Science.gov

Sample records for understanding nuclear quadrupole

  1. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  2. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed. PMID:24806277

  3. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  4. Nuclear quadrupole resonance single-pulse echoes.

    PubMed

    Prescott, David W; Miller, Joel B; Tourigny, Chris; Sauer, Karen L

    2008-09-01

    We report the first detection of a spin echo after excitation of a powder sample by a single pulse at the resonance frequency during nuclear quadrupole resonance (NQR). These echoes can occur in samples that have an inhomogeneously broadened line, in this case due to the distribution of electric field gradients. The echoes are easily detectable when the Rabi frequency approaches the linewidth and the average effective tipping angle is close to 270 degrees. When limited by a weak radio-frequency field, the single-pulse echo can be used to increase the signal to noise ratio over conventional techniques. These effects can be used to optimize the NQR detection of contraband containing quadrupole nuclei and they are demonstrated with glycine hemihydrochloride and hexhydro-1,3,5-trinitro-1,3,5-triazine (RDX). PMID:18571445

  5. Table of nuclear electric quadrupole moments

    NASA Astrophysics Data System (ADS)

    Stone, N. J.

    2016-09-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.

  6. Density functional theory calculations of nuclear quadrupole coupling constants with calibrated 14N quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sicilia, E.; de Luca, G.; Chiodo, S.; Russo, N.; Calaminici, P.; Koster, A. M.; Jug, K.

    Density functional calculations of the electric field gradient tensor at the nitrogen nucleus in 13 test molecules, containing 14 nitrogen sites, have been performed using the linear combination of Gaussian-type orbital Kohn-Sham density functional theory (LCGTO-KSDFT) approach. Local and gradient corrected functionals were used for all-electron calculations. All the molecular structures were optimized at their respective levels of theory with extended basis sets. Calibrated 14N nuclear quadrupole moments were obtained through a fitting procedure between calculated electric field gradients and experimental nuclear quadrupole coupling constants of the test set of molecules for each basis set and functional considered. With these calibrated 14N nuclear quadrupole moments, the nuclear quadrupole coupling constants of the following selected systems were determined: fluoromethylisonitrile, pyridine, pyrrole, imadazole, pyrazole, 1,8-bis(dimethyl-amino)naphthalene, cyclotetramethylenetetranitramine, cocaine and heroin.

  7. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  8. 14N nuclear quadrupole resonance in carcinostatic phosphamides

    NASA Astrophysics Data System (ADS)

    Greenbaum, S. G.; Bray, P. J.

    1980-02-01

    Nitrogen-14 nuclear quadrupole resonance spectra of the anti-cancer drugs cyclophosphamide monohydrate, isonphosphamide and triphosphamide have been detected at 77 K. The electron distribution in the vicinity of the nitrogens possessing trigonal bonding configurations have been calculated in the framework of the Townes and Dailey theory.

  9. Nuclear quadrupole interaction of 199mHg mercaptides

    NASA Astrophysics Data System (ADS)

    Butz, T.; Völkel, Th.; Nuyken, O.

    1991-01-01

    The strength and symmetry of the nuclear quadrupole interaction of the following 199mHg mercaptides were measured at room temperature by-γ-γ-perturbed angular correlations: dithiotreitol (DTT), benzylmercaptan (BEM), 1,3-dimercaptobenzene (DMB), glycoldimercaptoacetate (GDMA), and an oligomer synthesized from 1,3-dimercaptobenzene and norbornadiene, having an average number of repeating units of seven and mercapto end groups (dimercaptotelechel:TEL7). The data suggest an almost linear SHgS bond in all cases.

  10. Chlorine Nuclear Quadrupole Hyperfine Structure in the Vinyl - Chloride Complex

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.; Messinger, Joseph P.

    2015-06-01

    The microwave spectrum of the vinyl chloride--hydrogen chloride complex, presented at last year's symposium, is greatly complicated by the presence of two chlorine nuclei as well as an observed, but not fully explained tunneling motion. Indeed, although it was possible at that time to demonstrate conclusively that the complex is nonplanar, the chlorine nuclear quadrupole hyperfine splitting in the rotational spectrum resisted analysis. With higher resolution, Balle-Flygare Fourier transform microwave spectra, the hyperfine structure has been more fully resolved, but appears to be perturbed for some rotational transitions. It appears that knowledge of the quadrupole coupling constants will provide essential information regarding the structure of the complex, specifically the location of the hydrogen atom in HCl. Our progress towards obtaining values for these constants will be presented.

  11. Nuclear quadrupole moment of the {sup 99}Tc ground state

    SciTech Connect

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-05-15

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2{sup +} ground state of {sup 99}Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc{sub 2} and ZrTc{sub 2}. If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the {sup 99}Tc ground state quadrupole moment could be further reduced.

  12. Nuclear-quadrupole optical hole burning in the stoichiometric material EuP5O14.

    PubMed

    Macfarlane, R M; Shelby, R M; Genack, A Z; Weitz, D A

    1980-11-01

    Hole burning, which is attributed to optical pumping of nuclear-quadrupole levels, has been observed in the stoichiometric rare-earth compound, EuP5O14 . The long lifetime of these holes (-60 min) implies slow nuclear-spin flip-flop rates. The small magnetic moment of Eu3+ has prevented conventional magnetic-resonance measurements on Eu3+ compounds, but hole burning provides a sensitive method for the optical detection of nuclear-magnetic resonance and nuclear-quadrupole resonance. We have used hole burning and optically detected nuclear-quadrupole resonance to determine quadrupole splittings in the ground (7Fo) and excited (5Do) states. PMID:19701271

  13. Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1978-01-01

    The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.

  14. Low-frequency nuclear quadrupole resonance with a dc SQUID

    SciTech Connect

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  15. Nuclear magnetic and quadrupole resonance studies of the stripes materials

    NASA Astrophysics Data System (ADS)

    Grafe, H.-J.

    2012-11-01

    Nuclear Magnetic and Quadrupole Resonance (NMR/NQR) is a powerful tool to probe electronic inhomogeneities in correlated electron systems. Its local character allows for probing different environments due to spin density modulations or inhomogeneous doping distributions emerging from the correlations in these systems. In fact, NMR/NQR is not only sensitive to magnetic properties through interaction of the nuclear spin, but also allows to probe the symmetry of the charge distribution and its homogeneity, as well as structural modulations, through sensitivity to the electric field gradient (EFG). We review the results of NMR and NQR in the cuprates from intrinsic spatial variations of the hole concentration in the normal state to stripe order at low temperatures, thereby keeping in mind the influence of doping induced disorder and inhomogeneities. Finally, we briefly discuss NQR evidence for local electronic inhomogeneities in the recently discovered iron pnictides, suggesting that electronic inhomogeneities are a common feature of correlated electron systems.

  16. Nuclear quadrupole resonance detection of explosives: an overview

    NASA Astrophysics Data System (ADS)

    Miller, Joel B.

    2011-06-01

    Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.

  17. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    SciTech Connect

    Kellö, Vladimir

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  18. Authentication of Medicines Using Nuclear Quadrupole Resonance Spectroscopy.

    PubMed

    Chen, Cheng; Zhang, Fengchao; Barras, Jamie; Althoefer, Kaspar; Bhunia, Swarup; Mandal, Soumyajit

    2016-01-01

    The production and sale of counterfeit and substandard pharmaceutical products, such as essential medicines, is an important global public health problem. We describe a chemometric passport-based approach to improve the security of the pharmaceutical supply chain. Our method is based on applying nuclear quadrupole resonance (NQR) spectroscopy to authenticate the contents of medicine packets. NQR is a non-invasive, non-destructive, and quantitative radio frequency (RF) spectroscopic technique. It is sensitive to subtle features of the solid-state chemical environment and thus generates unique chemical fingerprints that are intrinsically difficult to replicate. We describe several advanced NQR techniques, including two-dimensional measurements, polarization enhancement, and spin density imaging, that further improve the security of our authentication approach. We also present experimental results that confirm the specificity and sensitivity of NQR and its ability to detect counterfeit medicines. PMID:26841409

  19. Nuclear magnetic and quadrupole resonance in metallic powders in the presence of strong quadrupole interaction: Rhenium metal

    SciTech Connect

    Dimitropoulos, C.; Maglione, M.; Borsa, F.

    1988-03-01

    The nuclear-magnetic-resonance and nuclear-quadrupole-resonance (NQR-NMR) spectra of /sup 187/Re and /sup 185/Re in a powder of rhenium metal were measured in the temperature range 5--10 K both in zero field and with an external magnetic field. The zero-field NQR spectrum is severely broadened by a nonuniform distribution of quadrupole interactions. The average quadrupole coupling frequencies measured at 5 K are, for the two isotopes, ..nu../sub Q/ = 39 +- 0.2 MHz (/sup 187/Re) and ..nu../sub Q/ = 40.8 +- 0.3 MHz (/sup 185/Re). The spectra obtained in the presence of an external magnetic field can be interpreted satisfactorily in terms of transitions among the eigenstates of the full Hamiltonian (Zeeman plus quadrupolar). Measurements of relaxation rates yield T/sub 1/T = 0.03 sK, indicating a relaxation mechanism driven by the hyperfine interaction with the conduction electrons. The feasibility of NQR-NMR studies in small metal particles in the presence of strong inhomogeneous quadrupole interactions is assessed

  20. Polarization enhanced Nuclear Quadrupole Resonance with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.; Barrall, Geoffrey A.; Espy, Michelle A.; Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) has been demonstrated for the detection of 14-N in explosive compounds. Application of a material specific radio-frequency (RF) pulse excites a response typically detected with a wire- wound antenna. NQR is non-contact and material specific, however fields produced by NQR are typically very weak, making demonstration of practical utility challenging. For certain materials, the NQR signal can be increased by transferring polarization from hydrogen nuclei to nitrogen nuclei using external magnetic fields. This polarization enhancement (PE) can enhance the NQR signal by an order of magnitude or more. Atomic magnetometers (AM) have been shown to improve detection sensitivity beyond a conventional antenna by a similar amount. AM sensors are immune to piezo-electric effects that hamper conventional NQR, and can be combined to form a gradiometer for effective RF noise cancellation. In principle, combining polarization enhancement with atomic magnetometer detection should yield improvement in signal-to-noise ratio that is the product of the two methods, 100-fold or more over conventional NQR. However both methods are even more exotic than traditional NQR, and have never been combined due to challenges in operating a large magnetic field and ultra-sensitive magnetic field sensor in proximity. Here we present NQR with and without PE with an atomic magnetometer, demonstrating signal enhancement greater than 20-fold for ammonium nitrate. We also demonstrate PE for PETN using a traditional coil for detection with an enhancement factor of 10. Experimental methods and future applications are discussed.

  1. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  2. Nuclear quadrupole resonance of 14N and 2H in pyrimidines, purines, and their nucleosides

    NASA Astrophysics Data System (ADS)

    Rabbani, S. R.; Edmonds, D. T.; Gosling, P.

    Using nuclear quadrupole double-resonance techniques, nitrogen-14 and deuterium nuclear quadrupole coupling constants and asymmetry parameters have been measured in uracil, 5-bromouracil, cytosine, adenine, xanthine, hypoxanthine, their nucleosides, 2-aminopyrimidine, and benzimidazole. Zeeman studies and the detection of the simultaneous transitions of neighboring nuclei allowed in many cases a complete assignment of the observed spectral lines to particular 14N and 2D sites.

  3. Detecting body cavity bombs with nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Collins, Michael London

    Nuclear Quadrupole Resonance (NQR) is a technology with great potential for detecting hidden explosives. Past NQR research has studied the detection of land mines and bombs concealed within luggage and packages. This thesis focuses on an NQR application that has received less attention and little or no publicly available research: detecting body cavity bombs (BCBs). BCBs include explosives that have been ingested, inserted into orifices, or surgically implanted. BCBs present a threat to aviation and secure facilities. They are extremely difficult to detect with the technology currently employed at security checkpoints. To evaluate whether or not NQR can be used to detect BCBs, a computational model is developed to assess how the dielectric properties of biological tissue affect the radio frequency magnetic field employed in NQR (0.5-5MHz). The relative permittivity of some biological tissue is very high (over 1,000 at 1MHz), making it conceivable that there is a significant effect on the electromagnetic field. To study this effect, the low-frequency approximation known as the Darwin model is employed. First, the electromagnetic field of a coil is calculated in free space. Second, a dielectric object or set of objects is introduced, and the free-space electric field is modified to accommodate the dielectric object ensuring that the relevant boundary conditions are obeyed. Finally, the magnetic field associated with the corrected electric field is calculated. This corrected magnetic field is evaluated with an NQR simulation to estimate the impact of dielectric tissue on NQR measurements. The effect of dielectric tissue is shown to be small, thus obviating a potential barrier to BCB detection. The NQR model presented may assist those designing excitation and detection coils for NQR. Some general coil design considerations and strategies are discussed.

  4. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  5. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  6. The use of the pairing-quadrupole connections in PQM for application in nuclear systems

    NASA Astrophysics Data System (ADS)

    Drumev, K. P.; Georgieva, A. I.

    2016-03-01

    Within the algebraic realization of the Pairing-plus-Quadrupole Model /PQM/ in the framework of the Elliott's SU(3) Model,we present some particular applications for realistic nuclear systems. The probability distribution of the SU(3) basis states within the isovector, isoscalar and total pairing eigenstates is obtained through a numerical diagonalization of the PQM Hamiltonian in each limit. This allows the investigation of the interplay between the pairing and quadrupole interactions in the Hamiltonian of the PQM, containing all of them as limiting cases. The relative strengths of the dynamically symmetric quadrupole-quadrupole interaction with the considered types of pairing interactions are investigated systematically for systems like the 20Ne.

  7. Virial sum rules for nuclear electric shieldings and geometrical derivatives of dipole and quadrupole molecular moments

    NASA Astrophysics Data System (ADS)

    Lazzeretti, Paolo; Malagoli, Massimo; Zanasi, Riccardo

    1991-01-01

    The virial theorem has been used to derive sum rules for dipole- and mixed-dipole-quadrupole nuclear electric shieldings and corresponding geometrical derivatives of dipole and quadrupole moments in a molecule. Test calculations have been carried out on a series of first- and second-row hydrides. The virial sum rules can be effective tools to prove the accuracy of theoretical nuclear shieldings and analytic geometrical derivatives. As the latter are related to ir intensities, the virial sum rules can give important indications on the reliability of theoretical predictions for this spectroscopical parameter.

  8. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    NASA Technical Reports Server (NTRS)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  9. Observation of nuclear quadrupole hyperfine structure in the infrared spectrum of hydrogen iodide using a tunable-diode laser

    NASA Technical Reports Server (NTRS)

    Strow, L. L.

    1980-01-01

    Nuclear quadrupole hyperfine structure has been observed in the 1-0 vibration-rotation band of hydrogen iodide with a tunable-diode laser. The measured splittings agree well with microwave measurements of the HI molecule. Evidence for a slight change in the iodine nuclear quadrupole coupling constant from the ground to first excited vibrational state in hydrogen iodide was found.

  10. Effect of magnetic quadrupole lens alignment on a nuclear microprobe resolution

    NASA Astrophysics Data System (ADS)

    Kolinko, S. V.; Ponomarev, A. G.

    2016-04-01

    The paper reports the research trends in developing probe-forming systems with high demagnification and analysis factors that limit a nuclear microprobe resolution. Parasitic aberrations caused by tilts and offsets of magnetic quadrupoles are studied in terms of their effect on probe parameters on a target. The most common arrangements of probe-forming systems such as a triplet and "Russian quadruplet" with separated geometry are considered. The accuracy prerequisites for the positioning of the quadrupoles are defined, and practical guidelines for alignment of probe-forming systems with high demagnification factors are suggested.

  11. Degree of accuracy in determining the nuclear electric quadrupole moment of radium

    SciTech Connect

    Bieron, Jacek; Pyykkoe, Pekka

    2005-03-01

    The multiconfiguration Dirac-Hartree-Fock (MCDHF) model has been employed to calculate the atomic expectation values responsible for the hyperfine splittings of the 7s7p {sup 3}P{sub 1,2} and {sup 1}P{sub 1} levels of radium. Calculated electric field gradients, together with the experimental electric quadrupole hyperfine structure constants, allow us to extract a nuclear electric quadrupole moment Q({sup 223}Ra) of 1.21(0.03) barn. This value is in good agreement with the semiempirical determination based on neutral radium hyperfine and fine structure, but differs from the latest result from an alkali-like radium ion.

  12. The Common Chlorine Nuclear Electric Quadrupole Coupling Tensor for Acyl Chlorides

    NASA Astrophysics Data System (ADS)

    Powoski, R. A.; Cooke, S. A.

    2012-06-01

    We have determined the complete 35Cl and 37Cl nuclear electric quadrupole coupling tensors for two conformers of valeroyl chloride, CH_3-(CH_2)_3-COCl, using pure rotational spectroscopy. These tensors have been diagonalized into the principal axes and compared with chlorine principal quadrupole coupling tensors for a number of simple acyl chlorides. In general the components of the chlorine principal quadrupole coupling tensor, and in particular χzz, are invariant to the organic group attached to the acyl chloride. It is evident, and not surprising, that the carbonyl of the acyl chloride functional group dominates the electric field gradient at the chlorine nucleus. We have found a common, acyl chloride functional group, 35Cl χzz value of -59 ± 1 MHz. These findings will be discussed along with other work on tabulating common principal nuclear electric quadrupole coupling constants for relevant nuclei in simple organic functional groups. This work supported by IUPAC, Project No. 2010-048-3-100.

  13. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    NASA Astrophysics Data System (ADS)

    Fries, Pascal H.; Belorizky, Elie

    2015-07-01

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R1 of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R1 vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S-I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole 14N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of 27Al (S = 5/2) nuclei is also explained.

  14. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    SciTech Connect

    Fries, Pascal H.; Belorizky, Elie

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  15. Nuclear Quadrupole Resonance Studies of Charge Distributions in Molecular Solids.

    NASA Astrophysics Data System (ADS)

    Greenbaum, Steven Garry

    A detailed description of an NMR-NQR double resonance spectrometer designed and constructed in this laboratory is given, including some instruction on its use. ('14)N NQR data obtained by pulse methods for six classes of nitrogen-containing compounds are presented and analyzed in the framework of the Townes and Dailey theory. A study of the anti-cancer drugs cyclophosphamide, isophosphamide and triphosphamide suggests the existence of a correlation between the substance's chemotherapeutic efficacy and the (pi) - (sigma)(,NP) charge density at the trigonal nitrogen. Satisfactory correlations of the NQR spectra of 22 monosubstituted anilines with both the Hammett (sigma) parameters and the in vitro biological activities of the corresponding sulfanilamides have been found, indicating that the nitrogen lone-pair orbital is more sensitive than the nitrogen-carbon sigma orbital is to substituent effects. NQR spectra of several N-acetyl amino acids and related compounds are reported. The inductive effect of the chloroacetyl group on the nitrogen is discussed. A positive correlation between the (pi) - (sigma)(,NC) electron density at the nitrogen and the Taft inductive parameter (sigma)* is observed, suggesting that the nitrogen (pi) -charge density in the N-acetyl amino acids does not vary appreciably. Both ('14)N and ('35)Cl NQR data have been obtained for a series of compounds containing nitrogen directly bonded to chlorine. The existence of a linear correlation between the ('14)N and ('35)Cl quadrupole coupling constants is interpreted in terms of a simple model dealing with charge excesses and deficiencies at the respective nuclei. A study of two complexes of 4-aminopyridine (4AP) addresses the loss of pyridine nitrogen lone-pair charge upon formation of the strong and asymmetric N-H-N bond characteristic of these complexes. Evidence of hydrogen bonding interactions involving the amino nitrogens is found to be in agreement with a published neutron diffraction study

  16. The Nuclear Quadrupole Interaction of 204mPb in Lead Oxides

    NASA Astrophysics Data System (ADS)

    Friedemann, S.; Heinrich, F.; Haas, H.; Tröger, W.

    2004-12-01

    The nuclear quadrupole interaction of 204mPb in lead oxides has been measured by γ γ time differential perturbed angular correlation. Ab-initio calculations of the electric field gradients and X-ray diffraction allowed the assignment of the detected nuclear quadrupole interactions to the different Pb sites in the PbO phases litharge and massicote as well as in Pb3O4. The TDPAC probe 204mPb was produced with a 204Bi/204mPb-generator at the home laboratory at the University of Leipzig. The use of a high performance liquid chromatography system increased significantly the yield, the specific activity of 204mPb, and reduced the acidic concentration of the eluate.

  17. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  18. Group theoretical classification of halogen nuclear quadrupole resonance spectra of distorted tetragonal antifluorite crystals

    NASA Astrophysics Data System (ADS)

    Morra, Rose M.; Armstrong, Robin L.

    A classification of the patterns of halogen nuclear quadrupole resonance lines resulting from distortions of the tetragonal R 2MX 6 structures C4 h5( I4/ m) and D4 h6( P4/ mnc) is given. Formal methods of group thepry are used to identify low symmetry space groups with the symmetries of vectors in an irreducible representation space of the high symmetry space group. Classification charts are presented which permit the identification of those space groups and primary order parameters which are compatible with particular halogen nuclear quadrupole resonance spectra. The discussion is limited to structural phase transitions involving the points of symmetry in the Brillouin zones of the high temperature phases. The sequences of structural transitions in K 2ReCl 6 and (NH 4) 2SnBr 6 are discussed as illustrations of the use of these charts.

  19. INSTRUMENTS AND METHODS OF INVESTIGATION: New technologies: nuclear quadrupole resonance as an explosive and narcotic detection technique

    NASA Astrophysics Data System (ADS)

    Grechishkin, Vadim S.; Sinyavskii, Nikolai Ya

    1997-04-01

    Possibilities of detecting nuclear quadrupole resonance (NQR) signals in explosives and drugs are considered. Direct and indirect NQR techniques for searching substances are described and the potentialities of various experimental methods are compared.

  20. The nuclear quadrupole interaction at inequivalent lattice sites in ammonium paramolybdate: A TDPAC study

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Heinrich, F.; Butz, T.

    2006-09-01

    A nuclear quadrupole interaction (NQI) study using the time differential perturbed angular correlation (TDPAC) technique on ammonium paramolybdate (APM) has shown three inequivalent molybdenum sites in this compound which consists of seven MoO 6 polyhedra connected through edges. In this study the nuclear probe 99Mo was used to measure the γ- γ perturbed angular correlation of 99Tc on Mo-sites to obtain the quadrupole interaction parameters. The quadrupole interaction frequencies ( ωQ) for the three sites are 0.0224, 0.0386 and 0.0434 rad/ns and the asymmetry parameters ( η) of the electric field gradient (EFG) are 0.45, 0.18, and 0.58, respectively. The site assignment is based on the population ratios 4:2:1. The Mo atoms with the highest population show the lowest ωQ indicating that this set of polyhedra is "least" distorted or condensed. Besides the least squares fit, a cross-correlation algorithm has been used to analyze the experimental data to corroborate the fitted parameters and quoted errors. The derived NQI-parameters can be used for site assignments in other compounds built from condensed Mo-O octahedra.

  1. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    SciTech Connect

    Stone, N. J.

    2015-09-15

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.

  2. Electric quadrupole polarizabilities of nuclear magnetic shielding in some small molecules.

    PubMed

    Ferraro, M B; Caputo, M C; Pagola, G I; Lazzeretti, P

    2008-01-28

    Computational procedures, based on (i) the Ramsey common origin approach and (ii) the continuous transformation of the origin of the quantum mechanical current density-diamagnetic zero (CTOCD-DZ), were applied at the Hartree-Fock level to determine electric quadrupole polarizabilities of nuclear magnetic shielding for molecules in the presence of a nonuniform electric field with a uniform gradient. The quadrupole polarizabilities depend on the origin of the coordinate system, but values of the magnetic field induced at a reference nucleus, determined via the CTOCD-DZ approach, are origin independent for any calculations relying on the algebraic approximation, irrespective of size and quality of the (gaugeless) basis set employed. On the other hand, theoretical estimates of the induced magnetic field obtained by single-origin methods are translationally invariant only in the limit of complete basis sets. Calculations of electric quadrupole polarizabilities of nuclear magnetic shielding are reported for H(2), HF, H(2)O, NH(3), and CH(4) molecules. PMID:18247940

  3. Electric quadrupole polarizabilities of nuclear magnetic shielding in some small molecules

    NASA Astrophysics Data System (ADS)

    Ferraro, M. B.; Caputo, M. C.; Pagola, G. I.; Lazzeretti, P.

    2008-01-01

    Computational procedures, based on (i) the Ramsey common origin approach and (ii) the continuous transformation of the origin of the quantum mechanical current density-diamagnetic zero (CTOCD-DZ), were applied at the Hartree-Fock level to determine electric quadrupole polarizabilities of nuclear magnetic shielding for molecules in the presence of a nonuniform electric field with a uniform gradient. The quadrupole polarizabilities depend on the origin of the coordinate system, but values of the magnetic field induced at a reference nucleus, determined via the CTOCD-DZ approach, are origin independent for any calculations relying on the algebraic approximation, irrespective of size and quality of the (gaugeless) basis set employed. On the other hand, theoretical estimates of the induced magnetic field obtained by single-origin methods are translationally invariant only in the limit of complete basis sets. Calculations of electric quadrupole polarizabilities of nuclear magnetic shielding are reported for H2, HF, H2O, NH3, and CH4 molecules.

  4. Nuclear quadrupole interaction and nonlinear optical property of some borate crystals^*

    NASA Astrophysics Data System (ADS)

    Choh, S. H.; Kim, I. G.; Shin, H. W.; Park, I.-W.

    2003-03-01

    Borate crystals, like Li_2B_4O_7, LiB_3O_5, and BaB_2O_4, consist of 4-coordinated and/or 3-coordinated boron-oxygen bonds. As reported [1], the principal Z-axis of the electric field gradient (EFG) around the boron in 3-coordinated bonds is perpendicular to the plane containing the boron-oxygen bonds. We calculated the principal Z-direction of the EFG-tensor by employing the simple point charge model for the arbitrary planar triangle configurations, and the results are consistent with experimental ones. Moreover, a strong correlation between the nonlinear optical coefficient and the nuclear quadrupole interactions, such as the quadrupole coupling constant and the asymmetry parameter, was empirically found for these compounds. Details will be presented. * Supported by the National Research Laboratory Program(MOST). [1] I. G. Kim and S. H. Choh, J. Phys.: Condens. Matter, b11, 8283 (1999).

  5. Quantitative 35Cl nuclear quadrupole resonance in tablets of the antidiabetic medicine Diabinese.

    PubMed

    Tate, Elizabeth; Althoefer, Kaspar; Barras, Jamie; Rowe, Michael D; Smith, John A S; Pearce, Gareth E S; Wren, Stephen A C

    2009-07-01

    Pulsed (35)Cl nuclear quadrupole resonance (NQR) experiments have been performed on 250-mg tablets of the antidiabetic medicine Diabinese to establish the conditions needed for noninvasive quantitative analysis of the medicine in standard bottles. One important condition is the generation of a uniform radio-frequency (RF) field over the sample, which has been achieved by two designs of sample coil: one of variable pitch, and the other a resonator that has been fabricated from a single turn of copper sheet with a longitudinal gap bridged by tuning capacitors. The results from blind tests show that the number of tablets in a bottle could be predicted to within +/-3%. PMID:19492808

  6. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  7. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms

    SciTech Connect

    Fu, Li-juan; Vaara, Juha; Rizzo, Antonio

    2013-11-14

    New, high-sensitivity and high-resolution spectroscopic and imaging methods may be developed by exploiting nuclear magneto-optic effects. A first-principles electronic structure formulation of nuclear electric quadrupole moment-induced Cotton-Mouton effect (NQCME) is presented for closed-shell atoms. In NQCME, aligned quadrupole moments alter the index of refraction of the medium along with and perpendicular to the direction of nuclear alignment. The roles of basis-set convergence, electron correlation, and relativistic effects are investigated for three quadrupolar noble gas isotopes: {sup 21}Ne, {sup 83}Kr, and {sup 131}Xe. The magnitude of the resulting ellipticities is predicted to be 10{sup −4}–10{sup −6} rad/(M cm) for fully spin-polarized nuclei. These should be detectable in the Voigt setup. Particularly interesting is the case of {sup 131}Xe, in which a high degree of spin polarization can be achieved via spin-exchange optical hyperpolarization.

  8. Investigation of Wavelet-Based Enhancements to Nuclear Quadrupole Resonance Explosives Detectors

    SciTech Connect

    Kercel, Stephen W.; Dress, William B.; Hibbs, Andrew D.; Barrall, Geoffrey A.

    1998-06-01

    Nuclear Quadrupole Resonance (NQR) is effective for the detection and identification of certain types of explosives such as RDX, PETN and TNT. In explosive detection, the NQR response of certain 14N nuclei present in the crystalline material is probed. The 14N nuclei possess a nuclear quadrupole moment which in the presence of an electric field gradient produces an energy level splitting which may be excited by radio-frequency magnetic fields. Pulsing on the sample with a radio signal of the appropriate frequency produces a transient NQR response which may then be detected. Since the resonant frequency is dependent upon both the quadrupole moment of the 14N nucleus and the nature of the local electric field gradients, it is very compound specific. Under DARPA sponsorship, the authors are using multiresolution methods to investigate the enhancement of operation of NQR explosives detectors used for land mine detection. For this application, NQR processing time must be reduced to less than one second. False alarm responses due to acoustic and piezoelectric ringing must be suppressed. Also, as TNT is the most prevalent explosive found in land mines, NQR detection of TNT must be made practical despite unfavorable relaxation tunes. All three issues require improvement in signal-to-noise ratio, and all would benefit from improved feature extraction. This paper reports some of the insights provided by multiresolution methods that can be used to obtain these improvements. It includes results of multiresolution analysis of experimentally observed NQR signatures for RDX responses and various false alarm signatures in the absence of explosive compounds.

  9. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    PubMed

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals. PMID:27128828

  10. An approximate analytical expression for the nuclear quadrupole transverse relaxation rate of half-integer spins in liquids

    NASA Astrophysics Data System (ADS)

    Wu, Gang

    2016-08-01

    The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations.

  11. Theory of electronic structure and nuclear quadrupole interactions in the BF3-NH3 complex and methyl derivatives

    NASA Astrophysics Data System (ADS)

    Pink, R. H.; Dubey, Archana; Mahato, Dip N.; Badu, S. R.; Scheicher, R. H.; Mahanti, Mahendra K.; Huang, M. B.; Saha, H. P.; Chow, Lee; Das, T. P.

    Magnetic Hyperfine and Nuclear Quadrupole Interactions (HPI and NQI) are now important tools for characterization of systems of interest in materials research and industry. Boron-Trifluoride is an inorganic compound that is very important in this respect as a catalyst in chemical physics research and industry, forming complexes in the process with compounds like ammonia, water and methyl alcohol. The present paper deals with the BP3-NH3 complex and methyl derivatives BP3NHx(CH3)3-x for which we have studied the electronic structures, binding energies, and 19F* (I=5/2) nuclear quadrupole interactions using the first-principles Hartree-Fock-Roothaan procedure combined with electron correlation effects. Our results for the 19F* nuclear quadrupole coupling constant (e 2qQ/h) in units of MHz compare well with experiment. Trends in the binding energies and NQI parameters between the complexes are discussed.

  12. Theory of electronic structure and nuclear quadrupole interactions in the BF3 NH3 complex and methyl derivatives

    NASA Astrophysics Data System (ADS)

    Pink, R. H.; Dubey, Archana; Mahato, Dip N.; Badu, S. R.; Scheicher, R. H.; Mahanti, Mahendra K.; Huang, M. B.; Saha, H. P.; Chow, Lee; Das, T. P.

    2007-04-01

    Magnetic Hyperfine and Nuclear Quadrupole Interactions (HFI and NQI) are now important tools for characterization of systems of interest in materials research and industry. Boron-Trifluoride is an inorganic compound that is very important in this respect as a catalyst in chemical physics research and industry, forming complexes in the process with compounds like ammonia, water and methyl alcohol. The present paper deals with the BF3 NH3 complex and methyl derivatives BF3NHx(CH3)3-x for which we have studied the electronic structures, binding energies, and 19F* ( I = 5/2) nuclear quadrupole interactions using the first-principles Hartree Fock Roothaan procedure combined with electron correlation effects. Our results for the 19F* nuclear quadrupole coupling constant ( e 2 qQ/ h) in units of MHz compare well with experiment. Trends in the binding energies and NQI parameters between the complexes are discussed.

  13. An approximate analytical expression for the nuclear quadrupole transverse relaxation rate of half-integer spins in liquids.

    PubMed

    Wu, Gang

    2016-08-01

    The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations. PMID:27343483

  14. Study of nuclear quadrupole interactions and quadrupole Raman processes of 69Ga and 71Ga in a β-Ga 2O 3:Cr 3+ single crystal

    NASA Astrophysics Data System (ADS)

    Yeom, Tae Ho; Lim, Ae Ran

    2009-10-01

    Nuclear magnetic resonance (NMR) data and the spin-lattice relaxation times, T1, of 69Ga and 71Ga nuclei in a β-Ga 2O 3:Cr 3+ single crystal were obtained using FT NMR spectrometry. Four sets of NMR spectra for 69Ga ( I = 3/2) and 71Ga ( I = 3/2) were obtained in the crystallographic planes. The 69Ga and 71Ga nuclei each had two chemically inequivalent Ga I and Ga II centers. Each of the 69Ga and 71Ga isotopes yielded two different central NMR resonance lines originating from Ga I and Ga II sites. The nuclear quadrupole coupling constants and asymmetry parameters of 69Ga I, 69Ga II, 71Ga I, and 71Ga II centers in a β-Ga 2O 3:Cr 3+ crystal were obtained. Analysis of the EFG tensor principal axes (PAs) for Ga nuclei and the ZFS tensor PAs for the Cr 3+ ion confirmed that the Cr 3+ paramagnetic impurity ion substitutes for the Ga 3+ ion in the oxygen octahedron. In addition, the temperature dependencies of the 69Ga and 71Ga relaxation rates were consistent with Raman processes, as T1-1 ∝ T2. Even though the Cr 3+ impurities are paramagnetic, the relaxations were dominated by electric quadrupole interactions of the nuclear spins in the temperature range investigated.

  15. Communication through the phenyl ring: internal rotation and nuclear quadrupole splitting in p-halotoluenes

    NASA Astrophysics Data System (ADS)

    Shubert, V. Alvin; Schmitz, David; Schnell, Melanie

    2013-08-01

    The rotational spectra of three p-halotoluenes (chloro-, bromo- and iodo-) are reported in the frequency range 2-8.5 GHz, obtained with broadband Fourier-transform microwave spectroscopy. The recorded spectra are highly complicated due to low-barrier V 6 internal rotation of the methyl group as well as strong nuclear quadrupole coupling of the halogen atoms. However, these additional effects allow us, in a comparative manner, to study potential crosstalk of the two substituents via the phenyl ring. The rotational constants and other molecular parameters are reported and compared with quantum chemical calculations. The V 6 internal rotation barrier of the methyl group was found to be 145 GHz for both p-chlorotoluene species. We found that the magnitudes of the quadrupole coupling constants are increased in the halotoluenes compared to the halobenzenes. This increase is due to the +I inductive effect of the methyl group that injects additional electron density into the phenyl π-cloud, thus giving more electron density for the halogen atom to extract. This additional extraction makes the halogen-carbon bond more ionic than in the halobenzenes.

  16. (14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V.

    PubMed

    Lavrič, Zoran; Pirnat, Janez; Lužnik, Janko; Puc, Uroš; Trontelj, Zvonko; Srčič, Stane

    2015-06-01

    A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms. PMID:25776345

  17. Time-reversal symmetry violation in molecules induced by nuclear magnetic quadrupole moments.

    PubMed

    Flambaum, V V; DeMille, D; Kozlov, M G

    2014-09-01

    Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions. PMID:25238355

  18. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    NASA Astrophysics Data System (ADS)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  19. Nuclear quadrupole spin-lattice relaxation due to molecular reorientations in crystals with orientational disorder

    NASA Astrophysics Data System (ADS)

    Meriles, C. A.; Pérez, S. C.; Brunetti, A. H.

    1997-08-01

    p-chloronitrobenzene (PCNB) and p-chlorobromobenzene (PCBB) crystallize in the centrosymmetric space group P21/c with two molecules per unit cell. The space lattice will have an equal number of points with molecules facing in opposite directions. As a consequence, these compounds exhibit an orientational rigid disorder. In this work, we have measured the temperature dependence of the chlorine nuclear quadrupole spin-lattice relaxation time (T1), linewidth, and resonance frequency for both compounds for temperatures higher than 80 K. Both compounds exhibit an inhomogeneously broadened line shape and a "normal" Bayer-type temperature dependence of the resonance frequency. The analysis focuses on the identification of the dominant relaxation process at high temperatures (T>240 K in PCNB and T>260 K in PCBB). It is shown that T1(T) reflects the existence of 180° molecular reorientations through a modulation of the crystalline contribution to the electric field gradient.

  20. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    SciTech Connect

    Fu, Li-juan E-mail: juha.vaara@iki.fi; Vaara, Juha E-mail: juha.vaara@iki.fi

    2014-01-14

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effects are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.

  1. CP-violating effect of the Th nuclear magnetic quadrupole moment: accurate many-body study of ThO.

    PubMed

    Skripnikov, L V; Petrov, A N; Titov, A V; Flambaum, V V

    2014-12-31

    Investigations of CP violation in the hadron sector may be done using measurements in the ThO molecule. Recent measurements in this molecule improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Another time-reversal (T) and parity (P)-violating effect in 229ThO is induced by the nuclear magnetic quadrupole moment. We perform nuclear and molecular calculations to express this effect in terms of the strength constants of T, P-odd nuclear forces, neutron EDM, QCD vacuum angle θ, quark EDM, and chromo-EDM. PMID:25615324

  2. a Microwave Spectroscopic Study of Methylated Indoles: Internal Rotation and Nuclear Quadrupole Coupling

    NASA Astrophysics Data System (ADS)

    Gurusinghe, Ranil; Tubergen, Michael

    2014-06-01

    The barrier to methyl internal rotation of an asymmetric two ring system depends on the position of the methyl substitution. A cavity based Fourier transform microwave spectrometer was used to record rotational spectra of different methyl substituted indoles in the range of 10.5 - 20 GHz. About 160 hyperfine components arising from about 30 rotational transitions were assigned for each 1- and 3-methylindole. The program XIAMa was used to fit the rotational constants, distortion constants, nuclear quadrupole coupling constants and barrier to internal rotation to the measured transition frequencies of the A and E internal rotation states. The best fit values for the rotational constants are A = 2651.12(2) MHz, B = 1305.266(2) MHz, C = 879.800(2) MHz for 1-methylindole and A = 2603.7224(5) MHz, B = 1268.7886(1) MHz, C = 857.8091(1) MHz for 3-methylindole. The different values observed for the barrier to internal rotation, 279.8(3) wn for 1-methylindole and 433(1) wn for 3-methylindole, may be due to the different rotor axis lengths and differences in local π-electron density. Progress on the assignment of additional methylated indoles will also be presented. aH. Hartwig and H. Dreizler, Z. Naturforsch, 51a, 923 - 932.

  3. Nuclear quadrupole coupling constants for N2O: experiment and theory.

    PubMed

    Brown, Alex; Wasylishen, Roderick E

    2012-10-01

    The nuclear quadrupole coupling constants (NQCCs) for the nitrogen and oxygen nuclei in N(2)O have been determined using a variety of computational methods (MP2, QCISD, DFT with B3LYP, PBE0, and B3PW91 functionals, CCSD, CCSD(T), CASSCF, and MRCI) combined with correlation-consistent basis sets. When compared to the available experimental determinations, the results demonstrate that only CCSD(T) and MRCI methods are capable of accurately predicting the NQCCs of the central and terminal nitrogen atoms. The spin-rotation and magnetic shielding tensors have also been determined and compared to experimental measurements where available. (14)N and (17)O NMR relaxation data for N(2)O in the gas phase and a variety of solvents is reported. The increase in the ratio of (14)N spin-lattice relaxation times in solvent for the central and terminal nitrogens supports previous reports of the modification of the electric field gradients at these nuclei in van der Waals complexes. Ab initio computations for the linear FH···N(2)O complex confirm the large change in EFGs imposed by a single perturber. PMID:22954039

  4. Low-power stimulated emission nuclear quadrupole resonance detection system utilizing Rabi transitions

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2013-06-01

    The application of CW radar techniques to Nuclear Quadrupole Resonance (NQR) detection of nitrogen based explosives and chlorine based narcotics enables the use of low power levels, in the range of 10's of watts, to yield high signal strengths. By utilizing Rabi transitions the nucleus oscillates between states one and two under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. Through the application of a cancellation algorithm the incident field is eliminated from the NQR response, allowing the receive signal to be measured while transmitting. The response signal is processed using matched filters of the NQR response which enables the direct detection of explosives. This technology has applicability to the direct detection of explosives and narcotics for security screening, all at safe low power levels, opposed to the current XRay and Millimeter wave screening systems that detect objects that may contain explosives and utilize high power. The quantum mechanics theoretical basis for the approach and an application for a system for security screening are described with empirical results presented to show the effects observed.

  5. Narcotics and explosives detection by 14N pure nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.

    1994-03-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  6. Microwave Spectra of Furazan II. Nuclear Quadrupole Coupling in d1-Furazan

    NASA Astrophysics Data System (ADS)

    Stiefvater, Otto L.

    1988-06-01

    The nuclear quadrupole coupling constants for the two nitrogen atoms in monodeuterated furazan (C2HDN2O) were determined from the hyperfine structure of eight rotational transitions with low J-values. The coupling constants along the inertial axes are: χaa (2) = + 3.546(10) MHz, χaa (5) = -5.044(10) MHz, χbb (2) = -4.690(10) MHz, χbb (5) = + 3.900(10) MHz, χcc (2) = + 1.144(10) MHz, χcc (5) = + 1.144(10) MHz. In conjunction with structural information from the preceding study, these data yield the principal coupling constants, with 3er-uncertainties, as: χR(2/5) = - 5.53 (4) MHz, χT(2/5) = + 4.39(4)MHz, χR(2/5) = + 1.14(4) MHz. The radial electric field gradients deviate from the direction of the external bisector of the ring angle ONC by 24.6° towards the oxygen atom. These results are in qualitative agreement with previous work by NQR spectroscopy and with the results of ab initio molecular orbital calculations.

  7. Nuclear quadrupole interaction of111Cd on type-1 Cu-sites in blue copper proteins

    NASA Astrophysics Data System (ADS)

    Tröger, W.; Butz, T.; Danielsen, E.; Bauer, R.; Thoenes, U.; Messerschmidt, A.; Huber, R.; Canters, G. W.; den Blaauwen, T.

    1993-03-01

    The nuclear quadrupole interaction (NQI) of111Cd substituted for Cu(II) on type-1 sites in blue copper proteins is characterized by high values of ω0 in the region of 300 Mrad/s, close to that for the catalytic zinc site in alcohol dehydrogenase. Type-1 Cu has usually two sulfur ligands and two nitrogen ligands and in some cases an oxygen ligand in either a distorted tetrahedral geometry or in a trigonal bipyramidal geometry. The near tetrahedral arrangement together with the ligand sphere containing the same number of sulfur ligands explains the value of ω0 in the blue copper proteins. The present work determined the partial NQI for methionine using the known structure of azurin. This value was then used in the angular overlap model to calculate the NQI for ascorbate oxidase the structure of which is also known and gave good agreement with experiment. NQI data for laccase and stellacyanin the structures of which are unknown, are also given.

  8. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    NASA Astrophysics Data System (ADS)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  9. The temperature dependence of the nuclear quadrupole interaction of 44Ti(EC)44Sc in rutile

    NASA Astrophysics Data System (ADS)

    Butz, T.; Vianden, R.

    2013-05-01

    The temperature dependence of the Nuclear Quadrupole Interaction on 44Sc in rutile was measured by Time Differential Perturbed Angular Correlation in the temperature range from 300 K to 945 K. Whereas \\upomega _Q = eQV_zz/4hbar with Vzz denoting the largest component of the electric field gradient tensor in magnitude increases with increasing temperature, the asymmetry parameter η remains essentially constant. This observation fits into the systematic with other probes provided the sign of Vzz is negative.

  10. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE PAGESBeta

    Cho, Herman

    2016-02-28

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  11. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz

    SciTech Connect

    TonThat, D.M.; Clarke, J. |

    1996-08-01

    A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux locked operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect {sup 27}Al NQR signals in ruby (Al{sub 2}O{sub 3}[Cr{sup 3+}]) at 359 and 714 kHz. {copyright} {ital 1996 American Institute of Physics.}

  12. Zr-doped rutile TiO2: a nuclear quadrupole interaction study

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Das, S. K.; Das, P.; Thakare, S. V.; Butz, T.

    2010-04-01

    Role of Zr atom on the quadrupole interaction of 181Ta in rutile TiO2 has been investigated by time differential perturbed angular correlation (TDPAC) study. The quadrupole frequency remains same as that in the pure rutile TiO2 but its distribution increases with the amount of Zr. This indicates a metal-metal interaction between probe atom and Zr-atom in the nearest neighbour.

  13. Reconstruction of nuclear quadrupole interaction in (In,Ga)As/GaAs quantum dots observed by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Sokolov, P. S.; Petrov, M. Yu.; Mehrtens, T.; Müller-Caspary, K.; Rosenauer, A.; Reuter, D.; Wieck, A. D.

    2016-01-01

    A microscopic study of the individual annealed (In,Ga)As/GaAs quantum dots is done by means of high-resolution transmission electron microscopy. The Cauchy-Green strain-tensor component distribution and the chemical composition of the (In,Ga)As alloy are extracted from the microscopy images. The image processing allows for the reconstruction of the strain-induced electric-field gradients at the individual atomic columns extracting thereby the magnitude and asymmetry parameter of the nuclear quadrupole interaction. Nuclear magnetic resonance absorption spectra are analyzed for parallel and transverse mutual orientations of the electric-field gradient and a static magnetic field.

  14. The application of frequency swept pulses for the acquisition of nuclear quadrupole resonance spectra

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Hamaed, Hiyam; Schurko, Robert W.

    2010-09-01

    The acquisition of nuclear quadrupole resonance (NQR) spectra with wideband uniform rate and smooth truncation (WURST) pulses is investigated. 75As and 35Cl NQR spectra acquired with the WURST echo sequence are compared to those acquired with standard Hahn-echo sequences and echo sequences which employ composite refocusing pulses. The utility of WURST pulses for locating NQR resonances of unknown frequency is investigated by monitoring the integrated intensity and signal to noise of 35Cl and 75As NQR spectra acquired with transmitter offsets of several hundreds kilohertz from the resonance frequencies. The WURST echo sequence is demonstrated to possess superior excitation bandwidths in comparison to the pulse sequences which employ conventional monochromatic rectangular pulses. The superior excitation bandwidths of the WURST pulses allows for differences in the characteristic impedance of the receiving and excitation circuits of the spectrometer to be detected. Impedance mismatches have previously been reported by Marion and Desvaux [D.J.Y. Marion, H. Desvaux, J. Magn. Reson. (2008) 193(1) 153-157] and Muller et al. [M. Nausner, J. Schlagnitweit, V. Smrecki, X. Yang, A. Jerschow, N. Muller, J. Magn. Reson. (2009) 198(1) 73-79]. In this regard, WURST pulse sequences may afford an efficient new method for experimentally detecting impedance mismatches between receiving and excitation circuits, allowing for the optimization of solids and solution NMR and NQR spectrometer systems. The use of the Carr-Purcell Meiboom-Gill (CPMG) pulse sequence for signal enhancement of NQR spectra acquired with WURST pulses and conventional pulses is also investigated. Finally, the utility of WURST pulses for the acquisition of wideline NQR spectra is demonstrated by acquiring part of the 63/65Cu NQR spectrum of CuCN.

  15. WURST-QCPMG sequence and "spin-lock" in 14N nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Gregorovič, Alan; Apih, Tomaž

    2013-08-01

    14N nuclear quadrupole resonance (NQR) is a promising method for the analysis of pharmaceuticals or for the detection of nitrogen based illicit compounds, but so far, the technique is still not widely used, mostly due to the very low sensitivity. This problem is already acute in the preliminary NQR stage, when a compound is being examined for the first time and the NQR frequencies are being searched for, by scanning a wide frequency range step-by-step. In the present work, we experimentally show how to increase the efficiency of this initial stage by using a combination of a wideband excitation achieved with frequency swept pulses (WURST) and a "spin-lock" state obtained with a quadrupolar-CPMG (QCPMG) sequence. In the first part we show that WURST pulses provide a much larger excitation bandwidth compared to common rectangular pulses. This increased bandwidth allows to increase the frequency step and reduces the total number of steps in a scanning stage. In the second part we show that the "spin-lock" decay time T2eff obtained with the WURST-QCPMG combination is practically identical with the T2eff obtained with the most common "spin-lock" sequence, the SLSE, despite a very different nature and length of excitation pulses. This allows for a substantial S/N increase through echo averaging in every individual step and really allows to exploit all the advantages of the wider excitation in the NQR frequency scanning stage. Our experimental results were obtained on a sample of trinitrotoluene, but identical behavior is expected for all compounds where a "spin-lock" state can be created.

  16. Nuclear Quadrupole Resonance Study of the Nitrogen Mustards and Local Anesthetics.

    NASA Astrophysics Data System (ADS)

    Buess, Michael Lee

    The density matrix description of pulsed nitrogen -14 nuclear quadrupole resonance (NQR) spin-echoes is presented. The parallel between this problem, when formulated in terms of the fictitious spin- 1/2 operators, and that of spin - 1/2 NMR spin-echoes in liquids is discussed along with the complications which arise in multiple-pulse NQR experiments in powders due to the random orientation of the electric field gradient tensors. The equipment and procedures involved in searching for, detecting and identifying NQR resonances using pulsed techniques are described. The ('14)N NQR spectra of several nitrogen mustard compounds in the solid state are reported and analyzed in the framework of the Townes and Dailey theory. For the aniline derivatives, a correlation exists between l -(sigma), l being the nitrogen lone-pair electron density and (sigma) the average N-C sigma bond electron density, and the enhanced Hammett sigma constant (sigma)('-). An improved correlation is obtained between l-(sigma) and (sigma)(,R)('-), which emphasizes the importance of resonance effects in determining l-(sigma). The increase of hydrolysis and alkylation rates with increasing values of l-(sigma) is in agreement with the identification of the cyclic immonium ion as the intermediate in the hydrolysis and alkylation processes of the aromatic nitrogen mustards. A possible correlation is noted between the ('35)Cl NQR spectra for some of the mustards and measures of toxic and antitumor activity. ('14)N NQR spectra for several local anesthetics in the solid state are also reported and analyzed using the Townes and Dailey approach. The changes in the electron distributions at various nitrogen sites, produced by protonating the tertiary amino nitrogen, are discussed and shown to be in general agreement with expectations bases on the increased electrophilic character of the protonated amino group.

  17. Magnetic-field-induced quadrupole coupling in the nuclear magnetic resonance of noble-gas atoms and molecules

    SciTech Connect

    Manninen, Pekka; Vaara, Juha; Pyykkoe, Pekka

    2004-10-01

    An analytic response theory formulation for the leading-order magnetic field-induced and field-dependent quadrupole splitting in nuclear magnetic resonance spectra is presented and demonstrated with first-principles calculations for {sup 21}Ne, {sup 36}Ar, and {sup 83}Kr in noble gas atoms. The case of molecules was studied for {sup 33}S in the sulphur hexafluoride molecule, as well as for {sup 47/49}Ti, {sup 91}Zr, and {sup 177,179}Hf in group(IV) tetrahalides. According to our calculations, the hitherto experimentally unknown field-induced quadrupole splitting in molecules rises to 10{sup 2} Hz for {sup 177,179}Hf nuclei in HfF{sub 4} and 10{sup 1} Hz for {sup 47/49}Ti in TiCl{sub 4}, and is hence of observable magnitude.

  18. Rotational spectra, nuclear quadrupole hyperfine tensors, and conformational structures of the mustard gas simulent 2-chloroethyl ethyl sulfide

    NASA Astrophysics Data System (ADS)

    Tubergen, M. J.; Lesarri, A.; Suenram, R. D.; Samuels, A. C.; Jensen, J. O.; Ellzy, M. W.; Lochner, J. M.

    2005-10-01

    Rotational spectra have been recorded for both the 35Cl and 37Cl isotopic forms of two structural conformations of 2-chloroethyl ethyl sulfide (CEES). The rotational constants of the 35Cl and 37Cl isotopomers were used to identify the conformational isomers. A total of 236 hyperfine transitions have been assigned for 47 rotational transitions of the 35Cl isotope of a GGT conformer, and 146 hyperfine have been assigned for 37 rotational transitions of the 37Cl isotopomer. For the second conformer, a total of 128 (110) hyperfine and 30 (28) rotational transitions have also been assigned to the 35Cl ( 37Cl) isotopes of a TGT conformation. The extensive hyperfine splitting data, measured to high resolution with a compact Fourier transform microwave spectrometer, were used to determine both the diagonal and off-diagonal elements of the 35Cl and 37Cl nuclear quadrupole coupling tensors in the inertial tensor principal axis system. The experimental rotational constant data, as well as the 35Cl and 37Cl nuclear quadrupole coupling tensors, were compared to the results from 27 optimized ab initio (HF/6-311++G ∗∗ and MP2/6-311++G ∗∗) model structures.

  19. The prediction of the nuclear quadrupole splitting of 119Sn Mössbauer spectroscopy data by scalar relativistic DFT calculations.

    PubMed

    Krogh, Jesper W; Barone, Giampaolo; Lindh, Roland

    2006-06-23

    The electric field gradient components for the tin nucleus of 34 tin compounds of experimentally known structures and (119)Sn Mössbauer spectroscopy parameters were computed at the scalar relativistic density functional theory level of approximation. The theoretical values of the electric field gradient components were used to determine a quantity, V, which is proportional to the nuclear quadrupole splitting parameter (DeltaE). In a subsequent linear regression analysis the effective nuclear quadrupole moment, Q, was evaluated. The value of (11.9+/-0.1) fm(2) is a significant improvement over the non-relativistic result of (15.2+/-4.4) fm(2) and is in agreement with the experimental value of (10.9+/-0.8) fm(2). The average mean square error DeltaE(calcd)-DeltaE(exptl)=+/-0.3 mm s(-1) is a factor of two smaller than in the non-relativistic case. Thus, the approach has a quality which provides accurate support for the structure interpretation by (119)Sn spectroscopy. It was noted that geometry optimization at the relativistic level does not significantly increase the quality of the results compared with non-relativistic optimized structures. The accuracy in the approach called on us to consider the singlet-triplet state nature of the electronic structure of one of the investigated compounds. PMID:16671047

  20. The nuclear quadrupole interaction at 111Cd and 181Ta sites in anatase and rutile TiO2: A TDPAC study

    NASA Astrophysics Data System (ADS)

    Das, Satyendra K.; Thakare, Sanjay V.; Butz, Tilman

    2009-03-01

    The nuclear quadrupole interaction of the I=5/2 state of the nuclear probes 111Cd and 181Ta in the anatase and rutile polymorphs of bulk TiO2 was studied using the time differential perturbed angular correlation (TDPAC). The fast-slow coincidence setup is based on the CAMAC electronics. For anatase, the asymmetry of the electric field gradient was eta=0.22(1) and a quadrupole interaction frequency: 44.01(3) Mrad/s was obtained for 181Ta. For rutile, the respective values are eta=0.56(1) and quadrupole frequency=130.07(9) Mrad/s. The values for rutile match closely with the literature values. In case of the 111Cd probe produced from the beta decay of 111Ag, the quadrupole interaction frequency and the asymmetry parameter for anatase was negligible. This indicates an unperturbed angular correlation in anatase. On the other hand for rutile, the quadrupole frequency is 61.74(2) Mrad/s and the asymmetry is 0.23(1) for 111Cd probe. The results have been interpreted in terms of the surrounding atom positions in the lattice and the charge state of the probe nucleus.

  1. The Nuclear Quadrupole Interaction of 187W(β-)187Re in W(VI)-EDTA Complexes

    NASA Astrophysics Data System (ADS)

    Sun, Guida; Liu, Weiqiao; Butz, Tilman

    2002-07-01

    The nuclear quadrupole interaction of 187W(β-)187Re in W(VI)-EDTA complexes at room temperature was determined by time differential perturbed angular correlations (TDPAC) to be VQ = 1270(8) MHz with an asymmetry parameter η= 0.403(4). While the coordination geometry of the Mo(VI)- EDTA complex is known, there appears to be none for the W-analogue. The rather similar asymmetry parameters for the 187W(β-)187Re in W(VI)-EDTA complex and for the 99Mo(β-)99Tc in Mo(VI)- EDTA complex, determined previously, supports the idea that the coordination geometries in the Moand W-complexes are similar

  2. Characterization of solid phases and study of transformation kinetics in m-chlorofluorobenzene by 35Cl nuclear quadrupole resonance.

    PubMed

    Pérez, Silvina; Wolfenson, Alberto

    2012-02-01

    Polymorphism is of widespread occurrence in the world of molecular crystals. In this work we present experimental results showing the existence of four solid phases in m-chlorofluorobenzene. A glass structure is achieved by quenching the liquid phase at 77 K. This glassy state crystallizes in a disordered phase at T~143 K, which in turn transforms to the high-temperature stable phase (phase I) at T~153 K. Depending on the thermal history of the sample, a different ordered phase (phase III) can be obtained. The disorder is attributed to a molecular orientational disorder. There is no evidence of molecular reorientation in any phase. A study of the disorder-order phase transformation kinetics, using nuclear quadrupole resonance, is presented. The results are analyzed following Cahn's theory. Nucleation seems to take place at grain boundaries. Growth rates for different temperatures have been determined. PMID:22209621

  3. The position of deuterium in HOD—NNO as determined by structural and nuclear quadrupole coupling constants

    SciTech Connect

    Obenchain, Daniel A.; Frank, Derek S.; Novick, Stewart E.; Klemperer, William

    2015-08-28

    Rotational spectra of the weakly bound H{sub 2}O—N{sub 2}O complex and its HOD—N{sub 2}O isotopologue in a supersonic jet are reported. Rotational constants of the singly substituted deuterium in water and each singly substituted nitrogen-15 are presented. Combinations of isotopic data and high level ab initio calculations place the water in a similar position to those of the isoelectronic H{sub 2}O—CO{sub 2} complex, with a slight tilt of the OH towards the NNO axis. The deuterium nuclear quadrupole coupling constant places the deuterium on the O—H axis quasi-parallel to the NNO axis.

  4. Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects

    SciTech Connect

    Iselin, L.H.

    1995-12-01

    Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.

  5. Understanding Nucleons in the Nuclear Medium

    SciTech Connect

    Douglas Higinbotham, Vince Sulkosky

    2010-10-01

    Recent cross section (e,e'pN) short-range correlation experiments have clearly shown the strong dominance of tensor correlations for (e,e'p) missing momenta greater than the Fermi momentum; while recent D(e,e'p)n and 4He(e,e'p)t asymmetry experiments at low missing momentum have shown small changes from the free nucleon form factor. By doing asymmetry experiments as a function of missing momentum, these results can be linked together and observed as a change of sign in the measured asymmetry. This idea will be presented within the context of the recently completed Jefferson Lab Hall A quasi-elastic, polarized 3He(e,e'N) experiments (N=0,p,n,d) where the asymmetries of several reaction channels were measured with three, orthogonal target-spin directions. Together, these various experiments will help us to better understand nucleons in the nuclear medium.

  6. First-principles study of boron oxygen hole centers in crystals: Electronic structures and nuclear hyperfine and quadrupole parameters

    SciTech Connect

    Li Zucheng; Pan Yuanming

    2011-09-15

    The electronic structures, nuclear hyperfine coupling constants, and nuclear quadrupole parameters of fundamental boron oxygen hole centers (BOHCs) in zircon (ZrSiO{sub 4}, I4{sub 1}/amd) and calcite (CaCO{sub 3}, R3c) have been investigated using ab initio Hartree-Fock (HF) and various density functional theory (DFT) methods based on the supercell models with all-electron localized basis sets. Both exact HF exchange and appropriate correlation functionals are important in describing the BOHCs, and the parameter-free hybrid method based on Perdew, Burke, and Ernzerhof density functionals (PBE0) turns out to be the best DFT method in reproducing the electron paramagnetic resonance (EPR) data. Our results reveal three distinct types of simple-spin (S = 1/2) [BO{sub 3}]{sup 2-} centers in calcite: (i) the classic [BO{sub 3}]{sup 2-} radical with the D{sub 3h} symmetry and the unpaired spin equally distributed on the three oxygen atoms (i.e. the O{sub 3}{sup 5-} type); (ii) the previously reported [BO{sub 2}]{sup 0} center with the unpaired spin equally distributed on two of the three oxygen atoms (O{sub 2}{sup 3-}); and (iii) a new variety with {approx}90% of its unpaired spin localized on one (O{sup -}) of the three oxygen atoms with a long B-O bond (1.44 A). Calculations confirm the unusual [BO{sub 4}]{sup 0} center in zircon and show it to arise from a highly distorted configuration with 90% of the unpaired spin on one oxygen atom that has a considerably longer B-O bond (1.68 A) than its three counterparts (1.45 A). The calculated magnitudes and directions of {sup 11}B and {sup 17}O hyperfine coupling constants and nuclear quadrupole constants for the [BO{sub 4}]{sup 0} center in zircon are in excellent agreement with the 15 K EPR experimental data. These BOHCs are all characterized by a small negative spin density on the central B atom arising from spin polarization. Our calculations also demonstrate that the spin densities on BOHCs are affected substantially by

  7. Recent advances in understanding nuclear size and shape.

    PubMed

    Mukherjee, Richik N; Chen, Pan; Levy, Daniel L

    2016-04-25

    Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells. PMID:26963026

  8. Toward understanding the effects of nuclear war

    SciTech Connect

    Grover, H.D.; White, G.F.

    1985-10-01

    The authors discuss the scientific justifications for studying the consequences of nuclear war. The consequences of nuclear war and nuclear winter - biotic impoverishment, climate change, pollution of the air, water, and soil - recapitulate in compressed time the patterns of ecological change humankind is even now imposing on the planet. By studying the biological consequences of nuclear war, important discoveries about the intricate nature of the global ecosystem may be made. Wiser management practices and more thorough appreciation of alterations in the physical and biological environment could results.

  9. The Position of Deuterium in the HOD-N_2O as Determined by Structural and Nuclear Quadrupole Coupling Constants

    NASA Astrophysics Data System (ADS)

    Obenchain, Daniel A.; Frank, Derek S.; Novick, Stewart E.; Klemperer, William

    2015-06-01

    A recent investigation of the HOD-N_2O complex measuring the OH + OD excited band in the near-IR was completed by Foldes et al. During this study, one of us (WAK) was contacted about the position of deuterium in the HOD-N_2O complex, as his group completed the original microwave study of H_2O-N_2O and its deuterated isotopologues ,2861. in 1992. The results of this microwave study did not give the orientation of HOD in the complex, however, we present here a supplementary study to the original microwave work using a Balle-Flygare cavity instrument, attempting to determine the orientation of HOD relative to the N_2O. In addition to a Kraitchman and a least-squares inertial structure fit of the molecule, we present the nuclear quadrupole coupling tensor of deuterium to determine the position of HOD in the complex. Földes, T; Lauzin, C.; Vanfleteren, T.; Herman, M.; Lièvin, J.; Didriche. K. High-resolution, near-infrared CW-CRDS and ab initio investigations of N_2O-HDO.Mol. Phys. 2015, 113(5),473-482. Zolandz, D.; Yaron, D.; Peterson, K.I.; Klemperer, W. Water in weak interactions: The structure of the water-nitrous oxide complex. J. Chem. Phys. 1992, 97

  10. High-Accuracy Calculation of cu Electric-Field Gradients: a Revision of the cu Nuclear Quadrupole Moment Value

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Matthews, Devin A.; Gauss, Jürgen; Stanton, John F.

    2015-06-01

    A revision of the value for the Cu nuclear quadrupole moment (NQM) is reported based on high-accuracy ab initio calculations on the Cu electric field gradients in the CuF and CuCl molecules. Electron-correlation effects have systematically been taken into account using a hierarchy of coupled-cluster methods including up to quadruple excitations. It is shown that the CCSD(T)_Λ method provides a more reliable treatment of triples corrections for Cu electric-field gradients than the ubiquitously applied CCSD(T) method, which is tentatively attributed to the importance of the wavefunction relaxation in the calculations of a core property. Augmenting large-basis-set CCSD(T)_Λ results with the remaining corrections obtained using additive schemes, including full triples contributions, quadruples contributions, zero-point vibrational corrections, spin-orbit corrections, as well as the correction from the Gaunt term, a new value of 209.7(50) mbarn for the Cu NQM has been obtained. The new value substantially reduces the uncertainty of this parameter in comparison to the standard value of 220(15) mbarn obtained from a previous muonic experiment.

  11. Stand-off explosive detection utilizing low power stimulated emission nuclear quadrupole resonance detection and subwavelength focusing wideband super lens

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2015-05-01

    The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.

  12. A new method for distinguishing between Al 2X 6 (X=Cl, Br) conformers based on ab initio calculated nuclear quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Hadipour, N. L.; Elmi, F.

    2003-03-01

    Nuclear quadrupole coupling constants ( χ) of 27Al, 35Cl and 81Br in AlX 3 monomers as well as Al 2X 6 (X=Cl, Br) dimers are calculated at the RHF/6-311G* and B 3LYP/6-311G* levels, using G AUSSIAN 98 package. Correlations are made between χ and dihedral angles θ, of Al 2X 6. These θs are produced through the ring puckering motions about the hinge line which joins the two bridge halogens (X b). Nuclear quadrupole coupling constants of 35Cl, 81Br and 27Al are used as probes for monitoring the departure of the symmetry of Al 2X 6 from a high symmetry point group D 2h to a lower one. The χs of chlorine nuclei of AlCl 3 differ significantly from those of Al 2Cl 6. These differences appear negligible for AlBr 3 in comparison to Al 2Br 6. This work demonstrates the considerable sensitivity of nuclear quadrupole resonance in distinguishing between Al 2X 6 conformers. This is in comparison to the usage of energy differences which is customarily employed.

  13. The Microwave Spectrum of Imidazole; Complete Structure and the Electron Distribution from Nuclear Quadrupole Coupling Tensors and Dipole Moment Orientation

    NASA Astrophysics Data System (ADS)

    Christen, Dines; Griffiths, John H.; Sheridan, John

    1981-12-01

    Spectra have been measured for eleven isotopic forms of imidazole, including single substitutions at each nucleus in turn. A complete rs-structure is obtained. The ring structure is: N(1)-C(2) = 1.364 Å, C(2)-N(3) = 1.314 Å, N(3)-C(4) = 1.382 Å, C(4)-C(5) = 1.364 Å, C(5)-N(1) = 1.377 Å, ≮N(1)C(2)N(3) = 112.0°, ≮C(2)N(3)C(4) = 104.9°, ≮N(3)C(4)C(5) = 110.7°, ≮C(4)C(5)N(1) = 105.5° and ≮C(5)N(1)C(2) = 106.9°. The N(1)-H(1) distance is 0.998 Å, while the C-H distances are all very close to 1.078 Å. The bonds N(1)-H(1) and C(2)-H(2) lie close to the external bisectors of the respective ring angles, but C(4)-H(4) and C(5)-H(5) are each displaced by several degrees from these bisectors towards N(3) and N(1) respectively. The electric dipole moment is established as 3.67 (5) D from Stark effects, directed almost parallel with the line joining the nitrogen nuclei. The properties and orientations of the two 14N-nuclear quadrupole tensors have been investigated, in particular through the spectra of the two mono-14N-imidazoles.

  14. Towards an understanding of nuclear morphogenesis.

    PubMed

    Georgatos, S D

    1994-05-01

    In the age of "virtual reality," the imperfect microscopic silhouettes of cells and organelles are gradually being replaced by calligraphic computer drawings. In this context, textbooks and introductory slides often depict the cell nucleus as a smooth-shaped, featureless object. However, in reality, the nuclei of different cells possess distinct sizes and morphological features which develop in a programmed fashion as each cell differentiates. To dissect this complex morphogenetic process, we need to identify the basic elements that determine nuclear architecture and the regulatory factors involved. Recently, clues about the identity of these components have been obtained both by systematic analysis and by serendipity. This review summarizes a few recent findings and ideas that may serve as a first forum for future discussions and, I hope, for further work on this topic. PMID:8083301

  15. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  16. Charge dependence and electric quadrupole effects on single-nucleon removal in relativistic and intermediate energy nuclear collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Single-nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  17. {sup 63}Cu and {sup 197}Au nuclear quadrupole moments from four-component relativistic density-functional calculations using correct long-range exchange

    SciTech Connect

    Thierfelder, Christian; Schwerdtfeger, Peter; Saue, Trond

    2007-09-15

    The electric field gradient in late transition metal compounds is incorrectly determined by most density functionals. We show that the coupling of short-range density functional based with long-range wave function based methods using a reparametrization of the Coulomb-attenuated Becke three-parameter Lee-Yang-Parr approximation gives reliable results for the electric field gradients of copper and gold for a series of compounds. This results in nuclear quadrupole moments of -0.208 b for {sup 63}Cu and +0.526 b for {sup 197}Au in good agreement with experimental values of -0.220(15) and +0.547(16)b, respectively.

  18. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  19. Benchmark calculations on the nuclear quadrupole-coupling parameters for open-shell molecules using non-relativistic and scalar-relativistic coupled-cluster methods

    SciTech Connect

    Cheng, Lan

    2015-08-14

    Quantum-chemical computations of nuclear quadrupole-coupling parameters for 24 open-shell states of small molecules based on non-relativistic and spin-free exact two-component (SFX2C) relativistic equation-of-motion coupled-cluster (EOM-CC) as well as spin-orbital-based restricted open-shell Hartree-Fock coupled-cluster (ROHF-CC) methods are reported. Relativistic effects, the performance of the EOM-CC and ROHF-CC methods for treating electron correlation, as well as basis-set convergence have been carefully analyzed. Consideration of relativistic effects is necessary for accurate calculations on systems containing third-row (K-Kr) and heavier elements, as expected, and the SFX2C approach is shown to be a useful cost-effective option here. Further, it is demonstrated that the EOM-CC methods constitute flexible and accurate alternatives to the ROHF-CC methods in the calculations of nuclear quadrupole-coupling parameters for open-shell states.

  20. Empirical Investigation of Extreme Single-Particle Behavior of Nuclear Quadrupole Moments in Highly Collective A {approx} 150 Superdeformed Bands

    SciTech Connect

    Clark, S. T.; Hackman, G.; Janssens, R. V. F.; Clark, R. M.; Fallon, P.; Floor, S. N.; Lane, G. J.; Macchiavelli, A. O.; Norris, J.; Sanders, S. J.

    2001-10-22

    The intrinsic quadrupole moment Q{sub 0} of superdeformed rotational bands in A{approx}150 nuclei depends on the associated single-particle configuration. We have derived an empirical formula based on the additivity of effective quadrupole moments of single-particle orbitals that describes existing measurements from {sup 142}Sm to {sup 152}Dy . To further test the formula, the predicted Q{sub 0} moments for two superdeformed bands in {sup 146}Gd of 14.05 eb were confronted with a new measurement yielding 13.9{+-}0.4 eb and 13.9{+-}0.3 eb , respectively. This excellent agreement provides empirical evidence of extreme single-particle behavior in highly deformed, collective systems.

  1. Coupling of nuclear quadrupole and octupole degrees of freedom in an angular momentum dependent potential of two deformation variables

    SciTech Connect

    Minkov, N.; Yotov, P.; Drenska, S.; Scheid, W.; Bonatsos, Dennis; Lenis, D.; Petrellis, D.

    2006-04-26

    We propose a collective rotation-vibration Hamiltonian of nuclei in which the axial quadrupole {beta}2 and octupole {beta}3 variables are coupled through the centrifugal interaction. We consider that the system oscillates between positive and negative {beta}3-values by rounding a potential core in the ({beta}2,{beta}3)- space. We examine the effect of the 'rounding' in the structure of the spectrum.

  2. Ferromagnetic critical behavior in U(Co1-xFex)Al (0 ≤x ≤0.02 ) studied by 59Co nuclear quadrupole resonance measurements

    NASA Astrophysics Data System (ADS)

    Karube, K.; Hattori, T.; Ishida, K.; Kimura, N.

    2015-02-01

    In order to investigate physical properties around a ferromagnetic (FM) quantum transition point and a tricritical point (TCP) in the itinerant-electron metamagnetic compound UCoAl, we have performed the 59Co nuclear quadrupole resonance (NQR) measurement for the Fe-substituted U(Co1-xFex)Al(x =0 ,0.5 ,1 ,and2 %) in zero external magnetic field. The Fe concentration dependence of 59Co -NQR spectra at low temperatures indicates that the first-order FM transition occurs at least above x =1 % . The magnetic fluctuations along the c axis detected by the nuclear spin-spin relaxation rate 1 /T2 exhibit an anomaly at Tmax˜20 K and enhance with increasing x . These results are in good agreement with theoretical predictions and indicate the presence of prominent critical fluctuations at the TCP in this system.

  3. Detection of an unconventional superconducting phase in the vicinity of the strong first-order magnetic transition in CrAs using (75)As-nuclear quadrupole resonance.

    PubMed

    Kotegawa, Hisashi; Nakahara, Shingo; Akamatsu, Rui; Tou, Hideki; Sugawara, Hitoshi; Harima, Hisatomo

    2015-03-20

    Pressure-induced superconductivity was recently discovered in the binary helimagnet CrAs. We report the results of measurements of nuclear quadrupole resonance for CrAs under pressure. In the vicinity of the critical pressure P(c) between the helimagnetic (HM) and paramagnetic (PM) phases, a phase separation is observed. The large internal field remaining in the phase-separated HM state indicates that the HM phase disappears through a strong first-order transition. This indicates the absence of a quantum critical point in CrAs; however, the nuclear spin-lattice relaxation rate 1/T(1) reveals that substantial magnetic fluctuations are present in the PM state. The absence of a coherence effect in 1/T(1) in the superconducting state provides evidence that CrAs is the first Cr-based unconventional superconductor. PMID:25839303

  4. Nuclear Power and the Environment, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. Discussion concentrates on the radiological and thermal aspects of the environmental effects of nuclear power plants; on the procedures followed by the Atomic Energy…

  5. The Iodine Hvperfine Structure in the Microwave Spectrum of Ethyl Iodide: Nuclear Quadrupole and Spin Rotation Coupling

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Scherr, Lawrence M.; Barsh, Max K.

    1988-11-01

    Some rotational transitions of ethyl iodide, CH3CH2I, have been reinvestigated by microwave Fourier transform (MWFT) spectroscopy. The iodine hyperfine structure splittings were first ana lyzed using a direct diagonalization procedure of the complete quadrupole Hamiltonian matrix. The results of this analysis showed deviations from our measurements up to 60 kHz. A new analysis using additional spin rotation coupling matrix elements reproduces our measurements within the experi­mental error limit and decreases the standard deviation of the least squares fit from 28 kHz to only 4 kHz.

  6. Effect of Intermolecular Hydrogen Bonding on the Nuclear Quadrupole Interaction in Imidazole and its Derivatives as Studied by ab initio Molecular Orbital Calculations

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuo; Masui, Hirotsugo; Ueda, Takahiro

    2000-02-01

    Ab initio Hartree-Fock molecular orbital calculations were applied to the crystalline imidazole and its derivatives in order to examine systematically the effect of possible N-H---N type hydrogen bond-ing on the nuclear quadrupole interaction parameters in these materials. The nitrogen quadrupole coupling constant (QCC) and the asymmetry parameter (η) of the electric field gradient (EFG) were found to depend strongly on the size of the molecular clusters, from single molecule, to dimer, trimer and to the infinite molecular chain, i.e., crystalline state, implying that the intermolecular N-H -N hydrogen bond affects significantly the electronic structure of imidazole molecule. A certain correla-tion between the QCC of 14N and the N-H bond distance R was also found and interpreted on the basis of the molecular orbital theory. However, we found that the value of the calculated EFG at the hy-drogen position of the N-H group, or the corresponding QCC value of 2 H, increases drastically as R-3 when R is shorter than about 0.1 nm, due probably to the inapplicability of the Gaussian basis sets to the very short chemical bond as revealed in the actual imidazole derivatives. We suggested that the ob-served N-H distances in imidazole derivatives should be re-examined.

  7. Hyperfine and Nuclear Quadrupole Tensors of Nitrogen Donors in the QA Site of Bacterial Reaction Centers: Correlation of the Histidine Nδ Tensors with Hydrogen Bond Strength

    PubMed Central

    2015-01-01

    X- and Q-band pulsed EPR spectroscopy was applied to study the interaction of the QA site semiquinone (SQA) with nitrogens from the local protein environment in natural abundance 14N and in 15N uniformly labeled photosynthetic reaction centers of Rhodobacter sphaeroides. The hyperfine and nuclear quadrupole tensors for His-M219 Nδ and Ala-M260 peptide nitrogen (Np) were estimated through simultaneous simulation of the Q-band 15N Davies ENDOR, X- and Q-band 14,15N HYSCORE, and X-band 14N three-pulse ESEEM spectra, with support from DFT calculations. The hyperfine coupling constants were found to be a(14N) = 2.3 MHz, T = 0.3 MHz for His-M219 Nδ and a(14N) = 2.6 MHz, T = 0.3 MHz for Ala-M260 Np. Despite that His-M219 Nδ is established as the stronger of the two H-bond donors, Ala-M260 Np is found to have the larger value of a(14N). The nuclear quadrupole coupling constants were estimated as e2Qq/4h = 0.38 MHz, η = 0.97 and e2Qq/4h = 0.74 MHz, η = 0.59 for His-M219 Nδ and Ala-M260 Np, respectively. An analysis of the available data on nuclear quadrupole tensors for imidazole nitrogens found in semiquinone-binding proteins and copper complexes reveals these systems share similar electron occupancies of the protonated nitrogen orbitals. By applying the Townes–Dailey model, developed previously for copper complexes, to the semiquinones, we find the asymmetry parameter η to be a sensitive probe of the histidine Nδ–semiquinone hydrogen bond strength. This is supported by a strong correlation observed between η and the isotropic coupling constant a(14N) and is consistent with previous computational works and our own semiquinone-histidine model calculations. The empirical relationship presented here for a(14N) and η will provide an important structural characterization tool in future studies of semiquinone-binding proteins. PMID:25026433

  8. (14)N Nuclear Quadrupole Coupling and Methyl Internal Rotation in N-tert-Butylacetamide As Observed by Microwave Spectroscopy.

    PubMed

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Kleiner, Isabelle

    2016-06-16

    The rotational spectrum of N-tert-butylacetamide, CH3(C═O)(NH)C(CH3)3, was measured in the frequency range from 2 to 26.5 GHz using a molecular beam Fourier transform microwave spectrometer. Only one conformer with trans configuration and Cs symmetry was observed. Torsional splittings up to 4.3 GHz occurred in the spectrum due to the internal rotation of the acetyl methyl group CH3(C═O) with a barrier height of approximately 65 cm(-1). Hyperfine structures arise from the quadrupole coupling of the (14)N nucleus appeared for all rotation-torsional transitions. The data set was reproduced with the programs XIAM and BELGI-C1-hyperfine, an extended version of the BELGI-C1 code that includes the effect of the (14)N quadrupole coupling, to root-mean-square deviations of 16.9 and 3.0 kHz, respectively. Quantum chemical calculations were performed to complement the experimental results. The BELGI-C1-hyperfine code was also used to refit the recently published microwave data of N-ethylacetamide to measurement accuracy. PMID:27213507

  9. In-vivo study of the nuclear quadrupole interaction of99Mo (β- 99)Tc in nitrogenase of Klebsiella pneumoniaein nitrogenase of Klebsiella pneumoniae

    NASA Astrophysics Data System (ADS)

    Mottner, P.; Lerf, A.; Ni, X.; Butz, T.; Erfkamp, J.; Müller, A.

    1990-08-01

    We report on the first TDPAC-measurements of the nuclear quadrupole interaction (NQI) of (NQI) of99Mo(β-)99Tc in the nitrogenase of the bacteria Klebsiella pneumoniae. Because nitrogenase is the only Mo-containing enzyme in Klebsiella pneumoniae under the chosen conditions, no further isolation of this enzyme was necessary. The majority of the incorporated99Mo is subjected to a well defined NQI with ω=365(7) Mrad/s, η=1 and a reorientational correlation time of τcoττ≈10nsec and is attributed to the active site of the FeMo cofactor. During sample preparation we noted a pronounced affinity of the bacteria to99mTc.

  10. Understanding seismic design criteria for Japanese Nuclear Power Plants

    SciTech Connect

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1995-04-01

    This paper summarizes the results of recent survey studies on the seismic design practice for nuclear power plants in Japan. The seismic design codes and standards for both nuclear as well as non-nuclear structures have been reviewed and summarized. Some key documents for understanding Japanese seismic design criteria are also listed with brief descriptions. The paper highlights the design criteria to determine the seismic demand and component capacity in comparison with U.S. criteria, the background studies which have led to the current Japanese design criteria, and a survey of current research activities. More detailed technical descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

  11. Evaluation of nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole in myoglobin-azide, -cyanide, and -mercaptoethanol complexes by electron spin echo envelope modulation spectroscopy.

    PubMed

    Magliozzo, R S; Peisach, J

    1993-08-24

    Electron spin echo envelope modulation (ESEEM) spectroscopy and computer simulation of spectra has been used to evaluate the nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole nitrogen directly coordinated to iron in three low-spin heme complexes, myoglobin-azide, -cyanide, and -mercaptoethanol (MbN3, MbCN, and MbRS). The variability in the weak electron-nuclear coupling parameters reveals the electronic flexibility within the heme group that depends on properties of the exogenous ligands. For example, the isotropic component of the nitrogen nuclear hyperfine coupling ranges from 4.4 MHz for MbN3 to 2.2 MHz for both MbCN and MbRS. The weaker coupling in MbCN and MbRS is taken as evidence for delocalization of unpaired electron spin from iron into the exogenous anionic ligands. The value of e2Qq, the nuclear quadrupole coupling constant for the axial imidazole nitrogen in MbCN and MbRS, was 2.5 MHz but was significantly larger, 3.2 MHz, in MbN3. This large value is considered evidence for a weakened sigma bond between the proximal imidazole and ferric iron in this form, and for a feature contributing to the origin of the high spin-low spin equilibrium exhibited by MbN3 [Beetlestone, J., & George, P. (1964) Biochemistry 5, 707-714]. The ESEEM results have allowed a correlation to be made between the orientation of the g tensor axes, the orientation of the p-pi orbital of the proximal imidazole nitrogen, and sigma- and pi-bonding features of the axial ligands. Furthermore, the proximal imidazole is suggested to act as a pi-acceptor in low-spin heme complexes in order to support strong sigma electron donation from the lone pair orbital to iron. An evaluation of the nitrogen nuclear hyperfine coupling parameters for the porphyrin pyrrole sites in MbRS reveals a large inequivalence in isotropic components consistent with an orientation of rhombic axes (and g tensor axes) that eclipses the Fe-Npyrrole vector directions. PMID:8395204

  12. Understanding China`s nuclear non-proliferation policy

    SciTech Connect

    Nichols, P.J.

    1999-06-01

    China`s nuclear-export activities appear to contradict its official non-proliferation policy. Scrutiny of China`s nuclear exports and non- proliferation commitments indicate an adherence to strict `letter-of-the-law` obligations. Yet, China`s commitment to the norms and values of the non- proliferation regime is controversial. The difference between China`s legal obligations and the international norms of acceptable export behavior is a function of the ambiguity inherent in international treaties and agreements. Stephen Meyer`s motivational hypothesis is used to evaluate China`s nuclear-export decision-making process. China`s motivational profile created by the combination of 16 incentives and disincentives on one hand, and international and domestic conditions on the other. Two case studies are used to illustrate that this profile is not static. As environmental conditions and China`s national priorities change, so does China`s motivational profile. In the past, U. S. attempts to alter China`s nuclear-export activities were successful when the targeted changes were congruent with China`s national priorities. For the United States to influence China`s future nuclear-export activities, it must first understand China`s national priorities and determine the corresponding export motivations that influence China`s decision-making process. The United States should then work to change conditions, which would shift the balance of incentives and disincentives, thereby changing the outcome of China`s cost-benefit calculus.

  13. An evolving understanding of nuclear receptor coregulator proteins

    PubMed Central

    Millard, Christopher J.; Watson, Peter J.; Fairall, Louise; Schwabe, John W.R.

    2014-01-01

    Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin; and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge. PMID:24203923

  14. Effective quadrupole-quadrupole interaction from density functional theory

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.; Bertsch, G. F.; Fang, L.; Sabbey, B.

    2006-09-01

    The density functional theory of nuclear structure provides a many-particle wave function that is useful for static properties, but an extension of the theory is necessary to describe correlation effects or other dynamic properties. We propose a procedure to extend the theory by mapping the properties of a self-consistent mean-field theory onto an effective shell-model Hamiltonian with quadrupole-quadrupole interaction. In this initial study, we consider the sd-shell nuclei Ne20, Mg24, Si28, and Ar36. The method is first tested with the USD shell-model Hamiltonian, using its mean-field approximation to construct an effective Hamiltonian and partially recover correlation effects. We find that more than half of the correlation energy is due to the quadrupole interaction. We then follow a similar procedure but using the SLy4 Skyrme energy functional as our starting point and truncating the space to the spherical sd shell. The constructed shell-model Hamiltonian is found to satisfy minimal consistency requirements to reproduce the properties of the mean-field solution. The quadrupolar correlation energies computed with the mapped Hamiltonian are reasonable compared with those computed by other methods. The method also provides a well-defined renormalization of the quadrupole operator in the shell-model space, the “effective charge” of the phenomenological shell model.

  15. Understanding the nature of nuclear power plant risk

    SciTech Connect

    Denning, R. S.

    2012-07-01

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  16. An analytical method for estimating the {sup 14}N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    SciTech Connect

    Iselin, L.H.

    1992-12-31

    The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  17. Toward a Fundamental Understanding of Nuclear Reactions and Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Quaglioni, Sofia; Hupin, Guillaume; Langhammer, Joachim; Romero-Redondo, Carolina; Schuster, Micah D.; Johnson, Calvin W.; Navrátil, Petr; Roth, Robert

    Nuclear systems near the drip lines offer an exciting opportunity to advance our understanding of the interactions among nucleons, which has so far been mostly based on the study of stable nuclei. However, this is not a goal devoid of challenges. From a theoretical standpoint, it requires the capability to address within an ab initio framework not only bound, but also resonant and scattering states, all of which can be strongly coupled. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from Quantum Chromodynamics employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present a brief overview of one of such methods, the ab initio no-core shell model with continuum, and its applications to nucleon and deuterium scattering on light nuclei. The first investigation of the low-lying continuum spectrum of 6He within an ab initio framework that encompasses the 4He + n + n three-cluster dynamics characterizing its lowest particle-decay channel will also be briefly presented.

  18. Study of the extra-ionic electron distributions in semi-metallic structures by nuclear quadrupole resonance techniques

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1976-01-01

    A straightforward self-consistent method was developed to estimate solid state electrostatic potentials, fields and field gradients in ionic solids. The method is a direct practical application of basic electrostatics to solid state and also helps in the understanding of the principles of crystal structure. The necessary mathematical equations, derived from first principles, were presented and the systematic computational procedure developed to arrive at the solid state electrostatic field gradients values was given.

  19. Evidence for Unconventional Strong-Coupling Superconductivity in PrOs4Sb12: An Sb Nuclear Quadrupole Resonance Study

    NASA Astrophysics Data System (ADS)

    Kotegawa, H.; Yogi, M.; Imamura, Y.; Kawasaki, Y.; Zheng, G.-Q.; Kitaoka, Y.; Ohsaki, S.; Sugawara, H.; Aoki, Y.; Sato, H.

    2003-01-01

    We report Sb-NQR results which evidence a heavy-fermion (HF) behavior and an unconventional superconducting (SC) property in Pr(Os4Sb12 with Tc=1.85 K. The temperature (T) dependence of nuclear-spin-lattice-relaxation rate, 1/T1, and NQR frequency unravel a low-lying crystal-electric-field splitting below T0˜10 K, associated with Pr3+(4f2)-derived ground state. In the SC state, 1/T1 shows neither a coherence peak just below Tc K nor a T3-like power-law behavior observed for anisotropic HF superconductors with the line-node gap. The isotropic energy gap with its size Δ/kB=4.8 K seems to open up across Tc below T*˜2.3 K. It is surprising that Pr(Os4Sb12 looks like an isotropic HF superconductor—it may indeed argue for Cooper pairing via quadrupolar fluctuations.

  20. Rotational spectra and nitrogen nuclear quadrupole coupling for the cyanoacetylene dimer: Hsbnd Ctbnd Csbnd Ctbnd N⋯Hsbnd Ctbnd Csbnd Ctbnd N

    NASA Astrophysics Data System (ADS)

    Kang, Lu; Davis, Philip; Dorell, Ian; Li, Kexin; Daly, Adam; Novick, Stewart E.; Kukolich, Stephen G.

    2016-03-01

    The rotational spectra of cyanoacetylene dimer, Hsbnd Ctbnd Csbnd Ctbnd N⋯Hsbnd Ctbnd Csbnd Ctbnd N, were recorded using Balle-Flygare type Fourier transform microwave (FTMW) spectrometers. The low J transitions were measured down to 1.3 GHz at very high resolution, FWHM ∼ 1 kHz. The spectral hyperfine structure due to the 14N nuclear quadrupole coupling interactions is well-resolved below 4 GHz using a low frequency spectrometer at the University of Arizona. The experimental spectroscopic constants were fitted as: B0 = 339.2923310(79) MHz, DJ = 32.152(82) Hz, H = -0.00147(20) Hz, eqQ(14N1) = -3.9902(14) MHz, and eqQ(14N2) = -4.1712(13) MHz. The vibrationally averaged dimer configuration is Hsbnd Ctbnd Csbnd Ctbnd N⋯Hsbnd Ctbnd Csbnd Ctbnd N. Using a simple linear model, the vibrational ground state and the equilibrium hydrogen bond lengths are determined to be: r0(N⋯H) = 2.2489(3) Å and re(N⋯H) = 2.2315 Å. The equilibrium center-of-mass distance between the two HCCCN subunits is rcom = 7.0366 Å. Using the rigid precession model, the vibrational ground state center-of-mass distance and the pivot angles which HCCCN subunits make with the a-axis of Hsbnd Ctbnd Csbnd Ctbnd N⋯Hsbnd Ctbnd Csbnd Ctbnd N are rc.m. = 7.0603 Å, θ1 = 13.0°, and θ2 = 8.7°, respectively. The calculated hydrogen bond energy of Hsbnd Ctbnd Csbnd Ctbnd N⋯Hsbnd Ctbnd Csbnd Ctbnd N is 1466 cm-1 using the MP2/aug-cc-PVTZ method in present work.

  1. Nuclear Propulsion for Space, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Schwenk, Francis C.

    The operation of nuclear rockets with respect both to rocket theory and to various fuels is described. The development of nuclear reactors for use in nuclear rocket systems is provided, with the Kiwi and NERVA programs highlighted. The theory of fuel element and reactor construction and operation is explained with particular reference to rocket…

  2. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  3. Nuclear Reactors for Space Power, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  4. Sources of Nuclear Fuel, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Singleton, Arthur L., Jr.

    A brief outline of the historical landmarks in nuclear physics leading to the use of nuclear energy for peaceful purposes introduces this illustrated booklet. The distribution of known sources of uranium ores is mapped and some details about the geology of each geographical area given. Methods of prospective, mining, milling, refining, and fuel…

  5. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero

  6. Theoretical Study of the Electrostatic and Steric Effects on the Spectroscopic Characteristics of the Metal-Ligand Unit of Heme Proteins. 2. C-O Vibrational Frequencies, 17O Isotropic Chemical Shifts, and Nuclear Quadrupole Coupling Constants

    PubMed Central

    Kushkuley, Boris; Stavrov, Solomon S.

    1997-01-01

    The quantum chemical calculations, vibronic theory of activation, and London-Pople approach are used to study the dependence of the C-O vibrational frequency, 17O isotropic chemical shift, and nuclear quadrupole coupling constant on the distortion of the porphyrin ring and geometry of the CO coordination, changes in the iron-carbon and iron-imidazole distances, magnitude of the iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that only the electrostatic interactions can cause the variation of all these parameters experimentally observed in different heme proteins, and the heme distortions could modulate this variation. The correlations between the theoretically calculated parameters are shown to be close to the experimentally observed ones. The study of the effect of the electric field of the distal histidine shows that the presence of the four C-O vibrational bands in the infrared absorption spectra of the carbon monoxide complexes of different myoglobins and hemoglobins can be caused by the different orientations of the different tautomeric forms of the distal histidine. The dependence of the 17O isotropic chemical shift and nuclear quadrupole coupling constant on pH and the distal histidine substitution can be also explained from the same point of view. PMID:9017215

  7. High gradient superconducting quadrupoles

    SciTech Connect

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed.

  8. p-p minimum-bias dijets and nonjet quadrupole in relation to conjectured collectivity (flows) in high-energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2016-07-01

    Recent observations of ridge-like structure in p-p and p-A angular correlations at the RHIC and LHC have been interpreted to imply collective motion in smaller collision systems. It is argued that if correlation structures accepted as manifestations of flow in A-A collisions appear in smaller systems collectivity (flow) must extend to the smaller systems. But the argument could be reversed to conclude that such structures appearing in A-A collisions may not imply hydrodynamic flow. I present spectrum, correlation and fluctuation data from RHIC p-p and Au-Au collisions and p-p, p-Pb and Pb-Pb results from the LHC described accurately by a two-component (soft+dijet) model of hadron production. I also present evidence for a significant p-p nonjet (NJ) quadrupole (v2) component with nch systematics directly related to A-A NJ quadrupole systematics. The combination suggests that soft, dijet and NJ quadrupole com- ponents are distinct phenomena in all cases, inconsistent with hadron production from a common bulk medium exhibiting collective motion (flow).

  9. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  10. The Role of Nuclear Physics in Understanding the Cosmos and the Origin of Elements

    SciTech Connect

    Balantekin, A. B.

    2011-05-06

    This popular lecture, given in the conference celebrating contributions of Akito Arima to physics on the occasion of his 80th anniversary, outlines the role of nuclear physics in understanding the origin of elements.

  11. 75 FR 1088 - Notice of Availability of a Memorandum of Understanding Between the Nuclear Regulatory Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... and the Bureau of Land Management AGENCY: Nuclear Regulatory Commission. ACTION: Notice of.... Introduction The Nuclear Regulatory Commission (NRC) and the Bureau of Land Management (BLM) have finalized a..., or by e-mail to pdr.resource@nrc.gov . The ``Memorandum of Understanding between the Bureau of...

  12. Variable Permanent Magnet Quadrupole

    SciTech Connect

    Mihara, T.; Iwashita, Y.; Kumada, M.; Spencer, C.M.; /SLAC

    2007-05-23

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.

  13. An online database of nuclear electromagnetic moments

    NASA Astrophysics Data System (ADS)

    Mertzimekis, T. J.; Stamou, K.; Psaltis, A.

    2016-01-01

    Measurements of nuclear magnetic dipole and electric quadrupole moments are considered quite important for the understanding of nuclear structure both near and far from the valley of stability. The recent advent of radioactive beams has resulted in a plethora of new, continuously flowing, experimental data on nuclear structure - including nuclear moments - which hinders the information management. A new, dedicated, public and user friendly online database

  14. Three-Dimensional Nuclear Chart--Understanding Nuclear Physics and Nucleosynthesis in Stars

    ERIC Educational Resources Information Center

    Koura, Hiroyuki

    2014-01-01

    Three-dimensional (3D) nuclear charts were created using toy blocks, which represent the atomic masses per nucleon number and the total half-lives for each nucleus in the entire region of the nuclear mass. The bulk properties of the nuclei can be easily understood by using these charts. Subsequently, these charts were used in outreach activities…

  15. Progress in Understanding the Nuclear Equation of State at the Quark Level

    SciTech Connect

    A.W. Thomas; P.A.M. Guichon

    2007-01-03

    At the present time there is a lively debate within the nuclear community concerning the relevance of quark degrees of freedom in understanding nuclear structure. We outline the key issues and review the impressive progress made recently within the framework of the quark-meson coupling model. In particular, we explain in quite general terms how the modification of the internal structure of hadrons in-medium leads naturally to three- and four-body forces, or equivalently, to density dependent effective interactions.

  16. Quadrupole Collectivity in Neutron Deficient Sn Isotopes

    NASA Astrophysics Data System (ADS)

    Gade, Alexandra

    2014-03-01

    One of the overarching goals of nuclear physics is the development of a comprehensive model of the atomic nucleus with predictive power across the nuclear chart. Of particular importance for the development of nuclear models is experimental data that consistently track the effect of isospin and changed binding, for example. The chain of Sn isotopes has been a formidable testing ground for nuclear models as some spectroscopic data is available from N = Z = 50 100Sn in the proximity of the proton dripline to 134Sn, beyond the very neutron-rich doubly magic nucleus 132Sn. In even-even nuclei, the electromagnetic quadrupole excitation strength is a measure of quadrupole collectivity, sensitive to the presence of shell gaps, nuclear deformation, and nucleon-nucleon correlations, for example. In the Sn isotopes, this transition strength has been reported from 104Sn to 130Sn, spanning a chain of 14 even-even Sn isotopes. The trend is asymmetric with respect to midshell and not even the largest-scale shell-model calculations have been able to describe the evolution of transition strength across the isotopic chain without varying effective charges. Implications will be discussed. This work was supported by the National Science Foundation under Grant No. PHY-1102511.

  17. Understanding the Value of a Computer Emergency Response Capability for Nuclear Security

    SciTech Connect

    Gasper, Peter Donald; Rodriguez, Julio Gallardo

    2015-06-01

    The international nuclear community has a great understanding of the physical security needs relating to the prevention, detection, and response of malicious acts associated with nuclear facilities and radioactive material. International Atomic Energy Agency (IAEA) Nuclear Security Recommendations (INFCIRC_225_Rev 5) outlines specific guidelines and recommendations for implementing and maintaining an organization’s nuclear security posture. An important element for inclusion into supporting revision 5 is the establishment of a “Cyber Emergency Response Team (CERT)” focused on the international communities cybersecurity needs to maintain a comprehensive nuclear security posture. Cybersecurity and the importance of nuclear cybersecurity require that there be a specific focus on developing an International Nuclear CERT (NS-CERT). States establishing contingency plans should have an understanding of the cyber threat landscape and the potential impacts to systems in place to protect and mitigate malicious activities. This paper will outline the necessary components, discuss the relationships needed within the international community, and outline a process by which the NS-CERT identifies, collects, processes, and reports critical information in order to establish situational awareness (SA) and support decision-making

  18. Transport in rectangular quadrupole channels

    SciTech Connect

    Meier, E.

    1983-08-01

    Multiple electrostatic quadrupole arrays can be produced in many different geometries. However, the fabrication process can be considerably simplified if the poles are rectangular. This is especially true for millimeter sized channels. This paper presents the results of a series of measurements comparing the space charge limits in cylindrical and rectangular quadrupole channels.

  19. On quadrupole vibrations in nearly spherical nuclei

    NASA Astrophysics Data System (ADS)

    Yates, S. W.

    2012-09-01

    A new understanding of low-lying quadrupole vibrations in nuclei is emerging through lifetime measurements performed with fast neutrons at the accelerator laboratory of the University of Kentucky in combination with high-sensitivity measurements with other probes. In the stable cadmium nuclei, which have long been considered to be the best examples of vibrational behavior, we find that many E2 transition probabilities are well below harmonic vibrator expectations, and the B(E2)s cannot be explained with calculations incorporating configuration mixing between vibrational phonon states and intruder excitations. These data place severe limits on the collective models, and it is suggested that the low-lying levels of the Cd isotopes may not be of vibrational origin. An additional example of an apparent quadrupole vibrational nucleus, 62Ni, is considered.

  20. 76 FR 31997 - Final Memorandum of Understanding Between the U.S. Nuclear Regulatory Commission and the U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Final Memorandum of Understanding Between the U.S. Nuclear Regulatory Commission and the U.S. Department of Homeland Security on Chemical Facility Anti-Terrorism Standards AGENCY: Nuclear...

  1. Understanding the Challenges in the Transition from Film Radiography in the Nuclear Power Industry

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Moran, Traci L.; Nove, Carol A.; Pardini, Allan F.

    2012-09-01

    Nondestructive examination (NDE) applications in the nuclear power industry using film radiography are shrinking due to the advent of modern digital imaging technologies and advances in alternative inspection methods that do not present an ionizing radiation hazard. Technologies that are used routinely in the medical industry for patient diagnosis are being adapted to industrial NDE applications including the detection and characterization of defects in welds. From the user perspective, non-film inspection techniques provide several advantages over film techniques. It is anticipated that the shift away from the application of film radiography in the nuclear power industry represents an irreversible trend. The U.S. Nuclear Regulatory Commission (NRC) has noted this trend in the U.S. nuclear power industry and will be working to ensure that the effectiveness and reliability of component inspections is not compromised by this transition. Currently, specific concerns are associated with 1) obtaining a fundamental understanding of how inspection effectiveness and reliability may be impacted by this transition and 2) ensuring training standards and qualifications remain compatible with modern industrial radiographic practice. This paper discusses recent trends in industrial radiography and assesses their advantages and disadvantages from the perspective of nuclear power plant component inspections.

  2. Sodium-23 and potassium-39 nuclear magnetic resonance relaxation in eye lens. Examples of quadrupole ion magnetic relaxation in a crowded protein environment.

    PubMed Central

    Stevens, A; Paschalis, P; Schleich, T

    1992-01-01

    Single and multiple quantum nuclear magnetic resonance (NMR) spectroscopic techniques were used to investigate the motional dynamics of sodium and potassium ions in concentrated protein solution, represented in this study by cortical and nuclear bovine lens tissue homogenates. Both ions displayed homogeneous biexponential magnetic relaxation behavior. Furthermore, the NMR relaxation behavior of these ions in lens homogenates was consistent either with a model that assumed the occurrence of two predominant ionic populations, "free" and "bound," in fast exchange with each other or with a model that assumed an asymmetric Gaussian distribution of correlation times. Regardless of the model employed, both ions were found to occur in a predominantly "free" or "unbound" rapidly reorienting state. The fraction of "bound" 23Na+, assuming a discrete two-site model, was approximately 0.006 and 0.017 for cortical and nuclear homogenates, respectively. Corresponding values for 39K+ were 0.003 and 0.007, respectively. Estimated values for the fraction of "bound" 23Na+ or 39K+ obtained from the distribution model (tau C greater than omega L-1) were less than or equal to 0.05 for all cases examined. The correlation times of the "bound" ions, derived using either a two-site or distribution model, yielded values that were at least one order of magnitude smaller than the reorientational motion of the constituent lens proteins. This observation implies that the apparent correlation time for ion binding is dominated by processes other than protein reorientational motion, most likely fast exchange between "free" and "bound" environments. The results of NMR visibility studies were consistent with the above findings, in agreement with other studies performed by non-NMR methods. These studies, in combination with those presented in the literature, suggest that the most likely role for sodium and potassium ions in the lens appears to be the regulation of cell volume by affecting the

  3. Dynamic use of geoscience information to develop scientific understanding for a nuclear waste repository

    SciTech Connect

    Cook, N.G.W.; Tsang, C.F.

    1990-01-01

    The development and safety evaluation of a nuclear waste geologic repository require a proper scientific understanding of the site response. Such scientific understanding depends on information from a number of geoscience disciplines, including geology, geophysics, geochemistry, geomechanics and hydrogeology. The information comes in four stages: (1) general regional survey data base, (2) surface-based testing, (3) exploratory shaft testing, and (4) repository construction and evaluation. A discussion is given on the dynamic use of the information through the different stages. We point out the need for abstracting, deriving and updating a quantitative spatial and process model (QSPM) to develop a scientific understanding of site responses as a crucial element in the dynamic procedure. 2 figs.

  4. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1999-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)

  5. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1998-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Penning-Malmberg trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Penning-Malmberg traps. (ATHENA Collaboration.)

  6. Combined Panofsky Quadrupole & Corrector Dipole

    SciTech Connect

    George Biallas; Nathan Belcher; David Douglas; Tommy Hiatt; Kevin Jordan

    2007-07-02

    Two styles of Panofsky Quadrupoles with integral corrector dipole windings are in use in the electron beam line of the Free Electron Laser at Jefferson Lab. We combined steering and focusing functions into single magnets, adding hundreds of Gauss-cm dipole corrector capability to existing quadrupoles because space is at a premium along the beam line. Superposing a one part in 100 dipole corrector field on a 1 part in 1000, weak (600 to 1000 Gauss) quadrupole is possible because the parallel slab iron yoke of the Panofsky Quadrupole acts as a window frame style dipole yoke. The dipole field is formed when two electrically floating “current sources”, designed and made at JLab, add and subtract current from the two opposite quadrupole current sheet windings parallel to the dipole field direction. The current sources also drive auxiliary coils at the yoke’s inner corners that improve the dipole field. Magnet measurements yielded the control system field maps that characterize the two types of fields. Field analysis using TOSCA, construction and wiring details, magnet measurements and reference for the current source are presented.

  7. Global Survey of the Concepts and Understanding of the Interfaces Between Nuclear Safety, Security, and Safeguards

    SciTech Connect

    Kovacic, Don N.; Stewart, Scott; Erickson, Alexa R.; Ford, Kerrie D.; Mladineo, Stephen V.

    2015-07-15

    There is increasing global discourse on how the elements of nuclear safety, security, and safeguards can be most effectively implemented in nuclear power programs. While each element is separate and unique, they must nevertheless all be addressed in a country’s laws and implemented via regulations and in facility operations. This topic is of particular interest to countries that are currently developing the infrastructure to support nuclear power programs. These countries want to better understand what is required by these elements and how they can manage the interfaces between them and take advantages of any synergies that may exist. They need practical examples and guidance in this area in order to develop better organizational strategies and technical capacities. This could simplify their legal, regulatory, and management structures and avoid inefficient approaches and costly mistakes that may not be apparent to them at this early stage of development. From the perspective of IAEA International Safeguards, supporting Member States in exploring such interfaces and synergies provides a benefit to them because it acknowledges that domestic safeguards in a country do not exist in a vacuum. Instead, it relies on a strong State System of Accounting and Control that is in turn dependent on a capable and independent regulatory body as well as a competent operator and technical staff. These organizations must account for and control nuclear material, communicate effectively, and manage and transmit complete and correct information to the IAEA in a timely manner. This, while in most cases also being responsible for the safety and security of their facilities. Seeking efficiencies in this process benefits international safeguards and nonproliferation. This paper will present the results of a global survey of current and anticipated approaches and practices by countries and organizations with current or future nuclear power programs on how they are implementing, or

  8. Impact Hazard Mitigation: Understanding the Effects of Nuclear Explosive Outputs on Comets and Asteroids

    NASA Astrophysics Data System (ADS)

    Clement, R.

    The NASA 2007 white paper "Near-Earth Object Survey and Deflection Analysis of Alternatives" affirms deflection as the safest and most effective means of potentially hazardous object (PHO) impact prevention. It also calls for further studies of object deflection. In principle, deflection of a PHO may be accomplished by using kinetic impactors, chemical explosives, gravity tractors, solar sails, or nuclear munitions. Of the sudden impulse options, nuclear munitions are by far the most efficient in terms of yield-per-unit-mass launched and are technically mature. However, there are still significant questions about the response of a comet or asteroid to a nuclear burst. Recent and ongoing observational and experimental work is revolutionizing our understanding of the physical and chemical properties of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). The combination of this improved understanding of small solar-system bodies combined with current state-of-the-art modeling and simulation capabilities, which have also improved dramatically in recent years, allow for a science-based, comprehensive study of PHO mitigation techniques. Here we present an examination of the effects of radiation from a nuclear explosion on potentially hazardous asteroids and comets through Monte Carlo N-Particle code (MCNP) simulation techniques. MCNP is a general-purpose particle transport code commonly used to model neutron, photon, and electron transport for medical physics, reactor design and safety, accelerator target and detector design, and a variety of other applications including modeling the propagation of epithermal neutrons through the Martian regolith (Prettyman 2002). It is a massively parallel code that can conduct simulations in 1-3 dimensions, complicated geometries, and with extremely powerful variance reduction techniques. It uses current nuclear cross section data, where available, and fills in the gaps with analytical models where data

  9. Impact hazard mitigation: understanding the effects of nuclear explosive outputs on comets and asteroids

    SciTech Connect

    Clement, Ralph R C; Plesko, Catherine S; Bradley, Paul A; Conlon, Leann M

    2009-01-01

    The NASA 2007 white paper ''Near-Earth Object Survey and Deflection Analysis of Alternatives'' affirms deflection as the safest and most effective means of potentially hazardous object (PHO) impact prevention. It also calls for further studies of object deflection. In principle, deflection of a PHO may be accomplished by using kinetic impactors, chemical explosives, gravity tractors, solar sails, or nuclear munitions. Of the sudden impulse options, nuclear munitions are by far the most efficient in terms of yield-per-unit-mass launched and are technically mature. However, there are still significant questions about the response of a comet or asteroid to a nuclear burst. Recent and ongoing observational and experimental work is revolutionizing our understanding of the physical and chemical properties of these bodies (e.g ., Ryan (2000) Fujiwara et al. (2006), and Jedicke et al. (2006)). The combination of this improved understanding of small solar-system bodies combined with current state-of-the-art modeling and simulation capabilities, which have also improved dramatically in recent years, allow for a science-based, comprehensive study of PHO mitigation techniques. Here we present an examination of the effects of radiation from a nuclear explosion on potentially hazardous asteroids and comets through Monte Carlo N-Particle code (MCNP) simulation techniques. MCNP is a general-purpose particle transport code commonly used to model neutron, photon, and electron transport for medical physics reactor design and safety, accelerator target and detector design, and a variety of other applications including modeling the propagation of epithermal neutrons through the Martian regolith (Prettyman 2002). It is a massively parallel code that can conduct simulations in 1-3 dimensions, complicated geometries, and with extremely powerful variance reduction techniques. It uses current nuclear cross section data, where available, and fills in the gaps with analytical models where

  10. Quadrupole interactions in tetraoxoferrates (VI)

    NASA Astrophysics Data System (ADS)

    Dedushenko, Sergey K.; Perfiliev, Yurii D.; Rusakov, Vyacheslav S.; Gapochka, Alexei M.

    2013-05-01

    An applicability of the point charge approach for calculations of quadrupole splittings in Mössbauer spectra of ferrates(VI) was studied. The reasonable correlation between calculated and experimental splittings was observed for the majority of ferrates excepting K3Na(FeO4)2. The comparison of ferrates and chromates was made using calculated nucleus independent coefficient.

  11. Quadrupole magnets for the SSC

    SciTech Connect

    Lietzke, A.; Barale, P.; Benjegerdes, R.; Caspi, S.; Cortella, J.; Dell`Orco, D.; Gilbert, W.; Green, M.I.; Mirk, K.; Peters, C.; Scanlan, R.; Taylor, C.E.; Wandesforde, A.

    1992-08-01

    At LBL, we have designed, constructed, and tested ten models (4-1meter, 6-5meter) of the Superconducting Super Collider (SSC) main-ring 5 meter focusing quadrupole magnet (211Tesla/meter). The results of this program are herein summarized.

  12. LCLS Undulator Quadrupole Fiducialization Plan

    SciTech Connect

    Wolf, Zachary; Levashov, Michael; Lundahl, Eric; Reese, Ed; LeCocq, Catherine; Ruland, Robert; /SLAC

    2010-11-24

    This note presents the fiducialization plan for the LCLS undulator quadrupoles. The note begins by summarizing the requirements for the fiducialization. A discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage formats are presented. The LCLS is made up of 33 assemblies consisting of an undulator, quadrupole, beam finder wire, and other components mounted on a girder. The components must be mounted in such a way that the beam passes down the axis of each component. In this note, we describe how the ideal beam axis is related to tooling balls on the quadrupole. This step, called fiducialization, is necessary because the ideal beam axis is determined magnetically, whereas tangible objects must be used to locate the quadrupole. The note begins with the list of fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a discussion of the methods used to perform the fiducialization and the methods used to check the results. A detailed fiducialization plan is presented in which all the steps of fiducialization are enumerated. A discussion of the resulting data files and directory structure concludes the note.

  13. Understanding Earthquake Processes in the Central and Eastern US and Implications for Nuclear Reactor Safety

    NASA Astrophysics Data System (ADS)

    Seber, D.; Tabatabai, S.

    2012-12-01

    All of the early site permits and new reactor licensing applications, which have been submitted to the U.S. Nuclear Regulatory Commission (U.S. NRC), are located in the Central and Eastern United States (CEUS). Furthermore, among the 104 commercial nuclear power plants (NPPs) already licensed to operate in the US, 96 are located in the CEUS. While there are many considerations in siting commercial NPPs, the perceived lower seismic hazard in the CEUS compared to the Western United States is one of the reasons why the majority of operating and potential future nuclear reactors are located in the CEUS. However, one important criterion used in the licensing and safe operation of a nuclear power plant is its seismic design basis, which establishes the plant's ability to withstand ground motions produced by moderate- to large-sized earthquakes without suffering any damage to its critical safety related structures, systems, and components. The seismic design basis for a NPP is site specific and determined using up-to-date knowledge and information about seismic sources surrounding the site and seismic wave propagation characteristics. Therefore, an in-depth understanding of the processes generating earthquakes (tectonic or man-made) and the seismic wave propagation characteristics in the CEUS is crucial. The U.S. NRC's seismic review process for evaluating new reactor siting applications heavily relies upon up-to-date scientific knowledge of seismic sources within at least 320 km of a proposed site. However, the availability of up-to-date knowledge and information about potential seismic sources in low-seismicity regions is limited and relevant data are sparse. Recently, the NRC participated in a joint effort to develop new seismic source models to be used in the CEUS seismic hazard studies for nuclear facilities. In addition, efforts are underway to better understand the seismic potential of the Eastern Tennessee Seismic Zone. While very large and successful scientific

  14. RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.

    2004-10-03

    Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.

  15. Analytic formula for quadrupole-quadrupole matrix elements

    NASA Astrophysics Data System (ADS)

    Rosensteel, G.

    1990-12-01

    An analytic formula is reported for general matrix elements of the microscopic quadrupole-quadrupole operator in the U(3)-boson approximation. The complete infinite-dimensional basis of A-fermion wave functions is compatible with the harmonic-oscillator shell model and consists of np-nh configurations, with spurious center-of-mass excitations removed, which are symmetry adapted to the Elliott U(3) and symplectic Sp(3,R) models. The formula expresses the general Q2.Q2 matrix element with respect to this complete orthonormal basis as a Racah SU(3) U coefficient times a closed-shell matrix element. An oscillator closed-shell matrix element of Q2.Q2 is a square root of a rational function of the integer quantum numbers of the U(3) basis.

  16. Microstructural Examination to Aid in Understanding Friction Bonding Fabrication Technique for Monolithic Nuclear Fuel

    SciTech Connect

    Karen L. Shropshire

    2008-04-01

    Monolithic nuclear fuel is currently being developed for use in research reactors, and friction bonding (FB) is a technique being developed to help in this fuel’s fabrication. Since both FB and monolithic fuel are new concepts, research is needed to understand the impact of varying FB fabrication parameters on fuel plate characteristics. This thesis research provides insight into the FB process and its application to the monolithic fuel design by recognizing and understanding the microstructural effects of varying fabrication parameters (a) FB tool load, and (b) FB tool face alloy. These two fabrication parameters help drive material temperature during fabrication, and thus the material properties, bond strength, and possible formation of interface reaction layers. This study analyzed temperatures and tool loads measured during those FB processes and examined microstructural characteristics of materials and bonds in samples taken from the resulting fuel plates. This study shows that higher tool load increases aluminum plasticization and forging during FB, and that the tool face alloy helps determine the tool’s heat extraction efficacy. The study concludes that successful aluminum bonds can be attained in fuel plates using a wide range of FB tool loads. The range of tool loads yielding successful uranium-aluminum bonding was not established, but it was demonstrated that such bonding can be attained with FB tool load of 48,900 N (11,000 lbf) when using a FB tool faced with a tungsten alloy. This tool successfully performed FB, and with better results than tools faced with other materials. Results of this study correlate well with results reported for similar aluminum bonding techniques. This study’s results also provide support and validation for other nuclear fuel development studies and conclusions. Recommendations are offered for further research.

  17. Extreme quadrupole deformation and clusterization

    NASA Astrophysics Data System (ADS)

    Darai, J.; Cseh, J.; Adamian, G.; Antonenko, N.

    2012-12-01

    We discuss a simple symmetry-adapted method for the determination of the shape isomers, and for the study of their possible fragmentation. In other words the connection between the quadrupole (collective) and dipole (cluster) degrees of freedom is considered in terms of an easily applicable, yet microscopic method. The energetics is taken into account by the double-folding method. Special attention is focused on those cases in which the theoretical predictions have a direct comparison with experimental observation.

  18. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  19. Understanding and Managing Aging of Spent Nuclear Fuel and Facility Components in Wet Storage

    SciTech Connect

    Johnson, A. Burton

    2007-07-01

    Storage of nuclear fuel after it has been discharged from reactors has become the leading spent fuel management option. Many storage facilities are being required to operate longer than originally anticipated. Aging is a term that has emerged to focus attention on the consequences of extended operation on systems, structures, and components that comprise the storage facilities. The key to mitigation of age-related degradation in storage facilities is to implement effective strategies to understand and manage aging of the facility materials. A systematic approach to preclude serious effects of age-related degradation is addressed in this paper, directed principally to smaller facilities (test and research reactors). The first need is to assess the materials that comprise the facility and the environments that they are subject to. Access to historical data on facility design, fabrication, and operation can facilitate assessment of expected materials performance. Methods to assess the current condition of facility materials are summarized in the paper. Each facility needs an aging management plan to define the scope of the management program, involving identification of the materials that need specific actions to manage age-related degradation. For each material identified, one or more aging management programs are developed and become part of the plan Several national and international organizations have invested in development of comprehensive and systematic approaches to aging management. A method developed by the US Nuclear Regulatory Commission is recommended as a concise template to organize measures to effectively manage age-related degradation of storage facility materials, including the scope of inspection, surveillance, and maintenance that is needed to assure successful operation of the facility over its required life. Important to effective aging management is a staff that is alert for evidence of materials degradation and committed to carry out the aging

  20. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1989-03-01

    Twenty-three laced permanent magnet quadrupole drift tube magnets have been constructed, tested, and installed in the SuperHILAC heavy ion linear accelerator at LBL, marking the first accelerator use of this new type of quadrupole. The magnets consist of conventional tape-wound quadrupole electromagnets, using iron pole-pieces, with permanent magnet material (samarium cobalt) inserted between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the individual quadrupole magnets in a drift tube linac is never reversed, we can take advantage of this asymmetrical saturation to provide about 20% greater focusing strength than is available with conventional quadrupoles, while replacing the vanadium permendur poletips with iron poletips. Comparisons between these magnets and conventional tape-wound quadrupoles will be presented. 3 refs., 5 figs.

  1. Current Understanding and Remaining Challenges in Modeling Long-Term Degradation of Borosilicate Nuclear Waste Glasses

    SciTech Connect

    Vienna, John D.; Ryan, Joseph V.; Gin, Stephane; Inagaki, Yaohiro

    2013-12-01

    Chemical durability is not a single material property that can be uniquely measured. Instead it is the response to a host of coupled material and environmental processes whose rates are estimated by a combination of theory, experiment, and modeling. High-level nuclear waste (HLW) glass is perhaps the most studied of any material yet there remain significant technical gaps regarding their chemical durability. The phenomena affecting the long-term performance of HLW glasses in their disposal environment include surface reactions, transport properties to and from the reacting glass surface, and ion exchange between the solid glass and the surrounding solution and alteration products. The rates of these processes are strongly influenced and are coupled through the solution chemistry, which is in turn influenced by the reacting glass and also by reaction with the near-field materials and precipitation of alteration products. Therefore, those processes must be understood sufficiently well to estimate or bound the performance of HLW glass in its disposal environment over geologic time-scales. This article summarizes the current state of understanding of surface reactions, transport properties, and ion exchange along with the near-field materials and alteration products influences on solution chemistry and glass reaction rates. Also summarized are the remaining technical gaps along with recommended approaches to fill those technical gaps.

  2. Quadrupole scattering in PrAl2

    NASA Astrophysics Data System (ADS)

    Sablik, M. J.; Pureur, P.; Creuzet, G.; Fert, A.; Levy, P. M.

    1983-10-01

    We derive the spontaneous anisotropy of the resistivity of the ferromagnetic compound PrAl2 from magnetoresistance measurements on a single crystal of PrAl2. We ascribe this spontaneous anisotropy of the resistivity to scattering of the conduction electrons by the thermal quadrupole disorder and we account for our experimental results by using the theoretical model previously developed by us. We find that quadrupole scattering gives a very important contribution to the total magnetic disorder (spin and quadrupole) resistivity but that only a small part of this quadrupole contribution is anisotropic.

  3. Magnetic properties of ISABELLE superconducting quadrupoles

    SciTech Connect

    Willen, E; Engelmann, R; Greene, A F; Herrera, J; Jaeger, K; Kirk, H; Robins, K

    1981-01-01

    A number of superconducting quadrupole magnets have been constructed in the ISABELLE project during the past year. With these quadrupoles, it was intended to test construction techniques, magnet performance and measuring capability in an effort to arrive at a quadrupole design satisfactory for use in the storage ring accelerator. While these magnets are designed to have dimensions and field properties close to those needed for regular cell ISABELLE quadrupoles, no effort was made to make them identical to one another. This report details the performance characteristics of one of these magnets, MQ3005.

  4. Understanding Nuclear Weapons and Arms Control: A Guide to the Issues. New Edition.

    ERIC Educational Resources Information Center

    Mayers, Teena

    Intended for secondary and college level students and teachers, this guide discusses the nuclear arms control issue. There are four sections. Section I discusses U.S. nuclear strategy from 1945 to the present, strategic nuclear weapons competition between the United States and the Union of Soviet Socialist Republics (U.S.S.R.), U.S.…

  5. Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms

    NASA Astrophysics Data System (ADS)

    Ji, Chen; Hernandez, Oscar Javier; Nevo Dinur, Nir; Bacca, Sonia; Barnea, Nir

    2016-03-01

    We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.

  6. A Vibrating Wire System For Quadrupole Fiducialization

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  7. Hyperfine-induced quadrupole moments of alkali-metal-atom ground states and their implications for atomic clocks

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei

    2016-01-01

    Spherically symmetric ground states of alkali-metal atoms do not posses electric quadrupole moments. However, the hyperfine interaction between nuclear moments and atomic electrons distorts the spherical symmetry of electronic clouds and leads to nonvanishing atomic quadrupole moments. We evaluate these hyperfine-induced quadrupole moments using techniques of relativistic many-body theory and compile results for Li, Na, K, Rb, and Cs atoms. For heavy atoms we find that the hyperfine-induced quadrupole moments are strongly (two orders of magnitude) enhanced by correlation effects. We further apply the results of the calculation to microwave atomic clocks where the coupling of atomic quadrupole moments to gradients of electric fields leads to clock frequency uncertainties. We show that for 133Cs atomic clocks, the spatial gradients of electric fields must be smaller than 30 V /cm2 to guarantee fractional inaccuracies below 10-16.

  8. Beta function measurement in the Tevatron using quadrupole gradient modulation

    SciTech Connect

    Jansson, A.; Lebrun, P.; Volk, J.T.; /Fermilab

    2005-05-01

    Early in Run2, there was an effort to compare the different emittance measurements in the Tevatron (flying wires and synchrotron light) and understand the origin of the observed differences. To measure the beta function at a few key locations near the instruments, air-core quadrupoles were installed. By modulating the gradient of these magnets and measuring the effect on the tune, the lattice parameters can be extracted. Initially, the results seem to disagree with other methods. At the time, the lattice was strongly coupled due to a skew component in the main dipoles, caused by sagging of the cryostat. After a large fraction of the superconducting magnets were shimmed to remove a strong skew quadrupole component, the results now agree with the theoretical values to within 20%.

  9. A Crowdsourced nucleus: Understanding nuclear organization in terms of dynamically networked protein function

    PubMed Central

    Wood, Ashley M.; Garza-Gongora, Arturo G.; Kosak, Steven T.

    2014-01-01

    The spatial organization of the nucleus results in a compartmentalized structure that affects all aspects of nuclear function. This compartmentalization involves genome organization as well as the formation of nuclear bodies and plays a role in many functions, including gene regulation, genome stability, replication, and RNA processing. Here we review the recent findings associated with the spatial organization of the nucleus and reveal that a common theme for nuclear proteins is their ability to participate in a variety of functions and pathways. We consider this multiplicity of function in terms of Crowdsourcing, a recent phenomenon in the world of information technology, and suggest that this model provides a novel way to synthesize the many intersections between nuclear organization and function. PMID:24412853

  10. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    SciTech Connect

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  11. Holes in the Nuclear Membrane as an Illustration of Gaps in the Understanding of the Biology by Biologists.

    PubMed

    Kuvichkin, Vasily

    2015-08-01

    At the moment, the conditions are in place to describe how to construct nuclear pores and how they work, missing only real understanding of process. The DNA-RNA-protein paradigm proposed by Crick 53 years ago (Symp Soc Exp Biol 12:138-163, 1958; Nature 227:561-563, 1970) severely hampers our understanding of nuclear pore structure and assembly because the problem lies outside paradigm. DNA in this scheme only plays the role of information storage from which information is transferred to RNA, then from RNA to proteins after which proteins perform all of the functions in the cell. Although it is known that DNA is able to build nucleosomes in vivo, many in vitro structures types of origami (Rothemund, Nature 440:297-302, 2006), the DNA is considered to be exotic as structural material for cells. The structural role of RNA is difficult to ignore, in connections with their participation in structures of ribosomes, ribonucleoproteins, and ribozymes, but imagine that DNA performs an important structural role in the cell is impossible in opinion of many authors. So, when there was a problem in explaining the origin of the nuclear pore, all efforts of biologists were directed to proteins such as nucleoporins, especially when taking into account that there are 30 nucleoporins and only one DNA. Here, I try to explain the typical mistakes of the old approach to such a complex problem as nuclear pore structure and assembly. PMID:25758231

  12. Interrelations between the pairing and quadrupole interactions in the microscopic Shell Model

    NASA Astrophysics Data System (ADS)

    Drumev, K. P.; Georgieva, A. I.

    2016-01-01

    We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott's SU(3) basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3) basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  13. A Comparative Time Differential Perturbed Angular Correlation Study of the Nuclear Quadrupole Interaction in HfF4·HF·2H2O Using 180mHf and 181Hf(β-)181Ta as Nuclear Probes: Is Ta an Innocent Spy?

    NASA Astrophysics Data System (ADS)

    Butz, Tilman; Das, Satyendra K.; Manzhur, Yurij

    2009-02-01

    We report on a comparative study of the nuclear quadrupole interaction of the nuclear probes 180mHf and 181Hf(β -)181Ta in HfF4・HF・2H2O using time differential perturbed angular correlations (TDPAC) at 300 K. For the first probe, assuming a Lorentzian frequency distribution, we obtained ωQ= 103(4) Mrad/s, an asymmetry parameter η = 0.68(3), a linewidth δ = 7.3(3.9)%, and full anisotropy within experimental accuracy. For the second probe, assuming a Lorentzian frequency distribution, we obtained three fractions: (1) with 56.5(7)%, ωQ= 126.64(4) Mrad/s and η = 0.9241(4) with a rather small distribution δ = 0.40(8)% which is attributed to HfF4・HF・2H2O; (2) with 4.6(4)%, ωQ = 161.7(3) Mrad/s and η = 0.761(4) assuming no line broadening which is tentatively attributed to a small admixture of Hf2OF6・H2O; (3) the remainder of 39.0(7)% accounts for a rapid loss of anisotropy and is modelled by a perturbation function with a sharp frequency multiplied by an exponential factor exp(-λ t) with λ = 0.55(2) ns-1. Whereas the small admixture of Hf2OF6・H2O escapes detection by the 180mHf probe, there is no rapid loss of roughly half the anisotropy as is the case with 181Hf(β -)181Ta. This loss could in principle be due to fluctuating electric field gradients originating from movements of nearest neighbour HF adducts and/or H2O molecules after nuclear transmutation to the foreign atom Ta which are absent for the isomeric probe. Alternatively, paramagnetic Ta ions could lead to fluctuating magnetic dipole fields which, when combined with fluctuating electric field gradients, could also lead to a rapid loss of anisotropy. In any case, Ta is not an "innocent spy" in this compound. Although 180mHf is not a convenient probe for conventional spectrometers, the use of fast digitizers and software coincidences would allow to use all γ -quanta in the stretched cascade which would greatly improve the efficiency of the spectrometer. 180mHf could also serve as a Pu

  14. Study of a soft quadrupole excitation in the nucleus [sup 11]Li: A phase space model of neutron halo nuclei

    SciTech Connect

    Yanhuang, C.; Smerzi, A.; Di Toro, M. , P.O. Box 8730, Beijing, 100080 Institute of Nuclear Research, Academia Sinica, P.O. Box 800204, Shanghai 201800 INFN-Laboratorio Nazionale del Sud and Dipartimento di Fisica, 57, Corso Italia, 95129 Catania )

    1994-12-01

    Quadrupole excitations in the nucleus [sup 11]Li have been studied in a semiclassical framework using the nuclear Vlasov equation solved with the test particle method. A soft mode of quadrupole excitation located around 2 MeV is found. The strength (in percentage of the energy-weighted sum rule) exhausted in such a soft quadrupole excitation region is very sensitive to the extension of the neutron halo in the nucleus [sup 11]Li. The results are discussed in comparison with other recent calculations. The use of the collective response to tune phase-space models of neutron excess nuclei to be used in collision dynamics is finally stressed.

  15. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  16. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  17. Nonuniform radiation damage in permanent magnet quadrupoles.

    PubMed

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components. PMID:25173260

  18. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, Alfred W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelarating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome.

  19. Klystron having electrostatic quadrupole focusing arrangement

    DOEpatents

    Maschke, A.W.

    1983-08-30

    A klystron includes a source for emitting at least one electron beam, and an accelerator for accelerating the beam in a given direction through a number of drift tube sections successively aligned relative to one another in the direction of the beam. A number of electrostatic quadrupole arrays are successively aligned relative to one another along at least one of the drift tube sections in the beam direction for focusing the electron beam. Each of the electrostatic quadrupole arrays forms a different quadrupole for each electron beam. Two or more electron beams can be maintained in parallel relationship by the quadrupole arrays, thereby enabling space charge limitations encountered with conventional single beam klystrons to be overcome. 4 figs.

  20. Radiofrequency quadrupole accelerators and their applications

    SciTech Connect

    Stokes, R.H.; Wangler, T.P.

    1988-01-01

    This review of Radiofrequency Quadrupole (RFQ) Acelerators contains a short history of Soviet and Los Alamos RFQ developments, RFQ beam dynamics, resonator structures, and the characteristics and performance of RFQ accelerators. (AIP)

  1. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  2. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  3. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  4. Quadrupole magnet field mapping for FRIB

    NASA Astrophysics Data System (ADS)

    Portillo, M.; Amthor, A. M.; Chouhan, S.; Cooper, K.; Gehring, A.; Hausmann, M.; Hitchcock, S.; Kwarsick, J.; Manikonda, S.; Sumithrarachchi, C.

    2013-12-01

    Extensive magnetic field map measurements have been done on a newly built superconducting quadrupole triplet with sextupole and octupole coils nested within every quadrupole. The magnetic field multipole composition and fringe field distributions have been analyzed and an improved parameterization of the field has been developed within the beam transport simulation framework. Parameter fits yielding standard deviations as low as 0.3% between measured and modeled values are reported here.

  5. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  6. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  7. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs.

  8. A Science-Based Approach to Understanding Waste Form Durability in Open and Closed Nuclear Fuel Cycles

    SciTech Connect

    M.T. Peters; R.C. Ewing

    2006-06-22

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U{sup 6+}-secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behavior of the source term over long time periods (greater than 10{sup 5} years). Such a fundamental and integrated experimental and modeling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms ''tailored'' to specific geologic settings.

  9. A science-based approach to understanding waste form durability in open and closed nuclear fuel cycles

    NASA Astrophysics Data System (ADS)

    Peters, M. T.; Ewing, R. C.

    2007-05-01

    There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U6+-secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behaviour of the source term over long time periods (greater than 105 years). Such a fundamental and integrated experimental and modelling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms 'tailored' to specific geologic settings.

  10. A coherent understanding of low-energy nuclear recoils in liquid xenon

    SciTech Connect

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (∼<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  11. Application of Nuclear Microprobes towards Understanding Complex Ore Geo-electrochemistry

    NASA Astrophysics Data System (ADS)

    Laird, J. S.; Szymanski, R.; Large, R.; Ryan, C. G.

    2012-10-01

    We report on recent development on the CSIRO Nuclear Microprobe (NMP) towards catering for long exposure mapping required for large area scanning. A new data collection system based on Labview FPGA highly co-ordinated with beam transport sits at the heart of the upgrade. These upgrades are discussed and an example of the systems use for μ-Particle Induced X-ray Emission (PIXE) analysis in the area of complex ore geo-electrochemistry is briefly described.

  12. Collective states of odd nuclei in a model with quadrupole-octupole degrees of freedom

    SciTech Connect

    Minkov, N. Drenska, S. B.; Yotov, P.; Bonatsos, D. Scheid, W.

    2007-08-15

    We apply the collective axial quadrupole-octupole Hamiltonian to describe the rotation-vibration motion of odd nuclei with Coriolis coupling between the even-even core and the unpaired nucleon.We consider that the core oscillates coherently with respect to the quadrupole and octupole axialdeformation variables. The coupling between the core and the unpaired nucleon provides a split paritydoublet structure of the spectrum. The formalism successfully reproduces the parity-doublet splitting in a wide range of odd-A nuclei. It provides model estimations for the third angular-momentum projection K on the intrinsic symmetry axis and the related intrinsic nuclear structure.

  13. Robust correlations between quadrupole moments of low-lying 2+ states within random-interaction ensembles

    NASA Astrophysics Data System (ADS)

    Lei, Y.

    2016-02-01

    In random-interaction ensembles, three proportional correlations between quadrupole moments of the first two Iπ=2+ states robustly emerge, including Q (21+) =±Q (22+) correlations previously remarked by a realistic nuclear survey, and the Q (22+) =-3/7 Q (21+) correlation, which is only observed in the s d -boson space. These correlations can be microscopically characterized by the rotational SU(3) symmetry and quadrupole vibrational U(5) limit, respectively, according to the Elliott model and the s d -boson mean-field theory. The anharmonic vibration may be another phenomenological interpretation for the Q (21+) =-Q (22+) correlation, whose spectral evidence, however, is insufficient.

  14. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    2009-06-01

    Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

  15. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  16. Transport properties of a discrete helical electrostatic quadrupole

    SciTech Connect

    Meitzler, C.R.; Antes, K.; Datte, P.; Huson, F.R. ); Xiu, L. . Inst. for Beam Particle Dynamics)

    1991-01-01

    The helical electrostatic quadrupole (HESQ) lens has been proposed as a low energy beam transport system which permits intense H{sup {minus}} beams to be focused into an RFQ without seriously increasing the beam's emittance. A stepwise continuous HESQ lens has been constructed, and preliminary tests have shown that the structure does provide focusing. In order to understand the transport properties of this device, further detailed studies have been performed. Emittances were measured 3.5 cm from the end of the HESQ at two different voltages on the HESQ electrodes. A comparison of these experimental results with a linear model of the HESQ beam transport is made. 4 refs., 5 figs.

  17. First principles calculations of nucleon and pion form factors: understanding the building blocks of nuclear matter from lattice QCD

    SciTech Connect

    Constantia Alexandrou; Bojan Bistrovic; Robert Edwards; P de Forcrand; George Fleming; Philipp Haegler; John Negele; Konstantinos Orginos; Andrew Pochinsky; Dru Renner; David Richards; Wolfram Schroers; Antonios Tsapalis

    2005-10-01

    Lattice QCD is an essential complement to the current and anticipated DOE-supported experimental program in hadronic physics. In this poster we address several key questions central to our understanding of the building blocks of nuclear matter, nucleons and pions. Firstly, we describe progress at computing the electromagnetic form factors of the nucleon, describing the distribution of charge and current, before considering the role played by the strange quarks. We then describe the study of transition form factors to the Delta resonance. Finally, we present recent work to determine the pion form factor, complementary to the current JLab experimental determination and providing insight into the approach to asymptotic freedom.

  18. Induced CMB quadrupole from pointing offsets

    SciTech Connect

    Moss, Adam; Scott, Douglas; Sigurdson, Kris E-mail: dscott@phas.ubc.ca

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between the pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.

  19. Induced CMB quadrupole from pointing offsets

    NASA Astrophysics Data System (ADS)

    Moss, Adam; Scott, Douglas; Sigurdson, Kris

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between the pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y2, -1 component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.

  20. 14N Chemical Shifts and Quadrupole Coupling Constants of Inorganic Nitrates

    NASA Astrophysics Data System (ADS)

    Marburger, Simon P.; Fung, B. M.; Khitrin, A. K.

    2002-02-01

    The isotropic chemical shift and the nuclear quadrupole coupling constant for 14N were obtained for 14 inorganic nitrates by solid-state MAS NMR measurements at two different field strengths, 9.4 and 11.7 T. The compounds studied were polycrystalline powders of AgNO3, Al(NO3)3, Ba(NO3)2, Ca(NO3)2, CsNO3, KNO3, LiNO3, Mg(NO3)2, NaNO3, Pb(NO3)2, RbNO3, Sr(NO3)2, Th(NO3)4·4H2O, and UO2(NO3)2·3H2O. Even though the spectra show broadening due to 14N quadrupole interactions, linewidths of a few hundred hertz and a good signal-to-noise ratio were achieved. From the position of the central peaks at the two fields, the chemical shifts and the nuclear quadrupole coupling constants were calculated. The chemical shifts for all compounds studied range from 282 to 342 ppm with respect to NH4Cl. The nuclear quadrupole coupling constants range from 429 kHz for AgNO3 to 993 kHz for LiNO3. These data are compared with those available in the literature.

  1. Microwave measurements of cobalt and nitrogen quadrupole coupling in Co(CO)3NO

    NASA Astrophysics Data System (ADS)

    Kukolich, S. G.; Roehrig, M. A.; Haubrich, S. T.; Shea, J. A.

    1991-01-01

    J=2→3, 3→4, 4→5, and 5→6 transitions in the oblate symmetric top molecule cobalt tricarbonyl nitrosyl were measured using a Flygare-Balle type pulsed beam microwave spectrometer. K=0 and K=3 transitions were observed for J=3→4 and 4→5. Hyperfine structure due to 59Co and 14N nuclear quadrupole coupling interactions was well resolved. The measured quadrupole coupling strengths are eQqcc (59Co)=35.14(30) MHz and eQqcc (14N)=-1.59(10). Measured rotation and distortion constants are B0=1042.1590(4) MHz and Dj =0.17(8) kHz. The measured B value is 4% smaller than the B value calculated from electron diffraction data. Spin-rotation and a quadrupole distortion term were also obtained for 59Co.

  2. Use of First Order Reversal Curve Measurements to Understand Barkhausen Noise Emission in Nuclear Steel

    SciTech Connect

    McCloy, John S.; Ramuhalli, Pradeep; Henager, Charles H.

    2013-02-25

    A prototypical ferritic/martensitic alloy, HT-9, of interest to the nuclear materials community was investigated for microstructure effects on Barkhausen noise emission and first-order reversal curve (FORC) analysis for three different heat-treated samples. It was observed that Barkhausen noise emission and reversible component of magnetization, computed from the FORC data, decreased with increasing measured mechanical hardness. The results are discussed in terms of the use of magnetic signatures for use in nondestructive interrogation of radiation damage and other microstructural changes in ferritic/martensitic alloys. FORC analysis is shown to be particularly useful for detailed characterization of defect density and pinning, which can be correlated to bulk non-destructive evaluation field measurements such as Barkhausen noise emission.

  3. Nuclear, biological, and chemical terrorism: understanding the threat and designing responses.

    PubMed

    Simon, J D

    1999-01-01

    Today nuclear, biological, and chemical (NBC) terrorism is a serious issue. The threat of terrorist or rogue states acquiring and using NBC weapons has ushered in a new age of terrorism; an age that is far more dangerous than any previous period. It is an age of terrorism with which no one yet knows how to deal. This article reviews recent trends in terrorism, and identifies groups that have both the potential and the motive to use weapons of mass destruction. In addition, it discusses the design and implemention of effective measures to meet this threat, as well as the role of CISM teams in preparation for, and in the aftermath of, an incident involving NBC weapons. PMID:11227745

  4. Mechanistic understanding of irradiation-induced corrosion of zirconium alloys in nuclear power plants: Stimuli, status, and outlook

    SciTech Connect

    Johnson, A.B. Jr.; Ishigure, K.; Nechaev, A.F.; Reznichenko, E.A.; Cox, B.; Lemaignan, C.; Petrik, N.G.

    1990-05-01

    Failures in the basic materials used in nuclear power plants continue to be costly and insidious, despite increasing industry vigilance to catch failures before they degrade safety. For instance, the overall costs to the US industry from materials problems could amount to as much as $10 billion annually. Moreover, estimates indicate that the cost of a pipe failure in a nuclear plant is one hundred times greater than the cost of a similar failure in a coal-fired plant. There are important practical stimuli and much scope for further understanding of the effects of irradiation on Zr-alloys (and other materials used in nuclear installations) by careful experimentation. Moreover, these studies need to address the effect of irradiation on all components of heterogeneous systems: the metal, the oxide and the environment, and especially those processes recurring at the interphases between these components. The present paper is aimed at providing specialists with some systematic information on the subject and with important considerations on the key items for further experimentation.

  5. Laboratory automation of a quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Thompson, J. M.

    1983-12-01

    Efforts directed toward interfacing an LSI II bus of a PDP 11/23 desktop computer with a quadrupole mass spectrometer for the purpose of providing a convenient system whereby mass spectral data, of the products of thermal decomposition, may be rapidly acquired and processed under programmed conditions are described. The versatility and operations of the quadrupole mass spectrometer are discussed as well as the procedure for configurating the LSI II bus of the PDP 11/23 desktop computer for interfacing with the quadrupole mass spectrometer system. Data from the mass filter and other units of the spectrometer are digitally transferred to the computer whereupon mass spectral data and related data are generated.

  6. Laboratory Automation of a Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Thompson, J. M.

    1983-01-01

    Efforts directed toward interfacing an LSI II bus of a PDP 11/23 desktop computer with a quadrupole mass spectrometer for the purpose of providing a convenient system whereby mass spectral data, of the products of thermal decomposition, may be rapidly acquired and processed under programmed conditions are described. The versatility and operations of the quadrupole mass spectrometer are discussed as well as the procedure for configurating the LSI II bus of the PDP 11/23 desktop computer for interfacing with the quadrupole mass spectrometer system. Data from the mass filter and other units of the spectrometer are digitally transferred to the computer whereupon mass spectral data and related data are generated.

  7. The large quadrupole of water molecules.

    PubMed

    Niu, Shuqiang; Tan, Ming-Liang; Ichiye, Toshiko

    2011-04-01

    Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical∕molecular mechanical (QM∕MM) calculations at the MP2∕aug-cc-pVQZ level on a B3LYP∕aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM∕MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM∕MM multipoles is much closer than that from the site models to the potential from the QM∕MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment. PMID:21476758

  8. The Large Quadrupole of Water Molecules

    SciTech Connect

    Niu, Shuqiang; Tan, Ming-Liang; Ichiye, Toshhiko

    2011-04-07

    Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical/molecular mechanical (QM/MM) calculations at the MP2/aug-cc-pVQZ level on a B3LYP/aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM/MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM/MM multipoles is much closer than that from the site models to the potential from the QM/MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment

  9. The large quadrupole of water molecules

    NASA Astrophysics Data System (ADS)

    Niu, Shuqiang; Tan, Ming-Liang; Ichiye, Toshiko

    2011-04-01

    Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical/molecular mechanical (QM/MM) calculations at the MP2/aug-cc-pVQZ level on a B3LYP/aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM/MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM/MM multipoles is much closer than that from the site models to the potential from the QM/MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment.

  10. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect

    Çelik, Gültekin; Gökçe, Yasin; Yıldız, Murat

    2014-05-15

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic Hartree–Fock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  11. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS.

    SciTech Connect

    PARKER,B.

    2001-06-18

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing.

  12. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    SciTech Connect

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  13. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media.

    PubMed

    Mitchell, J; Chandrasekera, T C

    2014-12-14

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ante(k) (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries. PMID:25494741

  14. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    SciTech Connect

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-14

    The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{sup k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  15. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-01

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  16. Quantum phase transition in the spherical mean-field plus quadrupole-quadrupole and pairing model in a single-j shell

    NASA Astrophysics Data System (ADS)

    Li, Bo; Pan, Feng; Draayer, J. P.

    2016-04-01

    The quantum-phase-transitional behavior of the spherical shell-model mean field plus the geometric quadrupole-quadrupole and standard pairing model within a single-j shell is analyzed in detail. Various quantities, such as low-lying energy levels, some typical energy ratios, the overlaps of the excited states with those of the corresponding limiting cases, B (E 2 ) values and electric quadrupole moments of some low-lying states and their ratios, as functions of the control parameter of the model in a j =15 /2 shell are calculated as an example, in which only a crossover occurs due to the Pauli exclusion. The results show that there are noticeable changes within the crossover region of the rotation-like to the pair-excitation (superconducting) phase transition, especially in the half-filling case. As an application to realistic nuclear systems, a chain of isotones 212Rn-213Fr-214Ra-215Ac is chosen to be described by the model with valence protons in the 1 h9 /2 shell. As far as the low-lying energy levels, the experimentally observed B (E 2 ) values, and the electric quadrupole moment within the yrast band are concerned, these nuclei seem fitted reasonably well. The results indicate that these nuclei are all within the rotation-like to the pair-excitation phase transition near the crossover point.

  17. Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Schmit, P. F.; Knapp, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.

    2014-10-01

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014), 10.1103/PhysRevLett.113.155003] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  18. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    PubMed

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs. PMID:25375715

  19. Classical toy models for the monopole shift and the quadrupole shift.

    PubMed

    Rose, Katrin; Cottenier, Stefaan

    2012-08-28

    The penetration of s- and p(1/2)-electrons into the atomic nucleus leads to a variety of observable effects. The presence of s-electrons inside the nucleus gives rise to the isotope shift in atomic spectroscopy, and to the isomer shift in Mössbauer spectroscopy. Both well-known phenomena are manifestations of the more general monopole shift. In a recent paper (Koch et al., Phys. Rev. A, 2010, 81, 032507), we discussed the existence of the formally analogous quadrupole shift: a tensor correction to the electric quadrupole interaction due to the penetration of relativistic p(1/2)-electrons into the nucleus. The quadrupole shift is predicted to be observable by high-accuracy molecular spectroscopy on a set of 4 molecules (the quadrupole anomaly). The simple physics behind all these related phenomena is easily obscured by an elaborate mathematical formalism that is required for their derivation: a multipole expansion in combination with perturbation theory, invoking quantum physics and ideally relativity. In the present paper, we take a totally different approach. We consider three classical 'toy models' that can be solved by elementary calculus, and that nevertheless contain all essential physics of the monopole and quadrupole shifts. We hope that this intuitive (yet exact) analysis will increase the understanding about multipole shift phenomena in a broader community. PMID:22782015

  20. Longitudinal tracking of single live cancer cells to understand cell cycle effects of the nuclear export inhibitor, selinexor

    PubMed Central

    Marcus, Joshua M.; Burke, Russell T.; DeSisto, John A.; Landesman, Yosef; Orth, James D.

    2015-01-01

    Longitudinal tracking is a powerful approach to understand the biology of single cells. In cancer therapy, outcome is determined at the molecular and cellular scale, yet relationships between cellular response and cell fate are often unknown. The selective inhibitor of nuclear export, selinexor, is in development for the treatment of various cancers. Selinexor covalently binds exportin-1, causing nuclear sequestration of cargo proteins, including key regulators of the cell cycle and apoptosis. The cell cycle effects of selinexor and the relationships between cell cycle effects and cell fates, has not been described for individual cells. Using fluorescent cell cycle indicators we report the majority of cell death after selinexor treatment occurs from a protracted G1-phase and early S-phase. G1- or early S-phase treated cells show the strongest response and either die or arrest, while those treated in late S- or G2-phase progress to mitosis and divide. Importantly, the progeny of cell divisions also die or arrest, mostly in the next G1-phase. Cells that survive selinexor are negative for multiple proliferation biomarkers, indicating a penetrant, arrested state. Selinexor acts quickly, shows strong cell cycle selectivity, and is highly effective at arresting cell growth and inducing death in cancer-derived cells. PMID:26399741

  1. Nuclear planetology: understanding habitable planets as Galactic bulge stellar remnants (black dwarfs) in a Hertzsprung-Russell (HR) diagram

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2016-04-01

    The Hertzsprung-Russell (HR) diagram is one of the most important diagrams in astronomy. In a HR diagram, the luminosity of stars and/or stellar remnants (white dwarf stars, WD's), relative to the luminosity of the sun, is plotted versus their surface temperatures (Teff). The Earth shows a striking similarity in size (radius ≈ 6.370 km) and Teff of its outer core surface (Teff ≈ 3800 K at the core-mantle-boundary) with old WD's (radius ≈ 6.300 km) like WD0346+246 (Teff ≈ 3820 K after ≈ 12.7 Ga [1]), which plot in the HR diagram close to the low-mass extension of the stellar population or main sequence. In the light of nuclear planetology [2], Earth-like planets are regarded as old, down-cooled and differentiated black dwarfs (Fe-C BLD's) after massive decompression, the most important nuclear reactions involved being 56Fe(γ,α)52Cr (etc.), possibly responsible for extreme terrestrial glaciations events ("snowball" Earth), together with (γ,n), (γ,p) and fusion reactions like 12C(α,γ)16O. The latter reaction might have caused oxidation of the planet from inside out. Nuclear planetology is a new research field, tightly constrained by a coupled 187Re-232Th-238U systematics. By means of nuclear/quantum physics and taking the theory of relativity into account, it aims at understanding the thermal and chemical evolution of Fe-C BLD's after gravitational contraction (e.g. Mercury) or Fermi-pressure controlled collapse (e.g. Earth) events after massive decompression, leading possibly to an r-process event, towards the end of their cooling period [2]. So far and based upon 187Re-232Th-238U nuclear geochronometry, the Fe-C BLD hypothesis can successfully explain the global terrestrial MORB 232Th/238U signature [3]. Thus, it may help to elucidate the DM (depleted mantle), EMI (enriched mantle 1), EMII (enriched mantle 2) or HIMU (high U/Pb) reservoirs, and the 187Os/188Os isotopic dichotomy in Archean magmatic rocks and sediments [4]. Here I present a conceptual

  2. Development of integrated superconducting quadrupole doublet modules for operation in the SIS100 accelerator

    NASA Astrophysics Data System (ADS)

    Meier, J.; Bleile, A.; Ceballos Velasco, J.; Fischer, E.; Hess, G.; Macavei, J.; Spiller, P.

    2015-12-01

    The FAIR project (Facility for Antiproton and Ion Research) evolves and builds an international accelerator- and experimental facility for basic research activities in various fields of modern physics. Within the course of this project, integrated quadrupole doublet modules are in development. The quadrupole doublet modules provide a pair of superconducting main quadrupoles (focusing and defocusing), corrector magnets, cryogenic collimators and beam position monitors as integrated sets of ion-optical elements. Furthermore LHe cooled beam pipes and vacuum cold-warm transitions are used as ultra-high vacuum components for beam transportation. Superconducting bus bars are used for 13 kA current supply of the main quadrupole magnets. All components are integrated as one common cold mass into one cryostat. High temperature super conductor local current leads will be applied for the low current supply of corrector magnets. The quadrupole doublet modules will be operated in the SIS100 heavy ion accelerator, the core component of the FAIR project. A first version of a corrector magnet has already been manufactured at the Joint Institute for Nuclear Research (JINR), Russia, and is now ready for testing. The ion-optical lattice structure of SIS100 requires multiple configurations of named components. Eleven different configurations, organized in four categories, provide the required quadrupole doublet module setups. The high integration level of multiple ion-optical, mechanical and cryogenic functions, based on requirements of operation safety, is leading towards a sophisticated mechanical structure and cooling solution, to satisfy the demanding requirements on position preservation during thermal cycling. The mechanical and cryogenic design solutions will be discussed.

  3. Understanding public responses to chemical, biological, radiological and nuclear incidents--driving factors, emerging themes and research gaps.

    PubMed

    Krieger, Kristian; Amlôt, Richard; Rogers, M Brooke

    2014-11-01

    This paper discusses the management of public responses to incidents involving chemical, biological, radiological and nuclear materials (CBRN). Given the extraordinary technical and operational challenges of a response to a CBRN release including, but not limited to, hazard detection and identification, casualty decontamination and multi-agency co-ordination, it is not surprising that public psychological and behavioural responses to such incidents have received limited attention by scholars and practitioners alike. As a result, a lack of understanding about the role of the public in effective emergency response constitutes a major gap in research and practice. This limitation must be addressed as a CBRN release has the potential to have wide-reaching psychological and behavioural impacts which, in turn, impact upon public morbidity and mortality rates. This paper addresses a number of key issues: why public responses matter; how responses have been conceptualised by practitioners; what factors have been identified as influencing public responses to a CBRN release and similar extreme events, and what further analysis is needed in order to generate a better understanding of public responses to inform the management of public responses to a CBRN release. PMID:24856235

  4. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    SciTech Connect

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently from XEFT predictions to order N3LO.

  5. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE PAGESBeta

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N3LO.« less

  6. Application of the triaxial quadrupole-octupole rotor to the ground and negative-parity levels of actinide nuclei

    NASA Astrophysics Data System (ADS)

    Nadirbekov, M. S.; Minkov, N.; Strecker, M.; Scheid, W.

    2016-03-01

    In this work, we examine the possibility to describe yrast positive- and negative-parity excitations of deformed even-even nuclei through a collective rotation model in which the nuclear surface is characterized by triaxial quadrupole and octupole deformations. The nuclear moments of inertia are expressed as sums of quadrupole and octupole parts. By assuming an adiabatic separation of rotation and vibration degrees of freedom, we suppose that the structure of the positive- and negative-parity bands may be determined by the triaxial-rigid-rotor motion of the nucleus. By diagonalizing the Hamiltonian in a symmetrized rotor basis with embedded parity, we obtain a model description for the yrast positive- and negative-parity bands in several actinide nuclei. We show that the energy displacement between the opposite-parity sequences can be explained as the result of the quadrupole-octupole triaxiality.

  7. Muonic x-ray measurement of the monopole and quadrupole charge parameters of 154-158,160Gd

    NASA Astrophysics Data System (ADS)

    Laubacher, D. B.; Tanaka, Y.; Steffen, R. M.; Shera, E. B.; Hoehn, M. V.

    1983-04-01

    Monopole and quadrupole charge distributions of 154Gd, 155Gd, 156Gd, 157Gd, 158Gd, and 160Gd were investigated by muonic-atom K and L x-ray measurements. The model-independent Barrett charge radii Rk and the isotope shifts ΔRk were measured, and values of and Δ were deduced. A pronounced even-odd staggering effect of the nuclear charge radii was observed for the series 156-158Gd. The quadrupole moments of the first excited states of the even-A Gd nuclei were determined to be Q154(2+)=-1.82(4) e b, Q156(2+)=-1.93(4) e b, Q158(2+)=-2.01(4) e b, and Q160(2+)=-2.08(4) e b, and the quadrupole moments of the 32- ground states of the odd-A 155,157Gd nuclei were determined to be Q155(32-)=1.27(3) e b and Q157(32-)=1.35(3) e b. Comparison with a separate measurement of the odd-A ground-state quadrupole moments based on the static hyperfine splitting of the muonic M x rays showed that the model error in the extracted quadrupole moments of these nuclei is less than 2 percent. The quadrupole moments and the B(E2) values obtained in the present experiment for the low-lying Gd states are in satisfactory agreement with the axially symmetric rotational model. However, the 154Gd nucleus exhibits a considerable softness as indicated by the isomer shift of the 2+ excited state and by the experimental value of the ratio Q(2+)B(E2:0+-->2+). NUCLEAR STRUCTURE 154-158,160Gd; measured muonic x-ray spectra; deduced monopole and quadrupole charge parameters; isotope and isomer shifts.

  8. Permanent-magnet quadrupoles in RFQ Linacs

    SciTech Connect

    Lysenko, W.P.; Wang, T.F.

    1985-10-01

    We investigated the possibility of increasing the current-carrying capability of radio-frequency quadrupole (RFQ) linear accelerators by adding permanentmagnet quadrupole (PMQ) focusing to the existing transverse focusing provided by the rf electric field. Increased transverse focusing would also allow shortening RFQ linacs by permitting a larger accelerating gradient, which is normally accompanied by an undesirable increased transverse rf defocusing effect. We found that PMQs were not helpful in increasing the transverse focusing strength in an RFQ. This conclusion was reached after some particle tracing simulations and some analytical calculations. In our parameter regime, the addition of the magnets increases the betatron frequency but does not result in improved focusing because the increased flutter more than offsets the gain from the increased betatron frequency.

  9. Quench antennas for RHIC quadrupole magnets

    SciTech Connect

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-05-01

    Quench antennas for RHIC quadrupole magnets are being developed jointly by KEK and BNL. A quench antenna is a device to localize a quench origin using arrays of pick-up coils lined up along the magnet bore. Each array contains four pick-up coils: sensitive to normal sextupole, skew sextupole, normal octupole, and skew octupole field. This array configuration allows an azimuthal localization of a quench front while a series of arrays gives an axial localization and a quench propagation velocity. Several antennas have been developed for RHIC magnets and they are now routinely used for quench tests of production magnets. The paper discusses the description of the method and introduces a measured example using an antenna designed for quadrupole magnets.

  10. Muon cooling in a quadrupole magnet channel

    SciTech Connect

    Neuffer, David; Poklonskiy, A.; /Michigan State U.

    2007-10-01

    As discussed before,[1] a cooling channel using quadrupole magnets in a FODO transport channel can be used for initial cooling of muons. In the present note we discuss this possibility of a FODO focusing channel for cooling, and we present ICOOL simulations of muon cooling within a FODO channel. We explore a 1.5m cell-length cooling channel that could be used for the initial transverse cooling stage of a muon collider or neutrino factory.

  11. 15 T And Beyond - Dipoles and Quadrupoles

    SciTech Connect

    Sabbi, GianLuca

    2008-05-19

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R&D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  12. Electrostatic quadrupole DC accelerators for BNCT applications

    SciTech Connect

    Kwan, J.W.; Anderson, O.A.; Reginato, L.L.; Vella, M.C.; Yu, S.S.

    1994-04-01

    A dc electrostatic quadrupole (ESQ) accelerator is capable of producing a 2.5 MeV, 100 mA proton beam for the purpose of generating neutrons for Boron Neutron Capture Therapy. The ESQ accelerator is better than the conventional aperture column in high beam current application due to the presence of stronger transverse field for beam focusing and for suppressing secondary electrons. The major challenge in this type of accelerator is in developing the proper power supply system.

  13. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  14. Photoassociation of a cold-atom-molecule pair: Long-range quadrupole-quadrupole interactions

    SciTech Connect

    Lepers, M.; Dulieu, O.; Kokoouline, V.

    2010-10-15

    The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation of the potential energy between an excited atom (without fine structure) and a ground-state diatomic molecule at large mutual separations. Both partners exhibit a permanent quadrupole moment so that their mutual long-range interaction is dominated by a quadrupole-quadrupole term, which is attractive enough to bind trimers. Numerical results are given for an excited Cs(6{sup 2}P) atom and a ground-state Cs{sub 2} molecule. The prospects for achieving photoassociation of a cold-atom-dimer pair are thus discussed and found promising. The formalism can be generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.

  15. Spatially periodic radio-frequency quadrupole focusing linac

    NASA Astrophysics Data System (ADS)

    Kolomiets, A. A.; Plastun, A. S.

    2015-12-01

    The new design for a spatially periodical rf quadrupole focusing linac is proposed. It consists of accelerating gaps formed between conventional cylindrical drift tubes, between drift tubes and rf quadrupoles with nonzero axial potential, and inside these rf quadrupoles, formed in the same way as in a conventional radio-frequency quadrupole (RFQ) linac with modulated electrodes. Such a combination provides both higher energy gain rate than conventional RFQ and stability of transverse motion for ion beams. The structure can be designed using various combinations of quadrupoles and drift tubes. Some options are considered in the paper using the smooth approximation method and computer simulation of beam dynamics. Transverse stability of particles has been studied. The proposed structure can provide suppression of rf defocusing effects on transverse beam dynamics. Some limitations of the spatially periodic rf quadrupole structure are mentioned.

  16. Ab initio correlated calculations of rare-gas dimer quadrupoles

    NASA Astrophysics Data System (ADS)

    Donchev, Alexander G.

    2007-10-01

    This paper reports ab initio calculations of rare gas ( RG=Kr , Ar, Ne, and He) dimer quadrupoles at the second order of Møller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG2 quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG2 quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG3 quadrupoles is discussed.

  17. Classical Monte Carlo Study for Antiferro Quadrupole Orders in a Diamond Lattice

    NASA Astrophysics Data System (ADS)

    Hattori, Kazumasa; Tsunetsugu, Hirokazu

    2016-09-01

    We investigate antiferro quadrupole orders in a diamond lattice under magnetic fields by Monte Carlo simulations for two types of classical effective models. One is an XY model with Z3 anisotropy, and the other is a two-component ϕ4 model with a third-order anisotropy. We confirm that the universality class of the zero-field transition is that for the three-dimensional XY model. Magnetic field corresponds to a Z3 field in the effective model, and under this field, we find that collinear and canted antiferro-quadrupole orders compete. Each phase is characterized by symmetry breaking in the sector of (sublattice Z2) otimes (reflection Z2 for the order parameter). When Z3 anisotropy and magnetic field vary, it turns out that this system is a good playground for various multicritical points; bicritical and tetracritical points emerge in a finite field. Another important finding is about the scaling of parasitic ferro quadrupole order at the zero-field critical point. This is the secondary order parameter induced by the primary antiferro order, and its critical exponent β' = 0.815 clearly differs from the expected value that is twice the value for the primary order parameter. The corresponding correlation length exponent is also different, ν' = 0.597(12). We also discuss relation of the present effective quadrupole models with the 3-state Potts model as well as implication to understanding of orbital orders in Pr-based 1-2-20 compounds.

  18. Aberrations caused by mechanical misalignments in electrostatic quadrupole lens systems

    NASA Astrophysics Data System (ADS)

    Baranova, L. A.; Read, F. H.

    Image aberrations resulting from small misalignments in quadrupole lenses multiplets have been analysed. Analytical formulas for the coefficients of the beam displacement, astigmatism and coma associated with misalignments in a general quadrupole lens system have been derived. Numerical computations of systems of three and four quadrupole lenses have also been carried out. The aberration figures obtained for systems with and without a mechanical defect are compared. The aberration coefficients that have been obtained can be used for estimating tolerance limits for lens misalignments.

  19. Two methods of computing molecular dipole and quadrupole derivatives

    NASA Astrophysics Data System (ADS)

    Lazzeretti, P.; Zanasi, R.; Fowler, P. W.

    1988-01-01

    Polarized basis sets are used to compute dipole and quadrupole derivatives of the hydrides LiH, CH4, NH3, H2O, and HF. Analytic calculation of derivatives is compared with calculation via the dipole and quadrupole electric shielding tensors. With these basis sets, violation of the Hellmann-Feynman theorem is only about 0.01 a.u. in dipole derivatives and 0.02 a.u. in quadrupole derivatives.

  20. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    SciTech Connect

    Chu Zhe; Lin, W. P.; Yang Xiaofeng E-mail: linwp@shao.ac.cn

    2013-06-20

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  1. Magnetic mirror structure for testing shell-type quadrupole coils

    SciTech Connect

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  2. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  3. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  4. Thermogravimetric-quadrupole mass-spectrometric analysis of geochemical samples.

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Johnson, S. M.

    1972-01-01

    Thermogravimetric-quadrupole mass-spectrometric-analysis techniques can be used to study a wide variety of problems involving decomposition processes and identification of released volatile components. A recording vacuum thermoanalyzer has been coupled with a quadrupole mass spectrometer. The rapid scan capabilities of the quadrupole mass spectrometer are used to identify the gaseous components released. The capability of the thermogravimetric-quadrupole mass spectrometer to provide analytical data for identification of the released volatile components, for determination of their sequence of release and for correlation of thermal-decomposition studies is illustrated by an analysis of the Orgueil carbonaceous chondrite.

  5. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  6. Static Electric Quadrupole Moments in the Ground State and K = 4-1 Bands in 168Er

    NASA Astrophysics Data System (ADS)

    Thakur, P.; Behra, M. S.; Dogra, R.; Bhati, A. K.; Bedi, S. C.

    2002-07-01

    The time differential perturbed angular correlation (TDPAC) technique has been used to study the nuclear quadrupole interactions of the first excited state of ground state rotational band (2+, 80 keV, T1/2 = 1.88 ns) and the band head of the = 41- band (41-,1094 keV, T1/2 = 120 ns) in the 168Er nucleus of a polycrystalline Er host. At room temperature we obtained the electric quadrupole interaction frequencies ω0(K= 0) = 457(15) Mrad/s and ω0(K= 4) = 69(2) Mrad/s, respectively, for the 2+ and 4- isomeric states of 168Er. The ratio of the spectroscopic quadrupole moments, i. e. Qs (K= 4)/Qs (K= 0) = 0.69(3), is independent of any model approximation and the electric field gradient at 168Er in the host metal

  7. Quantum-state tomography for quadrupole nuclei and its application on a two-qubit system

    NASA Astrophysics Data System (ADS)

    Bonk, F. A.; Sarthour, R. S.; Deazevedo, E. R.; Bulnes, J. D.; Mantovani, G. L.; Freitas, J. C.; Bonagamba, T. J.; Guimarães, A. P.; Oliveira, I. S.

    2004-04-01

    A method for performing quantum state tomography for quadrupole nuclei is presented in this paper. First, it is shown that upon appropriate phase cycling, the nuclear-magnetic-resonance (NMR) intensities of quadrupole nuclei depend only on diagonal elements of the density-matrix. Thus, a method for obtaining the density-matrix elements, which consists of dragging off-diagonal elements into the main diagonal using fine phase-controlled selective radio-frequency pulses, was derived. The use of the method is exemplified through 23 Na NMR (nuclear spin I=3/2 ) in a lyotropic liquid crystal at room temperature, in three applications: (a) the tomography of pseudopure states, (b) the tomography of the quadrupole free evolution of the density matrix, and (c) the unitary state evolution of each qubit in the system over the Bloch sphere upon the application of a Hadamard gate. Further applications in the context of pure NMR and in the context of quantum information processing, as well as generalizations for higher spins, are discussed.

  8. Interplay between the pairing and quadrupole interactions in the algebraic realization of the microscopic shell model

    NASA Astrophysics Data System (ADS)

    Drumev, Kalin; Georgieva, Ana

    2015-04-01

    We explore the algebraic realization of the Pairing-Plus-Quadrupole Model/PQM/ in the framework of the Elliott‘s SU(3) Model with the aim to obtain the complementary and competing features of the two interactions through the relation between the pairing and the SU(3) bases. First, we establish a correspondence between the SO(8) pairing basis and the Elliott's SU(3) basis. It is derived from their complementarity to the same LST coupling chain of the shell-model number-conserving algebra. The probability distribution of the SU(3) basis states within the SO(8) pairing states is also obtained and allows the investigation of the interplay between the pairing and quadrupole interactions in the Hamiltonian of the PQM, containing both of them as limiting cases. The description of some realistic N∼Z nuclear systems is investigated in a SU(3)-symmetry-adapted basis within a model space of one and two oscillator shells.

  9. Nuclear Schiff moment and soft vibrational modes

    SciTech Connect

    Zelevinsky, Vladimir; Volya, Alexander; Auerbach, Naftali

    2008-07-15

    The atomic electric dipole moment (EDM) currently searched by a number of experimental groups requires that both parity and time-reversal invariance be violated. According to current theoretical understanding, the EDM is induced by the nuclear Schiff moment. The enhancement of the Schiff moment by the combination of static quadrupole and octupole deformation was predicted earlier. Here we study a further idea of the possible enhancement in the absence of static deformation but in a nuclear system with soft collective vibrations of two types. Both analytical approximation and numerical solution of the simplified problem confirm the presence of the enhancement. We discuss related aspects of nuclear structure which should be studied beyond mean-field and random phase approximations.

  10. Explosives detection with quadrupole resonance analysis

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; Thorson, Benjamin D.; Beevor, Simon; West, Rebecca; Krauss, Ronald A.

    1997-02-01

    The increase in international terrorist activity over the past decade has necessitated the exploration of new technologies for the detection of plastic explosives. Quadrupole resonance analysis (QRA) has proven effective as a technique for detecting the presence of plastic, sheet, and military explosive compounds in small quantities, and can also be used to identify narcotics such as heroin and cocaine base. QRA is similar to the widely used magnetic resonance (MR) and magnetic resonance imaging (MRI) techniques, but has the considerable advantage that the item being inspected does not need to be immersed in a steady, homogeneous magnetic field. The target compounds are conclusively identified by their unique quadrupole resonance frequencies. Quantum magnetics has develop and introduced a product line of explosives and narcotics detection devices based upon QRA technology. The work presented here concerns a multi-compound QRA detection system designed to screen checked baggage, cargo, and sacks of mail at airports and other high-security facilities. The design philosophy and performance are discussed and supported by test results from field trials conducted in the United States and the United Kingdom. This detection system represents the current state of QRA technology for field use in both commercial and government sectors.

  11. Electric quadrupole excitations in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Calculations are presented for electric quadrupole excitations in relativistic nucleus-nucleus collisions. The theoretical results are compared to an extensive data set and it is found that electric quadrupole effects provide substantial corrections to cross sections, especially for heavier nuclei.

  12. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  13. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  14. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  15. Commissioning a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y

    2010-12-03

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of

  16. Nondestructive testing of adhesive bonds by nuclear quadrupole resonance method

    NASA Technical Reports Server (NTRS)

    Hewitt, R. R.

    1971-01-01

    Inert, strain sensitive tracer, cuprous oxide, added to polymeric adhesive ensures sufficiently large signal to noise ratio in NQR system output. Method is successful, provided that RF-transparent structural materials are used between modified adhesive and probe of NQR spectrometer.

  17. Mixed-radiation-field dosimetry utilizing Nuclear Quadrupole Resonance

    SciTech Connect

    Hintenlang, D.E.; Jamil, K.; Iselin, L.H.

    1992-01-01

    Radiation effects on urea, thiourea, guanidine carbonate and guanine sulfate were evaluated for both photon and neutron irradiations. Hydration of these materials typically provides a greatly increased sensitivity to both forms of radiation exposure, although not all materials lend themselves to this treatment without changing the chemical structure of the compound. Urea was found to be the most stable hydrated compound and provides the best sensitivity for quantifying radiation effects using NQR techniques. Urea permits a straight-forward quantification of each of the important parameters of the observed NQR signal, the FID. Several advanced data analysis methods were developed to assist in quantifying NQR spectra, both from urea and materials having more complex molecular structures, such as thiourea and guanidine sulfate. Unfortunately, these analysis techniques are frequently quite time consuming for the complex NQR spectra that result from some of these materials. The simpler analysis afforded by urea has therefore made it the prime candidate for an NQR dosimetry material. The moderate sensitivity of hydrated urea to photon irradiation does not permit this material to achieve the levels of performance required for a personnel dosimeter. It does, however, demonstrate acceptable sensitivity over dose ranges where it could provide a good biological dosimeter for several areas of radiation processing. The demonstrated photon sensitivity could permit hydrated urea to be used in applications such as food irradiation dosimetry. This material also exhibits a good sensitivity to neutron irradiation. The precise correlation between neutron exposure and the parameters of the resulting NQR spectra are currently being developed.

  18. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  19. Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5

    NASA Astrophysics Data System (ADS)

    Kukolich, Stephen G.; Sickafoose, Shane M.

    1993-11-01

    Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.

  20. Is it possible to enhance the nuclear Schiff moment by nuclear collective modes?

    SciTech Connect

    Auerbach, N. Dmitriev, V. F. Flambaum, V. V. Lisetskiy, A. Sen'kov, R. A. Zelevinsky, V. G.

    2007-09-15

    The nuclear Schiff moment is predicted to be enhanced in nuclei with static quadrupole and octupole deformation. The analogous suggestion of the enhanced contribution to the Schiff moment from the soft collective quadrupole and octupole vibrations in spherical nuclei is tested in the framework of the quasiparticle random phase approximation with separable quadrupole and octupole forces applied to the odd {sup 217-221}Ra and {sup 217-221}Rn isotopes. In this framework, we confirm the existence of the enhancement effect due to the soft modes, but only in the limit when the frequencies of quadrupole and octupole vibrations are close to zero.

  1. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.

    PubMed

    Shaniv, R; Akerman, N; Ozeri, R

    2016-04-01

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations. PMID:27104691

  2. Development of a quadrupole resonance confirmation system

    NASA Astrophysics Data System (ADS)

    Barrall, Geoffrey A.; Derby, Kevin A.; Drew, Adam J.; Ermolaev, Konstantine V.; Huo, Shouqin; Lathrop, Daniel K.; Petrov, Todor R.; Steiger, Matthew J.; Stewart, Stanley H.; Turner, Peter J.

    2004-09-01

    Quantum Magnetics has developed a Quadrupole Resonance (QR) system for the detection of anti-tank and anti-vehicle landmines. The QR confirmation sensor (QRCS) is a part of the Army GSTAMIDS Block 1 program and is designed to confirm the presence of landmines initially flagged by a primary sensor system. The ultimate goal is to significantly reduce the number of sites that require neutralization or other time consuming investigation into the presence of a landmine. Government tests in 2002 and 2003 demonstrated the performance of the system in a wide variety of conditions including high radio frequency interference (RFI) and piezo electric ringing (PER) environments. Field test results are presented along with an overall description of the system design and methods used to solve prior issues with RFI and PER.

  3. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  4. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  5. Nonzero Quadrupole Moments of Candidate Tetrahedral Bands

    SciTech Connect

    Bark, R. A.; Lawrie, E. A.; Lawrie, J. J.; Mullins, S. M.; Murray, S. H. T.; Ncapayi, N. J.; Smit, F. D.; Sharpey-Schafer, J. F.; Lindsay, R.

    2010-01-15

    Negative-parity bands in the vicinity of {sup 156}Gd and {sup 160}Yb have been suggested as candidates for the rotation of tetrahedral nuclei. We report the observation of the odd and even-spin members of the lowest energy negative-parity bands in {sup 160}Yb and {sup 154}Gd. The properties of these bands are similar to the proposed tetrahedral band of {sup 156}Gd and its even-spin partner. Band-mixing calculations are performed and absolute and relative quadrupole moments deduced for {sup 160}Yb and {sup 154}Gd. The values are inconsistent with zero, as required for tetrahedral shape, and the bands are interpreted as octupole vibrational bands. The failure to observe the in-band E2 transitions of the bands at low spins can be understood using the measured B(E1) and B(E2) values.

  6. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling

    NASA Astrophysics Data System (ADS)

    Shaniv, R.; Akerman, N.; Ozeri, R.

    2016-04-01

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on mj2, where mj2 is the angular momentum of level |j ⟩ along the quantization axis, from large noisy shifts that are linear in mj, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4 D5 /2 level in 88Sr+ to be 2.97 3-0.033+0.026e a02 . Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in 88Sr+ based optical atomic clocks and verifies complicated many-body quantum calculations.

  7. Roll measurement of Tevatron dipoles and quadrupoles

    SciTech Connect

    Volk, J.T.; Elementi, L.; Gollwitzer, K.; Jostlein, H.; Nobrega, F.; Shiltsev, V.; Stefanski, R.

    2006-09-01

    In 2003 a simple digital level system was developed to allow for rapid roll measurements of all dipoles and quadrupoles in the Tevatron. The system uses a Mitutoyo digital level and a PC running MS WINDOWS XP and LAB VIEW to acquire data on the upstream and downstream roll of each magnet. The system is sufficiently simple that all 1,000 magnets in the Tevatron can be measured in less than 3 days. The data can be quickly processed allowing for correction of rolled magnets by the Fermilab alignment group. Data will be presented showing the state of the Tevatron in 2003 and the changes in rolls as measured in each shutdown since then.

  8. Radio-frequency quadrupole linear accelerator

    SciTech Connect

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.

  9. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  10. A graphical approach to radio frequency quadrupole design

    NASA Astrophysics Data System (ADS)

    Turemen, G.; Unel, G.; Yasatekin, B.

    2015-07-01

    The design of a radio frequency quadrupole, an important section of all ion accelerators, and the calculation of its beam dynamics properties can be achieved using the existing computational tools. These programs, originally designed in 1980s, show effects of aging in their user interfaces and in their output. The authors believe there is room for improvement in both design techniques using a graphical approach and in the amount of analytical calculations before going into CPU burning finite element analysis techniques. Additionally an emphasis on the graphical method of controlling the evolution of the relevant parameters using the drag-to-change paradigm is bound to be beneficial to the designer. A computer code, named DEMIRCI, has been written in C++ to demonstrate these ideas. This tool has been used in the design of Turkish Atomic Energy Authority (TAEK)'s 1.5 MeV proton beamline at Saraykoy Nuclear Research and Training Center (SANAEM). DEMIRCI starts with a simple analytical model, calculates the RFQ behavior and produces 3D design files that can be fed to a milling machine. The paper discusses the experience gained during design process of SANAEM Project Prometheus (SPP) RFQ and underlines some of DEMIRCI's capabilities.

  11. Availability of Japanese Government's supplemental texts on radiation reflecting the Fukushima Daiichi Nuclear Power Plant accident for elementary and secondary education from dental students' understanding.

    PubMed

    Yoshida, Midori; Honda, Eiichi; Dashpuntsag, Oyunbat; Maeda, Naoki; Hosoki, Hidehiko; Sakama, Minoru; Tada, Toshiko

    2016-05-01

    Following the Fukushima Nuclear Power Plant accident, the Japanese government created two supplemental texts about radiation reflecting the accident for elementary, middle school, and high school students. These texts were made to explain radiation and consequently to obtain public consent for the continuation of the nuclear program. The present study aimed to evaluate the appropriateness of the content of the texts and to collect the basic data on the level of understanding necessary to improve radiation education. Lectures on radiology including nuclear energy and the Fukushima accident were given to 44 fourth-year dental students in 2013. The questionnaire was administered in 2014 when these students were in their sixth-year. The survey was also administered to 40 first-year students and 41 fourth-year students who hadn't any radiology lectures. Students rated their level of understanding of 50 phrases used in the texts on a four-point scale (understanding = 3, a little knowledge = 2, having heard = 1, no knowledge = 0). Questions on taking an advanced physics course in high school and means of learning about radiation in daily life were also asked. The level of understanding of phrases in the supplemental text for middle and high school students was significantly higher among sixth-year students (mean = 1.43) than among first-year (mean = 1.12) or fourth-year (mean = 0.93) students (p < 0.05). Overall, the level of understanding was low, with scores indicating that most students knew only a little. First-year students learning about radiation from television but four-year and six-year students learning about radiation from newspaper scored significantly higher (p < 0.05). It was concluded that radiation education should be improved by using visual material and preparing educators to teach the material for improving the public's understanding of radiation use-especially nuclear power generation because the phrases used in the supplementary texts are very

  12. Measurement of the electric quadrupole moment of CO

    NASA Astrophysics Data System (ADS)

    Chetty, Naven; Couling, Vincent W.

    2011-04-01

    Measurements of the temperature dependence of the Buckingham effect (electric-field-gradient-induced birefringence, EFGIB) for gaseous carbon monoxide are presented. The measurements span the temperature range 301.2-473.9 K, which allows for separation of the temperature-independent hyperpolarizability contribution from the temperature-dependent quadrupole contribution. It is demonstrated that in the case of carbon monoxide, quantization of the rotational motion of the molecules needs to be considered, the analysis yielding a quadrupole moment of Θ = (-8.77 ± 0.31) × 10-40 C m2 and a hyperpolarizability term of b' = (-0.1243 ± 0.0078) × 10-60 C3 m4 J-2. For dipolar molecules, the quadrupole moment is origin dependent, and the value reported here is referred to an origin called the effective quadrupole center. Comparison of this value with the center-of-mass quadrupole moment obtained from other experiments yields information about the dynamic dipole-quadrupole and dipole-magnetic dipole polarizabilities. The temperature-independent term, which contributes (7.0 ± 0.6)% to the EFGIB at room temperature, is by no means insignificant, and must necessarily be accounted for if the quadrupole moment is to be definitively established. The measured Θ and b' are compared with the best available ab initio calculated values.

  13. Measurement of the electric quadrupole moment of N2O

    NASA Astrophysics Data System (ADS)

    Chetty, Naven; Couling, Vincent W.

    2011-04-01

    Measurements of the temperature dependence of the Buckingham effect (electric-field-gradient-induced birefringence, EFGIB) for gaseous nitrous oxide are presented. Measurements span the temperature range 298.5-473.9 K, which allows for separation of the temperature-independent hyperpolarizability term from the temperature-dependent quadrupole term, yielding a quadrupole moment of Θ = (-11.03 ± 0.41) × 10-40 C m2, and a hyperpolarizability term of b = (-0.638 ± 0.063) × 10-60 C3 m4 J-2. For dipolar molecules, the quadrupole moment is origin dependent, and the value reported here is referred to an origin called the effective quadrupole center (EQC). Comparison of this value with the center of mass (CM) quadrupole moment obtained from MBER experiments yields information about the dynamic dipole-quadrupole and dipole-magnetic dipole polarizabilities. The temperature-independent term, previously assumed to contribute negligibly to the EFGIB, is found to contribute some (5.2 ± 0.6)% to the effect at room temperature and clearly needs to be accounted for if the quadrupole moment is to be definitively established.

  14. 44 CFR Appendix A to Part 353 - Memorandum of Understanding Between Federal Emergency Management Agency and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... April 9, 1985 (published April 18, 1985, 50 FR 15485), and published as Appendix A to 44 CFR part 353... a specific nuclear power plant site. If the review involves an application under 10 CFR part 52 for... correct exercise deficiencies; (6) correlation of FEMA actions on withdrawal of approvals under 44...

  15. 44 CFR Appendix A to Part 353 - Memorandum of Understanding Between Federal Emergency Management Agency and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... April 9, 1985 (published April 18, 1985, 50 FR 15485), and published as Appendix A to 44 CFR part 353... a specific nuclear power plant site. If the review involves an application under 10 CFR part 52 for... correct exercise deficiencies; (6) correlation of FEMA actions on withdrawal of approvals under 44...

  16. 77 FR 6131 - Memorandum of Understanding Between the U.S. Nuclear Regulatory Commission and the Department of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... the location of the proposed facility to terrorist attack. II. Background Nuclear Regulatory... application, the NRC addresses potential vulnerabilities of the location of the proposed facility to terrorist... to secure America by preventing, deterring, and responding to terrorist attacks and other ]...

  17. High-Efficiency Resonant Cavity Quadrupole Moment Monitor

    SciTech Connect

    Barov, N.; Nantista, C.D.; Miller, R.H.; Kim, J.S.; /FARTECH, San Diego /SLAC

    2007-04-13

    Measurement of the beam quadrupole moment at several locations can be used to reconstruct the beam envelope and emittance parameters. The measurements can be performed in a non-intercepting way using a set of quadrupole-mode cavities. We present a cavity design with an optimized quadrupole moment shunt impedance. The cavity properties can be characterized using a wire test method to insure symmetry about the central axis, and alignment to nearby position sensing cavities. The design and characterization of the prototype structure is discussed.

  18. Time-resolved measurement of quadrupole wakefields in corrugated structures

    NASA Astrophysics Data System (ADS)

    Lu, Chao; Fu, Feichao; Jiang, Tao; Liu, Shengguang; Shi, Libin; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Zhang, Zhen; Xiang, Dao

    2016-02-01

    Corrugated structures have recently been widely used for manipulating electron beam longitudinal phase space and for producing THz radiation. Here we report on time-resolved measurements of the quadrupole wakefields in planar corrugated structures. It is shown that while the time-dependent quadrupole wakefield produced by a planar corrugated structure causes significant growth in beam transverse emittance, it can be effectively canceled with a second corrugated structure with orthogonal orientation. The strengths of the time-dependent quadrupole wakefields for various corrugated structure gaps are also measured and found to be in good agreement with theories. Our work should forward the applications of corrugated structures in many accelerator based scientific facilities.

  19. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    SciTech Connect

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  20. Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing.

    PubMed

    Nichols, Kevin P; Pompano, Rebecca R; Li, Liang; Gelis, Artem V; Ismagilov, Rustem F

    2011-10-01

    The closing of the nuclear fuel cycle is an unsolved problem of great importance. Separating radionuclides produced in a nuclear reactor is useful both for the storage of nuclear waste and for recycling of nuclear fuel. These separations can be performed by designing appropriate chelation chemistries and liquid-liquid extraction schemes, such as in the TALSPEAK process (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes). However, there are no approved methods for the industrial scale reprocessing of civilian nuclear fuel in the United States. One bottleneck in the design of next-generation solvent extraction-based nuclear fuel reprocessing schemes is a lack of interfacial mass transfer rate constants obtained under well-controlled conditions for lanthanide and actinide ligand complexes; such rate constants are a prerequisite for mechanistic understanding of the extraction chemistries involved and are of great assistance in the design of new chemistries. In addition, rate constants obtained under conditions of known interfacial area have immediate, practical utility in models required for the scaling-up of laboratory-scale demonstrations to industrial-scale solutions. Existing experimental techniques for determining these rate constants suffer from two key drawbacks: either slow mixing or unknown interfacial area. The volume of waste produced by traditional methods is an additional, practical concern in experiments involving radioactive elements, both from disposal cost and experimenter safety standpoints. In this paper, we test a plug-based microfluidic system that uses flowing plugs (droplets) in microfluidic channels to determine absolute interfacial mass transfer rate constants under conditions of both rapid mixing and controlled interfacial area. We utilize this system to determine, for the first time, the rate constants for interfacial transfer of all lanthanides, minus promethium, plus yttrium, under TALSPEAK

  1. Gyrokinetic equilibrium and stability in quadrupole tandem mirrors

    SciTech Connect

    Bulmer, R.H.; Kaiser, T.B.; Nevins, W.M.; Newcomb, W.A.; Pearlstein, L.D.; Strauss, H.R.; Wollman, S.; Wakatani, M.

    1982-08-02

    This paper discusses recent theoretical work on the equilibrium and stability of quadrupole tandem mirrors in the paraxial limit. It reviews calculations of three-dimensional equilibria by means of a ..beta..-expansion technique which lead to an understanding of the important role played by parallel currents and the corollary importance of careful design of the structure of the vacuum geodesic curvature. The previously predicted scaling with central-cell length of the finite-..beta.. distortion of vacuum flux surfaces is shown to saturate because of finite orbit effects. An adaptation to tandem geometries of the reduced MHD technique for calculating high-..beta.. three-dimensional equilibria is described. This approach uses the paraxial expansion to resolve the time-dependent relaxation to equilibrium into three distinct timescales on which the motion can be followed independently. Regarding stability, it is shown that kinetic effects suppress ballooning modes of short-to-moderate perpendicular wavelength; in the limit that such effects are dominant only rigid modes are possible. The stability of the latter modes is investigated within the context of the energy principle. Results of equilibrium and stability calculations for the TMX-U and MFTF-B experiments at Livermore are presented.

  2. Quadrupole beam-based alignment in the RHIC interaction regions

    SciTech Connect

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  3. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates

    PubMed Central

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-01-01

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the “recombination” and “exchange” regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the “annihilation” regime. We find that the mechanism of the charge flipping in the “exchange” regime and the disappearance of the quadrupole structure in the “annihilation” regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution. PMID:27464981

  4. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates.

    PubMed

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-01-01

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the "recombination" and "exchange" regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the "annihilation" regime. We find that the mechanism of the charge flipping in the "exchange" regime and the disappearance of the quadrupole structure in the "annihilation" regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution. PMID:27464981

  5. Electronic coupling calculations with transition charges, dipoles, and quadrupoles derived from electrostatic potential fitting.

    PubMed

    Fujimoto, Kazuhiro J

    2014-12-01

    A transition charge, dipole, and quadrupole from electrostatic potential (TrESP-CDQ) method for electronic coupling calculations is proposed. The TrESP method is based on the classical description of electronic Coulomb interaction between transition densities for individual molecules. In the original TrESP method, only the transition charge interactions were considered as the electronic coupling. In the present study, the TrESP method is extended to include the contributions from the transition dipoles and quadrupoles as well as the transition charges. Hence, the self-consistent transition density is employed in the ESP fitting procedure. To check the accuracy of the present approach, several test calculations are performed to a helium dimer, a methane dimer, and an ethylene dimer. As a result, the TrESP-CDQ method gives a much improved description of the electronic coupling, compared with the original TrESP method. The calculated results also show that the self-consistent treatment to the transition densities contributes significantly to the accuracy of the electronic coupling calculations. Based on the successful description of the electronic coupling, the contributions to the electronic coupling are also analyzed. This analysis clearly shows a negligible contribution of the transition charge interaction to the electronic coupling. Hence, the distribution of the transition density is found to strongly influence the magnitudes of the transition charges, dipoles, and quadrupoles. The present approach is useful for analyzing and understanding the mechanism of excitation-energy transfer. PMID:25481127

  6. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-07-01

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the “recombination” and “exchange” regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the “annihilation” regime. We find that the mechanism of the charge flipping in the “exchange” regime and the disappearance of the quadrupole structure in the “annihilation” regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution.

  7. Electronic coupling calculations with transition charges, dipoles, and quadrupoles derived from electrostatic potential fitting

    SciTech Connect

    Fujimoto, Kazuhiro J.

    2014-12-07

    A transition charge, dipole, and quadrupole from electrostatic potential (TrESP-CDQ) method for electronic coupling calculations is proposed. The TrESP method is based on the classical description of electronic Coulomb interaction between transition densities for individual molecules. In the original TrESP method, only the transition charge interactions were considered as the electronic coupling. In the present study, the TrESP method is extended to include the contributions from the transition dipoles and quadrupoles as well as the transition charges. Hence, the self-consistent transition density is employed in the ESP fitting procedure. To check the accuracy of the present approach, several test calculations are performed to a helium dimer, a methane dimer, and an ethylene dimer. As a result, the TrESP-CDQ method gives a much improved description of the electronic coupling, compared with the original TrESP method. The calculated results also show that the self-consistent treatment to the transition densities contributes significantly to the accuracy of the electronic coupling calculations. Based on the successful description of the electronic coupling, the contributions to the electronic coupling are also analyzed. This analysis clearly shows a negligible contribution of the transition charge interaction to the electronic coupling. Hence, the distribution of the transition density is found to strongly influence the magnitudes of the transition charges, dipoles, and quadrupoles. The present approach is useful for analyzing and understanding the mechanism of excitation-energy transfer.

  8. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING.

    SciTech Connect

    LUO.Y.PILAT,F.ROSER,T.ET AL.

    2004-07-05

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed.

  9. Beam based alignment of C-shaped quadrupole magnets

    SciTech Connect

    Portmann, G.; Robin, D.

    1998-06-01

    Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 {micro}m.

  10. Autonomously Calibrating a Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Bornstein, Benjamin J.

    2009-01-01

    A computer program autonomously manages the calibration of a quadrupole ion mass spectrometer intended for use in monitoring concentrations and changes in concentrations of organic chemicals in the cabin air of the International Space Station. The instrument parameters calibrated include the voltage on a channel electron multiplier, a discriminator threshold, and an ionizer current. Calibration is achieved by analyzing the mass spectrum obtained while sweeping the parameter ranges in a heuristic procedure, developed by mass spectrometer experts, that involves detection of changes in signal trends that humans can easily recognize but cannot necessarily be straightforwardly codified in an algorithm. The procedure includes calculation of signal-to-noise ratios, signal-increase rates, and background-noise-increase rates; finding signal peaks; and identifying peak patterns. The software provides for several recovery-from-error scenarios and error-handling schemes. The software detects trace amounts of contaminant gases in the mass spectrometer and notifies associated command- and-data-handling software to schedule a cleaning. Furthermore, the software autonomously analyzes the mass spectrum to determine whether the parameters of a radio-frequency ramp waveform are set properly so that the peaks of the mass spectrum are at expected locations.

  11. Quadrupole resonance spectroscopic study of narcotic materials

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; West, Rebecca; Garroway, Allen N.; Lyndquist, R.; Yesinowski, James P.

    1997-02-01

    Bulk narcotic detection systems based upon Quadrupole Resonance Analysis (QRA) technology have a major advantage over imaging technologies, in that QRA is chemical-specific and consequently has a lower rate of false alarms. QRA is a magnetic resonance technology which occurs as a result of the inherent molecular properties of the atomic nuclei in crystalline and amorphous solids. The QRA response is characterized by 1) the precessional frequency of the nucleus, and 2) the nature of the electric field gradient experienced by the nucleus,due to its molecular environment. Another important detection parameter is linewidth, resonant quality. All of these parameters depend on sample purity and manufacturing process. Quantum Magnetics recently carried out a study on the QRA signatures of various narcotic materials with the support of the US Army, US Customs, and the Office of National Drug Control Policy. The aim of the study was to fully characterize the variation in QRA spectroscopic parameters of different samples of cocaine base and cocaine hydrochloride. The results from this study ar discussed here.

  12. Fano quadrupole in a nanoscale ring

    NASA Astrophysics Data System (ADS)

    Satanin, Arkady; Klimeck, Gerhard

    2005-03-01

    In solid state systems such as Aharonov-Bohm (AB) rings, two-dimensional electronic waveguides, and barriers, interference of a localized wave with propagating states produces Fano resonances in the conductance. The scattering amplitude near a Fano zero-pole pair behaves like the amplitude of a dipole when the pole and the zero play the roles of a particle and an antiparticle, respectively [1]. This separate Fano-dipole has been already observed in the AB ring with an embedded quantum dot (QD) [2]. In the present work, we examine new effects on the collision of Fano dipoles and its manifestation in the transmission. The numerical results for a realistic AB ring with two embedded QD's will be presented. We show that the two Fano-dipoles form a new quasi-particle, which behaves as a coupled object -- the Fano quadrupole. This property gives an additional possibility of manipulating transmission resonances (a collapse of particle and hole) in a nanoscale ring by changing the parameters of the system. We discuss an analogy of Fano collision in an AB ring and a γ-X barrier [3]. [1] Z. Shao et al., PRB 49, 7453 (1994). [2] K. Kobayashi, et al. PRL, 85, 256806 (2002). [3] R. C. Bowen, et al. PRB 52, 2754 (1995).

  13. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    PubMed

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy. PMID:17026023

  14. Application of the Thermal Quadrupoles Method to Semitransparent Solids

    NASA Astrophysics Data System (ADS)

    Salazar, A.; Fuente, R.; Mendioroz, A.; Apiñaniz, E.; Celorrio, R.

    2012-11-01

    In this study, the thermal quadrupoles method is extended to semitransparent layered solids. Using this method, the surface temperature of semitransparent multilayered materials is calculated as a function of the optical and thermal properties of each layer. This result eventually leads to determination of the thermal diffusivity, thermal resistance, and/or optical absorption coefficient of layered materials using photothermal techniques. The thermal quadrupoles method is applied to determine the thermal contact resistance in glass stacks.

  15. Understanding microstructure-induced limitations of hydrogen transport in high temperature proton conductors: can nuclear microanalysis give an answer?

    NASA Astrophysics Data System (ADS)

    Berger, Pascal

    2007-03-01

    High temperature protonic conductors (HTPC) are envisioned as electrolytes for fuel cells working at intermediate temperature (400 C -- 600 C) to complement Y:ZrO2 electrolytes operating at 800 C -- 1000 C. The most mature HTPC are doped perovskites (ABO3) where tetravalent cation B is partially substituted by a trivalent one. Protons can be introduced in the lattice as point defects corresponding to hydroxyl groups on oxygen ion sites. In the temperature region of interest for technological applications, lattice vibrations allow the diffusion of protons by jumping and reorientation of O-H bonds (hoping mechanism). BaCeO3 or SrCeO3-based perovskites doped with a rare earth are the most widely studied compounds. However the proton conductance of these ceramics and their chemical stability are lower than the calculated values on single crystals and not sufficient to fulfill technological requirements. In most cases, the reasons for these discrepancies lie in uncontrolled microstructures with inter- and intra-granular defects that act as barriers for hydrogen diffusion but are preferential paths for chemical degradation by hydrolysis or carbonatation. Despite this crucial point, very few efforts are devoted to the optimization of microstructure of HTPC. Microstructure induced limitations are usually evidenced via impedance measurements which enable determination of respective contributions of bulk and grain boundaries to overall conductivity. Further information on hydrogen transport relevant for improvement of microstructure design requires local methods for hydrogen concentration measurement. Nuclear microanalysis, based on the use of MeV light ions microbeam, meets this demand. According to the chosen technique, nuclear reaction, elastic recoil or forward coincident scattering, the nuclear microprobe gives 2D-3D quantitative information on hydrogen distribution and diffusion within microstructure and enables to identify barriers and short-circuits.

  16. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis

    PubMed Central

    Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F.; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  17. Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis.

    PubMed

    Raggi, Lorenzo; Bitocchi, Elena; Russi, Luigi; Marconi, Gianpiero; Sharbel, Timothy F; Veronesi, Fabio; Albertini, Emidio

    2015-01-01

    Poa pratensis L. is a forage and turf grass species well adapted to a wide range of mesic to moist habitats. Due to its genome complexity little is known regarding evolution, genome composition and intraspecific phylogenetic relationships of this species. In the present study we investigated the morphological and genetic diversity of 33 P. pratensis accessions from 23 different countries using both nuclear and chloroplast molecular markers as well as flow cytometry of somatic tissues. This with the aim of shedding light on the genetic diversity and phylogenetic relationships of the collection that includes both cultivated and wild materials. Morphological characterization showed that the most relevant traits able to distinguish cultivated from wild forms were spring growth habit and leaf colour. The genome size analysis revealed high variability both within and between accessions in both wild and cultivated materials. The sequence analysis of the trnL-F chloroplast region revealed a low polymorphism level that could be the result of the complex mode of reproduction of this species. In addition, a strong reduction of chloroplast SSR variability was detected in cultivated materials, where only two alleles were conserved out of the four present in wild accessions. Contrarily, at nuclear level, high variability exist in the collection where the analysis of 11 SSR loci allowed the detection of a total of 91 different alleles. A Bayesian analysis performed on nuclear SSR data revealed that studied materials belong to two main clusters. While wild materials are equally represented in both clusters, the domesticated forms are mostly belonging to cluster P2 which is characterized by lower genetic diversity compared to the cluster P1. In the Neighbour Joining tree no clear distinction was found between accessions with the exception of those from China and Mongolia that were clearly separated from all the others. PMID:25893249

  18. Dynamics of a charged drop in a quadrupole electric field

    NASA Astrophysics Data System (ADS)

    Das, Sudip; Mayya, Y. S.; Thaokar, Rochish

    2015-07-01

    Quadrupole electric fields are commonly employed for confining charged conducting drops in Paul traps for studying Rayleigh instability characteristics. We investigate the effect of these fields on the deformation and stability characteristics of a charged liquid drop, using the axisymmetric boundary integral method (BIM). Different combinations of the amount of charge and strength of the electric field give rise to different equilibrium shapes. Interestingly, unlike in the case of uniform fields, stable oblate equilibrium drop shapes are sustained in quadrupole fields. In a positive endcap configuration of the quadrupole setup a drop carrying a small negative charge displays a transition from oblate to prolate as the field strength increases. On the other hand, for the case of a highly charged drop, a shift in the Rayleigh critical charge is observed in the presence of a weak quadrupole field. The Rayleigh instability displays imperfect transcritical bifurcation characteristics with respect to imposed prolate and oblate perturbations. Results are of significance in i) interpreting deformation and the Rayleigh stability effects using Paul traps with quadrupole fields, ii) designing more efficient quadrupole-field-based technologies for emulsification of water in oil.

  19. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er; University of Chinese Academy of Sciences, Beijing 100049

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  20. 241Am and 243Am charge distributions from muonic x-ray spectroscopy and the quadrupole moment of the 240Am fission isomer

    NASA Astrophysics Data System (ADS)

    Johnson, M. W.; Shera, E. B.; Hoehn, M. V.; Naumann, R. A.; Zumbro, J. D.; Bemis, C. E.

    1985-10-01

    The muonic K, L, and M X-ray spectra from 241Am and 243Am have been investigated. Analysis of these spectra yields intrinsic nuclear quadrupole moments [Q0241 = 12.16(15) e b and Q0243 = 12.10(17) e b] and Barrett radii. By combining these results with those from a previous optical isotope-shift study, the intrinsic quadrupole moment for the fission isomer 240fAm is deduced [Q0240f = 29.0(1.3) e b].

  1. Stabilized operation of the improvement of the Spallation Neutron Source (SNS) radio-frequency quadrupole (RFQ)

    SciTech Connect

    Kim, Sang-Ho; Aleksandrov, Alexander V; Crofford, Mark T; Galambos, John D; Gibson, Paul E; Hardek, Thomas W; Henderson, Stuart D; Kang, Yoon W; Kasemir, Kay; Peters, Charles C; Thompson, David H; Stockli, Martin P; Williams, Derrick C

    2010-01-01

    The Spallation Neutron Source (SNS) radio-frequency quadrupole (RFQ) had resonance control instabilities at duty factors higher than approximately four percent. Systematic investigations have been carried out to understand the cause of the instability and to ensure the operational stability of the RFQ. The most critical source of the instability is revealed to be an interaction between hydrogen released by beam bombardments and the RFQ RF field resulting in a discharge, which consumes additional RF power and could cause the RFQ to operate in an unstable region. This paper reports improvement of the SNS RFQ operational stability based on the findings during the SNS operation.

  2. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  3. Systematic Azimuth Quadrupole and Minijet Trends from Two-Particle Correlations in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kettler, David

    Heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) produce a tremendous amount of data but new techniques are necessary for a comprehensive understanding of the physics behind these collisions. We present measurements from the STAR detector of both pt-integral and pt-differential azimuth two-particle correlations on azimuth (phi) and pseudorapidity (eta) for unidentified hadrons in Au-Au collisions at a center of mass energy = 62 and 200 GeV. The azimuth correlations can be fit to extract a quadrupole component--related to conventional v2 measures--and a same-side peak. The azimuth quadrupole component is distinguished from eta-localized same-side correlations by taking advantage of the full 2D eta and phi dependence. Both pt-integral and pt-differential results are presented as functions of Au-Au centrality. We observe simple universal energy and centrality trends for the pt-integral quadrupole component. pt-differential results can be transformed to reveal quadrupole pt spectra that are nearly independent of centrality. A parametrization of the pt-differential quadrupole shows a simple pt dependence that can be factorized from the centrality and collision energy dependence above 0.75 GeV/c. Angular correlations contain jet-like structure with most-probable hadron momentum 1 GeV/c. For better comparison to RHIC data we analyze the energy scale dependence of fragmentation functions from e+-e - collisions on rapidity y. We find that replotting fragmentation functions on a normalized rapidity variable results in a compact form precisely represented by the beta distribution, its two parameters varying slowly and simply with parton energy scale Q. The resulting parameterization enables extrapolation of fragmentation functions to low Q in order to describe fragment distributions at low transverse momentum ptin heavy ion collisions at RHIC. We convert minimum-bias jet-like angular correlations to single-particle hadron yields and compare them with parton

  4. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described.

  5. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    The objective of this research is to develop theories and conduct numerical investigations of electrostatic flute modes in a plasma confined in magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion ounce frequencies in a plasma confined to a magnetic quadrupole. Two intermediate-frequency modes are predicted.

  6. Higher Order Parametric Excitation Modes for Spaceborne Quadrupole Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Gershman, D. J.; Block, B. P.; Rubin, M.; Benna, M.; Mahaffy, P. R.; Zurbuchen, T. H.

    2011-01-01

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system.When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

  7. Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers

    SciTech Connect

    Gershman, D. J.; Block, B. P.; Rubin, M.; Zurbuchen, T. H.; Benna, M.; Mahaffy, P. R.

    2011-12-15

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

  8. Directions for nuclear research in the transplutonium elements

    SciTech Connect

    Wilhelmy, J.B.; Chasman, R.R.; Friedman, A.M.; Ahmad, I.

    1983-01-01

    The study of the heavy nuclides has played a vital role in our understanding of the alpha decay process, nuclear fission, nuclear binding energies and the limits of nuclear stability. This study has led to the understanding of novel shape degrees of freedom, such as the very large quadrupole deformations associated with the fission isomer process, and the very recently discovered octupole deformation. The existence of these unique phenomena in the heavy element region is not accidental. Fission isomerism is due to the delicate balance between nuclear forces holding the nucleus together and Coulomb forces causing nuclear fission. Octupole deformation arises from the increasing strength of matrix elements with increasing oscillator shell. Both illustrate the unique features of the heavy element region. Fission studies have given us information about large collective aspects in nuclei and the importance that nuclear structural effects can play in altering these macro properties. A new class of atomic studies has become possible with the availability of heavy elements. With these isotopes, we are now able to produce electric fields of such magnitude that it becomes possible to spontaneously create positron-electron pairs in the vacuum. We have organized this presentation into three major sections: nuclear structure, fission studies and atomic studies of supercritical systems. In each we will try to emphasize the new directions which can benefit from the continued availability of isotopes supplied by the Trans-plutonium Production Program. 117 references. (WHK)

  9. MEQALAC: (multiple electrostatic quadrupole linac): a new approach to low beta rf acceleration

    SciTech Connect

    Mobley, R.M.; Brodowski, J.J.; Gammel, G.M.; Keane, J.T.; Maschka, A.W.; Sanders, R.T.

    1980-01-01

    MEQALAC is an acronym for a multiple-beam electrostatic-quadrupole array linear accelerator. The principle of operation is very simple. It makes use of the fact that electrostatic quadrupoles focus more effectively at low velocities than conventional magnetic quadrupoles. Moreover, the pole-tip field of an electrostatic quadrupole is limited by field emission of electrons, and is not a function of the size of the quadrupole. Conventional magnetic quadrupoles, on the other hand, require increasingly high current densities if one attempts to scale to smaller size.

  10. Entanglement, magnetic and quadrupole moments properties of the mixed spin Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Abgaryan, V. S.; Ananikian, N. S.; Ananikyan, L. N.; Hovhannisyan, V.

    2015-02-01

    Thermal entanglement, magnetic and quadrupole moments properties of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on a diamond chain are considered. Magnetization and quadrupole moment plateaus are observed for the antiferromagnetic couplings. Thermal negativity as a measure of quantum entanglement of the mixed spin system is calculated. Different behavior for the negativity is obtained for the various values of Heisenberg dipolar and quadrupole couplings. The intermediate plateau of the negativity has been observed at the absence of the single-ion anisotropy and quadrupole interaction term. When dipolar and quadrupole couplings are equal there is a similar behavior of negativity and quadrupole moment.

  11. The Photon Polarization Parameter of 2H(n, γ)3H reaction with Inclusion of the Electric Quadrupole Contribution

    NASA Astrophysics Data System (ADS)

    Sadeghi, H.; Mosavi-Khansari, M.

    2014-09-01

    We use effective field theory (EFT) for the calculation of neutron—deuteron radiative capture at very low energies. We present here the use of EFT to calculate a low-energy photo-nuclear observable in three-body systems, the photon polarization parameter and fore—aft asymmetry at thermal neutron energies up to next-to-next to leading order (N2LO), with inclusion of the electric quadrupole contribution. The photon polarization parameter in total is found to be Rc = -0.421 ± 0.003 and is in good agreement with the other modern theoretical calculations based on modern nucleon—nucleon potentials. In comparison with our previous work, a satisfactory agreement with the available experimental data is found by inclusion of the electric quadrupole contribution.

  12. Spin dependence of intrinsic and transition quadrupole moments

    SciTech Connect

    Jolos, R.V.; Brentano, P. von; Dewald, A.; Pietralla, N.

    2005-08-01

    The relation connecting an angular momentum dependence of the {gamma}-transition energies with the reduced transition probabilities B[E2;(I+2){sub gr}{yields}I{sub gr}] in the ground-state rotational band is derived based on the Bohr Hamiltonian. The relation is applicable to both {beta}-rigid and {beta}-soft both being {gamma}-rigid nuclei. Based on this result the approximate expression is obtained for the intrinsic quadrupole moment and, therefore, for the spectroscopic quadrupole moment in terms of the reduced E2 transition probabilities. It is shown that an angular momentum dependence of the intrinsic quadrupole moment can be well approximated by a linear function of I. The results obtained are direct consequences of the Bohr Hamiltonian with the Davidson potential.

  13. Study of a micro chamber quadrupole mass spectrometer

    SciTech Connect

    Wang Jinchan; Zhang Xiaobing; Mao Fuming; Xiao Mei; Cui Yunkang; Engelsen, Daniel den; Lei Wei

    2008-03-15

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1 at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.

  14. Variable-field permanent magnet quadrupole for the SSC

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-10-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.

  15. Mechanical Design of a Second Generation LHC IR Quadrupole

    SciTech Connect

    Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, C.R.; Lietzke, A.F.; McInturff,A.D.; Sabbi, G.; Scanlan, R.M.

    2003-11-10

    One of the proposed options to increase the LHC luminosity is the replacement of the existing inner triplets at the Interaction Regions with new low-beta larger aperture quadrupoles operating at the same gradient. Lawrence Berkeley National Laboratory (LBNL) is carrying out preliminary studies of a large-bore Nb{sub 3}Sn quadrupole. The mechanical design presents a support structure based on the use of keys and bladders without self-supporting collars. This technology has been proven effective in several successful common coil Nb{sub 3}Sn dipoles built at LBNL, and it is for the first time applied to a cos(2{var_theta}) design. In this paper we present a detailed analysis of the quadrupole mechanical behavior, demonstrating the possibility of delivering, through this method, well-controlled coil precompression during assembly, cool-down and excitation. The study has been performed with the finite element program ANSYS.

  16. A microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer.

    PubMed

    Wright, Steven; Malcolm, Andrew; Wright, Christopher; O'Prey, Shane; Crichton, Edward; Dash, Neil; Moseley, Richard W; Zaczek, Wojciech; Edwards, Peter; Fussell, Richard J; Syms, Richard R A

    2015-03-17

    Miniaturized mass spectrometers are becoming increasingly capable, enabling the development of many novel field and laboratory applications. However, to date, triple quadrupole tandem mass spectrometers, the workhorses of quantitative analysis, have not been significantly reduced in size. Here, the basis of a field-deployable triple quadrupole is described. The key development is a highly miniaturized ion optical assembly in which a sequence of six microengineered components is employed to generate ions at atmospheric pressure, provide a vacuum interface, effect ion guiding, and perform fragmentation and mass analysis. Despite its small dimensions, the collision cell efficiently fragments precursor ions and yields product ion spectra that are very similar to those recorded using conventional instruments. The miniature triple quadrupole has been used to detect thiabendazole, a common pesticide, in apples at a level of 10 ng/g. PMID:25708099

  17. OPERATIONAL MEASUREMENT OF COUPLING BY SKEW QUADRUPOLE MODULATION.

    SciTech Connect

    LUO.Y.CAMERON,P.LEE,R.ET AL.

    2004-07-05

    The measurement and correction of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of the skew quadrupole families the two eigentune modulations are precisely measured with a high resolution phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation direction are determined. The residual linear coupling could be corrected according the measurement. We report the results from the dedicated beam studies carried on at RHIC injection, store and on the ramp. A capability of measuring coupling on the ramp opens possibility of continuous coupling corrections during acceleration.

  18. Mechanical design of a large bore quadrupole triplet magnet

    SciTech Connect

    Abbott, S.; Caylor, R.; Fong, E.; Tanabe, J.

    1987-03-01

    The mechanical design and construction of a 1 meter bore, low gradient quadrupole triplet is described. The magnet will be used for focussing a proton beam in accelerator studies of neutral particle at the Los Alamos National Laboratory. A significant feature of this magnet design is the precision location of the coil conductors within the steel yoke tube. Each of the quadrupole coils have been fabricated from water cooled aluminum conductor, wound in a cosine 2-theta geometry. The conductor bundles have been wound to a positional accuracy within +-0.050 cm which was required to reduce the harmonic content to less than 0.04% of the quadrupole field. Important aspects of the design, construction and assembly are described.

  19. Design and performance of the SRRC quadrupole magnets

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Chen, H. H.; Hwang, C. S.; Hwang, G. J.; Tseng, P. K.

    1994-07-01

    Forty-eight quadrupole magnets have been manufactured in this present work for the SRRC storage ring. Four families of quadrupole magnets with various magnetic lengths are used in the storage ring. The same pole contour with a bore diameter of 76 mm is computed via the 'MAGNET' program. The magnet design and procedure of mechanical fabrication and assembly are also described. The auxiliary coils are incorporated in the main coils for trimming the field strength of each individual magnet. Pole tip ends have a 6 mm x 6 mm chamfer so as to reduce the dodecapole in the end of magnet. Field mapping results having achieved the deviation of integral quadrupole field within +/-1 x 10(exp - 3) in a 30 mm bore radius region is also confirmed.

  20. Theoretical electric quadrupole transition probabilities for Ca, Sr and Ba

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Jaffe, R. L.; Partridge, H.

    1984-01-01

    The 1D-1S quadrupole transition probabilities for Ca, Sr and Ba have been computed using extended GTO and STO valence basis sets and configuration-interaction wavefunctions that include the important core-valence correlation effects. For Ba and Sr, the relativistic contraction of the core orbitals was accounted for in the GTO calculations by a relativistic effective-core potential. The computed Einstein coefficient for Ca of 39.6/s is in excellent agreement with the recent experimental value of 40 + or - 8/s. The best Einstein coefficients for Sr (44.7/s) and Ba (2.98/s) imply increasing quadrupole line strengths down the column. Relativistic effects substantially increase the quadrupole Einstein coefficient for Ba.

  1. Cryogen free superconducting splittable quadrupole magnet for linear accelerators

    SciTech Connect

    Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

    2011-09-01

    A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

  2. High and ulta-high gradient quadrupole magnets

    SciTech Connect

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

  3. Conceptual design of a quadrupole magnet for eRHIC

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  4. Electric quadrupole excitations in the interactions of Y-89 with relativistic nuclei

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    The first complete calculations of electric quadrupole excitations in relativistic nucleus-nucleus collisions are presented herein. Neutron emission from Y-89 is studied and quadrupole effects are found to be a significant fraction of the cross section.

  5. Microwave spectrum and quadrupole coupling constant tensor of gauche-isobutyl chloride

    NASA Astrophysics Data System (ADS)

    Niide, Yuzuru; Ohkoshi, Ichiro

    1991-04-01

    The microwave spectra of two 35Cl and 37Cl species of isobutyl chloride have been measured in the frequency region of 14-39 GHz. Both the a-type R-branch and the b-type Q-branch transitions for the 35Cl species, and a-type R-branch transitions for the 37Cl species of one conformer, gauche, were assigned. The values of the rotational constants of the gauche form in the ground vibrational state were determined to be A = 7498.57 ± 0.62 MHz, B = 2146.321 ± 0.016 MHz, and C = 1793.715 ± 0.009 MHz for the 35Cl species; and A = 7527.6 ± 2.2 MHz, B = 2091.774 ± 0.032 MHz, and C = 1755.493 ± 0.018 MHz for the 37Cl species, respectively. From the quadrupole hyperfine splittings of the 35Cl and 37Cl nuclei, the nuclear quadrupole coupling constants in the principal axes system for the gauche were determined to be χ aa = -51.6 ± 5.4 MHz, χ bb = 16.9 ± 2.8 MHz, χ cc = 34.7 ± 6.0 MHz for the 35Cl species; and χ aa = -39.3 ± 9.9 MHz, χ bb = 14.3 ± 7.7 MHz, χ cc = 25.0 ± 12.5 MHz for the 37Cl species, respectively.

  6. The pygmy quadrupole resonance and neutron-skin modes in 124Sn

    NASA Astrophysics Data System (ADS)

    Spieker, M.; Tsoneva, N.; Derya, V.; Endres, J.; Savran, D.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Lagoyannis, A.; Lenske, H.; Pietralla, N.; Popescu, L.; Scheck, M.; Schlüter, F.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2016-01-01

    We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR) in Sn isotopes, where complementary probes were used. In this study, (α ,α‧ γ) and (γ ,γ‧) experiments were performed on 124Sn. In both reactions, Jπ =2+ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (γ ,γ‧) experiment, while the (α ,α‧ γ) experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM). The newly determined γ-decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR). This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn.

  7. Measured Effects of a Longitudinal Solenoidal Field on an Iron Quadrupole

    NASA Astrophysics Data System (ADS)

    Ecklund, S.; Seeman, J. T.; Wolf, Z.

    1997-05-01

    We have measured the effects of a longitudinal solenoidal field on the field harmonics of an iron dominated quadrupole. These measurements are useful when designing a colliding beam interaction region where the first quadrupole is very near the solenoidal field of the physics detector. The effects of mirror plates, quadrupole excition, skew quadrupole windings, dipole windings, and solenoidal fields that enter at an angle have been measured. Conclusions and interpretations are given.

  8. Application of switched-power techniques to quadrupoles

    SciTech Connect

    Aronson, S.H.; Fernow, R.C.

    1988-01-01

    Electric fields on the order of 1 GV/m may be achievable with very short (few ps) pulses. A field of 0.3 GV/m is equivalent in deflecting strength to a magnetic field of 1 Tesla. We consider here the possibility of replacing magnets (specifically final focus quadrupoles) with laser-switched devices. 7 refs., 3 figs.

  9. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2010-01-08

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960?s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are ?Proof-of-Principle? magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  10. Magnetic field data on Fermilab Energy-Saver quadrupoles

    SciTech Connect

    Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.

    1983-03-01

    The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.

  11. Rotating magnetic quadrupole current drive for field-reversed configurations

    SciTech Connect

    Milroy, Richard D.; Guo, H.Y.

    2005-07-15

    In the translation, confinement, and sustainment experiment [A. L. Hoffman, H. Y. Guo, J. T. Slough, S. J. Tobin, L. S. Schrank, W. A. Reass, and G. A. Wurden, Fusion Sci. Technol. 41, 92 (2002)], field-reversed configurations (FRCs) are created and sustained using a rotating magnetic field (RMF). The RMF is usually in the form of a rotating dipole, which in vacuum penetrates uniformly to the axis of symmetry. However, plasma conditions in the FRC normally adjust so that the RMF only partially penetrates the plasma column. We have investigated the possibility of using a rotating quadrupole rather than a rotating dipole magnetic field. The vacuum field from a quadrupole is proportional to radius and cannot penetrate to the axis of symmetry; however, this is not a disadvantage if the current drive is confined to the outer region of the FRC. It was found that the quadrupole drive efficiency is comparable to that of a dipole, but the rotating dipole is more effective at stabilizing the n=2 rotational instability. A strong internal oscillation in B{sub {theta}} is often observed in FRCs sustained by a quadrupole field. The spectral content of the signals indicates that an internal n=1 magnetic structure forms and corotates with the electrons. Similar but much lower amplitude structures can form when a rotating dipole is employed (edge-driven mode)

  12. Quadrupole transport experiment with space charge dominated cesium ion beam

    SciTech Connect

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel.

  13. Measurement of an atomic quadrupole moment using dynamic decoupling

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Shaniv, Ravid; Ozeri, Roee

    2016-05-01

    Some of the best clocks today are ion-based optical clocks. These clocks are referenced to a narrow optical transition in a trapped ion. An example for such a narrow transition is the electric quadrupole E 2 transition between states with identical parity. An important systematic shift of such a transition is the quadrupole shift resulting from the electric field gradient inherent to the ion trap. We present a new dynamic decoupling method that rejects magnetic field noise while measuring the small quadrupole shift of the optical clock transition. Using our sequence we measured the quadrupole moment of the 4D5/2 level in a trapped 88 Sr+ ion to be 2 .973-0 . 033 + 0 . 026 ea02 , where e is the electron charge and a0 is the Bohr radius. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in 88 Sr+ based optical atomic clocks and verifies complicated many-body quantum calculations.

  14. Two-stream instability model with electrons trapped in quadrupoles

    NASA Astrophysics Data System (ADS)

    Channell, P. J.

    2009-08-01

    We formulate the theory of the two-stream instability (e-cloud instability) with electrons trapped in quadrupole magnets. We show that a linear instability theory can be sensibly formulated and analyzed. The growth rates are considerably smaller than the linear growth rates for the two-stream instability in drift spaces and are close to those actually observed.

  15. The low-energy quadrupole mode of nuclei

    NASA Astrophysics Data System (ADS)

    Frauendorf, S.

    2015-08-01

    The phenomenological classification of collective quadrupole excitations by means of the Bohr-Hamiltonian (BH) is reviewed with focus on signatures for triaxility. The variants of the microscopic BH derived by means of the Adiabatic Time-Dependent Mean Field theory from the Pairing-plus-quadrupole-quadrupole interaction, the Shell Correction Method, the Skyrme Energy Density Functional, the Relativistic Mean Field Theory and the Gogny interaction are discussed and applications to concrete nuclides reviewed. The Generator Coordinate Method for the five-dimensional quadrupole deformation space and first applications to triaxial nuclei are presented. The phenomenological classification in the framework of the Interacting Boson Model is discussed with a critical view on the boson number counting rule. The recent success in calculating the model parameters by mapping the mean field deformation energy surface on the bosonic one is discussed and the applications listed. A critical assessment of the models is given with focus on the limitations due to the adiabatic approximation. The Tidal Wave approach and the Triaxial Projected Shell Model are presented as practical approaches to calculate spectral properties outside the adiabatic region.

  16. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2012-12-21

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  17. Understanding Space, Understanding Citizenship

    ERIC Educational Resources Information Center

    Fouberg, Erin Hogan

    2002-01-01

    In this time of geopolitical uncertainty, one question that arises repeatedly is how will citizenship be affected by changes in sovereignty? This paper uses the concepts of spaces of dependence and spaces of engagement to understand both formal and substantive citizenship on American Indian reservations in the United States. By studying the…

  18. Understanding Readers' Differing Understandings

    ERIC Educational Resources Information Center

    Kucer, Stephen B.

    2015-01-01

    This research examines the characteristics of reader understandings that vary from those stated in the text. Eighty-seven fourth graders orally read complex academic literary and scientific texts, followed by probed retellings. Retold ideas not directly supported by, or reflective of, the texts were identified. These differing understandings…

  19. Static quadrupole moments of 106Agm and 109Agm and the electric field gradient of Ag in Zn and Cd

    NASA Astrophysics Data System (ADS)

    Berkes, I.; Hlimi, B.; Marest, G.; Sayouty, E. H.; Coussement, R.; Hardeman, F.; Put, P.; Scheveneels, G.

    1984-12-01

    Low temperature nuclear orientation of 106Agm and 110Agm in Zn and Fe and level mixing resonances on 109Agm have been measured in order to deduce Q and Vzz values. A fourth-order resonance in 109AgmZn has been found with a full width at half maximum of 1.9 × 10-9 eV, and Vzz(AgCd)Vzz(AgZn)=1.0064(34) was deduced. The electric quadrupole moments found in the literature, reevaluated for Sternheimer correction Q(108Agm)=+1.32(7) b and Q(110Agm)=+1.44(10) b, are used for the calibration of Vzz and yield Q(106Agm)=+1.11(11) b, Q(109Agm)=(+)0.97(11) b, and Vzz(AgZn)=+4.2(5)×1017 V/cm2. Furthermore, μ(106Agm)=(+)3.82(8)μN and several δ(E 2M 1) mixing ratios in 106Pd are also determined. The quadrupole moments are in good agreement with Yukawa-plus-exponential macroscopic model and folded-Yukawa microscopic model calculations. The particle states can be described in terms of deformed Nilsson orbitals or three valence-proton holes coupled to a quadrupole vibrator.

  20. Quadrupole radiation from terahertz dipole antennas.

    PubMed

    Rudd, J V; Johnson, J L; Mittleman, D M

    2000-10-15

    We report what is to our knowledge the first detailed investigation of the polarization state of radiation from lens-coupled terahertz dipole antennas. The radiation exhibits a weak but measurable component that is polarized orthogonally to the orientation of the emitter dipole. The angular radiation pattern of this cross-polarized emission reveals that it is quadrupolar, rather than dipolar, in nature. One can understand this result by taking into account the photocurrent flowing in the strip lines that feed the dipole antenna. A Fresnel-Kirchhoff scalar diffraction calculation is used for calculating the frequency-dependent angular distribution of the radiation pattern, providing satisfactory agreement with the measurements. PMID:18066277

  1. Rotational Spectroscopy of HB 33S: The Quadrupole Coupling Constant of 33S in Thioborine

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Degli Esposti, C.; Dore, L.

    2002-10-01

    The unstable HBS molecule has been produced in the gas phase by a high-temperature reaction between crystalline boron and hydrogen sulfide. Ground state rotational spectra have been observed in the millimeter-wave region, from 75 to 460 GHz, for the previously unobserved H 11B 33S and H 10B 33S isotopic species. The analysis of the hyperfine structure produced by the 10/11B and 33S nuclear spins in the low- J rotational transitions has yielded the first evaluation of the quadrupole coupling constant of 33S in the thioborine molecule, which was 6.361(15) MHz in H 11B 33S and 6.329(17) MHz in H 10B 33S. In addition, further measurements have been performed for the most abundant isotopomers H 10/11B 32/34S, for which improved values of rotational, centrifugal, and hyperfine structure constants have been determined.

  2. Evaluation of a Novel Design for an Electrostatic Quadrupole Triplet Ion Beam Lens

    NASA Astrophysics Data System (ADS)

    Burns, L. R.; Bouas, J. D.; Matteson, S.; Weathers, D. L.

    2006-12-01

    We describe the design and evaluation of an electrostatic quadrupole triplet lens constructed to focus ion beams of up to 200 keV in energy. The lens was built to be used in an apparatus for fundamental sputtering studies. These studies are motivated in part by a desire to understand the influence of low-energy physiochemical processes on surfaces and atmospheres exposed to the solar wind in the inner Solar System. The lens is very compact and incorporates a feature to induce octupole fields that can correct for spherical and other octupole-order aberrations. Two methods were used to evaluate the lens: observation of the focused beam spot on a specially fabricated target while systematically varying lens voltages, and the grid-shadow technique. The latter demonstrated that octupole-order aberrations were completely corrected in one direction when the lens quadrupoles were operated individually with appropriate octupole excitations. This research was made possible by a grant from the National Science Foundation through the Physics Research Experience for Undergraduates (REU) Program at the University of North Texas. Additionally, funding was provided by the Ronald E. McNair Post-baccalaureate Achievement Program at the University of North Texas.

  3. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  4. Measurement reports for the cryogenically-cooled drift tube quadrupoles

    SciTech Connect

    1993-12-31

    This compilation contains quadrupole measurement reports for LANL type A and type E drift tube cryoquads. The cryoquad information gives s/n, vendor, field strength, phase, b3/b2, b4/b2, b5/b2, b6/b2, center wire location. The measurements for the harmonic measuring system gives time and date of measurements, magnet p/n, coil p/n, coil radii, coil turns, low and high gain, and temperature. Quadrupole information includes effective B` X L, and magnetic center. Bucked and unbucked calculations give signal in {mu}V{center_dot}sec, field in Tesla{center_dot}meter, B(n)/B(2), absolute and relative phase.

  5. Permanent-magnet quadrupoles in an RFQ linacs

    SciTech Connect

    Lysenko, W.P.; Wang, T.F.

    1985-01-01

    We investigated the possibility of increasing the current-carrying capability of radio-frequency quadrupole (RFQ) linear accelerators by adding permanent-magnet quadrupole (PMQ) focusing to the existing transverse focusing provided by the rf electric field. Increased transverse focusing would also allow shortening RFQ linacs by permitting a larger accelerating gradient, which is normally accomplished by an undesirable increased transverse rf defocusing effect. We found that PMQs were not helpful in increasing the transverse focusing strength in an RFQ. This conclusion was reached after some particle tracing simulations and some analytical calculations. In our parameter regime, the addition of the magnets increases the betatron frequency but does not result in improved focusing because the increased flutter more than offsets the gain from the increased betatron frequency.

  6. 3D simulations of an electrostatic quadrupole injector

    SciTech Connect

    Grote, D.P. |; Friedman, A.; Yu, S.

    1993-02-01

    Analysis of the dynamics of a space charge dominated beam in a lattice of electrostatic focusing structures requires a full three-dimensional conic that includes self-consistent space charge fields and the fields from the complex conductor shapes. The existing WARP3d code, a particle simulation code which has been developed for heavy-ion fusion (HIF) applications contains machinery for handling particles in three-dimensional fields. A successive overrelaxation field solver with subgrid-scale placement of boundaries for rounded surface and four-fold symmetry has been added to the code. The electrostatic quadrupole (ESQ) injector for the ILSE accelerator facility being planned at Lawrence Berkeley Laboratory is shown as an application. The issue of concern is possible emittance degradation because the focusing voltages are a significant fraction of the particles` energy and because there are significant nonlinear fields arising from the shapes of the quadrupole structures.

  7. Nb3Sn Quadrupoles Designs For The LHC Upgrades

    SciTech Connect

    Felice, Helene

    2008-05-19

    In preparation for the LHC luminosity upgrades, high field and large aperture Nb{sub 3}Sn quadrupoles are being studied. This development has to incorporate all the relevant features for an accelerator magnet like alignment and cooling channels. The LARP HQ model is a high field and large bore quadrupole that will meet these requirements. The 2-layer coils are surrounded by a structure based on key and bladder technology with supporting iron yoke and aluminum shell. This structure is aimed at pre-stress control, alignment and field quality. We present here the magnetic and mechanical design of HQ, along with recent progress on the development of the first 1-meter model.

  8. Diabatization based on the dipole and quadrupole: The DQ method

    SciTech Connect

    Hoyer, Chad E.; Xu, Xuefei; Ma, Dongxia; Gagliardi, Laura E-mail: truhlar@umn.edu; Truhlar, Donald G. E-mail: truhlar@umn.edu

    2014-09-21

    In this work, we present a method, called the DQ scheme (where D and Q stand for dipole and quadrupole, respectively), for transforming a set of adiabatic electronic states to diabatic states by using the dipole and quadrupole moments to determine the transformation coefficients. It is more broadly applicable than methods based only on the dipole moment; for example, it is not restricted to electron transfer reactions, and it works with any electronic structure method and for molecules with and without symmetry, and it is convenient in not requiring orbital transformations. We illustrate this method by prototype applications to two cases, LiH and phenol, for which we compare the results to those obtained by the fourfold-way diabatization scheme.

  9. Performance of An Adjustable Strength Permanent Magnet Quadrupole

    SciTech Connect

    Gottschalk, S.C.; DeHart, T.E.; Kangas, K.W.; Spencer, C.M.; Volk, J.T.; /Fermilab

    2006-03-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic CL and field quality made using an air bearing rotating coil system. The magnetic CL stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic CL. Calibration procedures as well as CL measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  10. Microwave spectra and quadrupole coupling measurements for methyl rhenium trioxide

    NASA Astrophysics Data System (ADS)

    Sickafoose, S. M.; Wikrent, P.; Drouin, B. J.; Kukolich, S. G.

    1996-12-01

    Microwave rotational transitions for J' ← J = 1 ← 0 and 2 ← 1 were measured in the 6-14 GHz range for methyl rhenium trioxide using a Flygare-Balle type, pulsed-beam spectrometer. The rotational constants for the most abundant isotopomers are B( 187Re) = 3466.964(2) MHz and B( 185Re) = 3467.049(3) MHz. The quadrupole coupling strengths are eQq( 187Re) = 716.55(2) MHz and eQq( 185Re) = 757.19(3) MHz. Transitions were also observed for 13C isotopomers and 18O isotopomers. The value for the ReC bond length obtained from a Kraitchman analysis is R( ReC) = 2.080 Å. The rhenium quadrupole coupling strengths are about 20% smaller than those obtained for HRe(CO) 5.

  11. 120-mm supercondcting quadrupole for interaction regions of hadron colliders

    SciTech Connect

    Zlobin, A.V.; Kashikhin, V.V.; Mokhov, N.V.; Novitski, I.; /Fermilab

    2010-05-01

    Magnetic and mechanical designs of a Nb{sub 3}Sn quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil mid-planes to reduce the level of radiation heat deposition and radiation dose in the coil. The quadrupole mechanical structure is based on aluminum collars supported by an iron yoke and a stainless steel skin. Magnet parameters including maximum field gradient and field harmonics, Nb3Sn coil pre-stress and protection at the operating temperatures of 4.5 and 1.9 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

  12. Test results of LHC interaction regions quadrupoles produced by Fermilab

    SciTech Connect

    Bossert, R.; Carson, J.; Chichili, D.R.; Feher, S.; Kerby, J.; Lamm, M.J.; Nobrega, A.; Nicol, T.; Ogitsu, T.; Orris, D.; Page, T.; Peterson, T.; Rabehl, R.; Robotham, W.; Scanlan, R.; Schlabach, P.; Sylvester, C.; Strait, J.; Tartaglia, M.; Tompkins, J.C.; Velev, G.; /Fermilab

    2004-10-01

    The US-LHC Accelerator Project is responsible for the production of the Q2 optical elements of the final focus triplets in the LHC interaction regions. As part of this program Fermilab is in the process of manufacturing and testing cryostat assemblies (LQXB) containing two identical quadrupoles (MQXB) with a dipole corrector between them. The 5.5 m long Fermilab designed MQXB have a 70 mm aperture and operate in superfluid helium at 1.9 K with a peak field gradient of 215 T/m. This paper summarizes the test results of several production MQXB quadrupoles with emphasis on quench performance and alignment studies. Quench localization studies using quench antenna signals are also presented.

  13. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Pivi, Mauro; /SLAC

    2010-08-25

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  14. SKEW QUADRUPOLES IN RHIC DIPOLE MAGNETS AT HIGH FIELDS.

    SciTech Connect

    JAIN, A.; GUPTA, P.; THOMPSON, P.; WANDERER, P.

    1995-06-11

    In the RHIC arc dipoles, the center of the cold mass lies above the center of the cryostat. At the maximum design field, the magnetic flux lines leak through the yoke to the asymmetrically located cryostat, which provides an additional return path. This introduces a systematic top-bottom asymmetry leading to a skew quadrupole term at high fields. A similar asymmetry is also created by any difference in weights of the upper and the lower yoke halves. Data from measurements of several RHIC dipoles are presented to study this effect. In the current production series of the RDIC dipoles, an attempt is made to compensate the effect of the cryostat by an asymmetry in the iron yoke. Seven dipoles with this type of yoke have been cold tested, and show a reduced saturation in the skew quadrupole term, as expected.

  15. Skew quadrupole in RHIC dipole magnets at high fields

    SciTech Connect

    Jain, A.; Gupta, P.; Thompson, P.; Wanderer, P.

    1995-07-01

    In the RHIC arc dipoles, the center of the cold mass lies above the center of the cryostat. At the maximum design field, the magnetic flux lines leak through the yoke to the asymmetrically located cryostat, which provides an additional return path. This introduces a systematic top-bottom asymmetry leading to a skew quadrupole term at high fields. A similar asymmetry is also created by any difference in weights of the upper and the lower yoke halves. Data from measurements of several RHIC dipoles are presented to study this effect. In the current production series of the RHIC dipoles, an attempt is made to compensate the effect of the cryostat by an asymmetry in the iron yoke. Seven dipoles with this type of yoke have been cold tested, and show a reduced saturation in the skew quadrupole term, as expected.

  16. Development and test of LARP technological quadrupole (TQC) magnet

    SciTech Connect

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab /LBL, Berkeley

    2006-08-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented.

  17. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    SciTech Connect

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-06-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

  18. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  19. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  20. Magnetic performance of new Fermilab high gradient quadrupoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2{theta} coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs.

  1. Analysis on linac quadrupole misalignment in FACET commissioning 2012

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-07-05

    In this note, the analysis on linac quadrupole misalignment is presented for the FACET linac section LI05-09 plus LI11-19. The effectiveness of the beam-based alignment technique is preliminarily confirmed by the measurement. Beam-based alignment technique was adopted at SLAC linac since SLC time. Here the beam-based alignment algorithms are further developed and applied in the FACET commissioning during 2012 run.

  2. Design and Measurement of the NSLS II Quadrupole Prototypes

    SciTech Connect

    Rehak,M.; Jain, A. K.; Skaritka, J.; Spataro, C.

    2009-05-04

    The design and measurement of the NSLS-II ring quadrupoles prototypes are presented. These magnets are part of a larger prototype program described in [1]. Advances in software, hardware, and manufacturing have led to some new level of insight in the quest for the perfect magnet design. Three geometric features are used to minimize the first three allowed harmonics by way of optimization. Validations through measurement and confidence levels in calculations are established.

  3. Electrostatic quadrupole array for focusing parallel beams of charged particles

    DOEpatents

    Brodowski, John

    1982-11-23

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.

  4. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS.

    SciTech Connect

    CARDONA,J.; PEGGS,S.; PILAT,R.; PTITSYN,V.

    2004-07-05

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model.

  5. Position Stability Monitoring of THEthe LCLS Undulator Quadrupoles

    SciTech Connect

    Nuhn, Heinz Dieter; Gassner, Georg; Peters, Franz; /SLAC

    2012-03-26

    X-ray FELs demand that the positions of undulator components be stable to less than 1 {mu}m per day. Simultaneously, the undulator length increases significantly in order to saturate at x-ray wavelengths. To minimize the impact of the outside environment, the Linac Coherent Light Source (LCLS) undulator is placed underground, but reliable data about ground motion inside such a tunnel was not available in the required stability range during the planning phase. Therefore, a new position monitor system had been developed and installed with the LCLS undulator. This system is capable of measuring x, y, roll, pitch and yaw of each of the 33 undulator quadrupoles with respect to stretched wires. Instrument resolution is about 10 nm and instrument drift is negligible. Position data of individual quadrupoles can be correlated along the entire 132-m long undulator. The system has been under continuous operation since 2009. This report describes long term experiences with the running system and the observed positional stability of the undulator quadrupoles.

  6. Quadrupole Magnetic Sorting of Porcine Islets of Langerhans

    PubMed Central

    Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole

    2009-01-01

    Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179

  7. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    NASA Astrophysics Data System (ADS)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  8. The exact calculation of quadrupole sources for some incompressible flows

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1988-01-01

    This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source and neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems for which the exact solution is known. The inviscid, incompressible, 2-D flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.

  9. Design of the PEP-II Interaction Region Septum Quadrupole

    NASA Astrophysics Data System (ADS)

    Osborn, J.; Tanabe, J.; Yee, D.; Younger, F.

    1997-05-01

    The PEP-II QF2 magnet is one of the final focus quadrupoles for the Low-Energy Ring (LER) and utilizes a septum aperture to accommodate the adjacent High-Energy Ring (HER) beamline. The LER lattice design specification calls for an extremely high field quality for this magnet. A conventional water-cooled copper coil and laminated steel core design was selected to allow adjustment in the excitation. The close proximity between the LER and HER beamlines and the required integrated quadrupole strength result in a moderately high current density septum design. The QF2 magnets are imbedded in a confined region at each end of the BaBar detector, thus requiring a small magnet core cross section. Pole face windings are included in the QF2 design to buck the skew octupole term induced by the solenoidal fringe field that leaks out of the detector. Back-leg windings are included to buck a small dipole component induced by the lack of perfect quadrupole symmetry in this septum design. 2D pole contour optimization and 3D end chamfers are used to minimize harmonic errors; a separate permanent-magnet Harmonic Corrector Ring compensates for remaining field errors. The design methods and approach, 2D and 3D analyses, and the resulting expected magnet performance are described in this paper.

  10. Tandem-in-space and tandem-in-time mass spectrometry: Triple quadrupoles and quadrupole ion traps

    SciTech Connect

    Johnson, J.V.; Yost, R.A. ); Kelley, P.E.; Bradford, D.C. )

    1990-10-15

    Tandem-in-time and tandem-in-space MS/MS on quadrupole ion trap (ITMS) and triple quadrupole (TQMS) tandem mass spectrometers, respectively, were compared by evaluating the MS/MS daughter spectra, efficiencies of collision-induced dissociation (CID), limits of detection, and dynamic ranges obtained for the methane positive chemical ionization (PCI)-CID of two alkylphosphonates. Although the yield of daughter ions is dependent upon a number of instrumental parameters on both instruments, with judicious selection of parameters the ITMS and TQMS both yielded daughter ions of similar relative abundances. The ITMS had greater efficiencies of fragmentation, collection, and mass selection and transmission of the daughter ions to the detector. With PCI-MS/MS analysis of diisopropyl methylphosphonate standards introduced via capillary gas chromatography, full daughter spectra could be obtained for as little as 15 pg and 1.5 ng injected for the ITMS and the TQMS, respectively.

  11. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    SciTech Connect

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2005-05-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  12. A Quadrupole Band-Pass Filter for a White Proton Source

    NASA Astrophysics Data System (ADS)

    Morrow, Jonathon; Peterson, Jerry

    2009-10-01

    The LANSCE facility at Los Alamos National Laboratory uses a beam of 800 MeV protons as a source of continuous (white) beams of neutrons, used for a wide range of basic and applied science. The same source also provides a white source of protons, which would be very useful for research, if some degree of energy resolution were available. We are designing a quadrupole magnet system that will provide such energy resolution by focusing only the desired momentum onto a sample, with protons of more or less momentum more widely diffused. Results will be given for designs based on simple thin lens optics to understand the criteria and general trends. A full design will require use of magnetic beam transport codes and a specific magnet system.

  13. Simulation of direct plasma injection for laser ion beam acceleration with a radio frequency quadrupole

    SciTech Connect

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; Zhao, H. Y. Zhang, J. J.; Sha, Sh.; Zhang, Zh. L.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-07-15

    The direct plasma injection scheme (DPIS) has been being studied at Institute of Modern Physics since several years ago. A C{sup 6+} beam with peak current of 13 mA, energy of 593 keV/u has been successfully achieved after acceleration with DPIS method. To understand the process of DPIS, some simulations have been done as follows. First, with the total current intensity and the relative yields of different charge states for carbon ions measured at the different distance from the target, the absolute current intensities and time-dependences for different charge states are scaled to the exit of the laser ion source in the DPIS. Then with these derived values as the input parameters, the extraction of carbon beam from the laser ion source to the radio frequency quadrupole with DPIS is simulated, which is well agreed with the experiment results.

  14. Nuclear quadrupole resonance studies of the SORC sequence and nuclear magnetic resonance studies of polymers

    SciTech Connect

    Jayakody, J.R.P.

    1993-12-31

    The behavior of induction signals during steady-state pulse irradiation in {sup 14}N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work nitrocellulose isotopically highly enriched with {sup 15}N was studied at four different temperatures between 27{degrees} and 120{degrees} Celsius and the correlation times for polymer backbone motions were obtained. Naflon films containing water (D{sub 2}O and H{sub 2} {sup 17}O) and methanol (CH{sub 3}OD, CH{sub 3} {sup 17}OH), have been studied using deuteron and oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the {sup 2}H NMR lineshapes. Activation energies extracted from {sup 2}H spin-lattice relaxation data on the high temperature side of the T{sub 1} minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotrophy of the host polymer.

  15. Nuclear Quadrupole Resonance Studies of the Sorc Sequence and Nuclear Magnetic Resonance Studies of Polymers.

    NASA Astrophysics Data System (ADS)

    Jayakody, Jayakody R. Pemadasa

    1993-01-01

    The behavior of induction signals during steady -state pulse irradiation in ^{14} N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, Cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work Nitrocellulose isotopically highly enriched with ^{15}N was studied at four different temperatures between 27^ circ and 120^circ Celsius and the correlation times for polymer backbone motions were obtained. Nafion films containing, water (D_2 O and H_2^{17}O) and methanol (CH_3OD, CH _3^{17}OH), have been studied using Deuteron and Oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the ^2H NMR lineshapes. Activation energies extracted from ^2H spin-lattice relaxation data on the high temperature side of the T_1 minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotropy of the host polymer. Activation volumes corresponding to a specific dynamical process were obtained from measurements of spin-lattice relaxation vs. pressure. From the NMR measurements of Nafion films containing methanol, it was found that the molecular motion is much more rapid than the molecular motion of water in Nafion membranes.

  16. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  17. Equilibrium of non-neutral plasmas in a Malmberg-Penning trap with quadrupole field errors

    NASA Astrophysics Data System (ADS)

    Akhmetov, Timur; Kotelnikov, Igor

    2009-12-01

    The effect of small quadrupole magnetic and electrostatic perturbations on the equilibrium of a non-neutral plasma confined in a Malmberg-Penning trap is analyzed on the base of the parallel current constraint derived recently [Kotelnikov and Romé, Phys. Plasmas 15, 072118 (2008)]. The constraint is generalized to the case of nonuniform plasma temperature. Analytical solutions for the electric potential variations inside the trap and Pfirsch-Schlüter currents are found in the paraxial limit for stepwise radial density profiles of the plasma. It is shown that the equilibrium distorted by a magnetic quadrupole is qualitatively different from that perturbed by an electric quadrupole. In particular, a magnetic quadrupole squeeze perturbs the plasma potential only within a localized region, whereas an electric quadrupole squeeze perturbs the potential in the entire plasma column. On the other hand, axially variable parts of the perturbed potential have similar radial profiles for both electric and magnetic quadrupoles.

  18. Equilibrium of non-neutral plasmas in a Malmberg-Penning trap with quadrupole field errors

    SciTech Connect

    Akhmetov, Timur; Kotelnikov, Igor

    2009-12-15

    The effect of small quadrupole magnetic and electrostatic perturbations on the equilibrium of a non-neutral plasma confined in a Malmberg-Penning trap is analyzed on the base of the parallel current constraint derived recently [Kotelnikov and Rome, Phys. Plasmas 15, 072118 (2008)]. The constraint is generalized to the case of nonuniform plasma temperature. Analytical solutions for the electric potential variations inside the trap and Pfirsch-Schlueter currents are found in the paraxial limit for stepwise radial density profiles of the plasma. It is shown that the equilibrium distorted by a magnetic quadrupole is qualitatively different from that perturbed by an electric quadrupole. In particular, a magnetic quadrupole squeeze perturbs the plasma potential only within a localized region, whereas an electric quadrupole squeeze perturbs the potential in the entire plasma column. On the other hand, axially variable parts of the perturbed potential have similar radial profiles for both electric and magnetic quadrupoles.

  19. Testing of NB3SN Quadrupole Coils Using Magnetic Mirror Structure

    NASA Astrophysics Data System (ADS)

    Zlobin, A. V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V. S.; Kashikhin, V. V.; Lamm, M. J.; Novitski, I.; Tartaglia, M.; Tompkins, J. C.; Turrioni, D.; Yamada, R.

    2010-04-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb3Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  20. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    SciTech Connect

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  1. Orientational order of solutes in liquid crystals: The effect of distributed electric quadrupoles

    NASA Astrophysics Data System (ADS)

    Lee, J. S. J.; Sokolovskii, R. O.; Berardi, R.; Zannoni, C.; Burnell, E. E.

    2008-03-01

    We perform Monte Carlo simulations of a mixture of soft ellipsoids with embedded quadrupoles as a model of various small molecules dissolved in nematic liquid crystals. We find that Gay-Berne ellipsoids with distributed embedded quadrupoles qualitatively reproduce the trend in the order parameters observed experimentally in NMR spectra. In contrast, ellipsoids with a single embedded quadrupole cannot reproduce the negative order parameter of acetylene in EBBA.

  2. Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC

    SciTech Connect

    Albert F. Zeller

    2012-12-28

    The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

  3. Two Paradigmatic Waves of Public Discourse on Nuclear Waste in the United States, 1945-2009: Understanding a Magnitudinal and Longitudinal Phenomenon in Anthropological Terms

    PubMed Central

    Pajo, Judi

    2016-01-01

    This project set out to illuminate the discursive existence of nuclear waste in American culture. Given the significant temporal dimension of the phenomenon as well as the challenging size of the United States setting, the project adapted key methodological elements of the sociocultural anthropology tradition and produced proxies for ethnographic fieldnotes and key informant interviews through sampling the digital archives of the New York Times over a 64-year period that starts with the first recorded occurrence of the notion of nuclear waste and ends with the conclusion of the presidency of George W. Bush. Two paradigmatic waves of American public discourse on nuclear waste come to light when subjecting this empirical data to quantitative inventorying and interpretive analysis: between 1945 and 1969 nuclear waste was generally framed in light of the beneficial utilizations of nuclear reactions and with optimistic expectations for a scientific/technological solution; by contrast, between 1969 and 2009 nuclear waste was conceptualized as inherited harm that could not be undone and contestation that required political/legal management. Besides this key finding and the empirical timing of the two paradigms, the study’s value lies also with its detailed empirical documentation of nuclear waste in its sociocultural existence. PMID:27310719

  4. Two Paradigmatic Waves of Public Discourse on Nuclear Waste in the United States, 1945-2009: Understanding a Magnitudinal and Longitudinal Phenomenon in Anthropological Terms.

    PubMed

    Pajo, Judi

    2016-01-01

    This project set out to illuminate the discursive existence of nuclear waste in American culture. Given the significant temporal dimension of the phenomenon as well as the challenging size of the United States setting, the project adapted key methodological elements of the sociocultural anthropology tradition and produced proxies for ethnographic fieldnotes and key informant interviews through sampling the digital archives of the New York Times over a 64-year period that starts with the first recorded occurrence of the notion of nuclear waste and ends with the conclusion of the presidency of George W. Bush. Two paradigmatic waves of American public discourse on nuclear waste come to light when subjecting this empirical data to quantitative inventorying and interpretive analysis: between 1945 and 1969 nuclear waste was generally framed in light of the beneficial utilizations of nuclear reactions and with optimistic expectations for a scientific/technological solution; by contrast, between 1969 and 2009 nuclear waste was conceptualized as inherited harm that could not be undone and contestation that required political/legal management. Besides this key finding and the empirical timing of the two paradigms, the study's value lies also with its detailed empirical documentation of nuclear waste in its sociocultural existence. PMID:27310719

  5. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment

    SciTech Connect

    Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; Neeway, James J.; Cabie, M.

    2013-04-08

    Here, we report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements of diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are DLi = 1.5 × 10-22 m2.s-1 and DH = 6.8 × 10-23 m2.s-1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution

  6. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment

    DOE PAGESBeta

    Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; Neeway, James J.; Cabie, M.

    2013-04-08

    Here, we report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements ofmore » diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are DLi = 1.5 × 10-22 m2.s-1 and DH = 6.8 × 10-23 m2.s-1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution rate, contrary to what has been suggested by recent interfacial dissolution

  7. Progress in the development of superconducting quadrupoles for heavy ion fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  8. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  9. Evaluate the Options of Implementing Skew Quadrupoles in the High Energy Ring

    SciTech Connect

    Cai, Yunhai

    1999-03-09

    There are six skew quadrupoles needed in each side of the interaction region to compensate the effects of coupling and vertical dispersion due to the solenoid detector. Two of those skew quadrupoles are at the location of the first pair of the local chromatic sextupoles in the arcs adjacent the interaction region. To avoid introducing high order aberration, the skew quadrupoles could not be placed between the sextupoles pair. In this note, we evaluate two options of implementing the skew quadrupoles at those locations, namely adding trim coil into the sextupoles or vertically displacing the sextupoles.

  10. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    SciTech Connect

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  11. Small Aperture BPM to Quadrupole Assembly Tolerance Study

    SciTech Connect

    Fong, K. W.

    2010-12-07

    The LCLS injector and linac systems utilize a series of quadrupole magnets with a beam position monitor (BPM) captured in the magnet pole tips. The BPM measures the electron beam position by comparing the electrical signal from 4 electrodes and interpolating beam position from these signals. The manufacturing tolerances of the magnet and BPM are critical in determining the mechanical precision of the electrodes relative to the nominal electron beam Z-axis. This study evaluates the statistical uncertainty of the electrodes center axis relative to the nominal electron beam axis.

  12. Quench margin measurement in Nb3Sn quadrupole magnet

    SciTech Connect

    Kashikhin, V.V.; Bossert, R.; Chlachidze, G.; Lamm, M.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2008-08-01

    One of the possible practical applications of the Nb{sub 3}Sn accelerator magnets is the LHC luminosity upgrade that involves replacing the present NbTi focusing quadrupoles in two high-luminosity interaction regions (IR). The IR magnets are exposed to strong radiation from the interaction point that requires a detailed investigation of the magnet operating margins under the expected radiation-induced heat depositions. This paper presents the results of simulation and measurement of quench limits and temperature margins for a Nb{sub 3}Sn model magnet using a special midplane strip heater.

  13. Magnetic quadrupole doublet focusing system for high energy ions.

    PubMed

    Glass, Gary A; Dymnikov, Alexander D; Rout, Bibhudutta; Dias, Johnny F; Houston, Louis M; LeBlanc, Jared

    2008-03-01

    A high energy focused ion beam microprobe using a doublet arrangement of short magnetic quadrupole lenses was used to focus 1-3 MeV protons to spot sizes of 1x1 microm2 and 1-4.5 MeV carbon and silicon ion beams to spot sizes of 1.5x1.5 microm2. The results presented clearly demonstrate that this simple doublet configuration can provide high energy microbeams for microanalysis and microfabrication applications. PMID:18377047

  14. Kinetic approach to the damping of giant quadrupole resonances

    SciTech Connect

    Bonasera, A.; Di Toro, M.; Gulminelli, F. Dipartimento di Fisica, Corso Italia 57, 95129 Catania Dipartimento di Fisica, Via Celoria 16, 20133 Milano Laboratorio Nazionale del Sud, Viale A. Doria, 95125 Catania )

    1990-09-01

    The effect of one- and two-body dissipation on the damping of giant quadrupole resonances is studied in a semiclassic approach solving a Vlasov equation with a collisional relaxation time. The latter is microscopically evaluated from the equilibration of a distorted momentum distribution in a kinetic approach. Important effects from energy and angle dependent nucleon-nucleon ({ital NN}) cross sections and from the time variation of Pauli blocking are stressed. Once these points are suitably treated, a good agreement with the experimental systematics is obtained from the use of a free {ital NN} cross section.

  15. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    SciTech Connect

    Meinke, Rainer, B.; Goodzeit, Carl, L.; Ball, Millicent, J.

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  16. Computational Analysis of Quadrupole Mass Filters Employing Nontraditional Waveforms

    NASA Astrophysics Data System (ADS)

    Brabeck, Gregory F.; Reilly, Peter T. A.

    2016-06-01

    Quadrupole mass filters using non-sinusoidal driving potentials present exciting opportunities for new functionality. Predicting figures of merit like resolving power and transmission efficiency helps characterize these emerging devices. To this end, matrix methods of solving the Hill equation of ion motion are employed to calculate stability diagrams and pseudopotential well depth maps in the a,q plane for arbitrary waveforms. The theoretical resolving power and well depth of digital, trapezoidal and sinusoidal mass filters are compared. Simplified expressions for digital mass filter operation are presented.

  17. Computational Analysis of Quadrupole Mass Filters Employing Nontraditional Waveforms.

    PubMed

    Brabeck, Gregory F; Reilly, Peter T A

    2016-06-01

    Quadrupole mass filters using non-sinusoidal driving potentials present exciting opportunities for new functionality. Predicting figures of merit like resolving power and transmission efficiency helps characterize these emerging devices. To this end, matrix methods of solving the Hill equation of ion motion are employed to calculate stability diagrams and pseudopotential well depth maps in the a,q plane for arbitrary waveforms. The theoretical resolving power and well depth of digital, trapezoidal and sinusoidal mass filters are compared. Simplified expressions for digital mass filter operation are presented. Graphical Abstract ᅟ. PMID:27091594

  18. Advances in the engineering of quadrupole resonance landmine detection systems

    NASA Astrophysics Data System (ADS)

    Barrall, G. A.; Arakawa, M.; Barabash, L. S.; Bobroff, S.; Chepin, J. F.; Derby, K. A.; Drew, A. J.; Ermolaev, K. V.; Huo, S.; Lathrop, D. K.; Steiger, M. J.; Stewart, S. H.; Turner, P. J.

    2005-06-01

    Advances in the engineering of Quadrupole Resonance (QR) sensors for landmine detection have resulted in improved performance, as well as massive reductions in power, size and weight. The next generation of vehicle-mounted QR confirmation sensors is over an order of magnitude smaller and more power efficient than the system fielded in 2002 and 2003. Early prototypes have also demonstrated a significant improvement in TNT sensitivity, and similar improvements are anticipated in RDX sensitivity during Q1 2005. Blind test results from 2003 confirm the radio frequency interference and piezo-electric ringing immunity of the Quantum Magnetics QR Confirmation Sensor (QRCS).

  19. Operational aspects of the Main Injector large aperture quadrupole (WQB)

    SciTech Connect

    Chou, W.; Bartelson, L.; Brown, B.; Capista, D.; Crisp, J.; DiMarco, J.; Fitzgerald, J.; Glass, H.; Harding, D.; Johnson, D.; Kashikhin, V.; /Fermilab

    2007-06-01

    A two-year Large Aperture Quadrupole (WQB) Project was completed in the summer of 2006 at Fermilab. [1] Nine WQBs were designed, fabricated and bench-tested by the Technical Division. Seven of them were installed in the Main Injector and the other two for spares. They perform well. The aperture increase meets the design goal and the perturbation to the lattice is minimal. The machine acceptance in the injection and extraction regions is increased from 40{pi} to 60{pi} mm-mrad. This paper gives a brief report of the operation and performance of these magnets. Details can be found in Ref [2].

  20. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOEpatents

    Felter, Thomas E.

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  1. Finding the Magnetic Center of a Quadrupole to High Resolution

    SciTech Connect

    Fischer, G.E.; Cobb, J.K.; Jenson, D.R.; /SLAC

    2005-08-12

    In a companion pro, collposal it is proposed to align quadrupoles of a transport line to within transverse tolerances of 5 to 10 micrometers. Such a proposal is meaningful only if the effective magnetic center of such lenses can in fact be repeatably located with respect to some external mechanical tooling to comparable accuracy. It is the purpose of this note to describe some new methods and procedures that will accomplish this aim. It will be shown that these methods are capable of yielding greater sensitivity than the more traditional methods used in the past. The notion of the ''nodal'' point is exploited.

  2. Non-interacting Fermi gas in a magnetic quadrupole trap

    NASA Astrophysics Data System (ADS)

    Lau, To Chun Johnathan; Goulko, Olga; Chevy, Frédéric; Lobo, Carlos

    2014-05-01

    A non-interacting gas of spin polarised 6Li Fermi gas in a magnetic quadrupole trap which is not in thermal equilibrium can nevertheless show thermal signatures in some cases. This puzzling behaviour can be seen by measuring the doubly integrated momentum distribution along a particular axis. This distribution can be extremely close to a Gaussian from which we can extract a temperature. However, we show, using molecular dynamics simulations that the temperature thus measured is generally different along different axes. We provide a general explanation of this phenomenon based on ergodicity and check it with further simulations.

  3. Uranium isotope measurements by quadrupole ICP-MS for process monitoring of enrichment

    SciTech Connect

    Policke, T.A.; Bolin, R.N.; Harris, T.L.

    1998-12-31

    Historically, uranium isotopic ratio measurements in the nuclear industry have been performed using Thermal Ionization Mass Spectrometry (TIMS); primarily due to the high level of precision that can be achieved. TIMS analysis, however, requires sample purification and intricate sample loading. Quadrupole (low resolution, single detector) inductively coupled plasma--mass spectrometry, Q-ICP-MS, overcomes these disadvantages and is a cost-effective alternative, i.e., in terms of initial capital, maintenance, and operating costs. This paper presents a simple, single standard approach for measuring uranium isotope content in various solid and liquid nuclear materials along with some comparison data of Q-ICP-MS and TIMS. Intensity ratios of {sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U to total U intensity are produced, providing the enrichment level or percent {sup 235}U. A detailed description of the instrument and data collection parameters are also provided. Optimal precision and accuracy are achieved through the use of a single standard which is closely matched to the enrichment and concentration of the samples. Depending upon the standard chosen, enrichments between depleted and 97% can be quantified. Standard deviations for the major uranium isotopes are typically within 0.02 absolute and at least an order of magnitude lower for the minor U isotope abundances.

  4. Friction in nuclear dynamics

    SciTech Connect

    Swiatecki, W.J.

    1985-03-01

    The problem of dissipation in nuclear dynamics is related to the breaking down of nuclear symmetries and the transition from ordered to chaotic nucleonic motions. In the two extreme idealizations of the perfectly Ordered Regime and the fully Chaotic Regime, the nucleus should behave as an elastic solid or an overdamped fluid, respectively. In the intermediate regime a complicated visco-elastic behaviour is expected. The discussion is illustrated by a simple estimate of the frequency of the giant quadrupole resonance in the Ordered Regime and by applications of the wall and window dissipation formulae in the Chaotic Regime. 51 refs.

  5. (1)H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids--[C(NH2)3]3Bi2I9 as an example.

    PubMed

    Florek-Wojciechowska, M; Wojciechowski, M; Jakubas, R; Brym, Sz; Kruk, D

    2016-02-01

    (1)H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ((14)N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10(-6) s which has turned out to be (almost) temperature independent, and a fast process in the range of 10(-9) s. From the (1)H-(14)N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions. PMID:26851925

  6. Comparison of liquid chromatography using triple quadrupole and quadrupole ion trap mass analyzers to determine pesticide residues in oranges.

    PubMed

    Soler, Carla; Mañes, Jordi; Picó, Yolanda

    2005-03-01

    Liquid chromatography-triple quadrupole/mass spectrometry (LC-TQ/MS) and liquid chromatography-quadrupole ion trap/mass spectrometry (LC-QIT/MS) for determining bupirimate, hexaflumuron, tebufenpyrad, buprofezin, pyriproxyfen, and fluvalinate in fruits have been compared. The differences in the mass spectra obtained by triple and ion trap quadrupoles are discussed, showing how both of them provide interesting features. The evaluation of the two instruments was carried out by ethyl acetate extraction of oranges spiked with the studied pesticides at LOQ and 10 times the LOQ. Results obtained by LC-TQ/MS correlated well with those obtained by LC-QIT/MS. Recoveries were 70-94% by LC-TQ/MS and 72-92% by LC-QIT/MS with the R.S.D. from five replicate analysis 4-14% and 8-18%, respectively. Matrix effects were tested for both techniques by standard addition to blank extracts. Although the matrix effects are not originated in mass analyzer but in the LC/MS interface, they were, generally, more marked by LC-QIT-MS than by LC-TQ/MS. The limits of quantification (LOQs) were 0.005-0.2 mg kg(-1) by both equipments--appropriate values for determining these pesticides in orange from the regulatory point of view. The results indicate that the TQ provides higher precision, better linearity, it is more robust, and when the purpose of the analysis is quantitative determination, preferable over the QIT. However, the application of both mass spectrometers to analyze orange samples conventionally treated showed that any can be used for qualitative and quantitative purposes. PMID:15844516

  7. Heavy ion plasma confinement in an RF quadrupole trap

    NASA Technical Reports Server (NTRS)

    Schermann, J.; Major, F. G.

    1971-01-01

    The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed.

  8. VIBRATION MEASUREMENTS IN A RHIC QUADRUPOLE AT CRYOGENIC TEMPERATURES.

    SciTech Connect

    JAIN, A.; AYDIN, S.; HE, P.; ANERELLA, M.; GANETIS, G.; HARRISON, M.; PARKER, B.; PLATE, S.

    2005-10-17

    One of the concerns in using compact superconducting magnets in the final focus region of the ILC is the influence of the cryogen flow on the vibration characteristics. As a first step towards characterizing such motion at nanometer levels, a project was undertaken at BNL to measure the vibrations in a spare RHIC quadrupole under cryogenic conditions. Given the constraints of cryogenic operation, and limited space available, it was decided to use a dual head laser Doppler vibrometer for this work. The performance of the laser vibrometer was tested in a series of room temperature tests and compared with results from Mark L4 geophones. The laser system was then used to measure the vibration of the cold mass of the quadrupole with respect to the outside warm enclosure. These measurements were carried out both with and without the flow of cold helium through the magnet. The results indicate only a minor increase in motion in the horizontal direction (where the cold mass is relatively free to move).

  9. Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

    SciTech Connect

    Marsh, R A; Anderson, S G; Armstrong, J P

    2012-05-16

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.

  10. High Reliability Prototype Quadrupole for the Next Linear Collider

    NASA Astrophysics Data System (ADS)

    Spencer, C. M.

    2001-01-01

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  11. High Reliability Prototype Quadrupole for the Next Linear Collider

    SciTech Connect

    Spencer, Cherrill M

    2001-01-04

    The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85% overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20% and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.

  12. [Electromagnetic studies of nuclear structure and reactions]. [Nuclear Physics Group, Univ. of New Hampshire

    SciTech Connect

    Not Available

    1992-01-01

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of [sup 16]O(e,e[prime]p), [sup 12]C(e,e[prime]pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in [sup 12]C(e,e[prime]p[sub 0]) and [sup 16]O(e,e[prime]p[sub 0]), comparison of the [sup 12]C(e, e[prime]p[sub 0]) and [sup 16]O(e,e[prime]p[sub 3]) reactions, quadrupole strength in the [sup 16]O(e,e[prime][alpha][sub 0]) reaction, quadrupole strength in the [sup 12]C(e,e[prime][alpha]) reaction, analysis of the [sup 12]C(e,e[prime]p[sub 1]) and [sup 16]O(e,e[prime]p[sub 3]) angular distributions, analysis of the [sup 40]Ca(e,e[prime]x) reaction at low q, analysis of the higher-q [sup 12]C(e,e[prime]x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments).

  13. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers[S

    PubMed Central

    Shaner, Rebecca L.; Allegood, Jeremy C.; Park, Hyejung; Wang, Elaine; Kelly, Samuel; Haynes, Christopher A.; Sullards, M. Cameron; Merrill, Alfred H.

    2009-01-01

    Sphingolipids are a highly diverse category of bioactive compounds. This article describes methods that have been validated for the extraction, liquid chromatographic (LC) separation, identification and quantitation of sphingolipids by electrospray ionization, tandem mass spectrometry (ESI-MS/MS) using triple quadrupole (QQQ, API 3000) and quadrupole-linear-ion trap (API 4000 QTrap, operating in QQQ mode) mass spectrometers. Advantages of the QTrap included: greater sensitivity, similar ionization efficiencies for sphingolipids with ceramide versus dihydroceramide backbones, and the ability to identify the ceramide backbone of sphingomyelins using a pseudo-MS3 protocol. Compounds that can be readily quantified using an internal standard cocktail developed by the LIPID MAPS Consortium are: sphingoid bases and sphingoid base 1-phosphates, more complex species such as ceramides, ceramide 1-phosphates, sphingomyelins, mono- and di-hexosylceramides, and these complex sphingolipids with dihydroceramide backbones. With minor modifications, glucosylceramides and galactosylceramides can be distinguished, and more complex species such as sulfatides can also be quantified, when the internal standards are available. JLR LC ESI-MS/MS can be utilized to quantify a large number of structural and signaling sphingolipids using commercially available internal standards. The application of these methods is illustrated with RAW264.7 cells, a mouse macrophage cell line. These methods should be useful for a wide range of focused (sphingo)lipidomic investigations. PMID:19036716

  14. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    SciTech Connect

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin; Jensen, David R.; Rogers, Ron; Sheppard, John C.; Lorant, Steve St; Weber, Thomas B.; Weisend, John, II; Brueck, Heinrich; Toral, Fernando; /Madrid, CIEMAT

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting technique is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.

  15. Dipole Excitation: A New Method for Mass Analysis with a Quadrupole Mass Filter.

    PubMed

    Konenkov, Nikolai V; Douglas, Donald J; Berdnikov, Alexander S

    2016-07-01

    Trajectory calculations are used to investigate peak shapes and ion transmission with a proposed new method of mass analysis with a quadrupole mass filter. Dipole excitation is applied to either the x or the y electrodes, or both, to create bands of instability within the first stability region. With excitation between the y electrodes (near β y  = 0), ions are removed from the low mass side of a peak, and with ion excitation in x (near β x  = 1), ions are removed from the high mass side. The mass resolution can be approximately doubled with comparatively little loss in ion transmission. Ion motion in an ideal quadrupole field and in the field of a quadrupole constructed with round rods has been studied. With an ideal quadrupole field, excitation in y is found to give better peak shape and resolution than excitation in x. With quadrupoles constructed with round rods, excitation in y is found to remove ions from both the low and high mass sides of a peak. The additional higher order multipoles introduced to the quadrupole potential by the use of round rods couple the x motion to the y motion so that exciting the y motion also excites ions in x. Thus, only excitation in y is necessary. Both with an ideal quadrupole field and quadrupoles constructed with round rods, the resolution can be increased ca. ×2 with little loss of transmission. Graphical Abstract ᅟ. PMID:27026406

  16. Dipole Excitation: A New Method for Mass Analysis with a Quadrupole Mass Filter

    NASA Astrophysics Data System (ADS)

    Konenkov, Nikolai V.; Douglas, Donald J.; Berdnikov, Alexander S.

    2016-07-01

    Trajectory calculations are used to investigate peak shapes and ion transmission with a proposed new method of mass analysis with a quadrupole mass filter. Dipole excitation is applied to either the x or the y electrodes, or both, to create bands of instability within the first stability region. With excitation between the y electrodes (near β y = 0), ions are removed from the low mass side of a peak, and with ion excitation in x (near β x = 1), ions are removed from the high mass side. The mass resolution can be approximately doubled with comparatively little loss in ion transmission. Ion motion in an ideal quadrupole field and in the field of a quadrupole constructed with round rods has been studied. With an ideal quadrupole field, excitation in y is found to give better peak shape and resolution than excitation in x. With quadrupoles constructed with round rods, excitation in y is found to remove ions from both the low and high mass sides of a peak. The additional higher order multipoles introduced to the quadrupole potential by the use of round rods couple the x motion to the y motion so that exciting the y motion also excites ions in x. Thus, only excitation in y is necessary. Both with an ideal quadrupole field and quadrupoles constructed with round rods, the resolution can be increased ca. ×2 with little loss of transmission.

  17. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  18. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  19. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  20. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  1. A superconducting quadrupole magnet array for a heavy ion fusion driver

    SciTech Connect

    Caspi, S.; Bangerter, r.; Chow, K.; Faltens, A.; Gourley, S.; Hinkins, R.; Gupta, R.; Lee, E.; McInturff, A.; Scanlan, R.; Taylor, C.; Wolgast, D.

    2000-06-27

    A multi-channel quadrupole array has been proposed to increase beam intensity and reduce space charge effects in a Heavy Ion Fusion Driver. A single array unit composed of several quadrupole magnets, each with its own beam line, will be placed within a ferromagnetic accelerating core whose cost is directly affected by the array size. A large number of focusing arrays will be needed along the accelerating path. The use of a superconducting quadrupole magnet array will increase the field and reduce overall cost. We report here on the design of a compact 3 x 3 superconducting quadrupole magnet array. The overall array diameter and length including the cryostat is 900 x 700 mm. Each of the 9 quadrupole magnets has a 78 mm warm bore and an operating gradient of 50 T/m over an effective magnetic length of 320 mm.

  2. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  3. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  4. COMPENSATION OF FAST KICKER ROLLS WITH SKEW QUADRUPOLES

    SciTech Connect

    Pinayev, I.

    2011-03-28

    The development of the third generation light sources lead to the implementation of the top-up operation, when injection occurs while users collect data. The beam excursions due to the non-closure of the injection bump can spoil the data and need to be suppressed. In the horizontal plane compensation can be achieved by adjusting timing and kick amplitudes. The rolls of the kicker magnets create non-closure in the vertical plane and usually there is no means for correction. In the paper we describe proposed compensation scheme utilizing two skew quadrupoles placed inside the injection bump. The third generation light sources implement top-up operation firstly introduced at Advanced Photon Source. In this mode the circulating beam current is supported near constant by frequent injection of small charge, while photon beam is delivered for users. The beam perturbations caused by the mismatched injection bump can provide undesired noise in the user data. Usually the injection trigger is distributed to the users end stations so that those affected would be able to blank data acquisition. Nevertheless, as good operational practice such transients should be suppressed as much as possible. In the horizontal plane (which is commonly used for injection) one can adjust individual kicker strength as well as trigger delay while observing motion of the stored beam centroid. In the vertical plane such means are unavailable in the most cases. The possible solutions include dedicated weak vertical kickers and motorized adjustment of the roll angle of the injection kickers. Both abovementioned approaches are expensive and can significantly deteriorate reliability. We suggest two employ two skew quadrupoles (to correct both angle and position) placed inside the injection bump. In this case the beam position itself serves as measure of the kicker strength (assuming that kickers are well matched) and vertical kicks from the skew quadrupoles will be self synchronized with injection bump

  5. Nuclear shape coexistence in Po isotopes: An interacting boson model study

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. E.; Heyde, K.

    2015-09-01

    Background: The lead region, Po, Pb, Hg, and Pt, shows up the presence of coexisting structures having different deformation and corresponding to different particle-hole configurations in the shell-model language. Purpose: We intend to study the importance of configuration mixing in the understanding of the nuclear structure of even-even Po isotopes, where the shape coexistence phenomena are not clear enough. Method: We study in detail a long chain of polonium isotopes, Po-208190, using the interacting boson model with configuration mixing (IBM-CM). We fix the parameters of the Hamiltonians through a least-squares fit to the known energies and absolute B (E 2 ) transition rates of states up to 3 MeV. Results: We obtained the IBM-CM Hamiltonians and we calculate excitation energies, B (E 2 ) 's, electric quadrupole moments, nuclear radii and isotopic shifts, quadrupole shape invariants, wave functions, and deformations. Conclusions: We obtain a good agreement with the experimental data for all the studied observables and we conclude that shape coexistence phenomenon is hidden in Po isotopes, very much as in the case of the Pt isotopes.

  6. Nuclear moments in covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Meng, J.; Zhao, P. W.; Zhang, S. Q.; Hu, J. N.; Li, J.

    2014-05-01

    Recent progresses on microscopic and self-consistent description of the nuclear moments in covariant density functional theory based on a point-coupling interaction are briefly reviewed. In particular, the electric quadrupole moments of Cd isotopes and the magnetic moments of Pb isotopes are discussed.

  7. The influence of quadrupole sources in the boundary layer and wake of a blade on helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1991-01-01

    It is presently noted that, for an observer in or near the plane containing a helicopter rotor disk, and in the far field, part of the volume quadrupole sources, and the blade and wake surface quadrupole sources, completely cancel out. This suggests a novel quadrupole source description for the Ffowcs Williams-Hawkings equation which retain quadrupoles with axes parallel to the rotor disk; in this case, the volume and shock surface sourse terms are dominant.

  8. Super Strong Permanent Magnet Quadrupole for a Linear Collider

    SciTech Connect

    Mihara, Takanori

    2004-02-19

    The field strength generated by permanent magnets has been further extended by the introduction of saturated iron. A permanent magnet quadrupole (PMQ) lens with such saturated iron is one of the candidates for the final focus lens for an e{sup +}e{sup -} Linear Collider accelerator, because of its compactness and low power consumption. The first prototype of the PMQ has been fabricated and demonstrated to have an integrated strength of 28.5T with an overall length of 10 cm and a 7mm bore radius. Two drawbacks should be considered: its negative temperature coefficient of field strength and its fixed strength. A thermal compensation material is being tested to cure the first problem. The other problem may be solved by rotating sectioned magnet bricks, but that may lead to movement of the magnetic center and introduction of multipoles beyond some strict requirements.

  9. Manufacturing experience for the LHC inner triplet quadrupole cables

    SciTech Connect

    Scanlan, R.M.; Higley, H.C.; Bossert, R.; Kerby, J.; Gosh, A.K.; Boivin, M.; Roy, T.

    2001-06-12

    The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed.

  10. Statistics of electric-quadrupole lines in atomic spectra

    NASA Astrophysics Data System (ADS)

    Pain, Jean-Christophe; Gilleron, Franck; Bauche, Jacques; Bauche-Arnoult, Claire

    2012-07-01

    In hot plasmas, a temperature of a few tens of eV is sufficient for producing highly stripped ions where multipole transitions become important. At low density, the transitions from tightly bound inner shells lead to electric-quadrupole (E2) lines which are comparable in strength with electric-dipole ones. In this work, we propose analytical formulas for the estimation of the number of E2 lines in a transition array. Such expressions rely on statistical descriptions of electron states and J-levels. A generalized ‘J-file’ sum rule for E2 lines and the strength-weighted shift and variance of the line energies of a transition array nℓN + 1 → nℓNn‧ℓ‧ of inter-configuration E2 lines are also presented.

  11. Quadrupole response of a weakly bound bosonic trimer.

    PubMed

    Liverts, Evgeny; Bazak, Betzalel; Barnea, Nir

    2012-03-16

    The inelastic response of a bosonic trimer is explored in the confines of the Borromean region. To this end we model the interaction between the external field and the bosonic system as a photoabsorptionlike process and study the response of the trimer in the quadrupole approximation. We utilize the hyperspherical-harmonics expansion to solve the Schrödinger equation and the Lorentz integral transform method to calculate the reaction. It is found that the magnitude of the response function and corresponding sum rules increase exponentially when approaching the 3-body threshold. It is also found that this increase is governed by unnatural exponents. The connection between our results and radio-frequency experiments in ultracold atom systems is made. PMID:22540468

  12. Helical quadrupole field stabilization of field-reversed configuration plasma

    SciTech Connect

    Shimamura, S.; Nogi, Y.

    1986-01-01

    The n = 2 mode rotational instability, which appears on a field-reversed configuration plasma produced by a theta pinch, is stabilized by a helical quadrupole field. The critical strength of the field to stabilize the instability is obtained as a function of pitch angle of the helical coil ..cap alpha.. rad/m. Typically, the plasma in the ..cap alpha.. = 6 winding field is stabilized by about one-fifth of ..cap alpha.. = 0 field strength. To physically explain such a good effectiveness of the helical field, the rotation speed of the plasma is measured by a Doppler shift of a carbon V 2270.9-A line. However, the clear explanation to the helical effect is not yet given.

  13. Restoring the skew quadrupole moment in the Tevatron dipoles

    SciTech Connect

    Harding, D.J.; Bauer, P.C.; Blowers, J.N.; DiMarco, J.; Glass, H.D.; Hanft, R.W.; Carson, J.A.; Robotham, W.F.; Tartaglia, M.A.; Tompkins, J.C.; Velev, G.; /Fermilab

    2005-05-01

    In early 2003 it was realized that mechanical changes in the Tevatron dipoles had led to a deterioration of the magnetic field quality that was hindering operation of the accelerator. After extensive study, a remediation program was started in late 2003 that will continue through 2005. The mechanical and magnetic effects are discussed. The readjustment process and experience are reported, along with other observations on aging magnets. In January 2003 two lines of inquiry converged, leading to the recognition that the severe betatron coupling that was hindering operation of the Tevatron could be explained by a systematic shift on the skew quadrupole field in the dipole magnets of the same size expected from observed mechanical movement of the coils inside the magnet yokes [1]. This paper reports on subsequent magnet studies that were conducted in parallel with additional beam studies and accelerator modeling [2] exploring the feasibility of the eventual remediation effort [3].

  14. Alternative Mechanical Structure for LARP Nb3Sn Quadrupoles

    SciTech Connect

    Anerella, M.; Cozzolino, J.; Ambrosio, G.; Caspi, S.; Felice, H.; Kovach, P.; Lamm, M.; Sabbi, G.; Schmalzle, J.; Wanderer, P.

    2010-08-01

    An alternative structure for the 120 mm Nb{sub 3}Sn quadrupole magnet presently under development for use in the upgrade for LHC at CERN is presented. The goals of this structure are to build on the existing technology developed in LARP with the LQ and HQ series magnets and to further optimize the features required for operation in the accelerator. These features include mechanical alignment needed for field quality and provisions for cold mass cooling with 1.9 K helium in a helium pressure vessel. The structure will also optimize coil azimuthal and axial pre-load for high gradient operation, and will incorporate features intended to improve manufacturability, thereby improving reliability and reducing cost.

  15. High gradient quadrupoles for low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Le Bec, G.; Chavanne, J.; Benabderrahmane, C.; Farvacque, L.; Goirand, L.; Liuzzo, S.; Raimondi, P.; Villar, F.

    2016-05-01

    High gradient quadrupoles are key components for the coming generation of storage ring based light sources. The typical specifications of these magnets are: almost 100 T /m gradient, half a meter long, and a vertical aperture for the extraction of the x-ray beam. This paper presents the preparation work done at the European Synchrotron Radiation Facility, from the design to the manufacture and measurements of a prototype. It demonstrates the feasibility of such magnets. Different aspects of magnet engineering are discussed, including the study of the main scale factors and the preliminary design, the pole shaping, the impact of mechanical errors, and the magnetic measurements of a prototype with a stretched-wire system.

  16. RFQ (radio-frequency quadrupole) accelerators for heating thermonuclear plasmas

    SciTech Connect

    Stokes, R.H.; Wangler, T.P.; Crandall, K.R.

    1987-01-01

    The radio-frequency quadrupole (RFQ) accelerator has been developed to generate high-current ion beams for a wide variety of applications. It has also been suggested that this type of accelerator could be used to produce megawatt ion beams to heat thermonuclear reactor plasmas. For a tokamak reactor, an RFQ accelerator can be designed to provide negative deuterium ions that are neutralized before injection through the tokamak magentic field. Also, it may be possible to use singly charged, positive, heavier ions that trasverse the magnetic field with minimal deflection and then become multiply ionized upon striking the tokamak plasma. We present preliminary RFQ beam-dynamics designs for both deuterium and oxygen ions.

  17. {product}Strong focusing and the radiofrequency quadrupole accelerator

    SciTech Connect

    Wangler, T.P.

    1996-02-01

    The {open_quote}{open_quote}New Problems{close_quote}{close_quote} department presents novel problems for use in undergraduate physics courses beyond the introductory level. In this article the problems and solutions use basic principles of electromagnetism to explain strong-focusing accelerator known as the radiofrequency quadrupole. Their solutions use Laplace{close_quote}s equation and require the extraction of information from boundary conditions. They also introduce the quasistatic approximation and show how under appropriate conditions Laplace{close_quote}s equation can be used to solve time-dependent problems. The problems are suitable for a course in electromagnetism and may be of interest for a cours in classical mechanics.

  18. Design of general apochromatic drift-quadrupole beam lines

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.

    2016-07-01

    Chromatic errors are normally corrected using sextupoles in regions of large dispersion. In low emittance linear accelerators, use of sextupoles can be challenging. Apochromatic focusing is a lesser-known alternative approach, whereby chromatic errors of Twiss parameters are corrected without the use of sextupoles, and has consequently been subject to renewed interest in advanced linear accelerator research. Proof of principle designs were first established by Montague and Ruggiero and developed more recently by Balandin et al. We describe a general method for designing drift-quadrupole beam lines of arbitrary order in apochromatic correction, including analytic expressions for emittance growth and other merit functions. Worked examples are shown for plasma wakefield accelerator staging optics and for a simple final focus system.

  19. Thermal noise in aqueous quadrupole micro- and nano-traps.

    PubMed

    Park, Jae Hyun; Krstić, Predrag S

    2012-01-01

    Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuations as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches. PMID:22369362

  20. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  1. Quasiclassical description of bremsstrahlung accompanying {alpha} decay including quadrupole radiation

    SciTech Connect

    Jentschura, U. D.; Milstein, A. I.; Terekhov, I. S.; Boie, H.; Scheit, H.; Schwalm, D.

    2008-01-15

    We present a quasiclassical theory of {alpha} decay accompanied by bremsstrahlung with a special emphasis on the case of {sup 210}Po, with the aim of finding a unified description that incorporates both the radiation during the tunneling through the Coulomb wall and the finite energy E{sub {gamma}} of the radiated photon up to E{sub {gamma}}{approx}Q{sub {alpha}}/{radical}({eta}), where Q{sub {alpha}} is the {alpha}-decay Q-value and {eta} is the Sommerfeld parameter. The corrections with respect to previous quasiclassical investigations are found to be substantial, and excellent agreement with a full quantum mechanical treatment is achieved. Furthermore, we find that a dipole-quadrupole interference significantly changes the {alpha}-{gamma} angular correlation. We obtain good agreement between our theoretical predictions and experimental results.

  2. A Cryogenic test stand for LHC quadrupole magnets

    SciTech Connect

    R. J. Rabehl et al.

    2004-03-09

    A new test stand for testing LHC interaction region (IR) quadrupole magnets at the Fermilab Magnet Test Facility has been designed and operated. The test stand uses a double bath system with a lambda plate to provide the magnet with a stagnant bath of pressurized He II at 1.9 K and 0.13 MPa. A cryostated magnet 0.91 m in diameter and up to 13 m in length can be accommodated. This paper describes the system design and operation. Issues related to both 4.5 K and 1.9 K operations and magnet quenching are highlighted. An overview of the data acquisition and cryogenics controls systems is also included.

  3. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    DOE PAGESBeta

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; et al

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+ → 0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, $B(E2; 2^+_3 → 0^+_2)$ = 78(13) W.u. and $B(E2; 2^+_4 → 0^+_3)$ = 53(12) W.u. were determined. The $0^+_3$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te(3He,n)124Xemore » measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.« less

  4. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  5. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  6. Nuclear Data

    SciTech Connect

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  7. First Observation of a Quadrupole Cooper Minimum in the Photoionization of Xe 5p

    NASA Astrophysics Data System (ADS)

    Deshmukh, P. C.; Hemmers, O.; Guillemin, R.; Wolska, A.; Lindle, D. W.; Rolles, D.; Yu, S. W.; Manson, S. T.

    2006-05-01

    The nondipole photoelectron angular distribution parameter ξ (= 3δ+γ) for xenon 5p1/2 and 5p3/2 has been studied experimentally in the 80 - 200 eV range. In addition, calculations have been performed using the relativistic-random-phase approximation (RRPA) methodology with all relativistic single excitation/ionization channels down to 4s coupled in both the dipole and quadrupole manifolds. The results show significant disagreement between theory and experiment above about 130 eV photon energy, in contradistinction to the Xe 5s case where rather good agreement is found. Since it is known that the dipole amplitudes are well-represented by RRPA, the difficulty must be in the quadrupole channels. It was expected that the quadrupole channels should be accurate as well since the f-wave is resonant in Xe and the main quadrupole transitions, the 5p->kf, are included in the calculation. However, we have found that these transitions each have a quadrupole Cooper minimum in the energy region of interest, so that quadrupole satellites, which are not included in the RRPA calculation, become important. This might be the first experimental indication of a quadrupole Cooper minimum.

  8. Temperature dependence of the chlorine 35 quadrupole interaction in ammonium perchlorate from 4K to 340K

    NASA Astrophysics Data System (ADS)

    Segel, S. L.; Maxwell, S.; Heyding, R. D.; Ingman, P.; Ylinen, E.; Punkkinen, M.

    1988-06-01

    A nuclear magnetic resonance study of the 35Cl quadrupolar interaction in single crystal and polycrystalline ammonium perchlorate (APC) at 2T and 7T yields a value of ?= 320(20)kHz and ?=0.80(10) at 300 K. The temperature dependence is approximately -0.1 kHz /kat 340K, zero at 300 K, +3 kHz/K near 40 K and the quadrupole coupling passes smoothly through zero near 20 K. At 4.2K ? is approximately 50kHz, presumably of opposite sign to that at 300K, and with a finite temperature dependence. Anomalies near 200 K and 20 K are observed in the satellite behavior. The former is a doubling of the satellite line with a□H and increased separation with b□H, which exhibit time dependence. The 20 K anomaly is a frequency arrest for a range of about 5 K.

  9. Field Quality Study of the LARP Nb3Sn 3.7m-Long Quadrupole Models of LQ Series

    SciTech Connect

    AMbrosio, G.; Andreev, N.; Bossert, R.; Chlachidze, G.; DiMarco, J.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Prebys, E.; Sylvester, C.; Tartaglia, M.; /Fermilab /LBL, Berkeley /Brookhaven

    2011-09-01

    After the successful test of the first long Nb{sub 3}Sn quadrupole magnet (LQS01), the US LHC Accelerator Research Program (LARP) has assembled and tested a new 3.7 m-long Nb{sub 3}Sn quadrupole (LQS02). This magnet has four new coils made of the same conductor as LQS01 coils, and it is using the same support structure. LQS02 was tested at the Fermilab Vertical Magnet Test Facility with the main goal to confirm that the long models can achieve field gradient above 200 T/m, LARP target for 90-mm aperture, as well as to measure the field quality. These long models lack some alignment features and it is important to study the field harmonics. Previous field quality measurements of LQS01 showed higher than expected differences between measured and calculated harmonics compared to the short models (TQS) assembled in a similar structure. These differences could be explained by the use of two different impregnation fixtures during coil fabrication. In this paper, we present a comparison of the field quality measurements between LQS01 and LQS02 as well as a comparison with the short TQS models. If the result supports the coil fabrication hypothesis, another LQS assembly with all coils fabricated in the same fixture will be produced for understanding the cause of the discrepancy between short and long models.

  10. Wireless power transfer based on magnetic quadrupole coupling in dielectric resonators

    NASA Astrophysics Data System (ADS)

    Song, Mingzhao; Iorsh, Ivan; Kapitanova, Polina; Nenasheva, Elizaveta; Belov, Pavel

    2016-01-01

    We numerically investigate a magnetic resonant wireless power transfer system based on high refractive index dielectric resonators. We propose to operate at magnetic quadrupole mode of the resonators to enlarge the efficiency due to minimization of ohmic and radiation losses. Numerical estimation predicts the 80% efficiency of the wireless power transfer (WPT) system operating at quadrupole mode at 300 MHz. Moreover, the system operating at magnetic quadrupole mode is capable of transferring power with 70% efficiency when the receiver rotates 90°. We verify the simulated results by experimental investigation of the WPT system based on microwave ceramic resonators (ɛ = 80 and tanδ = 10-4).

  11. Electron Cloud Generation And Trapping in a Quadrupole Magnet at the Los Alamos PSR

    SciTech Connect

    Macek, R.J.; Browman, A.A.; Ledford, J.E.; Borden, M.J.; O'Hara, J.F.; McCrady, R.C.; Rybarcyk, L.J.; Spickermann, T.; Zaugg, T.J.; Pivi, M.T.F.; /SLAC

    2007-11-14

    A diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies with this diagnostic show that the electron flux striking the wall in the quadrupole is comparable to or larger than in an adjacent drift. In addition, the trapped electron signal, obtained using the sweeping feature of diagnostic, was larger than expected and decayed very slowly with an exponential time constant of 50 to 100 {micro}s. Experimental results were also obtained which suggest that a significant fraction of the electrons observed in the adjacent drift space were seeded by electrons ejected from the quadrupole.

  12. Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}

    SciTech Connect

    Gökçe, Yasin; Çelik, Gültekin; Yıldız, Murat

    2014-07-15

    Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.

  13. Nb3Sn quadrupoles in the LHC IR Phase I upgrade

    SciTech Connect

    Zlobin, A.V.; Johnstone, J.A.; Kashikhin, V.V.; Mokhov, N.V.; Rakhno, I.L.; de Maria, R.; Peggs, S.; Robert-Demolaize, G.; Wanderer, P.; /Brookhaven

    2008-06-01

    After a number of years of operation at nominal parameters, the LHC will be upgraded to a higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  14. Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade

    SciTech Connect

    Zlobin,A.; Johnstone, J.; Kashikhin, V.; Mokhov, N.; Rakhno, I.; deMaria, R.; Peggs, S.; Robert-Demolaize, F.; Wanderer, P.

    2008-06-23

    After a number of years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  15. Understanding Flu

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Understanding Flu Past Issues / Fall 2006 Table of Contents For ... By Bonny McClain Whether the topic is seasonal influenza, bird flu or something called a pandemic, everyone ...

  16. Understanding Alzheimer's

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Understanding Alzheimer's Past Issues / Fall 2007 Table of Contents For ... and brain scans. No treatment so far stops Alzheimer's. However, for some in the disease's early and ...

  17. Factorial experimental designs elucidate significant variables affecting data acquisition on a quadrupole Orbitrap mass spectrometer.

    PubMed

    Randall, Shan M; Cardasis, Helene L; Muddiman, David C

    2013-10-01

    Instrument parameter values for a quadrupole Orbitrap mass spectrometer were optimized for performing global proteomic analyses. Fourteen factors were evaluated for their influence on data-dependent acquisition with an emphasis on both the rate of sequencing and spectral quality by maximizing two individually tested response variables (unique peptides and protein groups). Of the 14 factors, 12 factors were assigned significant contrast values (P < 0.05) for both response variables. Fundamentally, when optimizing parameters, a balance between spectral quality and duty cycle needs to be reached in order to maximize proteome coverage. This is especially true when using a data-dependent approach for sequencing complex proteomes. For example, maximum ion injection time, automatic gain control settings, and minimum threshold settings for triggering MS/MS isolation and activation all heavily influence ion signal, the number of spectra collected, and spectral quality. To better assess the effect these parameters have on data acquisition, all MS/MS data were parsed according to ion abundance by calculating the percent of the AGC target reached for each MS/MS event and then compared with successful peptide-spectrum matches. This proved to be an effective approach for understanding the effect of ion abundance on successful peptide-spectrum matches and establishing minimum ion abundance thresholds for triggering MS/MS isolation and activation. PMID:23913023

  18. Factorial Experimental Designs Elucidate Significant Variables Affecting Data Acquisition on a Quadrupole Orbitrap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Randall, Shan M.; Cardasis, Helene L.; Muddiman, David C.

    2013-10-01

    Instrument parameter values for a quadrupole Orbitrap mass spectrometer were optimized for performing global proteomic analyses. Fourteen factors were evaluated for their influence on data-dependent acquisition with an emphasis on both the rate of sequencing and spectral quality by maximizing two individually tested response variables (unique peptides and protein groups). Of the 14 factors, 12 factors were assigned significant contrast values ( P < 0.05) for both response variables. Fundamentally, when optimizing parameters, a balance between spectral quality and duty cycle needs to be reached in order to maximize proteome coverage. This is especially true when using a data-dependent approach for sequencing complex proteomes. For example, maximum ion injection time, automatic gain control settings, and minimum threshold settings for triggering MS/MS isolation and activation all heavily influence ion signal, the number of spectra collected, and spectral quality. To better assess the effect these parameters have on data acquisition, all MS/MS data were parsed according to ion abundance by calculating the percent of the AGC target reached for each MS/MS event and then compared with successful peptide-spectrum matches. This proved to be an effective approach for understanding the effect of ion abundance on successful peptide-spectrum matches and establishing minimum ion abundance thresholds for triggering MS/MS isolation and activation.

  19. Fluorescence imaging for visualization of the ion cloud in a quadrupole ion trap mass spectrometer.

    PubMed

    Talbot, Francis O; Sciuto, Stephen V; Jockusch, Rebecca A

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial (r) and axial (z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6% of r0 and ~3% of z0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/z (higher qz) are located in the center of the trapping region, effectively excluding higher m/z (lower qz) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution. PMID:24092629

  20. Fluorescence Imaging for Visualization of the Ion Cloud in a Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Talbot, Francis O.; Sciuto, Stephen V.; Jockusch, Rebecca A.

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial ( r) and axial ( z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6 % of r 0 and ~3 % of z 0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/ z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/ z (higher q z ) are located in the center of the trapping region, effectively excluding higher m/ z (lower q z ) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution.

  1. Development of a GC/Quadrupole-Orbitrap Mass Spectrometer, Part II: New Approaches for Discovery Metabolomics

    PubMed Central

    2015-01-01

    Identification of unknown peaks in gas chromatography/mass spectrometry (GC/MS)-based discovery metabolomics is challenging, and remains necessary to permit discovery of novel or unexpected metabolites that may elucidate disease processes and/or further our understanding of how genotypes relate to phenotypes. Here, we introduce two new technologies and an analytical workflow that can facilitate the identification of unknown peaks. First, we report on a GC/Quadrupole-Orbitrap mass spectrometer that provides high mass accuracy, high resolution, and high sensitivity analyte detection. Second, with an “intelligent” data-dependent algorithm, termed molecular-ion directed acquisition (MIDA), we maximize the information content generated from unsupervised tandem MS (MS/MS) and selected ion monitoring (SIM) by directing the MS to target the ions of greatest information content, that is, the most-intact ionic species. We combine these technologies with 13C- and 15N-metabolic labeling, multiple derivatization and ionization types, and heuristic filtering of candidate elemental compositions to achieve (1) MS/MS spectra of nearly all intact ion species for structural elucidation, (2) knowledge of carbon and nitrogen atom content for every ion in MS and MS/MS spectra, (3) relative quantification between alternatively labeled samples, and (4) unambiguous annotation of elemental composition. PMID:25166283

  2. Collision cell pressure effect on CID spectra pattern using triple quadrupole instruments: a RRKM modeling.

    PubMed

    Ichou, Farid; Lesage, Denis; Machuron-Mandard, Xavier; Junot, Christophe; Cole, Richard B; Tabet, Jean-Claude

    2013-02-01

    Control of the ion internal energy in mass spectrometry is needed to establish a workable mass spectral library. The purpose of this study is to understand and to compare the pressure effects on the collision-induced dissociation (CID) spectrum pattern recorded using triple quadrupole instruments. The monoprotonated Leucine enkephalin [YGGFL, H(+)] was used as a thermometer molecule to calibrate the electrospray ionization (ESI) and the CID internal energies deposited on the molecular species and the time scale of ion decompositions. The survival yield and the ratio of a(4)/b(4) fragment ions were mainly monitored. The energy uptake for the ESI source geometry used in our study has no impact on the CID spectrum fingerprint. The collision cell pressure for the [YGGFL, H(+)] has a major influence on the SY curves slope and on the experimental time scale. To demonstrate the pressure effect on internal energy distribution, three models (threshold, thermal and collisional) based on RRKM theory were built using the Masskinetics software. As a result, the limit of each model is discussed, and the investigation demonstrates that the thermal model, using truncated Maxwell-Boltzmann internal energy distribution, is well-suited for simulating the experimental data at high pressure widely used in the analytical conditions. PMID:23378090

  3. Matching an H{sup –} beam into a radio frequency quadrupole at Rutherford Appleton Laboratory

    SciTech Connect

    Gabor, C. Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Back, J. J.

    2014-02-15

    A major component of work being carried out to upgrade the ISIS spallation neutron source at Rutherford Appleton Laboratory (RAL) is the Front End Test Stand (FETS). FETS is aimed at improving the luminosity of the linac, and consists of a Penning ion source, Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ), and Medium Energy Beam Transport (MEBT). It may serve as a first part of the accelerator chain providing a 60 mA, 3 MeV H{sup –} beam up to a 10% duty cycle. The current output of the source and the transmission of the LEBT are reasonable, but there are issues with the alignment to provide a centred beam matched into the acceptance of the RFQ. Improvements have been made to the post acceleration to address this problem. Measurements with a collimated beam have been performed to understand the behaviour of the solenoids and steerer magnets. Comparing these results with simulations proved that, besides possible mechanical imperfections of the ion source and post acceleration assembly, agreement can only be achieved if the magnetic fields are distorted.

  4. [Electromagnetic studies of nuclear structure and reactions]. Progress summary

    SciTech Connect

    Not Available

    1992-12-31

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of {sup 16}O(e,e{prime}p), {sup 12}C(e,e{prime}pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in {sup 12}C(e,e{prime}p{sub 0}) and {sup 16}O(e,e{prime}p{sub 0}), comparison of the {sup 12}C(e, e{prime}p{sub 0}) and {sup 16}O(e,e{prime}p{sub 3}) reactions, quadrupole strength in the {sup 16}O(e,e{prime}{alpha}{sub 0}) reaction, quadrupole strength in the {sup 12}C(e,e{prime}{alpha}) reaction, analysis of the {sup 12}C(e,e{prime}p{sub 1}) and {sup 16}O(e,e{prime}p{sub 3}) angular distributions, analysis of the {sup 40}Ca(e,e{prime}x) reaction at low q, analysis of the higher-q {sup 12}C(e,e{prime}x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments).

  5. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  6. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-05-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  7. Velocity map imaging of a slow beam of ammonia molecules inside a quadrupole guide.

    PubMed

    Quintero-Pérez, Marina; Jansen, Paul; Bethlem, Hendrick L

    2012-07-21

    Velocity map imaging inside an electrostatic quadrupole guide is demonstrated. By switching the voltages that are applied to the rods, the quadrupole can be used for guiding Stark decelerated molecules and for extracting the ions. The extraction field is homogeneous along the axis of the quadrupole, while it defocuses the ions in the direction perpendicular to both the axis of the quadrupole and the axis of the ion optics. To compensate for this astigmatism, a series of planar electrodes with horizontal and vertical slits is used. A velocity resolution of 35 m s(-1) is obtained. It is shown that signal due to thermal background can be eliminated, resulting in the detection of slow molecules with an increased signal-to-noise ratio. As an illustration of the resolving power we have used the velocity map imaging system to characterize the phase-space distribution of a Stark decelerated ammonia beam. PMID:22652864

  8. A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation

    NASA Technical Reports Server (NTRS)

    Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.

    1973-01-01

    A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.

  9. Microscopic derivation of the Bohr–Mottelson collective Hamiltonian and its application to quadrupole shape dynamics

    NASA Astrophysics Data System (ADS)

    Matsuyanagi, Kenichi; Matsuo, Masayuki; Nakatsukasa, Takashi; Yoshida, Kenichi; Hinohara, Nobuo; Sato, Koichi

    2016-06-01

    We discuss the nature of the low-frequency quadrupole vibrations from small-amplitude to large-amplitude regimes. We consider full five-dimensional quadrupole dynamics including three-dimensional rotations restoring the broken symmetries as well as axially symmetric and asymmetric shape fluctuations. Assuming that the time evolution of the self-consistent mean field is determined by five pairs of collective coordinates and collective momenta, we microscopically derive the collective Hamiltonian of Bohr and Mottelson, which describes low-frequency quadrupole dynamics. We show that the five-dimensional collective Schrödinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We summarize the modern concepts of microscopic theory of large-amplitude collective motion, which is underlying the microscopic derivation of the Bohr-Mottelson collective Hamiltonian.

  10. Field Quality Measurements and Analysis of the LARP Technology Quadrupole Models

    SciTech Connect

    Chlachidze, G.; DiMarco, J.; Kashikhin, V.V.; Lamm, M.; Schlabach, P.; Tartaglia, M.; Tompkins, J.C.; Velev, G.V.; Zlobin, A.V.; Caspi, S.; Ferracin, P.; Sabbi, G.I.; Bossert, R.

    2008-06-01

    One of the US-LHC accelerator research program goals is to develop and prove the design and technology of Nb{sub 3}Sn quadrupoles for an upgrade of the LHC Interaction Region (IR) inner triplets. Four 1-m long technology quadrupole models with a 90 mm bore and field gradient of 200 T/m based on similar coils and different mechanical structures have been developed. In this paper, we present the field quality measurements of the first several models performed at room temperature as well as at superfluid helium temperature in a wide field range. The measured field harmonics are compared to the calculated ones. The field quality of Nb{sub 3}Sn quadrupole models is compared with the NbTi quadrupoles recently produced at Fermilab for the first generation LHC IRs.

  11. Field quality measurements and abalysis of the LARP technology quadrupole models

    SciTech Connect

    Bossert, R.; Chlachidze, G.; DiMarco, J.; Kashikhin, V.V.; Lamm, M.; Schlabach, P.; Tartaglia, M.; Tompkins, J.C.; Velev, G.V.; Zlobin, A.V.; Caspi, S.; /Fermilab /LBL, Berkeley

    2007-08-01

    One of the US-LHC accelerator research program goals is to develop and prove the design and technology of Nb{sub 3}Sn quadrupoles for an upgrade of the LHC Interaction Region (IR) inner triplets. Four 1-m long technology quadrupole models with a 90 mm bore and field gradient of 200 T/m based on similar coils and different mechanical structures have been developed. In this paper, we present the field quality measurements of the first several models performed at room temperature as well as at superfluid helium temperature in a wide field range. The measured field harmonics are compared to the calculated ones. The field quality of Nb{sub 3}Sn quadrupole models is compared with the NbTi quadrupoles recently produced at Fermilab for the first generation LHC IRs.

  12. A compact beam focusing and steering element using quadrupoles with independently excited poles

    NASA Astrophysics Data System (ADS)

    Grime, Geoffrey W.

    2013-07-01

    Beam steering elements for accelerator beam transport are conventionally and conveniently incorporated into beamlines by fitting magnetic dipole elements around the vacuum tube of the line. Two steerers in each plane (X and Y) together with a quadrupole doublet constitute a module providing full control of the direction, position and focus of the beam. In some installations however, there may be insufficient space on the beamline to mount separate steerer elements. To provide steering capabilities in such a situation we have used a magnetic quadrupole doublet with the coils of each pole independently excited to synthesise the desired combination of quadrupole, horizontal dipole and vertical dipole fields. This paper describes the quadrupole steerer and its multichannel power supply and presents calculated magnetic field distributions together with raytracing simulation of its performance.

  13. Kinetic equilibrium of space charge dominated beams in a misaligned quadrupole focusing channel

    SciTech Connect

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2013-07-15

    The dynamics of intense beam propagation through the misaligned quadrupole focusing channel has been studied in a self-consistent manner using nonlinear Vlasov-Maxwell equations. The equations of motion of the beam centroid have been developed and found to be independent of any specific beam distribution. A Vlasov equilibrium distribution and beam envelope equations have been obtained, which provide us a theoretical tool to investigate the dynamics of intense beam propagating in a misaligned quadrupole focusing channel. It is shown that the displaced quadrupoles only cause the centroid of the beam to wander off axis. The beam envelope around the centroid obeys the familiar Kapchinskij-Vladimirskij envelope equation that is independent of the centroid motion. However, the rotation of the quadrupole about its optical axis affects the beam envelope and causes an increase in the projected emittances in the two transverse planes due to the inter-plane coupling.

  14. Asymptotics with a positive cosmological constant. III. The quadrupole formula

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna

    2015-11-01

    Almost a century ago, Einstein used a weak field approximation around Minkowski spacetime to calculate the energy carried away by gravitational waves emitted by a time changing mass-quadrupole. However, by now there is strong observational evidence for a positive cosmological constant, Λ . To incorporate this fact, Einstein's celebrated derivation is generalized by replacing Minkowski spacetime with de Sitter spacetime. The investigation is motivated by the fact that, because of the significant differences between the asymptotic structures of Minkowski and de Sitter spacetimes, many of the standard techniques, including the usual 1 /r expansions, cannot be used for Λ >0 . Furthermore, since, e.g., the energy carried by gravitational waves is always positive in Minkowski spacetime but can be arbitrarily negative in de Sitter spacetime irrespective of how small Λ is, the limit Λ →0 can fail to be continuous. Therefore, a priori it is not clear that a small Λ would introduce only negligible corrections to Einstein's formula. We show that, while even a tiny cosmological constant does introduce qualitatively new features, in the end, corrections to Einstein's formula are negligible for astrophysical sources currently under consideration by gravitational wave observatories.

  15. Errors and optics study of a permanent magnet quadrupole system

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Rifuggiato, D.; Cirrone, G. A. P.; Cuttone, G.; Giove, D.

    2015-05-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. Nowadays, energy and angular spread of the laser-driven beams are the main issues in application and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of permanent magnet quadrupoles (PMQs) is going to be realized by INFN [2] researchers, in collaboration with SIGMAPHI [3] company in France, to be used as a collection and pre-selection system for laser driven proton beams. The definition of well specified characteristics, both in terms of performances and field quality, of the magnetic lenses is crucial for the system realization, for an accurate study of the beam dynamics and the proper matching with a magnetic selection system already realized [6,7]. Hence, different series of simulations have been used for studying the PMQs harmonic contents and stating the mechanical and magnetic tolerances in order to have reasonable good beam quality downstream the system. In this paper is reported the method used for the analysis of the PMQs errors and its validation. Also a preliminary optics characterization is presented in which are compared the effects of an ideal PMQs system with a perturbed system on a monochromatic proton beams.

  16. Modal response of 4-rod type radio frequency quadrupole linac

    SciTech Connect

    Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok

    2009-10-15

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  17. Isobar Suppression by Photodetachment in a RF Quadrupole Ion Cooler

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Havener, A. C.; Havener, C. C.; Liang, F.; Beene, J. R.

    2004-11-01

    Selectively removing unwanted isobaric negative ions by electron photodetachment with a pulsed laser beam has been reported. However, the fraction of the negative ions removed was very small due to the short laser pulses used. Continuous wave (CW) lasers are desired for this application, but the photon flux available from CW lasers is too low. We have investigated a novel scheme for efficient suppression of isobar contaminants by photodetachment in a gas-filled RF-only quadrupole (RFQ) ion cooler. Simulation studies have shown that the RFQ ion cooler can significantly increase the laser-ion interaction time, thus, high efficiency of photodetachment is possible with commercially available CW lasers. A proof-of-principle experiment of Co^- and Ni^- ions is underway. A CW Nd:YAG laser beam at 1064 nm wavelength is used to selectively remove Co^- ions inside a RFQ ion cooler. A detailed description of the experimental setup and expected photodetachment efficiencies for Co^- and Ni^- ions will be given in this report. 1. D. Berkovits, et al., Nucl. Instrum. Meth. B52 (1990) 378-333.

  18. Development of a quadrupole ion trap mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hebert, Joseph Ellis

    Because of its potential to be made portable the quadrupole ion trap (QPIT) is a prime candidate for specialized applications such as atmospheric studies, other field measurements, or measurements anywhere a laboratory instrument would be prohibitively inconvenient. To utilize the QPIT in such ways it is necessary to design and construct custom built instruments. A QPIT mass spectrometer was constructed as the foundation for such future development. Two ionization schemes were employed. Direct electron bombardment was used for in situ ion production, and UV photoionization was used to produce ions external to the trap. Calibration measurements determined that the system performed as theory dictated. It was also demonstrated that the system was capable of sampling the atmosphere and detecting the presence of an atmospheric contaminant. Finally, DC bias foils were invented as a novel approach to mass isolation in the trap. The use of DC bias foils was demonstrated to be an exceptionally easy and inexpensive method of controlling the contents of the QPIT.

  19. Quadrupole mass filter operation under the influence of magnetic field.

    PubMed

    Syed, S U A H; Maher, S; Taylor, S

    2013-12-01

    This work demonstrates resolution enhancement of a quadrupole mass filter (QMF) under the influence of a static magnetic field. Generally, QMF resolution can be improved by increasing the number of rf cycles an ion experiences when passing through the mass filter. In order to improve the resolution, the dimensions of the QMF or the operating parameters need to be changed. However, geometric modifications to improve performance increase the manufacturing cost and usually the size of the instrument. By applying a magnetic field, a low-cost, small footprint instrument with reduced power requirements can be realized. Significant improvement in QMF resolution was observed experimentally for certain magnetic field conditions, and these have been explained in terms of our theoretical model developed at the University of Liverpool. This model is capable of accurate simulation of spectra allowing the user to specify different values of mass spectrometer dimensions and applied input signals. The model predicts enhanced instrument resolution R>26,000 for a CO2 and N2 mixture with a 200-mm long mass filter operating in stability zone 3 via application of an axial magnetic field. PMID:24338888

  20. Critical quadrupole fluctuations and collective modes in iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Thorsmølle, V. K.; Khodas, M.; Yin, Z. P.; Zhang, Chenglin; Carr, S. V.; Dai, Pengcheng; Blumberg, G.

    2016-02-01

    The multiband nature of iron pnictides gives rise to a rich temperature-doping phase diagram of competing orders and a plethora of collective phenomena. At low dopings, the tetragonal-to-orthorhombic structural transition is closely followed by a spin-density-wave transition both being in close proximity to the superconducting phase. A key question is the nature of high-Tc superconductivity and its relation to orbital ordering and magnetism. Here we study the NaFe1 -xCoxAs superconductor using polarization-resolved Raman spectroscopy. The Raman susceptibility displays critical enhancement of nonsymmetric charge fluctuations across the entire phase diagram, which are precursors to a d -wave Pomeranchuk instability at temperature θ (x ) . The charge fluctuations are interpreted in terms of quadrupole interorbital excitations in which the electron and hole Fermi surfaces breathe in-phase. Below Tc, the critical fluctuations acquire coherence and undergo a metamorphosis into a coherent in-gap mode of extraordinary strength.

  1. Structure and quadrupole coupling measurements on ClF3

    NASA Astrophysics Data System (ADS)

    Haubrich, S. T.; Roehrig, M. A.; Kukolich, S. G.

    1990-07-01

    Seventy-nine new microwave transitions for 35ClF3 and 37ClF3 in the 6-18 GHz range were measured using a Flygare-Balle-type spectrometer. Rotational transition frequencies were used to obtain ``effective'' structure parameters for the ground vibrational state zCl-F (along C2 axis)=1.5985(4) Å, rCl-F =1.700 73(5) Å and ΘF-Cl-F =87.48(4)°. Analysis of hyperfine structure due to chlorine quadrupole coupling and observed transition frequencies yield the following molecular parameters for 35ClF3: A=13 748.25(1) MHz, B=4611.719(2) MHz, C=3448.629(3) MHz, eQqaa=82.03(3) MHz, and eQqbb=65.35(2) MHz. Molecular parameters obtained for 37ClF3 are: A=13 653.54(1) MHz, B=4611.866(2) MHz, C=3442.719(4) MHz, eQqaa=64.66(4) MHz, and eQqbb=51.53(3) MHz.

  2. Radio-frequency quadrupole vane-tip geometries

    SciTech Connect

    Crandall, K.R.; Mills, R.S.; Wangler, T.P.

    1983-01-01

    Radio-frequency quadrupole (RFQ) linacs are becoming widely accepted in the accelerator community. They have the remarkable capability of simultaneously bunching low-energy ion beams and accelerating them to energies at which conventional accelerators can be used, accomplishing this with high-transmission efficiencies and low-emittance growths. The electric fields, used for radial focusing, bunching, and accelerating, are determined by the geometry of the vane tips. The choice of the best vane-tip geometry depends on considerations such as the peak surface electric field, per cent of higher multipole components, and ease of machining. We review the vane-tip geometry based on the ideal two-term potential function and briefly describe a method for calculating the electric field components in an RFQ cell with arbitrary vane-tip geometry. We describe five basic geometries and use the prototype RFQ design for the Fusion Materials Irradiation Test (FMIT) accelerator as an example to compare the characteristics of the various geometries.

  3. Radio-frequency quadrupole vane-tip geometries

    SciTech Connect

    Crandall, K.R.; Mills, R.S.; Wangler, T.P.

    1983-08-01

    Radio-frequency quadrupole (RFQ) linacs are becoming widely accepted in the accelerator community. They have the remarkable capability of simultaneously bunching low-energy ion beams and accelerating them to energies at which conventional accelerators can be used, accomplishing this with high transmission efficiencies and low-emittance growths. The electric fields, used for radial focusing, bunching, and accelerating, are determined by the geometry of the vane tips. The choice of the best vane-tip geometry depends on considerations such as the peak surface electric field, per cent of higher multipole components, and ease of machining. The authors review the vane-tip geometry based on the ''ideal'' two-term potential function and briefly describe a method for calculating the electric field components in an RFQ cell with arbitrary vane-tip geometry. They describe five basic geometries and use the prototype RFQ design for the Fusion Materials Irradiation Test (FMIT) accelerator as an example to compare the characteristics of the various geometries.

  4. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  5. On the formation of the South Pacific quadrupole mode

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Wang, Faming

    2016-08-01

    The formation process of the South Pacific (SP) quadrupole (SPQ) mode was investigated in this study based on observations and reanalysis data. The SPQ is the dominant mode of the sea surface temperature (SST)-surface wind covariability in the SP after removing the ENSO-related signals. The positive phase of the SPQ is characterized by a warm SST anomaly (SSTA) west of the South American coast, a cool SSTA in its southwest, a positive SSTA southeast of New Zealand, and a negative SSTA off the southeast coast of Australia, overlain by cyclonic wind anomalies. The anomalous cyclonic winds weaken the mean southeast trade winds in the southeast SP and the westerlies in the high latitudes of the SP, increasing the SSTAs at the two positive poles through decreased evaporation and latent heat flux (LHF) loss. The southeast wind anomalies advect dry and cold air to the negative pole in the central SP, which reduces the SSTA there by increasing the LHF loss. Off the southeast coast of Australia, the southwest wind anomalies induce equatorward Ekman currents and advect cold water. The resulting oceanic horizontal advection is the main contributor to the negative SSTAs there. In addition to the above processes, cloud cover change can enhance the initial SSTAs in the southeast SP by affecting shortwave radiation. The decay of the SPQ is mainly due to LHF changes.

  6. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y.

    2010-12-01

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance

  7. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Not Available

    2010-11-29

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance

  8. Permanent Magnet Skew Quadrupoles for the Low Emittance LER Lattice of PEP-II

    SciTech Connect

    Decker, F.-J.; Anderson, S.; Kharakh, D.; Sullivan, M.; /SLAC

    2011-07-05

    The vertical emittance of the low energy ring (LER) in the PEP-II B-Factory was reduced by using skew quadrupoles consisting of permanent magnet material. The advantages over electric quadrupoles or rotating existing normal quadrupoles are discussed. To assure a high field quality, a Biot-Savart calculation was used to cancel the natural 12-pole component by using different size poles over a few layers. A magnetic measurement confirmed the high quality of the magnets. After installation and adjusting the original electric 12 skew and 16 normal quadrupoles the emittance contribution from the region close to the interaction point, which was the biggest part in the original design, was considerably reduced. To strengthen the vertical behavior of the LER beam, a low emittance lattice was developed. It lowered the original vertical design emittance from 0.54 nm-rad to 0.034 nm-rad. In order to achieve this, additional skew quadrupoles were required to bring the coupling correction out of the arcs and closer to the detector solenoid in the straight (Fig. 1). It is important, together with low vertical dispersion, that the low vertical emittance is not coupled into the horizontal, which is what we get if the coupling correction continues into the arcs. Further details of the lattice work is described in another paper; here we concentrate on the development of the permanent skew (PSK) quadrupole solution. Besides the permanent magnets there are two other possibilities, using electric magnets or rotating normal quadrupoles. Electric magnets would have required much more additional equipment like magnets stands, power supply, and new vacuum chamber sections. Rotating existing quadrupoles was also not feasible since they are mostly mounted together with a bending magnet on the same support girder.

  9. Performance of Nb3Sn quadrupole magnets under localized thermal load

    SciTech Connect

    Kashikhin, V.V.; Bossert, r.; Chlachidze, G.; Lamm, M.; Mokhov, N.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2009-06-01

    This paper describes the results of design and analyses performed on 120-mm Nb{sub 3}Sn and NbTi quadrupole magnets with parameters relevant for the LHC IR upgrade. A realistic radiation heat load is evaluated in a wide luminosity range and translated into the magnet quench performance. The simulation results are supported by thermal measurements on a 90-mm Nb{sub 3}Sn quadrupole coil.

  10. Negative coupling and coupling phase dispersion in a silicon quadrupole micro-racetrack resonator.

    PubMed

    Bachman, Daniel; Tsay, Alan; Van, Vien

    2015-07-27

    We report the first experimental study of the effects of coupling phase dispersion on the spectral response of a two-dimensionally coupled quadrupole micro-racetrack resonator. Negative coupling in the system is observed to manifest itself in the sharp stop band transition and deep extinction in the pseudo-elliptic filter response of the quadrupole. The results demonstrate the feasibility of realizing advanced silicon microring devices based on the 2D coupling topology with general complex coupling coefficients. PMID:26367666

  11. Deformation and fracture processes in graphene nanoribbons with linear quadrupoles of disclinations

    NASA Astrophysics Data System (ADS)

    Kochnev, A. S.; Morozov, N. F.; Ovid'ko, I. A.; Semenov, B. N.

    2016-05-01

    The deformation and fracture processes in graphene nanoribbons containing linear quadrupoles of disclinations are investigated by the method of molecular dynamics. Special attention is given to estimating the effect of the curvature formed by disclinations and free boundaries in graphene nanoribbons with linear quadrupoles of disclinations on their mechanical characteristics (the stress-strain curve, the strength at the single-axis tension, and the degree of plastic deformation).

  12. Comparative performance of tripole and quadrupole ion guides at elevated pressure.

    PubMed

    Misharin, Alexander S; Moskovets, Eugene; Gamage, Chaminda M; Doroshenko, Vladimir M; Vilkov, Andrey N

    2008-04-01

    This study presents the first practical demonstration of an operational tripole ion guide. The transmission was measured for both the tripole and quadrupole ion guides at 1 Torr pressure. It was found that the quadrupole provides 2.5-3 times better ion transmission efficiency. Two different electric schemes for driving the tripole were tested. Similar transmission characteristics were obtained in both cases. A brief analysis of the tripole performance and ways to improve it is presented. PMID:18338373

  13. Conceptual design of large-bore superconducting quadrupoles with active magnetic shielding for the AHF

    SciTech Connect

    Vladimir Kashikhin et al.

    2003-06-09

    The Advanced Hydrotest Facility, under study by LANL, uses large-bore superconducting quadrupole magnets. In the paper we discuss the conceptual design of such quadrupoles using active shielding. The magnets are specified to achieve gradients of up to 24 T/m with a 28-cm warm bore and to have 0.01% field quality. Concepts for quench protection and the magnet cryosystems are also briefly discussed to confirm the viability of the proposed design.

  14. Embodied understanding

    PubMed Central

    Johnson, Mark

    2015-01-01

    Western culture has inherited a view of understanding as an intellectual cognitive operation of grasping of concepts and their relations. However, cognitive science research has shown that this received intellectualist conception is substantially out of touch with how humans actually make and experience meaning. The view emerging from the mind sciences recognizes that understanding is profoundly embodied, insofar as our conceptualization and reasoning recruit sensory, motor, and affective patterns and processes to structure our understanding of, and engagement with, our world. A psychologically realistic account of understanding must begin with the patterns of ongoing interaction between an organism and its physical and cultural environments and must include both our emotional responses to changes in our body and environment, and also the actions by which we continuously transform our experience. Consequently, embodied understanding is not merely a conceptual/propositional activity of thought, but rather constitutes our most basic way of being in, and engaging with, our surroundings in a deep visceral manner. PMID:26175701

  15. A toroidal trap for cold {}^{87}{Rb} atoms using an rf-dressed quadrupole trap

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Mishra, S. R.; Ram, S. P.; Tiwari, S. K.; Rawat, H. S.

    2016-04-01

    We demonstrate the trapping of cold {}87{Rb} atoms in a toroidal geometry using a radio frequency (rf) dressed quadrupole magnetic trap formed by superposing a strong rf-field on a quadrupole trap. This rf-dressed quadrupole trap has the minimum potential away from the quadrupole trap centre on a circular path which facilitates trapping in toroidal geometry. In these experiments, the laser cooled atoms were first trapped in a quadrupole trap, then cooled evaporatively using a weak rf-field, and finally trapped in an rf-dressed quadrupole trap. The radius of the toroid could be varied by varying the frequency of the dressing rf-field. It has also been demonstrated that a single rf source and an antenna can be used for the rf-evaporative cooling as well as for the rf-dressing of atoms. The atoms trapped in the toroidal trap may have applications in the realization of an atom gyroscope as well as in studying the quantum gases in low dimensions.

  16. Understanding hypernatremia.

    PubMed

    Sam, Ramin; Feizi, Iraj

    2012-01-01

    Understanding hypernatremia is at times difficult for many clinicians. However, hypernatremia can often be deciphered easily with some basic understanding of water and sodium balance. Here, the basic pathophysiological abnormalities underlying the development of sodium disorders are reviewed, and case examples are given. Hypernatremia often arises in the hospital, especially in the intensive care units due to the combination of (1) not being able to drink water; (2) inability to concentrate the urine (most often from having kidney failure); (3) osmotic diuresis from having high serum urea concentrations, and (4) large urine or stool outputs. PMID:22739333

  17. Metabolic profile of miltirone in rats by high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Guo, Long; Duan, Li; Dong, Xin; Dou, Li-Li; Zhou, Ping; Li, Ping; Liu, E-Hu

    2015-03-25

    Miltirone is one of the bioactive diterpene quinones isolated from Salvia miltiorrhiza Bunge. This compound has been found to possess significant anticancer, antibacterial, antioxidant, and anti-inflammatory activities. However, the metabolic fate of miltirone remains unknown. In order to explore whether miltirone is extensively metabolized, we investigated the metabolites of miltirone in plasma, bile, urine, and feces samples following oral and intravenous administration to the rats. By using high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS) coupled with mass detect filter (MDF) method, a total of 15 metabolites were identified from the biosamples. Both phase I and phase II metabolites were observed in the metabolic profile and the metabolic pathways involved in reduction, oxidation, monohydroxylation, dihydroxylation, glucuronidation and sulfation. The results indicated that hepatocyte metabolism was the major route of clearance for the parent compound. The present study provided valuable information for better understanding of the efficacy and safety of miltirone. PMID:25679091

  18. Nuclear structure of {sup 231}Ra

    SciTech Connect

    Boutami, R.; Fraile, L. M.; Borge, M. J. G.; Lopez-Jimenez, M. J.; Teijeiro, A. G.; Aas, A. J.; Hageboe, E.; Fogelberg, B.; Mach, H.; Garcia-Raffi, L. M.; Martinez, T.; Rubio, B.; Tain, J. L.; Grant, I. S.; Gulda, K.; Kurcewicz, W.; Loevhoeiden, G.; Tengblad, O.; Thorsteinsen, T. F.

    1999-11-16

    The study of the upper border of the octupole deformation region near A=225, where the octupole deformation vanishes in the presence of a well developed quadrupole field, is of great relevance in order to understand the interplay of octupole and quadrupole collectivities. Within the IS322 collaboration at CERN we carry out a systematic investigation of the heavy Fr-Th nuclei that presently includes {sup 227}Fr, {sup 227,228,229}Ra, {sup 229}Ac and {sup 229,231}Th. The heaviest Ra isotope we have studied so far and in which the fast timing {beta}{gamma}{gamma}(t) method has been applied is {sup 231}Ra.

  19. Nuclear Structure of {sup 231}Ra

    SciTech Connect

    Boutami, R.; Fraile, L.M.; Borge, M.J.G.; Aas, A.J.; Fogelberg, B.; Garcia-Raffi, L.M.; Grant, I.S.; Gulda, K.; Hagebo, E.; Kurcewicz, W.; Lopez-Jimenez, M.J.; Lovhoiden, G.; Mach, H.; Martinez, T.; Rubio, B.; Tain, J.L.; Teijeiro, A.G.; Tengblad, O.; Thorsteinsen, T.F.

    1999-12-31

    The study of the upper border of the octupole deformation region near A=225, where the octupole deformation vanishes in the presence of a well developed quadrupole field, is of great relevance in order to understand the interplay of octupole and quadrupole collectivities. Within the IS322 collaboration at CERN we carry out a systematic investigation of the heavy Fr - Th nuclei that presently includes {sup 227}Fr, {sup 227,228,229}Ra, {sup 229}Ac and {sup 229,231}Th. The heaviest Ra isotope we have studied so far and in which the fast timing {beta}{gamma}{gamma}(t) method has been applied is {sup 231}Ra.

  20. Understanding Leukemia

    MedlinePlus

    ... a second cancer, including melanoma, sarcoma, colorectal cancer, lung cancer, basal cell cancer, squamous cell skin cancer or myeloma. {{ See your primary care doctor to keep up with other healthcare needs. Understanding Leukemia I page 21 {{ Talk with family and friends about how ...