Trauma Differs as a Function of Developmental Age  

Microsoft Academic Search

The purpose of experimental models of traumatic brain injury (TBI) is to reproduce selected aspects of human head injury such as brain edema, contusion or concussion, and functional deficits, among others. As the immature brain may be particularly vulnerable to injury during critical periods of development, and pediatric TBI may cause neurobehavioral deficits, our aim was to develop and characterize

Ibolja Cernak; Taeun Chang; Farid A. Ahmed; Maria I. Cruz; Robert Vink; Bogdan Stoica; Alan I. Faden

2010-01-01

294

Functional Representation of Human Embryo Brain Models Roman Durikovic Silvester Czanner  

E-print Network

Functional Representation of Human Embryo Brain Models Roman Durikovic Silvester Czanner Hirofumi embryo brain is organic and has many folds that are difficult to model or animate with conventional metamorphosis during the growth of some human embryo organs, partic- ularly brain and stomach. Popular methods

Durikovic, Roman

295

Categories and Functional Units: An Infinite Hierarchical Model for Brain Activations  

E-print Network

Categories and Functional Units: An Infinite Hierarchical Model for Brain Activations Danial present a model that describes the structure in the responses of different brain areas to a set of stimuli encodes the relationship between brain activations and fMRI time courses. A variational inference

Golland, Polina

296

The Organization of Local and Distant Functional Connectivity in the Human Brain  

Microsoft Academic Search

Information processing in the human brain arises from both interactions between adjacent areas and from distant projections that form distributed brain systems. Here we map interactions across different spatial scales by estimating the degree of intrinsic functional connectivity for the local (?14 mm) neighborhood directly surrounding brain regions as contrasted with distant (>14 mm) interactions. The balance between local and

Jorge Sepulcre; Hesheng Liu; Tanveer Talukdar; Iñigo Martincorena; B. T. Thomas Yeo; Randy L. Buckner

2010-01-01

297

Memory Networks in Tinnitus: A Functional Brain Image Study  

PubMed Central

Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls. Methods: Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT). The severity of tinnitus was assessed using the “Tinnitus Handicap Inventory” (THI). The images were processed and analyzed using “Statistical Parametric Mapping” (SPM8). Results: A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05) was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus. Conclusion: It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes. PMID:24516567

Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J.; Jackowski, Andrea Parolin

2014-01-01

298

Measuring, mapping, and modeling brain structure and function  

NASA Astrophysics Data System (ADS)

Presently available anatomic atlases provide useful coordinate systems such as the ubiquitous Talairach system but are sorely lacking in both spatial resolution and completeness. An appropriately sampled anatomic specimen can provide the additional detail necessary to accurately localize activation sites as well as provide other structural perspectives such as chemoarchitecture. We collected serial section postmortem anatomic data from several whole human head and brain specimens using a cryosectioning technique. Tissue imaged so that voxel resolution was 200 microns or better at full color. These high resolution datasets along with collections of MR data were placed within a common coordinate system and used to produce a probabilistic representation. This approach represents anatomy within a coordinate system as a probability. Coordinate locations are assigned a confidence limit to describe the likelihood that a given location belongs to an anatomic structure based upon the population of specimens. A variety of warping strategies are discussed to provide statistics on morphometric variability and probability. High dimensional anatomically based warps utilizing sulcal anatomy are described. These data are an important and necessary part of the comprehensive structural and functional analyses that focus on the mapping of the human brain.

Toga, Arthur W.; Thompson, Paul

1997-05-01

299

Selectionist and evolutionary approaches to brain function: a critical appraisal.  

PubMed

We consider approaches to brain dynamics and function that have been claimed to be Darwinian. These include Edelman's theory of neuronal group selection, Changeux's theory of synaptic selection and selective stabilization of pre-representations, Seung's Darwinian synapse, Loewenstein's synaptic melioration, Adam's selfish synapse, and Calvin's replicating activity patterns. Except for the last two, the proposed mechanisms are selectionist but not truly Darwinian, because no replicators with information transfer to copies and hereditary variation can be identified in them. All of them fit, however, a generalized selectionist framework conforming to the picture of Price's covariance formulation, which deliberately was not specific even to selection in biology, and therefore does not imply an algorithmic picture of biological evolution. Bayesian models and reinforcement learning are formally in agreement with selection dynamics. A classification of search algorithms is shown to include Darwinian replicators (evolutionary units with multiplication, heredity, and variability) as the most powerful mechanism for search in a sparsely occupied search space. Examples are given of cases where parallel competitive search with information transfer among the units is more efficient than search without information transfer between units. Finally, we review our recent attempts to construct and analyze simple models of true Darwinian evolutionary units in the brain in terms of connectivity and activity copying of neuronal groups. Although none of the proposed neuronal replicators include miraculous mechanisms, their identification remains a challenge but also a great promise. PMID:22557963

Fernando, Chrisantha; Szathmáry, Eörs; Husbands, Phil

2012-01-01

300

Functional brain networks and cognitive deficits in Parkinson's disease.  

PubMed

Graph-theoretical analyses of functional networks obtained with resting-state functional magnetic resonance imaging (fMRI) have recently proven to be a useful approach for the study of the substrates underlying cognitive deficits in different diseases. We used this technique to investigate whether cognitive deficits in Parkinson's disease (PD) are associated with changes in global and local network measures. Thirty-six healthy controls (HC) and 66 PD patients matched for age, sex, and education were classified as having mild cognitive impairment (MCI) or not based on performance in the three mainly affected cognitive domains in PD: attention/executive, visuospatial/visuoperceptual (VS/VP), and declarative memory. Resting-state fMRI and graph theory analyses were used to evaluate network measures. We have found that patients with MCI had connectivity reductions predominantly affecting long-range connections as well as increased local interconnectedness manifested as higher measures of clustering, small-worldness, and modularity. The latter measures also tended to correlate negatively with cognitive performance in VS/VP and memory functions. Hub structure was also reorganized: normal hubs displayed reduced centrality and degree in MCI PD patients. Our study indicates that the topological properties of brain networks are changed in PD patients with cognitive deficits. Our findings provide novel data regarding the functional substrate of cognitive impairment in PD, which may prove to have value as a prognostic marker. PMID:24639411

Baggio, Hugo-Cesar; Sala-Llonch, Roser; Segura, Bàrbara; Marti, Maria-José; Valldeoriola, Francesc; Compta, Yaroslau; Tolosa, Eduardo; Junqué, Carme

2014-09-01

301

Potential Use of MEG to Understand Abnormalities in Auditory Function in Clinical Populations  

PubMed Central

Magnetoencephalography (MEG) provides a direct, non-invasive view of neural activity with millisecond temporal precision. Recent developments in MEG analysis allow for improved source localization and mapping of connectivity between brain regions, expanding the possibilities for using MEG as a diagnostic tool. In this paper, we first describe inverse imaging methods (e.g., minimum-norm estimation) and functional connectivity measures, and how they can provide insights into cortical processing. We then offer a perspective on how these techniques could be used to understand and evaluate auditory pathologies that often manifest during development. Here we focus specifically on how MEG inverse imaging, by providing anatomically based interpretation of neural activity, may allow us to test which aspects of cortical processing play a role in (central) auditory processing disorder [(C)APD]. Appropriately combining auditory paradigms with MEG analysis could eventually prove useful for a hypothesis-driven understanding and diagnosis of (C)APD or other disorders, as well as the evaluation of the effectiveness of intervention strategies. PMID:24659963

Larson, Eric; Lee, Adrian K. C.

2014-01-01

302

Neuromodulation of Brain States  

PubMed Central

Switches between different behavioral states of the animal are associated with prominent changes in global brain activity, between sleep and wakefulness or from inattentive to vigilant states. What mechanisms control brain states, and what are the functions of the different states? Here we summarize current understanding of the key neural circuits involved in regulating brain states, with a particular emphasis on the subcortical neuromodulatory systems. At the functional level, arousal and attention can greatly enhance sensory processing, whereas sleep and quiet wakefulness may facilitate learning and memory. Several new techniques developed over the past decade promise great advances in our understanding of the neural control and function of different brain states. PMID:23040816

Lee, Seung-Hee; Dan, Yang

2013-01-01

303

Imaging local brain function with emission computed tomography  

SciTech Connect

Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

Kuhl, D.E.

1984-03-01

304

Altered Small-World Efficiency of Brain Functional Networks in Acupuncture at ST36: A Functional MRI Study  

PubMed Central

Background Acupuncture in humans can produce clinical effects via the central nervous system. However, the neural substrates of acupuncture’s effects remain largely unknown. Results We utilized functional MRI to investigate the topological efficiency of brain functional networks in eighteen healthy young adults who were scanned before and after acupuncture at the ST36 acupoints (ACUP) and its sham point (SHAM). Whole-brain functional networks were constructed by thresholding temporal correlations matrices of ninety brain regions, followed by a graph theory-based analysis. We showed that brain functional networks exhibited small-world attributes (high local and global efficiency) regardless of the order of acupuncture and stimulus points, a finding compatible with previous studies of brain functional networks. Furthermore, the brain networks had increased local efficiency after ACUP stimulation but there were no significant differences after SHAM, indicating a specificity of acupuncture point in coordinating local information flow over the whole brain. Moreover, significant (P<0.05, corrected by false discovery rate approach) effects of only acupuncture point were detected on nodal degree of the left hippocampus (higher nodal degree at ACUP as compared to SHAM). Using an uncorrected P<0.05, point-related effects were also observed in the anterior cingulate cortex, frontal and occipital regions while stimulation-related effects in various brain regions of frontal, parietal and occipital cortex regions. In addition, we found that several limbic and subcortical brain regions exhibited point- and stimulation-related alterations in their regional homogeneity (P<0.05, uncorrected). Conclusions Our results suggest that acupuncture modulates topological organization of whole-brain functional brain networks and the modulation has point specificity. These findings provide new insights into neuronal mechanism of acupuncture from the perspective of functional integration. Further studies would be interesting to apply network analysis approaches to study the effects of acupuncture treatments on brain disorders. PMID:22761766

Liu, Xian; Duan, Xiaohui; Shang, Xiaojing; Long, Yu; Chen, Zhiguang; Li, Xiaofang; Huang, Yan; He, Yong

2012-01-01

305

Data-driven analysis of functional brain interactions during free listening to music and speech.  

PubMed

Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech. PMID:24526569

Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming

2014-02-14

306

Changes in brain functional homogeneity in subjects with Alzheimer's disease  

Microsoft Academic Search

Imaging studies have reported marked reductions in brain glucose metabolism in Alzheimer's Disease (AD). However, less is known about disruptions in the patterns of brain metabolic activity. Here we questioned whether AD affects the patterns of homogeneity\\/heterogeneity in brain metabolism. PET images of 35 AD subjects were compared with those of 35 controls. A template was applied to extract a

Nora D Volkow; Wei Zhu; Christoph A Felder; Klaus Mueller; Tomihisa F Welsh; Gene-Jack Wang; Mony J de Leon

2002-01-01

307

Suicidal brains: A review of functional and structural brain studies in association with suicidal behaviour  

Microsoft Academic Search

Evidence of an association between a vulnerability to suicidal behaviour and neurobiological abnormalities is accumulating. Post-mortem studies have demonstrated structural and biochemical changes in the brains of suicide victims. More recently, imaging techniques have become available to study changes in the brain in vivo. This systematic review of comparative imaging studies of suicidal brains shows that changes in the structure

C. van Heeringen; S. Bijttebier; K. Godfrin

2011-01-01

308

Scalp EEG brain functional connectivity networks in pediatric epilepsy.  

PubMed

This study establishes a new data-driven approach to brain functional connectivity networks using scalp EEG recordings for classifying pediatric subjects with epilepsy from pediatric controls. Graph theory is explored on the functional connectivity networks of individuals where three different sets of topological features were defined and extracted for a thorough assessment of the two groups. The rater's opinion on the diagnosis could also be taken into consideration when deploying the general linear model (GLM) for feature selection in order to optimize classification. Results demonstrate the existence of statistically significant (p<0.05) changes in the functional connectivity of patients with epilepsy compared to those of control subjects. Furthermore, clustering results demonstrate the ability to discriminate pediatric epilepsy patients from control subjects with an initial accuracy of 87.5%, prior to initiating the feature selection process and without taking into consideration the clinical rater's opinion. Otherwise, leave-one-out cross validation (LOOCV) showed a significant increase in the classification accuracy to 96.87% in epilepsy diagnosis. PMID:25464357

Sargolzaei, Saman; Cabrerizo, Mercedes; Goryawala, Mohammed; Eddin, Anas Salah; Adjouadi, Malek

2015-01-01

309

Neurovascular coupling: in vivo optical techniques for functional brain imaging  

PubMed Central

Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology. PMID:23631798

2013-01-01

310

Functional outcomes of community-based brain injury rehabilitation clients.  

PubMed

Abstract Background: Community-based rehabilitation can help to maximize function following acquired brain injury (ABI); however, data on treatment outcome is limited in quantity. Objective: To describe and evaluate client outcomes of an outpatient programme for adults with moderate-to-severe traumatic and non-traumatic ABI. Methods: Two phase design involving retrospective and longitudinal study of programme completers with ABI (n?=?47). Changes in functioning were measured with the Mayo-Portland Inventory (MPAI-4), administered pre- and immediately post-rehabilitation and at 3 years follow-up. Self-ratings were supplemented with MPAI-4 data from significant others (n?=?32) and staff (n?=?32). Results: Injured individuals and informants reported improved physical and psychosocial functioning immediately following the completion of community rehabilitation, with medium-to-large and significant treatment gains noted on the MPAI-4 ability, adjustment and participation sub-scales (Cohen's d range?=?0.31-1.10). A deterioration in individuals' adjustment was further reported at follow-up, although this was based on limited data. Issues with longer-term rehabilitation service provision were additionally noted. Conclusions: The data support the need for continuity of care, including ongoing emotional support, to cater to the complex and dynamic needs of the ABI population. However, these results need to be considered in the context of a small sample size and quasi-experimental design. PMID:25180709

Curran, Christine; Dorstyn, Diana; Polychronis, Con; Denson, Linley

2015-01-01

311

Understanding Complex Natural Systems by Articulating Structure-Behavior-Function Models  

ERIC Educational Resources Information Center

Artificial intelligence research on creative design has led to Structure-Behavior-Function (SBF) models that emphasize functions as abstractions for organizing understanding of physical systems. Empirical studies on understanding complex systems suggest that novice understanding is shallow, typically focusing on their visible structures and…

Vattam, Swaroop S.; Goel, Ashok K.; Rugaber, Spencer; Hmelo-Silver, Cindy E.; Jordan, Rebecca; Gray, Steven; Sinha, Suparna

2011-01-01

312

Vital and vulnerable functions of the primate placenta critical for infant health and brain development.  

PubMed

The placenta is essential to mammalian pregnancy with many roles beyond just nutrient supply, including both endocrine and immune functions. During the course of evolution, the placenta of higher primates has acquired some unique features, including the capacity to secrete corticotropin-releasing hormone (CRH). In addition, a placental receptor for IgG enables particularly high levels of protective maternal antibody to reach the fetus before birth. This paper reviews the placental biology of primates, and discusses its involvement in adrenocortical hormone activity during pregnancy, the transfer of maternal antibody, and finally the delivery of maternal iron to the fetus, which is needed for normal brain development. An understanding of these vital functions during a full-term, healthy pregnancy provides insights into the consequences of gestational disturbances, such as maternal stress, illness, and undernutrition, which have even larger ramifications if the infant is born premature. PMID:24699357

Coe, Christopher L; Lubach, Gabriele R

2014-10-01

313

Self-understanding in high-functioning males with autism spectrum disorders : relationship with social functioning and theory of mind.  

E-print Network

??Doctor of Philosophy%%%Aim. This study aims to investigate self-understanding in young males with high-functioning autism spectrum disorders (ASD) and to determine whether self-understanding is related… (more)

Martin, Fiona Barbouttis

2009-01-01

314

Inflaming the Brain: CRPS a model disease to understand Neuroimmune interactions in Chronic Pain  

PubMed Central

We review current concepts in CRPS from a neuroimaging perspective and point out topics and potential mechanisms that are suitable to be investigated in the next step towards understanding the pathophysiology of CRPS. We have outlined functional aspects of the syndrome, from initiating lesion via inflammatory mechanisms to CNS change and associated sickness behavior, with current evidence for up-regulation of immunological factors in CRPS, neuroimaging of systemic inflammation, and neuroimaging findings in CRPS. The initiation, maintenances and CNS targets implicated in CRPS and in the neuro-inflammatory reflex are discussed in terms of CRPS symptoms and recent preclinical studies. Potential avenues for investigating CRPS with PET and fMRI are described, along with roles of inflammation, treatment and behavior in CRPS. It is our hope that this outline will provoke discussion and promote further empirical studies on the interactions between central and peripheral inflammatory pathways manifest in CRPS. PMID:23188523

Linnman, C; Becerra, L; Borsook, D

2012-01-01

315

Graph analysis of functional brain networks: practical issues in translational neuroscience.  

PubMed

The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes. PMID:25180301

De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie

2014-10-01

316

FINAL REPORT FOR THE CONTRACT BETWEEN POC AND UCSD IMPACT OF INTERMITTENT LIGHT ON NORMAL BRAIN FUNCTION  

E-print Network

FINAL REPORT FOR THE CONTRACT BETWEEN POC AND UCSD IMPACT OF INTERMITTENT LIGHT ON NORMAL BRAIN (blinking) photic stimulation (IPS) on the brain's intrinsic activity. It is well known that the brain that spontaneous rhythmic excitations occur naturally in the brain and are integrally tied to all brain functions

Gorodnitsky, Irina

317

Neuroimaging in Pediatric Traumatic Brain Injury: Current and Future Predictors of Functional Outcome  

ERIC Educational Resources Information Center

Although neuroimaging has long played a role in the acute management of pediatric traumatic brain injury (TBI), until recently, its use as a tool for understanding and predicting long-term brain-behavior relationships after TBI has been limited by the relatively poor sensitivity of routine clinical imaging for detecting diffuse axonal injury…

Suskauer, Stacy J.; Huisman, Thierry A. G. M.

2009-01-01

318

Magnetic Resonance Imaging: From Atomic Physics to Visualization, Understanding and Treatment of Brain Disorders  

NSDL National Science Digital Library

FASEB Breakthroughs in Bioscience article. MRI is now an invaluable, noninvasive tool in the diagnosis and treatment of brain disorders. Researchers learned how to refine and interpret MRI images based on work done with animal models.

David Holzman (Federation of American Societies for Experimental Biology Office of Public Affairs)

2010-07-12

319

NIH Researchers Use Brain Imaging to Understand Genetic Link between Parkinson's and a Rare Disease  

MedlinePLUS

... Mental Health (NIMH) uncover new clues about the biology underlying Parkinson's disease. The results of their six- ... researchers set out to determine if the brain biology of GBA -associated Parkinson's is different from that ...

320

Systems-Based Analyses of Brain Regions Functionally Impacted in Parkinson's Disease Reveals Underlying Causal Mechanisms  

PubMed Central

Detailed analysis of disease-affected tissue provides insight into molecular mechanisms contributing to pathogenesis. Substantia nigra, striatum, and cortex are functionally connected with increasing degrees of alpha-synuclein pathology in Parkinson's disease. We undertook functional and causal pathway analysis of gene expression and proteomic alterations in these three regions, and the data revealed pathways that correlated with disease progression. In addition, microarray and RNAseq experiments revealed previously unidentified causal changes related to oligodendrocyte function and synaptic vesicle release, and these and other changes were reflected across all brain regions. Importantly, subsets of these changes were replicated in Parkinson's disease blood; suggesting peripheral tissue may provide important avenues for understanding and measuring disease status and progression. Proteomic assessment revealed alterations in mitochondria and vesicular transport proteins that preceded gene expression changes indicating defects in translation and/or protein turnover. Our combined approach of proteomics, RNAseq and microarray analyses provides a comprehensive view of the molecular changes that accompany functional loss and alpha-synuclein pathology in Parkinson's disease, and may be instrumental to understand, diagnose and follow Parkinson's disease progression. PMID:25170892

Emig-Agius, Dorothea; Bessarabova, Marina; Ivliev, Alexander E.; Schüle, Birgit; Alexander, Jeff; Wallace, William; Halliday, Glenda M.; Langston, J. William; Braxton, Scott; Yednock, Ted; Shaler, Thomas; Johnston, Jennifer A.

2014-01-01

321

Early understanding function of pictures of the representational  

Microsoft Academic Search

An important function of pictures is the communication of information - a function that has been ignored in research on the development of pictorial perception and comprehension. When are young children first capable of using pictures as a source of information to guide their behavior? The six studies reported here reveal a dramatic developmental change between 24 and 30 months

Judy S. DeLoache; Nancy M. Burns

322

Congenital platelet disorders and understanding of platelet function.  

PubMed

Genetic defects of platelets constitute rare diseases that include bleeding syndromes of autosomal dominant, recessive or X-linked inheritance. They affect platelet production, resulting in a low circulating platelet count and changes in platelet morphology, platelet function, or a combination of both with altered megakaryopoiesis and a defective platelet response. As a result, blood platelets fail to fulfil their haemostatic function. Most studied of the platelet function disorders are deficiencies of glycoprotein mediators of adhesion and aggregation while defects of primary receptors for stimuli include the P2Y12 ADP receptor. Studies on inherited defects of (i) secretion from storage organelles (dense granules, ?-granules), (ii) the platelet cytoskeleton and (iii) the generation of pro-coagulant activity have identified genes indirectly controlling the functional response. Signalling pathway defects leading to agonist-specific modifications of platelet aggregation are the current target of exome-sequencing strategies. We now review recent advances in the molecular characterization of platelet function defects. PMID:24286193

Nurden, Alan T; Nurden, Paquita

2014-04-01

323

Functionally Enigmatic Genes: A Case Study of the Brain Ignorome  

PubMed Central

What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ from well-studied genes? To address these two questions, we devised a computational approach that defines so-called ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in brain. We find that publications associated with this set are highly skewed—the top 5% of genes absorb 70% of the relevant literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs, or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery being associated with greater research momentum—a genomic bandwagon effect. Finally we ask to what extent massive genomic, imaging, and phenotype data sets can be used to provide high-throughput functional annotation for an entire ignorome. In a majority of cases we have been able to extract and add significant information for these neglected genes. In several cases—ELMOD1, TMEM88B, and DZANK1—we have exploited sequence polymorphisms, large phenome data sets, and reverse genetic methods to evaluate the function of ignorome genes. PMID:24523945

Pandey, Ashutosh K.; Lu, Lu; Wang, Xusheng; Homayouni, Ramin; Williams, Robert W.

2014-01-01

324

Functional brain imaging of cognitive dysfunction in Parkinson's disease.  

PubMed

Multiple factors are involved in the development of cognitive impairment in Parkinson's disease (PD) and related disorders. Notably, several underlying factors, such as monoaminergic dysfunction, Lewy body pathology, Alzheimer disease-like pathology and cerebrovascular disease are implied in the PD pathophysiology of cognitive impairment. The mesocortical dopaminergic system is associated with executive functions which are frequently affected in PD and are influenced by local levodopa concentration, dopamine metabolism and baseline performance status. The ventral striatum and frontal cortex are associated with impulse control disorders reported in PD patients treated with dopamine replacement therapy. Cholinergic impairment in PD plays a cardinal role in the development of dementia. Acetylcholinesterase positron emission tomography demonstrates that posterior brain areas are related to cognitive decline in PD patients. Amyloid radiotracer illustrates that patients with PD with severe cognitive impairment were prone to accompanied cortical amyloid deposition. Metabolism/perfusion change associated with cognitive impairment in PD, so-called PD related cognitive pattern, is characterised by reduced frontoparietal activity and is an effective way to differentiate and monitor cognitive function of individual PD patients. Cognitive impairment in PD cannot be explained by a single mechanism and is entangled by multiple factors. Imaging studies can unravel each pathological domain, further shed light on the interrelation between different pathomechanisms, not only in PD but also in other dementia related disorders, and thereby integrate its interpretation to apply to therapeutics in individual patients. PMID:22807560

Hirano, Shigeki; Shinotoh, Hitoshi; Eidelberg, David

2012-10-01

325

An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.  

PubMed

Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed. PMID:23967180

Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

2013-01-01

326

An Evaluation of the Left-Brain vs. Right-Brain Hypothesis with Resting State Functional Connectivity Magnetic Resonance Imaging  

PubMed Central

Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed. PMID:23967180

Nielsen, Jared A.; Zielinski, Brandon A.; Ferguson, Michael A.; Lainhart, Janet E.; Anderson, Jeffrey S.

2013-01-01

327

Students' Understanding of the General Notion of a Function of Two Variables  

ERIC Educational Resources Information Center

In this study we analyze students' understanding of two-variable function; in particular we consider their understanding of domain, possible arbitrary nature of function assignment, uniqueness of function image, and range. We use APOS theory and semiotic representation theory as a theoretical framework to analyze data obtained from interviews with…

Martinez-Planell, Rafael; Trigueros Gaisman, Maria

2012-01-01

328

The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities.  

PubMed

Research on action understanding in cognitive neuroscience has led to the identification of a wide "action understanding network" mainly encompassing parietal and premotor cortical areas. Within this cortical network mirror neurons are critically involved implementing a neural mechanism according to which, during action understanding, observed actions are reflected in the motor patterns for the same actions of the observer. We suggest that focusing only on cortical areas and processes could be too restrictive to explain important facets of action understanding regarding, for example, the influence of the observer's motor experience, the multiple levels at which an observed action can be understood, and the acquisition of action understanding ability. In this respect, we propose that aside from the cortical action understanding network, sub-cortical processes pivoting on cerebellar and basal ganglia cortical loops could crucially support both the expression and the acquisition of action understanding abilities. Within the paper we will discuss how this extended view can overcome some limitations of the "pure" cortical perspective, supporting new theoretical predictions on the brain mechanisms underlying action understanding that could be tested by future empirical investigations. PMID:23911926

Caligiore, Daniele; Pezzulo, Giovanni; Miall, R Chris; Baldassarre, Gianluca

2013-12-01

329

Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia  

ERIC Educational Resources Information Center

Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional

Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

2010-01-01

330

Spontaneous Pain and Brain Activity in Neuropathic Pain: Functional MRI and  

E-print Network

Spontaneous Pain and Brain Activity in Neuropathic Pain: Functional MRI and Pharmacologic of Physiology, Chicago, IL 60611, USA. E-mail: a-apkarian@northwestern.edu Current Pain and Headache Reports LLC Functional brain imaging studies in chronic neuropathic pain patients have lagged far behind

Apkarian, A. Vania

331

Experience induces functional reorganization in brain regions involved in odor imagery in perfumers  

E-print Network

Experience induces functional reorganization in brain regions involved in odor imagery in perfumers@olfac.univ-lyon1.fr Short Title Functional plasticity in perfumers Number of figures / tables: 5 / 1 inserm the brain's ability to adapt to environmental change. Perfumers are a small population who claim to have

Paris-Sud XI, Université de

332

Voluntary exercise may engage proteasome function to benefit the brain after trauma  

Microsoft Academic Search

Brain trauma is associated with long-term decrements in synaptic plasticity and cognitive function, which likely reside on the acute effects of the injury on protein structure and function. Based on the action of proteasome on protein synthesis and degradation we have examined the effects of brain injury on proteasome level\\/activity and the potential of exercise to interact with the effects

Zsofia Szabo; Zhe Ying; Zsolt Radak; Fernando Gomez-Pinilla

2010-01-01

333

r Human Brain Mapping 00:000000 (2012) r Key Functional Circuitry Altered in Schizophrenia  

E-print Network

r Human Brain Mapping 00:000­000 (2012) r Key Functional Circuitry Altered in Schizophrenia functional and structural changes in the brain in schizophrenia are of most importance, although the main schizophrenia patients, and func- tional connectivity changes were analyzed using resting-state fMRI data from

Feng, Jianfeng

334

Regions, systems, and the brain: Hierarchical measures of functional integration in fMRI  

Microsoft Academic Search

In neuroscience, the notion has emerged that the brain abides by two principles: segregation and integration. Segregation into functionally specialized systems and integration of information flow across systems are basic principles that are thought to shape the functional architecture of the brain. A measure called integration, originating from information theory and derived from mutual information, has been proposed to characterize

Guillaume Marrelec; Pierre Bellec; Alexandre Krainik; Hugues Duffau; Mélanie Pélégrini-Issac; Stéphane Lehericy; Habib Benali; Julien Doyon

2008-01-01

335

Comparing plasma and urinary proteomes to understand kidney function.  

PubMed

Kidney function is rarely studied in the context of blood kidney and urine as a system. Kidney can be considered as a black box, while plasma and urine proteomes closely represent the protein compositions of the input and output of the kidney. This idea provides a new approach for studying organ functions with a proteomic methodology. Because of its distinctive input (plasma) and output (urine), it is reasonable to predict that the kidney will be the first organ whose functions are further elucidated by proteomic methods in the near future. PMID:25355581

Jia, Lulu

2015-01-01

336

Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128  

PubMed Central

MicroRNAs, the non-coding single-stranded RNA of 19–25 nucleotides are emerging as robust players of gene regulation. Plethora of evidences support that the ability of microRNAs to regulate several genes of a pathway or even multiple cross talking pathways have significant impact on a complex regulatory network and ultimately the physiological processes and diseases. Brain being a complex organ with several cell types, expresses more distinct miRNAs than any other tissues. This review aims to discuss about the microRNAs in brain development, function and their dysfunction in brain tumors. We also provide a comprehensive summary of targets of brain specific and brain enriched miRNAs that contribute to the diversity and plasticity of the brain. In particular, we uncover recent findings on miRNA-128, a brain-enriched microRNA that is induced during neuronal differentiation and whose aberrant expression has been reported in several cancers. This review describes the wide spectrum of targets of miRNA-128 that have been identified till date with potential roles in apoptosis, angiogenesis, proliferation, cholesterol metabolism, self renewal, invasion and cancer progression and how this knowledge might be exploited for the development of future miRNA-128 based therapies for the treatment of cancer as well as metabolic diseases. PMID:24555688

2014-01-01

337

BrainCAT - a tool for automated and combined functional magnetic resonance imaging and diffusion tensor imaging brain connectivity analysis  

PubMed Central

Multimodal neuroimaging studies have recently become a trend in the neuroimaging field and are certainly a standard for the future. Brain connectivity studies combining functional activation patterns using resting-state or task-related functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) tractography have growing popularity. However, there is a scarcity of solutions to perform optimized, intuitive, and consistent multimodal fMRI/DTI studies. Here we propose a new tool, brain connectivity analysis tool (BrainCAT), for an automated and standard multimodal analysis of combined fMRI/DTI data, using freely available tools. With a friendly graphical user interface, BrainCAT aims to make data processing easier and faster, implementing a fully automated data processing pipeline and minimizing the need for user intervention, which hopefully will expand the use of combined fMRI/DTI studies. Its validity was tested in an aging study of the default mode network (DMN) white matter connectivity. The results evidenced the cingulum bundle as the structural connector of the precuneus/posterior cingulate cortex and the medial frontal cortex, regions of the DMN. Moreover, mean fractional anisotropy (FA) values along the cingulum extracted with BrainCAT showed a strong correlation with FA values from the manual selection of the same bundle. Taken together, these results provide evidence that BrainCAT is suitable for these analyses. PMID:24319419

Marques, Paulo; Soares, José M.; Alves, Victor; Sousa, Nuno

2013-01-01

338

Everything under the Sun and Moon—Orientation Theory: A New View of Man's Brain Function and Behavior  

PubMed Central

Unlike the conventional view which posits that man's activity is determined by drives that are to a degree common to all living forms not just animals, orientation theory postulates that the critical organizing force in brain function and behavior is the particular need which motile organisms have to maintain dynamic orientation in the natural environment. This not only means that sensory systems may be the key to understanding how the brain works, but also implies that man is directly responsive to geophysical forces which have a measurable impact on his function. Individual differences in aspects of sensory function are associated with different temperamental traits and varied patterns of symptom formation in mental illness. An awareness of the issues addressed by orientation theory is of importance to the interpretation of data bases containing human behavioral variables, and the development of orientation theory serves as an example of computer based research in medicine.

Mirabile, Charles S.

1981-01-01

339

Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.  

PubMed

The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 ?M and 3 ?M. Both ligands stimulated AmAC8 with EC(50s) of 0.24 ?M and 3.1 ?M. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. PMID:22426196

Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

2012-06-01

340

Brain death and tissue and organ transplantation: the understanding of medical students  

PubMed Central

Objective To evaluate the level of knowledge of medical students about transplantation and brain death. Methods An anonymous self-administered questionnaire answered by medical students from the first through the sixth year that was based on information from the Associação Brasileira de Transplante de Órgãos e Tecidos, the Registro Brasileiro de Transplantes and the resolution that defines the criteria for brain death. Results Of the 677 medical students asked, 310 (45.8%) agreed to answer the questionnaire. In total, 22 (7.0%) subjects were excluded. Of the students who participated, 41.3% reported having already attended a class on organ transplantation and 33% on brain death; 9.7% felt able to diagnose brain death (p<0.01); only 66.8% indicated the kidney as the most transplanted solid organ in Brazil. Conclusion The level of knowledge of medical students at this institution regarding brain death and transplantation is limited, which may be the result of an inadequate approach during medical school. PMID:24553508

dos Reis, Flávio Pola; Gomes, Bruno Henrique Pinto; Pimenta, Lucas Lopes; Etzel, Arnaldo

2013-01-01

341

Epigenetics, Stress, and Their Potential Impact on Brain Network Function: A Focus on the Schizophrenia Diatheses  

PubMed Central

The recent sociodevelopmental cognitive model of schizophrenia/psychosis is a highly influential and compelling compendium of research findings. Here, we present logical extensions to this model incorporating ideas drawn from epigenetic mediation of psychiatric disease, and the plausible effects of epigenetics on the emergence of brain network function and dysfunction in adolescence. We discuss how gene–environment interactions, effected by epigenetic mechanisms, might in particular mediate the stress response (itself heavily implicated in the emergence of schizophrenia). Next, we discuss the plausible relevance of this framework for adolescent genetic risk populations, a risk group characterized by vexing and difficult-to-explain heterogeneity. We then discuss how exploring relationships between epigenetics and brain network dysfunction (a strongly validated finding in risk populations) can enhance understanding of the relationship between stress, epigenetics, and functional neurobiology, and the relevance of this relationship for the eventual emergence of schizophrenia/psychosis. We suggest that these considerations can expand the impact of models such as the sociodevelopmental cognitive model, increasing their explanatory reach. Ultimately, integration of these lines of research may enhance efforts of early identification, intervention, and treatment in adolescents at-risk for schizophrenia. PMID:25002852

Diwadkar, Vaibhav A.; Bustamante, Angela; Rai, Harinder; Uddin, Monica

2014-01-01

342

Neuroinformatics challenges to the structural, connectomic, functional and electrophysiological multimodal imaging of human traumatic brain injury  

PubMed Central

Throughout the past few decades, the ability to treat and rehabilitate traumatic brain injury (TBI) patients has become critically reliant upon the use of neuroimaging to acquire adequate knowledge of injury-related effects upon brain function and recovery. As a result, the need for TBI neuroimaging analysis methods has increased in recent years due to the recognition that spatiotemporal computational analyses of TBI evolution are useful for capturing the effects of TBI dynamics. At the same time, however, the advent of such methods has brought about the need to analyze, manage, and integrate TBI neuroimaging data using informatically inspired approaches which can take full advantage of their large dimensionality and informational complexity. Given this perspective, we here discuss the neuroinformatics challenges for TBI neuroimaging analysis in the context of structural, connectivity, and functional paradigms. Within each of these, the availability of a wide range of neuroimaging modalities can be leveraged to fully understand the heterogeneity of TBI pathology; consequently, large-scale computer hardware resources and next-generation processing software are often required for efficient data storage, management, and analysis of TBI neuroimaging data. However, each of these paradigms poses challenges in the context of informatics such that the ability to address them is critical for augmenting current capabilities to perform neuroimaging analysis of TBI and to improve therapeutic efficacy. PMID:24616696

Goh, S. Y. Matthew; Irimia, Andrei; Torgerson, Carinna M.; Horn, John D. Van

2014-01-01

343

Cardiovascular risks and brain function: a functional magnetic resonance imaging study of executive function in older adults  

PubMed Central

Cardiovascular (CV) risk factors, such as hypertension, diabetes, and hyperlipidemia are associated with cognitive impairment and risk of dementia in older adults. However, the mechanisms linking them are not clear. This study aims to investigate the association between aggregate CV risk, assessed by the Framingham general cardiovascular risk profile, and functional brain activation in a group of community-dwelling older adults. Sixty participants (mean age: 64.6 years) from the Brain Health Study, a nested study of the Baltimore Experience Corps Trial, underwent functional magnetic resonance imaging using the Flanker task. We found that participants with higher CV risk had greater task-related activation in the left inferior parietal region, and this increased activation was associated with poorer task performance. Our results provide insights into the neural systems underlying the relationship between CV risk and executive function. Increased activation of the inferior parietal region may offer a pathway through which CV risk increases risk for cognitive impairment. PMID:24439485

Chuang, Yi-Fang; Eldreth, Dana; Erickson, Kirk I.; Varma, Vijay; Harris, Gregory; Fried, Linda P.; Rebok, George W.; Tanner, Elizabeth K.; Carlson, Michelle C.

2014-01-01

344

Brain motor system function in a patient with complete spinal cord injury following extensive brain–computer interface training  

Microsoft Academic Search

Although several features of brain motor function appear to be preserved even in chronic complete SCI, previous functional\\u000a MRI (fMRI) studies have also identified significant derangements such as a strongly reduced volume of activation, a poor modulation\\u000a of function and abnormal activation patterns. It might be speculated that extensive motor imagery training may serve to prevent\\u000a such abnormalities. We here

Christian Enzinger; Stefan Ropele; Franz Fazekas; Marisa Loitfelder; Faton Gorani; Thomas Seifert; Gudrun Reiter; Christa Neuper; Gert Pfurtscheller; Gernot Müller-Putz

2008-01-01

345

The Developmental Trajectory of Brain-Scalp Distance from Birth through Childhood: Implications for Functional Neuroimaging  

PubMed Central

Measurements of human brain function in children are of increasing interest in cognitive neuroscience. Many techniques for brain mapping used in children, including functional near-infrared spectroscopy (fNIRS), electroencephalography (EEG), magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS), use probes placed on or near the scalp. The distance between the scalp and the brain is a key variable for these techniques because optical, electrical and magnetic signals are attenuated by distance. However, little is known about how scalp-brain distance differs between different cortical regions in children or how it changes with development. We investigated scalp-brain distance in 71 children, from newborn to age 12 years, using structural T1-weighted MRI scans of the whole head. Three-dimensional reconstructions were created from the scalp surface to allow for accurate calculation of brain-scalp distance. Nine brain landmarks in different cortical regions were manually selected in each subject based on the published fNIRS literature. Significant effects were found for age, cortical region and hemisphere. Brain-scalp distances were lowest in young children, and increased with age to up to double the newborn distance. There were also dramatic differences between brain regions, with up to 50% differences between landmarks. In frontal and temporal regions, scalp-brain distances were significantly greater in the right hemisphere than in the left hemisphere. The largest contributors to developmental changes in brain-scalp distance were increases in the corticospinal fluid (CSF) and inner table of the cranium. These results have important implications for functional imaging studies of children: age and brain-region related differences in fNIRS signals could be due to the confounding factor of brain-scalp distance and not true differences in brain activity. PMID:21957470

Beauchamp, Michael S.; Beurlot, Michelle R.; Fava, Eswen; Nath, Audrey R.; Parikh, Nehal A.; Saad, Ziad S.; Bortfeld, Heather; Oghalai, John S.

2011-01-01

346

Metabolism as a tool for understanding human brain evolution: Lipid energy metabolism as an example.  

PubMed

Genes and the environment both influence the metabolic processes that determine fitness. To illustrate the importance of metabolism for human brain evolution and health, we use the example of lipid energy metabolism, i.e. the use of fat (lipid) to produce energy and the advantages that this metabolic pathway provides for the brain during environmental energy shortage. We briefly describe some features of metabolism in ancestral organisms, which provided a molecular toolkit for later development. In modern humans, lipid energy metabolism is a regulated multi-organ pathway that links triglycerides in fat tissue to the mitochondria of many tissues including the brain. Three important control points are each suppressed by insulin. (1) Lipid reserves in adipose tissue are released by lipolysis during fasting and stress, producing fatty acids (FAs) which circulate in the blood and are taken up by cells. (2) FA oxidation. Mitochondrial entry is controlled by carnitine palmitoyl transferase 1 (CPT1). Inside the mitochondria, FAs undergo beta oxidation and energy production in the Krebs cycle and respiratory chain. (3) In liver mitochondria, the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway produces ketone bodies for the brain and other organs. Unlike most tissues, the brain does not capture and metabolize circulating FAs for energy production. However, the brain can use ketone bodies for energy. We discuss two examples of genetic metabolic traits that may be advantageous under most conditions but deleterious in others. (1) A CPT1A variant prevalent in Inuit people may allow increased FA oxidation under nonfasting conditions but also predispose to hypoglycemic episodes. (2) The thrifty genotype theory, which holds that energy expenditure is efficient so as to maximize energy stores, predicts that these adaptations may enhance survival in periods of famine but predispose to obesity in modern dietary environments. PMID:25488255

Wang, Shu Pei; Yang, Hao; Wu, Jiang Wei; Gauthier, Nicolas; Fukao, Toshiyuki; Mitchell, Grant A

2014-12-01

347

MSFD2A is critical for the formation and function of the blood brain barrier  

PubMed Central

The central nervous system (CNS) requires a tightly controlled environment free of toxins and pathogens to provide the proper chemical composition for neural function. This environment is maintained by the ‘blood brain barrier’ (BBB), which is composed of blood vessels whose endothelial cells display specialized tight junctions and extremely low rates of transcellular vesicular transport (transcytosis)1–3. In concert with pericytes and astrocytes, this unique brain endothelial physiological barrier seals the CNS and controls substance influx and efflux4–6. While BBB breakdown has recently been associated with initiation and perpetuation of various neurological disorders, an intact BBB is a major obstacle for drug delivery to the CNS7–10. A limited understanding of the molecular mechanisms that control BBB formation has hindered our ability to manipulate the BBB in disease and therapy. Here, we identify mechanisms governing the establishment of a functional BBB. First, using a novel embryonic tracer injection method, we demonstrate spatiotemporal developmental profiles of BBB functionality and find that the mouse BBB becomes functional at embryonic day 15.5 (E15.5). We then screen for BBB-specific genes expressed during BBB formation, and find that major facilitator super family domain containing 2a (Mfsd2a) is selectively expressed in BBB-containing blood vessels in the CNS. Genetic ablation of Mfsd2a results in a leaky BBB from embryonic periods through adulthood, while maintaining the normal patterning of vascular networks. Electron microscopy examination reveals a dramatic increase in CNS endothelial cell vesicular transcytosis in Mfsd2a?/? mice, without obvious tight junction defects. Finally we show that MFSD2A endothelial expression is regulated by pericytes to facilitate BBB integrity. These findings identify MFSD2A as a key regulator of BBB function that may act by suppressing transcytosis in CNS endothelial cells. Further our findings may aid in efforts to develop therapeutic approaches for CNS drug delivery. PMID:24828040

Ben-Zvi, Ayal; Lacoste, Baptiste; Kur, Esther; Andreone, Benjamin J.; Mayshar, Yoav; Yan, Han; Gu, Chenghua

2014-01-01

348

Understanding the Transformation of the IT Function in Organizations  

Microsoft Academic Search

Many IT researchers have tried to describe the IT function and to explain its transformation over time. Nevertheless, we observed that existing characterizations are often based on a single dimension, attached to historical periods or built into a normative discourse that calls for an ideal profile. We do not subscribe to these premises, seeing that there might be a series

Manon G. Guillemette; Guy Pare

2005-01-01

349

Understanding Functions without Using the Vertical Line Test  

ERIC Educational Resources Information Center

Study was conducted on how the students were made to think meaningfully and widely within and across the representations in solving and identifying functions in precalculus, without the usage of the vertical line test. It was concluded that the "no vertical line testing" method proved to be easily accessible by all students and also made them…

Fernandez, Eileen

2005-01-01

350

Associations among False Belief Understanding, Counterfactual Reasoning, and Executive Function  

ERIC Educational Resources Information Center

The primary purposes of the present study were to clarify previous work on the association between counterfactual thinking and false belief performance to determine (1) whether these two variables are related and (2) if so, whether executive function skills mediate the relationship. A total of 92 3-, 4-, and 5-year-olds completed false belief,…

Guajardo, Nicole R.; Parker, Jessica; Turley-Ames, Kandi

2009-01-01

351

Proteomics – post-genomic cartography to understand gene function  

Microsoft Academic Search

The completion of the genomic sequences of numerous organisms from human and mouse to Caenorhabditis elegans and many microorganisms, and the definition of their genes provides a database to interpret cellular protein-expression patterns and relate them to protein function. Proteomics technologies that are dependent on mass spectrometry and involve two-dimensional gel electrophoresis are providing the main window into the world

Soren Naaby-Hansen; Michael D. Waterfield; Rainer Cramer

2001-01-01

352

High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain  

PubMed Central

The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bulb, limbic, parietal, somatosensory, retrosplenial, visual, motor, and temporal regions, as well as in several subregions. The borders and locations of these regions agreed well with the Paxinos mouse brain atlas. By subjecting the mouse to alternating hyperoxic and hypoxic conditions, strong and weak functional connectivities were observed, respectively. In addition to connectivity images, vascular images were simultaneously acquired. These studies show that functional connectivity photoacoustic tomography is a promising, noninvasive technique for functional imaging of the mouse brain. PMID:24367107

Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Quentin; Culver, Joseph P.; Wang, Lihong V.

2014-01-01

353

Neuroinflammation and Brain Functional Disconnection in Alzheimer’s Disease  

PubMed Central

Neuroinflammation and brain functional disconnection result from ?-amyloid (A?) accumulation and play fundamental roles in the pathogenesis of Alzheimer’s disease (AD). We investigated possible correlations between these two AD-associated phenomena using DTI-based tractography and immunologic analyses in people with amnestic mild cognitive impairment (aMCI) and AD. DTI-Analyses focused on corpus callosum (CC). We found that frontal CC regions were preserved with respect to the posterior ones in aMCI; in these individuals significant correlations were seen between DTI-derived metrics in frontal-parietal CC areas and A?42-stimulated BDNF-producing CD4+ T lymphocytes and PDL-1-expressing CD14+ cells. These associations were lost in AD where DTI data involving the same CC areas correlated instead with A?42-stimulated interleukin (IL)-21 producing CD4+ T lymphocytes. Higher susceptibility to PDL-1-mediated apoptosis of A?42-specific lymphocytes and BDNF-associated survival of existing neurons could contribute to the relative CC structure preservation seen in aMCI. These potentially protective mechanisms are lost in frank AD, when severe alterations in the CC are mirrored in peripheral blood by proinflammatory cytokines-producing T cells. Monitoring of immune cells in peripheral blood could have a prognostic value in AD. PMID:24324435

Baglio, Francesca; Saresella, Marina; Preti, Maria Giulia; Cabinio, Monia; Griffanti, Ludovica; Marventano, Ivana; Piancone, Federica; Calabrese, Elena; Nemni, Raffaello; Clerici, Mario

2013-01-01

354

Challenges for the functional diffusion map in pediatric brain tumors  

PubMed Central

Background The functional diffusion map (fDM) has been suggested as a tool for early detection of tumor treatment efficacy. We aim to study 3 factors that could act as potential confounders in the fDM: areas of necrosis, tumor grade, and change in tumor size. Methods Thirty-four pediatric patients with brain tumors were enrolled in a retrospective study, approved by the local ethics committee, to examine the fDM. Tumors were selected to encompass a range of types and grades. A qualitative analysis was carried out to compare how fDM findings may be affected by each of the 3 confounders by comparing fDM findings to clinical image reports. Results Results show that the fDM in areas of necrosis do not discriminate between treatment response and tumor progression. Furthermore, tumor grade alters the behavior of the fDM: a decrease in apparent diffusion coefficient (ADC) is a sign of tumor progression in high-grade tumors and treatment response in low-grade tumors. Our results also suggest using only tumor area overlap between the 2 time points analyzed for the fDM in tumors of varying size. Conclusions Interpretation of fDM results needs to take into account the underlying biology of both tumor and healthy tissue. Careful interpretation of the results is required with due consideration to areas of necrosis, tumor grade, and change in tumor size. PMID:24305721

Grech-Sollars, Matthew; Saunders, Dawn E.; Phipps, Kim P.; Kaur, Ramneek; Paine, Simon M.L.; Jacques, Thomas S.; Clayden, Jonathan D.; Clark, Chris A.

2014-01-01

355

Brain-based Correlations Between Psychological Factors and Functional Dyspepsia  

PubMed Central

Background/Aims Increasing evidence shows involvement of psychological disorders in functional dyspepsia (FD), but how psychological factors exert their influences upon FD remains largely unclear. The purpose of the present study was to explore the brain-based correlations of psychological factors and FD. Methods Based on Fluorine-18-deoxyglucose positron emission tomography-computed tomography, the altered cerebral glycometabolism was investigated in 40 FD patients compared with 20 healthy controls during resting state using statistical parametric mapping software. Results FD patients exhibited increased glucose metabolism in multiple regions relative to controls (P < 0.001, family-wise error corrected). After controlling for the dyspeptic symptoms, increased aberrations persisted within the insula, anterior cingulate cortex (ACC), middle cingulate cortex (MCC) and middle frontal cortex (midFC), which was related to anxiety and depression score. Interestingly, FD patients without anxiety/depression symptoms also showed increased glycometabolism within the insula, ACC, MCC and midFC. Moreover, FD patients with anxiety/depression symptoms exhibited more significant hypermetabolism within the above 4 sites compared with patients without anxiety/depression symptoms. Conclusions Our results suggested that the altered cerebral glycometabolism may be in a vicious cycle of psychological vulnerabilities and increased gastrointestinal symptoms. PMID:25540947

Nan, Jiaofen; Liu, Jixin; Mu, Junya; Dun, Wanghuan; Zhang, Ming; Gong, Qiyong; Qin, Wei; Tian, Jie; Liang, Fanrong; Zeng, Fang

2015-01-01

356

Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI  

PubMed Central

The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' “brain ages” from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI. PMID:22952990

Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

2012-01-01

357

Researchers' big data crisis; understanding design and functionality  

Microsoft Academic Search

The Communications Web site, http:\\/\\/cacm.acm.org, features more than a dozen bloggers in the BLOG@CACM community. In each issue of Communications, we'll publish selected posts or excerpts.twitterFollow us on Twitter at http:\\/\\/twitter.com\\/blogCACMhttp:\\/\\/cacm.acm.org\\/blogs\\/blog-cacmMichael Stonebraker issues a call to arms about research groups' data-management problems. Jason Hong discusses the nature of functionality with respect to design.

Michael Stonebraker; Jason Hong

2012-01-01

358

TBI-ROC Part One: Understanding Traumatic Brain Injury--An Introduction  

ERIC Educational Resources Information Center

This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

2011-01-01

359

Steroid hormones and brain development: some guidelines for understanding actions of pseudohormones and other toxic agents  

SciTech Connect

Gonadal, adrenal, and thyroid hormones affect the brain directly, and the sensitivity to hormones begins in embryonic life with the appearance of hormone receptor sites in discrete populations of neurons. Because the secretion of hormones is also under control by its neural and pituitary targets, the brain-endocrine axis during development is in a delicately balanced state that can be upset in various ways, and any agent that disrupts normal hormone secretion can upset normal brain development. Moreover, exogenous substances that mimic the actions of natural hormones can also play havoc with CNS development and differentiation. This paper addresses these issues in the following order: First, actions of glucocorticoids on the developing nervous system related to cell division dendritic growth and neurotransmitter phenotype will be presented followed by a discussion of the developmental effects of synthetic steroids. Second, actions of estrogens related to brain sexual differentiation will be described, followed by a discussion of the actions of the nonsteroidal estrogen, diethylstilbestrol, as an example of exogenous estrogenic substances. The most important aspect of the potency of exogenous estrogens appears to be the degree to which they either bypass protective mechanisms or are subject to transformations to more active metabolites. Third, agents that influence hormone levels or otherwise modify the neuroendocrine system, such as nicotine, barbiturates, alcohol, opiates, and tetrahydrocannabinol, will be noted briefly to demonstrate the diversity of toxic agents that can influence neural development and affect personality, cognitive ability, and other aspects of behavior. 53 references.

McEwen, B.S.

1987-10-01

360

MODELING INTRACRANIAL FLUID FLOWS AND VOLUMES DURING TRAUMATIC BRAIN INJURY TO BETTER UNDERSTAND PRESSURE  

E-print Network

, mannitol administration, head elevation, and mild hyperventilation. The model is able to replicate observed-Kellie Doctrine which states that total intracranial volume ([brain volume] + [blood volume] + [cerebrospinal compartments include the arterial blood volume, capillary blood volume, venous blood volume, cerebrospinal

361

Understanding in an Instant: Neurophysiological Evidence for Mechanistic Language Circuits in the Brain  

ERIC Educational Resources Information Center

How long does it take the human mind to grasp the idea when hearing or reading a sentence? Neurophysiological methods looking directly at the time course of brain activity indexes of comprehension are critical for finding the answer to this question. As the dominant cognitive approaches, models of serial/cascaded and parallel processing, make…

Pulvermuller, Friedemann; Shtyrov, Yury; Hauk, Olaf

2009-01-01

362

Group Independent Component Analysis and Functional MRI Examination of Changes in Language Areas Associated with Brain Tumors at Different Locations  

PubMed Central

Object This study investigates the effect of tumor location on alterations of language network by brain tumors at different locations using blood oxygenation level dependent (BOLD) fMRI and group independent component analysis (ICA). Subjects and Methods BOLD fMRI data were obtained from 43 right handed brain tumor patients. Presurgical mapping of language areas was performed on all 43 patients with a picture naming task. All data were retrospectively analyzed using group ICA. Patents were divided into three groups based on tumor locations, i.e., left frontal region, left temporal region or right hemisphere. Laterality index (LI) was used to assess language lateralization in each group. Results The results from BOLD fMRI and ICA revealed the different language activation patterns in patients with brain tumors located in different brain regions. Language areas, such as Broca’s and Wernicke’s areas, were intact in patients with tumors in the right hemisphere. Significant functional changes were observed in patients with tumor in the left frontal and temporal areas. More specifically, the tumors in the left frontal region affect both Broca’s and Wernicke’s areas, while tumors in the left temporal lobe affect mainly Wernicke’s area. The compensated activation increase was observed in the right frontal areas in patients with left hemisphere tumors. Conclusion Group ICA provides a model free alternative approach for mapping functional networks in brain tumor patients. Altered language activation by different tumor locations suggested reorganization of language functions in brain tumor patients and may help better understanding of the language plasticity. PMID:23555736

Wang, Liya; Chen, Dandan; Yang, Xiaofeng; Olson, Jeffrey J.; Gopinath, Kaundinya; Fan, Tianning; Mao, Hui

2013-01-01

363

Problems in understanding the organization, structure and function of chromosomes  

SciTech Connect

Despite intensive investigation of mammalian chromosomes, we are still largely ignorant of the basic rules that govern their organization, structure, and functions. This situation results from the current limitations in available technologies to elucidate the structures of such complex biological systems. Whereas the powerful techniques of molecular biology have successfully addressed at high resolution functional problems at the level of nucleic acid sequences, many lower resolution questions concerning the architecture of the cell nucleus, long range order in chromosomes, and higher order chromatin structures remain largely unanswered. Techniques are now emerging that should help to remedy this situation. The use of confocal microscopy with molecular probes will tell us at the level of the light microscope a great deal about the organization of the nucleus and how it changes in different cell types; advanced light sources have the potential to image hydrated biological systems down to 10 nm, and scanning electron tunneling and atomic force microscopies have demonstrated their ability to image molecules though their ability to usefully image biomolecules such as DNA remains to be demonstrated. 32 refs., 6 figs.

Bradbury, E.M. (Lawrence Livermore National Lab., CA (USA) California Univ., Davis, CA (USA))

1990-01-01

364

Lymph node dissection – understanding the immunological function of lymph nodes  

PubMed Central

Lymph nodes (LN) are one of the important sites in the body where immune responses to pathogenic antigens are initiated. This immunological function induced by cells within the LN is an extensive area of research. To clarify the general function of LN, to identify cell populations within the lymphatic system and to describe the regeneration of the lymph vessels, the experimental surgical technique of LN dissection has been established in various animal models. In this review different research areas in which LN dissection is used as an experimental tool will be highlighted. These include regeneration studies, immunological analysis and studies with clinical questions. LN were dissected in order to analyse the different cell subsets of the incoming lymph in detail. Furthermore, LN were identified as the place where the induction of an antigen-specific response occurs and, more significantly, where this immune response is regulated. During bacterial infection LN, as a filter of the lymph system, play a life-saving role. In addition, LN are essential for the induction of tolerance against harmless antigens, because tolerance could not be induced in LN-resected animals. Thus, the technique of LN dissection is an excellent and simple method to identify the important role of LN in immune responses, tolerance and infection. PMID:22861359

Buettner, M; Bode, U

2012-01-01

365

The Muscle Sensor for on-site neuroscience lectures to pave the way for a better understanding of brain-machine-interface research.  

PubMed

Neuroscience is an expanding field of science to investigate enigmas of brain and human body function. However, the majority of the public have never had the chance to learn the basics of neuroscience and new knowledge from advanced neuroscience research through hands-on experience. Here, we report that we produced the Muscle Sensor, a simplified electromyography, to promote educational understanding in neuroscience. The Muscle Sensor can detect myoelectric potentials which are filtered and processed as 3-V pulse signals to shine a light bulb and emit beep sounds. With this educational tool, we delivered "On-Site Neuroscience Lectures" in Japanese junior-high schools to facilitate hands-on experience of neuroscientific electrophysiology and to connect their text-book knowledge to advanced neuroscience researches. On-site neuroscience lectures with the Muscle Sensor pave the way for a better understanding of the basics of neuroscience and the latest topics such as how brain-machine-interface technology could help patients with disabilities such as spinal cord injuries. PMID:24140267

Koizumi, Amane; Nagata, Osamu; Togawa, Morio; Sazi, Toshiyuki

2014-01-01

366

Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface  

PubMed Central

This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions. PMID:25076886

Young, Brittany M.; Nigogosyan, Zack; Walton, Léo M.; Song, Jie; Nair, Veena A.; Grogan, Scott W.; Tyler, Mitchell E.; Edwards, Dorothy F.; Caldera, Kristin; Sattin, Justin A.; Williams, Justin C.; Prabhakaran, Vivek

2014-01-01

367

Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface.  

PubMed

This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions. PMID:25076886

Young, Brittany M; Nigogosyan, Zack; Walton, Léo M; Song, Jie; Nair, Veena A; Grogan, Scott W; Tyler, Mitchell E; Edwards, Dorothy F; Caldera, Kristin; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

2014-01-01

368

[Cognitive Function and Calcium. The relationship between inositol phosphates and brain function].  

PubMed

Inositol phosphates are produced depending on the numbers of the phosphate group which is added to the inositol ring which is 6 membered ring derived from a component of a biological membrane. Inositol 1, 4, 5 trisphosphate (IP3) operates on IP3 receptor on the endoplasmic reticulum, and is related to a release of calcium in the cell. IP3 is associated with various brain functions and neurodegenerative disorders. Moreover, there are IP4, IP5, IP6 and IP7 such as inositol polyphosphates in mammals. Notably, inositol hexakisphoshate kinase (IP6) which phosphorylates IP6 to IP7 plays important roles in the pathophysiology of various neurodegenerative disorders. PMID:25634048

Nagata, Eiichiro

2015-01-01

369

Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases.  

PubMed

Long noncoding RNAs (lncRNAs) have been attracting immense research interest, while only a handful of lncRNAs have been characterized thoroughly. Their involvement in the fundamental cellular processes including regulate gene expression at epigenetics, transcription, and post-transcription highlighted a central role in cell homeostasis. However, lncRNAs studies are still at a relatively early stage, their definition, conservation, functions, and action mechanisms remain fairly complicated. Here, we give a systematic and comprehensive summary of the existing knowledge of lncRNAs in order to provide a better understanding of this new studying field. lncRNAs play important roles in brain development, neuron function and maintenance, and neurodegenerative diseases are becoming increasingly evident. In this review, we also highlighted recent studies related lncRNAs in central nervous system (CNS) development and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), and elucidated some specific lncRNAs which may be important for understanding the pathophysiology of neurodegenerative diseases, also have the potential as therapeutic targets. PMID:23756188

Wu, Ping; Zuo, Xialin; Deng, Houliang; Liu, Xiaoxia; Liu, Li; Ji, Aimin

2013-08-01

370

Microglia function during brain development: New Insights from Animal Models.  

PubMed

The role of microglia in healthy brains is just beginning to receive notice. Recent studies have revealed that these phagocytic cells control the patterning and wiring of the developing central nervous system (CNS) by regulating, amongst many other processes, programmed cell death, activity-dependent synaptic pruning and synapse maturation. Microglia also play important roles in the mature brain and have demonstrated effects on behavior. Converging evidence from human and mouse studies together raise questions as to the role of microglia in disorders of brain development such as autism, schizophrenia or obsessive-compulsive disorder. In this review, we summarize a number of major findings regarding the role of microglia in brain development and highlight some key questions and avenues for future study. PMID:25463024

Bilimoria, Parizad M; Stevens, Beth

2014-11-26

371

Understanding the Mind by Measuring the Brain: Lessons From Measuring Behavior (Commentary on Vul et al., 2009).  

PubMed

Throughout the history of psychology, the path of transforming the physical (muscle movements, verbal behavior, or physiological changes) into the mental has been fraught with difficulty. Over the decades, psychologists have risen to the challenge and learned a few things about how to infer the mental from measuring the physical. The Vul, Harris, Winkielman, and Pashler (2009, this issue) article points out that some of these lessons could be helpful to those of us who measure blood flow in the brain in a quest to understand the mind. Three lessons from psychometrics are discussed. PMID:19672318

Barrett, Lisa Feldman

2009-01-01

372

Understanding global patterns of mammalian functional and phylogenetic diversity  

PubMed Central

Documenting and exploring the patterns of diversity of life on Earth has always been a central theme in biology. Species richness despite being the most commonly used measure of diversity in macroecological studies suffers from not considering the evolutionary and ecological differences among species. Phylogenetic diversity (PD) and functional diversity (FD) have been proposed as alternative measures to overcome this limitation. Although species richness, PD and FD are closely related, their relationships have never been investigated on a global scale. Comparing PD and FD with species richness corroborated the general assumptions of surrogacy of the different diversity measures. However, the analysis of the residual variance suggested that the mismatches between the diversity measures are influenced by environmental conditions. PD increased relative to species richness with increasing mean annual temperature, whereas FD decreased with decreasing seasonality relative to PD. We also show that the tropical areas are characterized by a FD deficit, a phenomenon, that suggests that in tropical areas more species can be packed into the ecological space. We discuss potential mechanisms that could have resulted in the gradient of spatial mismatch observed in the different biodiversity measures and draw parallels to local scale studies. We conclude that the use of multiple diversity measures on a global scale can help to elucidate the relative importance of historical and ecological processes shaping the present gradients in mammalian diversity. PMID:21807734

Safi, Kamran; Cianciaruso, Marcus V.; Loyola, Rafael D.; Brito, Daniel; Armour-Marshall, Katrina; Diniz-Filho, José Alexandre F.

2011-01-01

373

Brain structural connectivity increases concurrent with functional improvement: Evidence from diffusion tensor MRI in children with cerebral palsy during therapy  

PubMed Central

Cerebral Palsy (CP) refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005). Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this challenge. To maximize the potential for functional improvement, all children in this trial received autologous cord blood transfusions (with order randomized with a placebo administration over 2 years) in conjunction with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging (MRI) is used to improve our understanding of how these interventions affect brain development, and to develop biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI) and subsequent brain connectome analyses were performed in a subset of children enrolled in the clinical trial (n = 17), who all exhibited positive but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations between increases in white matter (WM) connectivity and functional improvement were demonstrated; however no significant relationships between either of these factors with the age of the child at time of enrollment were identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mechanisms of functional improvement, as well as to identify treatments that can best facilitate functional improvement upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study. PMID:25610796

Englander, Zoë A.; Sun, Jessica; Laura Case; Mikati, Mohamad A.; Kurtzberg, Joanne; Song, Allen W.

2015-01-01

374

Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially  

E-print Network

Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion¶ , and Carol A. Barnes *Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Center death and lacks definitive histopathological markers (9). Rather, aging affects hippocam- pal

Dukas, Reuven

375

The Functional Organization of the Brain of the Cuttlefish Sepia officinalis  

Microsoft Academic Search

The functional organization of the brain of Sepia has been investigated by electrical stimulation. As a result several new divisions of the brain have been made. The pedal ganglion has been shown to consist of four parts: (1) the anterior chromatophore lobes innervating the skin and muscles of the anterior part of the head and arms; (2) the anterior pedal

B. B. Boycott

1961-01-01

376

Sex differences in the brain: The relation between structure and function Geert J. de Vries a,  

E-print Network

Sex differences in the brain: The relation between structure and function Geert J. de Vries a 2009 Revised 10 March 2009 Accepted 12 March 2009 Keywords: Sex differences Sex similarities hypothesis was proposed, many sex differences have been found in behavior as well as structure of the brain

de Vries, Geert J.

377

Executive functions and social skills in survivors of pediatric brain tumor  

Microsoft Academic Search

Medical advances have resulted in increased survival rates for children with brain tumors. Consequently, issues related to survivorship have become more critical. The use of multimodal treatment, in particular cranial radiation therapy, has been associated with subsequent cognitive decline. Specifically, deficits in executive functions have been reported in survivors of various types of pediatric brain tumor. Survivors are left with

Kelly R. Wolfe; Karin S. Walsh; Nina C. Reynolds; Frances Mitchell; Alyssa T. Reddy; Iris Paltin; Avi Madan-Swain

2012-01-01

378

Investigation of the large-scale functional brain networks modulated by acupuncture  

E-print Network

Investigation of the large-scale functional brain networks modulated by acupuncture Yuanyuan Fenga effects of acupuncture. Considering that acupuncture can induce long-lasting effects, several researchers have begun to pay attention to the sustained effects of acupuncture on the resting brain. Most

Tian, Jie

379

Structural and functional brain development and its relation to cognitive development  

Microsoft Academic Search

Despite significant gains in the fields of pediatric neuroimaging and developmental neurobiology, surprisingly little is known about the developing human brain or the neural bases of cognitive development. This paper addresses MRI studies of structural and functional changes in the developing human brain and their relation to changes in cognitive processes over the first few decades of human life. Based

B. J. Casey; Jay N. Giedd; Kathleen M. Thomas

2000-01-01

380

Bachelor of Science in Neuroscience Neuroscience is the multidisciplinary study of brain function.  

E-print Network

Bachelor of Science in Neuroscience Neuroscience is the multidisciplinary study of brain function and memory. The UT Dallas neuroscience program provides students with the opportunity to focus on the brain. Careers in Neuroscience The neuroscience program is designed to prepare students for admission to graduate

O'Toole, Alice J.

381

Traumatic Brain Injury Inpatient Rehabilitation  

ERIC Educational Resources Information Center

Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

2010-01-01

382

Early rehabilitation of higher cortical brain functioning in neurosurgery, humanizing the restoration of human skills after acute brain lesions  

Microsoft Academic Search

\\u000a \\u000a Objective  Increasingly more patients after brain damage survive, however, suffering from severe impairments of higher cerebral functioning.\\u000a \\u000a \\u000a \\u000a Methods  Patients after acute brain damage, mainly secondary to TBI, are referred for early neurosurgical rehabilitation. Our concept\\u000a follows the German Guidelines. It is based on a multidisciplinary team approach. Next-of kin are included in the treatment\\u000a and caring.\\u000a \\u000a \\u000a \\u000a Results  The essential aspect of early neurosurgical

K. R. H. von Wild

383

Dorsal and Ventral Streams: A Framework for Understanding Aspects of the Functional Anatomy of Language  

ERIC Educational Resources Information Center

Despite intensive work on language-brain relations, and a fairly impressive accumulation of knowledge over the last several decades, there has been little progress in developing large-scale models of the functional anatomy of language that integrate neuropsychological, neuroimaging, and psycholinguistic data. Drawing on relatively recent…

Hickok, Gregory; Poeppel, David

2004-01-01

384

Metabolic and functional differences between brain and spinal cord mitochondria underlie different predisposition to pathology  

PubMed Central

Mitochondrial dysfunctions contribute to neurodegeneration, the locations of which vary among neurodegenerative diseases. To begin to understand what mechanisms may underlie higher vulnerability of the spinal cord motor neurons in amyotrophic lateral sclerosis, compared with brain mitochondria, we studied three major functions of rat brain mitochondria (BM) and spinal cord mitochondria (SCM) mitochondria: oxidative phosphorylation, Ca2+ sequestration, and production of reactive oxygen species (ROS), using a new metabolic paradigm (Panov et al., J. Biol. Chem. 284: 14448–14456, 2009). We present data that SCM share some unique metabolic properties of the BM. However, SCM also have several distinctions from the BM: 1) With the exception of succinate, SCM show significantly lower rates of respiration with all substrates studied; 2) immunoblotting analysis showed that this may be due to 30–40% lower contents of respiratory enzymes and porin; 3) compared with BM, SCM sequestered 40–50% less Ca2+, and the total tissue calcium content was 8 times higher in the spinal cord; 4) normalization for mitochondria from 1 g of tissue showed that BM can sequester several times more Ca2+ than was available in the brain tissue, whereas SCM had the capacity to sequester only 10–20% of the total tissue Ca2+; and 5) with succinate and succinate-containing substrate mixtures, SCM showed significantly higher state 4 respiration than BM and generated more ROS associated with the reverse electron transport. We conclude that SCM have an intrinsically higher risk of oxidative damage and overload with calcium than BM, and thus spinal cord may be more vulnerable under some pathologic conditions. (250) PMID:21248309

Kubalik, Nataliya; Zinchenko, Natalia; Ridings, Daisy M.; Radoff, David A.; Hemendinger, Richelle; Brooks, Benjamin R.; Bonkovsky, Herbert L.

2011-01-01

385

Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks  

PubMed Central

Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks. PMID:22675301

Fuxe, Kjell; Borroto-Escuela, Dasiel O.; Romero-Fernandez, Wilber; Diaz-Cabiale, Zaida; Rivera, Alicia; Ferraro, Luca; Tanganelli, Sergio; Tarakanov, Alexander O.; Garriga, Pere; Narváez, José Angel; Ciruela, Francisco; Guescini, Michele; Agnati, Luigi F.

2012-01-01

386

Fetal brain function in response to maternal alcohol consumption: Early evidence of damage  

PubMed Central

Background Studies of the adverse neurobehavioural effects of maternal alcohol consumption on the fetus have been largely confined to the postnatal period, after exposure to alcohol has finished. This study explored the brain function of the fetus, at the time of exposure to alcohol, to examine its effect on information processing and stability of performance. Methods Five groups of fetuses, defined by maternal alcohol consumption patterns, were examined: control (no alcohol); moderate (5-10 units/week either drunk evenly across the week, or as a binge, in 2-3 days); heavy (20+units/week drunk evenly, or as a binge). Fetal habituation performance was examined on three occasions, separated by seven days, beginning at 35 weeks gestation. The number of trials required to habituate on each test session and the difference in performance across test sessions was recorded. Results Fetuses exposed to heavy binge drinking required significantly more trials to habituate and exhibited a greater variability in performance across all test sessions than the other groups. Maternal drinking, either heavily but evenly, or moderately as a binge, resulted in poorer habituation and moderate binge drinking resulted in greater variability compared to no, or even, drinking. Conclusions Decreased information processing, reflected by poorer habituation, and increased variability in performance may reflect the initial manifestations of structural damage caused by alcohol to the brain. These results will lead to a greater understanding of the effects of alcohol on the fetus's brain, enable the antenatal identification of FASD, and lead to the early implementation of better management strategies. PMID:22978459

Hepper, Peter G; Dornan, James C; Lynch, Catherine

2012-01-01

387

[Acceptor of action results as a structural functional basis of dynamic stereotype activities of the brain].  

PubMed

The system mechanisms of brain dynamic stereotypes formation are considered. The brain dynamic stereotypes are shown to be formed on the structures of acceptor of action results by dominating motivations and reinforcements. Acceptors of action results are widely spread in brain structures. They are presented in functional systems which form behavioral acts of animals with spreading neural excitations in collaterals of axons of pyramidal tract. Reinforcing excitations form specific architectonic of acceptors of action results, which include brain structures corresponding to modalities of parameters of reinforcements. Dominating motivations, which predict future events, excite molecular engrams of action results which were formed by previous reinforcements. PMID:15895870

Sudakov, K V

2005-01-01

388

Functional Connectivity Magnetic Resonance Imaging Reveals Cortical Functional Connectivity in the Developing Brain  

E-print Network

in the Developing Brain Weili Lin, Ph.D.^1 , Quan Zhu, M.S.^ 2 , Wei Gao, M.S.^ 3 , Yasheng Chen, D.Sc.^ 1 , Cheng was utilized to depict brain regions exhibiting temporal synchronization, also known as resting brain pixel-by-pixel throughout the entire brain, identifying regions with high temporal correlation. Results

Utah, University of

389

Updates and future horizons on the understanding, diagnosis and treatment of Sturge–Weber syndrome brain involvement  

PubMed Central

AIM To review recent developments in the understanding, diagnosis, and treatment of Sturge–Weber syndrome (SWS). METHOD Members of the Brain Vascular Malformation Consortium Sturge–Weber National Workgroup contributed their expertise, to review the literature, and present promising directions for research. RESULTS The increasing number of reports dealing with SWS over the last decade reflects progress in the diagnosis and understanding of the neurological involvement. The proliferation of centers and advocacy groups to care for patients with SWS and to stimulate research has aided the development of new insights into the clinical manifestations and the pathophysiology of neurological progression, and the development of novel hypotheses to direct future research. Many key questions remain, but the tools and networks to answer them are being developed. INTERPRETATION This review summarizes important new knowledge and presents new research directions that are likely to provide further insights, earlier diagnosis, improved treatments, and possibly, prevention of this syndrome. PMID:22191476

Lo, Warren; Marchuk, Douglas A.; Ball, Karen L; Juhász, Csaba; Jordan, Lori C.; Ewen, Joshua B.; Comi, Anne

2011-01-01

390

People can understand descriptions of motion without activating visual motion brain regions  

E-print Network

What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of ...

Bedny, Marina

391

Differential recovery of behavioral status and brain function assessed with functional magnetic resonance imaging after mild traumatic brain injury in the rat  

Microsoft Academic Search

OBJECTIVE: The relationship between cerebral integrity, recovery of brain function, and neurologic status after mild traumatic brain injury is incompletely characterized.\\u000aDESIGN: Prospective and randomized study in rodents.\\u000aSETTING: University laboratory.\\u000aSUBJECTS: Male Wistar rats (290-310 g).\\u000aINTERVENTIONS: In rats, quantitative diffusion weighted imaging (DWI), perfusion weighted imaging (PWI), T2-weighted imaging (T2WI), and functional magnetic resonance imaging (fMRI) were performed

Nils Henninger; Kenneth M. Sicard; Zhixin Li; Praveen P. Kulkarni; Stephan Dutzmann; Christian Urbanek; Stefan Schwab; Marc Fisher

2007-01-01

392

Affective state-dependent changes in the brain functional network in major depressive disorder.  

PubMed

In major depressive disorder (MDD), as a network-level disease, the pathophysiology would be displayed to a wide extent over the brain. Moreover, the network-wide changes could be dependent on the context of affective processing. In this study, we sought affective state-dependent changes of the brain functional network by applying a graph-theoretical approach to functional magnetic resonance imaging data acquired in 13 patients with MDD and 12 healthy controls who were exposed to video clips inducing the negative, neutral or positive affective state. For each affective condition, a group-wise brain functional network was constructed based on partial correlation of mean activity across subjects between brain areas. Network parameters, global and local efficiencies, were measured from the brain functional network. Compared with controls', patients' brain functional network shifted to the regular network in the topological architecture, showing decreased global efficiency and increased local efficiency, during negative and neutral affective processing. Further, the shift to the regular network in patients was most evident during negative affective processing. MDD is proposed to provoke widespread changes across the whole brain in an affective state-dependent manner, specifically in the negative affective state. PMID:24249787

Park, Chang-hyun; Wang, Sheng-Min; Lee, Hae-Kook; Kweon, Yong-Sil; Lee, Chung Tai; Kim, Ki-Tae; Kim, Young-Joo; Lee, Kyoung-Uk

2014-09-01

393

Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment  

PubMed Central

Whole brain radiation therapy (WBRT) is an effective treatment in brain metastases and, when combined with local treatments such as surgery and stereotactic radiosurgery, gives the best brain control. Nonetheless, WBRT is often omitted after local treatment due to its potential late neurocognitive effects. Publications on radiation-induced neurotoxicity have used different assessment methods, time to assessment, and definition of impairment, thus making it difficult to accurately assess the rate and magnitude of the neurocognitive decline that can be expected. In this context, and to help therapeutic decision making, we have conducted this literature review, with the aim of providing an average incidence, magnitude and time to occurrence of radio-induced neurocognitive decline. We reviewed all English language published articles on neurocognitive effects of WBRT for newly diagnosed brain metastases or with a preventive goal in adult patients, with any methodology (MMSE, battery of neurcognitive tests) with which baseline status was provided. We concluded that neurocognitive decline is predominant at 4 months, strongly dependant on brain metastases control, partially solved at later time, graded 1 on a SOMA-LENT scale (only 8% of grade 2 and more), insufficiently assessed in long-term survivors, thus justifying all efforts to reduce it through irradiation modulation. PMID:22640600

2012-01-01

394

Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury?  

PubMed Central

Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury.

Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

2012-01-01

395

Advances in MRI to probe the functional and structural network of the macaque brain  

E-print Network

Diffusion MRI and fMRI have provided neuroscientists with non-invasive tools to probe the functional and structural network of the brain. Diffusion MRI is a neuroimaging technique capable of measuring the diffusion of water ...

Khachaturian, Mark Haig, 1979-

2007-01-01

396

Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans  

Technology Transfer Automated Retrieval System (TEKTRAN)

Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

397

REITERATIVE MINIMUM MEAN SQUARE ERROR ESTIMATOR FOR DIRECTION OF ARRIVAL ESTIMATION AND BIOMEDICAL FUNCTIONAL BRAIN IMAGING  

E-print Network

Two novel approaches are developed for direction-of-arrival (DOA) estimation and functional brain imaging estimation, which are denoted as ReIterative Super-Resolution (RISR) and Source AFFine Image REconstruction (SAFFIRE), ...

Chan, Tsz Ping

2008-07-25

398

Structural and Functional Rich Club Organization of the Brain in Children and Adults  

PubMed Central

Recent studies using Magnetic Resonance Imaging (MRI) have proposed that the brain’s white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain’s major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism. PMID:24505468

Grayson, David S.; Ray, Siddharth; Carpenter, Samuel; Iyer, Swathi; Dias, Taciana G. Costa; Stevens, Corinne; Nigg, Joel T.; Fair, Damien A.

2014-01-01

399

Assessing frontal behavioral syndromes and cognitive functions in traumatic brain injury.  

PubMed

This study examined the relationship between individual and family ratings on a measure of frontal behaviors using the Frontal Systems Behavior Scale (FrSBe). Additionally, this study investigated whether self-reported symptoms of frontal-lobe dysfunction correspond to neuropsychological performance, particularly those tests measuring executive functions. Thirty-three individuals with moderate-to-severe traumatic brain injury (TBI) and 19 healthy individuals completed the FrSBe and neuropsychological measures. Results indicated that the self-ratings of individuals' apathy, disinhibition, and executive dysfunction significantly increased from before to after injury, as did the family members' ratings, with no significant difference between the patients' and family members' reports for any of the three FrSBe subscales. Although individuals with TBI demonstrated impairments in neuropsychological measures, including measures of executive functioning, few significant correlations were found between the patients' FrSBe ratings and measures of cognitive functioning. This suggests that information from the FrSBe may differ from information gathered during a cognitive evaluation and may enhance our understanding of the behavioral sequelae following TBI that may not be captured by neuropsychological assessment alone. PMID:25529586

Lengenfelder, Jeannie; Arjunan, Aparna; Chiaravalloti, Nancy; Smith, Angela; DeLuca, John

2015-01-01

400

Enhancing brain and cognitive function of older adults through fitness training  

Microsoft Academic Search

The present article provides a brief review of the human and animal literature that has investigated the relationship between\\u000a fitness training and brain and cognitive function. The animal research clearly suggests that improvements in fitness can lead\\u000a to both morphological and functional changes in the brains of older animals. Results of a recent meta-analysis suggest that\\u000a fitness training can also

Arthur F. Kramer; Edward McAuley; Kirk I. Eriksen; Paige Scalf; Gerald J. Jerome; David X. Marquez; Steriani Elavsky; Andrew G. Webb

2003-01-01

401

MRIVIEW: An interactive computational tool for investigation of brain structure and function  

SciTech Connect

MRIVIEW is a software system which uses image processing and visualization to provide neuroscience researchers with an integrated environment for combining functional and anatomical information. Key features of the software include semi-automated segmentation of volumetric head data and an interactive coordinate reconciliation method which utilizes surface visualization. The current system is a precursor to a computational brain atlas. We describe features this atlas will incorporate, including methods under development for visualizing brain functional data obtained from several different research modalities.

Ranken, D.; George, J.

1993-12-31

402

Cholinergic agonism alters cognitive processing and enhances brain functional connectivity in patients with multiple sclerosis  

Microsoft Academic Search

AbstractThe aim of this study is to define mechanisms underlying the pharmacological effects of brain cholinesterase inhibition on cognitive function in patients with multiple sclerosis (MS). Both a Stroop task and an N-back task were used to probe the changes in brain activity using functional magnetic resonance imaging (fMRI) in a single (investigator)-blind, crossover treatment design studying 15 patients with

S Cader; J Palace; PM Matthews

2009-01-01

403

Isolating human brain functional connectivity associated with a specific cognitive process  

Microsoft Academic Search

The use of functional magnetic resonance imaging (fMRI) to measure functional connectivity among brain areas has the potential to identify neural networks associated with particular cognitive processes. However, fMRI signals are not a direct measure of neural activity but rather represent blood oxygenation level-dependent (BOLD) signals. Correlated BOLD signals between two brain regions are therefore a combination of neural, neurovascular,

Michael A. Silver; Ayelet N. Landau; Thomas Z. Lauritzen; William Prinzmetal; Lynn C. Robertson

2010-01-01

404

Developing Essential Understanding of Functions for Teaching Mathematics in Grades 9-12  

ERIC Educational Resources Information Center

Are sequences functions? What can't the popular "vertical line test" be applied in some cases to determine if a relation is a function? How does the idea of rate of change connect with simpler ideas about proportionality as well as more advanced topics in calculus? Helping high school students develop a robust understanding of functions requires…

Lloyd, Gwendolyn; Beckmann, Sybilla; Zbiek, Rose Mary; Cooney, Thomas

2010-01-01

405

Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction  

PubMed Central

We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein–coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology. PMID:22584867

Ayalew, M; Le-Niculescu, H; Levey, D F; Jain, N; Changala, B; Patel, S D; Winiger, E; Breier, A; Shekhar, A; Amdur, R; Koller, D; Nurnberger, J I; Corvin, A; Geyer, M; Tsuang, M T; Salomon, D; Schork, N J; Fanous, A H; O'Donovan, M C; Niculescu, A B

2012-01-01

406

Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction.  

PubMed

We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology. PMID:22584867

Ayalew, M; Le-Niculescu, H; Levey, D F; Jain, N; Changala, B; Patel, S D; Winiger, E; Breier, A; Shekhar, A; Amdur, R; Koller, D; Nurnberger, J I; Corvin, A; Geyer, M; Tsuang, M T; Salomon, D; Schork, N J; Fanous, A H; O'Donovan, M C; Niculescu, A B

2012-09-01

407

Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy  

NASA Astrophysics Data System (ADS)

The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally homologous regions, as well as intra-hemispherically within the same functional regions. The functional connectivity in different functional regions was studied. The locations of these regions agreed well with the Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the investigation of brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy. Our experiments show that photoacoustic microscopy is capable to detect connectivities between different functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research.

Nasiriavanaki, Mohammadreza; Xing, Wenxin; Xia, Jun; Wang, Lihong V.

2014-03-01

408

Somatostatinergic systems: an update on brain functions in normal and pathological aging  

PubMed Central

Somatostatin is highly expressed in mammalian brain and is involved in many brain functions such as motor activity, sleep, sensory, and cognitive processes. Five somatostatin receptors have been described: sst1, sst2 (A and B), sst3, sst4, and sst5, all belonging to the G-protein-coupled receptor family. During the recent years, numerous studies contributed to clarify the role of somatostatin systems, especially long-range somatostatinergic interneurons, in several functions they have been previously involved in. New advances have also been made on the alterations of somatostatinergic systems in several brain diseases and on the potential therapeutic target they represent in these pathologies. PMID:23230430

Martel, Guillaume; Dutar, Patrick; Epelbaum, Jacques; Viollet, Cécile

2012-01-01

409

Echocardiographic features and brain natriuretic peptides in patients presenting with heart failure and preserved systolic function  

PubMed Central

Objective To characterise patients who appear to fulfil the diagnosis of heart failure with preserved systolic function clinically, echocardiographically, and by concentrations of brain?type natriuretic peptide (BNP). Methods 102 new cases of heart failure were identified over 24 months in 213 patients referred to a rapid access heart failure clinic. Patients with heart failure and preserved systolic function with contemporary markers of diastolic function were assessed to evaluate their cardiac status further. Results Forty patients (39%) had an ejection fraction (EF) function. Dobutamine stress echocardiography was performed on 26 (42%) patients with EF ??45%, which provided an alternative explanation for symptoms in 15 (58%) patients. Concentrations of BNP were higher in patients with diastolic abnormalities (mean (SEM) 101.4 (32.5)?pg/ml v 58.4 (6.78)?pg/ml, p??=??0.042) and with no diastolic abnormalities (199 (37.9)?pg/ml v 58.4 (6.78)?pg/ml, p?understanding, including alternative parameters of diastolic function, seems to be necessary to classify patients with heart failure and preserved systolic function. PMID:16159966

Thomas, M D; Fox, K F; Wood, D A; Gibbs, J S R; Coats, A J S; Henein, M Y; Poole?Wilson, P A; Sutton, G C

2006-01-01

410

Invited Commentary: Understanding Brain Mechanisms of Pain Processing in Adolescents' Non-Suicidal Self-Injury  

ERIC Educational Resources Information Center

Whereas non-suicidal self injury (NSSI) is reported in 13-23% of adolescents and is an increasingly studied topic, there has been little investigation into the pathophysiology behind self-injury. This commentary examines recent research into pain and emotional distress to discuss implications for the manner we should understand, research, and…

Ballard, Elizabeth; Bosk, Abigail; Pao, Maryland

2010-01-01

411

The heart's 'little brain' controlling cardiac function in the rabbit.  

PubMed

Heart disease is a primary cause of mortality in the developed world, and it is well recognized that neural mechanisms play an important role in many cardiac pathologies. The role of extrinsic autonomic nerves has traditionally attracted the most attention. However, there is a rich intrinsic innervation of the heart, including numerous cardiac ganglia (ganglionic plexuses), that has the potential to affect cardiac function independently as well as to influence the actions of the extrinsic nerves. To investigate this, an isolated, perfused, innervated rabbit Langendorff heart preparation was considered the best option. Although ganglionic plexuses have been well described for several species, there was no full description of the anatomy and histochemistry of rabbit hearts. To this end, rabbit intrinsic ganglia were located using acetylcholinesterase histology (n = 33 hearts). This revealed six generalized ganglionic regions, defined as a left neuronal complex above the left pulmonary vein, a right neuronal complex around the base of right cranial vein, three scattered in the dorsal right atrium and a region containing numerous ventricular ganglia located on the conus arteriosus. Using immunohistochemistry, neurons were found to contain choline acetyltransferase or tyrosine hydroxylase and/or neuronal nitric oxide synthase in differing amounts (choline acetyltransferase > tyrosine hydroxylase > neuronal nitric oxide synthase). The function of rabbit intrinsic ganglia was investigated using a bolus application of nicotine or electrical stimulation at each of the above sites whilst measuring heart rate and atrioventricular conduction. Nicotine applied to different ganglionic plexuses caused a bradycardia, a tachycardia or a mixture of the two, with the right atrial plexus producing the largest chronotropic responses. Electrical stimulation at these sites induced only a bradycardia. Atrioventricular conduction was modestly changed by nicotine, the main response being a prolongation. Electrical stimulation produced significant prolongation of atrioventricular conduction, particularly when the right neuronal complex was stimulated. These studies show that the intrinsic plexuses of the heart are important and could be crucial for understanding impairments of cardiac function. Additionally, they provide a strong basis from which to progress using the isolated, innervated rabbit heart preparation. PMID:25261496

Brack, Kieran E

2014-09-25

412

The Biology of Physics: What the Brain Reveals about Our Understanding of the Physical World  

NSDL National Science Digital Library

Fundamental concepts in physics such as Newtonian mechanics are surprisingly difficult to learn and discover. Over the past decade we have used an educational neuroscience approach to science education to investigate the different ways that scientific concepts are invoked or activated in different contexts. In particular, we have sought to determine how networks of brain regions that are highly sensitive to the context in which they are used are involved in the use of scientific concepts. We have found that some physics concepts that are highly tuned to perception are often inhibited in experts (with increased activations in error detection and inhibitory networks of the prefrontal cortex). Other concepts, such as those involved in perceptual causality, can activate highly diverse brain regions depending on task instructions. For example, when students are shown movies of balls colliding, we find increased activation in the right parietal lobe, yet when the students see the exact same movies and are told that these are positively charged particles repulsing we find increased activations in the temporal lobe that is consistent with the students retrieving semantic information. We also see similar changes in activation patterns in students learning about phase shifts in chemistry classes. A key component of both students and scientistsâ discourse and reasoning is analogical thinking. Our recent fMRI work indicates that categorization is a key component of this type of reasoning that helps bind superficially different concepts together in the service of reasoning about the causes of unexpected findings. Taken together, these results are allowing us to make insights into the contextually relevant networks of knowledge that are activated during learning. This work is allowing us to propose why some educational interventions are more successful than others and why certain types of educational interventions are appropriate for some contexts, but not others.

Dunbar, Kevin N.

2010-03-11

413

Noninvasive Functional Imaging of Human Brain Using Light  

Microsoft Academic Search

Analysis of photon transit time for low-power light passing into the head, and through both skull and brain, of human subjects allowed for tomographic imaging of cerebral hemoglobin oxygenation based on photon diffusion theory. In healthy adults, imaging of changes in hemoglobin saturation during hand movement revealed focal, contralateral increases in motor cortex oxygenation with spatial agreement to activation maps

David A. Benaron; Susan R. Hintz; Arno Villringer; David Boas; Andreas Kleinschmidt; Jens Frahm; Christina Hirth; Hellmuth Obrig; John C. van Houten; Eben L. Kermit; Wai-Fung Cheong; David K. Stevenson

2000-01-01

414

Assessing blood-brain barrier function using in vitro assays.  

PubMed

The impermeability of the blood-brain barrier (BBB) is due to a number of properties including tight junctions on adjoining endothelial cells, absence of pinocytic vesicles, and expression of multidrug transporters. Although the permeability of many chemicals can be predicted by their polarity, or oil/water partition coefficient, many lipophilic chemicals are not permeable because of multidrug transporters at the luminal and abluminal membranes. In contrast, many nutrients, which are usually polar, cross the BBB more readily than predicted by their oil/water partition coefficients due to the expression of specific nutrient transporters. In vitro models are being developed because rodent models are of low input and relatively expensive. Isolated brain microvessels and cell culture models each offers certain advantages and disadvantages. Isolated brain microvessels are useful in measuring multidrug drug transporters and tight junction integrity, whereas cell culture models allow the investigator to measure directional transport and can be genetically manipulated. In this chapter, we describe how to isolate large batches of brain microvessels from freshly slaughtered cows. The different steps in the isolation procedure include density gradient centrifugations and filtering. Purity is determined microscopically and by marker enzymes. Permeability is assessed by measuring the uptake of fluorescein-labeled dextran in an assay that has been optimized to have a large dynamic range and low inter-day variability. We also describe how to evaluate transendothelial cell electrical resistance and paracellular transport in cell culture models. PMID:23955734

Bressler, Joseph; Clark, Katherine; O'Driscoll, Cliona

2013-01-01

415

Critical Periods of Brain Growth and Cognitive Function in Children  

ERIC Educational Resources Information Center

There is evidence that IQ tends to be higher in those who were heavier at birth or who grew taller in childhood and adolescence. Although these findings imply that growth in both foetal and postnatal life influences cognitive performance, little is known about the relative importance of brain growth during different periods of development. We…

Gale, Catharine R.; O'Callaghan, Finbar J.; Godfrey, Keith M.; Law, Catherine M.; Martyn, Christopher N.

2004-01-01

416

Predicting Longitudinal Patterns of Functional Deficits in Children With Traumatic Brain Injury  

Microsoft Academic Search

Longitudinal patterns of functional deficits were investigated in 37 children with severe traumatic brain injury (TBI), 40 children with moderate TBI, and 44 children with orthopedic injuries. They were from 6 to 12 years of age when injured. Their neuropsychological, behavioral, adaptive, and academic functioning were assessed at 6 months, 12 months, and 3–5 years postinjury. Functional deficits (<10th percentile

Taryn B. Fay; Keith Owen Yeates; Shari L. Wade; Dennis Drotar; Terry Stancin; H. Gerry Taylor

2009-01-01

417

Functional MRI of the zebra finch brain during song stimulation suggests a lateralized  

E-print Network

Functional MRI of the zebra finch brain during song stimulation suggests a lateralized response the noninvasive functional MRI method in mildly sedated zebra finches (Taeniopy- gia guttata) to localize might be lateralized in zebra finches. In addition to establishing the feasibility of functional MRI

418

Human-Computer Interaction and Brain Measurement Using Functional Near-Infrared Spectroscopy  

E-print Network

Human-Computer Interaction and Brain Measurement Using Functional Near-Infrared Spectroscopy Leanne Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive, lightweight imaging tool which can remains a challenge. We investigate functional near-infrared spectroscopy (fNIRS) [1], a relatively new

Jacob, Robert J.K.

419

Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents  

PubMed Central

Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator of improved brain glucose sensing. Next, we tested whether dietary RS improve selected behaviors in aged mice. RS-fed aged mice exhibited (1) an increased eating responses to fasting, a behavioral indicator of improvement in aged brain glucose sensing; (2) a longer latency to fall from an accelerating rotarod, a behavioral indicator of improved motor coordination; and (3) a higher serum active GLP-1. Third, GLP-1 receptor null (GLP-1RKO) mice were used to test the role of GLP-1 in brain glucose sensing, and they exhibited impaired eating responses to fasting. We conclude that in rodents (1) dietary RS improves two important indicators of brain function: glucose sensing and motor coordination, and that (2) GLP-1 is important in the optimal feeding response to a fast. PMID:23818307

Zhou, June; Keenan, Michael J.; Fernandez-Kim, Sun Ok; Pistell, Paul J.; Ingram, Donald K.; Li, Bing; Raggio, Anne M.; Shen, Li; Zhang, Hanjie; McCutcheon, Kathleen L; Tulley, Richard T.; Blackman, Marc R.; Keller, Jeffrey N.; Martin, Roy J.

2013-01-01

420

Brain structural and functional alterations in patients with unilateral hearing loss.  

PubMed

Alterations of brain structure and functional connectivity have been described in patients with hearing impairments due to distinct pathogenesis; however, the influence of unilateral hearing loss (UHL) on brain morphology and regional brain activity is still not completely understood. In this study, we aim to investigate regional brain structural and functional alterations in patients with UHL. T1-weighted volumetric images and task-free fMRIs were acquired from 14 patients with right-sided UHL (pure tone average ? 40 dB HL) and 19 healthy controls. Hearing ability was assessed by pure tone audiometry. Voxel-based morphometry (VBM) was performed to detect brain regions with changed gray matter volume or white matter volume in UHL. The amplitude of low-frequency fluctuation (ALFF) was calculated to analyze brain activity at the baseline and was compared between two groups. Compared with controls, UHL patients showed decreased gray matter volume in bilateral posterior cingulate gyrus and precuneus, left superior/middle/inferior temporal gyrus, and right parahippocampal gyrus and lingual gyrus. Meanwhile, patients showed significantly decreased ALFF in bilateral precuneus, left inferior parietal lobule, and right inferior frontal gyrus and insula and increased ALFF in right inferior and middle temporal gyrus. These findings suggest that chronic UHL could induce brain morphological changes and is associated with aberrant baseline brain activity. PMID:25093284

Yang, Ming; Chen, Hua-Jun; Liu, Bin; Huang, Zhi-Chun; Feng, Yuan; Li, Jing; Chen, Jing-Ya; Zhang, Ling-Ling; Ji, Hui; Feng, Xu; Zhu, Xin; Teng, Gao-Jun

2014-10-01

421

Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity  

E-print Network

Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community decades of research showing that increasing plant diversity results in greater community productivity has approach, and 7) a phylogenetic diversity measure, summing phylogenetic branch lengths connecting community

Minnesota, University of

422

Understanding Early Elementary Children's Conceptual Knowledge of Plant Structure and Function through Drawings  

ERIC Educational Resources Information Center

This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data…

Anderson, Janice L.; Ellis, Jane P.; Jones, Alan M.

2014-01-01

423

Functional Connectivity between Brain Areas Estimated by Analysis of Gamma Waves  

PubMed Central

The goal of this study is to investigate functional connectivity between different brain regions by analyzing the temporal relationship of the maxima of gamma waves recorded in multiple brain areas. Local field potentials were recorded from motor cortex, hippocampus, entorhinal cortex and piriform cortex of rats. Gamma activity was filtered and separated into two bands; high (65–90Hz) and low (30–55Hz) gamma. Maxima for gamma activity waves were detected and functional connectivity between different brain regions was determined using Shannon entropy for perievent histograms for each pair channels. Significant Shannon entropy values were reported as connectivity factors. We defined a connectivity matrix based the connectivity factors between different regions. We found that maxima of low and high frequency gamma occur in strong temporal relationship between some brain areas, indicating the existence of functional connections between these areas. The spatial pattern of functional connections between brain areas was different for slow wave sleep and waking states. However for each behavioral state in the same animal the pattern of functional connections was stable over time within 30 minutes of continuous analysis and over a 5 day period. With the same electrode montage the pattern of functional connectivity varied from one subject to another. Analysis of the temporal relationship of maxima of gamma waves between various brain areas could be a useful tool for investigation of functional connections between these brain areas. This approach could be applied for analysis of functional alterations occurring in these connections during different behavioral tasks and during processes related to learning and memory. The specificity in the connectivity pattern from one subject to another can be explained by the existence of unique functional networks for each subject. PMID:23376499

Kheiri, Farshad; Bragin, Anatol; Engel, Jerome

2013-01-01

424

Functional connectivity between brain areas estimated by analysis of gamma waves.  

PubMed

The goal of this study is to investigate functional connectivity between different brain regions by analyzing the temporal relationship of the maxima of gamma waves recorded in multiple brain areas. Local field potentials were recorded from motor cortex, hippocampus, entorhinal cortex and piriform cortex of rats. Gamma activity was filtered and separated into two bands; high (65-90Hz) and low (30-55Hz) gamma. Maxima for gamma activity waves were detected and functional connectivity between different brain regions was determined using Shannon entropy for perievent histograms for each pair channels. Significant Shannon entropy values were reported as connectivity factors. We defined a connectivity matrix based the connectivity factors between different regions. We found that maxima of low and high frequency gamma occur in strong temporal relationship between some brain areas, indicating the existence of functional connections between these areas. The spatial pattern of functional connections between brain areas was different for slow wave sleep and waking states. However for each behavioral state in the same animal the pattern of functional connections was stable over time within 30min of continuous analysis and over a 5 day period. With the same electrode montage the pattern of functional connectivity varied from one subject to another. Analysis of the temporal relationship of maxima of gamma waves between various brain areas could be a useful tool for investigation of functional connections between these brain areas. This approach could be applied for analysis of functional alterations occurring in these connections during different behavioral tasks and during processes related to learning and memory. The specificity in the connectivity pattern from one subject to another can be explained by the existence of unique functional networks for each subject. PMID:23376499

Kheiri, Farshad; Bragin, Anatol; Engel, Jerome

2013-04-15

425

Neuroelectrical decomposition of spontaneous brain activity measured with functional magnetic resonance imaging.  

PubMed

Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity. PMID:23796947

Liu, Zhongming; de Zwart, Jacco A; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H

2014-11-01

426

Cannabis Use and Memory Brain Function in Adolescent Boys: A Cross-Sectional Multicenter Functional Magnetic Resonance Imaging Study  

ERIC Educational Resources Information Center

Objective: Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex cognitive functions such as memory and…

Jager, Gerry; Block, Robert I.; Luijten, Maartje; Ramsey, Nick F.

2010-01-01

427

Non-Invasive Quantification of Absolute Cerebral Blood Volume During Functional Activation Applicable to the Whole Human Brain  

PubMed Central

Purpose Cerebral blood volume (CBV) changes in many diverse pathologic conditions, and in response to functional challenges along with changes in blood flow, blood oxygenation, and the cerebral metabolic rate of oxygen. The feasibility of a new method for non-invasive quantification of absolute cerebral blood volume that can be applicable to the whole human brain was investigated. Methods Multi-slice