Science.gov

Sample records for unequilibrated ordinary chondrites

  1. Microchondrules in three unequilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Bigolski, John N.; Weisberg, Michael K.; Connolly, Harold C.; Ebel, Denton S.

    2016-01-01

    We report on a suite of microchondrules from three unequilibrated ordinary chondrites (UOCs). Microchondrules, a subset of chondrules that are ubiquitous components of UOCs, commonly occur in fine-grained chondrule rims, although may also occur within matrix. Microchondrules have a variety of textures: cryptocrystalline, microporphyritic, radial, glassy. In some cases, their textures, and in many cases, their compositions, are similar to their larger host chondrules. Bulk compositions for both chondrule populations frequently overlap. The primary material that composes many of the microchondrules has compositions that are pyroxene-normative and is similar to low-Ca-pyroxene phenocrysts from host chondrules; primary material rarely resembles olivine or plagioclase. Some microchondrules are composed of FeO-rich material that has compositions similar to the bulk submicron fine-grained rim material. These microchondrules, however, are not a common compositional type and probably represent secondary FeO-enrichment. Microchondrules may also be porous, suggestive of degasing to form vesicles. Our work shows that the occurrence of microchondrules in chondrule rims is an important constraint that needs to be considered when evaluating chondrule-forming mechanisms. We propose that microchondrules represent melted portions of the chondrule surfaces and/or the melt products of coagulated dust in the immediate vicinity of the larger chondrules. We suggest that, through recycling events, the outer surfaces of chondrules were heated enough to allow microchondrules to bud off as protuberances and become entrained in the surrounding dusty environment as chondrules were accreting fine-grained rims. Microchondrules are thus byproducts of cyclic processing of chondrules in localized environments. Their occurrence in fine-grained rims represents a snapshot of the chondrule-forming environment. We evaluate mechanisms for microchondrule formation and hypothesize a potential link between the emergence of type II chondrules in the early solar system and the microchondrule-bearing fine-grained rims surrounding type I chondrules.

  2. Microchondrules in three unequilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Bigolski, John N.; Weisberg, Michael K.; Connolly, Harold C.; Ebel, Denton S.

    2016-02-01

    We report on a suite of microchondrules from three unequilibrated ordinary chondrites (UOCs). Microchondrules, a subset of chondrules that are ubiquitous components of UOCs, commonly occur in fine-grained chondrule rims, although may also occur within matrix. Microchondrules have a variety of textures: cryptocrystalline, microporphyritic, radial, glassy. In some cases, their textures, and in many cases, their compositions, are similar to their larger host chondrules. Bulk compositions for both chondrule populations frequently overlap. The primary material that composes many of the microchondrules has compositions that are pyroxene-normative and is similar to low-Ca-pyroxene phenocrysts from host chondrules; primary material rarely resembles olivine or plagioclase. Some microchondrules are composed of FeO-rich material that has compositions similar to the bulk submicron fine-grained rim material. These microchondrules, however, are not a common compositional type and probably represent secondary FeO-enrichment. Microchondrules may also be porous, suggestive of degasing to form vesicles. Our work shows that the occurrence of microchondrules in chondrule rims is an important constraint that needs to be considered when evaluating chondrule-forming mechanisms. We propose that microchondrules represent melted portions of the chondrule surfaces and/or the melt products of coagulated dust in the immediate vicinity of the larger chondrules. We suggest that, through recycling events, the outer surfaces of chondrules were heated enough to allow microchondrules to bud off as protuberances and become entrained in the surrounding dusty environment as chondrules were accreting fine-grained rims. Microchondrules are thus byproducts of cyclic processing of chondrules in localized environments. Their occurrence in fine-grained rims represents a snapshot of the chondrule-forming environment. We evaluate mechanisms for microchondrule formation and hypothesize a potential link between the emergence of type II chondrules in the early solar system and the microchondrule-bearing fine-grained rims surrounding type I chondrules.

  3. Thermoluminescence Sensitivity and Thermal History of Unequilibrated Ordinary Chondrites: Review and Update

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Ninagawa, K.; Sears, D. W. G.

    2000-01-01

    We report on the induced thermoluminescence (TL) data for 102 unequilibrated ordinary chondrites. We discuss these data in terms of pairing, weathering, and parent body thermal history. We identify ten possible meteorites of petrologic types 3.0-3.1.

  4. Composition of chondrules, fragments and matrix in the unequilibrated ordinary chondrites tieschitz and sharps

    NASA Astrophysics Data System (ADS)

    Wlotzka, F.

    The unequilibrated ordinary chondrites Tieschitz and Sharps are studied using an electron microprobe in order to substantiate the discrepancy between the chondrites' FeO content of 13.5 and 13.6 percent and their classification with the H-group chondrites where the total iron content range is 24.5 to 30.0 percent. Different populations of chondrules and fragments contained in the two chondrites are distinguished by their average FeO content and Fe/(Fe + Mg) ratios. There is also a small population of Ca, Al, Ti-rich chondrules which are mineralogically distinct. It is suggested that the FeO source may be the black matrix material which coats the chrondrules and fragments. A relation to the H-group is indicated by the close similarity between the black matrix and the average H-group chondrite in bulk composition and the total Fe content.

  5. Na, K-Rich Rim Around a Chondrule in Unequilibrated Ordinary Chondrite Lew 86018 (L3.1)

    NASA Technical Reports Server (NTRS)

    Mishra, R. K.; Simon, J. I.; Ross, D. K.; Needham, A. W.; Messenger, S.; Keller, L. P.; Han, J.; Marhas, K. K.

    2015-01-01

    Ordinary chondrites represent the most abundant early Solar system extra-terrestrial (approximately 85% abundance) material available for laboratory studies and expectedly record the most extensive range of alterations effects from unmetamorphosed chondritic material to the highest temperatures of thermal metamorphism. The least metamorphosed chondrites belonging to petrologic type 3, the so called unequili-brated ordinary chondrites (UOCs), provide insights into alteration that happened during the primeval, ear-liest stage of Solar system formation. The higher grade petrologic types 4-6 ordinary chondrites on the other hand document up to near textural equilibrium (in type 6) extensive thermal metamorphism consisting of minerals and phases providing evidence of equilibration of heterogeneous mineral composition, solid-state recrystallization. Despite being the most abundant, the effect of alteration is less explicitly understood in ordinary chondrites (even less in UOCs) compared to other groups (e.g. CV, CO, CR). Additionally, the relationship between metasomatism (also referred as aqueous alteration or fluid-assisted metamorphism) and metamorphism (primarily thermal driven) has not been studied and alterations in the ordinary chondrites have been considered to have occurred in absence of fluids in general. Despite this conventional view, UOCs of lowest grades (3.0-3.2) show some evidence of low temperature (approximately 200 C), fluid assisted metamorphism in the form of the presence of phyllosilicates, ferroan olivine, and magnetites in their matrices and occasionally in chondrules. Here, we present petrographic and mineralogical studies of UOC, Lewis Hills (LEW) 86018 to further our understanding of the extent and relative importance of metasomatism and/or metamorphism in UOCs.

  6. Aqueous Alteration and Hydrogen Generation on Parent Bodies of Unequilibrated Ordinary Chondrites: Thermodynamic Modeling for the Semarkona Composition

    NASA Technical Reports Server (NTRS)

    Zolotov, M. Y.; Mironenko, M. V.; Shock, E. L.

    2005-01-01

    Ordinary chondrites are the most abundant class of meteorites that could represent rocky parts of solar system bodies. However, even the most primitive unequilibrated ordinary chondrites (UOC) reveal signs of mild alteration that affected the matrix and peripheral zones of chondrules. Major chemical changes include oxidation of kamacite, alteration of glass, removal of alkalis, Al, and Si from chondrules, and formation of phases enriched in halogens, alkalis, and hydrogen. Secondary mineralogical changes include formation of magnetite, ferrous olivine, fayalite, pentlandite, awaruite, smectites, phosphates, carbonates, and carbides. Aqueous alteration is consistent with the oxygen isotope data for magnetite. The presence of secondary magnetite, Ni-rich metal alloys, and ferrous silicates in UOC implies that H2O was the oxidizing agent. However, oxidation by H2O means that H2 is produced in each oxidative pathway. In turn, production of H2, and its redistribution and possible escape should have affected total pressure, as well as the oxidation state of gas, aqueous and mineral phases in the parent body. Here we use equilibrium thermodynamic modeling to explore water-rock reactions in UOC. The chemical composition of gas, aqueous, and mineral phases is considered.

  7. Microchondrules in two unequilibrated ordinary chondrites: Evidence for formation by splattering from chondrules during stochastic collisions in the solar nebula

    NASA Astrophysics Data System (ADS)

    Dobricǎ, E.; Brearley, A. J.

    2016-03-01

    The diversity of silicate, glassy spherules analogous to chondrules, called microchondrules, and the implications for their presence in unequilibrated ordinary chondrites (UOCs) were investigated using different electron microscope techniques. Our observations show that the abundance of microchondrules in UOCs is much larger than the values proposed by previous studies. We identified two different types of microchondrules, porous and nonporous, embedded within fine-grained matrices and type I chondrule rims. The porous microchondrules are characterized by distinctive textures and chemical compositions that have not been recognized previously. Additionally, we show detailed textures and chemical compositions of protuberances of silicate materials, connected to the chondrules and ending with microchondrules. We suggest that microchondrules and protuberances formed from materials splattered from the chondrules during stochastic collisions when they were still either completely or partially molten. The occurrence and distinct morphologies of microchondrules and protuberances suggest that rather than just a passive flash melting of chondrules, an additional event perturbed the molten chondrules before they underwent cooling. The bulk chemical compositions suggest that (1) nonporous microchondrules and protuberances were formed by splattering of materials that are compositionally similar to the bulk silicate composition of type I chondrules, and (2) the porous microchondrules could represent the splattered melt products of a less evolved, fine-grained dust composition. The preservation of protuberances and microchondrules in the rims suggests that the cooling and accretion rates were exceptionally fast and that they represent the last objects that were formed before the accretion of the parent bodies of OCs.

  8. Anomalous REE patterns in unequilibrated enstatite chondrites: Evidence and implications

    NASA Astrophysics Data System (ADS)

    Crozaz, Ghislaine; Hsu, Weibiao

    1993-03-01

    We present here a study of Rare Earth Element (REE) microdistributions in unequilibrated enstatite chondrites (EOC's). Although the whole rock REE contents are similar in both unequilibrated and equilibrated chondrites, the host minerals of these refractory elements are different. In the least equilibrated ordinary chondrites (UOC's), the REE reside mainly in glass whereas, in their more equilibrated counterparts, the bulk of the REE is in calcium phosphate, a metamorphic mineral that formed by oxidation of phosphorous originally contained in metal. In the smaller group of enstatite (E) chondrites, calcium phosphate is absent and the phase that contains the highest REE concentrations is a minor mineral, CaS (oldhamite), which contains approximately 50 percent of the total Ca present. In E chondrites, elements typically considered to be lithophiles (such as Ca and Mn) occur in sulfides rather than silicates. This indicates formation under extremely reducing conditions, thus in a region of the solar nebula distinct from those that supplied the more abundant ordinary and carbonaceous chondrites. Previously, we observed a variety of REE patterns in the oldhamite of UEC's; they range from almost flat to some with pronounced positive Eu and Yb anomalies. Here, we searched for complementary REE patterns in other minerals from E chondrites and found them in the major mineral, enstatite. Whenever Eu and Yb anomalies are present in this mineral, they are always negative.

  9. Mobility of iron and nickel at low temperatures: Implications for 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Telus, Myriam; Huss, Gary R.; Ogliore, Ryan C.; Nagashima, Kazuhide; Howard, Daryl L.; Newville, Matthew G.; Tomkins, Andrew G.

    2016-04-01

    The Fe and Ni isotopic composition of ferromagnesian silicates in chondrules from unequilibrated ordinary chondrites (UOCs) have been used to estimate the initial abundance of the short-lived radionuclide, 60Fe, in the early Solar System. However, these estimates vary widely, and there are systematic discrepancies in initial 60Fe/56Fe ratios inferred from in situ and bulk analyses of chondrules. A possible explanation is that the Fe-Ni isotope system in UOC chondrules has not remained closed (a necessary condition for isotopic dating), and Fe and Ni have been redistributed since the chondrules formed. In order to evaluate this, we collected high-spatial-resolution X-ray fluorescence (XRF) maps of UOC chondrules to better understand the distribution and mobility of Fe and Ni at the low metamorphic temperatures of these chondrites. We used synchrotron X-ray-fluorescence microscopy to map the distribution of Fe, Ni and other elements in portions of 71 chondrules from 8 UOCs (types 3.00-3.2). The synchrotron XRF maps show clear enrichment of Fe and/or Ni in fractures ranging down to micrometer scale in chondrules from all UOCs analyzed for this study regardless of petrologic type and regardless of whether fall or find, indicating that there was significant exchange of Fe and Ni between chondrules and matrix and that the Fe-Ni system was not closed. Sixty percent of chondrules in Semarkona (LL3.00) have Fe and Ni enrichment along fractures, while 80-100% of chondrules analyzed from the other UOCs show these enrichments. Mobilization was likely a result of fluid transport of Fe and Ni during aqueous alteration on the parent body and/or during terrestrial weathering. In situ and bulk Fe-Ni analyses that incorporate extraneous Fe and Ni from chondrule fractures will result in lowering the inferred initial 60Fe/56Fe ratios.

  10. Chondrules and Opaque Phases in Unequilibrated R Chondrites: A Comprehensive Assessment of Their Formation

    NASA Technical Reports Server (NTRS)

    Miller, K. E.; Lauretta, D. S.; Connolly, H. C., Jr.; Berger, E. L.; Domanik, K.

    2016-01-01

    Equilibrated Rumuruti (R) chondrites record an oxygen fugacity between 0 and 3.5 log units below the fayalite-magnetite-quartz buffer, and a sulfur fugacity (fS2) 2 log units above the iron-troilite buffer. They are more than an order of magnitude more oxidized than the ordinary chondrites [1], and orders of magnitude more sulfidized than solar values. Although the R chondrites have the highest (delta)O-17 value of any meteorites, analyses of unequilibrated R chondrites indicate chondrule formation in an oxygen isotope reservoir similar to that of the ordinary chondrite chondrules. We present the relationship of the R chondrite parent body to pre-accretionary volatiles O and S based on our analyses of unequilibrated R chondrite material in two thin sections from the meteorite Mount Prestrud (PRE) 95404.

  11. Graphite-magnetite aggregates in ordinary chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Taylor, G. J.; Rubin, A. E.; Keil, K.; Okada, A.

    1981-01-01

    The graphite-magnetite component has been found (1) as abundant isolated inclusions in eight ordinary-chondritic, regolith breccias; (2) as the sole matrix in a new kind of unequilibrated chondrite that forms clasts in these regolith breccias; and (3) together with a Huss matrix in six unequilibrated ordinary chondrites. It is suggested that the component was formed by low-temperature, gas-solid reactions before the accretion of the meteorite, and that the isolated inclusions of graphite-magnetite in regolith breccias were derived from bodies composed of the new kind of chondrite that has graphite-magnetite as its sole matrix.

  12. Vugs in ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Olsen, E.

    1981-03-01

    It is noted that vugs occur in Farmington, an ordinary chondrite, and that they contain the same phases present in the body of the meteorite, either as vug wall lining or as crystals attached to linings. The morphologies of these phases are seen as indicating a history of melting and vapor deposition. These vugs are compared with those in the ordinary chondrites Orvinio and Tadjera and with published reports of vugs in the Rose City and Shaw chondrites. It is concluded that while shock events may not cause heating above the liquidus for the body of the meteorite, local pockets of melting and vapor formation do occur because of inhomogeneities in the shock wave pattern. It is pointed out that vugs represent such pockets. Vug formation as a consequence of shock processing is common among ordinary chondrites and shows no correlation with the average temperature of shock heating, subsequent average cooling rate, or blackening of body color.

  13. Accretionary dark rims in unequilibrated chondrites

    NASA Astrophysics Data System (ADS)

    King, T. V. V.; King, E. A.

    1981-12-01

    Textural and qualitative EDX investigations of dark-rimmed particles in six low petrologic type chondrites indicate that the rims accreted on host particles over a wide range of temperatures prior to initial accumulation and lithification of the meteorites in which the rimmed particles are now contained. Many dark rims are enriched in moderately volatile trace elements such as Na, Cl, P, and K, relative to the host particles and matrix. The range of physical/chemical environments associated with hypervelocity impacts may have offered the setting for the formation of dark-rimmed particles early in solar system history.

  14. Composition of the metal phases in ordinary chondrites - Implications regarding classification and metamorphism

    NASA Technical Reports Server (NTRS)

    Afiattalab, F.; Wasson, J. T.

    1980-01-01

    The paper examines the composition of metal phases and metamorphism in ordinary chondrites. It is shown that below 550 C increasing Co decreases the equilibrium kamacite Ni concentration of an alpha to gamma system, and that the equilibrated L chondrites have kamacite and taenite Co concentrations in the L-group range. Metal-phase studies of petrologic type-3 ordinary chondrites with highly unequilibrated silicates showed a wide range in the degree of matrix kamacite equilibration; in the three most unequilibrated chondrites most taenite is clear, and the high Ni content shows that metamorphic temperatures were lower than 400 C in these meteorites.

  15. Roosevelt County 075: A petrologic chemical and isotopic study of the most unequilibrated known H chondrite

    NASA Technical Reports Server (NTRS)

    Mccoy, T. J.; Keil, K.; Ash, R. D.; Morse, A. D.; Pillinger, C. T.; Wieler, R.; Mayeda, T. K.; Clayton, R. N.; Benoit, P. H.; Sears, D. W. G.

    1993-01-01

    Roosevelt County (RC) 075 was recovered in 1990 as a single 258-gram stone. Classification of this meteorite is complicated by its highly unequilibrated nature and its severe terrestrial weathering, but we favor H classification. This is supported by O isotopes and estimates of the original Fe, Ni metal content. The O isotopic composition is similar to that of a number of reduced ordinary chondrites (e.g., Cerro los Calvos, Willaroy), although RC 075 exhibits no evidence of reduced mineral compositions. Chondrule diameters are consistent with classification as an L chondrite, but large uncertainties in chondrule diameters of RC 075 and poorly constrained means of H, L and LL chondrites prevent use of this parameter for reliable classification. Other parameters are compromised by severe weathering (e.g., siderophile element abundances) or unsuitable for discrimination between unequilibrated H, L and LL chondrites (e.g., Co in kamacite delta C-13). Petrologic subtype 3.2 +/- 0.1 is suggested by the degree of olivine heterogeneity, the compositions of chondrule olivines, the thermoluminescence sensitivity, the abundances and types of chondrules mapped on cathodoluminescence mosaics, and the amount of presolar SiC. The meteorite is very weakly shocked (S2), with some chondrules essentially unshocked and, thus, is classified as an H3.2(S2) chondrite. Weathering is evident by a LREE enrichment due to clay contamination, reduced levels of many siderophile elements, the almost total loss of Fe, Ni metal and troilite, and the reduced concentrations of noble gases. Some components of the meteorite (e.g., type IA chondrules, SiC) appear to preserve their nebular states, with little modification from thermal metamorphism. We conclude that RC 075 is the most equilibrated H chondrite yet recovered and may provide additional insights into the origin of primitive materials in the solar nebula.

  16. Major element chemical compositions of chondrules in unequilibrated chondrites

    NASA Technical Reports Server (NTRS)

    Ikeda, Y.

    1984-01-01

    The chemical compositions (except for metals and sulfides in chondrules) of more than 500 chondrules from unequilibrated E, H, L, LL, and C chondrites were measured using a broad beam of an electron-probe microanalyzer. The compositions of chondrules can be represented by various mixtures of normative compositions of olivine, low-Ca pyroxene, plagioclase, and high-Ca pyroxene with minor amounts of spinel, feldspathoid, SiO2-minerals, etc., indicating that the chondrule precursor materials consisted of aggregates of these minerals. The Al, Na, and K contents of most chondrules reflect the compositions of the ternary feldspar (An-Ab-Kf) of the chondrule precursor materials, and chemical types of chondrules (KF, SP, IP, and CP) are defined on the basis of the atomic proportion of Al, Na, and K.

  17. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  18. Si-rich Fe-Ni grains in highly unequilibrated chondrites

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.; Sears, D. W.; Wasson, J. T.

    1980-01-01

    Consideration is given to the Si contents of Fe-Ni grains in highly unequilibrated chondrites, which have undergone little metamorphosis and thus best preserve the record of processes in the solar nebula. Electron microprobe determinations of silicon content in grains of the Bishunpur chondrite are presented for the six Si-bearing Fe-Ni grains for which data could be obtained, five of which were found to be embedded in olivine chondrules. In addition, all grains are found to be Cr-rich, with Cr increased in concentration towards the grain edge, and to be encased in FeS shells which evidently preserved the Si that entered the FeNi at higher temperatures. A mechanism for the production of Si-bearing metal during the condensation of the cooling solar nebula is proposed which considers the metal to have condensed heterogeneously while the mafic silicates condensed homogeneously with amounts of required undercooling in the low-pressure regions where ordinary and carbonaceous chondrites formed, resulting in Si mole fractions of 0.003 at nebular pressures less than 0.000001 atm.

  19. Incompletely compacted equilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Sasso, M. R.; Macke, R. J.; Boesenberg, J. S.; Britt, D. T.; Rivers, M. L.; Ebel, D. S.; Friedrich, J. M.

    2009-12-01

    We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high-resolution synchrotron X-ray microtomography (CT) and helium pycnometry. We found total porosities ranging from ~10 to 20% within these chondrites, and with CT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1-S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not fluffed on their parent body by impact-related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.

  20. Incompletely compacted equilibrated ordinary chondrites

    SciTech Connect

    Sasso, M.R.; Macke, R.J.; Boesenberg, J.S.; Britt, D.T.; Rovers, M.L.; Ebel, D.S.; Friedrich, J.M.

    2010-01-22

    We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high-resolution synchrotron X-ray microtomography ({mu}CT) and helium pycnometry. We found total porosities ranging from {approx}10 to 20% within these chondrites, and with {mu}CT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1-S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not 'fluffed' on their parent body by impact-related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.

  1. Shock metamorphism of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Stoeffler, Dieter; Keil, Klaus; Scott, Edward R. D.

    1991-01-01

    This study proposes a revised petrographic classification of progressive stages of shock metamorphism of 26 ordinary chondrites. Six stages of shock (S1 to S6) are defined on the basis of shock effects in olivine and plagioclase as recognized by thin section microscopy, and the characteristic shock effects of each shock stage are described. It is concluded that shock effects and the sequence of progressively increasing degrees of shock metamorphosis are very similar in H, L, and LL groups. Differences in the frequency distribution of shock stages are relatively minor. It is suggested that the collisional histories of the H, L, and LL parent bodies were similar. Petrologic type-3 chondrites are deficient in stages S4 and S6 and, with increasing petrologic type, the frequency of stages S4 to S6 increases. It is suggested that the more porous and volatile-rich Type-3 chondrites are subject to melting at a lower shock pressure than the nonporous chondrites of higher petrologic type. Stage S3 is the most abundant in nearly all petrologic types.

  2. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    PubMed

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization. PMID:9545215

  3. Oxygen Isotopes of CAIs from Unequilibrated Enstatite Chondrites: Characteristics and Implications

    NASA Technical Reports Server (NTRS)

    Guan, Y.; McKeegan, K. D.; MacPherson, G. J.

    2000-01-01

    Ion microprobe analyses of ten CAIs from enstatite chondrites show large O-16 excesses similar to CAIs in carbonaceous and ordinary chondrites, supporting the idea that most CAIs formed in a restricted nebular locale.

  4. Chondrule thermal history from unequilibrated H chondrites: A transmission and analytical electron microscopy study

    NASA Astrophysics Data System (ADS)

    Ferraris, C.; Folco, L.; Mellini, M.

    2002-10-01

    Sixteen texturally different (porphyritic, barred, radial, cryptocrystalline) FeO-rich chondrules from the unequilibrated ordinary chondrites Brownfield, Frontier Mountain (FRO) 90003 and FRO 90032 were characterized by optical and scanning electron microscopy and then thoroughly studied by transmission and analytical electron microscopy. Nanotextural and nanochemical data indicate similar thermal evolution for chondrules of the same textural groups; minor, yet meaningful differences occur among the different groups. Olivine is the earliest phase formed and crystallizes between 1500 and 1400 deg C. Protoenstatite crystallizes at temperatures higher than 1350-1200 deg C; it later inverts to clinoenstatite in the 1250-1200 deg C range. Enstatite is surrounded by pigeonitic or (less frequently) augitic rims; the minimal crystallization temperature for the rims is 1000 C; high pigeonite later inverts to low pigeonite, between 935 and 845 deg C. The outer pigeonitic or augitic rims are constantly exsolved, producing sigmoidal augite or enstatite precipitates; sigmoidal precipitates record exsolution temperatures between 1000 and 640 deg C. Cooling rate (determined using the speedometer based upon ortho-clinoenstatite intergrowth) was in the order of 50-3000 deg C/h at the clinoenstatite-orthoenstatite transition temperature (close to 1250-1200 deg C), but decreased to 5-10 deg C/h or slower at the exsolution temperature (between 1000 and 650 deg C), thus revealing nonlinear cooling paths. Nanoscale observations indicate that the individual chondrules formed and cooled separately from 1500 deg down to at least 650 deg C. Accretion into chondritic parent body occurred at temperatures lower than 650 deg C.

  5. Metallic Fractions of Ordinary Chondrites: Implications to the Structure of Chondritic Parent Bodies

    NASA Astrophysics Data System (ADS)

    Ebihara, M.; Kong, P.

    1995-09-01

    Bulk metal and taenite fractions separated by a chemical method [1] from 23 ordinary chondrites were studied by INAA and Mossbauer spectroscopy. The elemental distributions demonstrate that siderophile elements, except Co and possibly As and Mo, are more enriched in taenite than kamacite but with different abundance ratios between them. Apparently, kamacite and taenite are not produced by redox reactions, condensation fractionation and melt-solid fractionation. Instead, kamacite and taenite can only be the equilibrated products by low temperature diffusion following the Fe-Ni phase diagram. Positive correlation of Co and Ni in carbonaceous chondritic metals and the existence of a high Co and low Ni metal phase in some LL chondrites suggest that chondritic kamacite and taenite can not be developed in the nebula. Rather, kamacite and taenite are produced through solid diffusion in the chondritic parent bodies. There is a large difference in the development of kamacite and taenite between the equilibrated and the unequilibrated L chondrites: the taenite phase of the unequilibrated L chondrites is mostly or totally developed into tetrataenite while low-Ni paramagnetic taenite is still present abundantly in the equilibrated L chondrites. The low-Ni paramagnetic taenite is believed to be an unequilibrated phase of either an incompletely transformed phase during fast cooling [2] or a metastable taenite located out of the miscibility gap on the Fe-Ni phase diagram [3]. In either case, the arrangement of the EOCs and the UOCs in the parent body was the same; the EOCs located near the surface of the parent body, with the UOCs being near the center, if they derived from the common parent body. An intrinsic thermal activity in the parent body would produce a temperature gradient decreasing from the center to the surface, whereas an external heating would exhibit the inverse trend. If a "reverse" onion shell structure is invoked, the generally accepted metamorphic temperatures of the equilibrated chondrites must be related with an external heating event rather than the intrinsic activity. The taenite fractions of the unequilibrated L chondrites have been developed into tetrataenite, suggesting that a cooling rate responsible to the development of kamacite and taenite was quite slow. The energy yielding such a slow cooling must have derived from intrinsic source, which heated the parent body to a temperature high enough for the development of kamacite and taenite, but too low to recrystallize silicates. During or after this "metamorphism", an external heating took place on the chondritic parent body, which recrystallized the silicates and modified the structure of kamacite and taenite. This external heating was more violent than the intrinsic one and may have derived from the early activities of the Sun. The highest temperature caused by the external heating was imprinted in the type 6 chondrites which located near the surface of the parent body, being in range of 800 C-950 C [4], and the temperature decreased gradually from the surface to the center of the body. Being different from L chondrites, H chondrites have no apparent difference in taenite components between EOCs and UOCs. If we assume similar thermal histories for both H and L chondrites, H chondritic parent body should be smaller than L's, with even its inner part being influenced to a certain degree during the external heating. References: [1] Kong P. et al. (1995) Proc. NIPR Symp. Antarct. Meteorites, 8, 237-249. [2] Gutlich P. et al. (1978) in Mossbauer Spectroscopy and Transition of Metal Chemistry, Springer-Verlag, Berlin-Heidelberg-New York. [3] Reuter K. B. et al. (1989) Metall. Trans., 20A, 719-725. [4] Dodd R. T. (1981) in Meteorites: A Petrologic-Chemical Synthesis, Cambridge Univ., London.

  6. Oxidation during metamorphism of the ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.; Labotka, Theodore C.

    1993-01-01

    It is suggested that some current concepts about the conditions of metamorphism in ordinary chondrites may be flawed. These meteorites display small systematic variations in the oxidation state of Fe. Evidence is presented that oxidation of Fe is linked to metamorphic grade in types 4-6 ordinary chondrites. This conclusion is at variance with a commonly accepted model for chondrite metamorphism that assumes Fe reduction by graphite.

  7. Oxidation during metamorphism of the ordinary chondrites

    NASA Astrophysics Data System (ADS)

    McSween, H. Y.; Labotka, T. C.

    1993-03-01

    It is suggested that some current concepts about the conditions of metamorphism in ordinary chondrites may be flawed. These meteorites display small systematic variations in the oxidation state of Fe. Evidence is presented that oxidation of Fe is linked to metamorphic grade in types 4-6 ordinary chondrites. This conclusion is at variance with a commonly accepted model for chondrite metamorphism that assumes Fe reduction by graphite.

  8. Analysis of ordinary chondrites using powder X-ray diffraction: 2. Applications to ordinary chondrite parent-body processes

    NASA Astrophysics Data System (ADS)

    Dunn, Tasha L.; McSween, Harry Y. _jr., Jr.; McCoy, Timothy J.; Cressey, Gordon

    2010-01-01

    We evaluate the chemical and physical conditions of metamorphism in ordinary chondrite parent bodies using X-ray diffraction (XRD)-measured modal mineral abundances and geochemical analyses of 48 type 4-6 ordinary chondrites. Several observations indicate that oxidation may have occurred during progressive metamorphism of equilibrated chondrites, including systematic changes with petrologic type in XRD-derived olivine and low-Ca pyroxene abundances, increasing ratios of MgO/(MgO+FeO) in olivine and pyroxene, mean Ni/Fe and Co/Fe ratios in bulk metal with increasing metamorphic grade, and linear Fe addition trends in molar Fe/Mn and Fe/Mg plots. An aqueous fluid, likely incorporated as hydrous silicates and distributed homogeneously throughout the parent body, was responsible for oxidation. Based on mass balance calculations, a minimum of 0.3-0.4wt% H2O reacted with metal to produce oxidized Fe. Prior to oxidation the parent body underwent a period of reduction, as evidenced by the unequilibrated chondrites. Unlike olivine and pyroxene, average plagioclase abundances do not show any systematic changes with increasing petrologic type. Based on this observation and a comparison of modal and normative plagioclase abundances, we suggest that plagioclase completely crystallized from glass by type 4 temperature conditions in the H and L chondrites and by type 5 in the LL chondrites. Because the validity of using the plagioclase thermometer to determine peak temperatures rests on the assumption that plagioclase continued to crystallize through type 6 conditions, we suggest that temperatures calculated using pyroxene goethermometry provide more accurate estimates of the peak temperatures reached in ordinary chondrite parent bodies.

  9. Multiple and fast: The accretion of ordinary chondrite parent bodies

    SciTech Connect

    Vernazza, P.; Barge, P.; Zanda, B.; Hewins, R.; Binzel, R. P.; DeMeo, F. E.; Lockhart, M.; Hiroi, T.; Birlan, M.; Ricci, L.

    2014-08-20

    Although petrologic, chemical, and isotopic studies of ordinary chondrites and meteorites in general have largely helped establish a chronology of the earliest events of planetesimal formation and their evolution, there are several questions that cannot be resolved via laboratory measurements and/or experiments alone. Here, we propose the rationale for several new constraints on the formation and evolution of ordinary chondrite parent bodies (and, by extension, most planetesimals) from newly available spectral measurements and mineralogical analysis of main-belt S-type asteroids (83 objects) and unequilibrated ordinary chondrite meteorites (53 samples). Based on the latter, we suggest that spectral data may be used to distinguish whether an ordinary chondrite was formed near the surface or in the interior of its parent body. If these constraints are correct, the suggested implications include that: (1) large groups of compositionally similar asteroids are a natural outcome of planetesimal formation and, consequently, meteorites within a given class can originate from multiple parent bodies; (2) the surfaces of large (up to ∼200 km) S-type main-belt asteroids mostly expose the interiors of the primordial bodies, a likely consequence of impacts by small asteroids (D < 10 km) in the early solar system; (3) the duration of accretion of the H chondrite parent bodies was likely short (instantaneous or in less than ∼10{sup 5} yr, but certainly not as long as 1 Myr); (4) LL-like bodies formed closer to the Sun than H-like bodies, a possible consequence of the radial mixing and size sorting of chondrules in the protoplanetary disk prior to accretion.

  10. Partial Melting of Ordinary Chondrite Under Reducing Conditions

    NASA Astrophysics Data System (ADS)

    Ford, R.; Rushmer, T.; Benedix, G.; McCoy, T.

    2004-12-01

    A critical parameter in determining the nature and processes of differentiation of planetary materials in the early solar system is oxygen fugacity. Chondrites record a range of oxygen fugacities from approximately 5 log units below the iron-wustite (Fe-FeO) buffer (enstatite chondrites) to close to QFM (some carbonaceous chondrites). Among the equilibrated chondrites, an "oxidation gap" appears to exist between ordinary chondrites and enstatite chondrites, although several groups of unequilibrated carbonaceous chondrites appear to occupy this "gap". Some primitive achondrites fill this gap (e.g. pallasites, acapulcoites, lodranites, winonaites, and silicate-bearing IAB and IIE irons), although the precursors to these groups are poorly known. In this experimental study, we have determined the modification in mineral compositions during partial melting under reducing conditions and explore the idea that the primitive achondrites may be formed through differentiation under reducing conditions of a more oxidized precursor. Partial melting experiments were conducted on an H6 chondrite (Kernouve) under reducing conditions at 1 atm and at 1.3 GPa pressure in a solid media deformation apparatus. In the 1 atm experiments, fO2 was buffered by gas mixing and sealed silica tube techniques to values determined from thermodynamic calculations of primitive achondrites; in the deformation experiments, aluminum jackets were used. The experiments suggest that partial melting of an oxidized precursor under reducing conditions can produce some of the reduced features observed in primitive achondrites such as magnesian olivine, pyroxene and chromite compositions typical of primitive achondrites at temperatures of 1200-1300 C, as well as chalcophilic behavior of previously lithophillic ions (e.g., Cr in sulfide) at temperatures at 1000 C. Some features of primitive achondrites (e.g. oxygen isotopic compositions and Cr/(Cr+Al) ratios of chromites) appear to be intrinsic to the precursor chondrite. Further, mafic silicate and chromite reduction (increased Mg/(Mg+Fe)) required higher temperatures than those inferred for primitive achondrite formation. We suggest that the precurser chondrite for many primitive achondrites could have been somewhat more oxidized and subsequent melting under reducing conditions (e.g. in the presence of graphite) produced the reduction of mafic silicates and chromites in addition to chalcophilic behavior in some elements. Melt migration, solid-melt reactions and removal of key elements (e.g., S, Al) during melting might be enhanced by deformation and/or open system conditions, producing more dramatic changes in the residual solid. Other features however, must have been inherited from the precursor chondrite and therefore do not reflect changes produced during melting under reducing conditions.

  11. Fossil records of high level of 60Fe in chondrules from unequilibrated chondrites

    NASA Astrophysics Data System (ADS)

    Mishra, Ritesh Kumar; Chaussidon, Marc

    2014-07-01

    The short-lived now-extinct nuclide (SLN) 60Fe, which decays to 60Ni with a half-life of 2.62 Ma, is uniquely of stellar origin. Hence, its Solar System initial abundance yields information about the source of SLNs and the astrophysical environment in which the Solar System was born. Only a few chondrules (?19) from unequilibrated ordinary chondrites have reported resolved 60Ni excesses using in situ secondary ion mass spectrometry implying Fe60/Fe56>?0.610-7 in the early Solar System, and among these very few (3) have higher excesses implying Fe60/Fe56?710-7 (Mishra et al., 2010; Mishra and Goswami, 2014; Telus et al., 2012). At variance, multi-collector inductively coupled plasma mass spectrometer studies of bulk samples and mineral separates from differentiated meteorites, angrites, achondrites, and chondrules suggest a low abundance of 60Fe/56Fe of ?1.410-8 which would rule out the need for an external seeding of the early Solar with stellar 60Fe (Quitt et al., 2011; Tang and Dauphas, 2012). Two Semarkona chondrules and one Efremovka chondrule analyzed in the present study have mass fractionation corrected excess of up to ?75 permil () and give 60Fe isochrons with initial 60Fe/56Fe ratios of (7.83.7)10-7, (3.81.6)10-7, and (2.21.1)10-7 (2?), for Efremovka Ch 1, Semarkona Ch 12, and Semarkona Ch J5 respectively. The higher values of 60Fe/56Fe ratios seen in the chondrules of these least altered meteorites samples concur with and lend greater credence to the suggestion of a massive star as the source of 60Fe, and possibly of other short-lived nuclides, to the early Solar System. However, no definitive explanation (e.g. sample bias, effects of metamorphism, 60Fe heterogeneity) to the apparent disagreement with studies of bulk chondrules and chondrule fragments has been found.

  12. Survey of Large, Igneous-Textured Inclusions in Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Armstrong, K.; Ruzicka, A. M.

    2013-12-01

    Ordinary (O) chondrites are a class of primitive stony meteorites, and as a group comprise our most abundant samples of early solar system materials. Unique to O chondrites are igneous-textured inclusions up to 4 cm in diameter; about an order of magnitude larger than the much more abundant chondrules. These inclusions are almost always highly depleted in metal and sulfide relative to their host meteorite, but but otherwise have diverse characteristics. They exhibit a large range of textures, mineralogies, and bulk compositions, suggesting a variety of formation processes. They all crystallized from large melt volumes, the origins of which are poorly understood. Models proposed for their formation include (1) shock melting of ordinary chondrites with an associated loss of metal and sulfide; (2) melting of vapor-fractionated condensate mixture; (3) chondrule formation involving a larger melt production volume than typical for chondrules; and (4) igneous differentiation occurring within planetesimals sampled by ordinary chondrite parent bodies. Polished thin sections of inclusions from several O-chondrites have been examined with optical light microscopy (OLM) using a Leica DM 2500 petrographic microscope. Petrographic data such as texture, grain sizes and shapes were collected for the inclusions and their hosts in order to facilitate comparisons. Texturally, the inclusions were determined to fall into one of three distinct textural categories: porphyritic, fine granular, and skeletal. Mean grain sizes are on the order of 100 um for both microporphyritic and fine granular inclusions, with microporphyritic inclusions showing a much wider range of grain sizes. The largest grains in the microporphyritic inclusions are on average ~0.25 mm, with the grains of the mesostasis <100 microns. Skeletal olivine textures are defined as being dominated by crystals that are an order of magnitude longer across one direction than the other (e.g., 1 mm x 100 um). Five inclusions have been investigated with scanning electron microscopy (SEM) on a Zeiss Sigma FE-VP SEM at Portland State University. Backscatter electron micrographs were obtained in order to provide additional petrographic data, and olivine composition was determined using a silicon-drift energy dispersive X-ray (EDX) detector integrated with an Oxford Instruments AZtec X-ray analytical system. Olivine crystals of six inclusions were investigated with electron microprobe analysis (EMPA), performed with a Cameca SX-100 electron microprobe located at Oregon State University, and remotely operated from Portland State. The instrument will be operated at 15 kV accelerating voltage, with a 10-50 nA sample current and a beam diameter of approximately 1 um. Chemically, some inclusions were found to have equilibrated olivine, while others were uneqilibrated. This was also unrelated to host classification, as well as unrelated to host petrographic type. Of the two unequilibrated hosts studied, one had two unequilibrated inclusions, while the other had one equilibrated inclusion. Several eqilibrated hosts had equilibrated inclusion, while one equilibrated host had an unequilibrated inclusion. Neither texture nor chemistry was determined to be related to host type or related to whether the inclusion is a drop-formed mass or a clast.

  13. Oxygen isotope studies of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Clayton, Robert N.; Mayeda, Toshiko K.; Olsen, Edward J.; Goswami, J. N.

    1991-01-01

    Several stages in the evolution of ordinary chondritic meteorites are recorded in the oxygen isotopic composition of the meteorites and their separable components (chondrules, fragments, clasts, and matrix). The whole-rock isotopic compositions reflect the iron-group of the meteorite (H, L, or LL). Isotopic uniformity of H3 to H6 and L3 to L6 are consistent with closed-system metamorphism within each parent body. LL3 chondrites differ slightly from LL4 to LL6, implying a small degree of open-system aqueous alteration and carbon reduction. On the scale of individual chondrules, the meteorites are isotopically heterogeneous, allowing recognition of the solar-nebular processes of chondrule formation. Chondrules for all classes of ordinary chondrites are derived from a common population, which was separate from the population of chondrules in carbonaceous or enstatite chondrites. Chondrules define an isotopic mixing line dominated by exchange between (O - 16)-rich and (O - 16)-poor reservoirs. The oxygen isotopic compositions of chondrites serve as 'fingerprints' for identification of genetic association with other meteorite types (achondrites and iron) and for recognition of source materials in meteoritic breccias.

  14. Pyroxene equilibration temperatures in metamorphosed ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Harvey, R. P.; Bennett, M. L.; Mcsween, H. Y., Jr.

    1993-01-01

    Ordinary chondrites are divided into petrographic types based on observed mineralogical and textural properties consistent with progressive thermal metamorphism from low grade (type 3) to high (type 7). Regardless of the exact cause of the metamorphism, higher-type chondrites should retain information concerning peak temperatures reached and for what duration. Using the two-pyroxene geothermometer of Lindsley, we have calculated the equilibration temperatures for 26H, L and LL type 5 and 6 ordinary chondrites, to investigate the relative peak temperatures and equilibration-states reached by these various meteorite classes. The Lindsley thermometer relies on a detailed accounting of non-quadrilateral components in pyroxenes, whose recalculated compositions are then plotted onto an empirically-derived polythermal diagram from which temperatures can be interpolated. The reported uncertainty of this method is plus or minus 50 C; in addition, close spacing of isotherms on the graph (particularly for orthopyroxene compositions) increase this uncertainty. We have parameterized the Lindsley polythermal quadrilateral for 1 atm pressure (less than 2 bar), and interpreted recalculated coordinates directly in terms of 25 C temperature intervals. Meteorites selected for this study include both relatively shocked and unshoked specimens; heavily weathered or visibly brecciated specimens were avoided. Temperatures were calculated from orthopyroxene (opx) and clinopyroxene (cpx) analyses within one relative percent of ideal sums and stoichiometry. Histograms summarizing the calculated temperatures for type 5 and 6 ordinary chondrites are shown.

  15. Primitive ultrafine matrix in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.; Fredriksson, B. J.; Fredriksson, K.

    1981-01-01

    Ultrafine matrix material has been concentrated by sieving and filtering disaggregated samples of six ordinary chondrites of different classes. This component(s), 'Holy Smoke' (HS), is enriched in both volatile, e.g. Na, K, Zn, Sb, and Pb, as well as refractory elements, e.g. W and REE; however, the element ratios vary greatly among the different chondrites. SEM studies show that HS contains fragile crystals, differing in composition, and apparently in gross disequilibrium not only among themselves but also with the major mineral phases and consequently thermodynamic equilibration did not occur. Thus HS must have originated from impacting bodies and/or was inherent in the 'primitive' regolith. Subsequent impact brecciation and reheating appears to have altered, to varying degrees, the original composition of this ultrafine matrix material. Recent 'cosmic dust' studies may indicate that HS still exists in the solar system. Survival of such delicate material must be considered in all theories for the origin of chondrites.

  16. {sup 60}Fe AND {sup 26}Al IN CHONDRULES FROM UNEQUILIBRATED CHONDRITES: IMPLICATIONS FOR EARLY SOLAR SYSTEM PROCESSES

    SciTech Connect

    Mishra, R. K.; Goswami, J. N.; Rudraswami, N. G.; Tachibana, S.; Huss, G. R.

    2010-05-10

    The presence of about a dozen short-lived nuclides in the early solar system, including {sup 60}Fe and {sup 26}Al, has been established from isotopic studies of meteorite samples. An accurate estimation of solar system initial abundance of {sup 60}Fe, a distinct product of stellar nucleosynthesis, is important to infer the stellar source of this nuclide. Previous studies in this regard suffered from the lack of exact knowledge of the time of formation of the analyzed meteorite samples. We present here results obtained from the first combined study of {sup 60}Fe and {sup 26}Al records in early solar system objects to remove this ambiguity. Chondrules from unequilibrated ordinary chondrites belonging to low petrologic grades were analyzed for their Fe-Ni and Al-Mg isotope systematics. The Al-Mg isotope data provide the time of formation of the analyzed chondrules relative to the first solar system solids, the Ca-Al-rich inclusions. The inferred initial {sup 60}Fe/{sup 56}Fe values of four chondrules, combined with their time of formation based on Al-Mg isotope data, yielded a weighted mean value of (6.3 {+-} 2) x 10{sup -7} for solar system initial {sup 60}Fe/{sup 56}Fe. This argues for a high-mass supernova as the source of {sup 60}Fe along with {sup 26}Al and several other short-lived nuclides present in the early solar system.

  17. Fractionation of moderately volatile elements in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.; Chou, C.-L.

    1974-01-01

    The CI chondrites are the most volatile-rich meteorites. Relative to the CI chondrites, the ordinary chondrites have lower abundances of refractory and volatile elements. Four types of fractionations are summarized in a table. Ordinary-chondrite/CI abundance ratios for moderately volatile elements in H- and L-group chondrites are presented in a graph. Possible explanations for the observed relations are considered, giving attention to several processes which could result in the separation of nebular solids and gases.

  18. Chemical and physical studies of type 3 chondrites - VI: siderophile elements in ordinary chondrites

    SciTech Connect

    Sears, D.W.G.; Weeks, K.S.

    1986-12-01

    The abundances of Fe, Ni, Co, Au, Ir, Ga, As and Mg have been determined by instrumental neutron activation analysis in 38 type 3 ordinary chondrites (10 of which may be paired) and 15 equilibrated chondrites. Classification of type 3 ordinary chondrites into the H, L and LL classes using oxygen isotopes and parameters which reflect oxidation state (Fa and Fs in the olivine and pyroxene, and Co in kamacite) is difficult or impossible. Bulk compositional parameters, based on the equilibrated chondrites, have therefore been used to classify the type 3 chondrites. The distribution of the type 3 ordinary chondrites over the classes is very different from that of the equilibrated chondrites, the LL chondrites being more heavily represented. The type 3 ordinary chondrites contain 5 to 15% lower abundances of siderophile elements, and a compilation of the present data and literature data indicates a small, systematic decrease in siderophile element concentration with decreasing petrologic type. The type 3 ordinary chondrites have, like the equilibrated ordinary chondrites, suffered a fractionation of their siderophile elements, but the loss of Ni in comparison with Au and Ir is greater for the type 3 chondrites. These siderophile element trends were established at the nebula phase of chondritic history and the co-variation with petrologic type implies onion-shell structures for the ordinary chondrite parent bodies. It is also clear that the relationship between the type 3 and the equilibrated ordinary chondrites involves more than simple, closed-system metamorphism.

  19. Lunar and Planetary Science XXXV: Ordinary and Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Ordinary and Enstatite Chondrites" included the following reports:The Distribution of Molybdenum in the Indarch EH4 Chondrite; Cosmic-Ray Exposure Age and Heliocentric Distance of the Parent Body of E Chondrites ALH 85119 and MAC 88136; Further Observations of Fe-60-Ni-60 and Isotopic Systems in Sulfides from Enstatite Chondrites; Thermal Metamorphism in L Chondrites: Implications of Percent Mean Deviation in Olivine and Pyroxene; Cooling Rates and the Mn-53-Cr-53 Isotopic System of Yamato 86753, an Equilibrated Ordinary Chondrite; Production Rates of Cosmogenic Nuclides in the Knyahinya L-Chondrite; Preliminary Mineralogical Data from the Saratov (L4) Primitive Ordinary Chondrite; Phosphate Minerals in Semarkona; A Textural Comparison of Chondrules and Smelter-derived Dust: Implications Regarding Formation Conditions; and Modification of the Van Schmus & Wood Petrologic Classification for Lithic Fragments in the Chondritic Breccia Rumuruti.

  20. A comparison of FeO-rich, porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.; Lofgren, Gary E.

    1993-01-01

    Experimentally produced analogues of porphyritic olivine (PO) chondrules in ordinary chondrites provide an important insight into chondrule formation processes. We have studied experimental samples with PO textures grown at three different cooling rates (2, 5 and 100 C/h), and samples that have been annealed at high temperatures (1000-1200 C) subsequent to cooling. These are compared with natural chondrules of similar composition and texture from the ordinary chondrites Semarkona (LL3.0) and ALH 81251 (LL3.3). Zoning properties of olivine grains indicate that the Semarkona chondrules cooled at comparable rates to the experiments. Zoning in olivine from chondrules in ALH 81251 is not consistent with cooling alone but indicates that the chondrules underwent an annealing process. Chromium loss from olivine is very rapid during annealing and calculated diffusion coefficients for Cr in olivine are very similar to those of Fe-Mg interdiffusion coefficients under the same conditions. Annealed experimental samples contain an aluminous, low-Ca pyroxene which forms by reaction of olivine and liquid. No similar reaction texture is observed in ALH 81251 chondrules, and this may be evidence that annealing of the natural samples took place at considerably lower temperatures than the experimental analogues. The study supports the model of chondrule formation in a cool nebula and metamorphism of partly equilibrated chondrites during reheating episodes on the chondrite parent bodies.

  1. The evolution of enstatite and chondrules in unequilibrated enstatite chondrites: Evidence from iron-rich pyroxene

    NASA Technical Reports Server (NTRS)

    Weisberg, Michael K.; Prinz, Martin; Fogel, Robert A.

    1994-01-01

    FeO-rich (Fs(sub 6)-34) pyroxene lacking cathodoluminescence (CL), hereafter black pyroxene, is a major constituent of some of the chondrules and fragments in unequilibrated (type 3) enstatite chondrites (UECs). It contains structurally oriented zones of Cr-, Mn-, V-rich, FeO-poor enstatite with red CL, associated with mm-sized blebs of low-Ni, Fe-metal and, in some cases, silica. These occurrences represent clear evidence of pyroxene reduction. The black pyroxene is nearly always rimmed by minor element (Cr, Mn, V)-poor enstatite having a blue CL. More commonly, red and blue enstatites, unassociated with black pyroxene, occur as larger grains in chondrules and fragments, and these constitute the major silicate phases in UECs. The rare earth element (REE) abundance patterns of the black pyroxene are LREE-depleted. The blue enstatite rims, however, have a near-flat to LREE-enriched pattern, approx. 0.5-4x chondritic. The petrologic and trace element data indicate that the black pyroxene is from an earlier generation of chondrules that formed in a nebular region that was more oxidizing than that of the enstatite chondrites. Following solidification, these chondrules experienced a more reducing nebular environment and underwent reduction. Some, perhaps most, of the red enstatite that is common throughout the UECs may be the product of solid-state reduction of black pyroxene. The blue enstatite rims grew onto the surfaces of the black pyroxene and red enstatite as a result of condensation from a nebular gas. The evolutionary history of some of the enstatite and chondrules in enstatite chondrites can be expressed in a four-stage model that includes: Stage 1. Formation of chondrules in an oxidizing nebular environment. Stage 2. Solid-state reduction of the more oxidized chondrules and fragments to red enstatite in a more reducing nebular environment. Stage 3. Formation of blue enstatite rims on the black pyroxene as well as on the red enstatite. Stage 4. Reprocessing, by various degrees of melting, of many of the earlier-formed materials.

  2. Ubiquitous brecciation after metamorphism in equilibrated ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Lusby, D.; Keil, K.

    1985-01-01

    Ten objects with aberrant Fe/(Fe + Mg) ratios have been found in apparently unbrecciated types 4-6 H and L chondrites. Since the Fe/(Fe + Mg) ratios of these objects are incompatible with the metamorphic history of the host chondrites, it is concluded that a high proportion of ordinary chondrites are breccias that were lithified after peak metamorphism. This is consistent with the results of Scott (1984), who concluded that most type three ordinary chondrites are breccias of materials with diverse thermal histories, even though they do not show prominent brecciation. It is found that the classification scheme of Van Schmus and Wood (1967) does not identify chondrites with similar thermal histories; the petrologic type of a chondrite is only a measure of the average thermal history of its ingredients. Chondrite and achondrite breccias are also compared in order to understand how brecciation of chondrites after metamorphism is so well camouflaged.

  3. Barred olivine chondrules in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Weisberg, Michael K.

    1987-01-01

    The characteristics of 125 barred olivine chondrules identified in polished thin sections of 26 H-L-LL3-6 chondrites were studied, using an electron microprobe for determining mineral abundances and a broad-beam electron microprobe for determining bulk compositions. Compared with all chondrule types in the H-L-LL3 ordinary chondrites, the barred olivine chondrules were found to be enriched in FeO, Al2O3, Na2O, and K2O and depleted in SiO2 and MgO; they were also found to be enriched in the feldspathic component. It is concluded that the precursor components of barred olivine chondrules consisted of a mixture of an olivine-rich component, a refractory-rich component containing Al2O3, TiO2, and CaO, and a volatile-rich alkalic component. This unusual combination implies high temperatures of melting for the refractory component and low temperatures for the volatile component, supporting the hypothesis of Grossman and Wasson (1983) that the alkalies condensed on the alumina already available.

  4. Penecontemporaneous metamorphism, fragmentation, and reassembly of ordinary chondrite parent bodies

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.

    1985-01-01

    The thermal histories of ordinary chondrites and the canonical internal heating or onion shell models, which predict an inverse relation between the petrologic type of chondrites and the metallographic cooling rate, are reviewed. The thermal and accretional requirements of the 'metamorphosed planetesimal' model proposed by Scott and Rajan (1981) are analyzed, and an alternative model consistent with the metallographic cooling rate constraints is suggested in which ordinary chondrite parent bodies are collisionally fragmented and then rapidly reassembled before metamorphic heat has been dissipated.

  5. Chromium on Eros: Further Evidence of Ordinary Chondrite Composition

    NASA Technical Reports Server (NTRS)

    Foley, C. N.; Nittler, L. R.; Brown, M. R. M.; McCoy, T. J.; Lim, L. F.

    2005-01-01

    The surface major element composition of the near-earth asteroid 433-Eros has been determined by x-ray fluorescence spectroscopy (XRS) on the NEAR-Shoemaker spacecraft [1]. The abundances of Mg, Al, Si, Ca and Fe match those of ordinary chondrites [1]. However, the observation that Eros appears to have a sulfur abundance at least a factor of two lower than ordinary chondrites, suggests either sulfur loss from the surface of Eros by impact and/or radiation processes (space weathering) or that its surface is comprised of a somewhat more differentiated type of material than an ordinary chondrite [1]. A definitive match for an ordinary chondrite parent body has very rarely been made, despite the conundrum that ordinary chondrites are the most prevalent type of meteorite found on Earth. Furthermore, Eros is classified as an S(IV) type asteroid [2] and being an S, it is the second most prevalent type of asteroid in the asteroid belt [3].

  6. 187Re-187Os systematics, highly siderophile element, S-Se-Te abundances in the components of unequilibrated L chondrites

    NASA Astrophysics Data System (ADS)

    Kadlag, Yogita; Becker, Harry

    2016-01-01

    The 187Re-187Os systematics, abundances of highly siderophile elements (HSE: Re, platinum group elements and Au), Te, Se and S as well as major and minor elements were determined in separated components of two unequilibrated L chondrites QUE 97008 (L3.05) and Ceniceros (L3.7). The 187Re-187Os systematics are disturbed in the components of both meteorites, most likely due to open system behavior of Re during terrestrial weathering of QUE 97008 and alteration on the L chondrite parent body as indicated by an internal errorchron generated for components of Ceniceros. The HSE abundance patterns suggest that the bulk rock abundances were mainly controlled by two different end members. Non-magnetic fractions display lower Re/Os and HSE/Ir than CI chondrites. Chondrules, metal-troilite spherules and fine magnetic fractions, are depleted in refractory HSE and show higher Rh/Ir, Pd/Ir and Au/Ir than in CI chondrites. The different HSE compositions indicate the presence of unequilibrated alloys and loss of refractory HSE-rich carrier phases from the precursors of some L chondrite components. Gold is decoupled from other HSE in magnetic fractions and shows chalcophile affinities with a grain size dependent variation similar to S and Se, presumably inherited from preaccretionary processes. Tellurium is depleted in all components compared to other analysed siderophile elements, and its abundance was most likely controlled by fractional condensation and different geochemical affinities. The volatility dependent depletion of Te requires different physical and chemical conditions than typical for the canonical condensation sequence as represented by carbonaceous chondrites. Tellurium also shows variable geochemical behavior, siderophile in Ceniceros, predominantly chalcophile in QUE 97008. These differences may have been inherited from element partitioning during chondrule formation. Selenium and S on the other hand are almost unfractionated from each other and only show complementary S/Se in a few components, presumably due to the effects of volatility or metal-silicate partitioning during chondrule formation. Terrestrial weathering had negligible effects on the S, Se and Te systematics.

  7. Multiple parent bodies of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Yomogida, K.; Matsui, T.

    1984-01-01

    Thermal histories of chondrite parent bodies are calculated from an initial state with material in a powder-like form, taking into account the effect of consolidation state on thermal conductivity. The very low thermal conductivity of the starting materials makes it possible for a small body with a radius of less than 100 km to be heated by several hundred degrees even if long-lived radioactive elements in chondritic abundances are the only source of heat. The maximum temperature is determined primarily by the temperature at which sintering of the constituent materials occurs. The thermal state of the interior of a chondrite parent body after sintering has begun is nearly isothermal. Near the surface, however, where the material is unconsolidated and the thermal conductivity is much lower, the thermal gradient is quite large. This result contradicts the conventional 'onion-shell' model of chondrite parent bodies. But because the internal temperature is almost constant through the whole body, it supports a 'multiple-parent bodies' model, according to which each petrologic type of chondrite comes from a different parent body.

  8. The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.; Bennett, Marvin E., III; Jarosewich, Eugene

    1991-01-01

    Published data from bulk chemical analyses of 94 ordinary chondrites are compiled in a table of normative mineralogy and discussed in detail. Significant variations in olivine, pyroxene, and metal abundance ratios are found within each chondrite class and attributed to redox processes superimposed on initial differences in metal/silicate ratios. The use of the diagrams constructed here to predict the mineralogic characteristics of asteroids on the basis of spectrophotometric observations is suggested.

  9. The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry

    NASA Astrophysics Data System (ADS)

    McSween, H. Y.; Bennett, M. E.; Jarosewich, E.

    1991-03-01

    Published data from bulk chemical analyses of 94 ordinary chondrites are compiled in a table of normative mineralogy and discussed in detail. Significant variations in olivine, pyroxene, and metal abundance ratios are found within each chondrite class and attributed to redox processes superimposed on initial differences in metal/silicate ratios. The use of the diagrams constructed here to predict the mineralogic characteristics of asteroids on the basis of spectrophotometric observations is suggested.

  10. A hydrogen isotope study of CO3 type carbonaceous chondrites; comparison with type 3 ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Morse, A. D.; Newton, J.; Pillinger, C. T.

    1993-01-01

    Meteorites of the Ornans type 3 carbonaceous chondrites exhibit a range in degree of equilibration, attributed to differing amounts of thermal metamorphism. These differences have been used to split the CO3 chondrites into petrologic sub-types from 3.0, least equilibrated, to 3.7, being most equilibrated. This is similar to the system of assigning the type 3 ordinary chondrites into petrologic sub-types 3.0 to 3.9 based upon thermoluminescence (TL) and other properties; however, the actual range of thermal metamorphism experienced by CO3 chondrites is much less than that of the type 3 ordinary chondrites. The least equilibrated ordinary chondrites show evidence of aqueous alteration and have high D/H ratios possibly due to a deuterium-rich organic carrier. The aim of this study was to determine whether the CO3 chondrites, which have experienced similar secondary conditions to the type 3 ordinary chondrites, also contain a similar deuterium-rich carrier. To date a total of 5 CO3 meteorites, out of a set of 11 for which carbon and nitrogen isotopic data are available, have been analyzed. Ornans has not been analyzed yet, because it does not appear to fit in with the metamorphic sequence exhibited by the other CO3 chondrites; it also has an extremely high delta-D value of +2150 percent, unusual for such a comparatively equilibrated meteorite (type 3.4). Initial results indicate that the more equilibrated CO3's tend to have lower delta-D values, analogous to the higher petrologic type ordinary chondrites. However this is complicated by the effects of terrestrial weathering and the small data-set.

  11. Screening and classification of ordinary chondrites by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pittarello, Lidia; Baert, Kitty; Debaille, Vinciane; Claeys, Philippe

    2015-10-01

    Classification of ordinary chondrite meteorites generally implies (1) determining the chemical group by the composition in endmembers of olivine and pyroxene, and (2) identifying the petrologic group by microstructural features. The composition of olivine and pyroxene is commonly obtained by microprobe analyses or oil immersion of mineral separates. We propose Raman spectroscopy as an alternative technique to determine the endmember content of olivine and pyroxene in ordinary chondrites, by using the link between the wavelength shift of selected characteristic peaks in the spectra of olivine and pyroxene and the Mg/Fe ratio in these phases. The existing correlation curve has been recalculated from the Raman spectrum of reference minerals of known composition and further refined for the range of chondritic compositions. Although the technique is not as accurate as the microprobe for determining the composition of olivine and pyroxene, for most of the samples the chemical group can be easily determined by Raman spectroscopy. Blind tests with ordinary chondrites of different provenance, weathering, and shock stages have confirmed the potential of the method. Therefore, we suggest that a preliminary screening and the classification of most of the equilibrated ordinary chondrites can be carried out using an optical microscope equipped with a Raman spectrometer.

  12. Noble-gas-rich separates from ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Moniot, R. K.

    1980-02-01

    Acid-resistant residues were prepared by HCl-HF demineralization of three H-type ordinary chondrites: Brownfield 1937 (H3), Dimmitt (H3, 4), and Estacado (H6). These residues were found to contain a large proportion of the planetary-type trapped Ar, Kr, and Xe in the meteorites. The similarity of these acid residues to those from carbonaceous chondrites and LL-type ordinary chondrites suggests that the same phase carries the trapped noble gases in all these diverse meteorite types. Because the H group represents a large fraction of all meteorites, this result indicates that the gas-rich carrier phase is as universal as the trapped noble-gas component itself. When treated with an oxidizing etchant, the acid residues lost almost all their complement of noble gases.

  13. Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation

    NASA Astrophysics Data System (ADS)

    Gooding, J. L.; Keil, K.

    1981-03-01

    A petrographic survey of > 1600 chondrules in thin-sections of 12 different mildly to highly unequilibrated H-, L-, and Li-chondrites, as well as morphological and textural study of 141 whole chondrules separated from 11 of the same chondrites, was used to determine the relative abundances of definable chondrule primary textural types. Percentage abundances of various chondrule types are remarkably similar in all chondrites studied and are 47-52 porphyritic olivine-pyroxene (POP), 15-27 porphyritic olivine (P 0), 9-11 porphyritic pyroxene (PP), 34 barred olivine (BO), 7-9 radial pyroxene (RP), 2-5 granular olivine-pyroxene (GOP), 3-5 cryptocrystalline (C), and ? 1 metallic (M). Neither chondrule size nor shape is strongly correlated with textural type. Compound and cratered chondrules, which are interpreted as products of collisions between plastic chondrules, comprise 2-28% of non-porphyritic (RP, GOP, C) but only 2-9% of porphyritic (POP, PO, PP, BO) chondrules, leading to a model-dependent implication that non-porphyritic chondrules evolved at number densities (chondrules per unit volume of space) which were 102 to 104 times greater than those which prevailed during porphyritic chondrule formation (total range of 1 to 106 m-3. Distinctive "rims" of fine-grained sulfides and/or silicates occur on both porphyritic and non-porphyritic types and appear to post-date chondrule formation. Apparently, either the same process(es) contributed chondrules to all unequilibrated ordinary chondrites or, if genetically different, the various chondrule types were well mixed before incorporation into chondrites. Melting of pre-existing materials is the mechanism favored for chondrule formation.

  14. Elevated initial Sr-87/Sr-86 in ordinary chondrite metal

    NASA Technical Reports Server (NTRS)

    Podosek, F. A.; Brannon, J. C.; Perron, C.; Pellas, P.

    1993-01-01

    The metal phase of ordinary chondrites has been found to contain a complex assemblage of non-metal phases, evidently formed when elements such as Si, Cr and P, originally dissolved in the metal, were subsequently oxidized and exsolved. We have investigated the Rb-Sr isotopic system in samples of H-chondrite metal, finding small but nontrivial amounts of Sr, apparently concentrated toward the surface of metal grains, and characterized by pronounced excesses of Sr-87/Sr-86 in chondritic metal can plausibly account for the characteristically elevated initial Sr-87/Sr-86 found in ordinary chondrite phosphates, but it remains unclear when and where the metal experienced the high Rb/Sr environment needed to account for such high Sr-87/Sr-86. We have previously reported Rb-Sr data for separated metal from Dhajala (H3), Forest Vale (H4) and Estacado (H6). Here we report data for two size fractions (80-160 and 280-450 microns) of separated metal from the H4 chondrite Ste. Marguerite. These samples were etched twice (.5N HCl for one hour) before dissolution (6N HCl). Aliquots of the solutions were spiked for Fe, Ca and Rb + Sr. The results for Ste. Marguerite metal are presented; errors are two-sigma and elemental concentrations are stated in terms of total sample weight.

  15. Origin of petrofabrics and magnetic anisotropy in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Sneyd, Deana S.; Mcsween, Harry Y., Jr.; Sugiura, Naoji; Strangway, David W.; Nord, Gordon L., Jr.

    1988-01-01

    Three-dimensional finite strain and magnetic susceptibility anisotropy have been determined for 15 ordinary chondrites. The axes of strain and magnetic ellipsoids roughly correlate in both magnitude and orientation. The shapes of these ellipsoids are generally oblate spheroids that define a dominant foliation and a weak lineation. These characteristics suggest deformation involving uniaxial compaction. The degree of uniaxial deformation correlates with intensity of shock, as indicated by optical, TEM and chemical criteria. These data, plus the lack of a relationship between foliation and metamorphic history, indicate that dynamic processes, i.e., impacts, produced planar deformation fabrics in chondrites.

  16. Rapid Classification of Ordinary Chondrites Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Fries, M.; Welzenbach, L.

    2014-01-01

    Classification of ordinary chondrites is typically done through measurements of the composition of olivine and pyroxenes. Historically, this measurement has usually been performed via electron microprobe, oil immersion or other methods which can be costly through lost sample material during thin section preparation. Raman microscopy can perform the same measurements but considerably faster and with much less sample preparation allowing for faster classification. Raman spectroscopy can facilitate more rapid classification of large amounts of chondrites such as those retrieved from North Africa and potentially Antarctica, are present in large collections, or are submitted to a curation facility by the public. With development, this approach may provide a completely automated classification method of all chondrite types.

  17. Post-metamorphic brecciation in type 3 ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Mccoy, T. J.; Keil, K.

    1993-01-01

    Type 3.1-3.9 ordinary chondrites can be divided into two kinds: those in which the compositions of chondrule silicates are entirely consistent with metamorphism of type 3.0 material, and those in which the computational heterogeneity appears to be too extreme for in situ metamorphism. We present petrologic data for three LL3 chondrites of the second kind--Ngawi, ALH A77278 (both type 3.6), and Hamlet (type 3.9)--and compare these data with results for the first kind of LL3-4 chondrites. Given that chondrules form in the nebula and that metamorphic equilibration occurs in asteroids, our new data imply that Ngawi, A77278, Hamlet, and many other type 3 ordinary chondrites are post-metamorphic breccias containing materials with diverse metamorphic histories; they are not metamorphic rocks or special kinds of 'primitive breccias.' We infer also that metamorphism to type 3.1-3.9 levels produces very friable material that is easily remixed into breccias and lithified by mild shock. Thus, petrologic types and subtypes of chondrites indicate the mean metamorphic history of the ingredients, not the thermal history of the rock. The metamorphic history of individual type 1 or 2 porphyritic chondrules in type 3 breccias is best derived from olivine and pyroxene analyses and the data of McCoy et al. for unbrecciated chondrites. The new chondrule classification schemes of Sears, DeHart et al., appears to provide less information about the original state and metamorphic history of individual porphyritic chondrules and should not replace existing classification schemes.

  18. Post-metamorphic brecciation in type 3 ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; McCoy, T. J.; Keil, K.

    1993-03-01

    Type 3.1-3.9 ordinary chondrites can be divided into two kinds: those in which the compositions of chondrule silicates are entirely consistent with metamorphism of type 3.0 material, and those in which the computational heterogeneity appears to be too extreme for in situ metamorphism. We present petrologic data for three LL3 chondrites of the second kind--Ngawi, ALH A77278 (both type 3.6), and Hamlet (type 3.9)--and compare these data with results for the first kind of LL3-4 chondrites. Given that chondrules form in the nebula and that metamorphic equilibration occurs in asteroids, our new data imply that Ngawi, A77278, Hamlet, and many other type 3 ordinary chondrites are post-metamorphic breccias containing materials with diverse metamorphic histories; they are not metamorphic rocks or special kinds of 'primitive breccias.' We infer also that metamorphism to type 3.1-3.9 levels produces very friable material that is easily remixed into breccias and lithified by mild shock. Thus, petrologic types and subtypes of chondrites indicate the mean metamorphic history of the ingredients, not the thermal history of the rock. The metamorphic history of individual type 1 or 2 porphyritic chondrules in type 3 breccias is best derived from olivine and pyroxene analyses and the data of McCoy et al. for unbrecciated chondrites. The new chondrule classification schemes of Sears, DeHart et al., appears to provide less information about the original state and metamorphic history of individual porphyritic chondrules and should not replace existing classification schemes.

  19. Chemical and physical studies of type 3 chondrites. XI - Metamorphism, pairing, and brecciation of ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Hasan, F. A.; Batchelor, J. D.; Lu, J.

    1991-01-01

    The present study reports recent measurements of the induced thermoluminescence (TL) properties of 69 type-3 ordinary chondrites, bringing to 125 the number of type-3 ordinary chondrites for which TL data are available. The samples include several of the particularly low petrographic type and many breccias, some of them gas-rich. The significance of the data with respect to the physical conditions affecting metamorphism is discussed. The TL data, olivine heterogeneity, carbon content, and inert-gas content were used to assign the samples to petrologic types. Twelve meteorites were identified as being type 3.0-3.2, and 10 of the breccias were found to contain material that may also be of this type. The temperature and width of the induced TL peak are also related to thermal history, with type 3.2-3.4 chondrites tending to have narrower peaks at lower glow curve temperatures than the type 3.6-3.9 chondrites. Type 3 H chondrites were found to be a higher petrographic type than the type 3 L and LL chondrites.

  20. Carbon in weathered ordinary chondrites from Roosevelt County

    NASA Technical Reports Server (NTRS)

    Ash, R. D.; Pillinger, C. T.

    1993-01-01

    A suite of Roosevelt County ordinary chondrites of known terrestrial age have been analyzed for carbon content and isotopic composition. Initial results indicate that significant carbon contamination is evident only in samples with a terrestrial age greater than 40 ka. These samples are of weathering grade D and E and contain three times more carbon than the less weathered samples. The soil in which they were preserved has a carbon content of ca. 1.5 percent. Over 200 meteorites have been recovered from a series of soil depleted areas of New Mexico and West Texas. Most have been recovered from blowouts near Clovis in Roosevelt County (RC) on the high plains of New Mexico. The mineralogical and petrologic Al effects of weathering upon these samples have been studied previously and show that the degree of weathering is largely depend ant upon the terrestrial residence time. The study was undertaken to determine the effects of prolonged exposure to the soil and climate of Roosevelt County upon ordinary chondrites in the hope that this will enable a better understanding of the problems associated with the collection of meteoritic falls. A suite of ten grade 4 to 6 H, L, and LL ordinary chondrites were analyzed for carbon content and isotopic composition.

  1. Did Ordinary Chondrite Impactors Deliver Olivine to Vesta?

    NASA Astrophysics Data System (ADS)

    Le Corre, Lucille; Reddy, Vishnu; Sanchez, Juan A.; Cloutis, Edward A.; Izawa, Matthew R.; Mann, Paul

    2014-11-01

    Ground-based and Hubble Space Telescope observations of asteroid Vesta suggested the presence of olivine. However, subsequent analysis of data from NASAs Dawn mission proved that this olivine-bearing unit, identified as Oppia crater and its ejecta blanket, was composed of HED impact melt rather than olivine. The lack of widespread olivine in the 19 km deep Rheasilvia basin on the South Pole suggests that the crust-mantle boundary was not breached during the formation of the basin, and that Vestas crust is thicker than originally anticipated. Recently, local-scale olivine units have been reported in the walls and ejecta of two craters, Arruntia and Bellicia, located in the northern hemisphere of Vesta, 350-430 km from the Rheasilvia basin (Ammannito et al., 2013). These units were interpreted as exposed plutons by Clenet et al. (2014) rather than of mantle origin excavated during the formation of the Rheasilvia basin. We explored alternative sources for these olivine-rich units by reanalyzing the data published by Ammannito et al. (2013). Our mineralogical analysis gives olivine abundance between 70-80 vol.% consistent with those obtained previously (>60%). The pyroxene ferrosilite content and olivine abundance of the olivine-rich units are similar to ordinary chondrites. Meteoritic evidence suggests contamination of HEDs by several ordinary chondrite impactors including H, L and LL chondrites. This includes howardite JaH 556, which contains ~20 vol.% H chondrite material mixed with HED impact melt. Based on the non-diagnostic curve match and detailed mineralogical analysis using diagnostic spectral band parameters, we conclude that the olivine units in the northern hemisphere of Vesta could be explained by the delivery of exogenic H/L chondrite material rather than being a product of planetary differentiation.

  2. Metal Phases of Ordinary Chondrites: Melting Remnants or Nebular Condensates?

    NASA Astrophysics Data System (ADS)

    Kong, P.; Ebihara, M.

    1995-09-01

    Bulk metals of 10 H, 6 L and 7 LL chondrites were analyzed by INAA. A significant difference in the metallic compositions between EOCs and UOCs is noted for the abundances of three lithophile elements, Cr, Mn and V, and three weakly siderophile elements, W, Mo and Ga. The abundances of W, Mo and Ga are increased and those of Cr, Mn and V are decreased with increase of petrographic type. According to condensation sequence [1], Fe condensed into a metal phase at high temperature. With temperature falling, metallic Fe was partly oxidized into silicates and partly transferred into troilite during equilibrium with the solar nebula. If Fe could equilibrate with the solar nebula, it is not expected that V, Cr and Mn still remain partly in the metal phases since they would be oxidized at higher temperatures than that for oxidizing Fe. Rapid formation of silicates around metal grains might preserve these elements but should keep W and Mo quantitatively present in the metals. Our results show that relative to Ir and Os, W and Mo are both depleted in the UOC metals to some extents, implying that portions of W and Mo are present in the non-metal phases. It is difficult to envision that the "being reduced" V, Cr and Mn can coexist with the "being oxidized" W, Mo and Ga in the metallic fractions if the metallic fractions were nebula condensates. W, Mo and Ga are enriched in the metallic fractions of the EOCs in order of W>Mo>Ga, while in those of the UOCs the order changes to Mo>W>Ga. We believe that the truly equilibrated distributions of W and Mo among different phases are preserved in the equilibrated chondrites, because the redox states of the elements must have been readjusted to reach equilibrium or near to equilibrium during the thermal metamorphism. So, if the UOC metals were equilibrated condensates, the relative distributions of W and Mo in the UOC metals should be similar to those in the EOC metals. However, this is not the case. If the metals were interstellar grains and have not changed their characteristics before the accretion of chondrites, the compositions of the metals should be uniform for all ordinary chondrites of different chemical groups. In fact, they have changed. If the compositions of the metals were adjusted according to the redox condition in places where chondrites formed, the contradictory states of "being reduced" V, Mn and Cr and "being oxidized" W, Mo and Ga preserved in the UOC metals must be erased. Thus, it seems implausible that the metals of ordinary chondrites were the interstellar grains before their accreting into chondrites. Formation of chondritic metals seems to be attributable only to the remaining melting mechanism. Experimental results showed that the metal/silicate partition coefficients of W were always lower than those of Mo at temperature 1300 degrees C and oxygen fugacities between 10^-13 to 10^-11 bars [2]. Moreover, partition behaviors of Cr, V and Mn [3] are similar to those found in the UOCs. The consistence of experimental partition coefficients of W, Mo, Ga, V, Cr and Mn with their abundance ratios between metal and silicate phases of UOCs suggests that the UOC metals were formed by a melting mechanism. It is thus concluded that the metals of ordinary chondrites were the melting remnants before they were accreted into chondritic parent bodies. References: [1] Wasson J. T. (1985) in Meteorites: Their Record of Early Solar-System History, Freeman, New York. [2] Schmitt W. et al. (1989) GCA, 53, 173-185. [3] Drake M. J. et al. (1989) GCA, 53, 2101-2111.

  3. Magnetic classification of stony meteorites: 2. Non-ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Rochette, Pierre; Gattacceca, JRMe; Bonal, Lydie; Bourot-Denise, MichLe; Chevrier, Vincent; Clerc, Jean-Pierre; Consolmagno, Guy; Folco, Luigi; Gounelle, Matthieu; Kohout, Tomas; Pesonen, Lauri; Quirico, Eric; Sagnotti, Leonardo; Skripnik, Anna

    2008-05-01

    A database of magnetic susceptibility (?) measurements on different non-ordinary chondrites (C, E, R, and ungrouped) populations is presented and compared to our previous similar work on ordinary chondrites. It provides an exhaustive study of the amount of iron-nickel magnetic phases (essentially metal and magnetite) in these meteorites. In contrast with all the other classes, CM and CV show a wide range of magnetic mineral content, with a two orders of magnitude variation of ?. Whether this is due to primary parent body differences, metamorphism or alteration, remains unclear. C3-4 and C2 yield similar ? values to the ones shown by CK and CM, respectively. By order of increasing ?, the classes with well-grouped ? are: R << CO < CK ? CI < Kak < CR < E ? CH < CB. Based on magnetism, EH and EL classes have indistinguishable metal content. Outliers that we suggest may need to have their classifications reconsidered are Acfer 202 (CO), Elephant Moraine (EET) 96026 (C4-5), Meteorite Hills (MET) 01149, and Northwest Africa (NWA) 521 (CK), Asuka (A)-88198, LaPaz Icefield (LAP) 031156, and Sahara 98248 (R). ? values can also be used to define affinities of ungrouped chondrites, and propose pairing, particularly in the case of CM and CV meteorites.

  4. Hot Accretion of the Ordinary Chondrites: The Rocks Don't Lie

    NASA Astrophysics Data System (ADS)

    Hutchison, R.

    1996-03-01

    The ordinary chondrites (OCs) comprise three petrographic series, each ranging from type 3 (the UOCs), with distinct chondrules, little crystalline intergrowth and unequilibrated minerals, to type 6 or 7, in which chondrules have largely disappeared into a granular textured fabric with little mineralogical disequilibrium. There are conflicting interpretations of the textural progression. Many believe that the OCs formed by accretion of 'cold' silicate chondrules, chondrule fragments, metal, sulphide and fine-grained material, followed by thermal metamorphism. A minority argues that the constituents accreted 'hot' and that the textural progression resulted from different cooling rates; type 3 cooled rapidly, types 6 and 7 cooled slowly. Hot accretion has been attacked by Haack et al., from the premise that chondrules are nebular, and by Rubin, who suggests that OCs are 'brecciated on millimeter-sized scales' to explain the presence of grains that do not fit the metamorphic model. Some OCs are not post-crystallisation breccias and contain mineralogical evidence that is incompatible with cold accretion and prograde metamorphism.

  5. Kamacite and olivine in ordinary chondrites - Intergroup and intragroup relationships

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.

    1990-05-01

    Results are presented from high-precision electron microprobe analyses of olivine and kamacite in a suite of 134 ordinary chondrites (OCs). The compositional ranges of these phases are defined for each OC group (high total Fe, low total Fe, and low total Fe/low metallic Fe). Anomalous OCs that have olivine and/or kamacite compositions that lie outside the established ranges are identified. The phases in the chondritic clasts of the Netschaevo iron meteorite are characterized to determine the relationship between Netschaevo and OCs. Intragroup variations of olivine and kamacite compositions with petrologic type are examined and OCs that contain olivine and/or kamacite grains with aberrant compositions are identified as fragmental breccias. Also, a search for new metallic Fe-Ni phases with extreme compositions is conducted. As a result of these analyses, several meteorites are reclassified.

  6. Defining the Petrology of Pseudotachylytes in Ordinary Chondrites: An Experimental and Deductive Approach

    NASA Technical Reports Server (NTRS)

    vanderBogert, C. H.; Schultz, P. H.; Spray, J. G.

    2000-01-01

    Evidence for deformation in ordinary chondrites suggests that meteorite evolution involves high strain-rate processes. Unexpected experimental results and an analysis of physical properties of chondrite minerals supports and defines this contention.

  7. The onset of metamorphism in ordinary and carbonaceous chondrites

    USGS Publications Warehouse

    Grossman, J.N.; Brearley, A.J.

    2005-01-01

    Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X-ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO-rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr-rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr-rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re-enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised. ?? The Meteorological Society, 2005.

  8. Textural variability of ordinary chondrite chondrules: Implications of their formation

    NASA Technical Reports Server (NTRS)

    Zinovieva, N. G.; Mitreikina, O. B.; Granovsky, L. B.

    1994-01-01

    Scanning electron microscopy (SEM) and microprobe examination of the Raguli H3-4, Saratov L3, and Fucbin L5-6 ordinary chondrites and the analysis of preexisted data on other meteorites have shown that the variety of textural types of chondrules depends on the chemical composition of the chondrules. The comparison of bulk-rock chemistries of the chondrules by major components demonstrates that they apparently fall, like basic-ultrabasic rock, into groups of dunitic and pyroxenitic composition. This separation is further validated by the character of zoning in chondrules of the intermediate, peridotitic type. The effect is vividly demonstrated by the 'chondrule-in-chondrule' structure.

  9. Asteroidal source of ordinary chondrites (Meteoritical Society Presidential Address 1984)

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1985-01-01

    The orbital evolution of asteroidal fragments injected into the 3-1 Kirkwood gap resonance at 2.5 AU is investigated on the basis of a Monte Carlo simulation. The diameters of the fragments in the simulation were between 10 cm and 20 km, and it was assumed that the fragments cross the orbital path of the earth every one million years. The effects of close encounter planetary perturbations, the nu dot 6 secular resonance, and the ablative effects of the earth atmosphere were also taken into account. It is found that: (1) the predicted meteorite orbits closely matched the known orbits of ordinary chondrites; and (2) the total flux was in approximate agreement with the observed fall rate of ordinary chondrites. About 90 percent of the predicted impacting bodies were created by fragmentation of larger earth crossing asteroidal fragments, the largest of which were observed in the vicinity of the Apollo-Amor objects. The numerical results are presented in a series of graphs.

  10. Metallographic cooling rates of L-group ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Bennett, Marvin E.; Mcsween, Harry Y., Jr.

    1993-01-01

    Shock metamorphism appears to be a ubiquitous feature in L-group ordinary chondrites. Brecciation and heterogeneous melting obscure much of the early history of this meteorite group and have caused confusion as to whether L chondrites have undergone thermal metamorphism within onion-shell or rubble-pile parent bodies. Employing the most recent shock criteria, we have examined 55 Antarctic and 24 non-Antarctic L chondrites in order to identify those which have been least affected by post-accretional shock. Six low-shock samples (those with shock grade less than S4) of petrographic types L3-L5 were selected from both populations and metallographic cooling rates were obtained following the technique of Willis and Goldstein. All non-Antarctic L6 chondrites inspected were too heavily shocked to be included in this group. However, 4 shocked L6 chondrites were analyzed in order to determine what effects shock may impose on metallographic cooling rates. Metallographic cooling rates were derived by analyzing the cores of taenite grains and then measuring the distance to the nearest grain edge. Taenites were identified using backscatter imaging on a Cameca SX-50 electron microprobe. Using backscatter we were able to locate homogeneous, rust-free, nearly spherical grains. M-shaped profiles taken from grain traverses were also used to help locate the central portions of selected grains. All points which contained phosphorus above detection limits were discarded. Plots of cooling-rate data are summarized and data from the high-shock samples are presented. The lack of coherency of cooling rates for individual samples is indicative of heterogeneous cooling following shock. The data confirms the statement expressed by numerous workers that extreme care must be taken when selecting samples of L chondrites for cooling-rate studies. Data for the 6 non-Antarctic low-shock samples are also presented. The samples display a general trend in cooling rates. The lowest metamorphic grade yielded the slowest cooling rates and an increase in grade follows an increase in cooling rate. This is the opposite relationship to that predicted by the onion-shell model.

  11. Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites

    USGS Publications Warehouse

    Kimura, M.; Grossman, J.N.; Weisberg, M.K.

    2008-01-01

    We report the results of our petrological and mineralogical study of Fe-Ni metal in type 3 ordinary and CO chondrites, and the ungrouped carbonaceous chondrite Acfer 094. Fe-Ni metal in ordinary and CO chondrites occurs in chondrule interiors, on chondrule surfaces, and as isolated grains in the matrix. Isolated Ni-rich metal in chondrites of petrologic type lower than type 3.10 is enriched in Co relative to the kamacite in chondrules. However, Ni-rich metal in type 3.15-3.9 chondrites always contains less Co than does kamacite. Fe-Ni metal grains in chondrules in Semarkona typically show plessitic intergrowths consisting of submicrometer kamacite and Ni-rich regions. Metal in other type 3 chondrites is composed of fine- to coarse-grained aggregates of kamacite and Ni-rich metal, resulting from metamorphism in the parent body. We found that the number density of Ni-rich grains in metal (number of Ni-rich grains per unit area of metal) in chondrules systematically decreases with increasing petrologic type. Thus, Fe-Ni metal is a highly sensitive recorder of metamorphism in ordinary and carbonaceous chondrites, and can be used to distinguish petrologic type and identify the least thermally metamorphosed chondrites. Among the known ordinary and CO chondrites, Semarkona is the most primitive. The range of metamorphic temperatures were similar for type 3 ordinary and CO chondrites, despite them having different parent bodies. Most Fe-Ni metal in Acfer 094 is martensite, and it preserves primary features. The degree of metamorphism is lower in Acfer 094, a true type 3.00 chondrite, than in Semarkona, which should be reclassified as type 3.01. ?? The Meteoritical Society, 2008.

  12. Manganese-Chromium Isotope Systematics of Ordinary Chondrite Forest Vale (H4) and Enstatite Chondrite Indarch (EH4)

    NASA Astrophysics Data System (ADS)

    Moseley, G. E.; Schnbchler, M.; Davies, C.; Horan, M. F.; Busefield, A.; Carlson, R. W.

    2011-03-01

    Mn-Cr isochrons were determined on mineral fractions of the ordinary chondrite Forest Vale and the enstatite chondrite Indarch. The initial 53Mn/55Mn of Forest Vale is in good agreement with existing literature while Indarch displays an older age than reported previously.

  13. Trace Element Distribution Between Minerals of Nodules, Veins and Fine-Grained Metal Particles from Some Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Teplyakova, S. N.; Humayun, M.; Lorenz, C. A.; Ivanova, M. A.; Korochantsev, A. V.; Sadilenko, D. A.

    2011-03-01

    Ordinary chondrites contain nodules are often depleted in HSE and Cu compared to fine-grained metal and enriched in W, Mo. We report preliminary results on major and trace element distribution in metal particles veins from four ordinary chondrites.

  14. The formation of FeO-rich pyroxene and enstatite in unequilibrated enstatite chondrites: A petrologic-trace element (SIMS) study

    NASA Technical Reports Server (NTRS)

    Weisberg, M. K.; Prinz, M.; Fogel, R. A.; Shimizu, N.

    1993-01-01

    Enstatite (En) chondrites record the most reducing conditions known in the early solar system. Their oxidation state may be the result of condensation in a nebular region having an enhanced C/O ratio, reduction of more oxidized materials in a reducing nebula, reduction during metamorphic reheating in a parent body, or a combination of these events. The presence of more oxidized Fe-rich silicates, two types of En (distinguished by red and blue CL), and the juxtaposition of FeO-rich pyroxenes (Fe-pyx) surrounded by blue En (enstatite) in the UEC's (unequilibrated enstatite chondrites) is intriguing and led to the examination of the question of enstatite chondrite formation. Previously, data was presented on the petrologic-geochemical characteristics of the Fe-pyx and coexisting red and blue En. Here minor and trace element abundances (determined by ion probe-SIMS) on these three types of pyroxenes are reported on in the following meteorites: Kota Kota and LEW87223 (EH3), MAC88136 (EL3), St. Marks (EH4), and Hvittis (EL6). More data are currently being collected.

  15. The formation of FeO-rich pyroxene and enstatite in unequilibrated enstatite chondrites: A petrologic-trace element (SIMS) study

    NASA Astrophysics Data System (ADS)

    Weisberg, M. K.; Prinz, M.; Fogel, R. A.; Shimizu, N.

    1993-03-01

    Enstatite (En) chondrites record the most reducing conditions known in the early solar system. Their oxidation state may be the result of condensation in a nebular region having an enhanced C/O ratio, reduction of more oxidized materials in a reducing nebula, reduction during metamorphic reheating in a parent body, or a combination of these events. The presence of more oxidized Fe-rich silicates, two types of En (distinguished by red and blue CL), and the juxtaposition of FeO-rich pyroxenes (Fe-pyx) surrounded by blue En (enstatite) in the UEC's (unequilibrated enstatite chondrites) is intriguing and led to the examination of the question of enstatite chondrite formation. Previously, data was presented on the petrologic-geochemical characteristics of the Fe-pyx and coexisting red and blue En. Here minor and trace element abundances (determined by ion probe-SIMS) on these three types of pyroxenes are reported on in the following meteorites: Kota Kota and LEW87223 (EH3), MAC88136 (EL3), St. Marks (EH4), and Hvittis (EL6). More data are currently being collected.

  16. Compositions of three low-FeO ordinary chondrites: Indications of a common origin with the H chondrites

    SciTech Connect

    Troiano, Julianne; Rumble III, Douglas; Rivers, Mark L.; Friedrich, Jon M.

    2011-11-17

    Burnwell, EET 96031, and LAP 04575 are ordinary chondrites (OC) that possess lower than typical olivine Fa content than has been established for the H chondrites (< 17 mol%). Mean low-Ca pyroxene Fs contents are typically lower than mean Fa content, with generally 16 mol% Fs. We have investigated these three low-FeO chondrites by measuring their trace element abundances, oxygen isotopic compositions, and examining their three-dimensional (3D) petrography with synchrotron X-ray microtomography. We compare our results with those established for more common OC. The low FeO chondrites studied here have bulk trace element abundances that are identical to the H chondrites. From bulk oxygen isotopic analysis, we show that Burnwell, EET 96010, and LAP 04757 sampled oxygen reservoirs identical to the H chondrites. Burnwell, EET 96031, and LAP 04575 possess common 3D opaque mineral structures that could be distinct from the H chondrites, as evidenced by X-ray microtomographic analysis, but our comparison suite of H chondrites is small and unrepresentative. Overall, our data suggest a common origin for the low-FeO chondrites Burnwell, EET 96010, and LAP 04757 and the H chondrites. These three samples are simply extreme members of a redox process where a limiting nebular oxidizing agent, probably ice, reacted with material containing slightly higher amounts of metal than typically seen in the H chondrites.

  17. A unique type 3 ordinary chondrite containing graphite-magnetite aggregates - Allan Hills A77011

    NASA Technical Reports Server (NTRS)

    Mckinley, S. G.; Scott, E. R. D.; Taylor, G. J.; Keil, K.

    1982-01-01

    ALHA 77011, which is the object of study in the present investigation, is a chondrite of the 1977 meteorite collection from Allan Hills, Antarctica. It contains an opaque and recrystallized silicate matrix (Huss matrix) and numerous aggregates consisting of micron- and submicron-sized graphite and magnetite. It is pointed out that no abundant graphite-magnetite aggregates could be observed in other type 3 ordinary chondrites, except for Sharps. Attention is given to the results of a modal analysis, relations between ALHA 77011 and other type 3 ordinary chondrites, and the association of graphite-magnetite and metallic Fe, Ni. The discovery of graphite-magnetite aggregates in type 3 ordinary chondrites is found to suggest that this material may have been an important component in the formation of ordinary chondrites.

  18. Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria

    NASA Astrophysics Data System (ADS)

    Johnson, T. E.; Benedix, G. K.; Bland, P. A.

    2016-01-01

    Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (<1 kbar) that typify thermal metamorphism, several compositional variables are good thermometers. Although those based on Fe-Mg exchange are likely to have been reset during slow cooling, those based on coupled substitution, in particular Ca and Al in orthopyroxene and Na in clinopyroxene, are less susceptible to retrograde diffusion and are potentially more faithful recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic types at the extremes of thermal metamorphism. The results suggest phase equilibria modelling has potential as a powerful quantitative tool in investigating, for example, progressive oxidation during metamorphism, the degree of melting and melt loss or accumulation required to produce the spectrum of differentiated meteorites, and whether the onion shell or rubble pile model best explains the metamorphic evolution of asteroid parent bodies in the early solar system.

  19. Aqueous Alteration on Ordinary Chondrite Parent Bodies- The Oxygen Isotopic Composition of Water.O

    NASA Astrophysics Data System (ADS)

    Baker, L.; Franchi, I. A.; Wright, I. P.; Pillinger, C. T.

    2003-04-01

    It has become increasingly apparent that aqueous alteration has been a major process on meteorite parent bodies. Understanding the details of such processes can be greatly improved by a knowledge of the isotopic composition of water taking part in aqueous alteration. Studies of the unequilibrated ordinary chondrites (1, 2) have identified the presence of phyllosilicates which necessarily require reaction with water in some form. Using the technique of (3) we have measured the oxygen isotopic composition of water extracted from Semarkona and Bishunpur from room temp to 900^oC. Water release profiles generally define large low temperature peaks that tail off to about 800^oC, with smaller releases superimposed. This is consistent with the main hydrated mineral present being a smectite but with contributions from other hydrated phases. Isotopic compositions at different temperatures allow identification of water originating from distinct reservoirs within the samples, including both terrestrial and extraterrestrial sources. That at low temperatures is dominated by terrestrial water while that released at high temperatures contains a large proportion indigenous to the meteorite. In Semarkona the highest temperature releases originating from O-H structural groups within hydrated minerals possesses a positive ?17O of +2.4 ppm, in excess of twice that measured in the silicate phases of these meteorites and greater than that measured in any carbonaceous chondrites. These results suggest that during reaction with solid phases water, originally with a ?17O value equal to or in excess that measured in magnetites +6 ppm (4), must have evolved to lower values after magnetite formation. However, the final water composition, represented by the structural O-H groups, did not achieve isotopic equilibrium with the surrounding phases. Refs: [1] Hutchison R. et al. (1987) GCA 51, 1875-1882. [2] Alexander C. M. O'D. et al. (1989) EPSL 95, 187-207. [3] Baker L. et al. (2002) Anal Chem. 74, 1665-1773. [4] Choi B. G et al. (1998) Nature. 392, 577-579.

  20. Thermoluminescence sensitivity and thermal history of type 3 ordinary chondrites: Eleven new type 3.0-3.1 chondrites and possible explanations for differences among H, L, and LL chondrites

    NASA Astrophysics Data System (ADS)

    Benoit, P. H.; Akridge, G. A.; Ninagawa, K.; Sears, D. W. G.

    2002-06-01

    We review induced thermoluminescence (TL) data for 102 unequilibrated ordinary chondrites (UOCs), many data just published in abstracts, in order to identify particularly primitive UOCs and further explore TL systematics that may have implications for the history of the chondrites and their parent body. We have identified 11 UOCs of petrologic types 3.0-3.1: Adrar 003, Elephant Moraine (EET) 90066, EET 90161, Grosvenor Mountains (GRO) 95502, Lewis Cliff (LEW) 88477, Meteorite Hills (MET) 96503, Yamato (Y)-790787, Y-791324, Y-791558, Y-793565, and Y-793596. These samples represent an important new resource for researchers interested in the nature of primitive solar system materials. Previously reported trends in which TL sensitivity increases with TL peak temperature and TL peak width, which we interpret in terms of crystallization of feldspar in the ordered or disordered forms during metamorphism, are confirmed by the new data. Importantly, the present data strengthen the trend described earlier in which the mean level of metamorphism experienced by UOCs increases along the series LL, L and H. This suggests either different burial depths for the UOCs from each class, or formation at similar depths in regoliths of different thickness.

  1. Weathering Effects on Ordinary Chondrites from the Lut Desert (Iran) Studied by 57Fe Mssbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dos Santos, E.; Scorzelli, R. B.; De Avillez, R. R.; Pourkhorsandi, H.; Rochette, P.; Gattacceca, J.

    2015-07-01

    The Lut Desert (Iran) is a high-potential region for preserving large concentrations of meteorites. In this work, we will apply 57Fe Mssbauer spectroscopy to investigate weathering in ordinary chondrites collected in different areas from Lut Desert.

  2. Metamorphism and aqueous alteration in low petrographic type ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Xie, T.; Lipschutz, M. E.; Sears, D. W. G.; Guimon, R. K.; Jie, Lu; Benoit, P. H.; O'D. Alexander, C. M.; Wright, Ian; Pillinger, C.; Morse, A. D.; Hutchison, Robert

    1995-01-01

    In order to investigate the relative importance of dry metamorphism and aqueous alteration in the history of chondruies, chondruies were hand-picked from the Semarkona (petrographic type 3.0), Bishunpur (3. 1), Chainpur (3.4), Dhajala (3.8) and Allegan (5) chondrites, and matrix samples were extracted from the first three ordinary chondrites. The thermoluminescence (TL) properties of all the samples were measured, and appropriate subsets of the samples were analyzed by electron-microprobe and radiochemical neutron activation and the water and H-isotopic composition determined. The TL data for chondrules from Semarkona and Bishunpur scatter widely showing no unambiguous trends, although group B1 chondrules tend to have lower sensitivities and lower peak temperatures compared with group A5 chondrules. It is argued that these data reflect the variety of processes accompanying chondrule formation. The chondrules show remarkably uniform contents of the highly labile elements, indicating mineralogical control on abundance and volatile loss from silicates and loss and recondensation of mobile chalcophiles and siderophiles in some cases. Very high D/H values (up to approx. 8000% SMOW) are observed in certain Semarkona chondrules, a confirmation of earlier work. With increasing petrographic type, mean TL sensitivities of the chondrules increase, the spread of values within an individual meteorite decreases, and peak temperatures and peak widths show trends indicating that the TL is mainly produced by feldspar and that dry, thermal metamorphism is the dominant secondary process experienced by the chondrules. The TL sensitivities of matrix samples also increase with petrographic type. Chainpur matrix samples show the same spread of peak temperatures and peak widths as Chainpur chondruies, indicating metamorphism-related changes in the feldspar are responsible for the TL of the matrix. The TL data for the Semarkona and Bishunpur matrix samples provide, at best, only weak evidence for aqueous alteration, but the matrix contains H with approximately terrestrial D/H values, even though it contains much water. Secondary processes (probably aqueous alteration) presumably lowered the D/H of the matrix and certain chondrules. While chondrule properties appear to be governed primarily by formation processes and subsequent metamorphism, the matrix of Semarkona has a more complex history involving aqueous alteration as a meteorite-wide process.

  3. The compositions of chondrules in unequilibrated chondrites An evaluation of models for the formation of chondrules and their precursor materials

    NASA Technical Reports Server (NTRS)

    Grossman, J. N.; Wasson, J. T.

    1983-01-01

    Recent progress toward the resolution of the problem of chondrule composition is reviewed. Special attention is given to studies of both the chemical and textural properties of chondrules. The characteristic variations of the composition of carbonaceous chondrite chrondules are discussed within the framework of current theories of chondrule evolution. Consideration is also given to the possible mechanisms for chondrule melts, and the relationship between chondrules and other chondrite components.

  4. Rhenium-osmium isotope systematics of ordinary chondrites and iron meteorites

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Morgan, J. W.; Horan, M. F.; Grossman, J. N.

    1993-01-01

    Using negative thermal ionization mass spectrometry, Re and Os abundances were determined by isotope dilution and Os-187/Os-186 measured in 11 ordinary chondrites, and also in 1 IIB and 3 IIIB irons. In addition, Os-186/Os-188 and Os-189/Os-188 ratios were precisely determined for 3 unspiked ordinary chondrites as a means of constraining the intensity of any neutron irradiation these meteorites may have experienced.

  5. Ion microprobe magnesium isotope analysis of plagioclase and hibonite from ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hinton, R. W.; Bischoff, A.

    1984-01-01

    Ion and electron microprobes were used to examine Mg-26 excesses from Al-26 decay in four Al-rich objects from the type 3 ordinary hibonite clast in the Dhajala chondrite. The initial Al-26/Al-27 ratio was actually significantly lower than Al-rich inclusions in carbonaceous chondrites. Also, no Mg-26 excesses were found in three plagioclase-bearing chondrules that were also examined. The Mg-26 excesses in the hibonite chondrites indicated a common origin for chondrites with the excesses. The implied Al-26 content in a proposed parent body could not, however, be confirmed as a widespread heat source in the early solar system.

  6. Physical propoerties of incompletely compacted equilibrated ordinary chondrites: Implications for asteroidal structure and impact processing

    SciTech Connect

    Sasso, M.R.; Macke, R.J.; Britt, D.T.; Rivers, M.L.; Ebel, D.S.; Friedrich, J.M.

    2009-03-19

    Aside from robotic exploration, meteorites are our primary source of information about the asteroids that they sample. Although there are some discrepancies, there are dynamical, spectral, and compositional evidence for an S-type asteroid connection to the ordinary chondrite meteorites. Reconciling the measured bulk density of chondrites with that of asteroids can yield important inferences about the internal structure of asteroids. For example, the bulk density of S-type asteroids is typically much less than the bulk density of chondrites, leading to the inference that asteroids contain a significant quantity of macroporosity. We have identified several unusual ordinary chondrites that have been incompletely compacted relative to petrologically similar but much less porous chondrites. Although these are equilibrated chondrites, they have extreme amounts of pore spaces between mineral grains. Here, we detail our efforts quantifying the nature of the pore spaces in these chondrites and we examine the implications for the structure and mechanical processing of the asteroids from which these chondrites originate. Our pore size distribution data may also provide constraints for the modeling of heat flow and shock waves within primordial chondritic parent bodies.

  7. Igneous rock from Severnyi Kolchim (H3) chondrite: Nebular origin

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Brandstaetter, F.; Kurat, G.

    1993-01-01

    The discovery of lithic fragments with compositions and textures similar to igneous differentiates in unequilibrated ordinary chondrites (UOC's) and carbonaceous chondrites (CC's) has been interpreted as to suggest that planetary bodies existed before chondrites were formed. As a consequence, chondrites (except, perhaps CI chondrites) cannot be considered primitive assemblages of unprocessed nebular matter. We report about our study of an igneous clast from the Severnyi Kolchim (H3) chondrite. The results of the study are incompatible with an igneous origin of the clast but are in favor of a nebular origin similar to that of chondrules.

  8. Relating S-Asteroids and Ordinary Chondrite Meteorites: The New Big Picture

    NASA Astrophysics Data System (ADS)

    Binzel, R. P.; Bus, S. J.; Burbine, T. H.

    1998-09-01

    A fundamental uncertainty in clarifying the big picture relationship between asteroids and meteorites has been the relationship between the most common asteroids (S-types) and the most common meteorites (ordinary chondrites). Historically, groundbased spectroscopic measurements have shown an apparent mismatch between these asteroid and meteorite types, thus leading to doubt and confusion for asteroid-meteorite interrelationships. A new big picture has emerged as a result of modern spectroscopic surveys which have extensively sampled main-belt and near-Earth asteroids over a continuous range of sizes down to <1 km. Principal among these has been the MIT Small Main-Belt Asteroid Spectroscopic Survey (SMASS) program that has sampled more than 1000 objects in the main-belt and several hundred in near-Earth and Mars crossing space. About 10% of the smallest asteroids surveyed ( 1 km in size) appear spectrally analogous to ordinary chondrite meteorites. Most importantly for clarifying the big picture, a continuous trend is found in the spectral properties which previously separated measurements of S-type asteroids and ordinary chondrite meteorites, where this trend is found to be continuous with respect to diameter. Our conclusion is that groundbased spectroscopic measurements have now become extensive enough to remove the confusion over the relationship between S-asteroids and ordinary chondrite meteorites. Ordinary chondrites are derived from within the S-asteroid population. Spectroscopically, ordinary chondrites are an end-member of the S-asteroid population, where the size-dependent relationship is the result of collisional processing of the surface, regolith retention, or time-dependent surface evolution. Most specifically, the continuous relationship argues against ordinary chondrite meteorites being derived from a separate sample of small solar system bodies.

  9. Ordinary chondrites - Multivariate statistical analysis of trace element contents

    NASA Technical Reports Server (NTRS)

    Lipschutz, Michael E.; Samuels, Stephen M.

    1991-01-01

    The contents of mobile trace elements (Co, Au, Sb, Ga, Se, Rb, Cs, Te, Bi, Ag, In, Tl, Zn, and Cd) in Antarctic and non-Antarctic populations of H4-6 and L4-6 chondrites, were compared using standard multivariate discriminant functions borrowed from linear discriminant analysis and logistic regression. A nonstandard randomization-simulation method was developed, making it possible to carry out probability assignments on a distribution-free basis. Compositional differences were found both between the Antarctic and non-Antarctic H4-6 chondrite populations and between two L4-6 chondrite populations. It is shown that, for various types of meteorites (in particular, for the H4-6 chondrites), the Antarctic/non-Antarctic compositional difference is due to preterrestrial differences in the genesis of their parent materials.

  10. Non-Destructive Classification Approaches for Equilibrated Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-09-01

    In order to compare a few non-destructive classification techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Mössbauer spectroscopy.

  11. SXRF determination of trace elements in chondrule rims in the unequilibrated CO3 chondrite, ALH A77307

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.; Bajt, Sasa; Sutton, Steve R.; Papike, J. J.

    1993-01-01

    The concentrations of Ni, Cu, Zn, Ga, Ge, and Se in five chondrule rims in the CO3 chondrite ALH A77307 (3.0) using the synchrotron x-ray fluorescence (SXRF) microprobe at Brookhaven National Laboratory were determined. The data show that the trace element chemistry of rims on different chondrules is remarkably similar, consistent with data obtained for the major elements by electron microprobe. These results support the idea that rims are not genetically related to individual chondrules, but all sampled the same reservoir of homogeneously mixed dust. Of the trace elements analyzed Zn and Ga show depletions relative to CI chondrite values, but in comparison with bulk CO chondrites all the elements are enriched by approximately 1.5 to 3.5 x CO. The high concentrations of the highly volatile elements Se and Ga and moderately volatile Zn (1.5 to 2 x CO) in rims show that matrix is the major reservoir of volatile elements in ALH A77307.

  12. Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites - Implications for thermal histories and group differences

    NASA Technical Reports Server (NTRS)

    Johnson, Craig A.; Prinz, Martin

    1991-01-01

    Unequilibrated chromite and olivine margin compositions in type II chondrules are noted to differ systematically among three of the chondrite groups, suggesting that type II liquids differed in composition among the groups. These differences may be interpreted as indicators of different chemical compositions of the precursor solids which underwent melting, or, perhaps, as differences in the extent to which immiscible metal sulfide droplets were lost during chondrule formation. Because zinc is detectable only in type II chromites which have undergone reequilibration, the high zinc contents reported for chondritic chromites in other studies probably reflect redistribution during thermal metamorphism.

  13. Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Grossman, Jeffrey N.; Alexander, Conel M. O'd.; Wang, Jianhua; Brearley, Adrian J.

    2000-05-01

    We present the first detailed study of a population of texturally distinct chondrules previously described by Kurat (1969), Christophe Michel-Lvy (1976) and Skinner et al. (1989) that are sharply depleted in alkalis and Al in their outer portions. These "bleached" chondrules, which are exclusively radial pyroxene (RP) and cryptocrystalline (C) in texture, have porous outer zones where mesostasis has been lost. Bleached chondrules are present in all type-3 ordinary chondrites, and are present in lower abundances in types 4-6. They are most abundant in the L and LL groups, apparently less common in H chondrites, and absent in enstatite chondrites. We used x-ray mapping and traditional electron microprobe techniques to characterize bleached chondrules in a cross-section of ordinary chondrites. We studied bleached chondrules from Semarkona by ion microprobe for trace elements and hydrogen isotopes, and by transmission electron microscopy. Chondrule bleaching was the result of low-temperature alteration by aqueous fluids flowing through fine-grained chondrite matrix prior to thermal metamorphism. During aqueous alteration, interstitial glass dissolved and was partially replaced by phyllosilicates, troilite was altered to pentlandite, but pyroxene was completely unaffected. Ca-rich zones formed at the inner margins of the bleached zones, either as the result of the early stages of metamorphism or due to fluid-chondrule reaction. The mineralogy of bleached chondrules is extremely sensitive to thermal metamorphism in type 3 ordinary chondrites, and bleached zones provide a favorable location for the growth of metamorphic minerals in higher petrologic types. The ubiquitous presence of bleached chondrules in ordinary chondrites implies that they all experienced aqueous alteration early in their asteroidal histories, but there is no relationship between the degree of alteration and metamorphic grade. A correlation between the oxidation state of chondrite groups and their degree of aqueous alteration is consistent with the source of water being either accreted ices or water released during oxidation of organic matter. Ordinary chondrites were probably open systems after accretion, and aqueous fluids may have carried volatile elements with them during dehydration. Individual radial pyroxene and cryptocrystalline chondrules were certainly open systems in all chondrites that experienced aqueous alteration leading to bleaching.

  14. Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites

    USGS Publications Warehouse

    Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.

    2000-01-01

    We present the first detailed study of a population of texturally distinct chondrules previously described by Kurat (1969), Christophe Michel-Levy (1976), and Skinner et al. (1989) that are sharply depleted in alkalis and Al in their outer portions. These 'bleached' chondrules, which are exclusively radial pyroxene and cryptocrystalline in texture, have porous outer zones where mesostasis has been lost. Bleached chondrules are present in all type 3 ordinary chondrites and are present in lower abundances in types 4-6. They are most abundant in the L and LL groups, apparently less common in H chondrites, and absent in enstatite chondrites. We used x-ray mapping and traditional electron microprobe techniques to characterize bleached chondrules in a cross section of ordinary chondrites. We studied bleached chondrules from Semarkona by ion microprobe for trace elements and H isotopes, and by transmission electron microscopy. Chondrule bleaching was the result of low-temperature alteration by aqueous fluids flowing through fine-grained chondrite matrix prior to thermal metamorphism. During aqueous alteration, interstitial glass dissolved and was partially replaced by phyllosilicates, troilite was altered to pentlandite, but pyroxene was completely unaffected. Calcium-rich zones formed at the inner margins of the bleached zones, either as the result of the early stages of metamorphism or because of fluid-chondrule reaction. The mineralogy of bleached chondrules is extremely sensitive to thermal metamorphism in type 3 ordinary chondrites, and bleached zones provide a favorable location for the growth of metamorphic minerals in higher petrologic types. The ubiquitous presence of bleached chondrules in ordinary chondrites implies that they all experienced aqueous alteration early in their asteroidal histories, but there is no relationship between the degree of alteration and metamorphic grade. A correlation between the oxidation state of chondrite groups and their degree of aqueous alteration is consistent with the source of water being either accreted ices or water released during oxidation of organic matter. Ordinary chondrites were probably open systems after accretion, and aqueous fluids may have carried volatile elements with them during dehydration. Individual radial pyroxene and cryptocrystalline chondrules were certainly open systems in all chondrites that experienced aqueous alteration leading to bleaching.

  15. The Cooling History and Structure of the Ordinary Chondrite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Sears, D. W. G.

    1996-01-01

    Most major meteorite classes exhibit significant ranges of metamorphism. The effects of metamorphism have been extensively characterized, but the heat source(s) and the metamorphic environment are unknown. Proposed beat sources include Al-26, Fe-60, electromagnetic induction, and impact. It is typically assumed that metamorphism occurred in parent bodies of some sort, but it uncertain whether these bodies were highly structured ("onion skins") or were chaotic mixes of material ("rubble piles"). The lack of simple trends of metallographic cooling rates with petrologic type has been considered supportive of both concepts. In this study, we use induced thermoluminescence (TL) as an indicator of thermal history. The TL of ordinary chondrites is produced by sodic feldspar, and the induced TL peak temperature is related to its crystallographic order/disorder. Ordered feldspar has TL peak temperatures of approx. 120 C, and disordered feldspar has TL peak temperatures of approx. 220 C. While ordered feldspar can be easily disordered in the laboratory by heating above 650 C and is easily quenched in the disordered form, producing ordered feldspar requires cooling at geologic cooling rates. We have measured the induced TL properties of 101 equilibrated ordinary chondrites, including 49 H, 29 L, and 23 LL chondrites. For the H chondrites there is an apparent trend of decreasing induced TL peak temperature with increasing petrologic type. H4 chondrites exhibit a tight range of TL peak temperatures, 190 C - 200 C, while H6 chondrites exhibit TL peak temperatures between 180 C and 190 C. H5 chondrites cover the range between H4 and H6, and also extend up to 210 C. Similar results are obtained for LL chondfiles and most L6 chondrites have lower induced TL peak temperatures than L5 chondrites.

  16. Partial melting of ordinary chondrites: Lost City (H) and St. Severin (LL)

    NASA Technical Reports Server (NTRS)

    Jurewicz, Amy J. G.; Jones, John H.; Weber, Egon T.; Mittlefehldt, David W.

    1993-01-01

    Eucrites and diogenites are examples of asteroidal basalts and orthopyroxenites, respectively. As they are found intermingled in howardites, which are inferred to be regolith breccias, eucrites and diogenites are thought to be genetically related. But the details of this relationship and of their individual origins remain controversial. Work by Jurewicz et al. showed that 1170-1180 C partial melts of the (anhydrous) Murchison (CM) chondrite have major element compositions extremely similar to primitive eucrites, such as Sioux County. However, the MnO contents of these melts were about half that of Sioux County, a problem for the simple partial melting model. In addition, partial melting of Murchison could not produce diogenites, because residual pyroxenes in the Murchison experiments were too Fe- and Ca-rich and were minor phases at all but the lowest temperatures. A parent magma for diogenites needs an expanded low-calcium pyroxene field. In their partial melting study of an L6 chondrite, Kushiro and Mysen found that ordinary chondrites did have an expanded low-Ca pyroxene field over that of CV chondrites (i.e., Allende), probably because ordinary chondrites have lower Mg/Si ratios. This study expands that of both Kushiro and Mysen and Jurewicz et al. to the Lost City (H) and St. Severin (LL) chondrites at temperatures ranging from 1170 to 1325 C, at an fO2 of one log unit below the iron-wuestite buffer (IW-1).

  17. Hysteresis properties of ordinary chondrites and implications for their thermal history

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Suavet, C. R.; Rochette, P.; Weiss, B. P.; Winklhofer, M.; Uehara, M.; Friedrich, J. M.

    2013-12-01

    We present a large dataset of magnetic hysteresis properties of ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite and tetrataenite (both in the cloudy zone and as larger grains in plessite and in the rim of zoned taenite). Kamacite dominates the induced magnetism whereas tetrataenite dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. Type 5 and 6 chondrites have higher tetrataenite content than type 4 chondrites, suggesting they have lower cooling rates at least in the 650-450 C interval, consistent with an onion-shell model. In equilibrated chondrites, shock-related transient heating events above ~500 C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism, and high cooling rates following shock reheating or excavation after thermal metamorphism.

  18. Redox effects in ordinary chondrites and implications for asteroid spectrophotometry

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.

    1992-01-01

    The sensitivity of reflectance spectra to mean ferrous iron content and olivine and pyroxene proportion enhancements in the course of metamorphic oxidation is presently used to examine whether metamorphically-induced ranges in mineralogy, and corresponding spectral parameters, may explain the observed variations in S-asteroid rotational spectra. The predicted spectral variations within any one chondrite class are, however, insufficient to account for S-asteroid rotational spectra, and predicted spectral-range slopes have a sign opposite to the rotational measurements. Metamorphic oxidation is found unable to account for S-asteroid rotational spectra.

  19. Measurements of bidirectional reflectance of ordinary chondrite for muses-C in-situ detection

    NASA Astrophysics Data System (ADS)

    Tomita, N.; Nakamura, A. M.; Kamei, A.; Mukai, T.

    2003-06-01

    MUSES-C, a Japanese sample return mission, is targeting a small near Earth asteroid, 1998SF36, which is considered an S-type asteroid and is similar in spectroscopy to LL class ordinary chondrite meteorite ( Binzel et al. 2001 ). Although this mission will bring us detailed photometric data, that is, disk-resolved bidirectional reflectance data of the asteroid, there were few bidirectional reflectance data of ordinary chondrite meteorites. For the purpose of comparison with the data obtained by the in-situ observation, we have performed measurements of bidirectional reflectance of ordinary chondrite samples. Here we summarize the result of our laboratory measurements of the bidirectional reflectance and compare them with the scattering property of 1998SF36. Although the geometric albedo of 1998SF36 is higher than the typical value of S-type asteroids, however, the laboratory data of ordinary chondrite are similar to or brighter than the model disk-resolved reflectance of 1998SF36 derived from disk-integrated ground-based data. We found in our laboratory data that there is a positive correlation between the surface roughness and the strength of the opposition effect. A stronger opposition effect in the reflectance of 1998SF36 than the laboratory data may therefore indicate that the surface of the asteroid has rougher structure than our laboratory samples.

  20. Non-Destructive Classification Approaches for Equilbrated Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-01-01

    Classification of meteorites is most effectively carried out by petrographic and mineralogic studies of thin sections, but a rapid and accurate classification technique for the many samples collected in dense collection areas (hot and cold deserts) is of great interest. Oil immersion techniques have been used to classify a large proportion of the US Antarctic meteorite collections since the mid-1980s [1]. This approach has allowed rapid characterization of thousands of samples over time, but nonetheless utilizes a piece of the sample that has been ground to grains or a powder. In order to compare a few non-destructive techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Moessbauer spectroscopy.

  1. Effects of Metamorphism on the Valence and Coordination of Titanium in Ordinary Chondrites

    SciTech Connect

    Simon, S.B.; Sutton, S.R.; Grossman, L.

    2012-04-02

    Despite years of study, the conditions under which ordinary chondrites were metamorphosed from grade 3 to grade 6 are not well defined. Wide ranges of peak temperature are inferred for each grade. The long-popular 'onion shell' model, in which higher metamorphic grade is attributed to greater depths of origin, implies a corresponding decrease in cooling rate with increasing grade, and there is disagreement as to whether or not this is observed. Redox conditions during chondrite metamorphism are also not well understood. Some workers have reported evidence for reduction, presumably by carbon, with increase in grade from 3-4, followed by oxidation during metamorphism to higher grades, but other work indicates little variation in fO{sub 2} as a function of metamorphic grade. During our investigation of the valence of Ti in planetary materials, we found high proportions of Ti{sup 3+} in olivine and pyroxene in chondrules in Semarkona (LL3.0) and low proportions in New Concord (L6) olivine, suggesting that Ti was oxidized during ordinary chondrite metamorphism. We have undertaken a study of L and LL chondrites of grades 3-6 to see how Ti valence and coordination vary with grade and to see if the variations can be used to constrain conditions of chondrite metamorphism.

  2. Carbon-rich aggregates in type 3 ordinary chondrites - Characterization, origins, and thermal history

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.

    1990-01-01

    Carbon-rich aggregates from three type 3.4-3.6 ordinary chondrites and two chondritic clasts have been characterized in detail, using TEM techniques. The aggregates in all the meteorites studied range in size from 5-1000 microns and consist of a fine scale intergrowth of poorly graphitized carbon, amorphous carbon, Fe,Ni metal, and minor chromite. Contrary to previous reports, well-crystallized graphite and magnetite are absent. The association of Fe,Ni metal and carbonaceous material suggests that the original carbonaceous material may have formed by Fischer-Tropsch (FT) type reactions at low temperatures (less than 400 K), possibly in the solar nebula. This carbonaceous material probably consisted of a complex mixture of hydrocarbons, kerogen-like material, and other complex organic molecules. The aggregates were subsequently accreted onto the ordinary chondrite parent bodies and underwent planetary thermal processing which resulted in the catalytic graphitization of hydrocarbons, in the presence of Fe,Ni metal, to produce poorly graphitized carbon. None of the meteorites studied experienced temperatures sufficiently high to produce crystalline, ordered graphite. Using the empirical geothermometer of Rietmeijer and Mackinnon (1985), the measured d(002) spacings of poorly graphitized carbon show that graphitization occurred at temperatures between 300 and 450 C. This range of temperatures is significantly lower than the generally quoted metamorphic temperatures for type 3.4-3.6 ordinary chondrites (about 450-500 C).

  3. Carbon-rich aggregates in type 3 ordinary chondrites - Characterization, origins, and thermal history

    NASA Astrophysics Data System (ADS)

    Brearley, A. J.

    1990-03-01

    Carbon-rich aggregates from three type 3.4-3.6 ordinary chondrites and two chondritic clasts have been characterized in detail, using TEM techniques. The aggregates in all the meteorites studied range in size from 5-1000 microns and consist of a fine scale intergrowth of poorly graphitized carbon, amorphous carbon, Fe,Ni metal, and minor chromite. Contrary to previous reports, well-crystallized graphite and magnetite are absent. The association of Fe,Ni metal and carbonaceous material suggests that the original carbonaceous material may have formed by Fischer-Tropsch (FT) type reactions at low temperatures (less than 400 K), possibly in the solar nebula. This carbonaceous material probably consisted of a complex mixture of hydrocarbons, kerogen-like material, and other complex organic molecules. The aggregates were subsequently accreted onto the ordinary chondrite parent bodies and underwent planetary thermal processing which resulted in the catalytic graphitization of hydrocarbons, in the presence of Fe,Ni metal, to produce poorly graphitized carbon. None of the meteorites studied experienced temperatures sufficiently high to produce crystalline, ordered graphite. Using the empirical geothermometer of Rietmeijer and Mackinnon (1985), the measured d(002) spacings of poorly graphitized carbon show that graphitization occurred at temperatures between 300 and 450 C. This range of temperatures is significantly lower than the generally quoted metamorphic temperatures for type 3.4-3.6 ordinary chondrites (about 450-500 C).

  4. Evidence from the Semarkona ordinary chondrite for Al-26 heating of small planets

    NASA Astrophysics Data System (ADS)

    Hutcheon, I. D.; Hutchison, R.

    1989-01-01

    The first observation of radiogenic Mg-26 in nonrefractory meteoritic material, a plagioclase-bearing, olivine-pyroxene clast chondrule in the Semarkona ordinary chondrite, is reported. The inferred initial abundance of Al-26 is sufficient to produce incipient melting in well-insulated bodies of chondritic composition. It is concluded that planetary accretion and diffentiation must have begun on a timescale comparable to the half-life of Al-26 and that, even if widespread melting did not occur, Al-26 heating played a significant role in thermal metamorphism on small planets.

  5. The Oxygen Isotope Composition of Dark Inclusions in HEDs, Ordinary and Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Greenwood, R. C.; Zolensky, M. E.; Buchanan, P. C.; Franchi, I. A.

    2015-01-01

    Dark inclusions (DIs) are lithic fragments that form a volumetrically small, but important, component in carbonaceous chondrites. Carbonaceous clasts similar to DIs are also found in some ordinary chondrites and HEDs. DIs are of particular interest because they provide a record of nebular and planetary processes distinct from that of their host meteorite. DIs may be representative of the material that delivered water and other volatiles to early Earth as a late veneer. Here we focus on the oxygen isotopic composition of DIs in a variety of settings with the aim of understanding their formational history and relationship to the enclosing host meteorite.

  6. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite.

    PubMed

    Doyle, Patricia M; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N; Wakita, Shigeru; Ciesla, Fred J; Hutcheon, Ian D

    2015-01-01

    Chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric (53)Mn-(53)Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first (53)Mn-(53)Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as Myr after calcium-aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and (53)Mn-(53)Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ∼1.8-2.5 Myr after CAIs. PMID:26100451

  7. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite

    NASA Astrophysics Data System (ADS)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Krot, Alexander N.; Wakita, Shigeru; Ciesla, Fred J.; Hutcheon, Ian D.

    2015-06-01

    Chronology of aqueous activity on chondrite parent bodies constrains their accretion times and thermal histories. Radiometric 53Mn-53Cr dating has been successfully applied to aqueously formed carbonates in CM carbonaceous chondrites. Owing to the absence of carbonates in ordinary (H, L and LL), and CV and CO carbonaceous chondrites, and the lack of proper standards, there are no reliable ages of aqueous activity on their parent bodies. Here we report the first 53Mn-53Cr ages of aqueously formed fayalite in the L3 chondrite Elephant Moraine 90161 as Myr after calcium-aluminium-rich inclusions (CAIs), the oldest Solar System solids. In addition, measurements using our synthesized fayalite standard show that fayalite in the CV3 chondrite Asuka 881317 and CO3-like chondrite MacAlpine Hills 88107 formed and Myr after CAIs, respectively. Thermal modelling, combined with the inferred conditions (temperature and water/rock ratio) and 53Mn-53Cr ages of aqueous alteration, suggests accretion of the L, CV and CO parent bodies ~1.8-2.5 Myr after CAIs.

  8. Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules

    NASA Technical Reports Server (NTRS)

    Miyamoto, Masamichi; Mckay, David S.; Mckay, Gordon A.; Duke, Michael B.

    1986-01-01

    The extent and degree of homogenization of chemical zoning of olivines in type 3 ordinary chondrites is studied in order to obtain some constraints on cooling histories of chondrites. Based on Mg-Fe and CaO zoning, olivines in type 3 chondrites are classified into four types. A single chondrule usually contains olivines with the same type of zoning. Microporphyritic olivines show all four zoning types. Barred olivines usually show almost homogenized chemical zoning. The cooling rates or burial depths needed to homogenize the chemical zoning are calculated by solving the diffusion equation, using the zoning profiles as an initial condition. Mg-Fe zoning of olivine may be altered during initial cooling, whereas CaO zoning is hardly changed. Barred olivines may be homogenized during initial cooling because their size is relatively small. To simulated microporphyritic olivine chondrules, cooling from just below the liquidus at moderately high rates is preferable to cooling from above the liquidus at low rates. For postaccumulation metamorphism of type 3 chondrites to keep Mg-Fe zoning unaltered, the maximum metamorphic temperature must be less than about 400 C if cooling rates based on Fe-Ni data are assumed. Calculated cooling rates for both Fa and CaO homogenization are consistent with those by Fe-Ni data for type 4 chondrites. A hot ejecta blanket several tens of meters thick on the surface of a parent body is sufficient to homogenize Mg-Fe zoning if the temperature of the blanket is 600-700 C. Burial depths for petrologic types of ordinary chondrites in a parent body heated by Al-26 are broadly consistent with those previously proposed.

  9. Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Gao, Xia; Thiemens, Mark H.

    1993-01-01

    High-precision sulfur isotopic analyses (delta S-33, delta S-34, and delta S-36) of bulk ordinary and enstatite chondrites demonstrate that systematic variations exist. The average delta S-34 values are -0.26 +/- 0.07, -0.02 +/- 0.06, and 0.49 +/- 0.16 percent for enstatite and ordinary and carbonaceous chondrites, respectively. Isotopic variations of different sample specimens of primitive meteorites, e.g., Qingzhen and Abee, were observed which may be attributed to heterogeneity in the early solar nebula. Sulfur isotopic fractionations in both bulk samples and mineral separates are mass-dependent, and no nuclear isotopic anomalies were detected. The sulfur isotopic compositions of both mineral and density separates were measured. The sulfur isotopic compositions of separated chondrules from Chainpur and Bjurbole are reported. Significant isotopic difference for the chondrules from the bulk meteorite are noted for both meteorites.

  10. Experimental Space Weathering of Ordinary Chondrites by Nanopulse Laser: TEM Results

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Hiroi, T.; Keller, L. P.; Pieters, C. M.

    2011-01-01

    A set of ordinary chondrite meteorites has been subjected to artificial space weathering by nanopulse laser to simulate the effects of micrometeorite bombardment. Three meteorites, an H (Ehole), L (Chateau Renard - CR), and LL (Appley Bridge - AB) were lasered following the method of Sasaki et al [1]. Near IR spectra were taken before and after exposure to examine the optical changes induced and the samples were examined by scanning and transmission electron microscopy (SEM and TEM) to understand the physical changes.

  11. The Orbits of Ordinary Chondrite Meteoroid Bodies Contributing to the Meteoritic Flux

    NASA Astrophysics Data System (ADS)

    Benoit, P. H.; Sears, D. W. G.

    1995-09-01

    The orbits of meteoroid bodies are our best source of information regarding the placement of their parent bodies in the solar system. In view of the absence of direct observational data of meteoroid bodies in space, the connection between meteoroid bodies and large Earth-crossing or -approaching asteroids being at best tenuous [1], our knowledge of the orbits of meteoroid bodies contributing to the meteorite flux is largely limited to indirect measurements. With the exception of four photographed meteorite falls [2], the database is limited to the less constrained data of about fifty visually observed meteorite falls and the large dataset of photographed fireballs and meteors, which almost certainly contains many non-meteoritic objects [e.g., 3]. The time-of-fall ("AM/PM distributions") of large groups of meteorites can also be of some use in constraining their general orbital distribution [4]. In this paper we use natural thermoluminescence (TL) measurements on modern falls among the equilibrated ordinary chondrites to constrain one orbital element, namely perihelion, for individual meteorites and hence individual meteoroid bodies. Natural TL levels of modern falls reflect the degree of heating they have experienced while in space, usually from solar heating but in some cases possibly from impact heating [5]. Natural TL levels reaches "equilibrium" levels fairly rapidly (~10^5 years) and can thus be considered saturated in view of the long cosmic ray exposure ages of most ordinary chondrites. We have assembled a database of 120 L, LL, and H chondrites. We find that, as a whole, ordinary chondrites among the modern falls exhibit a single major peak in their TL distribution. Using realistic assumptions for albedoes of meteoroid bodies, we can calculate the approximate "average" perihelion of each meteorite in our database. We find that most meteorite bodies had perihelia of approximately 1 AU, with only a small fraction (about 15%) having orbits with perihelia <0.85 AU, consistent with other direct and indirect databases [1,3]. There are no strong differences in the TL distributions of H, L, and LL chondrites. There is also no apparent difference in natural TL levels between AM and PM falls for ordinary chondrites as a whole. If we confine our analysis to only equilibrated H chondrites however, we find differences in natural TL distributions of AM and PM falls (Fig. 1). While the PM H chondrite falls show a broad spread of natural TL levels between 10 to 100 krad (corresponding to perihelia between 0.85 to 1.2 AU), the AM falls show a very tight cluster, with a mean TL level of 45 krad, corresponding to a perihelion of about 0.95 AU. One possible interpretation of these data is that, while the PM meteorites come from a number of different sources reflecting different degrees of orbital evolution, most of the AM H chondrites are derived from an Earth-crossing asteroid(s). Wetherill performed orbital calculations for fragments from some current Earth-crossing asteroids and found that their fragments should reach Earth predominantly in the AM [4]. These data accentuate other data which find evidence for individual stochastic events in the H chondrites, such as the suggestions of "streams" in the modern flux [6] and evidence for changes over the 100,000 years represented by the Antarctic meteorite collection [7]. References: [1] Olsson-Steel D. (1988) Icarus, 75, 64; Cruikshank et al. (1991) Icarus, 89, 1. [2] Wetherill and Chapman (1988) in Meteorites and the Early Solar System, 35; Brown et al. (1994) Nature, 367, 624. [3] Wetherill and ReVelle (1981) Icarus, 48, 308; Wetherill G. W. (1985) Meteoritics, 20, 1. [4] Wetherill G. W. (1968) Science, 159, 79. [5] Benoit et al. (1991) Icarus, 94, 311. [6] Michlovich et al. (1995) JGR, 100, 3317. [7] Benoit and Sears (1992) Science, 255, 1685; Wolf and Lipschutz (1995) JGR, 100, 3335.

  12. Postshock Annealing and Postannealing Shock in Equilibrated Ordinary Chondrites: Implications for the Thermal and Shock Histories of Chondritic Asteroids

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    In addition to shock effects in olivine, plagioclase, orthopyroxene and Ca-pyroxene, petrographic shock indicators in equilibrated ordinary chondrites (OC) include chromite veinlets, chromite-plagioclase assemblages, polycrystalline troilite, metallic Cu, irregularly shaped troilite grains within metallic Fe-Ni, rapidly solidified metal-sulfide intergrowths, martensite and various types of plessite, metal-sulfide veins, large metal and/or sulfide nodules, silicate melt veins, silicate darkening, low-Ca clinopyroxene, silicate melt pockets, and large regions of silicate melt. The presence of some of these indicators in every petrologic type-4 to -6 ordinary chondrite (OC) demonstrates that collisional events caused all equilibrated OC to reach shock stages S3-S6. Those type-4 to -6 OC that are classified as shock-stage S1 (on the basis of sharp optical extinction in olivine) underwent postshock annealing due to burial beneath materials heated by the impact event. Those type-4 to -6 OC that are classified S2 (on the basis of undulose extinction and lack of planar fractures in olivine) were shocked to stage S3-S6, annealed to stage S1 and then shocked again to stage S2. Some OC were probably shocked to stage 253 after annealing. It seems likely that many OC experienced multiple episodes of shock and annealing. Because 40Ar-39Ar chronological data indicate that MIL 99301 (LL6, Sl) was annealed approximately 4.26 Ga ago, presumably as a consequence of a major impact, it seems reasonable to suggest that other equilibrated S1 and S2 OC (which contain relict shock features) were also annealed by impacts. Because some type-6 S1 OC (e.g., Guarena, Kernouve, Portales Valley, all of which contain relict shock features) were annealed 4.44-4.45 Ga ago (during a period when impacts were prevalent and most OC were thermally metamorphosed), it follows that impact-induced annealing could have contributed significantly to OC thermal metamorphism.

  13. Raman spectroscopic study of four Spanish shocked ordinary chondrites: Caellas, Olmedilla de Alarcn, Reliegos and Olivenza.

    PubMed

    Rull, F; Muoz-Espadas, M J; Lunar, R; Martnez-Fras, J

    2010-07-13

    Shock metamorphism in chondritic parent bodies produces typical textures, visible under the microscope, which are a consequence of structural deformation of the crystals. Such deformations can be studied with Raman spectroscopy. The vibrational characteristics of olivines and pyroxenes, structurally deformed by weak-to-moderate shock metamorphism, have been determined on four Spanish ordinary chondrites (Caellas, Olmedilla de Alarcn, Reliegos and Olivenza). Such deformations would affect, in principle, the band positions and widths of the Raman spectra peaks. The measured band positions and relative intensities are consistent with chemical composition for olivines and pyroxenes, but show little influence on the degree of shock. However, the full spectral band width of the silicate internal modes shows some dependence on the impact grade, which could be attributed to inhomogeneous effects produced by the impacts. PMID:20529952

  14. The Ardón L6 ordinary chondrite: A long-hidden Spanish meteorite fall

    NASA Astrophysics Data System (ADS)

    Trigo-RodríGuez, Josep M.; Llorca, Jordi; Weyrauch, Mona; Bischoff, Addi; Moyano-Cambero, Carles E.; Keil, Klaus; Laubenstein, Matthias; Pack, Andreas; Madiedo, José MaríA.; Alonso-AzcáRate, Jacinto; Riebe, My; Wieler, Rainer; Ott, Uli; Tapia, Mar; Mestres, NarcíS.

    2014-08-01

    We report and describe an L6 ordinary chondrite fall that occurred in Ardón, León province, Spain (longitude 5.5605°W, latitude 42.4364°N) on July 9th, 1931. The 5.5 g single stone was kept hidden for 83 yr by Rosa González Pérez, at the time an 11 yr old who had observed the fall and had recovered the meteorite. According to various newspaper reports, the event was widely observed in Northern Spain. Ardón is a very well-preserved, fresh, strongly metamorphosed (petrologic type 6), and weakly shocked (S3) ordinary chondrite with well-equilibrated and recrystallized minerals. The mineral compositions (olivine Fa23.7±0.3, low-Ca pyroxene Fs20.4±0.2Wo1.5±0.2, plagioclase An10.3±0.5Ab84.3±1.2), magnetic susceptibility (log χ = 4.95 ± 0.05 × 10-9 m3 kg-1), bulk density (3.49 ± 0.05 g cm-3), grain density (3.58 ± 0.05 g cm-3), and porosity (2.5 vol%) are typical for L6 chondrites. Short-lived radionuclides confirm that the meteorite constitutes a recent fall. The 21Ne and 38Ar cosmic ray exposure ages are both about 20-30 Ma, similar to values for many other L chondrites. The cosmogenic 22Ne/21Ne ratio indicates that preatmospheric Ardón was a relatively large body. The fact that the meteorite was hidden in private hands for 83 yr makes one wonder if other meteorite falls may have experienced the same fate, thus possibly explaining the anomalously low number of falls reported in continental Spain in the 20th century.

  15. The Cali Meteorite: Luminescence of a recently fallen H/L ordinary chondrite

    SciTech Connect

    Trigo-Rodriguez, J. M.; Llorca, J.; Sears, D. W. G.

    2009-08-17

    The Cali meteorite fall occurred on 6 July 2007 at 21h33m+-1m UTC. Some specimens were recovered just after their fall so they are extremely fresh materials. Mineral analysis and bulk chemistry revealed that the measured abundances for most elements closely match the values recorded for other ordinary chondrites classified as H/L. We present here thermoluminescence studies of this recently fallen meteorite in order to get additional information on the radiation environment, and the thermal history of this meteorite. Such information is revealed to be complementary with the range of orbital elements deduced from eyewitness reports of the fireball.

  16. 57Fe Mssbauer study of the Nurina-003 ordinary chondrite meteorite

    NASA Astrophysics Data System (ADS)

    Cadogan, J. M.; Devlin, E. J.

    2014-04-01

    Nurina-003 is a Group LL5/br Ordinary Chondrite meteorite which was recovered in the Nullarbor Desert (Australia) in 1986. The degree of weathering is classified as moderate to severe. We have characterised the Fe-bearing phases in Nurina-003 by 57Fe Mssbauer Spectroscopy over the temperature range 5-295 K. The spectra are dominated by Olivine and also contain Pyroxene, Troilite and a Ferric component that is (super)paramagnetic at 295 K. We clearly see the effects of the magnetic ordering of the Olivine phase in the 5 K spectrum.

  17. The natural thermoluminescence of meteorites. V - Ordinary chondrites at the Allan Hills ice fields

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, Hazel; Sears, Derek W. G.

    1993-01-01

    Natural thermoluminescence (TL) data have been obtained for 167 ordinary chondrites from the ice fields in the vicinity of the Allan Hills in Victoria Land, Antarctica, in order to investigate their thermal and radiation history, pairing, terrestrial age, and concentration mechanisms. Natural TL values for meteorites from the Main ice field are fairly low, while the Farwestern field shows a spread with many values 30-80 krad, suggestive of less than 150-ka terrestrial ages. There appear to be trends in TL levels within individual ice fields which are suggestive of directions of ice movement at these sites during the period of meteorite concentration. These directions seem to be confirmed by the orientations of elongation preserved in meteorite pairing groups. The proportion of meteorites with very low natural TL levels at each field is comparable to that observed at the Lewis Cliff site and for modern non-Antarctic falls and is also similar to the fraction of small perihelia orbits calculated from fireball and fall observations. Induced TL data for meteorites from the Allan Hills confirm trends which show that a select group of H chondrites from the Antarctic experienced a different extraterrestrial thermal history to that of non-Antarctic H chondrites.

  18. Three-dimensional imaging of ordinary chondrite microporosity at 2.6 μm resolution

    NASA Astrophysics Data System (ADS)

    Friedrich, Jon M.; Rivers, Mark L.

    2013-09-01

    We show that high resolution (2.6 μm/voxel) synchrotron X-ray microtomography (μCT) scans are able to observe the majority of microporosity in ordinary chondrites. This porosity is present in the form of microcracks and voids among and between mineral grains. We examined, in total, seven small (6-12 mm3) chips of the ordinary chondrites Baszkówka (L5, S1), ALH A77258 (H5, S2), Moorleah (L6, S3), and Kyushu (L6, S5). These four samples were chosen because of their variable impact histories. Using μCT and various digital isolation and visualization techniques, we found that the structure of microporosity varies with the degree of compaction and shock loading experienced by the materials. The microporosity in the compacted and more strongly shock samples Moorleah and Kyushu is visible as sheet-like fractures within brittle silicates as well as in discontinuous, distributed voids sometimes associated with chondrule rims and grain boundaries. In samples that have experienced less shock and only mild compaction, we found few, if any, microcracks in the silicate grains of the materials. Microporosity in the Baszkówka and ALH A77258 samples is largely represented by intergranular voids, with occasional intragranular voids being present. Regardless of degree of shock loading, ductile Fe-Ni or FeS grains give no evidence of shock-related internal fractures contributing to porosity.

  19. An analytical electron microscopy (AEM) investigation of opaque inclusions in some type 6 ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Leroux, Hugues; Doukhan, Jean-Claude; Guyot, Franois

    1996-11-01

    A large number of ordinary chondrites contains micron-sized particles of metal and/or troilite dispersed in their silicate grains. Such metallic phases are responsible for the so-called darkening of the silicate grains and might be either precipitates, which formed during reduction of the silicates, or inclusions injected as a melt during a shock event. We have investigated these tiny foreign phases by analytical transmission electron microscopy in three unweathered, metamorphosed ordinary chondrites (Saint Sverin, LL6, Tsarev, L6 and Kernouv, H6). We also looked for remnant shock indices. Our TEM observations suggest the following sequence of events in the three meteorites. First, a number of relatively strong shock events occurred on the parent body/bodies producing an Fe-FeS melt that was injected into silicate grains along a dense network of open fractures. Most of these shock defects were subsequently erased by high-temperature (700-900 C) thermal metamorphism. Some remnants of the shock events are the observed trails of tiny metal and/or sulfide inclusions that formed as a result of fracture healing. Chemical homogenization of the silicates and limited oxidation of the metallic blebs also occurred during this high-temperature annealing event, resulting in Ni-rich inclusions. This effect was especially pronounced in the L and LL-chondrites studied. During subsequent cooling of the body/bodies, inclusions of chromite and phosphate precipitated, nucleating preferentially on lattice defects (dislocations, subgrain boundaries) and on the metal and sulfide inclusions. A later shock event of moderate intensity, probably corresponding to the separation of the meteorite from its parent body, produced new shock features in the silicate grains of the Saint Sverin meteorite, including mechanical twins in diopside and straight free screw dislocations in olivine.

  20. First occurrence of pyrophanite (MnTiO3) and baddeleyite (ZrO2) in an ordinary chondrite

    NASA Technical Reports Server (NTRS)

    Krot, Aleksandr N.; Rubin, Alan E.; Kononkova, Natal'ya N.

    1993-01-01

    An examination is conducted of the distinct optical and compositional zoning exhibited by a Mg-Al-chromite fragment in the Raguli H3.8 ordinary chondrite. Two end-member pyrophanite grains occur in the fragment's outer portion; this is noted to be the first occurrence of pyrophanite in conjunction with baddeleyite in an ordinary chondrite. Two alternative models are presented for the formation of the fragment: a multistage nebular melting process, and the fragment's formation on a metamorphosed parent body. The latter alternative is favored.

  1. First occurrence of pyrophanite (MnTiO3) and baddeleyite (ZrO2) in an ordinary chondrite

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Rubin, A. E.; Kononkova, N. N.

    1993-06-01

    An examination is conducted of the distinct optical and compositional zoning exhibited by a Mg-Al-chromite fragment in the Raguli H3.8 ordinary chondrite. Two end-member pyrophanite grains occur in the fragment's outer portion; this is noted to be the first occurrence of pyrophanite in conjunction with baddeleyite in an ordinary chondrite. Two alternative models are presented for the formation of the fragment: a multistage nebular melting process, and the fragment's formation on a metamorphosed parent body. The latter alternative is favored.

  2. Striking Graphite Bearing Clasts Found in Two Ordinary Chondrite Samples; NWA6169 and NWA8330

    NASA Technical Reports Server (NTRS)

    Johnson, Jessica M.; Zolensky, Michael E.; Chan, Queenie; Kring, David A.

    2015-01-01

    Meteorites play an integral role in understanding the history of the solar system. Not only can they contain some of the oldest material found in the solar system they also can contain material that is unique. Many lithologies are only found as foreign clasts within distinctly different host meteorites. In this investigation two foreign clasts within the meteorites, NWA6169 and NWA8330 were studied. The purpose of this investigation was to examine the mineralogy and petrography of the clasts within the samples. From there an identification and possible origin were to be inferred. NWA6169 is an unclassified ordinary chondrite that has a presumed petrologic type of L3. NWA8330 is a classified ordinary chondrite that has a petrologic type of LL3. Both meteorites were found to contain clasts that were similar; both modally were comprised of about 5% acicular graphite. Through SEM and Raman Spectroscopy it was found that they contained olivine, pyroxene, plagioclase, Fe-Ni sulfides, graphite, and metals. They were found to portray an igneous texture with relationships that suggest concurrent growth. Analytical microprobe results for NWA6169 revealed mineral compositions of Fa31-34, Fs23-83, and Ab7-85. For NWA8330 these were Fa28-32, Fs10-24, and Ab4-83. Only one similar material has been reported, in the L3 chondrite Krymka (Semenenko & Girich, 1995). The clast they described exhibited similar mineralogies including the unusual graphite. Krymka data displayed compositional values of Fa28.5-35.0 and Fs9-25.9. These ranges are fairly similar to that of NWA6169 and NWA8330. These samples may all be melt clasts, probably of impact origin. Two possibilities are (1) impact of a C-type asteroid onto the L chondrite parent asteroid, and (2) a piece of proto-earth ejected from the moon-forming collision event. These possibilities present abundant questions, and can be tested. The measurement of oxygen isotope compositions from the clasts should reveal the original source of the melt clasts. It may also be possible to perform Ar dating of the plagioclase present. Former analyses are now being performed.

  3. Evidence for a late thermal event of unequilibrated enstatite chondrites: a Rb-Sr study of Qingzhen and Yamato 6901 (EH3) and Khairpur (EL6)

    USGS Publications Warehouse

    Torigoye, N.; Shima, M.

    1993-01-01

    The Rb-Sr whole rock and internal systematics of two EH3 chondrites, Qingzhen and Yamato 6901, and of one EL6 chondrite, Khairpur, were determined. The internal Rb-Sr systematics of the EH3 chondrites are highly disturbed. Fractions corresponding to sulfide phases show excess 87Sr, while other fractions corresponding to silicate phases produce a linear trend on a Rb-Sr evolution diagram. If these linear relations are interpreted as isochrons, the ages of the silicate phases are 2.12?? 0.23 Ga and 2.05 ??0.33 Ga with the initial Sr isotopic ratios of 0.7112 ?? 0.0018 and 0.7089 ?? 0.0032, for Qingzhen and Yamato 6901, respectively. The Rb-Sr results are interpeted as indicative of a late thermal event about 2Ga ago on the parent bodies of these EH3 chondrites. These ages agree well with previously published K-Ar ages. An older isochron age of 4.481 ?? 0.036 Ga with a low initial Sr isotopic ratio of 0.69866 ?? 0.00038 was obtained for the data from silicate fractions of Khairpur, indicating early petrological equilibrium on the parent body of EL6 chondrites. -from Authors

  4. Origin of Halogens and Nitrogen in Enstatite Chondrites

    NASA Astrophysics Data System (ADS)

    Rubin, Alan E.; Choi, Byeon-Gak

    2009-06-01

    The EH and EL enstatite chondrites are the most reduced chondrite groups, having formed in nebular regions where the gas may have had high C/O and/or pH2/pH2O ratios. Enstatite chondrites (particularly EH) have higher CI- and Mg-normalized abundances of halogens (especially F and Cl) and nitrogen than ordinary chondrites and most groups of carbonaceous chondrites. Even relative to CI chondrites, EH and EL chondrites are enriched in F. We have found that literature values for the halogen abundance ratios in EH and EL chondrites are strongly correlated with the electronegativities of the individual halogens. We suggest that the most reactive halogens were the most efficient at forming compounds (e.g., halides) that were incorporated into EH-chondrite precursor materials. It seems plausible that, under the more-oxidizing conditions pertaining to the other chondrite groups, a larger fraction of the halogens remained in the gas. Nitrogen may have been incorporated into the enstatite chondrites as simple nitrides that did not condense under the more-oxidizing conditions in the regions where other chondrite groups formed. Literature data show that unequilibrated enstatite chondrites have light bulk N (δ 15N ≈ -20‰) compared to most ordinary (-5 to +20‰) and carbonaceous (+20 to +190‰) chondrites; this may reflect the contribution in enstatite chondrites of nitride condensates with δ15 N values close to the proposed nebular mean (~-400‰). In contrast, N in carbonaceous chondrites is mainly contained within 15N-rich organic matter. The major carrier of N in ordinary chondrites is unknown.

  5. The Iodine-Xenon System in Outer and Inner Portions of Chondrules from the Unnamed Antarctic LL3 Chondrite

    NASA Technical Reports Server (NTRS)

    Meshik, A. P.; Pravdivtseva, O. V.; Hohenberg, C. M.; Amelin, Y.

    2004-01-01

    Alteration processes may affect I-Xe system in unequilibrated ordinary chondrites. It was shown that at the edges, where a contribution is made by matrix material around the rim, *Xe-129/Xe-128 values are generally lower (later apparent ages) than in the main chondrule mass. In this work we attempted to investigate whether thermal metamorphism can affect the I-Xe system in LL3 chondrites which did not experienced aqueous alteration.

  6. The Natural Thermoluminescence of Meteorites. Part 5; Ordinary Chondrites at the Allan Hills Ice Fields

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, Hazel; Sears, Derek W. G.

    1993-01-01

    Natural thermoluminescence (TL) data have been obtained for 167 ordinary chondrites from the ice fields in the vicinity of the Allan Hills in Victoria Land, Antarctica, in order to investigate their thermal and radiation history, pairing, terrestrial age, and concentration mechanisms. Using fairly conservative criteria (including natural and induced TL, find location, and petrographic data), the 167 meteorite fragments are thought to represent a maximum of 129 separate meteorites. Natural TL values for meteorites from the Main ice field are fairly low (typically 5-30 krad, indicative of terrestrial ages of approx. 400 ka), while the Far western field shows a spread with many values 30-80 krad, suggestive of less then 150-ka terrestrial ages. There appear to be trends in TL levels within individual ice fields which are suggestive of directions of ice movement at these sites during the period of meteorite concentration. These directions seem to be confirmed by the orientations of elongation preserved in meteorite pairing groups. The proportion of meteorites with very low natural TL levels (less then 5 krad) at each field is comparable to that observed at the Lewis Cliff site and for modern non-Antarctic falls and is also similar to the fraction of small perihelia (less then 0.85 AU) orbits calculated from fireball and fall observations. Induced TL data for meteorites from the Allan Hills confirm trends observed for meteorites collected during the 1977/1978 and 1978/1979 field seasons which show that a select group of H chondrites from the Antarctic experienced a different extraterrestrial thermal history to that of non-Antarctic H chondrites.

  7. Mssbauer study of the Ordinary-Chondrite meteorite Thylacine Hole-001

    NASA Astrophysics Data System (ADS)

    Cadogan, J. M.; Devlin, E. J.

    2012-03-01

    The Thylacine Hole-001 meteorite was recovered from the Nullarbor Desert (Australia) in 1977 and is an Ordinary Chondrite, Group H4/5br, which has undergone moderate to severe (B/C) weathering. We have characterised the Fe-bearing phases in Thylacine Hole-001 by 57Fe Mssbauer Spectroscopy at 300 K, 100 K, 50 K and 4 K. The spectrum at 300 K is dominated by the paramagnetic doublets of Olivine, Pyroxene and a Ferric component which is most likely nanoparticulate Goethite. Magnetically split sextets due to Maghemite or Magnetite are also present, consistent with the relatively advanced terrrestrial age of 28,500 yrs The nanoparticulate Goethite component shows a blocked, magnetically split sextet at low temperatures. We also observe the effects of magnetic ordering of the Olivine and Pyroxene below 50 K.

  8. The cali meteorite fell: A new H/L ordinary chondrite

    USGS Publications Warehouse

    Rodriguez, J.M.T.; Llorca, J.; Rubin, A.E.; Grossman, J.N.; Sears, D.W.G.; Naranjo, M.; Bretzius, S.; Tapia, M.; Sepulveda, M.H.G.

    2009-01-01

    The fall of the Cali meteorite took place on 6 July 2007 at 16 h 32 ?? 1 min local time (21 h 32 ?? 1 min UTC). A daylight fireball was witnessed by hundreds of people in the Cauca Valley in Colombia from which 10 meteorite samples with a total mass of 478 g were recovered near 3??24.3'N, 76??30.6'W. The fireball trajectory and radiant have been reconstructed with moderate accuracy. From the computed radiant and from considering various plausible velocities, we obtained a range of orbital solutions that suggest that the Cali progenitor meteoroid probably originated in the main asteroid belt. Based on petrography, mineral chemistry, magnetic susceptibility, fhermoluminescence, and bulk chemistry, the Cali meteorite is classified as an H/L4 ordinary chondrite breccia.

  9. Cosmogenic Records in 18 Ordinary Chondrites from the Dar Al Gani Region, Libya. 2; Radionclides

    NASA Technical Reports Server (NTRS)

    Welten, K. C.; Nishiizumi, K.; Finkel, R. C.; Hillegonds, D. J.; Jull, A. J. T.; Schultz, L.

    2003-01-01

    In the past decade more than 1000 meteorites have been recovered from the Dar al Gani (DaG) plateau in the Libyan part of the Sahara. The geological setting, meteorite pairings and density are described. So far, only a few terrestrial ages are known for DaG meteorites, e.g. 60+/- 20 kyr for the DaG 476 shergottite shower and 80+/- 20 kyr for the lunar meteorite DaG 262. However, from other desert areas, such as Oman, it is known that achondrites may survive much longer than chondritic meteorites, so the ages of these two achondrites may not be representative of the majority of the DaG meteorite collection, of which more than 90% are ordinary chondrites. In this work we report concentrations of the cosmogenic radionuclides, 14C (half-life = 5,730 yr), 41Ca (1.04x10 superscript 5 yr), Cl-36 (3.01x10 superscript 5 yr), Al-26 (7.05x10 superscript 5 yr) and 10Be (1.5x10 superscript 6 yr) to determine the terrestrial ages of DaG meteorites and constrain their pre-atmospheric size and exposure history.

  10. Dynamic behavior of an ordinary chondrite: The effects of microstructure on strength, failure and fragmentation

    NASA Astrophysics Data System (ADS)

    Hogan, James David; Kimberley, Jamie; Hazeli, Kavan; Plescia, Jeffrey; Ramesh, K. T.

    2015-11-01

    Knowledge of the relationships between microstructure, stress-state and failure mechanisms is important in the development and validation of numerical models simulating large-scale impact events. In this study, we investigate the effects of microstructural constituent phases and defects on the compressive and tensile strength, failure, and fragmentation of a stony meteorite (GRO 85209). In the first part of the paper we consider the effect of defects on the strength and failure. Strengths are measured and linked with detailed quantification of the important defects in this material. We use the defect statistic measurements in conjunction with our current understanding of rate-dependent strengths to discuss the uniaxial compressive strength measurements of this ordinary chondrite with those of another ordinary chondrite, with a different defect population. In the second part of the paper, we consider the effects of the microstructure and defects on the fragmentation of GRO 85209. Fragment size distributions are measured using image processing techniques and fragments were found to result from two distinct fragmentation mechanisms. The first is a mechanism that is associated with relatively smaller fragments arising from individual defect grains and the coalescence of fractures initiating from microstructure defects. This mechanism becomes more dominant as the strain-rate is increased. The second mechanism is associated with larger fragments that are polyphase and polygrain in character and is dependent on the structural failure mechanisms that are activated during load. In turn, these are dependent on (for example) the strain-rate, stress state, and specimen geometry. The implications of these results are briefly discussed in terms of regolith generation and catastrophic disruption.

  11. Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites

    NASA Astrophysics Data System (ADS)

    Schaefer, Laura; Fegley, Bruce

    2007-02-01

    We used chemical equilibrium calculations to model thermal outgassing of ordinary chondritic material as a function of temperature, pressure, and bulk composition and use our results to discuss outgassing on asteroids and the early Earth. The calculations include ∼1000 solids and gases of the elements Al, C, Ca, Cl, Co, Cr, F, Fe, H, K, Mg, Mn, N, Na, Ni, O, P, S, Si, and Ti. The major outgassed volatiles from ordinary chondritic material are CH4, H2, H2O, N2, and NH3 (the latter at conditions where hydrous minerals form). Contrary to widely held assumptions, CO is never the major C-bearing gas during ordinary chondrite metamorphism. The calculated oxygen fugacity (partial pressure) of ordinary chondritic material is close to that of the quartz-fayalite-iron (QFI) buffer. Our results are insensitive to variable total pressure, variable volatile element abundances, and kinetic inhibition of C and N dissolution in Fe metal. Our results predict that Earth's early atmosphere contained CH4, H2, H2O, N2, and NH3; similar to that used in Miller-Urey synthesis of organic compounds.

  12. Chemical and physical studies of chondrites. X - Cathodoluminescence and phase composition studies of metamorphism and nebular processes in chondrules of type 3 ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Dehart, John M.; Lofgren, Gary E.; Jie, LU; Benoit, Paul H.; Sears, Derek W. G.

    1992-01-01

    The cathodoluminescence (CL) characteristics of eight type-3 ordinary chondrites and one L5 chondrite were investigated with particular emphasis on detailed compositions of the relevant phases in four of these chondrites: Semarkona (type-3.0); Krymka (3.1); Allan Hills A77214 (3.5); and Dhajala (3.8). By sorting the chondrules into eight groups according to the CL of mesostasis and to certain compositional criteria and by determining the number of chondrules in these groups as a function of petrological type, it was possible to deduce genetic/evolutionary sequences of the chondrules. It is shown that there are major compositional differences in chondrules, which account for their CL properties and the chondrule groups.

  13. Chrome-spinel Inclusions in Ordinary Chondrites: Mineralogy, Chemistry and Petrogenesis

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Ivanova, M. A.; Wasson, J. T.

    1992-07-01

    We surveyed 270 ordinary chondrites (115 H, 116 L and 39 L/LL and LL) for chrome-spinel (Cr-Sp) chondrules and inclusions and Cr- Sp-rich mafic silicate chondrules. Here we discuss Cr-Sp inclusions. These inclusions are most common among H (52) chondrites and 3-4X less common in L (15) and L/LL+LL (5) chondrites. We divide the inclusions into two types chiefly on the basis of Cr/(Cr+Al) in the Cr-Sp: high (>0.84) in type I, low (<0.84) and, in many cases, variable in type II. Type I inclusions are irregularly shaped aggregates of Cr-Sp grains embedded in or surrounded by plagioclase mesostasis (Pl), and having merrillite (Mrl) and/or chlorapatite (Apt) rims. Some contain Mrl/Apt in the cores. Most rims are framed by low-Al and low-Ti clinopyroxene (Px). A few inclusions show core-to-rim changes in modal composition: cores consisting of Pl, Px and/or olivine (Ol) are surrounded by a Cr-Sp-rich zone and a Pl rim. Cr-Sp is uniform in composition with a Cr/(Cr+Al) ratio of 0.84- 0.86. Plagioclase occurs as coexisting Na- and K-rich varieties, the K-rich Pl generally occurring in cores. Type II inclusions are also irregularly shaped; they consist of a Pl core or fine- grained Pl+Cr-Sp with accessory ilmenite (Ilm), a surrounding Cr-Sp-rich zone and a rim of Pl and Px enclosed by Mrl. Some type-II inclusions consist of compact Cr-Sp cores surrounded by Pl and Mrl rims. One inclusion contains a Mg-Ca-Na-Si phase in the core. Cr-Sp has a uniform or slightly variable composition within the individual inclusions but has significant grain-to- grain variability in Cr/(Cr+Al): ~0.29-0.80, increasing from core to rim. Pl is igneously zoned: cores have higher Ca than rims. Cr-Sp inclusions have >10 wt% bulk Al2O3 and differ from Al-rich objects in ordinary chondrites by having high contents of Cr2O3 and FeO, and low contents of SiO2 and MgO. Models for the formation of Cr-Sp inclusions include the following: (1) The similarity in mineralogy and chemistry of Cr- Sp inclusions and chondrules and the occurrence of both within the same meteorite suggest a genetic relationship. The formation of Cr-Sp chondrules was explained by Krot et al. (1992) as having involved melting and incomplete evaporation of presolar lumps, perhaps during infall into the nebula; this resulted in enrichment of the residue in Cr and Al. Subsequent melting and fractional crystallization produced the high Cr/Al ratios. Differences between Cr-Sp chondrules and inclusions indicate that either (a) inclusions formed by lower degrees of melting than chondrules, (b) inclusions formed by chondrule disruption, or (c) inclusions are relicts of nebular precursors. (2) The presence of phosphates within some Cr-Sp inclusions and the presence of inclusions within metal suggest formation of Cr-Sp inclusions from oxidized precursor materials that originally consisted of Cr-P-Si-rich metal. Melting of oxidized metal grains together with an alkali-rich nebular component resulted in the formation of immiscible Cr-P-rich silicate and metal melts. (3) Based on the similarity of textures and mineralogy of Cr-Sp and Sp inclusions in ordinary chondrites, A. Bischoff (pers. comm.) proposed that Cr-Sp objects were formed by alteration of Sp inclusions during parent-body metamorphism; Sp was replaced by Cr-Sp, perovskite by Ilm, and anorthite by Na-Pl. The occurrence of Cr-Sp of variable composition in equilibrated ordinary chondrites implies low diffusion rates in Cr-Sp, inconsistent with this model; nebular reaction between Sp- and Cr-rich phases is still less likely. (4) The presence of shock veins and melt pockets having mineralogy similar to those of Cr-Sp inclusions suggests a shock origin. However, this seems unlikely because (a) Cr-Sp inclusions and melt pockets have different textures, (b) Cr-Sp within melt pockets has high Cr/(Cr+Al) ~0.86, similar to matrix chromite, and (c) most of the chondrites containing Cr- Sp inclusions are of low shock stage (S1-S3). References: Krot A., Ivanova M.A., and Wasson J.T. (1992) Earth Planet. Sci. Lett., submitted.

  14. Chemical and physical studies of chondrites: 10. Cathodoluminescence and phase composition studies of metamorphism and nebular processes in chondrules of type 3 ordinary chondrites

    SciTech Connect

    DeHart, J.M.; Lu Jie; Benoit, P.H.; Sears, D.W.G. ); Lofgren, G.E. )

    1992-10-01

    The cathodoluminescence (CL) properties of eight type 3 ordinary chondrites and one L5 chondrite have been determined, and phenocryst and mesostasis compositions have been analyzed in the chondrules of four of them (Semarkona, type 3.0; Krymka, 3.1; Allan Hills A77214, 3.5; and Dhajala, 3.8) in order to investigate their origins and metamorphic history. In the present study, the authors discuss the CL properties of nine ordinary chondrites of a variety of petrologic types with particular emphasis on detailed studies of the compositions of the relevant phases in four of these: Semarkona (3.0), Krymka (3.1), Allan Hills A77214 (3.5), and Dhajala (3.8). They describe a means of classifying chondrules that is based on the composition of their two major components, the mesostasis and phenocrysts. The system is applicable to > 90-95% off the chondrules in a given meteorite and it describes the range of material produced by nebular material and of the effect of metamorphism on the chondrules. They also discuss the relevance of the results for the origin of the nine chondrite classes.

  15. Thermal recalcitrance of the organic D-rich component of ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Remusat, L.; Piani, L.; Bernard, S.

    2016-02-01

    Carbonaceous and ordinary chondrites (CCs and OCs) contain insoluble organic matter (IOM) with large D-excess compared to other objects in the solar system. The higher the temperature experienced by CCs, the lower the D/H ratio of their IOM. It seems to be the opposite for OCs. Here, we report NanoSIMS H- (and N-) isotopic imaging of IOM of three OCs that experienced thermal metamorphism in the sequence Semarkona, Bishunpur and GRO 95502. In addition, we performed flash heating experiments on the IOM of GRO 95502 at 600 C and characterized the residues using NanoSIMS, Raman and XANES spectroscopy. The present study shows that, in contrast to IOM of CI, CM and CR, IOM of OCs exhibits very few D-rich (or 15N-rich) hotspots. Furthermore, although the evolution of the molecular structure of OC and CC IOM is similar upon heating, their D/H ratios do not follow the same trend: the D/H of OC IOM drastically increases while the D/H of CC IOM decreases. In contrast to CC IOM, the D-rich component of which does not survive at high temperatures, the present results highlight the thermal recalcitrance of the D-rich component of OC IOM. This suggests that CCs and OCs did not accrete the same organic material, thereby challenging the hypothesis of a common precursor on chondritic parent bodies. The present results support the hypothesis that OC IOM contains an organic component that could originate from the interstellar medium.

  16. Chromite-rich mafic silicate chondrules in ordinary chondrites: Formation by impact melting

    NASA Technical Reports Server (NTRS)

    Krot, Alexander N.; Rubin, Alan E.

    1993-01-01

    Chromium-rich chondrules constitute less than 0.1 percent of all ordinary chondrite (OC) chondrules and comprise three groups: chromian-spinel chondrules, chromian-spinel inclusions, and chromite-rich mafic silicate (CRMS) chondrules. Chromian-spinel chondrules (typically 100-300 microns in apparent diameter) exhibit granular, porphyritic and unusual textures and occur mainly in H chondrites. Their morphologies are distinct from the irregularly shaped chromian-spinel inclusions of similar mineralogy. Chromian-spinel chondrules and inclusions consist of grains of chromian-spinel embedded in plagioclase (Pl) or mesostasis of Pl composition. Many also contain accessory ilmenite (Ilm), high-Ca pyroxene (Px), merrillite (Mer), and rare olivine (Ol); some exhibit concentric mineral and chemical zoning. CRMS chondrules (300-1100 microns in apparent diameter) are generally larger than chromian-spinel chondrules and occur in all metamorphosed OC groups. Most CRMS chondrules are nearly spherical although a few are ellipsoidal with a/b aspect ratios ranging up to 1.7. Textures include cryptocrystalline, granular, radial, barred, and porphyritic varieties; some contain apparently relict grains. The chondrules consist of chromite (Chr), Ol and Pl, along with accessory Mer, troilite (Tr), metallic Fe-Ni (Met), Px and Ilm. The mesostasis in CRMS chondrules is nearly opaque in transmitted light; thus, they can be easily recognized in the optical microscope. Based on the similarity of mineralogy and chemistry between CRMS chondrules of different textures (opaque chromite-rich mesostasis, skeletal morphology of Ol grains, similar bulk compositions) we suggest that these chondrules form a genetically related population.

  17. Thermoluminescence and the shock and reheating history of meteorites. IV - The induced TL properties of type 4-6 ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Haq, Munir; Hasan, Fouad A.; Sears, Derek W. G.

    1988-01-01

    The thermoluminescence (TL) properties were measured in 121 equilibrated H and L ordinary chondrites of which 33 H and 32 L were from Antarctica. It was found that the distribution of TL sensitivities for non-Antarctic L chondrites differs from that of non-Antarctic H chondrites, reflecting the well-known differences in shock history between L and H classes, the greater proportion of the former having suffered postmetamorphic shock. The data also show differences in TL sensitivity between Antarctic and non-Antarctic H chondrites, suggesting nontrivial differences in thermal history of these chondrites.

  18. Accretion, metamorphism, and brecciation of ordinary chondrites - Evidence from petrologic studies of meteorites from Roosevelt County, New Mexico

    NASA Technical Reports Server (NTRS)

    Scott, Edward R. D.; Taylor, G. Jeffrey; Keil, Klaus

    1986-01-01

    The olivines and pyroxenes from twenty-nine ordinary chondrites from Roosevelt County, New Mexico are examined. The mineralogical properties of the chondrites studied are described. Correlations between mineral compositions and petrologic type and between petrologic type and bulk chemistry are analyzed. It is observed that mean CaO concentrations in olivine show significant variations among equilibrated chondrites, but these are not correlated with petrologic type; the degree of heterogeneity of FeO concentrations in olivines of types 4-6 is not correlated with the degree of metamorphism; and mean FeO concentrations of silicates show average increases of 3-5 percent from type 4 to type 6 in each group.

  19. Space Weathering of Ordinary Chondrite Parent Bodies, Its Impact on the Method of Distinguishing H, L, and LL Types and Implications for Itokawa Samples Returned by the Hayabusa Mission

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Sasaki, S.; Noble, S. K.; Pieters, C. M.

    2011-01-01

    As the most abundance meteorites in our collections, ordinary chondrites potentially have very important implications on the origin and formation of our Solar System. In order to map the distribution of ordinary chondrite-like asteroids through remote sensing, the space weathering effects of ordinary chondrite parent bodies must be addressed through experiments and modeling. Of particular importance is the impact on distinguishing different types (H/L/LL) of ordinary chondrites. In addition, samples of asteroid Itokawa returned by the Hayabusa spacecraft may re veal the mechanism of space weathering on an LLchondrite parent body. Results of space weathering simulations on ordinary chondrites and implications for Itokawa samples are presented here.

  20. Weathering of Ordinary Chondrites from Algeria and Australia as a Climatic Indicator

    NASA Astrophysics Data System (ADS)

    Bland, P. A.; Berry, F. J.; Pillinger, C. T.

    1995-09-01

    Introduction: Recently it has been recognized that ordinary chondrite meteorites resident in desert regions may preserve information about the climate at the time of their arrival on Earth in the degree to which they are weathered [1], providing that a stable surface has existed at the accumulation site. We present here a comparison of ^57Fe Mossbauer spectroscopy data for additional meteorites for which terrestrial ages exist, recovered from Reg el Acfer, Algeria and the Nullarbor Region, Australia. Results and Discussion: The data presented in Fig. 1 compare abundance of ferric iron oxide/oxyhydroxide species against terrestrial age [2, 3] for ordinary chondrites from Australia (a) and Algeria (b). Even with an increased dataset for Australian meteorites (compared to that already presented [1]) the initial hypothesis remains intact i.e. meteorite weathering over time is sensitive to changes in climate. Peaks in oxidation at around 2,000, 7,000 and 23,000 years correspond to periods of speleothem formation [4] and high lake level status [5]. Similarly, a period of low oxidation between 12,000-20,000 years is mirrored in low lake level status [5] and aridity in the Nullarbor [6]. The mechanism by which meteorites may record palaeoclimatic information is given in [1]. A correlation that strengthens our case is that where data from both H and L(LL) chondrites are available (i.e. around 7,000-8,000 years) the two plots are similar, indicating a broadscale environmental effect. In contrast, the distribution for meteorites from the Acfer region appears to be more random, with no correlation between H and L(LL) data. The difference may be related to the stability of the respective accumulation surfaces. The surface of the Nullarbor appears to have been stable over the last 30,000 years [7]. The Algerian and Libyan Sahara, however, has experienced several episodes of active fluvial processes over the last 10,000 years [8] which may have profoundly effected the meteorites residing in this area [9]. If Reg el Acfer has experienced surface drainage during the last few thousand years this could disrupt the signature of a climatic effect, as meteorites in a topographic low would be more likely to be more highly weathered. References: [1] Bland P. A. et al. (1995) LPS XXVI, 129-130. [2] Jull A. J. T. et al. (1994) Workshop on Meteorites from Cold and Hot Deserts, LPI, Houston, in press. [3] Jull A. J. T. (1995) personal communication. [4] Goede A. et al. (1990) J. Quat. Sci., 5, 29-38. [5] Street F. A. and Grove A. T. (1979) Quat. Res., 12, 83-118. [6] Martin H. A. (1973) Australian J. Botany, 21, 283-316. [7] Lowry D. C. and Jennings J. N. (1974) Zeits. Geomorph., 18, 35-81. [8] Pachur H-J (1980) The Geology of Libya, 781-788, Academic, London. [9] Benoit P. H. et al. (1993) Meteoritics, 28, 196-203.

  1. Partial melting of the St. Severin (LL) and Lost City (H) ordinary chondrites: One step backwards and two steps forward

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Jones, J. H.; Mittlefehldt, D. W.

    1994-01-01

    This study looks at partial melting in H and LL chondrites at nearly one atmosphere of total pressure as part of a continuing study of the origins of basaltic achondrites. Previously, melting experiments on anhydrous CM and CV chondrites showed that, near its solidus, the CM chondrite produced melts having major element chemistries similar to the Sioux County eucrite; but, the pyroxenes in the residuum were too iron-rich to form diogenites. Our preliminary results from melting experiments on ordinary (H, LL) chondrites suggested that, although the melts did not look like any known eucrites, pyroxenes from these charges bracketed the compositional range of pyroxenes found in diogenites. We had used the Fe/Mg exchange coefficients calculated for olivine, pyroxene, and melt in these charges to evaluate the approach to equilibrium, which appeared to be excellent. Unfortunately, mass balance calculations later indicated to us that, unlike our CM and CV charges, the LL and H experimental charges had lost significant amounts of iron to their (Pt or PtRh) supports. Apparently, pyroxene stability in chondritic systems is quite sensitive to the amount of FeO, and it was this unrecognized change in the bulk iron content which had stabilized the high temperature, highly magnesian pyroxenes. Accordingly, this work reinvestigates the phase equilibria of ordinary chondrites, eliminating iron and nickel loss, and reports significant differences. It also looks closely at how the iron and sodium in the bulk charge affect the stability of pyroxene, and it comments on how these new results apply to the problems of diogenite and eucrite petrogenesis.

  2. Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group

    NASA Astrophysics Data System (ADS)

    Schulze, H.; Bischoff, A.; Palme, H.; Spettel, B.; Dreibus, G.; Otto, J.

    1994-03-01

    The Rumuruti meteorite shower fell in Rumuruti, Kenya, on 1934 January 28 at 10:45 p.m. Rumuruti is an olivine-rich chondritic breccia with light-dark structure. Based on the coexistence of highly recrystallized fragments and unequilibrated components, Rumuruti is classified as a type 3-6 chondrite breccia. The most abundant phase of Rumuruti is olivine (mostly Fa(approximately 39) with about 70 vol%. Feldspar (approximately 14 vol%; mainly plagioclase), Ca-pyroxene (5 vol%), pyrrhotite (4.4 vol%), and pentlandite (3.6 vol%) are major constituents. All other phases have abundances below 1 vol%, including low-Ca pyroxene, chrome spinels, phosphates (chlorapatite and whitlockite), chalcopyrite, ilemenite, tridymite, Ni-rich and Ge-containing metals, kamacite, and various particles enriched in noble metals like Pt, Ir, and Au. The chemical composition of Rumuruti is chondritic. The depletion in refractory elements (Sc, REE, etc.) and the comparatively high Mn, Na, and K contents are characteristic of ordinary chondrites and distinguish Rumuruti from carbonaceous chondrites. However, S, Se, and Zn contents in Rumuruti are significantly above the level expected for ordinary chondrites. The oxygen isotope composition of Rumuruti is high in delta O-17 (5.52%) and delta O-18 (5.07%). With Rumuruti, nine meteorites samples exist that are chemically and mineralogically very similar. These meteorites are attributed to at least eight different fall events. It is proposed in this paper to call this group R chondrites (rumurutites) after the first and only fall among these meteorites. The meteorites have a close relationship to ordinary chondrites. However, they are more oxidized than any of the existing groups of ordinary chondrites. Small, but significant differences in chemical composition and in oxygen isotopes between R chondrites and ordinary chondrites exclude formation of R chondrites from ordinary chondrites by oxidation. This implies a separate, independent R chondrite parent body.

  3. A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites

    SciTech Connect

    Rubin, A.E. )

    1992-04-01

    Silicate darkening in ordinary chondrites (OC) is caused by tiny grains of metallic Fe-Ni and troilite occurring mainly within curvilinear trails that traverse silicate interiors and decorate or, in some cases, cut across silicate grain boundaries. Highly shocked OC tend to have greater degrees of silicate darkening than lightly shocked OC; this indicates that silicate darkening is probably a result of shock metamorphism. The low Fe-FeS eutectic temperature (988C) renders metal and troilite susceptible to melting and mobilization during shock heating. Unshocked OC tend to have plagioclase with uniform compositions; shocked OC tend to have plagioclase with more variable (albeit still stoichiometric) compositions. The low impedance of plagioclase to shock compression makes it particularly susceptible to melting and mobilization; this is consistent with the molten appearance of plagioclase in highly shocked OC (e.g., Rose City and Paragould). CK chondrites also have compositionally variable plagioclase. The common association of silicate darkening with compositionally variable plagioclase is consistent with the hypothesis that both are products of shock metamorphism. Some CK and OC chondrites exhibit light shock effects in olivine that are consistent with equilibrium peak shock pressures that are too low to account for the silicate darkening or opaque shock veins in these meteorites. Therefore, the olivine in these chondrites may have been annealed after intense shock produced these effects. A few CK chondrites that contain olivine with undulose or mosaic extinction (e.g., LEW87009 and EET83311) may have been shocked again, after annealing.

  4. A search for subkilometer-sized ordinary chondrite like asteroids in the main-belt

    NASA Astrophysics Data System (ADS)

    Lin, H. W.; Yoshida, Fumi; Chen, Y. T.; Ip, W. H.; Chang, C. K.

    2015-07-01

    The size-dependent effects of asteroids on surface regolith and collisional lifetimes suggest that small asteroids are younger than large asteroids. In this study, we performed multicolor main-belt asteroid (MBA) survey by Subaru telescope/Suprime-Cam to search for subkilometer-sized ordinary chondrite (Q-type) like MBAs. The total survey area was 1.5 deg2 near ecliptic plane and close to the opposition. We detected 150 MBAs with 4 bands (B, V, R, I) in this survey. The range of absolute magnitude of detected asteroids was between 13 and 22 magnitude, which is equivalent to the size range of kilometer to sub-kilometer diameter in MBAs. From this observation, 75 of 150 MBAs with color uncertainty less than 0.1 were used in the spectral type analysis, and two possible Q-type asteroids were detected. This mean that the Q-type to S-type ratio in MBAs is <0.05. Meanwhile, the Q/S ratio in near Earth asteroids (NEAs) has been estimated to be 0.5-2 (Binzel, R.P. et al. [2004]. Icarus 107, 259-224; Dandy, C.L., Fitzsimmins, A., Collander-Brown, S.J. [2003]. Icarus 163, 363-373). Therefore, Q-type NEAs might be delivered from the main belt region with weathered, S-type surface into near Earth region and then obtain their Q-type, non-weathered surface after undergoing re-surfacing process there. The resurfacing mechanisms could be: 1. dispersal of surface material by tidal effect during planetary encounters (Binzel, R.P. et al. [2010]. Nature 463, 331-334; Nesvorn, D. et al. [2010]. Icarus 209, 510-519), 2. the YORP spin-up induced rotational-fission (Polishook, D. et al. [2014]. Icarus 233, 9-26) or surface re-arrangement, or 3. thermal degradation (Delbo, M. et al. [2014]. Nature 508, 233-236).

  5. Using the U-Pb system's dual decay scheme towards reconstructing the thermal histories and origins of ordinary chondrites (Invited)

    NASA Astrophysics Data System (ADS)

    Blackburn, T. J.; Elkins-Tanton, L. T.; Carlson, R. W.; Alexander, C. M.; Hourigan, J. K.

    2013-12-01

    Ordinary chondrites provide a record of planetary formation through the accretion of the Solar System's earliest forming solids. Despite the critical importance these samples have for understanding Solar System history, the origin of chondrites as well as the size and histories of their parent bodies remains unclear. The antiquity of chondrules permit chondrite accretion prior to the extinction of the 26Al short-lived radionuclide and the possibility of parent body melting and differentiation due to radioactive heating. Yet this antiquity and the overall abundance of chondrites has raised questions concerning the origin of chondrules and the conditions leading to the preservation of their primordial geochemical signatures, accretion textures and ancient inclusions. In short, if these bodies accreted early in the history of the solar system, how has this material avoided melting by radioactive heating? Different models for the size and structure of the chondrite parent bodies as well as for chondrule formation exist to explain how chondrites survive or avoid early radiogenic heating. Here we propose to evaluate these scenarios through comparison between modeled thermal histories and thermal histories reconstructed using U-Pb thermochronology of chondritic phosphates. Detailed thermal histories are reconstructed by exploiting the U-Pb system's dual decay scheme, where two parent isotopes, 238U and 235U, decay to two daughter isotopes 206Pb and 207Pb respectively. The difference in decay rates between parent isotopes imposes a time-variant parent and instantaneous daughter isotopic composition for any point in Solar System history. This new thermochronologic methodology works to capture this isotopic evolution using the variation in the time of Pb retention between both: 1) chondrites from different parent body depths or metamorphic grades, where variations in the timescale of cooling result from the thermal gradient within a conductively cooling body, and; 2) crystals of different size, where volume diffusion behavior, in particular for slowly cooled systems, result in larger crystals retaining Pb at higher temperatures and over longer and older timescales in comparison to smaller crystals. The differences in 207Pb/206Pb among samples from different depths and within each sample--between grains of different size -- can be used to reconstruct the long-term chondrite thermal histories. Here we will present 207Pb-206Pb data for phosphates from over 10 ordinary chondrites with samples from: 1) H, L and LL chondrites, 2) metamorphic grades Type 4-6, and 3) a range of shock grades. Preliminary phosphate (U-Th)/He data from the same samples provide a means to understand whether the U-Pb system has been influenced by subsequent heating events. The combined data are used to constrain parent body thermal histories--and in doing so constrain the size and structure of the chondrite parent bodies.

  6. Deformation and thermal histories of ordinary chondrites: Evidence for post-deformation annealing and syn-metamorphic shock

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex; Hugo, Richard; Hutson, Melinda

    2015-08-01

    We show that olivine microstructures in seven metamorphosed ordinary chondrites of different groups studied with optical and transmission electron microscopy can be used to evaluate the post-deformation cooling setting of the meteorites, and to discriminate between collisions affecting cold and warm parent bodies. The L6 chondrites Park (shock stage S1), Bruderheim (S4), Leedey (S4), and Morrow County (S5) were affected by variable shock deformation followed by relatively rapid cooling, and probably cooled as fragments liberated by impact in near-surface settings. In contrast, Kernouvé (H6 S1), Portales Valley (H6/7 S1), and MIL 99301 (LL6 S1) appear to have cooled slowly after shock, probably by deep burial in warm materials. In these chondrites, post-deformation annealing lowered apparent optical strain levels in olivine. Additionally, Kernouvé, Morrow County, Park, MIL 99301, and possibly Portales Valley, show evidence for having been deformed at an elevated temperature (⩾800-1000 °C). The high temperatures for Morrow County can be explained by dynamic heating during intense shock, but Kernouvé, Park, and MIL 99301 were probably shocked while the H, L and LL parent bodies were warm, during early, endogenically-driven thermal metamorphism. Thus, whereas the S4 and S5 chondrites experienced purely shock-induced heating and cooling, all the S1 chondrites examined show evidence for static heating consistent with either syn-metamorphic shock (Kernouvé, MIL 99301, Park), post-deformation burial in warm materials (Kernouvé, MIL 99301, Portales Valley), or both. The results show the pitfalls in relying on optical shock classification alone to infer an absence of shock and to construct cooling stratigraphy models for parent bodies. Moreover, they provide support for the idea that "secondary" metamorphic and "tertiary" shock processes overlapped in time shortly after the accretion of chondritic planetesimals, and that impacts into warm asteroidal bodies were common.

  7. Silica-bearing objects in the Dengli H3.8 and Gorlovka H3-4 chondrites

    NASA Technical Reports Server (NTRS)

    Ivanova, M. A.; Kononkova, N. N.; Petaev, M. I.

    1993-01-01

    Silica-bearing objects are enigmatic components of the olivine-normative ordinary chondrites. Several papers have been devoted to the study of these objects in various chondrite types. While a relatively large body of information has been collected, the origin of these objects is still controversial. Here we report new data on silica-bearing objects in the unequilibrated H-chondrites Dengli and Gorlovka. The crystallization history of these objects could be explained on the basis of the phase diagram of the Q-Ol-Pl (Al2O3) system, but the origin of the silica-rich liquids remains unclear.

  8. Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Wasson, J. T.

    1986-02-01

    Thirteen of the least aqueously altered chondrules in Murray (CM2) were analyzed for bulk compositions, by means of a broad beam electron microprobe, to explore the compositional differences between the CM-CO, and the ordinary chondrite OC chondrules. The CO chondrules are richer in refractory lithophiles and poorer in Cr, Mn, and volatile lithophiles than the OC chondrules; much lower refractory lithophile abundances in CM chondrules resulted from aqueous alteration. Evidence is found for two important lithophile precursor components of CM-CO chondrite chondrules: (1) pyroxene- and refractory-rich, FeO-poor, and (2) olivine-rich, refractoryand FeO-poor. It is suggested that the pyroxene- and refractory-rich, FeO-poor lithophile precursor component has formed by an incomplete evaporation of presolar silicates that brought these materials into the enstatite stability field.

  9. Northwest Africa 8709: A Rare but Revealing Type 3 Ordinary Chondrite Melt Breccia

    NASA Astrophysics Data System (ADS)

    Ruzicka, A. M.; Hutson, M.; Friedrich, J. M.; Bland, P. A.; Pugh, R.

    2015-07-01

    We discuss the discovery of a rare L3 melt breccia, which has implications for compaction processes that must have contributed to the lithification of what are expected to have been initially porous primordial chondritic agglomerates.

  10. Size scales over which ordinary chondrites and their parent asteroids are homogeneous in oxidation state and oxygen-isotopic composition

    NASA Astrophysics Data System (ADS)

    Rubin, Alan E.; Ziegler, Karen; Young, Edward D.

    2008-02-01

    Literature data demonstrate that on a global, asteroid-wide scale (plausibly on the order of 100 km), ordinary chondrites (OC) have heterogeneous oxidation states and O-isotopic compositions (represented, respectively, by the mean olivine Fa and bulk ? 17O compositions of equilibrated samples). Samples analyzed here include: (a) two H5 chondrite Antarctic finds (ALHA79046 and TIL 82415) that have the same cosmic-ray exposure age (7.6 Ma) and were probably within 1 km of each other when they were excavated from the H-chondrite parent body, (b) different individual stones from the Holbrook L/LL6 fall that were probably within 1 m of each other when their parent meteoroid penetrated the Earth's atmosphere, and (c) drill cores from a large slab of the Estacado H6 find located within a few tens of centimeters of each other. Our results indicate that OC are heterogeneous in their bulk oxidation state and O-isotopic composition on 100-km-size scales, but homogeneous on meter-, decimeter- and centimeter-size scales. (On kilometer size scales, oxidation state is heterogeneous, but O isotopes appear to be homogeneous.) The asteroid-wide heterogeneity in oxidation state and O-isotopic composition was inherited from the solar nebula. The homogeneity on small size scales was probably caused in part by fluid-assisted metamorphism and mainly by impact-gardening processes (which are most effective at mixing target materials on scales of ?1 m).

  11. Chemical and physical studies of type 3 chondrites. II Thermoluminescence of sixteen type 3 ordinary chondrites and relationships with oxygen isotopes

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Weeks, K. S.

    1983-01-01

    Thermoluminescence (TL) sensitivity values for sixteen type 3 ordinary chondrites, fourteen of them from Antarctica, have been measured. The values obtained (normalized to the TL sensitivity of the Dhajala meteorite) range from 1.6 (Allan Hills A77216) to 0.010 (Allan Hills A77176), and include two (Reckling Peak A80207 and Allan Hills A77176) that are particularly low. They fill a hiatus in the TL distribution that previously existed between St. Mary's County and Bishunpur, the latter being a meteorite with one of the lowest TL sensitivities known. The histogram of TL sensitivity values now shows a single distribution with higher values preferred; it resembles the histogram for L chondrites occupying the petrologic types 3, 4, 5, and 6. There is a tendency for the TL sensitivity of meteorites to decrease as delta O-18 increases. Theoretically, it is possible that the range of delta O-18 values observed may reflect progressive loss of O in the form of CO at very low temperatures, but very restrictive physical conditions and a complex history seem to be required.

  12. The thermoluminescence sensitivity-metamorphism relationship in ordinary chondrites - Experimental data on the mechanism and implications for terrestrial systems

    NASA Technical Reports Server (NTRS)

    Guimon, R. K.; Sears, D. W. G.; Lofgren, G. E.

    1986-01-01

    Hydrothermal annealing experiments have been performed on samples of the Sharps meteorite in order to investigate the mechanism responsible for the metamorphism-related, 10-to-the-5th-fold range in the thermoluminescence (TL) sensitivity in ordinary chondrites. Duplicate 50 mg samples of meteorite were annealed under the following conditions: (1) 168 h at 785 C and 1 kbar; (2) the same time, temperature and pressure, but with 2 wt pct water; (3) 174 h at 855 C and 0.77 kbar with 2 wt pct water and 2 molal sodium disilicate (NadiSi); (4) the same time, temperature and pressure as the preceding samples, but with 10 wt pct H2O and 2 molal NadiSi. Samples annealed under the first three sets of conditions showed little or no change in their TL sensitivities, however the samples annealed with 10 wt pct water and 2 molal NadiSi showed a three-fold to 10-fold increase in TL sensitivity, and the temperature of the TL peak was suggestive of feldspar in the high-temperature form. It is suggested that these data are consistent with the TL sensitivity-metamorphism relationship in ordinary chondrites being due to the formation of the TL phosphor, feldspar, by the crystallization of chondrule glass.

  13. Relationships Among Intrinsic Properties of Ordinary Chondrites: Oxidation State, Bulk Chemistry, Oxygen-isotopic Composition, Petrologic Type, and Chondrule Size

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    The properties of ordinary chondrites (OC) reflect both nebular and asteroidal processes. OC are modeled here as having acquired nebular water, probably contained within phyllosilicates, during agglomeration. This component had high Ai70 and acted like an oxidizing agent during thermal metamorphism. The nebular origin of this component is consistent with negative correlations in H, L, and LL chondrites between oxidation state (represented by olivine Fa) and bulk concentration ratios of elements involved in the metal-silicate fractionation (e.g., NdSi, Ir/Si, Ir/Mn, Ir/Cr, Ir/Mg, Ni/Mg, As/Mg, Ga/Mg). LL chondrites acquired the greatest abundance of phyllosilicates with high (delta)O-17 among OC (and thus became the most oxidized group and the one with the heaviest O isotopes); H chondrites acquired the lowest abundance, becoming the most reduced OC group with the lightest O isotopes. Chondrule precursors may have grown larger and more ferroan with time in each OC agglomeration zone. Nebular turbulence may have controlled the sizes of chondrule precursors. H-chondrite chondrules (which are the smallest among OC) formed from the smallest precursors. In each OC region, low-FeO chondrules formed before high-FeO chondrules during repeated episodes of chondrule formation. During thermal metamorphism, phyllosilicates were dehydrated; the liberated water oxidized metallic Fe-Ni. This caused correlated changes with petrologic type including decreases in the modal abundance of metal, increases in olivine Fa and low-Ca pyroxene Fs, increases in the olivine/pyroxene ratio, and increases in the kamacite Co and Ni contents. As water (with its heavy 0 isotopes) was lost during metamorphism, inverse correlations between bulk (delta)O-18 and bulk (delta)O-17 with petrologic type were produced. The H5 chondrites that were ejected from their parent body approx.7.5 Ma ago during a major impact event probably had been within a few kilometers of each other since they accreted approx.4.5 Ga ago. There are significant differences in the olivine compositional distributions among these rocks; these reflect stochastic nebular sampling of the oxidant (Le., phyllosilicates with high (delta)O-17) on a 0.1-1 km scale during agglomeration.

  14. A noble gas and cosmogenic radionuclide analysis of two ordinary chondrites from Almahata Sitta

    NASA Astrophysics Data System (ADS)

    Meier, Matthias M. M.; Welten, Kees C.; Caffee, Marc W.; Friedrich, Jon M.; Jenniskens, Peter; Nishiizumi, Kunihiko; Shaddad, Muawia H.; Wieler, Rainer

    2012-06-01

    We present the results of a noble gas (He, Ne, Ar) and cosmogenic radionuclide (10Be, 26Al, 36Cl) analysis of two chondritic fragments (#A100, L4 and #25, H5) found in the Almahata Sitta strewn field in Sudan. We confirm their earlier attribution to the same fall as the ureilites dominating the strewn field, based on the following findings: (1) both chondrite samples indicate a preatmospheric radius of approximately 300 g cm-2, consistent with the preatmospheric size of asteroid 2008 TC3 that produced the Almahata Sitta strewn field; (2) both have, within error, a 21Ne/26Al-based cosmic ray exposure age of approximately 20 Ma, identical to the reported ages of Almahata Sitta ureilites; (3) both exhibit hints of ureilitic Ar in the trapped component. We discuss a possible earlier irradiation phase for the two fragments of approximately 10-20 Ma, visible only in cosmogenic 38Ar. We also discuss the approximately 3.8 Ga (4He) and approximately 4.6 Ga (40Ar) gas retention ages, measured in both chondritic fragments. These imply that the two chondrite fragments were incorporated into the ureilite host early in solar system evolution, and that the parent asteroid from which 2008 TC3 is derived has not experienced a large break-up event in the last 3.8 Ga.

  15. Complex zoning behavior in pyroxene in FeO-rich chondrules in the Semarkona ordinary chondrite

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.; Papike, J. J.

    1993-01-01

    A detailed understanding of the properties of silicate minerals in chondrules is essential to the interpretation of chondrule formation conditions. This study is further work in a series of petrologic studies of chondrules in the least equilibrated LL chondrite, Semarkona (LL3.0). The objectives of this work are as follows: (1) to understand chondrule formation conditions and nebular processes; and (2) to use the data as a basis for understanding the effects of metamorphism in more equilibrated chondrites. FeO-rich pyroxene in the chondrules described shows complex zoning behavior. Low-Ca clinopyroxene, orthopyroxene, pigeonite, and augite are all observed, in various associations with one another. Coexisting olivine phenocrysts are also FeO-rich and strongly zoned. Compositional and zoning properties are similar to those observed in boninites and are interpreted as resulting from rapid cooling of individual chondrules.

  16. Weathering of ordinary chondrites from the Atacama Desert, Chile, by Mssbauer spectroscopy and synchrotron radiation X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Munayco, Pablo; Munayco, Jimmy; Avillez, Roberto R.; Valenzuela, Millarca; Rochette, Pierre; Gattacceca, JRMe; Scorzelli, Rosa B.

    2013-03-01

    Some terrestrial areas have climatic and geomorphologic features that favor the preservation, and therefore, accumulation of meteorites. The Atacama Desert in Chile is among the most important of such areas, known as DCA. This desert is the driest on Earth, one of the most arid, uninhabitable localities with semiarid, arid, and hyper-arid conditions. The meteorites studied here were collected from within the DCA of San Juan and Pampa de Mejillones, located, respectively, in the Central Depression and the Coastal Range of the Atacama Desert. 57Fe Mssbauer spectroscopy was used for quantitative analysis of the degree of weathering of the meteorites, through the determination of the proportions of the various Fe-bearing phases and in particular the amount of oxidized iron in terrestrial alteration products. The abundance of ferric ions in weathered chondrites can be related to specific precursor compositions and to the level of terrestrial weathering. The aim of the study was the identification, quantification, and differentiation of the weathering products in the ordinary chondrites found in the San Juan and the Pampa de Mejillones areas of the Atacama Desert. The 57Fe Mssbauer spectroscopy study was complemented by synchrotron radiation X-ray diffraction and magnetic susceptibility measurements. The results allow a clear differentiation of the rate of weathering in meteorite samples collected from the San Juan versus the Pampa de Mejillones areas of the Atacama Desert.

  17. Optical effects of regolith processes on S asteroids as simulated by laser impulse alteration of ordinary chondrite

    NASA Technical Reports Server (NTRS)

    Moroz, L. V.; Fisenko, A. V.; Semjonova, L. F.; Pieters, C. M.

    1993-01-01

    The spectral properties of some powdered chondrites and minerals altered by Isser impulse are studied in order to estimate possible optical effects of regolith processes (micrometeoritic bombardment). Gradual reduction of overall reflectance and spectral contrast, the increase of continuum slope, the increase of spectrally derived olivine/pyroxene ratio and Fs content of orthopyroxene with increasing alteration degree show that regolith processes could affect optical properties of surface material more heavily than has been previously appreciated. Ordinary chondrites (OC's) are known to account for 80 percent of observed meteorite falls, but so far no main belt parent bodies have been identified for these meteorites. S-asteroids resemble OC's spectrally, but are characterized by a steeper red continuum unlike that of OC's and their spectrally derived mineralogies are far outside OC range. Attempts were made to explain the spectral mismatch between OC's and S asteroids by some process, which alters optical properties of uppermost regolith. However, the spectral studies of shocked (black) OC's, gas-rich OC's, melted OC's and synthetic metal-rich regoliths derived from OC's demonstrate that such altered OC materials darken, but do not redden.

  18. Lavras do Sul: A New Equilibrated Ordinary L5 Chondrite from Rio Grande do Sul, Brazil

    NASA Astrophysics Data System (ADS)

    Zucolotto, M. E.; Antonello, L. L.; Varela, M. E.; Scorzelli, R. B.; Ludka, Isabel P.; Munayco, P.; dos Santos, E.

    2012-03-01

    The new Brazilian chondrite, Lavras do Sul, was found in 1985 at Lavras do Sul, Rio Grande do Sul State-Brazil (3330'48?S; 5354'65?W). It consists of a single mass weighing about 1 kg, covered by a black fusion crust with grayish interior. Four polished thin sections were prepared from a slice weighing 67 g on deposit at the Museu Nacional/UFRJ. It consists mostly of chondrules and chondrule fragments dispersed in a recrystallized matrix. Most chondrules are poorly defined and range in size from 300 to 2,000 ?m, although some of them show distinct outlines, particularly when viewed under cross-polarized transmitted and reflected light. The texture of chondrules varies from non-porphyritic (e.g., barred-olivine, radial-pyroxene) to porphyritic ones (e.g., granular olivine as well as olivine-pyroxene). The meteorite contains mainly olivine (Fa24.9), low-Ca pyroxene (Fs22.6) and metal phases, with minor amounts of plagioclase, chromite and magnetite. Mssbauer Spectroscopy studies indicate that the metal phase is kamacite, tetrataenite and antitaenite. Veins of secondary iddingsite crosscut the thin section and some ferromagnesian silicates. The chemical composition indicates that Lavras do Sul is a member of the low iron L chondrite group. The poorly delineated chondritic texture with few well-defined chondrules, the occurrence of rare clinopyroxene and plagioclase (and maskelynite) with apparent diameters ranging from 5 to 123 ?m led us to classify Lavras do Sul as an equilibrated petrologic type 5. The shock features of some minerals suggest a shock stage S3, and the presence of a small amount of secondary minerals such as iddingsite and goethite, a degree of weathering W1. The meteorite name was approved by the Nomenclature Committee (Nom Com) of the Meteoritical Society (Meteoritic Bulletin N99).

  19. Ortho- and clinopyroxene compositions in ordinary chondrites and related blander model calculation procedures

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Olsen, E.

    1973-01-01

    Chemical analyses of the orthopyroxene and clinopyroxene compositions in chondrites are reported. Standard microprobe techniques to 15 kilovolts, 0.03 microamperes, and 40 second counting time were employed. Duplicate analyses were conducted on three grains of each opx and cpx together with two different raw data correction methods as checks on analytical precision and correction procedures. Only those analytical summations of between 99.20 and 100.80 weight percent, and cation summations between 3.980 and 4.020 (based on 6 oxygens) were used.

  20. Partitioning of Nd, Tb, Lu, and Hf Between Garnet and Ordinary Chondrite Melt at 5 to 9 GPa: Applications to Martian Differentiation

    NASA Technical Reports Server (NTRS)

    Draper, D. S.; Chabot, N. L.; Xirouchakis, D.; Wasserman, A. A.; Agee, C. B.

    2001-01-01

    One explanation for Al and REE depletions in SNC meteorites is early majorite fractionation in a deep martian magma ocean. We report initial results from an experimental investigation of partitioning between majoritic garnet and ordinary chondrite liquid. Additional information is contained in the original extended abstract.

  1. Silica-merrihueite/roedderite-bearing chondrules and clasts in ordinary chondrites: New occurrences and possible origin

    NASA Technical Reports Server (NTRS)

    Krot, Alexander N.; Wasson, John T.

    1994-01-01

    Merrihueite (K,Na)2(Fe,Mg)5Si12O30 (na less than 0.5, fe greater than 0.5, where na = Na/(Na + K), fe = Fe/(Fe + Mg) in atomic ratio) is a rare mineral described only in several chondrules and irregularly-shaped fragments in the Mezo-Madaras L3 chondrite (Dodd et al., 1965; Wood and Holmberg, 1994). Roedderite (Na,K)2(Mg,Fe)5Si12O30 (na greater than 0.5, fe less than 0.5) has been found only in enstatite chondrites and in the reduced, subchondritic silicate inclusions in IAB irons (Fuchs, 1966; Rambaldi et al., 1984; Olsen, 1967). We described silica-roedderite-bearing clasts in L/LL3.5 ALHA77011 and LL3.7 ALHA77278, a silica-roedderite-bearing chondrule in L3 Mezo-Madaras, and a silica-merrihueite-bearing chondrule in L/LL3.5 ALHA77115. The findings of merrihueite and roedderite in ALHA77011, ALHA77115, ALHA77278 and Mezo-Madaras fill the compositional gap betweeen previously described roedderite in enstatite chondrites and silicate inclusions in IAB irons and merrihueite in Mezo-Madaras, suggesting that there is a complete solid solution of roedderite and merrihueite in meteorites. We infer that the silica- and merrihueite/roedderite-bearing chondrules and clasts experienced a complex formational history including: (a) fractional condensation in the solar nebular that produced Si-rich and Al-poor precursors, (b) melting of fractionated nebular solids resulting in the formation of silica-pyroxene chondrules, (c) in some cases, fragmentation in the nebula or on a parent body, (d) reaction of silica with alkali-rich gas that formed merrihueite/roedderite on a parent body, (e) formation of fayalitic olivine and feerosilite-rich pyroxene due to reaction of silica with oxidized Fe on a parent body, and (f) minor thermal metamorphism, possibly generated by impacts.

  2. Trace-Element Constraints on Origin of SiO2-bearing Clasts in Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Misawa, K.; Kanazawa, M.; Bridges, J. C.; Nakamura, N.; Hutchison, R.

    1995-09-01

    Silica-rich igneous-textured clasts are found in OC [1-6]. The SiO2-bearing clasts found in the Parnallee (LL3.6) and Farmington (L5) chondrites are isotopically unique [4-6]. They plot on a mixing line defined between UOC chondrules and an 16(sub)O-depleted end member in the oxygen three isotope diagram. We analyzed trace elements including REE by MSID technique for SiO2-bearing clasts (CB1, CB4, CB7, and CB8) from Parnallee. Some major and minor elements of CB8 were determined by AA or ICP-AES. The CI-chondrite normalized REE patterns of the clasts are shown in Fig. 1. CB8 has a high Si/Mg ratio (2.5), although its bulk Mg/(Mg + Fe) and Fe/Mn ratios (0.79 and 51, respectively) are within the range of chondritic values. Refractory elements Ca and Al are highly fractionated in CB8; the clast is enriched in Ca (3 x CI) but depleted in Al (0.7 x CI). CB1, CB4, and CB7 also show Ca enrichment (3-7 x CI). CB8 is depleted in moderately volatile lithophiles Mn, Na, K, and Rb (0.18-0.71 x CI), siderophile elements Fe, Co, and Ni (0.0041-0.39 x CI), and chalcophile element Zn (0.076 x CI). The SiO2-bearing clasts analyzed exhibit a gradual depletion from LREE to HREE (CI-normalized La/Lu ratios vary from 1.6 to 18) and a large positive Eu anomaly (Eu/Eu*=2.4-14) along with a depletion of La. This LREE/HREE fractionation is inversely correlated with SiO2 contents of the clasts. Abundance of Sr is parallel to that of Eu in CB8. However, Sr is depleted compared with Eu in the other clasts. These abundance patterns are quite different from those of typical ferromagnesian chondrules in UOCs, SiO2-bearing pyroxene-rich clast in Hedjaz (L3.7) [3], and silica-rich orthopyroxenite Bo-1 in Bovedy (L3) [7]. Absence of metal and sulfide, low abundances of siderophile and chalcophile elements in the clasts imply that metal and sulfide were removed from precursor material before or during clast formation. General REE patterns of SiO2-bearing clasts from Parnallee suggest that they were produced by igneous fractionation controlled by the plagioclase component. Extensive olivine extraction followed plagioclase crystallization from the residua may be able to explain the REE pattern of CB8 [5, 6]. However, simple fractional crystallization or extraction of partial melting liquid from a chondritic source could explain neither large fractionation of La/Lu nor enrichment of Eu relative to Sr observed in CB1, CB4, and CB7. Detailed fractionation processes occurred on a parent body still remain unsolved. References: [1] Olsen E. J. et al. (1981) EPSL, 56, 82-88. [2] Brigham C. A. et al. (1986) GCA, 50, 1655-1666. [3] Nakamura N. et al. (1990) EPSL, 99, 290-302. [4] Bridges J. C. et al. (1993) Meteoritics, 28, 329-330. [5] Bridges J. C. et al. (1994) Meteoritics, 29, 448-449. [6] Bridges J. C. et al. (1995) Meteoritics, submitted. [7] Ruzicka A. et al. (1995) Meteoritics, 30, 57-70.

  3. Terrestrial weathering of Antarctic stone meteorites - Formation of Mg-carbonates on ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Velbel, Michael A.; Long, David T.; Gooding, James L.

    1991-01-01

    Results are presented on the mineralogy, chemistry, and origin of white efflorescences on the surface of Lewis Cliff (Antarctica) 85320 (H5) chondrite (LEW 85320). Particular attention is given to determining the sources of the cations and anions of the evaporite, in order to establish the relative importance of the meteoritic element distribution and terrestrial contamination in the evaporite formation during the weathering process. The data on Na, K, Ca, and Rb abundances in efflorescence from LEW 85320 suggest that cations in evaporite minerals on Antarctic meteorites are not the products of contamination by terrestrial (marine) salts. It is suggested that the Mg in efflorescence on LEW 85320 originated from weathering of meteoritic olivine.

  4. An Ordinary Chondrite Impactor Composition for the Bosumtwi Impact Structure, Ghana, West Africa: Discussion of Siderophile Element Contents and Os and Cr Isotope Data

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Shukolyukov, Alex; Lugmair, Guenter

    2004-01-01

    Osmium isotope data had shown that Ivory Coast tektites contain an extraterrestrial component, but do not allow distinction between chondritic and iron meteorite contamination. PGE abundances of Ivory Coast tektites and impactites and target rocks from the Bosumtwi crater, the source crater of the Ivory Coast tektites, were all relatively high and did not allow to resolve the presence, or identify the nature, of the meteoritic component. However, Cr isotope analyses of an Ivory Coast tektite yielded a distinct 53Cr excess of 0.30+/-0.06, which indicates that the Bosumtwi impactor was an ordinary chondrite.

  5. Minor and trace element concentrations in adjacent kamacite and taenite in the Krymka chondrite

    NASA Astrophysics Data System (ADS)

    Meftah, N.; Mostefaoui, S.; Jambon, A.; Guedda, E. H.; Pont, S.

    2016-03-01

    We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe-Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite-taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr-1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe-Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.

  6. The natural thermoluminescence of meteorites. 7: Ordinary chondrites from the Elephant Moraine region, Antarctica

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Roth, J.; Sears, H.; Sears, D. W. G.

    1994-01-01

    We report natural and induced thermoluminescence (TL) measurements for meteorites from the Elephant Moraine region (76 deg 17 min S, 157 deg 20 min E) of Antarctica. We use our data to identify fragmented meteorites (i.e., 'pairings'); our dataset of 107 samples represents at most 73 separate meteorite falls. Pairing groups are generally confined to single icefields, or to adjacent icefields, but a small proportion cross widely separated icefields in the region, suggesting that the fields can be considered as a single unit. Meteorites from this region have high natural TL levels, which indicates that they have small terrestrial surface exposure ages (less than 12,500 years). There do not appear to be significant differences in natural TL levels (and hence surface exposure ages) between individual blue icefields in the region. The proportion of reheated meteorites from the Elephant Moraine region is similar to that of other Antarctic sites and modern falls, consistent with the uniformity of the meteoritic flux in this regard. An unusual subset of H-chondrites, with high induced TL peak temperatures, is absent among the data for meteorites collected in the Elephant Moraine region, which stresses their similarity to modern falls. We suggest that the Elephant Moraine region, which stresses their similarity to modern falls. We suggest that the Elephant Moraine icefields formed through shallow ablation of the ice. Unlike the Allan Hills sites to the south, lateral transport is probably less important relative to the infall of meteorites in concentrating meteorites on these icefields.

  7. Impact Melting of Ordinary Chondrite Regoliths and the Production of Fine-grained Fe(sup 0)

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Cintala, Mark J.; See, Thomas H.

    2003-01-01

    The detailed study of individual lunar soil grains provides evidence that the major optical properties of the lunar surface are primarily related to the production of fine-grained (< 20 nm, super-paramagnetic) Fe-particles in agglutinitic impact melts and to iron-rich vapor deposits on the surfaces of individual grains. These Fe-rich materials are derived from oxidized species due to high post-shock temperatures in the presence of solar-wind derived H2; part of the Fe-rich grain surfaces may also be due to sputtering processes. Identical processes were recently suggested for the optical maturation of S-type asteroid surfaces, the parent objects of ordinary chondrites (OCs). OCs, however, do not contain impact-produced soil melts, and should thus also be devoid of impact-triggered vapor condensates. The seeming disparity can only be understood if all OCs resemble relatively immature impact debris, akin to numerous lunar highland breccias. It is possible to assess this scenario by evaluating experimentally whether impact velocities of 5- 6 km/s, typical for the present day asteroid belt, suffice to produce both impact melts and fine-grained metallic iron. We used 125-250 m powders of the L6 chondrite ALH85017. These powders were aliquots from fines that were produced by collisionally disrupting a single, large (461g) chunk of this meteorite during nine impacts and by subjecting the resulting rubble to an additional 50 impacts. As a consequence, the present shock-recovery experiments employ target materials of exceptional fidelity (i.e., a real chondrite that was impact pulverized). The target powders were packed into tungsten-alloy containers to allow for the potential investigation of freshly produced, fine-grained iron and impacted by stainless-steel and tungsten flyer plates; the packing density varied between 38 and 45% porosity. Peak pressures ranged from 14.5 to 67 GPa and were attained after multiple reverberations of the shock wave at the interface of the silicate powder and metal container. Pressures in the 50 to 70 GPa range should be fairly typical for asteroid impacts at approx. 5-6 km/s, yet we note that these pressures refer to those at the projectile/target interface only and that most crater ejecta on OC parent-bodies will have experienced much lower stresses.

  8. A Quantitative NMR Analysis of Phosphorus in Carbonaceous and Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Pasek, M. A.; Smith, V. D.; Lauretta, D. S.

    2004-01-01

    Phosphorus is important in a number of biochemical molecules, from DNA to ATP. Early life may have depended on meteorites as a primary source of phosphorus as simple dissolution of crustal apatite may not produce the necessary concentration of phosphate. Phosphorus is found in several mineral phases in meteorites. Apatite and other Ca- and Mg phosphate minerals tend to be the dominant phosphorus reservoir in stony meteorites, whereas in more iron-rich or reduced meteorites, the phosphide minerals schreibersite, (Fe, Ni)3P, and perryite, (Ni, Fe)5(Si, P)2 are dominant. However, in CM chondrites that have experienced significant aqueous alteration, phosphorus has been detected in more exotic molecules. A series of phosphonic acids including methyl-, ethyl-, propyl- and butyl- phosphonic acids were observed by GC-MS in Murchison. Phosphorian sulfides are in Murchison and Murray. NMR spectrometry is capable of detecting multiple substances with one experiment, is non-destructive, and potentially quantitative, as discussed below. Despite these advantages, NMR spectrometry is infrequently applied to meteoritic studies due in large part to a lack of applicability to many compounds and the relatively high limit of detection requirements. Carbon-13 solid-state NMR has been applied to macromolecular carbon in Murchison. P-31 NMR has many advantages over aqueous carbon-13 NMR spectrometry. P-31 is the only isotope of phosphorus, and P-31 gives a signal approximately twice as strong as C-13. These two factors together with the relative abundances of carbon and phosphorus imply that phosphorus should give a signal approximately 20 as strong as carbon in a given sample. A discussion on the preparation of the quantitative standard and NMR studies are presented

  9. Esperance: A New Type 3 L/LL Ordinary Chondrite from Western Australia

    NASA Astrophysics Data System (ADS)

    Davis, D. E.; Petersen, A. K.

    1992-07-01

    The following article is a preliminary commentary on the petrographic characteristics found in our investigation of the recently discovered Esperance chondrite. The material on which this study is based consists of a thin section made from the near-surface portion of the meteorite, combined with a small sample displaying its exterior features. A thin, dull, dark brown fusion crust is present on one side of the small specimen, while the remainder of the sample shows a highly weathered and irregular interior surface with some cracking and numerous exposed chondrules and cavities. In thin section, however, the weathering effects are limited and mainly restricted to a superficially light brown staining on silicates and around metal, close to the penetrating fractures that traverse the sample. These fractures are filled with oxidation products and are a continuation of those seen in the hand sample. The thin section shows a close-packed aggregate of sharply defined chondrules and chondrule fragments set in a dark opaque matrix. A great variety of chondrule types are present with sizes up to approx. 3 mm in diameter, ranging in form from perfectly spherical to rather irregular shapes. Several examples of chondrules within chondrules as well as rimmed, armored, and dark-zoned varieties are well-displayed features seen in thin section. Other prominent characteristics are transparent pale brown glass within many chondrules and abundant polysynthetically twinned pyroxenes and zoned olivines. Metal alloy and iron sulphide, the dominant opaque mineral phases, occur within chondrules, as chondrule rims or in the matrix. Although they occupy the same mode of occurrence they are rarely seen in intimate intergrowth. A large fraction of the metal consists of several up to mm sized interstitial grains. The remaining metal and the iron sulphide both occur finely dispersed throughout the section associated with small but abundant chromite and phosphate grains and rare ilmenite. Chromite is also found within chondrules associated with both olivine and pyroxene. Within the matrix, following a rather straight narrow zone, numerous small globules of iron sulphide and metal result in thin, more or less interconnecting veins. These opaque veins are exclusively confined to matrix regions, although small globules are often seen in connection with aggregates that make up opaque chondrule rims. Quite often small vein-like strings are seen to occur in the immediate vicinity of large interstitial opaque grains. These rapidly thin out in abundance and size, a short distance away from the larger grains. Locally melt pockets are evident, either as completely isolated enclaves or as junctions between melt veins. Both melt pockets and the thin veins can be distinguished from the dark matrix by their slightly lighter colour. These features, combined with many of the larger olivine crystals showing sets of parallel planar fractures and undulatory to mosaic extinction, indicate a degree of shock deformation. According to the petrographic classification of progressive stages of shock metamorphism by Stoffler, Keil, and Scott (1991), the Esperance can at present be placed in the catergories of weakly to moderately shocked chondrites (S3-S4). A microprobe investigation of the silicate fraction of the meteorite has revealed a pronounced chemical zoning of both olivines and pyroxenes in many chondrules. Measured Fa variations in single olivine crystals have, in the most extreme cases, been found to range from Fa=5,9% in the core, to Fa=25,8% at the rim. The highest Fa content encountered at present is 27,6% in a homogeneous matrix crystal. A frequency plot of rim and matrix olivine Fa contents, groups around a peak of 25%. The chemical composition of Fs contents in pyroxenes are seen to range continuously from 0,6% to 29,2%. Several low-Ca pyroxenes show a notable Fe-Mg zoning that, however, does not exceed approx. 10% difference from core to rim. Frequently chemical compositions consistent with augite, endiopside and pigeonite are seen as overgrowths on the low-Ca

  10. The decay constant of rubidium-87 and a combined uranium-lead, rubidium-strontium chronology of ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Rotenberg, Ethan David

    The 87Rb 86Sr system is a widely used long-lived isotope geochronometer. 87Rb, the naturally occurring radioactive isotope of Rb, undergoes beta-decay to stable 87Sr with a half-life of approximately 50 Ga. Decay of 87Rb to 87Sr results in variable 87Sr/86Sr in minerals with different Rb/Sr, and measurement of 87Rb/ 86Sr and 87Sr/86Sr allows for the determination of the age of the rock. Accurate ages depend both on the quality of the isotopic analysis and on the accuracy of the 87Rb decay constant, lambda 87. Although the currently accepted value for lambda87 of 1.42 x 10-11a-1 has been in use for over 30 years, there is growing evidence that it is not accurate. Recent attempts to refine lambda87 and its precision have not reached a consensus. This thesis describes a new experiment to measure lambda 87 by 87Sr accumulation over a period of about 30 years, and the preparation of a 84-86Sr double-spike in conjunction with that experiment. Radiogenic 87Sr produced in aliquots of a RbClO4 salt was measured by isotope dilution thermal ionization mass spectrometry. An average of 31 measurements yields a value of 1.398 +/- 0.003 x 10-11a-1 . This requires a substantial revision from the previously accepted decay constant and makes Rb-Sr ages calculated with it 1.5% older. A Rb-Sr and U-Pb isotopic chronometry study was carried out on thirteen ordinary chondrites---the most common type of meteorite, the origin and history of which are still unclear. Some meteorites appear disturbed, possibly by recent shock during breakup of the parent body, whereas others yielded accurate and precise U-Pb and Pb-Pb ages. For example, L5 Elenovka yielded distinct ages for silicates (4555 Ma) and phosphates (4535 Ma), allowing the cooling rate of this meteorite from approximately 1055 K to 759 K to be constrained to 15 +/- 3 K/Ma. Rb-Sr yielded less precise ages than U-Pb, but using the new decay constant allows accurate comparison between the two methods. This study creates a firm foundation for future studies in thermal history of chondrites and terrestrial metamorphic complexes using Rb-Sr together with other isotopic chronometers.

  11. "Sweating meteorites"Water-soluble salts and temperature variation in ordinary chondrites and soil from the hot desert of Oman

    NASA Astrophysics Data System (ADS)

    Zurfluh, Florian J.; Hofmann, Beda A.; Gnos, Edwin; Eggenberger, Urs

    2013-10-01

    The common appearance of hygroscopic brine ("sweating") on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42-, HCO3-, Na+, and Cl-, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl- (from soil), SO42- (from meteoritic troilite and soil), and iron (meteoritic). "Sweating meteorites" mainly contain Mg2+ and Cl-. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 ?g g-1 (median 2500 ?g g-1) as compared to 187-14140 ?g g-1 in soils (median 1148 ?g g-1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.

  12. The thermoluminescence carrier in the Dhajala chondrite

    NASA Technical Reports Server (NTRS)

    Sparks, M. H.; Mckimmey, P. M.; Sears, D. W. G.

    1983-01-01

    It is pointed out that the type 3 (unequilibrated) ordinary chondrites provide a major source of information on the early solar system. However, the interpretation of the data is difficult because all but a few display signs of metamorphic alteration. The present investigation is concerned with the thermoluminescence (TL) sensitivity measurements on 58 chondrules separated from the Dhajala meteorites. The data were discussed briefly by Sparks and Sears (1982). In the current investigation particular attention is given to the constraints placed by these data on the mechanism by which metamorphism is related to TL sensitivity. Dhajala-normalized TL sensitivity of the separated chondrules is plotted against chondrule mass, and a histogram of the CaO contents of 15 chondrules is presented. Histograms showing the TL sensitivity of chondrules separated from the Dhajala meteorite are also provided.

  13. Chromite-Plagioclase Assemblages as a New Shock Indicator; Implications for the Shock and Thermal Histories of Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    Chromite in ordinary chondrites (OC) can be used as a shock indicator. A survey of 76 equilibrated H, L and LL chondrites shows that unshocked chromite grains occur in equant, subhedral and rounded morphologies surrounded by silicate or intergrown with metallic Fe-Ni and/or troilite. Some unmelted chromite grains are fractured or crushed during whole-rock brecciation. Others are transected by opaque veins; the veins form when impacts cause localized heating of metal-troilite intergrowths above the Fe-FeS eutectic (988 C), mobilization of metal-troilite melts, and penetration of the melt into fractures in chromite grains. Chromite-plagioclase assemblages occur in nearly every shock-stage S3-S6 OC; the assemblages range in size from 20-300 microns and consist of 0.2-20-micron-size euhedral, subhedral, anhedral and rounded chromite grains surrounded by plagioclase or glass of plagioclase composition. Plagioclase has a low impedance to shock compression. Heat from shock-melted plagioclase caused adjacent chromite grains to melt; chromite grains crystallized from this melt. Those chromite grains in the assemblages that are completely surrounded by plagioclase are generally richer in Al2O3, than unmelted, matrix chromite grains in the same meteorite. Chromite veinlets (typically 0.5-2 microns thick and 10-300 microns long) occur typically in the vicinity of chromite-plagioclase assemblages. The veinlets formed from chromite-plagioclase melts that were injected into fractures in neighboring silicate grains; chromite crystallized in the fractures and the residual plagioclase-rich melt continued to flow, eventually pooling to form plagioclase-rich melt pockets. Chromite-rich chondrules (consisting mainly of olivine, plagioclase-normative mesostasis, and 5-15 vol.% chromite) occur in many shocked OC and OC regolith breccias but they are absent from primitive type-3 OC. They may have formed by impact melting chromite, plagioclase and adjacent mafic silicates during higher-energy shock events. The melt was jetted from the impact site and formed droplets due to surface tension. Crystallization of these droplets may have commenced in flight, prior to landing on the parent-body surface. Chromite-plagioclase assemblages and chromite veinlets occur in 25 out of 25 shock-stage S1 OC of petrologic type 5 and 6 that I examined. Although these rocks contain unstrained olivine with sharp optical extinction, most possess other shock indicators such as extensive silicate darkening, numerous occurrences of metallic Cu, polycrystalline troilite, and opaque veins. It seems likely that these rocks were shocked to levels at least as high as shock-stage S3 and then annealed by heat generated during the shock event. During annealing, the olivine crystal lattices healed but other shock indicators survived. Published Ar-Ar age data for some SI OC indicate that many shock and annealing events occurred very early in the history of the parent asteroids. The common occurrence of shocked and annealed OC is consistent with collisions being a major mechanism responsible for metamorphosing OC.

  14. A 3D nanoscale approach to nebular paleomagnetism in the Semarkona LL3.0 ordinary chondrite

    NASA Astrophysics Data System (ADS)

    Einsle, J. F.; Fu, R. R.; Weiss, B. P.; Kasama, T.; Midgley, P. A.; Harrison, R. J.

    2014-12-01

    Solar nebular models suggest that magnetic fields are central to the redistribution of mass and angular momentum in the protoplanetary disk. Using individual chondrules with patches of dusty olivine the strength of these magnetic fields can be measured due to presence of nanoscale Fe inclusions. Since chondrules formed by rapid heating and cooling in the early solar nebula, individual chondrules have the potential to record the magnetic field that was present during their formation, and retain this signal for several billion years. Recently the first robust paleointensity measurement of nebular fields was compleated by measureing dusty olivine grains from the Semarkona LL3.0 ordinary chondrite meteorite in a SQUID microscope. (Fu et al. this meeting) Extracting quantitative information from the paleomagnetic meaurements requires a full understanding of the underlying physical mechanisms producing the measured magnetic signal. Here we characterise the magnetic behaviour of the same dusty olivine chondrules, using a variety of electron microscopy techniques. Electron holography and Lorentz imaging confirm the dominance of single vortex (SV) states in the majority of the remanence carriers. In-field measurements demonstrate the high stability of this SV state, making them suitable carriers of paleomagnetic information. We present a 3D volume reconstruction of the dusty olivine using Focussed-Ion-Beam (FIB) slice-and-view tomography. Combining the selective milling properties of FIB with the high spatial resolution of the Scanning Electron Microscope we are able to capture images as we make successive slices through a selected region of the sample. For this initial study we present a collection of 400 images taken every 10 nm as we slice through an 10 ?m x 10 ?m x 4 ?m volume of the dusty olivine patch within a single chondrule. Each image possesses resolution around 10 nm allowing us to resolve particles in both the single domain and single vortex size ranges. Once assembled the full data provies quantitative statistics on particle-size distribution, shapes and interparticle spacing. The information is then used to model the macroscopic paleomagnetic properties. This work further extends the central role of electron microscopy in determining the underlying physics of the remanence acquisition process.

  15. Plessite formation by discontinuous precipitation reaction from gamma-Fe,Ni in Richardton /H5/ ordinary chondrite

    NASA Astrophysics Data System (ADS)

    Grokhovskii, V. J.; Bevan, A. W. R.

    1983-01-01

    A discontinuous precipitation reaction in zoned gamma-Fe,Ni (taenite) to produce plessite is described as a complement to the alpha yields alpha+gamma precipitation reactions previously observed in the Richardton H-group chondrite. The discontinuous precipitations involve the formation of two or more stable phases behind a grain boundary that migrates into a supersaturated solid-solution. The process is considered as a mechanism for producing rapid diffusion paths in chondrites, and subsequent formation of the structures detected. Analysis of the discontinuous plessitic transformations in the Richardton chondrite indicate nucleation and inward growth occurring in high Ni, metal silicate grain boundary regions of the zoned gamma-taenite grains. The heating source is discussed, together with laboratory-produced alpha yields alpha+gamma and gamma yields gamma+alpha reactions in Fe,Ni alloys, resulting in structures similar to those in the chondrite, and taking place at 350 C.

  16. Fe-Ni metal and sulfide minerals in CM chondrites: An indicator for thermal history

    USGS Publications Warehouse

    Kimura, M.; Grossman, J.N.; Weisberg, M.K.

    2011-01-01

    CM chondrites were subjected to aqueous alteration and, in some cases, to secondary metamorphic heating. The effects of these processes vary widely, and have mainly been documented in silicate phases. Herein, we report the characteristic features of Fe-Ni metal and sulfide phases in 13 CM and 2 CM-related chondrites to explore the thermal history of these chondrites. The texture and compositional distribution of the metal in CM are different from those in unequilibrated ordinary and CO chondrites, but most have similarities to those in highly primitive chondrites, such as CH, CR, and Acfer 094. We classified the CM samples into three categories based on metal composition and sulfide texture. Fe-Ni metal in category A is kamacite to martensite. Category B is characterized by pyrrhotite grains always containing blebs or lamellae of pentlandite. Opaque mineral assemblages of category C are typically kamacite, Ni-Co-rich metal, and pyrrhotite. These categories are closely related to the degree of secondary heating and are not related to degree of the aqueous alteration. The characteristic features of the opaque minerals can be explained by secondary heating processes after aqueous alteration. Category A CM chondrites are unheated, whereas those in category B experienced small degrees of secondary heating. CMs in category C were subjected to the most severe secondary heating process. Thus, opaque minerals can provide constraints on the thermal history for CM chondrites. ?? The Meteoritical Society, 2011.

  17. The Search for Meterorites with Complex Exposure Histories Amoung Ordinary Chondrites with Low 3HE/21NE Ratios

    SciTech Connect

    Welton, K C; Nishiizumi, K; Caffee, M W

    2001-04-30

    In calculating cosmic-ray exposure ages of meteorites it is generally assumed that the meteoroids were expelled from a shielded position within their parent body and then experienced a single stage exposure before colliding with Earth. The combination of noble gas and radionuclide measurements in several large meteorites, such as Jilin and Bur Ghelaui, have revealed complex exposure histories: i.e. an initial exposure on the surface of an asteroid (or within meter-sized meteoroid), followed by a second exposure as a smaller object. In fact, orbital dynamics calculations predicted that at least 30% of the meteorites arriving on Earth experienced two- or multiple-stage exposure histories [1]. More recently, after the recognition that the Yarkovsky effect plays an important role in delivering meteorites from the asteroid belt to Earth-crossing orbits, it was confirmed that complex exposure histories should be common [2]. Nevertheless, despite the ability to measure a wide range of radionuclides with accelerator mass spectrometry (AMS), only a few meteorites with complex exposure histories have been identified [e.g. 3,4]. The question is whether the relatively paucity of complex exposure histories is real or have we simply overlooked complex-exposure histories. In this work we focus on meteorites with low {sup 3}He/{sup 21}Ne ratios, since it is known that most meteorites with complex exposure histories have relatively low {sup 3}He/{sup 21}Ne ratios, i.e. the {sup 3}He/{sup 21}Ne ratio is below the ''Bern-line''. Several hypotheses have been suggested for these low {sup 3}He/{sup 21}Ne ratios, including solar heating in low-perihelion orbits, shock-related diffusion of He during the collision that ejected the meteoroid, or an artifact of high shielding conditions [4]. The first two hypotheses seem to be supported by low radiogenic {sup 4}He concentrations in samples with low {sup 3}He, whereas Monte Carlo calculations have shown that some of the low {sup 3}He/{sup 21}Ne ratios may be due to high shielding conditions in objects with radii > 1m [5]. To elucidate these issues, we selected 15 samples with known noble gas concentrations [6] for radionuclide studies and obtained aliquots of the samples adjacent to those measured for noble gases. The specific goal is the identification of complex exposure histories among samples having low {sup 3}He/{sup 21}Ne ratios. All samples have {sup 3}He deficiencies of >20% relative to the ''Bern-line'' (Table 1). Most of the selected samples also have low {sup 22}Ne/{sup 21}Ne ratios ({le}1.1), indicative of high shielding during most of their cosmic-ray exposure (Table 1), whereas one sample (Suizhou) was selected because of its relatively low {sup 81}Kr concentration [7]. In addition, we selected QUE 93021, for which initial radionuclide results suggested a short exposure age. Here we present cosmogenic {sup 10}Be, {sup 26}Al and {sup 36}Cl in stone and metal fractions for the 16 ordinary chondrites listed in Table 1.

  18. Comparison of Nickel XANES Spectra and Elemental Maps from a Ureilite, a LL3.8 Ordinary Chondrite, Two Carbonaceous Chondrites and Two Large Cluster IDPs

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2014-01-01

    Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.

  19. Chemical and physical studies of type 3 chondrites. IX. Thermoluminescence and hydrothermal annealing experiments and their relationship to metamorphism and aqueous alteration in type < 3. 3 ordinary chondrites

    SciTech Connect

    Guimon, R.K.; Lofgren, G.E.; Sears, D.W.G.

    1988-01-01

    Samples of four type 3 chondrites have been annealed at 400-850/sup 0/C and 0.77-1 kbar for 10-500 h in the presence of various amounts of water (0-10 wt.%) and sodium disilicate (0-2 molal) and their thermoluminescence properties measured. After annealing for > 20 h at temperatures > 600/sup 0/C, the TL sensitivity of the samples increased by factors of up to 40. After annealing at < 600/sup 0/C for 10-500 h, or relatively short periods at high temperatures (e.g., less than or equal to 20 h at 850/sup 0/C), the TL sensitivity of the samples decreased by up to 2 orders of magnitude (depending on the original value). The TL peak temperatures observed in the present experiments are consistent with a low form of feldspar (the TL phosphor) being produced at < 800/sup 0/C and a high form being produced at > 800/sup 0/C. When both high and low forms were present originally, the low-form was destroyed preferentially. The authors suggest that these data are consistent with the TL-metamorphism trends observed in type > 3.2 chondrites, being due to the formation of feldspar by the devitrification of chondrule glass during metamorphism. For types < 3.2, the TL data are equally consistent with these types experiencing lower levels of metamorphism than the higher types, or with type 3.0 being produced from higher types by aqueous alteration. The presence of water with non-terrestrial D/H ratios, and petrographic evidence for aqueous alteration in Semarkona, lead to favoring the aqueous alteration hypothesis.

  20. Carbon-rich Chondritic Clast PV1 from the Plainview H-chondrite Regolith Formation from H3 Chondrite Material by Possible Cometary Impact

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Trigo-Rodriguez, Josep M.; Kunihiro, Takuya; Kallemeyn, Gregory W.; Wasson, John T.

    2006-01-01

    Chondritic clast PV1 from the Plainview H-chondrite regolith breccia is a subrounded, 5-mm diameter unequilibrated chondritic fragment that contains 13 wt% C occurring mainly within irregularly shaped 30-400-micron-size opaque patches. The clast formed from H3 chondrite material as indicated by the mean apparent chondrule diameter (310 micron vs. approximately 300 micron in H3 chondrites), the mean Mg-normalized refractory lithophile abundance ratio (1.00 +/- 0.09 XH), the previously determined 0-isotopic composition (Delta O-17 = 0.66% vs. 0.68 +/- 0.04%0 in H3 chondrites and 0.73 +/- 0.09% in H4-6 chondrites), the heterogeneous olivine compositions in grain cores (with a minimum range of Fal-19), and the presence of glass in some chondrules. Although the clast lacks the fine-grained, ferroan silicate matrix material present in type 3 ordinary chondrites, PV1 contains objects that appear to be recrystallized clumps of matrix material. Similarly, the apparent dearth of radial pyroxene and cryptocrystalline chondrules in PV1 is accounted for by the presence of some recrystallized fragments of these chondrule textural types. All of the chondrules in PV1 are interfused indicating that temperatures must have briefly reached approximately 1100C (the approximate solidus temperature of H-chondrite silicate). The most likely source of this heating was by an impact. Some metal was lost during impact heating as indicated by the moderately low abundance of metallic Fe-Ni in PV1 (approximately 14 wt%) compared to that in mean H chondrites (approximately 18 wt%). The carbon enrichment of the clast may have resulted from a second impact event, one involving a cometary projectile, possibly a Jupiter-family comet. As the clast cooled, it experienced hydrothermal alteration at low water/rock ratios as evidenced by the thick rims of ferroan olivine around low-FeO olivine cores. The C-rich chondritic clast was later incorporated into the H-chondrite parent-body regolith and extensively fractured and faulted.

  1. Alkali-granitoids as fragments within the ordinary chondrite Adzhi-Bogdo: Evidence for highly fractionated, alkali-granitic liquids on asteroids

    NASA Technical Reports Server (NTRS)

    Bischoff, A.

    1993-01-01

    Adzhi-Bogdo is an ordinary chondrite regolith breccia (LL3-6) that fell October 30, 1949 in Gobi Altay, Mongolia. The rock consists of submm- to cm-sized fragments embedded in a fine-grained elastic matrix. The breccia contains various types of clasts, some of which must be of foreign heritage. Based on chemical compositions of olivine some components have to be classified as L-type. Components of the breccia include chondrules, impact melts (some are K-rich, similar to those found in other LL-chondrites, highly recrystalized rock fragments ('granulites'), pyroxene-rich fragments with achondritic textures, and alkali-granitoidal fragments that mainly consist of K-feldspar and quartz or tridymite. Probably, this is the first report on granitoids from asteroids. It can be ruled out that these fragments represent huge rock assemblages of the parent body like granites do on Earth. Therefore, to avoid misunderstandings, these rocks will be designated as granitoids. In one thin section four granitoids were observed. The main phases within these clasts are K-feldspar and SiO2-phases. Minor phases include albite, Cl-apatite, whitlockite, ilmenite, zircon, Ca-poor pyroxene, and an unidentified Na,Ti-bearing silicate. Based on chemical composition and on optical properties quartz appears to be the SiO2-phase in two fragments, whereas tridymite seems to occur in the other two. The calculated formula of the unknown Na,Ti-rich silicate is very close to (Na,Ca)2.7(Fe,Mg)6(Ti)1.3(Si)7(O)24. Quartz and K-feldspar can reach sizes of up to 700 microns. Thus, the fragments can be described as coarse-grained (by chondritic standards). This is especially the case considering that quartz and K-feldspar are very rare minerals in ordinary chondrites. Representative analyses of minerals from some granitoidal clasts are given. Based on the mineral compositions and the modal abundances the bulk compositions were calculated. Besides these granitoidal rocks, pyroxene-rich fragments occur that show exsolution textures that are similar to those found in eucrites.

  2. Cooling rate of chondrules in ordinary chondrites revisited by a new geospeedometer based on the compensation rule

    NASA Astrophysics Data System (ADS)

    Béjina, Frédéric; Sautter, Violaine; Jaoul, Olivier

    2009-01-01

    For several decades efforts to constrain chondrite cooling rates from diffusion zoning in olivine gave rise to a range of values from 5 to 8400 K/h (Desch, S.J., Connolly Jr., H.C., 2002. A model for the thermal processing of particles in solar nebula shocks: application to cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183-208; Greeney, S., Ruzicka, A., 2004. Relict forsterite in chondrules: implications for cooling rates. Lunar Planet. Sci. XXXV, abstract # 1246.). Such large uncertainties directly reflect the variability of diffusion data. Alternatively, from this variability results a compensation rule, log D0 = a + bE (diffusion coefficients are written D = D0 exp(- E/ RT)). We test a new geospeemetry approach, based on this rule, on cooling of chondrules in chondrites, Sahara-97210 LL 3.2 and Wells LL 3.3. Greeney and Ruzicka (2004) matched Fe-Mg diffusion profiles in olivine from these chondrites with cooling rates between 200 and 6000 K/h. In our geospeedometry model, the use of the compensation rule greatly reduces the uncertainties by avoiding the choice of one diffusion coefficient among many. The cooling rates we found are between 700 and 3600 K/h for Sahara and 700-1600 K/h for Wells. Finally, we discuss the influence of our analytical model parameters on our cooling rate estimates.

  3. The formation of weathering products on the LEW 85320 ordinary chondrite - Evidence from carbon and oxygen stable isotope compositions and implications for carbonates in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Grady, Monica M.; Wright, I. P.; Pillinger, C. T.; Gibson, E. K., Jr.

    1989-01-01

    Isotopic analysis of nesquehonite recovered from the surface of the LEW 85320 H5 ordinary chondrite shows that the delta C-13 and delta O-18 values of the two generations of bicarbonate (Antarctic and Texas) are different: delta C-13 = + 7.9 per mil and + 4.2 per mil; delta O-18 = + 17.9 per mil and + 12.1 per mil, respectively. Carbon isotopic compositions are consistent with equilibrium formation from atmospheric carbon dioxide at - 2 + or - 4 C (Antarctic) and + 16 + or - 4 C (Texas). Oxygen isotopic data imply that the water required for nesquehonite precipitation was derived from atmospheric water vapor or glacial meltwater which had locally exchanged with silicates, either in the meteorite or in underlying bedrock. Although carbonates with similar delta C-13 values have been identified in the SNC meteorites EETA 79001 and Nakhla, petrographic and temperature constraints argue against their simply being terrestrial weathering products.

  4. Using the Fe/Mn Ratio of FeO-Rich Olivine In WILD 2, Chondrite Matrix, and Type IIA Chondrules to Disentangle Their Histories

    NASA Technical Reports Server (NTRS)

    Frank, David R.; Le, L.; Zolensky, M. E.

    2012-01-01

    The Stardust Mission returned a large abundance of impactors from Comet 81P/Wild2 in the 5-30 m range. The preliminary examination of just a limited number of these particles showed that the collection captured abundant crystalline grains with a diverse mineralogy [1,2]. Many of these grains resemble those found in chondrite matrix and even contain fragments of chondrules and CAIs [1-3]. In particular, the olivine found in Wild 2 exhibits a wide compositional range (Fa0-97) with minor element abundances similar to the matrix olivine found in many carbonaceous chondrites (CCs) and unequilibrated ordinary chondrites (UOCs). Despite the wide distribution of Fa content, the olivine found in the matrices of CCs, UOCs, and Wild 2 can be roughly lumped into two types based solely on fayalite content. In fact, in some cases, a distinct bi-modal distribution is observed.

  5. The Effects of Shock Metamorphism on Metal Textures and Metallographic Cooling Rates in L-Group Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Bennett, M. E.; McSween, H. Y., Jr.

    1993-07-01

    Postshock reheating and rapid cooling have severely disturbed geothermometers and coolingrate indicators in L chondrites. This has generated an ongoing debate on the interpretation of the early thermal history of an 'onion-shell' [1] or a 'rubble-pile' [2] L-chondrite parent body. In order to access the degree that reheating has perturbed metallographic cooling rates (disrupting this early thermal history), we have undertaken a study of textures derived from shock metamorphism and subsequent fast cooling of sulfides and Fe-Ni metals. Classification of shock stage by petrographic analysis [3] was performed on 70 L- chondrite thin sections, 55 Antarctic and 15 non-Antarctic, in order to place each into their appropriate shock stage. Fe-Ni metals from representative samples of each shock stage were studied optically and analyzed chemically with a Cameca SX-50 electron microprobe to obtain textural and chemical data. Meteorites of shock stage S3. Meteorites of S4 shock stage contain features similar to lower-shocked S3s, except that they exhibit more abundant melt pockets with melt droplets larger by an order of magnitude (~10 micrometers in diameter). Samples of shock grade S5 have numerous melt droplets of troilite adjacent to troilite grains. They also contain small metal-silicate melt veins and patchy fizzed troilite [4]. These textures indicate reheating to an average temperature of 600-800 degrees C at 45-55 GPa [3]. At S6 stage large melt pockets and veins are readily visible and all original metal textures are totally disrupted. Metallographic cooling rate data were obtained four moderately- to highly-shocked samples. The lack of coherency for these samples is indicative of heterogeneous cooling following shock and confirms the statement by numerous workers that extreme care must be taken when selecting samples of L chondrites for cooling-rate studies. Six low-shock samples were also analyzed for metallographic cooling rates. Incoherency in most of the samples may be due to the slight degree of shock reheating present in even the 'least-shocked' L chondrites, however great care was taken during the analyses to avoid those regions where shock-related features were noted. These samples do, however, display a general trend in cooling rates. The lowest metamorphic grade yielded the slowest cooling rates and an increase in grade followed an increase in cooling rate. This is opposite the relationship predicted by the onion-shell model and suggests that the L parent body may have broken up while still hot and then gravitationally reaccreted as a rubble-pile [6]. Further study of metal and sulfide textures in L chondrites will provide additional information that can be used to better quantify the effect of shock metamorphism on L chondrites. This additional information will, in turn, furnish the necessary low-shock samples for use in determining the thermal history and, hence, the internal structure of the L-chondrite parent body. References: [1] Pellas P. and Storzer D. (1981) Proc. R. Soc. Lond., A374, 253-270. [2] Taylor G. J. et al. (1987) Icarus, 69, 1-13. [3] Stoffler D. et al. (l991) GCActa, 55, 3845-3867. [4] Scott E. R. D. et al. (1991) Meteoritics, 26, 393. [5] Raikes S. and Ahrens T. J. (1979) Geophys. J. R. Astron. Soc., 58, 717

  6. Textural properties of iron-rich phases in H ordinary chondrites and quantitative links to the degree of thermal metamorphism

    NASA Astrophysics Data System (ADS)

    Guignard, J.; Toplis, M. J.

    2015-01-01

    The textural characteristics of opaque iron-rich phases (kamacite-taenite and troilite) have been quantified in the eight H-chondrites (two H4, three H5 and three H6) that have been the subject of previous thermo-chronological studies. These samples are of interest as they have temperature-time paths during cooling that have been shown to be consistent with radiogenic heating by 26Al on a single parent-body, thus offering the possibility to quantitatively link textural characteristics to thermal history. In addition to these eight samples, two other H5 samples (Forest City & Misshof) and two primitive achondrites (Acapulco & Lodran) were studied for comparison. The textural characteristics measured include: (i) phase proportions, (ii) the length of metal-sulphide contacts, (iii) dihedral angle at contacts with silicate grains, (iv) grain shape and circularity, (v) grain size and size distributions. The absolute and relative proportions of metals and sulphides are found to be approximately constant in all studied H chondrites, consistent with evolution in a chemically closed system. With increasing degree of thermal metamorphism, H-chondrites are found to show evidence for separation of metal and sulphide phases, increasing grain circularity, increasing grain size, and modification of size distributions characterized by the elimination of small grains. Variations of these parameters are found to be almost identical for sulphides and metals suggesting similar growth mechanisms for these two phases. Furthermore, trends between samples place them consistently in the same order: Sainte Marguerite (H4), Forest Vale (H4), Nadiabondi (H5), Richardton (H5), Forest City (H5), Misshof (H5), Allegan (H5), Kernouv (H6), Guarea (H6) and Estacado (H6). In all cases Acapulco and Lodran extend the trends observed among the H-chondrites. In general, it is found that characteristics requiring material transport over shorter length scales (i.e. within grains) show greater variation for low petrographic type (H4/H5) and reach textural equilibrium earlier in the sequence than characteristics which require transport over larger distances (i.e. between grains). In the latter case (e.g. slopes of crystal size distribution), variations are most marked for H6 samples, trends that are significantly extended by Acapulco and Lodran, highlighting the role of silicate melt on variations in textural properties. Crystal size distributions imply normal grain growth (NGG) for both metals and sulphides, possibly controlled by grain boundary migration of olivine and/or pyroxene. Comparison of these results with geochemically constrained thermal models of the H-chondrite parent body shows an excellent correlation between average crystal sizes, and inferred depths in the original parent body, consistent with expectations based on thermal modelling. This study highlights the potential of grain-size as a quantitative marker of the degree of thermal metamorphism, although further work on a wider set of samples will be required to explore the limits of this approach.

  7. Calibration of cosmogenic noble gas production in ordinary chondrites based on 36Cl-36Ar ages. Part 1: Refined produced rates for cosmogenic 21Ne and 38Ar

    NASA Astrophysics Data System (ADS)

    Dalcher, N.; Caffee, M. W.; Nishiizumi, K.; Welten, K. C.; Vogel, N.; Wieler, R.; Leya, I.

    2013-10-01

    We measured the concentrations and isotopic compositions of He, Ne, and Ar in bulk samples and metal separates of 14 ordinary chondrite falls with long exposure ages and high metamorphic grades. In addition, we measured concentrations of the cosmogenic radionuclides 10Be, 26Al, and 36Cl in metal separates and in the nonmagnetic fractions of the selected meteorites. Using cosmogenic 36Cl and 36Ar measured in the metal separates, we determined 36Cl-36Ar cosmic-ray exposure (CRE) ages, which are shielding-independent and therefore particularly reliable. Using the cosmogenic noble gases and radionuclides, we are able to decipher the CRE history for the studied objects. Based on the correlation 3He/21Ne versus 22Ne/21Ne, we demonstrate that, among the meteorites studied, only one suffered significant diffusive losses (about 35%). The data confirm that the linear correlation 3He/21Ne versus 22Ne/21Ne breaks down at high shielding. Using 36Cl-36Ar exposure ages and measured noble gas concentrations, we determine 21Ne and 38Ar production rates as a function of 22Ne/21Ne. The new data agree with recent model calculations for the relationship between 21Ne and 38Ar production rates and the 22Ne/21Ne ratio, which does not always provide unique shielding information. Based on the model calculations, we determine a new correlation line for 21Ne and 38Ar production rates as a function of the shielding indicator 22Ne/21Ne for H, L, and LL chondrites with preatmospheric radii less than about 65 cm. We also calculated the 10Be/21Ne and 26Al/21Ne production rate ratios for the investigated samples, which show good agreement with recent model calculations.

  8. Sahara 03505 sulfide-rich iron meteorite: Evidence for efficient segregation of sulfide-rich metallic melt during high-degree impact melting of an ordinary chondrite

    NASA Astrophysics Data System (ADS)

    Orazio, M. D.; Folco, L.; Chaussidon, M.; Rochette, P.

    2009-03-01

    The Sahara 03505 meteorite is a 65 g sulfide-rich iron found in an undisclosed locality of the Sahara. It consists of roughly equal volumetric proportion of polycrystalline troilite (crystal size 1.5-7.5 mm) enclosing cellular/dendritic metallic Fe-Ni (width of the dendrite arms, ~100 m). The mineral assemblage is completed by sparse skeletal crystals of chromite, abundant droplets, 5- 100 m in size, of anhydrous Fe-, Fe-Na-, and Fe-Mn-Mg-Ca-Na-K-phosphates, tiny crystals of schreibersite, and particles of metallic Cu. The medium- to fine-grained quench texture, and cooling modeling suggest that Sahara 03505 formed through crystallization of a sulfur-rich metallic melt under rapid cooling conditions (1- 4 C s-1). The low troilite/metallic Fe-Ni ratio (~0.6 by weight) shows that this liquid was generated at much higher temperatures (>1300 C) with respect to the FeS-Fe,Ni cotectic liquids. Based on bulk chemistry and oxygen isotope composition of chromite, we propose that Sahara 03505 formed by extensive impact melting of an ordinary chondrite lithology, followed by the efficient segregation of the immiscible silicate and metallic liquids. The sulfur-rich metallic liquid rapidly cooled either by radiation into space as a small lump, or by conduction to a chondrite country rock as a vein intruded into the walls of an impact crater. Sahara 03505 belongs to a small group of sulfide-rich iron meteorites which are characterized by medium- to fine-grained quench textures and by bulk chemistry that is different from the other iron meteorite groups. We propose here to use the descriptive term sulfide-irons for this meteorite group, by analogy with the stony-irons.

  9. Organic Analysis of Catalytic Fischer-Tropsch Synthesis Products and Ordinary Chondrite Meteorites by Stepwise Pyrolysis-GCMS: Organics in the Early Solar Nebula

    NASA Technical Reports Server (NTRS)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2014-01-01

    Abiotic generation of complex organic compounds, in the early solar nebula that formed our solar system, is hypothesized by some to occur via Fischer-Tropsch (FT) synthesis. In its simplest form, FT synthesis involves the low temperature (<300degC) catalytic reaction of hydrogen and carbon monoxide gases to form more complex hydrocarbon compounds, primarily n-alkanes, via reactive nano-particulate iron, nickel, or cobalt, for example. Industrially, this type of synthesis has been utilized in the gas-to-liquid process to convert syngas, produced from coal, natural gas, or biomass, into paraffin waxes that can be cracked to produce liquid diesel fuels. In general, the effect of increasing reaction temperature (>300degC) produces FT products that include lesser amounts of n-alkanes and greater alkene, alcohol, and polycyclic aromatic hydrocarbon (PAH) compounds. We have begun to experimentally investigate FT synthesis in the context of abiotic generation of organic compounds in the early solar nebula. It is generally thought that the early solar nebula included abundant hydrogen and carbon monoxide gases and nano-particulate matter such as iron and metal silicates that could have catalyzed the FT reaction. The effect of FT reaction temperature, catalyst type, and experiment duration on the resulting products is being investigated. These solid organic products are analyzed by thermal-stepwise pyrolysis-GCMS and yield the types and distribution of hydrocarbon compounds released as a function of temperature. We show how the FT products vary by reaction temperature, catalyst type, and experimental duration and compare these products to organic compounds found to be indigenous to ordinary chondrite meteorites. We hypothesize that the origin of organics in some chondritic meteorites, that represent an aggregation of materials from the early solar system, may at least in part be from FT synthesis that occurred in the early solar nebula.

  10. Nonporphyritic chondrules and chondrule fragments in enstatite chondrites: Insights into their origin and secondary processing

    NASA Astrophysics Data System (ADS)

    Varela, M. E.; Sylvester, P.; BrandstäTter, F.; Engler, A.

    2015-08-01

    Sixteen nonporphyritic chondrules and chondrule fragments were studied in polished thin and thick sections in two enstatite chondrites (ECs): twelve objects from unequilibrated EH3 Sahara 97158 and four objects from equilibrated EH4 Indarch. Bulk major element analyses, obtained with electron microprobe analysis (EMPA) and analytical scanning electron microscopy (ASEM), as well as bulk lithophile trace element analyses, determined by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), show that volatile components (K2O + Na2O versus Al2O3) scatter roughly around the CI line, indicating equilibration with the chondritic reservoir. All lithophile trace element abundances in the chondrules from Sahara 97158 and Indarch are within the range of previous analyses of nonporphyritic chondrules in unequilibrated ordinary chondrites (UOCs). The unfractionated (solar-like) Yb/Ce ratio of the studied objects and the mostly unfractionated refractory lithophile trace element (RLTE) abundance patterns indicate an origin by direct condensation. However, the objects possess subchondritic CaO/Al2O3 ratios; superchondritic (Sahara 97158) and subchondritic (Indarch) Yb/Sc ratios; and chondritic-normalized deficits in Nb, Ti, V, and Mn relative to RLTEs. This suggests a unique nebular process for the origin of these ECs, involving elemental fractionation of the solar gas by the removal of oldhamite, niningerite, and/or another phase prior to chondrule condensation. A layered chondrule in Sahara 97158 is strongly depleted in Nb in the core compared to the rim, suggesting that the solar gas was heterogeneous on the time scales of chondrule formation. Late stage metasomatic events produced the compositional diversity of the studied objects by addition of moderately volatile and volatile elements. In the equilibrated Indarch chondrules, this late process has been further disturbed, possibly by a postaccretional process (diffusion?) that preferentially mobilized Rb with respect to Cs in the studied objects.

  11. The compositional classification of chondrites: 5. The Karoonda (CK) group of carbonaceous chondrites

    SciTech Connect

    Kallemeyn, G.W.; Rubin, A.E.; Wasson, J.T. )

    1991-03-01

    Petrographic and bulk compositional data reveal the existence of a new group of carbonaceous chondrites consisting of the observed fall, Karoonda, one large find from Maralinga, Australia, and 6-11 small finds from five sites in Antarctica. Ningqiang, also a fall, is genetically related to the group. Compositional, textural, and O-isotope data show that the new group is closely related to CV and CO chondrites. In keeping with the practice of naming carbonaceous chondrite groups after a prominent member, the authors designate it the Karoonda or CK group. All normal CK members are metamorphosed; petrographic grades range from 4 to 6. Some contain shock veins and all exhibit various degrees of blackening due to the dispersion of fine particles of sulfides and magnetite in silicates. Only one other group (EL) has no unequilibrated members. The unequilibrated Ningqiang chondrite is more similar to CK than to CV or CO chondrites, but differs significantly in detailed composition. Elemental abundance patterns in CK chondrites are similar to those in CO chondrites, and even more similar to those in CV chondrites. It appears that nebular conditions and processes were closely similar at the CK and CV formation locations. Although precise probability calculations are difficult because of uncertainties regarding pairing and because so few samples are known, the exceptional abundance of CK chondrites in Antarctica requires an explanation.

  12. Fayalitic olivine in matrix of the Krymka LL3.1 chondrite: Vapor-solid growth in the solar nebula

    NASA Astrophysics Data System (ADS)

    Weisberg, Michael K.; Zolensky, Michael E.; Prinz, Martin

    1997-11-01

    Fayalitic olivine (Fa54-94) is a ubiquitous component in the matrix of Krymka (LL3.1) as well as in other highly unequilibrated chondrites (ordinary and carbonaceous). In Krymka, the fayalitic olivine has an unusual anisotropic platy morphology that occurs in at least five types of textural settings, which can be characterized as: (1) isolated platelets, (2) clusters of platelets, (3) euhedral to subhedral crystals, (4) overgrowths of platelets on forsteritic olivine, and (5) fluffy (porous) aggregates. From TEM investigation, the direction of elongation of the platy olivine overgrowths on forsteritic olivine substrates is along the c axis and in most cases it corresponds with the c axis of the substrate olivine, suggesting that the fayalitic olivine grew in this unusual morphology and is not a replacement product of preexisting material. The fayalitic olivine in the matrix of Krymka is compositionally similar to olivine with platy morphology in the matrix of some CV3 chondrites and both have similar Fe/Mn ratios, but important morphological differences indicate that their relationship needs to be explored further. Textural and compositional data indicate that the fayalitic olivine in the matrix of Krymka, as well as in some other unequilibrated ordinary chondrites, formed prior to final lithification of the meteorite and probably prior to parent body accretion. We find that formation of the fayalitic olivine by vapor-solid growth provides the best explanation to our observations and data, and is the only feasible mechanism for the formation of fayalitic olivine in the matrix of Krymka. We propose that the fayalitic olivine formed by vaporization and recondensation of olivine rich-dust, during a period of enhanced dust/gas ratio in the nebula.

  13. Carbon and Oxygen Isotope Measurements of Ordinary Chondrite (OC) Meteorites from Antarctica Indicate Distinct Carbonate Species Using a Stepped Acid Extraction Procedure

    NASA Technical Reports Server (NTRS)

    Evans, Michael E.

    2015-01-01

    The purpose of this study is to characterize the stable isotope values of terrestrial, secondary carbonate minerals from five Ordinary Chondrite (OC) meteorites collected in Antarctica. These samples were identified and requested from NASA based upon their size, alteration history, and collection proximity to known Martian meteorites. They are also assumed to be carbonate-free before falling to Earth. This research addresses two questions involving Mars carbonates: 1) characterize terrestrial, secondary carbonate isotope values to apply to Martian meteorites for isolating in-situ carbonates, and 2) increase understanding of carbonates formed in cold and arid environments with Antarctica as an analog for Mars. Two samples from each meteorite, each approximately 0.5 grams, were crushed and dissolved in pure phosphoric acid for 3 sequential reactions: a) R times 0 for 1 hour at 30 degrees Centigrade (fine calcite extraction), b) R times 1 for 18 hours at 30 degrees Centigrade (course calcite extraction), and c) R times 2 for 3 hours at 150 degrees Centigrade (siderite and/or magnesite extraction). CO (sub 2) was distilled by freezing with liquid nitrogen from each sample tube, then separated from organics and sulfides with a TRACE GC using a Restek HayeSep Q 80/100 6 foot 2 millimeter stainless column, and then analyzed on a Thermo MAT 253 Isotope Ratio Mass Spectrometer (IRMS) in Dual Inlet mode. This system was built at NASA/JSC over the past 3 years and proof-tested with known carbonate standards to develop procedures, assess yield, and quantify expected error bands. Two distinct species of carbonates are found: 1) calcite, and 2) non-calcite carbonate (future testing will attempt to differentiate siderite from magnesite). Preliminary results indicate the terrestrial carbonates are formed at approximately sigma (sup 13) C equal to plus 5 per mille, which is consistent with atmospheric CO (sub 2) sigma (sup 13) C equal to minus 7 per mille and fractionation of plus12 per mille based upon polar temperature of -20 degrees Centigrade. The oxygen values fractionate sigma (sup 18) O equal to minus 10-20 per mille lighter between the R times 0 and R times 1 reactions at 30 degrees Centigrade. The carbonate oxygen isotope measurements are consistently heavier than expected with meteoric water and temperatures from Antarctica, perhaps due to secondary carbonate formation during curation in Houston, TX.

  14. On the Chondrite-Achondrite Transition

    NASA Astrophysics Data System (ADS)

    Tomkins, A. G.

    2014-09-01

    Textural changes across the chondrite-achondrite transition have been investigated by studying over 35 primitive achondrites of different types and over 30 Type 6 ordinary and CK chondrites. Two isograds are identified that mark this transition.

  15. Intrinsic oxygen fugacity measurements on seven chondrites, a pallasite, and a tektite and the redox state of meteorite parent bodies

    USGS Publications Warehouse

    Brett, R.; Sato, M.

    1984-01-01

    Intrinsic oxygen-fugacity (fO2) measurements were made on five ordinary chondrites, a carbonaceous chondrite, an enstatite chondrite, a pallasite, and a tektite. Results are of the form of linear log fO2 - 1 T plots. Except for the enstatite chondrite, measured results agree well with calculated estimates by others. The tektite produced fO2 values well below the range measured for terrestrial and lunar rocks. The lowpressure atmospheric regime that is reported to follow large terrestrial explosions, coupled with a very high temperature, could produce glass with fO2 in the range measured. The meteorite Salta (pallasite) has low fO2 and lies close to Hvittis (E6). Unlike the other samples, results for Salta do not parallel the iron-wu??stite buffer, but are close to the fayalite-quartz-iron buffer in slope. Minor reduction by graphite appears to have taken place during metamorphism of ordinary chondrites. fO2 values of unequilibrated chondrites show large scatter during early heating suggesting that the constituent phases were exposed to a range of fO2 conditions. The samples equilibrated with respect to fO2 in relatively short time on heating. Equilibration with respect to fO2 in ordinary chondrites takes place between grades 3 and 4 of metamorphism. Application of P - T - fO2 relations in the system C-CO-CO2 indicates that the ordinary chondrites were metamorphosed at pressures of 3-20 bars, as it appears that they lay on the graphite surface. A steep positive thermal gradient in a meteorite parent body lying at the graphite surface will produce thin reduced exterior, an oxidized near-surface layer, and an interior that is increasingly reduced with depth; a shallow thermal gradient will produce the reverse. A body heated by accretion on the outside will have a reduced exterior and oxidized interior. Meteorites from the same parent body clearly are not required to have similar redox states. ?? 1984.

  16. The Natural Thermoluminescence Survey of Antarctic Meteorites: Ordinary Chondrites at the Grosvenor Mountains, MacAlpine Hills, Pecora Escarpment and Queen Alexandra Range, and New Data New Data for the Elephant Moraine, Ice Fields

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, Derek W. G.

    2000-01-01

    The natural TL survey of Antarctic meteorites was started in 1987 at the request of the Antarctic Meteorite Working Group in order to provide an initial description of radiation and thermal histories. It was intended to be a complement to the mineralogical and petrographic surveys performed at the Johnson Space Center and the Smithsonian Institution. All ANSMET samples recovered since then, besides those that were heated throughout by atmospheric passage, have been measured. To date this amounts to about 1200 samples. As the data for each ice field reaches a significant level, we have been conducting a thorough examination of the data for that field with a view to (1) identifying pairing, (2) providing an estimate of terrestrial age and residence time on the ice surface, (3) looking for differences in natural TL between ice fields, (4) looking for variations in natural TL level with location on the ice, (5) looking for meteorites with natural TL levels outside the normal range. Pairing is a necessary first step in ensuring the @ost productive use of the collection, while geographical variations could perhaps provide clues to concentration mechanisms. Samples with natural TL values outside the normal range are usually inferred to have had either small perihelia or recent changes in orbital elements. In addition, induced TL data have enabled us to (5) look for evidence for secular variation in the nature of the flux of meteorites to Earth, and (6) look for petrologically unusual meteorites, such as particularly primitive ordinary chondrites, heavily shocked meteorites, or otherwise anomalous meteorites. To date we have published studies of the TL properties of 167 ordinary chondrites from Allan Hills, 107 from Elephant Moraine and 302 from Lewis Cliff and we have discussed the TL properties of fifteen H chondrites collected at the Allan Hills by Euromet after a storm during the 1988 season. We now have additional databases for a reasonable number of ordinary chondrites from Grosvenor Mountains (39 meteorites), MacAlpine Hills (70 meteorites), Pecora Escarpment (60 meteorites), and Queen Alexandra Range (173 meteorites) and we have data for a further 101 samples from Elephant Moraine. The results are summarized in Table 1. We also have fairly minimal databases (10-15 meteorites) for Dominion Range, Graves Nunataks, Reckling Peak and Wisconsin Range that will not be discussed here.

  17. The Natural Thermoluminescence Survey of Antarctic Meteorites: Ordinary Chondrites at the Grosvenor Mountains, Macalpine Hills, Pecora Escarpment and Queen Alexandra Range, and New Data for the Elephant Moraine, Ice Fields

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, Derek W. G.

    1999-01-01

    The natural TL (Thermoluminescence) survey of Antarctic meteorites was started in 1987 at the request of the Antarctic Meteorite Working Group in order to provide an initial description of radiation and thermal histories. It was intended to be a complement to the mineralogical and petrographic surveys performed at the Johnson Space Center and the Smithsonian Institution. All ANSMET (Antarctic Search for Meteorites) samples recovered since then, besides those that were heated throughout by atmospheric passage, have been measured. To date this amounts to about 1200 samples. As the data for each ice field reaches a significant level, we have been conducting a thorough examination of the data for that field with a view to identifying pairing, providing an estimate of terrestrial age and residence time on the ice surface, looking for differences in natural TL between ice fields, looking for variations in natural TL level with location on the ice, looking for meteorites with natural TL levels outside the normal range. Pairing is a necessary first step in ensuring the most productive use of the collection, while geographical variations could perhaps provide clues to concentration mechanisms. Samples with natural TL values outside the normal range are usually inferred to have had either small perihelia or recent changes in orbital elements. In addition, induced TL data have enabled us to look for evidence for secular variation in the nature of the flux of meteorites to Earth, and look for petrologically unusual meteorites, such as particularly primitive ordinary chondrites, heavily shocked meteorites, or otherwise anomalous meteorites. To date we have published studies of the TL properties of 167 ordinary chondrites from Allan Hills, 107 from Elephant Moraine and 302 from Lewis Cliff and we have discussed the TL properties of fifteen H chondrites collected at the Allan Hills by Euromet after a storm during the 1988 season. We now have additional databases for a reasonable number of ordinary chondrites from Grosvenor Mountains (39 meteorites), MacAlpine Hills (70 meteorites), Pecora Escarpment (60 meteorites), and Queen Alexandra Range (173 meteorites) and we have data for a further 101 samples from Elephant Moraine. The results are summarized. We also have fairly minimal databases (10-15 meteorites) for Dominion Range, Graves Nunataks, Reckling Peak and Wisconsin Range that will not be discussed here.

  18. Micron-scale D/H heterogeneity in chondrite matrices: A signature of the pristine solar system water?

    NASA Astrophysics Data System (ADS)

    Piani, Laurette; Robert, Franois; Remusat, Laurent

    2015-04-01

    Organic matter and hydrous silicates are intimately mixed in the matrix of chondrites and in-situ determination of their individual D/H ratios is therefore challenging. Nevertheless, the D/H ratio of each pure component in this mixture should yield a comprehensible signature of the origin and evolution of water and organic matter in our solar system. We measured hydrogen isotope ratios of organic and hydrous silicates in the matrices of two carbonaceous chondrites (Orgueil CI1 and Renazzo CR2) and one unequilibrated ordinary chondrite (Semarkona, LL3.0). A novel protocol was adopted, involving NanoSIMS imaging of H isotopes of monoatomatic (H-) and molecular (OH-) secondary ions collected at the same location. This allowed the most enriched component with respect to D to be identified in the mixture. Using this protocol, we found that in carbonaceous chondrites the isotopically homogeneous hydrous silicates are mixed with D-rich organic matter. The opposite was observed in Semarkona. Hydrous silicates in Semarkona display highly heterogeneous D/H ratios, ranging from 150 to 1800 10-6 (?DSMOW = - 40 to 10 600). Organic matter in Semarkona does not show such large isotopic variations. This suggests limited isotopic exchange between the two phases during aqueous alteration. Our study greatly expands the range of water isotopic values measured so far in solar system objects. This D-rich water reservoir was sampled by the LL ordinary chondrite parent body and an estimate (?9%) of its relative contribution to the D/H ratio of water in Oort cloud family comets is proposed.

  19. Highly siderophile elements in chondrites

    USGS Publications Warehouse

    Horan, M.F.; Walker, R.J.; Morgan, J.W.; Grossman, J.N.; Rubin, A.E.

    2003-01-01

    The abundances of the highly siderophile elements (HSE), Re, Os, Ir, Ru, Pt and Pd, were determined by isotope dilution mass spectrometry for bulk samples of 13 carbonaceous chondrites, 13 ordinary chondrites and 9 enstatite chondrites. These data are coupled with corresponding 187Re-187Os isotopic data reported by Walker et al. [Geochim. Cosmochim. Acta, 2002] in order to constrain the nature and timing of chemical fractionation relating to these elements in the early solar system. The suite of chondrites examined displays considerable variations in absolute abundances of the HSE, and in the ratios of certain HSE. Absolute abundances of the HSE vary by nearly a factor of 80 among the chondrite groups, although most vary within a factor of only 2. Variations in concentration largely reflect heterogeneities in the sample aliquants. Different aliquants of the same chondrite may contain variable proportions of metal and/or refractory inclusions that are HSE-rich, and sulfides that are HSE-poor. The relatively low concentrations of the HSE in CI1 chondrites likely reflect dilution by the presence of volatile components. Carbonaceous chondrites have Re/Os ratios that are, on average, approximately 8% lower than ratios for ordinary and enstatite chondrites. This is also reflected in 187Os/188Os ratios that are approximately 3% lower for carbonaceous chondrites than for ordinary and enstatite chondrites. Given the similarly refractory natures of Re and Os, this fractionation may have occurred within a narrow range of high temperatures, during condensation of these elements from the solar nebula. Superimposed on this major fractionation are more modest movements of Re or Os that occurred within the last 0-2 Ga, as indicated by minor open-system behavior of the Re-Os isotope systematics of some chondrites. The relative abundances of other HSE can also be used to discriminate among the major classes of chondrites. For example, in comparison to the enstatite chondrites, carbonaceous and ordinary chondrites have distinctly lower ratios of Pd to the more refractory HSE (Re, Os, Ir, Ru and Pt). Differences are particularly well resolved for the EH chondrites that have Pd/Ir ratios that average more than 40% higher than for carbonaceous and ordinary chondrite classes. This fractionation probably occurred at lower temperatures, and may be associated with fractionation processes that also affected the major refractory lithophile elements. Combined, 187Os/188Os ratios and HSE ratios reflect unique early solar system processing of HSE for each major chondrite class. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Chondrites and their Components

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; Krot, A. N.

    2003-12-01

    What are Chondrites?Chondrites are meteorites that provide the best% clues to the origin of the solar system. They are the oldest known rocks - their components formed during the birth of the solar system ca. 4,567 Ma - and their abundances of nonvolatile elements are close to those in the solar photosphere. Chondrites are broadly ultramafic in composition, consisting largely of iron, magnesium, silicon, and oxygen. The most abundant constituents of chondrites are chondrules, which are igneous particles that crystallized rapidly in minutes to hours. They are composed largely of olivine and pyroxene, commonly contain metallic Fe,Ni and are 0.01-10 mm in size. Some chondrules are rounded as they were once entirely molten but many are irregular in shape because they were only partly melted or because they accreted other particles as they solidified. Chondrites themselves were never molten. The definition of a chondrite has expanded recently with the discovery in Antarctica and the Sahara Desert of extraordinary meteorites with chondrules 10-100 μm in size, and chondrites so rich in metallic Fe,Ni that they were initially classified as iron meteorites with silicate inclusions. Thus, in meteoritics, as in other fields of planetary science, new discoveries sometimes require definitions to be modified.Chondrites are so diverse in their mineralogical and textural characteristics that it is not possible to describe a typical chondrite. We show one with diversely textured chondrules including prominent, aesthetically pleasing, rounded chondrules (Figure 1(a)), and another with more uniformly textured chondrules (Figure 1(b)). Owing to the high abundance of rounded or droplet chondrules in the abundant, so-called "ordinary" chondrites ( Figure 1(a)), studies of the origin of chondrules have commonly been based on these chondrites. (7K)Figure 1. Maps showing magnesium concentrations in two chondrites: (a) PCA91082, a CR2 carbonaceous chondrite, and (b) Tieschitz, an H/L3.6 ordinary chondrite. In CR chondrites, as in most carbonaceous chondrites, nearly all chondrules have porphyritic textures and are composed largely of forsterite (white grains), enstatite (gray), and metallic Fe,Ni (black). The subscripts show type I chondrules, which are common, and type II, which are FeO-rich and rare in this chondrite. Tieschitz, like other ordinary chondrites, is composed of all kinds of chondrules with diverse FeO concentrations. Key to chondrule types: BO, barred olivine; C, cryptocrystalline, PO, porphyritic olivine; POP, porphyritic olivine-pyroxene; PP, porphyritic pyroxene; RP, radial pyroxene. These maps were made with an electron microprobe from Mg Kα X-rays. Chondrites contain diverse proportions of three other components: refractory inclusions (0.01-10 vol.%), metallic Fe,Ni (<0.1-70%), and matrix material (1-80%). Refractory inclusions are tens of micrometers to centimeters in dimensions, lack volatile elements, and are the products of high-temperature processes including condensation, evaporation, and melting. Two types are recognized: calcium- and aluminum-rich inclusions or CAIs, and amoeboid olivine aggregates. CAIs are composed of minerals such as spinel, melilite, hibonite, perovskite and Al-Ti-diopside, which are absent in other chondritic components (see Chapter 1.08). Amoeboid olivine aggregates consist of fine-grained olivine, Fe,Ni metal, and a refractory component largely composed of aluminum-diopside, anorthite, spinel and rare melilite. Grains of metallic Fe,Ni occur inside and outside the chondrules as grains up to a millimeter in size and, like the chondrules and refractory inclusions, formed at high temperatures. Matrix material is volatile-rich, and fine-grained (5-10 μm) and forms rims on other components and fills the interstices between them. Chondrite matrices have diverse mineralogies: most are disequilibrium mixtures of hydrated and anhydrous silicates, oxides, metallic Fe,Ni, sulfides, and organic material and contain rare presolar grains.

  1. Chemical and physical studies of type 3 chondrites. IX - Thermoluminescence and hydrothermal annealing experiments and their relationship to metamorphism and aqueous alteration in type below 3.3 ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Guimon, R. Kyle; Sears, Derek W. G.; Lofgren, Gary E.

    1988-01-01

    Thermoluminescence (TL) properties were measured in samples of four type-3.0 chondrites annealed at 400-850 C and 0.77-1 kbar in the presence of various amounts of water and sodium disilicate. Several changes recorded in TL characteristics, such as the lowering of TL sensitivity in certain samples, its increase in other samples, and changes in the peak position and peak width of TL suggested the occurrence of metamorphic processes in these samples. It is suggested that, for the chondrite types above 3.2, the observed changes in TL are consistent with the TL-metamorphism trends, being due to the formation of feldspar by the devitrification of chondrule glass during metamorphism. For types below 3.2, the TL data are consistent with the hypothesis that these chondrules experienced lower levels of metamorphism than the higher types or, alternatively, with the hypothesis that the type 3.0 chondrules are being produced from higher types by aqueous alteration.

  2. A partial melting study of an ordinary (H) chondrite composition with application to the unique achondrite Graves Nunataks 06128 and 06129

    NASA Astrophysics Data System (ADS)

    Usui, Tomohiro; Jones, John H.; Mittlefehldt, David W.

    2015-04-01

    Melting experiments of a synthesized, alkali-bearing, H-chondrite composition were conducted at ambient pressure with three distinct oxygen fugacity conditions (IW-1, IW, and IW+2). Oxygen fugacity conditions significantly influence the compositions of partial melts. Partial melts at IW-1 are distinctly enriched in SiO2 relative to those of IW and IW+2 melts. The silica-enriched, reduced (IW-1) melts are characterized by high alkali contents and have silica-oversaturated compositions. In contrast, the silica-depleted, oxidized (≥IW) melts, which are also enriched in alkali contents, have distinctly silica-undersaturated compositions. These experimental results suggest that alkali-rich, felsic, asteroidal crusts as represented by paired achondrites Graves Nunataks 06128 and 06129 should originate from a low-degree, relatively reduced partial melt from a parent body having near-chondritic compositions. Based on recent chronological constraints and numerical considerations as well as our experimental results, we propose that such felsic magmatism should have occurred in a parent body that is smaller in size and commenced accreting later than those highly differentiated asteroids having basaltic crusts and metallic cores.

  3. The solar nebula redox state as recorded by the most reduced chondrules of five primitive chondrites

    NASA Technical Reports Server (NTRS)

    Johnson, M. C.

    1986-01-01

    Mafic minerals in the most reduced chondrules of five primitive meteorites were analyzed with an electron microprobe to determine the lower limit on their FeO contents. The accuracy obtained was + or - 0.01 weight percent FeO. The thermodynamic relationship between mole fraction FeSiO3 and pO2 of the ambient nebular gas at the time of mineral equilibration was established, and was used to infer the local O/H ratio of the nebular gas during chondrule formation. The lowest ferrosilite compositions reflected equilibration at 1500 K with a gas 2-18 times more oxidizing than a gas of solar composition. Olivines in low-FeO unequilibrated ordinary chondrites (UOC) chondrules are uniformly more FeO-rich than coexisting pyroxenes. This discrepancy suggests that a significant change in the O/H ratio of the nebular gas occurred between the time of olivine and pyroxene crystallization in the region of the nebula where UOCs formed. Mineral compositions in the chondrules of two C2 chondrites studied suggest they formed in a more homogeneous region of the nebula than the UOCs.

  4. Mean Atomic Weight of Chelyabinsk and Olivenza LL5 Chondrites

    NASA Astrophysics Data System (ADS)

    Szurgot, M.

    2015-07-01

    Mean atomic weights (Amean) of Chelyabinsk and Olivenza LL5 chondrites have been determined and analysed. Relationship between Fe/Si atomic ratio and mean atomic weight of ordinary chondrites has been established which enables one to predict Amean values.

  5. Shock metamorphism of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Scott, Edward R. D.; Keil, Klaus; Stoeffler, Dieter

    1992-01-01

    Shock effects were studied in 69 carbonaceous chondrites, including CM2, CO3, CV3, ungrouped C2-C4, and CK4-6 chondrites, using optical microscopy of thin sections. It is shown that the classification scheme of Stoeffler et al. (1991) for the progressive stages of shock metamorphism in ordinary chondrites is also applicable to carbonaceous chondrites. On the basis of shock effects in olivine, the 69 carbonaceous chondrites could be assigned to four shock stage, S1 to S4. The CM2 and CO3 groups were found to be the least shocked chondrite groups, whereas the CK4-6 and CV3 were the most strongly shocked groups.

  6. Thermal history of type-3 chondrites in the NASA antarctic collection

    NASA Astrophysics Data System (ADS)

    Bonal, L.; Quirico, E.; Montagnac, G.

    2014-07-01

    Chondrites are the most primitive meteorites. However, they were all modified in some ways by post-accretion geological processes operating on their asteroidal parent bodies. Hence, to decipher the formation(s) and origin(s) of their components, we must first understand how chondritic materials were modified in their asteroidal parent bodies. The modifications induced by secondary processes should not be underestimated and have to be precisely estimated before any interpretation of chondrite properties in terms of cosmochemistry. In particular, all chondrites contain some organic components that were potentially chemically and physically modified through post-accretion processes. A thin understanding of the induced evolution is required to allow for pertinent comparisons with other primitive extraterrestrial materials, such as cometary grains, to finally address questions such as the origin of organics in the Solar System. Type 3 chondrites experienced thermal metamorphism on their asteroidal parent body due to the radioactive decay of elements such as ^{26}Al. Temperatures higher than 300 °C were experienced on timescales of several thousands of years. Still, type 3 chondrites remain as unequilibrated rocks and common mineralogical thermometers cannot be applied. The polyaromatic carbonaceous matter is sensitive to thermal episodes (of long and short duration) experienced by the host meteorite. In particular, its structural order directly reflects the thermal history experienced on their parent bodies. The structural modification of the aromatic carbonaceous matter towards a higher order is irreversible, and independent of the mineralogy and degree of aqueous alteration. It is mainly controlled by the peak metamorphic temperature. Moreover, under the assumption of fairly similar organic precursors among chondrites of distinct groups, the structural order of polyaromatic organic matter allows for a direct comparison of their metamorphic grades. It is then possible to evaluate the metamorphic grade of the objects and to assign a petrologic type along a unique petrologic scale [1-4]. This technique has been successfully applied to type 3 Unequilibrated Ordinary Chondrites [1], carbonaceous CV chondrites [2], and CO chondrites [3]. The interpretation of the structural order of the polyaromatic carbonaceous matter in terms of thermal history is thus reliable. Raman spectroscopy enables the determination of the degree of structural order of the polyaromatic organic matter present in the matrix of chondrites. Both falls and finds, from Antarctica [4] and elsewhere, have been analyzed. It does not require a large amount of samples and is relatively easy to implement. Raman spectroscopy is particularly sensitive to the lowest petrologic types (3.0-3.2). The present NASA collection of Antarctic meteorites represents an incredible source of precious samples for our community. The present work finely characterizes the thermal history of most of the type 3 chondrites (UOCs, CVs, and COs) from that collection. At the present time, the objectives are threefold: (i) determination of reliable petrologic types indispensable for our community; (ii) identification of the most primitive type 3 chondrites (petrologic type ≤ 3.1); and (iii) identification of potential ''anomalous'' samples having experienced a slightly different thermal history. The JSC Meteorite Working Group generously allocated us with more than 150 chondrites (UOCs, CVs, and COs). The following points summarize the main results. (i) At the present time, the thermal histories of more than 100 samples have been characterized. (ii) The terrestrial weathering experienced by several chondrites (˜25 chondrites) has been too pervasive for the method to be applied. For these meteorites, as signatures of oxide minerals dominate Raman spectra of the matrix, the organic matter might have been significantly altered through oxidation. (iii) Real discrepancies with the preliminary JSC petrologic type attributions were found for several chondrites with mostly underestimations of the metamorphic grades. (iv) The structural grade of the polyaromatic carbonaceous matter is fairly homogeneous in most of the considered chondrites with a few exceptions, interpreted in terms of shock events. (v) Recently, there were some promising advances (e.g. [5,6]) in terms of interpretation of the structural order of the polyaromatic carbonaceous matter as a geothermometer for terrestrial rocks of low maturity grades. The used spectral tracers will be considered and the thermometry potentially applied to infer new constraints on the metamorphic temperature experienced by these type 3 chondrites.

  7. Lunar and Planetary Science XXXV: Concerning Chondrites

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Lunar and Planetary Science XXXV session entitled "Concerning Chondrites" includes the following topics: 1) Petrology and Raman Spectroscopy of Shocked Phases in the Gujba CB Chondrite and the Shock History of the CB Parent Body; 2) The Relationship Between CK and CV Chondrites: A Single Parent Body Source? 3) Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites; 4) Composition and Origin of SiO2-rich Objects in Carbonaceous and Ordinary Chondrites; 5) Re-Os Systematics and HSE distribution in Tieschitz (H3.6); Two Isochrons for One Meteorite; 6) Loss of Chromium from Olivine During the Metamorphism of Chondrites; 7) Very Short Delivery Times of Meteorites After the L-Chondrite Parent Body Break-Up 480 Myr Ago; and 8) The Complex Exposure History of a Very Large L/LL5 Chondrite Shower: Queen Alexandra Range 90201.

  8. Gas permeability of shocked chondrites

    NASA Astrophysics Data System (ADS)

    Matsui, T.; Sugiura, N.; Brar, N. S.

    1986-03-01

    The gas permeability of 11 ordinary chondrites was measured at various gas pressures (0.5-2.5 bars) under confining pressures up to 120 bars. The gas permeability ranges from less than a nanodarcy to a few millidarcies. There is a positive correlation between the permeability and the porosity. The permeabilithy decreased by as much as 50 percent when the confining pressure was increased from 10 to 100 bars, suggesting that the permeability of some chondrites is partly due to cracks. A linear relation between gas flow pressure dependence and confining pressure dependence of the gas permeability is observed, suggesting that on average, crack apertures are larger than pore spaces. The permeabilithy of heavily-shocked chondrites is less than of mildly shocked chondrites. Using the measured permeability data the size of a possible shocked-chondrite precursor body is estimated.

  9. Chondrites and Their Components

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; Krot, A. N.

    Chondrites are extraordinary mixtures of materials with diverse origins that formed around other stars, in the solar nebula, and in their parent asteroids. Most chondrites were so severely altered by aqueous fluids, thermal metamorphism, and impacts that the original characteristics of their components have been largely erased. But a few pristine chondrites have preserved an exquisite mineralogical, chemical, isotopic, and chronological record of the first few million years of solar system history. The properties of diverse types of carbonaceous, ordinary, and enstatite chondrites focusing on the most pristine samples are reviewed to establish the chemical, isotopic, and mineralogical properties and origins of their components and to elucidate the asteroidal processes that modified them. Refractory inclusions - amoeboid olivine aggregates and Ca-Al-rich inclusions - were the first solids to form in the solar nebula near to the protosun. Chondrules and associated metallic Fe-Ni grains were still forming several million years later when the earliest planetesimals, which melted due to heat from 26Al decay, were colliding. In the least-altered chondrites, matrix material, which coats chondrules and other components, is largely composed of micrometer-sized silicates and amorphous materials, which formed at high temperatures, plus small amounts (up to 200 ppm) of presolar oxides and silicates.

  10. Solar gases in meteorites - The origin of chondrites and C1 carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Heymann, D.

    1978-01-01

    Evidence suggesting that chondritic meteorites broke off from parent bodies in earth-crossing orbits is considered. It is suggested that ordinary chondrites have an asteroidal origin, and the possibility that C1 chondrites have a cometary origin is examined. Indications of heavy shock and reheating among L and H chondrites provides support for an asteroidal origin, while the Apollo and Amor objects are too small to be unfragmented asteroids, as proposed in the Anders theory of the origin of gas-rich meteorites. Events associated with the megaregolith are discussed in the framework of the proposed cometary origin of C1 chondrites.

  11. Ardn: A Long Hidden L6 Chondrite Fall

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Llorca, J.; Weyrauch, M.; Bischoff, A.; Moyano-Cambero, C. E.; Keil, K.; Laubenstein, M.; Pack, A.; Madiedo, J. M.; Alonso-Azcrate, J.; Riebe, M.; Wieler, R.; Ott, U.; Tapia, M.; Mestres, N.

    2014-09-01

    A L6 ordinary chondrite fall that occurred in Ardn, Len province, Spain on July 9, 1931 is described. The 5.5 g stone was kept hidden for 83 years by Rosa Gonzlez Prez, who recovered the meteorite. Ardn is still a fresh ordinary chondrite.

  12. Osmium Isotopic Compositions of Chondrites and Earth's Primitive Upper Mantle: Constraints on the Late Veneer

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Horan, M. F.; Morgan, J. W.; Meisel, T.

    2001-01-01

    The 187 Os/188 Os of carbonaceous chondrites averages approximately 2% lower than for enstatite and ordinary chondrites. The primitive upper mantle ratio for the Earth best matches that of ordinary and enstatite chondrites. Additional information is contained in the original extended abstract.

  13. Osmium isotope evidence for an s-process carrier in primitive chondrites.

    PubMed

    Brandon, A D; Humayun, M; Puchtel, I S; Leya, I; Zolensky, M

    2005-08-19

    Osmium extracted from unequilibrated bulk chondrites has isotope anomalies consistent with an insoluble s-process carrier, termed Os(i) here. Osmium from metamorphosed bulk chondrites does not have isotope anomalies, implying that the Os(i) carrier was destroyed by metamorphism. The isotopic homogeneity of metamorphosed bulk chondrites is consistent with extremely effective mixing of presolar grains from varied sources in the nebula. Osmium in the Os(i) carrier is likely from nucleosynthetic sites with a neutron density about two to four times as high as that of the average solar s-process Os. PMID:16109878

  14. Mean Atomic Weight of Pułtusk Meteorite and H Chondrites

    NASA Astrophysics Data System (ADS)

    Szurgot, M.

    2015-07-01

    Mean atomic weight Amean of Pułtusk and fifteen other H chondrites has been determined and analyzed. It was concluded that relationship between Fe/Si atomic ratio and Amean of ordinary chondrites predicts precisely Amean values.

  15. Chondrites and the Protoplanetary Disk, Part 1

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The papers discussed the following: The Formation Process of Adhering and Consorting Compound Chondrules Inferred Their Petrology and Major-Element Composition. The Prospect of High-Precision Pb Isotopic Dating of Meteorites. Evolution of UV-Irradiated Protoplanetary Disks. A Model for the Formation of E Chondrites. Oxygen Isotopic Diffusion and Exchange Experiments on Olivine and Chondrule Melts: Preliminary Results. Shock Heating: Origin of Shock Waves in the Protoplanetary Disk. Thermal Structures of Protoplanetary Disks. Meteoritical Astrophysics: A New Subdiscipline. Origin and Thermal History of FeNi-Metal in Primitive Chondrites. The Collisions of Chondrules Behind Shock Waves. Primary Signatures of the Nebular Dust Preserved in Accretionary Rims and Matrices of CV Chondrites. History of Thermally Processed Solids in the Protoplanetary Disk: Reconciling Theoretical Models and Meteoritical. Evidence Evaporation and Condensation During CAI and Chondrule Formation. Shock Heating: Effects on Chondritic Material. Rhounite-bearing Inclusions E201 and E202 from Efremovka: Constraints from Trace. Element Measurements Element Mapping in Anhydrous IDPs: Identification of the Host Phases of Major/Minor Elements as a Test of Nebula Condensation Models. Theoretical Studies of Disk Evolution Around Solar Mass Stars. Chemical Effects of High-Temperature Processing of Silicates. I-Xe and the Chronology of the Early Solar System. The Effects of X-Rays on the Gas and Dust in Young Stellar Objects. Origin of Short-lived Radionuclides in the Early Solar System. On Early Solar System Chronology: Implications of an Initially Heterogeneous Distribution of Short-lived Radionuclides. The Origin of Short-lived Radionuclides and Early Solar System Irradiation. Disequilibrium Melting and Oxygen Isotope Exchange of CAIs and Chondrules in the Solar Nebula. Mineralogy and Chemistry of Fine-grained Matrices, Rims, and Dark Inclusions in the CR Carbonaceous Chondrites Acfer/El Djouf 001 and the Ungrouped Carbonaceous Chondrites Acfer 094 and Adelaide. Oxygen Isotopes of Aluminum-rich Chondrules from Unequilibrated Enstatite Chondrites.

  16. Lea County 001, an H5 chondrite, and Lea County 002, an ungrouped type 3 chondrite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Score, Roberta; Clayton, Robert N.; Mayeda, Toshiko K.; Schutt, John W.

    1989-01-01

    A search of active deflation basins near Jal, Lea County, New Mexico resulted in the discovery of two meteorites, Lea County 001 and 002. Lea County 001 has mean olivine and low-Ca pyroxene compositions of Fa(19) and Fs(17), respectively. These and all other mineralogical and petrological data collected indicate a classification of H5 for this stone. Lea County 002 has mean olivine and low-Ca pyroxene compositions of Fa(2) and Fs(4), and is unequilibrated. Although it is mineralogically most similar to Kakangari and chondritic clasts within Cumberland Falls, the high modal amount of forsterite makes Lea County a unique type 3 chondrite. Oxygen isotope data for Lea County 002 fall on an 0-16-mixing line through those of the enstatite meteorites and IAB irons, a feature shared by Kakangari.

  17. Opaque Assemblages in CK and CV Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Neff, K. E.; Righter, K.

    2006-01-01

    CK carbonaceous chondrites are the only group of carbonaceous chondrites that exhibit thermal metamorphism. As a result, CKs display features of metamorphism such as silicate darkening, recrystallization and shock veins. Calcium Aluminum Inclusions and Fe-Ni metal are rare. CV carbonaceous chondrites are unequilibrated and have two subgroups; oxidized and reduced. The CV and CK carbonaceous chondrite groups have been compared to each other often because of petrographic similarities, such as overlapping oxygen isotopic ratios. Scientists have suggested the two groups of carbonaceous chondrites formed from the same parent body and CKs are equilibrated CV chondrites [1, 2]. The oxidized CV group has been most closely related to CKs. This study examines the petrology and mineralogy of CKs and CVs focusing on opaque minerals found in the meteorites. Using the oxide, metal and sulfide assemblages, constraints can be placed on the temperature and oxygen fugacity at which the meteorites equilibrated. The temperature and oxygen fugacity of the CK and CV chondrites can be compared in order to help define their formation history.

  18. The Vicência meteorite fall: A new unshocked (S1) weakly metamorphosed (3.2) LL chondrite

    NASA Astrophysics Data System (ADS)

    Keil, Klaus; Zucolotto, Maria E.; Krot, Alexander N.; Doyle, Patricia M.; Telus, Myriam; Krot, Tatiana V.; Greenwood, Richard C.; Franchi, Ian A.; Wasson, John T.; Welten, Kees C.; Caffee, Marc W.; Sears, Derek W. G.; Riebe, My; Wieler, Rainer; Santos, Edivaldo; Scorzelli, Rosa B.; Gattacceca, Jerome; Lagroix, France; Laubenstein, Matthias; Mendes, Julio C.; Schmitt-Kopplin, Philippe; Harir, Mourad; Moutinho, Andre L. R.

    2015-06-01

    The Vicência meteorite, a stone of 1.547 kg, fell on September 21, 2013, at the village Borracha, near the city of Vicência, Pernambuco, Brazil. It was recovered immediately after the fall, and our consortium study showed it to be an unshocked (S1) LL3.2 ordinary chondrite. The LL group classification is based on the bulk density (3.13 g cm-3); the chondrule mean apparent diameter (0.9 mm); the bulk oxygen isotopic composition (δ17O = 3.768 ± 0.042‰, δ18O = 5.359 ± 0.042‰, Δ17O = 0.981 ± 0.020‰); the content of metallic Fe,Ni (1.8 vol%); the Co content of kamacite (1.73 wt%); the bulk contents of the siderophile elements Ir and Co versus Au; and the ratios of metallic Fe0/total iron (0.105) versus total Fe/Mg (1.164), and of Ni/Mg (0.057) versus total Fe/Mg. The petrologic type 3.2 classification is indicated by the beautifully developed chondritic texture, the standard deviation (~0.09) versus mean Cr2O3 content (~0.14 wt%) of ferroan olivine, the TL sensitivity and the peak temperature and peak width at half maximum, the cathodoluminescence properties of chondrules, the content of trapped 132Xetr (0.317 × 10-8cm3STP g-1), and the Raman spectra for organic material in the matrix. The cosmic ray exposure age is ~72 Ma, which is at the upper end of the age distribution of LL group chondrites. The meteorite is unusual in that it contains relatively large, up to nearly 100 μm in size, secondary fayalite grains, defined as olivine with Fa>75, large enough to allow in situ measurement of oxygen and Mn-Cr isotope systematics with SIMS. Its oxygen isotopes plot along a mass-dependent fractionation line with a slope of ~0.5 and Δ17O of 4.0 ± 0.3‰, and are similar to those of secondary fayalite and magnetite in the unequilibrated chondrites EET 90161, MET 96503, and Ngawi. These data suggest that secondary fayalite in Vicência was in equilibrium with a fluid with a Δ17O of ~4‰, consistent with the composition of the fluid in equilibrium with secondary magnetite and fayalite in other unequilibrated ordinary chondrites. Secondary fayalite and the chondrule olivine phenocrysts in Vicência are not in isotopic equilibrium, consistent with low-temperature formation of fayalite during aqueous alteration on the LL parent body. That alteration, as dated by the 53Mn-53Cr chronology age of secondary fayalite, took place 4.0-1.1+1.4 Ma after formation of CV CAIs when anchored to the quenched angrite D'Orbigny.

  19. Establishment of redox conditions during planetary collisions as an origin of chondrites

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Kitamura, M.

    1994-01-01

    Collisions between a 'cometlike' body (mixtures of chondritic materials and ice) and a slightly differentiated body were proposed for shock origin of ordinary chondrites. In this model, chondrules were formed with shock melting, and matrices were formed both by fracturing of materials and by recondensation of evaporated materials. This model can explain different redox conditions of chondrite formations by ice evaporation. Although this model was originally proposed for ordinary chondrites, we assume here that the model can be extended to chondrite formation in general. In this paper, redox conditions during chondrite formation by collisions will be discussed in the light of phase diagrams for solid-vapor equilibria.

  20. The classification and complex thermal history of the enstatite chondrites

    NASA Technical Reports Server (NTRS)

    Zhang, Yanhong; Benoit, Paul H.; Sears, Derek W. G.

    1995-01-01

    We have carried out instrumental neutron activation analysis of 11 enstatite chondrites and electron microprobe analyses of 17 enstatite chondrites, most of which were previously little described. We report here the third known EH5 chondrite (LEW 88180) and an unusual EL6 chondrite (LEW 87119), new data on four EL3 chondrites (ALH 85119, EET 90299, PCA 91020, and MAC 88136, which is paired with MAC 88180 and MAC 88184), the second EL5 chondrite (TIL 91714), and an unusual metal-rich and sulfide-poor EL3 chondrite (LEW 87223). The often discussed differences in mineral composition displayed by the EH and EL chondrites are not as marked after the inclusion of the new samples in the database, and the two classes apparently experienced a similar range of equilibrium temperatures. However, texturally the EL chondrites appear to have experienced much higher levels of metamorphic alteration than EH chondrites of similar equilibration temperatures. Most of the petrologic type criteria are not applicable to enstatite chondrites and, unlike the ordinary chondrites, texture and mineralogy reflect different aspects of the meteorite history. We therefore propose that the existing petrologic type scheme not be used for enstatite chondrites. We suggest that while 'textural type' reflects peak metamorphic temperatures, the 'mineralogical type' reflects equilibration during postmetamorphic (probably regolith) processes. Unlike the ordinary chondrites and EH chondrites, EL chondrites experienced an extensive low-temperature metamorphic episode. There are now a large number of enstatite meteorite breccias and impact melts, and apparently surface processes were important in determining the present nature of the enstatite chondrites.

  1. 26Al in plagioclase-rich chondrules in carbonaceous chondrites: Evidence for an extended duration of chondrule formation

    NASA Astrophysics Data System (ADS)

    Hutcheon, I. D.; Marhas, K. K.; Krot, A. N.; Goswami, J. N.; Jones, R. H.

    2009-09-01

    The 26Al- 26Mg isotope systematics in 33 petrographically and mineralogically characterized plagioclase-rich chondrules (PRCs) from 13 carbonaceous chondrites (CCs) - one ungrouped (Acfer 094), six CR, five CV, and one CO - reveal large variations in the initial 26Al/ 27Al ratio, ( 26Al/ 27Al) 0. Well-resolved 26Mg excesses (? 26Mg) from the in situ decay of the short-lived nuclide 26Al ( t1/2 0.72 Ma) were found in nine chondrules, two from Acfer 094, five from the CV chondrites, Allende and Efremovka, and one each from the paired CR chondrites, EET 92147 and EET 92042, with ( 26Al/ 27Al) 0 values ranging from 3 10 -6 to 1.5 10 -5. Data for seven additional chondrules from three CV and two CR chondrites show evidence suggestive of the presence of 26Al but do not yield well defined values for ( 26Al/ 27Al) 0, while the remaining chondrules do not contain excess radiogenic 26Mg and yield corresponding upper limits of (11-2) 10 -6 for ( 26Al/ 27Al) 0. The observed range of ( 26Al/ 27Al) 0 in PRCs from CCs is similar to the range seen in chondrules from unequilibrated ordinary chondrites (UOCs) of low metamorphic grade (3.0-3.4). However, unlike the UOC chondrules, there is no clear trend between the ( 26Al/ 27Al) 0 values in PRCs from CCs and the degree of thermal metamorphism experienced by the host meteorites. High and low values of ( 26Al/ 27Al) 0 are found equally in PRCs from both CCs lacking evidence for thermal metamorphism (e.g., CRs) and CCs where such evidence is abundant (e.g., CVs). The lower ( 26Al/ 27Al) 0 values in PRCs from CCs, relative to most CAIs, are consistent with a model in which 26Al was distributed uniformly in the nebula when chondrule formation began, approximately a million years after the formation of the majority of CAIs. The observed range of ( 26Al/ 27Al) 0 values in PRCs from CCs is most plausibly explained in terms of an extended duration of 2-3 Ma for the formation of CC chondrules. This interval is in sharp contrast to most CAIs from CCs, whose formation appears to be restricted to a narrow time interval of less than 10 5 years. The active solar nebula appears to have persisted for a period approaching 4 Ma, encompassing the formation of both CAIs and chondrules present in CCs, and raising important issues related to the storage, assimilation and mixing of chondrules and CAIs in the early solar system.

  2. Petrology of types 4-6 carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Taylor, G. J.

    1985-01-01

    A comparative mineralogic study has been made of Coolidge, Karoonda, and new C4 chondrites in order to clarify the origin of C4-6 chondrites. It is shown that the properties of all C4-6 chondrites are consistent with an origin by metamorphism of C3-like precursors by processes analogous to those operating in ordinary chondrite parent bodies or planetesimals. However, type 4-6 material was not well mixed with type 3 material in the CV3 parent body. It is concluded that C4-6 chondrites may come from one or more separate parent bodies.

  3. I-Xe systematics in LL chondrites

    NASA Technical Reports Server (NTRS)

    Bernatowicz, T. J.; Podosek, F. A.; Swindle, T. D.; Honda, M.

    1988-01-01

    A stepwise heating analysis of Ar and Xe data from five neutron-irradiated whole rock LL chondrites (Soko Banja, Alta Ameen, Tuxtuac, Guidder, and Olivenza) is presented, emphasizing the complicated thermal history of ordinary chondrites. None of the present meteorites show a well-defined (Ar-40)-(Ar-39) apparent age plateau comprised of more than two release fractions. Most of the samples are found to yield well-defined high-temperature correlations between Xe-129/Xe-130 and Xe-128/Xe-130, and thus determinations of I-129/I-127 and Xe-129/Xe-130 at the time of isotopic closure for Xe. As in the case of other ordinary chondrites, the I-Xe systematics for LL chondrites correlate neither with a metamorphic grade nor with chronologies based opon other methods.

  4. The formation of Ca-, Fe-rich silicates in reduced and oxidized CV chondrites: The roles of impact-modified porosity and permeability, and heterogeneous distribution of water ices

    NASA Astrophysics Data System (ADS)

    MacPherson, Glenn J.; Krot, Alexander N.

    2014-07-01

    CV (Vigarano type) carbonaceous chondrites, comprising Allende-like (CVoxA) and Bali-like (CVoxB) oxidized and reduced (CVred) subgroups, experienced differing degrees of fluid-assisted thermal and shock metamorphism. The abundance and speciation of secondary minerals produced during asteroidal alteration differ among the subgroups: (1) ferroan olivine and diopside-hedenbergite solid solution pyroxenes are common in all CVs; (2) nepheline and sodalite are abundant in CVoxA, rare in CVred, and absent in CVoxB; (3) phyllosilicates and nearly pure fayalite are common in CVoxB, rare in CVred, and virtually absent in CVoxA; (4) andradite, magnetite, and Fe-Ni-sulfides are common in oxidized CVs, but rare in reduced CVs; the latter contain kirschsteinite instead. Thus, a previously unrecognized correlation exists between meteorite bulk permeabilities and porosities with the speciation of the Ca-, Fe-rich silicates (pyroxenes, andradite, kirschsteinite) among the CVox and CVred meteorites. The extent of secondary mineralization was controlled by the distribution of water ices, permeability, and porosity, which in turn were controlled by impacts on the asteroidal parent body. More intense shock metamorphism in the region where the reduced CVs originated decreased their porosity and permeability while simultaneously expelling intergranular ices and fluids. The mineralogy, petrography, and bulk chemical compositions of both the reduced and oxidized CV chondrites indicate that mobile elements were redistributed between Ca,Al-rich inclusions, dark inclusions, chondrules, and matrices only locally; there is no evidence for large-scale (>several cm) fluid transport. Published 53Mn-53Cr ages of secondary fayalite in CV, CO, and unequilibrated ordinary chondrites, and carbonates in CI, CM, and CR chondrites are consistent with aqueous alteration initiated by heating of water ice-bearing asteroids by decay of 26Al, not shock metamorphism.

  5. The Bencubbin chondrite breccia and its relationship to CR chondrites and the ALH85085 chondrite

    NASA Astrophysics Data System (ADS)

    Weisberg, Michael K.; Nehru, Cherukupalli E.; Prinz, Martin

    1990-12-01

    Bencubbin is an unclassified meteorite breccia which consists mainly of host silicate (40 vol.%) and host metal (60%) components. Rare (<1%) ordinary chondrite clasts and a dark xenolith (formerly called a carbonaceous chondrite clast) are also found. A petrologic study of the host silicates shows that they have textures, modes, mineralogy and bulk compositions that are essentially the same as that of barred olivine (BO) chondrules, and they are considered to be BO chondritic material. Bulk compositions of individual host silicate clasts are identical and differ only in their textures which are a continuum from coarsely barred, to finely barred, to feathery microcrystalline; these result from differing cooling rates. The host silicates differ from average BO chondrules only in being angular clasts rather than fluid droplet-shaped objects, and in being larger in size (up to 1 cm) than most chondrules; but large angular to droplet-shaped chondrules occur in many chondrites. Bencubbin host metallic FeNi clasts have a positive Ni-Co trend, which coincides with that of a calculated equilibrium nebular condensation path. This appears to indicate a chondritic, rather than impact, origin for this component as well. The rare ordinary chondrite clast and dark xenolith also contain FeNi metal with compositions similar to that of the host metal. Two scenarios are offered for the origin of the Bencubbin breccia. One is that the Bencubbin components are chondritic and were produced in the solar nebula. Later brecciation, reaggregation and minor melting of the chondritic material resulted in it becoming a monomict chondritic breccia. The alternative scenario is that the Bencubbin components formed as a result of major impact melting on a chondritic parent body; the silicate fragments were formed from an impact-induced lava flow and are analogous to the spinifex-textured rocks characteristic of terrestrial . Both scenarios have difficulties, but the petrologic, chemical and isotopic data are more consistent with Bencubbin being a brecciated chondrite. Bencubbin has a number of important chemical and isotopic characteristics in common with the major components in the CR (Renazzo-type) chondrites and the unique ALH85085 chondrite, which suggests that their major components may be related. These include: (1) Mafic silicates that are similarly Mg-rich and formed in similar reducing environments. (2) Similarly low volatiles; TiO2, Al2O3 and Cr2O3 contents are also similar. (3) Similar metallic FeNi compositions that sharply differ from those in other chondrites. (4) Remarkable enrichments in 15N. (5) Similar oxygen isotopic compositions that lie on the same mixing line. Thus, the major components of the Bencubbin breccia are highly similar to those of the ALH85085 and CR chondrites and they may have all formed in the same isotopic reservoir, under similar conditions, in the CR region of the solar nebula.

  6. Roedderite in the Qingzhen (EH3) chondrite

    NASA Astrophysics Data System (ADS)

    Rambaldi, E. R.; Rajan, R. S.; Housley, R. M.

    1986-03-01

    The rare mineral roedderite, (Na1.09 K0.89 Ca0.02)2.00 (Mg4.71 Fe0.27)4.98 (Si11.80 Al0.09)11.89 O30 has been found in accessory amounts in the highly unequilibrated enstatite chondrite, Qingzhen. It occurs in association with minor amounts of albite and SiO2 as inclusions within the metal or sulfide phases of metal-sulfide assemblages. The roedderite crystals are connected through oxide and silicate veins to the surrounding matrix. The presence of glass coated vesicles on the surface of the assemblages strongly suggests that roedderite originated in the presence of a fluid phase, presumably during post-accretional planetary processes.

  7. Sm-Nd and Lu-Hf isotope composition of chondritic components

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Vervoort, J. D.; Patchett, P. J.; Gopel, C.

    2009-12-01

    The 146Sm-142Nd, 147Sm-143Nd and 176Lu-176Hf radiogenic isotopic systems are widely used as chronometers and tracers of planetary evolution. These involve refractory lithophile elements and thus it is assumed that the average Sm-Nd and Lu-Hf composition of bulk terrestrial planets should be the same as that of chondrites (CHUR). We previously revised the CHUR compositions with 0.1960 0.0004 for 147Sm/144Nd and with 0.0336 0.0001 for 176Lu/177Hf using unequilibrated ordinary (OC) and carbonaceous (CC) chondrites [1], and proposed these should apply to the bulk silicate Earth (BSE). Recent studies suggest that BSE may have a super-chondritic Sm/Nd (~5%) and Lu/Hf (~10%) composition and could explain the Nd and Hf isotopic systematics of Earth and planetary materials [2, 3]. Here, we present additional Sm-Nd and Lu-Hf compositions of chondrites and chondritic components to evaluate potential isotopic heterogeneities present in the protoplanetary disk. Isotopic analyses were carried out by Neptune MC-ICPMS at ASU. Analytical details are in [1, 4]. We extend our study to homogenized whole-rock (WR) powders of 4 equilibrated OC to investigate the scale of Lu-Hf isotopic heterogeneities as consequences of thermal metamorphism on the OC parent bodies (PB) [1]. Their 147Sm/144Nd and 176Lu/177Hf vary from 0.1954 to 0.1969, and 0.0298 to 0.0341 respectively indicating that open metasomatism associated with crystallization of phosphate [1] occurred at least at the cm scale on the OCPB. We also present the first Lu-Hf and coupled Sm-Nd isotopic data of 6 single or pooled chondrules, and 2 calcium aluminum-rich inclusions (CAIs) from 5 type 3 OC & CC. The 147Sm/144Nd and 176Lu/177Hf ranges are 0.1956-0.1969, and 0.0331-0.0341 respectively for chondrules, and 0.1947-0.2147, and 0.0392-0.0501 respectively for CAIs. The chondrules are within the range of our earlier Sm/Nd and Lu/Hf CHUR-BSE estimates but the CAIs have significantly higher values, especially for Lu/Hf. Thus, only CAIs have strongly fractionated Sm/Nd and Lu/Hf, likely due to high temperature fractionation of elements in the early solar nebula. Based on evidence from Cr and Ti isotope systematics in CC [9], however, it appears unlikely that the Earth accreted in the CAI-forming region. Basaltic eucrites, which were differentiated early, also have chondritic ratios [10]. A super-chondritic Earth would thus imply accretion from large differentiated parent bodies that significantly fractionated Sm/Nd and Lu/Hf by igneous processes. This would require a late final accretion and homogenization which does not seem consistent with timing and global mixing models proposed in the accretion zone of terrestrial planets [11]. [1] Bouvier et al., 2008. EPSL 273, 48. [2] Kostitsyn, 2004. Petrology 12, 397. [3] Caro et al., 2008. Nature 452, 336. [4] Mnker et al., 2001. G3, doi:10.1029/2001gc000183. [5] Bizzarro et al., 2003. Nature 421, 931. [6] Patchett et al., 2004. EPSL 222, 29. [7] Scherer et al., 2001. Science 293, 683. [8] Sderlund et al., 2004. EPSL 219, 311. [9] Trinquier et al., 2009. Science 324, 374. [10] Blichert-Toft et al., 2002. EPSL 204, 167. [11] Chambers, 2004. EPSL 223, 241.

  8. The Effect of Aqueous Alteration and Metamorphism in the Survival of Presolar Silicate Grains in Chondrites

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, Josep M.; Blum, Jrgen

    2009-09-01

    Relatively small amounts (typically between 2 and 200 ppm) of presolar grains have been preserved in the matrices of chondritic meteorites. The measured abundances of the different types of grains are highly variable from one chondrite to another, but are higher in unequilibrated chondrites that have experienced little or no aqueous alteration and/or metamorphic heating than in processed meteorites. A general overview of the abundances measured in presolar grains (particularly the recently identified presolar silicates) contained in primitive chondrites is presented. Here we will focus on the most primitive chondrite groups, as typically the highest measured abundances of presolar grains occur in primitive chondrites that have experienced little thermal metamorphism. Looking at the most aqueously altered chondrite groups, we find a clear pattern of decreasing abundance of presolar silicate grains with increasing levels of aqueous alteration. We conclude that measured abundances of presolar grains in altered chondrites are strongly biased by their peculiar histories. Scales quantifying the intensity of aqueous alteration and shock metamorphism in chondrites could correlate with the content of presolar silicates. To do this it would be required to infer the degree of destruction or homogenization of presolar grains in the matrices of primitive meteorites. To get an unbiased picture of the relative abundance of presolar grains in the different regions of the protoplanetary disk where first meteorites consolidated, future dedicated studies of primitive meteorites, IDPs, and collected materials from sample-return missions (like e.g. the planned Marco Polo) are urgently required.

  9. Paired Renazzo-type (CR) carbonaceous chondrites from the Sahara

    NASA Astrophysics Data System (ADS)

    Bischoff, A.; Palme, H.; Ash, R. D.; Clayton, R. N.; Schultz, L.; Herpers, U.; Stoffler, D.; Grady, M. M.; Pillinger, C. T.; Spettel, B.; Weber, H.; Grund, T.; Endress, M.; Weber, D.

    1993-04-01

    Data on the chemical composition, mineralogy, abundance, and isotopic composition of recently found Sahara meteorites are presented. The nine Acfer samples and the El Djouf 001 meteorite are considered to belong to the same parent meteoroid and are classified as a CR chondrite. The Acfer-El Djouf meteorite has a CI-chondritic composition of nonvolatile elements, in particular CI ratios of refractory elements to Mg. The presence of metal with chondritic Fe/Ni ratios, olivine with relatively low FeO contents and with high Cr is attributed to the primitive, unequilibrated nature of Acfer-El Djouf and other CR chondrites. The carbon and nitrogen stable isotropic composition of the Acfer-El Djouf chondrite lies within the range of other members of the CR group. Rare gases of the Acfer-El Djouf meteorite contain a comparatively large solar wind component, in excess of that in Renazzo. The cosmic-ray exposure age of the Acfer-El Djouf meteorite is about 6 million years.

  10. Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona

    NASA Astrophysics Data System (ADS)

    McCanta, M. C.; Beckett, J. R.; Stolper, E. M.

    2016-02-01

    Phosphorus zoning is observed in olivines in high-FeO (type IIA) chondrules in H chondrites over the entire range of petrologic grades: H3.1-H6. Features in P concentrations such as oscillatory and sector zoning, and high P cores are present in olivines that are otherwise unzoned in the divalent cations. Aluminum concentrations are low and not significantly associated with P zoning in chondrule olivines. In highly unequilibrated H chondrites, phosphorus zoning is generally positively correlated with Cr. Atomic Cr:P in olivine is roughly 1:1 (3:1 for one zone in one olivine in RC 075), consistent with Cr3+ charge-balancing P5+ substituting for Si4+. Normal igneous zonation involving the dominant chrome species Cr2+ was observed only in the LL3.0 chondrite Semarkona. In more equilibrated chondrites (H3.5-H3.8), Cr spatially correlated with P is occasionally observed but it is diffuse relative to the P zones. In H4-H6 chondrites, P-correlated Cr is absent. One signature of higher metamorphic grades (≥H3.8) is the presence of near matrix olivines that are devoid of P oscillatory zoning. The restriction to relatively high metamorphic grade and to grains near the chondrule-matrix interface suggests that this is a response to metasomatic processes. We also observed P-enriched halos near the chondrule-matrix interface in H3.3-H3.8 chondrites, likely reflecting the loss of P and Ca from mesostasis and precipitation of Ca phosphate near the chondrule surface. These halos are absent in equilibrated chondrites due to coarsening of the phosphate and in unequilibrated chondrites due to low degrees of metasomatism. Olivines in type IA chondrules show none of the P-zoning ubiquitous in type IIA chondrules or terrestrial igneous olivines, likely reflecting sequestration of P in reduced form within metallic alloys and sulfides during melting of type IA chondrules.

  11. Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona

    NASA Astrophysics Data System (ADS)

    McCanta, M. C.; Beckett, J. R.; Stolper, E. M.

    2016-03-01

    Phosphorus zoning is observed in olivines in high-FeO (type IIA) chondrules in H chondrites over the entire range of petrologic grades: H3.1-H6. Features in P concentrations such as oscillatory and sector zoning, and high P cores are present in olivines that are otherwise unzoned in the divalent cations. Aluminum concentrations are low and not significantly associated with P zoning in chondrule olivines. In highly unequilibrated H chondrites, phosphorus zoning is generally positively correlated with Cr. Atomic Cr:P in olivine is roughly 1:1 (3:1 for one zone in one olivine in RC 075), consistent with Cr3+ charge-balancing P5+ substituting for Si4+. Normal igneous zonation involving the dominant chrome species Cr2+ was observed only in the LL3.0 chondrite Semarkona. In more equilibrated chondrites (H3.5-H3.8), Cr spatially correlated with P is occasionally observed but it is diffuse relative to the P zones. In H4-H6 chondrites, P-correlated Cr is absent. One signature of higher metamorphic grades (≥H3.8) is the presence of near matrix olivines that are devoid of P oscillatory zoning. The restriction to relatively high metamorphic grade and to grains near the chondrule-matrix interface suggests that this is a response to metasomatic processes. We also observed P-enriched halos near the chondrule-matrix interface in H3.3-H3.8 chondrites, likely reflecting the loss of P and Ca from mesostasis and precipitation of Ca phosphate near the chondrule surface. These halos are absent in equilibrated chondrites due to coarsening of the phosphate and in unequilibrated chondrites due to low degrees of metasomatism. Olivines in type IA chondrules show none of the P-zoning ubiquitous in type IIA chondrules or terrestrial igneous olivines, likely reflecting sequestration of P in reduced form within metallic alloys and sulfides during melting of type IA chondrules.

  12. Aqueous Alteration of Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Ziegler, K.; Weisberg, M. K.; Gounelle, M.; Berger, E. L.; Le, L.; Ivanov, A.

    2014-01-01

    The Kaidun meteorite is different from all other meteorites [1], consisting largely of a mixture of “incompatible” types of meteoritic material – carbonaceous and enstatite chondrites, i.e. corre-sponding to the most oxidized and the most reduced samples of meteorite materials, including CI1, CM1-2, CV3, EH3-5, and EL3. In addition to these, minor amounts of ordinary and R chondrites are present. In addition, approximately half of the Kaidun lithologies are new materials not known as separate meteorites. Among these are aqueously altered enstatite chondrites [1], which are of considerable interest because they testify that not all reduced asteroids escaped late-stage oxidation, and hydrolysis, and also because hydrated poorly crystalline Si-Fe phase, which in turn is re-placed by serpentine (Figs 3-5). In the end the only indication of the original presence of metal is the re-sidual carbides. In other enstatite chondrite lithogies (of uncertain type) original silicates and metal have been thoroughly replaced by an assemblage of authi-genic plagioclase laths, calcite boxwork, and occasion-al residual grains of silica, Cr-rich troilite, ilmenite, and rare sulfides including heideite (Fig. 6). Fe and S have been largely leached from the rock (Fig. 4). Again the accessory phases are the first clue to the original character of the rock, which can be verified by O isotopes. It is fortunate that Kaidun displays every step of the alteration process.

  13. Thermoluminescence and Metamorphism in CV Chondrites

    NASA Astrophysics Data System (ADS)

    Symes, S. J. K.; Guimon, R. K.; Benoit, P. H.; Sears, D. W. G.

    1993-07-01

    One of the effects of metamorphism in meteorites is the production of feldspar, a thermoluminescence (TL) phosphor, through the devitrification of primary chondrule glass [1]. The 105-fold variation in TL sensitivity among the ordinary chondrites reflects this process and has been used successfully to subdivide the petrographic type 3 meteorites into types 3.0-3.9 [2]. Although less pronounced, the variability exhibited by the CO chondrites has also allowed petrographic subdivision of these meteorites [3]. It is possible that the CV chondrites have also experienced a range of metamorphic intensities, although McSween has warned that their petrography does not indicate a simple sequence [4]. On the other hand, Scott et al. show that the homogeneity of matrix olivine increases along the series Kaba, Mokoia, Vigarano, Grosnaja, Allende, which may indicate progressive thermal metamorphism [5]. Here we report TL sensitivity measurements for 12 whole-rock samples of CV chondrites and we suggest petrographic type assignments and discuss their metamorphic history. Samples of bulk powder were ground, the magnetic fraction removed, and the TL of 4-mg aliquots was measured three times for duplicate splits. Averages are given in Table 1, which appears in the hard copy. The CV chondrites, like the CO chondrites, generally display three peaks in their glow curves; one at 130 degrees C, which is sensitive to metamorphism at temperatures below 650 degrees C [3], one at 250 degrees C, which is metamorphism independent, and one at 350 degrees C, which might be associated with refractory minerals in CAI [6]. The TL sensitivities of these samples show a >100-fold range, the lowest being below detection limits (<0.01) and the highest being greater than the Dhajala H3.8 chondrite, which we use as a standard. Six of the 12 samples have TL sensitivities corresponding to type 3.0 if we apply the criteria proposed by Sears et al. to subdivide the CO chondrites (which are similar to those used for the ordinary chondrites) [3]. All but one of the remainder have sensitivities corresponding to minimal metamorphism (type 3.2-3.3). The exception is Coolidge, whose TL, like many other properties [4], indicates that it is petrographic type 4. Our TL data therefore indicate that, with the exception of Coolidge, the CV chondrites have experienced minimal metamorphism, although evidence for some slight variation is present. Even though Coolidge has been metamorphosed to type-4 levels, like CO chondrites and unlike ordinary chondrites, the temperatures involved were <650 degrees C since the TL peak temperature is still 130 degrees C. Apparently, the most metamorphosed CV and CO chondrites were metamorphosed for longer times than ordinary chondrites, but at lower temperatures. References: [1] Guimon et al. (1985) GCA, 49, 1515-1523. [2] Sears et al. (1980) Nature, 287, 791-795. [3] Sears et al. (1991) Proc. NIPR Symp. Ant. Met., 4, 319-343. [4] McSween H. Y. (1977) GCA, 41, 1777-1790. [5] Scott et al. (1988) in Meteorites and the Early Solar System (Kerridge and Matthews, eds.), 718-745. [6] Guimon R. K. and Sears D. W. G. (1986) Meteoritics, 21, 381-382.

  14. Thermal histories of CO3 chondrites - Application of olivine diffusion modelling to parent body metamorphism

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.; Rubie, David C.

    1991-01-01

    The petrologic sequence observed in the CO3 chondrite group has been suggested to be the result of thermal metamorphism on a parent body. A model developed to examine the possibility that chondrule and matrix olivines equilibrated in situ, during parent body metamorphism is presented. The model considers Fe-Mg interdiffusion between chondrule and matrix olivines. Zoning profiles comparable to those observed in chondrule olivines from partially equilibrated members of the series are reproduced successfully. Metamorphism of CO3 chondrites on a parent body is therefore a viable model for the observed equilibration. Results indicate that peak metamorphic temperatures experienced by the CO3 chondrites were around 500 C, and that the range of peak temperatures between unequilibrated and equilibrated subtypes was relatively narrow, around 100 C.

  15. Petrology and Cosmochemistry of a Suite of R Chondrites

    NASA Technical Reports Server (NTRS)

    Torrano, Z. A.; Mittlefehldt, D. W.; Peng, Z. X.

    2015-01-01

    Chondrites are among the most primitive surviving materials from the early solar system. They are divided into groups based on chemical types defined by mineralogy, bulk composition, and oxygen isotope compositions. Chondrites range in petrographic grade from type 1 to type 7. Type 3 chondrites are the most primitive and are little changed from the nebular solids accreted to form asteroids. They are composed of chondrules, fine-grained matrix, metal and sulfide, plus or minus Ca-Al-rich inclusions. With increasing aqueous alteration at low temperatures, members of some chondrite classes transformed from type 3 towards type 1. With increasing thermal metamorphism and low fluid content, members of other classes changed from type 3 towards type 7. Rumuruti (R) chondrites are a rare group (0.1% of falls) similar to ordinary chondrites in some properties but different in others. They are characterized by low chondrule/matrix modal abundance ratios, high oxidation state, small mean chondrule size, abundant sulfides and low metal contents. R chondrites vary in petrologic type from 3 to 6. They are important objects to study because some of them have undergone metamorphism at high temperatures in the presence of aqueous fluids. In contrast, CM and CI chondrites were heated to low temperatures in the presence of aqueous fluids leading to alteration; they contain low-T hydrous phases (phyllosilicates) and little or no remaining metal. Ordinary chondrites were heated to high temperatures in a low-fluid environment resulting in anhydrous metamorphic rocks. R6 chondrites are highly metamorphosed and some contain the high-T hydrous phases mica and amphibole. R chondrites are thus unique and give us an opportunity to examine whether there are compositional effects caused by high-T, highfluid metamorphism of nebular materials.

  16. Fayalitic Olivine in Matrix of the Krymka LL3.1 Chondrite

    NASA Astrophysics Data System (ADS)

    Weisberg, M. K.; Zolensky, M. E.; Prinz, M.

    1995-09-01

    INTRODUCTION. Matrix persists as one of the most poorly characterized chondritic components. Its aggregational nature makes it an excellent place to search for primitive chondritic components that prevailed in the nebula during and after chondrule formation as well as components recording processes that predated and postdated accretion. In this study we focus on the occurrence and formation of the fayalitic olivine in the matrix of the Krymka LL3.1 unequilibrated ordinary chondrite. RESULTS. We limited our study to matrix areas clearly sandwiched between chondrules and did not include chondrule rims. In Krymka, matrix is coarser-grained and more Fe-rich than the rim material. Matrix is also highly variable in the size, shape and composition of its components, whereas chondrule rims appear more uniform. Krymka matrix is an aggregation of diverse mineral and lithic components. Mineral components include olivine, enstatite, diopsidic pyroxene, Ti-Al-rich Ca-pyroxene, hedenbergite, amorphous silicate material, spinel, oxides, troilite, and metal. Olivine is clearly dominant (~75% normative) and occurs in a variety of textures and compositions. Fayalitic olivine (Fa(sub)(58-94), avg.=Fa(sub)(72)) is ubiquitous throughout the matrix and occurs as (1) Isolated platelets (typically 1-3 micrometers x 3-5 micrometers, with some up to 10 micrometers in length), (2) Platelet clusters, which include randomly oriented platelets and/or intergrown platelets, (3) Platelet overgrowths which are overgrowths of parallel platelets on surfaces of larger (10-300 micrometers), more magnesian (Fa(sub)(4-34), avg.=Fa(sub)(19)) olivine fragments, (4) Euhedral-subhedral crystals (1-10 micrometers) which are often associated with and compositionally similar to platelets, and (5) Fluffy aggregates - irregularly shaped porous aggregates of submicron crystals. TEM study of the overgrowths reveals that the direction of elongation of the fayalitic platelets is along the c axis corresponding with the c direction of the larger olivine substrate. The larger, more magnesian olivine fragments are generally single crystals, but in some cases are associated with pyroxene (Fs(sub)(5-27),Wo(sub)(0.5-2)) or high-Ca pyroxene. These larger olivines are compositionally similar to chondrule olivines, whereas the fayalitic platelets are texturally and compositionally unlike olivines in chondrules. Fayalitic olivine with morphologies similar to those in Krymka matrix occur in the Chainpur LL3.4 and Ngawi LL3 matrix, but are much less common. These textures may have been characteristic of all primitive ordinary chondrite matrix, but were generally overprinted by metamorphic recrystallization. DISCUSSION: Fayalitic olivine in Krymka matrix records a process that has important implications for understanding the evolution of ordinary chondrites. It may form under oxidizing nebular conditions through solid state reactions in the presence of free silica, or vapor-solid reactions in a gas with a high silica activity [1,2]. Textural observations have been used to support a nebular origin for similar fayalitic olivine in CV3 matrix, and thermodynamic calculations indicate it could form in a nebula with a supersolar H2O/H2 ratio [3]. Vaporization experiments show that at ~10^(-6) bar and ~1650K olivine evaporates incongruently to produce a fayalitic vapor [4]. However, textural arguments favoring post-accretion formation of the fayalitic olivine in ordinary chondrite matrix and in CV3 dark inclusions have also been presented [5,6]. Thus, we consider three hypotheses for the formation of the fayalitic olivine in Krymka matrix: (1) vapor-solid reactions between a silica-rich vapor and metallic Fe degrees in the nebula, (2) vaporization of olivine-rich material to produce a fayalite vapor, followed by recondensation, or (3) parent body heating/dehydration of pre-existing phyllosilicates. Although the platy layered structure of some of the fayalitic olivine is suggestive of the layered structures of phyllosilicates and some fayalitic olivine texturally resembles saponite replacing olivine (as observed in the Kaidun CR chondrite), the platelet overgrowths on larger olivine crystals probably represent growth features and not a replacement of phyllosilicates. The platy morphology of fayalitic olivine could also indicate growth from a vapor consistent with hypotheses 1 and 2. The wide range in compositions of associated fayalitic olivine platelets suggests that they did not all form in the same environment and were not in contact under high enough temperatures to result in equilibrium; therefore, we conclude that the fayalitic olivine formed in a nebular environment. The fayalitic olivine platelets and associated fayalitic olivine in Krymka matrix may record vapor solid reactions under oxidizing nebular conditions or partial evaporation of a more Mg-rich olivine to produce a fayalite vapor, followed by recondensation. Formation through heating/dehydration of phyllosilicates is less likely. References. [1] Nagahara H. (1984) GCA, 48, 2581-2595. [2] Nagahara H. and Kushiro I. (1987) EPSL, 85, 537-547. [3] Hua X. and Buseck P. R. (1995) GCA, 59, 563-578. [4] Nagahara H. et al. (1994) GCA, 58, 1951-1963. [5] Alexander C. M. et al. (1989) EPSL, 95, 187-207. [6] Kojima T. and Tomeoka K. (1994) Meteoritics, 29, 484.

  17. The Pasamonte unequilibrated eucrite: Pyroxene REE systematic and major-, minor-, and trace-element zoning. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.

    1994-01-01

    We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.

  18. Primitive material surviving in chondrites - Matrix

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Barber, D. J.; Alexander, C. M.; Hutchinson, R.; Peck, J. A.

    1988-01-01

    A logical place to search for surviving pristine nebular material is in the fine-grained matrices of ordinary and carbonaceous chondrites of petrographic type 3. Unfortunately, many of these chondrites have experienced brecciation, thermal metamorphism, and aqueous alteration, so that interpreting individual features in terms of specific nebular conditions and/or processes is difficult. It follows that the origin and evolutionary history of such matrix phases are controversial, and a consensus is difficult to define. In this chapter, therefore, after summarizing the salient mineralogical, petrographic, chemical, and isotopic features of matrix in apparently primitive chondrites, an attempt is made to provide an overview both of areas of agreement and of topics that are currently in dispute.

  19. High-precision osmium isotopes in enstatite and Rumuruti chondrites

    NASA Astrophysics Data System (ADS)

    van Acken, David; Brandon, Alan D.; Humayun, Munir

    2011-07-01

    Isotopic heterogeneity within the solar nebula has been a long-standing issue. Studies on primitive chondrites and chondrite components for Ba, Sm, Nd, Mo, Ru, Hf, Ti, and Os yielded conflicting results, with some studies suggesting large-scale heterogeneity. Low-grade enstatite and Rumuruti chondrites represent the most extreme ends of the chondrite meteorites in terms of oxidation state, and might thus also present extremes if there is significant isotopic heterogeneity across the region of chondrite formation. Osmium is an ideal tracer because of its multiple isotopes generated by a combination of p-, r-, and s-process and, as a refractory element; it records the earliest stages of condensation. Some grade 3-4 enstatite and Rumuruti chondrites show similar deficits of s-process components as revealed by high-precision Os isotope studies in some low-grade carbonaceous and ordinary chondrites. Enstatite chondrites of grades 5-6 have Os isotopic composition identical within error to terrestrial and solar composition. This supports the view of digestion-resistant presolar grains, most likely SiC, as the major carrier of these anomalies. Destruction of presolar grains during parent body processing, which all high-grade enstatite chondrites, but also some low-grade chondrites seemingly underwent, makes the isotopically anomalous Os accessible for analysis. The magnitude of the anomalies is consistent with the presence of a few ppm of presolar SiC with a highly unusual isotopic composition, produced in a different stellar environment like asymptotic giant branch stars (AGB) and injected into the solar nebula. The presence of similar Os isotopic anomalies throughout all major chondrite groups implies that carriers of Os isotopic anomalies were homogeneously distributed in the solar nebula, at least across the formation region of chondrites.

  20. Homogeneity of Tellurium Isotopes in Chondrites, Leachates of Allende and Canyon Diablo

    NASA Astrophysics Data System (ADS)

    Fehr, M. A.; Rehkmper, M.; Porcelli, D.; Halliday, A. N.

    2003-03-01

    126Sn decays to 126Te with a half-life of 0.235 Myrs. Te isotopes were measured in ordinary chondrites, enstatite chondrites, iron meteorites and leachates of Allende by MC-ICPMS and were all within error identical to the JMC Te standard.

  1. Chondrites and the Protoplanetary Disk, Part 2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: On the Dynamical Evolution of a Nebula and Its Effect on Dust Coagulation and the Formation of Centimeter-sized Particles. The Mineralogy and Grain Properties of the Disk Surfaces in Three Herbig Ae/Be Stars. Astrophysical Observations of Disk Evolution Around Solar Mass Stars. The Systematic Petrology of Chondrites: A Consistent Approach to Assist Classification and Interpretation. Understanding Our Origins: Formation of Sun-like Stars in H II Region Environments. Chondrule Crystallization Experiments. Formation of SiO2-rich Chondrules by Fractional Condensation. Refractory Forsterites from Murchison (CM2) and Yamato 81020 (CO3.0) Chondrites: Cathodoluminescence, Chemical Compositions and Oxygen Isotopes. Apparent I-Xe Cooling Rates of Chondrules Compared with Silicates from the Colomera Iron Meteorite. Chondrule Formation in Planetesimal Bow Shocks: Physical Processes in the Near Vicinity of the Planetesimal. Genetic Relationships Between Chondrules, Rims and Matrix. Chondrite Fractionation was Cosmochemical; Chondrule Fractionation was Geochemical. Chondrule Formation and Accretion of Chondrite Parent Bodies: Environmental Constraints. Amoeboid Olivine Aggregates from the Semarkona LL3.0 Chondrite. The Evolution of Solids in Proto-Planetary Disks. New Nickel Vapor Pressure Measurements: Possible Implications for Nebular Condensates. Chemical, Mineralogical and Isotopic Properties of Chondrules: Clues to Their Origin. Maximal Size of Chondrules in Shock-Wave Heating Model: Stripping of Liquid Surface in Hypersonic Rarefied Gas Flow. The Nature and Origin of Interplanetary Dust: High Temperature Components. Refractory Relic Components in Chondrules from Ordinary Chondrites. Constraints on the Origin of Chondrules and CAIs from Short-lived and Long-lived Radionuclides. The Genetic Relationship Between Refractory Inclusions and Chondrules. Contemporaneous Chondrule Formation Between Ordinary and Carbonaceous Chondrites. Chondrules and Isolated Grains in the Fountain Hills Bencubbinite. Implications of Chondrule Formation in a Gas of Solar Composition. Implications of Meteoritic Cl-36 Abundance for the Origin of Short-lived Radionuclides in the Early Solar System. Size Sorting and the Chondrule Size Spectrum. Comparative Study of Refractory Inclusions from Different Groups of Chondrites. In Situ Investigation of Mg Isotope Distributions in an Allende CAI by Combined LA-ICPMS and SIMS Analyses Photochemical Speciation of Oxygen Isotopes in the Solar Nebula.

  2. Chemical and physical studies of type 3 chondrites - VIII: Thermoluminescence and metamorphism in the CO chondrites

    SciTech Connect

    Keck, B.D.; Sears, D.W.G. )

    1987-11-01

    The thermoluminescence properties of nine CO chondrites have been measured. With the exception of Colony and Allan Hills A77307 (ALHA 77307), whose maximum induced TL emission is at approximately 350{degree}C, CO chondrites exhibit two TL peaks, one at 124 {plus minus} 7{degree}C (130{degree}C peak) and one at 252 {plus minus} 7{degree}C (250{degree}C peak). The 130{degree}C peak shows a 100-fold range in TL sensitivity and correlates with various metamorphism-related phenomena, such as silicate heterogeneity, metal composition and McSween's metamorphic subtypes. The peak at 250{degree}C does not show these correlations and, Colony excepted, varies little throughout the class. Mineral separation experiments, and a series of annealing experiments on Isna, suggest that the TL properties for CO chondrites reflect the presence of feldspar in two forms, (1) a form produced during metamorphism, and analogous to the dominant form of feldspar in type 3 ordinary chondrites, and (2) a primary, metamorphism-independent form, perhaps associated with the amoeboid inclusions. If this interpretation is correct, then the CO chondrites have not experienced temperatures above the order/disorder temperature for feldspar (500-600{degree}C) and they cooled more slowly than comparable type 3 ordinary chondrites. Colony and ALHA 77307 have atypical TL properties, including very low TL sensitivity, suggesting that phosphors other than feldspar are important. They have apparently experienced less metamorphism than the others, and may have also been aqueously altered.

  3. Chondrite chronology by initial Sr-87/Sr-86 in phosphates?

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Brannon, Joyce C.

    1991-01-01

    New data are presented on Rb-Sr isotope analyses of phosphates from nine ordinary chondrites, including accurate identification of initial Sr-87/Sr-86. The initial Sr-87/Sr-86 ratios found in this study were generally significantly higher than the more primitive initial Sr-87/Sr-86 ratios inferred for carbonaceous chondrite refractory inclusions, basaltic achondrites, or bulk ordinary chondrites. Such elevation of initial Sr-87/Sr-86 is generally considered to reflect isotopic redistribution during metamorphism. However, in this study, no evident correlation was found between the phosphate initial Sr-87/Sr-86 compositions and the metamorphic grade. Two possible alternative hypotheses for high initial Sr-87/Sr-86 ratios are considered.

  4. Transmission electron microscopy of an interplanetary dust particle with links to CI chondrites

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Thomas, Kathie L.; Mckay, David S.

    1991-01-01

    The majority of hydrated interplanetary dust particles (IDPs) have compositions that resemble CI and CM chondrites, however, their mineralogies are most similar to the fine grained material in certain altered type-3 carbonaceous and ordinary chondrites. During the transmission electron microscope studies of hydrated IDPs, a unique particle was discovered whose mineralogy is very similar to that reported from CI chondrites. W7013F5 is the first IDP whose mineralogy and chemistry approximates that of CI chondrites. The similarity in mineralogy and mineral chemistry suggests that W7013F5 was altered under conditions similar to those that existed on the CI parent bodies.

  5. The Olton, Texas, H chondrite regolith breccia - Paired with Dimmitt

    NASA Technical Reports Server (NTRS)

    Keil, Klaus; Ehlmann, A. J.; Wieler, Rainer

    1990-01-01

    The Olton ordinary chondrites (two stones found in 1948) are H group, solar wind-bearing regolith breccias. The proximity of the recovery site to the Dimmitt strewnfield, and the similarity in texture, composition, noble gas contents and isotopic ratios to Dimmitt indicate that Olton is paired with Dimmitt.

  6. A Titanium Oxide Grain Within a Presolar Corundum

    NASA Astrophysics Data System (ADS)

    Takigawa, A.; Stroud, R. M.; Nittler, L. R.; Alexander, C. M. O'D.

    2014-09-01

    TEM studies were carried out on 15 presolar and 4 solar aluminum oxide grains of unequilibrated ordinary chondrites. We found a presolar corundum grain with a titanium oxide grain inside and a solar corundum grain with several titanium oxide grains.

  7. Mineralogy of dark clasts in primitive versus differentiated meteorites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Weisberg, M. K.; Barrett, R. A.; Prinz, M.

    1993-01-01

    The presence of dark lithic clasts within meteorites can provide information concerning asteroidal regolith processes, the extent of interactions between asteroids, and the relationship between meteorite types, micrometeorites, and interplanetary dust particles. Accordingly, we have been seeking and characterizing dark clasts found within carbonaceous chondrites, unequilibrated ordinary chondrites, howardites, and eucrites. We find that unequilibrated chondrites in this study contain fine-grained, anhydrous unequilibrated inclusions, while the howardites often contain inclusions from geochemically processed, hydrous asteroids (type 1 and 2 carbonaceous chondrites). Eucrites and howardities contain unusual clasts, not easily classified.

  8. Petrology and bulk chemistry of Yamato-82094, a new type of carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Barrat, J. A.; Weisberg, M. K.; Imae, N.; Yamaguchi, A.; Kojima, H.

    2014-03-01

    Carbonaceous chondrites are classified into several groups. However, some are ungrouped. We studied one such ungrouped chondrite, Y-82094, previously classified as a CO. In this chondrite, chondrules occupy 78 vol%, and the matrix is distinctly poor in abundance (11 vol%), compared with CO and other C chondrites. The average chondrule size is 0.33 mm, different from that in C chondrites. Although these features are similar to those in ordinary chondrites, Y-82094 contains 3 vol% Ca-Al-rich inclusions and 5% amoeboid olivine aggregates (AOAs). Also, the bulk composition resembles that of CO chondrites, except for the volatile elements, which are highly depleted. The oxygen isotopic composition of Y-82094 is within the range of CO and CV chondrites. Therefore, Y-82094 is an ungrouped C chondrite, not similar to any other C chondrite previously reported. Thin FeO-rich rims on AOA olivine and the mode of occurrence of Ni-rich metal in the chondrules indicate that Y-82094 is petrologic type 3.2. The extremely low abundance of type II chondrules and high abundance of Fe-Ni metal in the chondrules suggest reducing condition during chondrule formation. The depletion of volatile elements indicates that the components formed under high-temperature conditions, and accreted to the parent body of Y-82094. Our study suggests a wider range of formation conditions than currently recorded by the major C chondrite groups. Additionally, Y-82094 may represent a new, previously unsampled, asteroidal body.

  9. Final Report

    NASA Technical Reports Server (NTRS)

    Wasson, John T.

    1998-01-01

    Our accomplishments during the tenure of the grant include the chemical-petrographic characterization of chondrules from the highly unequilibrated ungrouped carbonaceous chondrite LEW85332, the examination of matrix materials in several unequilibrated ordinary chondrites, the exploration of the possibility that amoeboid olivine inclusions in CO chondrites were formed by the chondrule forming process at high nebular temperatures, and the interpretation of our results and those of others in terms of nebular agglomeration and parent-body compaction.

  10. The Wold Cottage meteorite: Not just any ordinary chondrite

    NASA Astrophysics Data System (ADS)

    Pillinger, C. T.; Pillinger, J. M.

    1996-09-01

    The Wold Cottage meteorite (fell, 1795), as is well known, played an important part in meteorites being accepted as stones from the sky. In most cases, the very select group of people who have been privileged to witness any meteorite fall, let alone one as important as Wold Cottage, enjoy a moment's fame but then disappear into obscurity. In this respect, Wold Cottage is very different; Edward Topham, the man who reported the fall and who became the meteorite's publicist, was already very well known for many other reasons. This fact contributed substantially to the evidence provided by his workmen being accepted, following two public exhibitions of the meteorite, the second after sworn testimonies were obtained. Here we explore Topham's background in order to reveal his character, particularly the value he placed on truth. When he passed the meteorite over to a public museum, he did so in the belief that he was acting for the benefit of posterity. At a time when the idea of meteorites being extraterrestrial was still controversial, the Wold Cottage stone vitally prompted the observation that specimens from different parts of the globe closely resembled each other, thus stimulating the crucial chemical analyses which verified that they were indeed related. During its first twenty years on Earth, the Wold Cottage meteorite was a prized specimen, a public attraction and sought after for scientific teaching purposes. In researching Wold Cottage, we have been able to discover information about many of the personalities who were involved in providing and studying the first few meteorites to become available for scientific research. The Wold Cottage story gives an interesting perspective on the cultural scene at the end of the eighteenth and beginning of the nineteenth centuries when there was no clear distinction between the arts and sciences, and meteoritics was the prerogative of often rather flamboyant gentlemen.

  11. Circumstellar Oxide Grains in Ordinary Chondrites and Their Origin

    NASA Technical Reports Server (NTRS)

    Krestina, Natalia; Hsu, Weibiao; Wasserburg, G. J.

    2002-01-01

    Three new circumstellar hibonite and 14 circumstellar corundum grains have been found based on their highly anomalous oxygen. Al-Mg isotopes have been measured for these circumstellar oxides and for 14 oxides with a normal oxygen composition. Additional information is contained within the original extended abstract.

  12. Chemical Fractionation in Chondrites by Aerodynamic Sorting of Chondritic Materials

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; Haack, H.

    1993-07-01

    Aerodynamic sorting in the nebula has been invoked directly or indirectly to account for the size variations of chondrules in different groups [1], associated size variations of chondrules and metal spherules in a CR chondrite [2], and variations in the oxygen isotopic compositions of H-L-LL chondrules and whole rocks [3]. We suggest that aerodynamic sorting processes affected the relative abundances of all chondritic ingredients and were therefore a major source of chemical differences between asteroids and perhaps planets [4]. For chondrites that were derived from the same batch of chondritic ingredients, e.g., ordinary chondrites, aerodynamic sorting may account for all chemical differences [5]. Matrix Material: Matrix material accretes into planetesimals largely in the form of rims on all particles rather than as individual dust grains [6,7]. Aerodynamic sorting of particles does not cause significant chemical variation in bulk matrix abundance or composition because rim composition is not correlated with particle composition [6,7], and rim thickness apparently correlates with particle radius [7]. Metal-Troilite Spherules: There are at least two metal-troilite components: poorly characterized spherules that are probably ejected during chondrule formation and fine-grained material associated with matrix rims. Skinner and Leenhouts [2] suggest that aerodynamic sorting of the spherules was a potent metal-silicate fractionation process. Our preliminary data for metal-troilite spherules in Lance (CO3) support their model. Spherules and chondrules are closer in size than in the CR chondrite they studied, but this may result from the very much higher troilite abundance in CO chondrites, which produced a smaller density difference between chondrules and spherules. But we cannot exclude the possibility that the size distribution of metallic spherules was controlled by that of the chondrules from which they were ejected and not by aerodynamic sorting of spherules. Matrix rims on spherules preclude the possibility that the spherules were released from chondrules during parent body impacts. Refractory Inclusions: The similarity in the order of chondrule and CAI sizes suggests a common size sorting process. Chondrules decrease in mean size in the order CV (1.0 mm) > CM (0.3 mm) > CO (0.15 mm) > ALH85085 (0.02 mm) [8]. Refractory inclusions decrease in size in the order CV (commonly >1 cm) > CO > CM (<1 mm) > ALH85085 (0.03 mm) [8,9]. Although many chondrules and CAIs in ALH85085 are broken, mean sizes were not much bigger originally as the grain sizes of fragments are comparable to those of complete objects [6]. Size sorting must postdate CAI formation as these size relationships hold for all kinds of CAI that formed in very different ways. Density differences cannot account for the apparently larger mean size of CAIs relative to chondrules in CV3 chondrites. Model: We suggest that a common aerodynamic sorting process may have affected all ingredients during their fall toward the proto-Sun through nebula gas. This sorting probably occurred after chondrule formation and rim acquisition in a turbulent environment [7] and ended when planetesimal accretion halted inward motion. Intermittent turbulence may have cleared the midplane of chondritic materials to allow episodic accretion of distinctly different batches of material. This model and runaway accretion of planetesimals accounts for the correlation of chondrule size with metamorphic type in CO3 chondrites [8] and provides a mechanism for understanding chemical and isotopic variations within asteroids such as the ureilite parent body. References: [1] Rubin A. E. and Keil K. (1984) Meteoritics, 19, 135-143. [2] Skinner W. R. and Leenhouts J. M. (1993) LPSC XXIV, 1315-1316. [3] Clayton R. N. et al. (1991) GCA, 55, 2317-2337. [4] Scott E. R. D. and Newsom H. E. (1989) Z. Naturforsch., 44a, 924-934. [5] Haack H. and Scott E. R. D. (1993), this volume. [6] Scott E. R. D. et al. (1984) GCA, 48, 1741-1757. [7] Metzler K. et al. (1992) GCA, 56, 2873-2987. [8] Meteorites and The Early Solar System (J. F. Kerridge and M. S. Matthews, eds.), chapters 9.1 and 10.3. [9] Grossman J. N. et al. EPSL, 91, 33-54.

  13. Experimental Impacts into Chondritic Targets. Part 1; Disruption of an L6 Chondrite by Multiple Impacts

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Horz, Friedrich

    2007-01-01

    A fragment of an L6 chondrite (ALH 85017,13) with an initial mass (M(sub 0)) of 464.1 g was the target in a series of experimental impacts in which the largest remaining fragment (M(sub R)) after each shot was impacted by a 3.18-mm ceramic sphere at a nominal speed of 2 km/s. This continued until the mass of the largest remaining piece was less than half the mass of the target presented to that shot (M(sub S)). Two chunks of Bushveldt gabbro with similar initial masses were also impacted under the same conditions until M(sub R) was less than half M(sub 0). The two gabbro targets required a total of 1.51x10(exp 7) and 1.75x10(exp 7) erg/g to attain 0.27 and 0.33 M(sub R)/M(sub 0), respectively; the chondrite, however, was considerably tougher, reaching 0.40 and 0.21 M(sub R)/M(sub 0) only after receiving 2.37x10(exp 7) and 3.10x10(exp 7) erg g-1, respectively. The combined ejecta and spallation products from the gabbro impacts were coarser than those from the chondrite and in sufficient quantities that the new surface areas exceeded those from the meteorite until the fifth shot in the chondrite series, which was the number of impacts required to disrupt each gabbro target (i.e., MR/M0 = 0.5). Unlike the behavior shown in previous regolith-evolution series, neither gabbro target produced an enhancement in the size fraction reflecting the mean size of the crystals composing the rock (about 3 mm), an effect possibly related to the width of the shock pulse. The original chondrite was so fine-grained and fractured, and the variance in its grain-size distribution so large, that effects related to grain-size were relegated to the <63- m fraction. Impacts into ALH 85017 produced abundant, fine-grained debris, but otherwise the slopes of its size distributions were comparable to those from other experiments involving natural and fabricated terrestrial targets. The characteristic slopes of the chondrite's size distributions, however, were notably more constant over the entire nine-impact series than those from any of the terrestrial targets, a testament to the control over comminution apparently exerted by pre-existing fractures and other, microscopic damage in the meteorite. The enhancement in the finer fraction of debris from ALH 85017 indicates that ordinary chondrites in solar orbit would be very efficient contributors to the cosmic-dust complex. At the same time, the greater resistance to disruption displayed by ordinary chondrites relative to that exhibited by igneous rocks indicates that a selection effect could be operative between the annealed, ordinary-chondritic breccias and relatively weaker, differentiated meteorites. Preferential survival from their time in the regoliths of their parent bodies through their transit to Earth and passage through the atmosphere suggests that meteorite collections could be biased in favor of the ordinary chondrites.

  14. Comparative 187Re-187Os systematics of chondrites: Implications regarding early solar system processes

    USGS Publications Warehouse

    Walker, R.J.; Horan, M.F.; Morgan, J.W.; Becker, H.; Grossman, J.N.; Rubin, A.E.

    2002-01-01

    A suite of 47 carbonaceous, enstatite, and ordinary chondrites are examined for Re-Os isotopic systematics. There are significant differences in the 187Re/188Os and 187Os/188Os ratios of carbonaceous chondrites compared with ordinary and enstatite chondrites. The average 187Re/188Os for carbonaceous chondrites is 0.392 ?? 0.015 (excluding the CK chondrite, Karoonda), compared with 0.422 ?? 0.025 and 0.421 ?? 0.013 for ordinary and enstatite chondrites (1?? standard deviations). These ratios, recast into elemental Re/Os ratios, are as follows: 0.0814 ?? 0.0031, 0.0876 ?? 0.0052 and 0.0874 ?? 0.0027 respectively. Correspondingly, the 187Os/188Os ratios of carbonaceous chondrites average 0.1262 ?? 0.0006 (excluding Karoonda), and ordinary and enstatite chondrites average 0.1283 ?? 0.0017 and 0.1281 ?? 0.0004, respectively (1?? standard deviations). The new results indicate that the Re/Os ratios of meteorites within each group are, in general, quite uniform. The minimal overlap between the isotopic compositions of ordinary and enstatite chondrites vs. carbonaceous chondrites indicates long-term differences in Re/Os for these materials, most likely reflecting chemical fractionation early in solar system history. A majority of the chondrites do not plot within analytical uncertainties of a 4.56-Ga reference isochron. Most of the deviations from the isochron are consistent with minor, relatively recent redistribution of Re and/or Os on a scale of millimeters to centimeters. Some instances of the redistribution may be attributed to terrestrial weathering; others are most likely the result of aqueous alteration or shock events on the parent body within the past 2 Ga. The 187Os/188Os ratio of Earth's primitive upper mantle has been estimated to be 0.1296 ?? 8. If this composition was set via addition of a late veneer of planetesimals after core formation, the composition suggests the veneer was dominated by materials that had Re/Os ratios most similar to ordinary and enstatite chondrites. ?? 2002 Elsevier Science Ltd.

  15. Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Amelin, Yuri; Krot, Alexander N.

    2005-01-01

    CB (Bencubbin-type) carbonaceous chondrites differ in many ways from more familiar CV and CO carbonaceous chondrites and from ordinary chondrites. CB chondrites are very rich in Fe-Ni metal (50-70 vol%) and contain magnesian silicates mainly as angular to sub-rounded clasts (or chondrules) with barred olivine (BO) or cryptocrystalline (CC) textures. Both metal and silicates appear to have formed by condensation. The sizes of silicate clasts vary greatly between the two subgroups of CB chondrites: large (up to one cm) in CB(sub a) chondrites, and typically to much much less than 1 mm in CB(sub b) chondrites. The compositional and mineralogical differences between these subgroups and between the CB(sub s) and other types of chondrites suggest different environment and possibly different timing of chondrule formation. In order to constrain the timing of chondrule forming processes in CB(sub s) and understand genetic relationship between their subgroups, we have determined Pb-isotopic ages of silicate material from the CB(sub a) chondrite Gujba and CB(sub b) chondrite Hammadah al Hamra 237 (HH237 hereafter).

  16. Primitive material surviving in chondrites - Refractory inclusions

    NASA Technical Reports Server (NTRS)

    Macpherson, Glenn J.; Wark, D. A.; Armstrong, John T.

    1988-01-01

    The refractory inclusions embedded in the matrix of many carbonaceous and some ordinary or enstatite chondrites exhibit mineralogical and bulk composition characteristics which correlate with the first, or highest-temperature, condensation products that have been predicted to form from a hot, but cooling, solar nebula. These inclusions' isotopic compositions indicate presolar nucleosynthetic processes that have contributed to the production of the elements from which the solar system was formed; subsequently, the inclusions experienced melting, recrystallization, and alteration histories that have obscured the formation processes.

  17. Chemical and physical studies of type 3 chondrites 12: The metamorphic history of CV chondrites and their components

    NASA Technical Reports Server (NTRS)

    Guimon, R. Kyle; Symes, Steven J. K.; Sears, Derek W. G.

    1995-01-01

    The induced thermoluminescence (TL) properties of 16 CV and CV-related chondrites, four CK chondrites and Renazzo (CR2) have been measured in order to investigate their metamorphic history. The petrographic, mineralogical and bulk compositional differences among the CV chondrites indicate that the TL sensitivity of the approximately 130 C TL peak is reflecting the abundance of ordered feldspar, especially in chondrule mesostasis, which in turn reflects parent-body metamorphism. The TL properties of 18 samples of homogenized Allende powder heated at a variety of times and temperatures, and cathodoluminescence mosaics of Axtell and Coolidge, showed results consistent with this conclusion. Five refractory inclusions from Allende, and separates from those inclusions, were also examined and yielded trends reflecting variations in mineralogy indicative of high peak temperatures (either metamorphic or igneous) and fairly rapid cooling. The CK chondrites are unique among metamorphosed chondrites in showing no detectable induced TL, which is consistent with literature data that suggests very unusual feldspar in these meteorites. Using TL sensitivity and several mineral systems and allowing for the differences in the oxidized and reduced subgroups, the CV and CV-related meteorites can be divided into petrologic types analogous to those of the ordinary and CO type 3 chondrites. Axtell, Kaba, Leoville, Bali, Arch and ALHA81003 are type 3.0-3.1, while ALH84018, Efremovka, Grosnaja, Allende and Vigarano are type 3.2-3.3 and Coolidge and Loongana 001 are type 3.8. Mokoia is probably a breccia with regions ranging in petrologic type from 3.0 to 3.2. Renazzo often plots at the end of the reduced and oxidized CV chondrite trends, even when those trends diverge, suggesting that in many respects it resembles the unmetamorphosed precursors of the CV chondrites. The low-petrographic types and low-TL peak temperatures of all samples, including the CV3.8 chondrites, indicates metamorphism in the stability field of low feldspar (i.e., less than 800 C) and a metamorphic history similar to that of the CO chondrites but unlike that of the ordinary chondrites.

  18. Chondrites as samples of differentiated planetesimals

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, Linda; Weiss, Benjamin P.; Zuber, Maria T.

    2010-05-01

    Chondritic meteorites are unmelted, variably metamorphosed samples of the earliest solids of the solar system. A recent paleomagnetic study of CV chondrites suggests that their parent body was internally differentiated and produced a core magnetic dynamo (Carporzen et al., submitted, and this session). Here we show that a parent body that accreted to >250 km in radius by ~1.7 Ma after the formation of CAIs could retain a solid undifferentiated crust overlying a differentiated interior, and would be consistent with formational and evolutionary constraints on the CV parent body. Further, this body could have produced a magnetic field lasting more than 10 Ma. CV chondritic meteorites contain the oldest known solids: calcium-aluminum-rich inclusions (CAIs). The variety of metamorphic textures in ordinary chondrites motivated the "onion shell" model in which chondrites originated at varying depths within a parent body heated primarily by the short-lived radioisotope 26Al, with the highest metamorphic grade originating nearest the center. The large abundances and sizes of CAIs in CV chondrites have long suggested an early parent body accretion age. New Pb-Pb and Al-Mg ages of chondrules in CVs are consistent with the CV parent body having largely completed accretion by the youngest chondrule age of ~1.7-3 Ma. The CV chondrite parent body likely reached peak metamorphic temperatures around 7 to 10 Ma after CAIs, based on I-Xe chronometry for Allende and Mn-Cr chronometry for Mokoia. Bodies that accreted to more than >~20 km radius before ~1.3 to 3 Ma after the formation of CAIs likely contained sufficient 26Al to melt internally from the insulated cumulative effects of radiogenic heating. These early-accreting bodies will melt from the interior out, sometimes forming an interior magma ocean under a solid, conductive, undifferentiated shell. This shell would consist of the same chondritic material that made up the bulk accreting body before melting began. The presence of talc and the absence of serpentine indicate peak temperatures of ~300-350C. Subsequent to the analysis of natural remanent magnetization in angrites, Carporzen et al. (2009, submitted, and this conference) have described how unidirectional magnetization in Allende is consistent with a long-lived internally generated field. The metamorphic, magnetic, and exposure age data collectively indicate a new model for the CV chondrite parent body in which interior melting is incomplete and the magma ocean remains capped by an undifferentiated chondritic shell. This conductive lid insulates the internal magma ocean, slowing its cooling and solidification by orders of magnitude while still allowing sufficient heat flux out of the core to produce a dynamo with intensities consistent with magnetization in Allende. Materials in the undifferentiated lid experienced varying metamorphic conditions. Bodies that are internally differentiated in the manner described here may well exist undetected in the asteroid belt. The shapes and masses of the two largest asteroids, 1 Ceres and 2 Pallas, can be consistent with differentiated interiors, conceivably with small iron cores with hydrated silicate or ice-silicate mantles. Other asteroids may have lost their hydrostatic shapes through later impacts, and their surfaces may never have been covered with erupted basalt; surfaces of these bodies may have remained chondritic throughout this process. Such surfaces will therefore be irregular, space-weathered primitive material, perhaps with highly altered or even differentiated material at the bottoms of the largest craters and in crater ejecta. This scenario can explain the mismatch between the enormous diversity (> 130) of parent bodies represented by achondrites and the paucity (< 10) of basaltic asteroids.

  19. Rhenium-osmium isotope systematics of carbonaceous chondrites

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.

    1989-01-01

    Rhenium and osmium concentrations and Os isotopic compositions of eight carbonaceous chondrites, one LL3 ordinary chondrite, and two iron meteorites were determined by resonance ionization mass spectrometry. Iron meteorite 187Re/186Os and 187OS/186Os ratios plot on the previously determined iron meteorite isochron, but most chondrite data plot 1 to 2 percent above this meteorite isochron. This suggests either that irons have significantly younger Re-Os closure ages than chondrites or that chondrites were formed from precursor materials with different chemical histories from the precursors of irons. Some samples of Semarkona (LL3) and Murray (C2M) meteorites plot 4 to 6 percent above the iron meteorite isochron, well above the field delineated by other chondrites. Murray may have lost Re by aqueous leaching during its preterrestrial history. Semarkona could have experienced a similar loss of Re, but only slight aqueous alteration is evident in the meteorite. Therefore, the isotopic composition of Semarkona could reflect assembly of isotopically heterogeneous components subsequent to 4.55 billion years ago or Os isotopic heterogeneities in the primordial solar nebula.

  20. Crustal structure and igneous processes in a chondritic Io

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.

    1993-01-01

    Liquid sulfur can form when metal-free C1 or C2 chondrites are heated. It may be obtained either by direct melting of native sulfur in disequilibrated C1 or C2 chondrites or by incongruent melting of pyrite and other sulfides in thermodynamically equilibrated rocks of the same composition. Hence, Lewis considered C2 chondrites to be the best meteoritic analog for Io's bulk composition. Metal-bearing C3 and ordinary chondrites are too chemically reduced to yield liquid sulfur and are not thought to represent plausible analogs of Io's bulk composition. An important aspect of Lewis' work is that CaSO4 and MgSO4 are predicted to be important in Io. Real C1 and C2 chondrites contain averages of, respectively, 11 percent and 3 percent by mass of salts (plus water of hydration). The most abundant chondritic salts are magnesium and calcium sulfates, but other important components include sulfates of sodium, potassium, and nickel and carbonates of magnesium, calcium, and iron. It is widely accepted that chondritic salts are formed by low-temperature aqueous alteration. Even if Io originally did not contain salts, it is likely that aqueous alteration would have yielded several percent sulfates and carbonates. In any event, Io probably contains sulfates and carbonates. This report presents the results of a model of differentiation of a simplified C2 chondrite-like composition that includes 1.92 percent MgSO4, 0.56 percent CaSO4, 0.53 percent CaCO3, and 0.094 percent elemental sulfur. The temperature of the model is gradually increased; ensuing fractional melting results in these components extruding or intruding at gravitationally stable levels in Io's crust. Relevant phase equilibria were reviewed. A deficiency of high-pressure phase equilibria renders the present model qualitative.

  1. Thermal evolution and sintering of chondritic planetesimals

    NASA Astrophysics Data System (ADS)

    Henke, S.; Gail, H.-P.; Trieloff, M.; Schwarz, W. H.; Kleine, T.

    2012-01-01

    Aims: Radiometric ages for chondritic meteorites and their components provide information on the accretion timescale of chondrite parent bodies, and on cooling paths within certain areas of these bodies. However, to use this age information for constraining the internal structure, and the accretion and cooling history of the chondrite parent bodies, the empirical cooling paths obtained by dating chondrites must be combined with theoretical models of the thermal evolution of planetesimals. Important parameters in such thermal models include the initial abundances of heat-producing short-lived radionuclides (26Al and 60Fe), which are determined by the accretion timescale and the terminal size, chemical composition and physical properties of the chondritic planetesimals. The major aim of this study is to assess the effects of sintering of initially porous material on the thermal evolution of planetesimals, and to constrain the values of basic parameters that determined the structure and evolution of the H chondrite parent body. Methods: We present a new code for modelling the thermal evolution of ordinary chondrite parent bodies that initially are highly porous and undergo sintering by hot pressing as they are heated by decay of radioactive nuclei. The pressure and temperature stratification in the interior of the bodies was calculated by solving the equations of hydrostatic equilibrium and energy transport. The decrease of porosity of the granular material by hot pressing due to self-gravity was followed by solving a set of equations for the sintering of powder materials. For the heat-conductivity of granular material we combined recently measured data for highly porous powder materials, relevant for the surface layers of planetesimals, with data for heat-conductivity of chondrite material, relevant for the strongly sintered material in deeper layers. Results: Our new model demonstrates that in initially porous planetesimals heating to central temperatures sufficient for melting can occur for bodies a few km in size, that is, a factor of ?10 smaller than for compact bodies. Furthermore, for high initial 60Fe abundances small bodies may differentiate even when they had formed as late as 3-4 Ma after CAI formation. To demonstrate the capability of our new model, the thermal evolution of the H chondrite parent body was reconstructed. The model starts with a porous body that is later compacted first by "cold pressing" at low temperatures and then by "hot pressing" for temperatures above ?700 K, i.e., the threshold temperature for sintering of silicates. The thermal model was fitted to the well-constrained cooling histories of the two H chondrites Kernouv (H6) and Richardton (H5). The best fit was obtained for a parent body with a radius of 100 km that accreted at t = 2.3 Ma after CAI formation, and had an initial 60Fe/56Fe = 4.1 10-7. Burial depths of 8.3 km and 36 km for Richardton and Kernouv were able to reproduce their empirically determined cooling history. These burial depths are shallower than those derived in previous models. This reflects the strong insulating effect of the residual powder surface layer, which is characterised by a low thermal conductivity.

  2. In-Situ Oxygen Isotopic Composition of Tagish Lake: An Ungrouped Type 2 Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Engrand, Cecile; Gounelle, Matthieu; Zolensky, Mike E.

    2001-01-01

    We have measured the oxygen isotopic composition of several components of Tagish Lake by ion microprobe. This meteorite constitutes the best preserved sample of C2 matter presently available for study. It presents two different lithologies (carbonate-poor and -rich) which have fairly comparable oxygen isotopic composition, with regard to both the primary or secondary minerals. For the olivine and pyroxene grains, their delta O-18 values range from - 10.5% to + 7.4% in the carbonate-poor lithology, with a mean Delta O-17 value of - 3.7 2.4%. In the carbonate-rich lithology, delta O-18 varies from - 7.9% to + 3.3%, and the mean Delta O-17 value is - 4.7 +/- 1.4%. Olivine inclusions (Fo(sub >99)) with extreme O-16-enrichment were found in both lithologies: delta O-18 = - 46.1 %, delta O-187= - 48.3% and delta O-18 = - 40.6%, delta O-17 = - 41.2% in the carbonate-rich lithology; delta O-18 = - 41.5%, delta O-17 = -43.4%0 in the carbonate-poor lithology. Anhydrous minerals in the carbonate-poor lithology are slightly more O-16-rich than in the carbonate-rich one. Four low-iron manganese-rich (LIME) olivine grains do not have an oxygen isotopic composition distinct from the other "normal" olivines. The phyllosilicate matrix presents the same range of oxygen isotopic compositions in both lithologies: delta O-18 from approximately 11 % to approximately 6%, with an average Delta. O-17 approximately 0%. Because the bulk Tagish Lake oxygen isotopic composition given by Brown et al. is on the high end of our matrix analyses, we assume that this "bulk Tagish Lake" composition probably only represents that of the carbonate-rich lithology. Calcium carbonates have delta O-18 values up to 35%, with Delta O-17 approximately 0.5%0. Magnetite grains present very high Delta O-17 values approximately + 3.4%0 +/- 1.2%. Given our analytical uncertainties and our limited carbonate data, the matrix and the carbonate seem to have formed in isotopic equilibrium. In that case, their large isotopic fractionation would argue for a low temperature (CM-like, T approximately 0 deg) formation. Magnetite probably formed during a separate event. Tagish Lake magnetite data is surprisingly compatible with that of R-chondrites and unequilibrated ordinary (LL3) chondrites. Our oxygen isotope data strongly supports the hypothesis of a single precursor for both lithologies. Drastic mineralogical changes between the two lithologies not being accompanied with isotopic fractionation seem compatible with the alteration model presented by Young et aI. Tagish Lake probably represents the first well preserved large sample of the C2 matter that dominates interplanetary matter since the formation of the solar system.

  3. Origin of the differences in refractory-lithophile-element abundances among chondrite groups

    NASA Astrophysics Data System (ADS)

    Rubin, Alan E.

    2011-06-01

    Chondrite groups can be distinguished on the basis of their abundances of refractory lithophile elements (RLE). These abundances are, in part, functions of the mass fraction of Ca-Al-rich inclusions (CAIs) within the chondrites. Carbonaceous chondrites contain the most CAIs and the highest RLE abundances; they also contain modally abundant fine-grained matrix material that consists largely of modified nebular dust. The amount of dust varied throughout the solar nebula: enstatite and ordinary chondrites formed in low-dust regions in the inner part of the nebula, R chondrites formed in higher-dust zones at somewhat greater heliocentric distances, and carbonaceous chondrites formed in even dustier regions farther from the Sun. The amount of ambient dust peaked in the region where CV and CK chondrites accreted; these chondrites have abundant matrix, the highest modal abundances of CAIs, and the highest bulk RLE contents. Substantial amounts of nebular dust occurred in highly porous multi-millimeter-to-centimeter-size dustballs that were on the order of 100 times more massive than CAIs. Radial drift processes in the nebula affected these dustballs to approximately the same extent as the CAIs; both types of objects were aerodynamically concentrated in the same nebular regions. These regions maintained approximately the same relative amounts of dust through the periods of chondrule formation and chondrite accretion.

  4. Plagioclase-rich inclusions in carbonaceous chondrite meteorites - Liquid condensates?

    NASA Astrophysics Data System (ADS)

    Wark, D. A.

    1987-02-01

    The characteristics and formation of coarse-grained, plagioclase-rich inclusions are investigated. The textures, mineralogical compositions, and initial Al-26/Al-27 ratios for the plagioclase-rich inclusions are described. It is observed that plagioclase-rich inclusions in carbonaceous chondrites are either Ca-Al-rich inclusions (CAIs) composed of 30-60 vol pct anorthite, and less than 35 vol pct Ti-Al-pyroxene and melilite, or CA chondrites composed of plagioclase, pyroxene, olivine, spinel, and melilite. It is observed that CA chondrules are chemically and mineralogically the most similar components shared by carbonaceous and ordinary chondrites. The textural changes observed in the inclusions are examined. The data reveal that the CAIs have three textural groups: coarse anorthite laths, equigranular anorthite and Ti-Al-pyroxene, and lacy Ti-Al-pyroxene and fine-grained anorthite.

  5. Primordial noble gases in chondrites - The abundance pattern was established in the solar nebula

    NASA Technical Reports Server (NTRS)

    Alaerts, L.; Lewis, R. S.; Anders, E.

    1977-01-01

    Ordinary chondrites, like carbonaceous chondrites, contain primordial noble gases mainly in a minor phase comprising not more than 0.05 percent of the meteorite, probably an iron-chromium sulfide. The neon-20/argon-36 ratios decrease with increasing argon-36 concentration, as expected if the gas pattern was established by condensation from the solar nebula, and was negligibly altered by metamorphism in the meteorite parent bodies. Meteoritic and planetary matter apparently condensed over a substantial range of temperatures.

  6. Chondrites - Initial strontium-87/strontium-86 ratios and the early history of the solar system.

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.; Mark, R.; Lee-Hu, C.

    1973-01-01

    A sodium-poor, calcium-rich inclusion in the carbonaceous chondrite Allende had a Sr-87/Sr-86 ratio at the time of its formation of 0.69880, as low a value as that found in any other meteorite. The higher Sr-87/Sr-86 ratios found in ordinary chondrites indicate that their formation or isotopic equilibration occurred tens of millions of years later.

  7. Paleomagnetism of enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Feng, H.; Weiss, B. P.; Tikoo, S. M.; Gattacceca, J.; Suavet, C. R.; Andrade Lima, E.

    2013-12-01

    Chondritic meteorites are widely thought to have originated on unmelted parent bodies. However, recent studies of CV carbonaceous chondrites have observed stable remanent magnetization acquired after accretion that may have been imparted by a core dynamo on the parent body. This suggests that CV chondrites may have originated from an internally melted, partially differentiated parent body with a relic chondritic crust. Although diverging from the predominant view that chondrites are samples of unmelted bodies, this idea has deep roots in the history of meteoritics. In particular, a common parent body has often been invoked for enstatite chondrites and enstatite achondrites (aubrites), which share many compositional, mineralogical, and isotopic similarities. Therefore, enstatite chondrites are a natural target for further testing the partial differentiation hypothesis. However, there are very few previous paleomagnetic studies of these meteorites. To address this, we studied the magnetic properties and paleomagnetism of three enstatite chondrites (Pillistfer EL6, Eagle EL6, and Sahara 97158 EH3) to examine the feasibility of dynamo generation on the enstatite chondrite parent body. In Pillistfer, our alternating field (AF) demagnetization of mutually oriented interior and fusion-crusted subsamples revealed three low coercivity components blocked from ~1.5-2.5 mT (component A1), ~2.5-7 mT (component A2), and ~7-9 mT (component A3). The A2 and A3 components are poorly defined, likely due to spurious anhysteretic remanent magnetization (ARM) acquired during AF demagnetization. Thermal demagnetization revealed low temperature (T1) and medium temperature (T2) components, ranging from 50-600C and 600-700C, respectively. The A1 and T1 components coincided, while the A2 and T2 components were more scattered (although nonrandomly distributed). Components A1 and A2 of fusion-crusted samples were similarly oriented to those of interior samples. The ratio of natural remanent magnetization (NRM) to isothermal remanent magnetization (IRM) over the A1 coercivity range is 10%. Combined with the failed fusion crust test, this high value of NRM/IRM suggests the sample has been partially, but not completely, remagnetized since arriving on Earth (perhaps by a hand magnet). Furthermore, we found that using AF paleointensity methods, we are only capable of recovering paleointensities from thermoremanence in Pillistfer down to 200 ?T, indicating it has poor magnetic recording properties and preventing us from obtaining paleointensities for the A2 and A3 components. Electron microscopy analyses of Pillistfer show the prevalence of FeNi metal with varying amounts of nickel (ranging in composition from kamacite into the taenite equilibrium fields and schriebersite as the most abundant ferromagnetic phases). Preliminary results on Eagle and Sahara 97158 enstatite chondrites indicate that, like in Pillistfer, the remanence is dominated by soft multidomain kamacite, making them poor paleomagnetic recorders. It is currently unclear whether enstatite chondrites may be suitable for retaining paleomagnetic fields imparted from a parent body-generated dynamo.

  8. Re-Os Systematics and HSE Distribution in Metal from Ochansk (H4) Chondrite

    NASA Technical Reports Server (NTRS)

    Smoliar, M. I.; Horan, M. F.; Alexander, C. M. OD.; Walker, R. J.

    2003-01-01

    Previous studies of the Re-Os systematics of chondrites have documented considerable variation in the Re/Os ratios of whole rock samples. For some whole rock chondrites, Re-Os systematics display large deviations from the primitive isochron that are considerably larger than deviations in other isotope systems. Possible interpretation of these facts is that the Re-Os system in chondrites is particularly sensitive to post-formation alteration processes, thus providing a useful tool to examine such processes. Significant variations that have been detected in highly siderophile element (HSE) patterns for ordinary chondrites support this conclusion. We report Re-Os isotope data for metal separates from the Ochansk H4 chondrite coupled with abundance data for Ru, Pd, Ir, and Pt, determined in the same samples by isotope dilution. We chose this meteorite mainly because it is an observed fall with minimal signs of weathering, and its low metamorphic grade (H4) and shock stage (S3).

  9. Chemical characteristic of R chondrites in the light of P, REEs, Th and U abundances

    NASA Astrophysics Data System (ADS)

    Khan, Rahat; Shirai, Naoki; Ebihara, Mitsuru

    2015-07-01

    Rare earth elements (REEs), Th, U and P were determined in 15 Rumuruti (R)-type chondrites and the Allende CV chondrite. Repeated analyses of Allende for REEs, Th and U by ICP-MS and P by ICP-AES, and comparisons of these data with literature values ensure high reproducibility (precision) and reliability (accuracy) of acquired data. CI-normalized REE abundances in R chondrites are slightly enriched in heavy REEs with a small, positive Ce anomaly, in contrast to Allende. CI-normalized Pr/Tm and Nd/Yb ratios show a positive correlation, suggesting the heterogeneous mixing of two components (CI-like and refractory-rich materials) during the accretion of the R chondrite parent body. A Ce anomaly, however, was likely homogeneously present in the nebula. A mean Th/U ratio of R chondrites is 3.81 0.13 (1 ?), which is 5.1% higher than the CI ratio. Probably, the Th-U fractionation was inherited from the nebula from which the R chondrite parent body formed. Besides the Th-U fractionation, REEs and Th-U are heterogeneously fractionated in R chondrites, for which parent body processing is assumed to be the cause. A mean P content of R chondrites (1254 ?g/g) is higher than for any ordinary chondrite and is close to the EL mean. There appears to be a negative correlation between P and REEs contents in R chondrites. It is probable that REEs were diluted by extraneously supplied, REEs-depleted and P-containing materials (schreibersite or metal). This process must have occurred heterogeneously during accretion so that the heterogeneity of P-containing materials was preserved in the R chondrite parent body and individual R chondrites.

  10. Structure, composition, and location of organic matter in the enstatite chondrite Sahara 97096 (EH3)

    NASA Astrophysics Data System (ADS)

    Piani, Laurette; Robert, François; Beyssac, Olivier; Binet, Laurent; Bourot-Denise, Michèle; Derenne, Sylvie; Le Guillou, Corentin; Marrocchi, Yves; Mostefaoui, Smail; Rouzaud, Jean-Noël.; Thomen, Aurélien

    2012-01-01

    The insoluble organic matter (IOM) of an unequilibrated enstatite chondrite Sahara (SAH) 97096 has been investigated using a battery of analytical techniques. As the enstatite chondrites are thought to have formed in a reduced environment at higher temperatures than carbonaceous chondrites, they constitute an interesting comparative material to test the heterogeneities of the IOM in the solar system and to constrain the processes that could affect IOM during solar system evolution. The SAH 97096 IOM is found in situ: as submicrometer grains in the network of fine-grained matrix occurring mostly around chondrules and as inclusions in metallic nodules, where the carbonaceous matter appears to be more graphitized. IOM in these two settings has very similar δ15N and δ13C; this supports the idea that graphitized inclusions in metal could be formed by metal catalytic graphitization of matrix IOM. A detailed comparison between the IOM extracted from a fresh part and a terrestrially weathered part of SAH 97096 shows the similarity between both IOM samples in spite of the high degree of mineral alteration in the latter. The isolated IOM exhibits a heterogeneous polyaromatic macromolecular structure, sometimes highly graphitized, without any detectable free radicals and deuterium-heterogeneity and having mean H- and N-isotopic compositions in the range of values observed for carbonaceous chondrites. It contains some submicrometer-sized areas highly enriched in 15N (δ15N up to 1600‰). These observations reinforce the idea that the IOM found in carbonaceous chondrites is a common component widespread in the solar system. Most of the features of SAH 97096 IOM could be explained by the thermal modification of this main component.

  11. Description, chemical composition and noble gases of the chondrite Nogata

    NASA Astrophysics Data System (ADS)

    Shima, M.; Murayama, S.; Okada, A.; Yabuki, H.; Takaoka, N.

    1983-06-01

    Microscopic, electron-microprobe, chemical-composition, and noble-gas-isotopic-abundance studies of a 20-g sample of the ordinary chondrite Nogata are reported. The historical report of the fall of the chondrite at Nogata, Japan in the year 861 is supported by C-14 dating of the wooden box in which it has been stored in a Shinto shrine. The measurement data are presented in tables and discussed. Except for a low Fe content, the chemical composition and petrological structure of the chondrite are consistent with an L6 classification. Nogata is found to be more lightly shocked and to contain relatiely more radiogenic and spallogenic noble gases than other L chondrites. The gas-retention ages calculated for Nogata are 4.5 (He-4) and 4.7 (Ar-40) x 10 to the 9th years; the cosmic-ray-exposure age is about 4 x 10 to the 7th years. It is suggested that the metamorphism of the chondrite was completed within about 10 to the 8th years of the formation of its parent body.

  12. RAS Ordinary Meeting

    NASA Astrophysics Data System (ADS)

    2014-08-01

    Here are summarized talks from the February and March RAS Ordinary Meetings. The February meeting also enjoyed the Eddington Lecture from Prof. Lisa Kewley (Australian National University) on galaxy evolution in 3D.

  13. Solving Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  14. Chemical Variations Among L-Chondrites--IV. Analyses, with Petrographic Notes, of 13 L-group and 3 LL-group Chondrites

    NASA Astrophysics Data System (ADS)

    Jarosewich, E.; Dodd, R. T.

    1985-03-01

    We review our procedures for selecting, preparing and analyzing meteorite samples, present new analyses of 16 ordinary chondrites, and discuss variations of Fe, S and Si in the L-group. A tendency for Fe/Mg, S/Mg and Si/Mg to be low in L chondrites of facies d to f testifies that post-metamorphic shock melting played a significant role in the chemical diversification of the L-group. However, these ratios also vary widely and sympathetically in melt-free chondrites, indicating that much of the L-group's chemical variation arose prior to thermal metamorphism and is in that sense primary. If all L chondrites come from one parent body, type-correlated chemical trends suggest: 1) that the body had a traditional "onion skin" structure, with metamorphic intensity increasing with depth; and 2) that it formed from material that became more homogeneous, slightly poorer in iron, and significantly richer in sulfur as accretion proceeded.

  15. Chemical variations among L-chondrites. IV - Analyses, with petrographic notes, of 13 L-group and 3 LL-group chondrites

    NASA Astrophysics Data System (ADS)

    Jarosewich, E.; Dodd, R. T.

    1985-03-01

    Procedures are reviewed for selecting, preparing and analyzing meteorite samples, present new analyses of 16 ordinary chondrites, and discuss variations of Fe, S and Si in the L-group. A tendency for Fe/Mg, S/Mg and Si/Mg to be low in L chondrites of facies d to f testifies that post-metamorphic shock melting played a significant role in the chemical diversification of the L-group. However, these ratios also vary widely and sympathetically in melt-free chondrites, indicating that much of the L-group's chemical variation arose prior to thermal metamorphism and is in that sense primary. If all L chondrites come from one parent body, type-correlated chemical trends suggest: (1) that the body had a tradiational 'onion skin' structure, with metamorphic intensity increasing with depth; and (2) that it formed from material that became more homogeneous, slightly poorer in iron, and significantly richer in sulfur as accretion proceeded.

  16. LEW 87223: A Unique E Chondrite with Possible Links to H Chondrites

    NASA Astrophysics Data System (ADS)

    Grossman, J. N.; MacPherson, G. J.; Crozaz, G.

    1993-07-01

    LEW87223 (paired with LEW87057, 87220, and 87234) is an enstatite chondrite with unique textural and compositional properties. The Si content of metal (~0.5%), the presence of alabandite instead of niningerite, and the bulk WNi ratio in this chondrite are all consistent with an EL classification, but the high metal (23 wt%) and siderophile element abundances are closer to those in the EH group [1,2]. The moderately volatile elements, Mn, Na, K, As, Ga, and Se are all depleted relative to EH and EL chondrites [2]. The presence of olivine is consistent with an E3 classification. Oxygen isotopes in LEW87220 and 87234 are in the EH and EL chondrite field [R. Clayton, priv. comm., 1993]. Zhang et al. [2] suggested that this meteorite formed from an EL3 chondrite that experienced fractionation during impact and brecciation. Shock and thermal processing undoubtedly occurred, but our work suggests that LEW87223 was not derived from normal EL starting material. A precursor with properties intermediate between H and E chondrites seems to be indicated. LEW87223 has an opaque-mineral assemblage unlike that of other E chondrites. It has EH-like amounts of metal and troilite, schreibersite is common, but penyite, sphalerite, and djerfisherite (all found in EH3 and EL3 chondrites; [3]) were not observed. Oldhamite does occur as rare, transparent, pink crystals up to 100 micrometers in size, completely enclosed in kamacite. Metal grains are comparable in size to chondrules, and equant. Although it is a type 3, LEW87223 chondrules commonly appear to be welded together, and share long boundaries with other chondrules and metal grains. The olivines show features consistent with shock stage 2 of Stoffler et al. [4]. Alabandite is Fe-rich [2] and occurs as recrystallized aggregates along FeS grain boundaries [A. El Goresy, priv. comm., 1993]. Many chondrules appear dark or opaque in transmitted light due to abundant sub-micrometer, pure Fe metal intergrown with enstatite and silica, all of which partially replace ferroan pyroxene ^FS(sub)15-18). All of these features are consistent with a history involving strong reduction, shock, and heating. We analyzed four large, unweathered oldhamite grains in LEW87220 and 87234 by ion probe, and found trace element characteristics similar to those seen in MAC88136, the only known EL3 chondrite [3]: Mg, Sr, and Zr are lower, and Mn is higher than in EH oldhamite. One grain has a REE pattem that is flat at 60 x CI for LREE, and decreases from 46 x CI at Eu to 15 x CI at Lu, with a positive Yb anomaly (Yb/Yb*=3). The other grains have flat REE patterns near 75 x CI, with negative Eu anomalies (Eu/Eu*=0.4). The first pattern is most likely nebular in origin. The second, more common pattern, with the negative Eu anomaly is unlikely to be nebular, and may be metamorphic in origin, in which case the meteorite contains a mixture of nebular and metamorphic oldhamite. Zhang et al. [2] explained the low abundances of alkalis, Mn, Ga, and Se, and high abundance of siderophiles in LEW87223 as being due to the addition of EL metal, and removal of sulfides during shock and thermal processing of a normal EL3. This seems highly implausible to us because of the physical difficulty of completely separating minor sulfides from FeS and metal, and because perryite, which is intimately associated with metal in E chondrites, is missing. It is more likely that the chondrite represents an entirely new group of E chondrites. The high abundance (10s of %) of blackened (reduced) chondrules also indicates a population of chondrules that was initially quite oxidized; in fact, the measured compositions of surviving ferroan pyroxene are in the H-chondrite range. Also evident in the published trace element data [2] is a siderophile element abundance pattern identical to that in H chondrites but different from those in EH and EL chondrites. LEW87223 may be a link between the ordinary and enstatite chondrite groups. References: [1] Mason (1989,1992) Ant. Meteor. Newslett., 12(1) and 15(1,2). [2] Zhang et al. (1993) LPS XXIV, 1571. [3] Lin et al. (1991) LPS XXll, 811. [4] Stoffler et al. (1991) GCA, 55, 3845.

  17. A search for spectral alteration effects in chondritic gas-rich breccias

    NASA Technical Reports Server (NTRS)

    Bell, J. F.; Keil, Klaus

    1987-01-01

    Several samples of gas-rich breccias were selected, including slabs of the Kapoeta howardite, the ordinary chondrites Dubrovnik, Cangas de Onis, and Dimmit. Numerous 0.8 to 2.5 micron reflection spectra of selected areas on sawed or broken surfaces were measured with the Planetary Geosciences Division spectrogoniometer. While these spectra are not directly comparable to those of powered samples, comparisons within the data set should reveal any spectral differences due to weathering. These results indicate that unknown regolith processes do not confer the ordinary-chondrite parent bodies with an altered layer exhibiting S-class spectral properties. This is consistent with recent interpretations of the new Q-class of asteroids as the ordinary-chondrite parent bodies. However, significant spectral effects do occur in asteroid regoliths: darkening and suppression of absorption bands in highly shocked material, as seen previously in the so-called black chondrites; and segregation of metal in large impact melt pools on chondritic asteroids, which may have achondritic spectra. Neither of these effects is likely to be significant in interpreting current integral-disk spectra, but should be searched for in spectral maps returned by future spacecraft.

  18. CARBONACEOUS MATTER PRECURSORS AND METAMORPHIC CONDITIONS IN THERMALLY PROCESSED CHONDRITES

    NASA Astrophysics Data System (ADS)

    Quirico, E.; Montagnac, G.; Rouzaud, J.; Bonal, L.; Bourot-Denise, M.; Duber, S.; Reynard, B.

    2009-12-01

    Unravelling the origin of carbonaceous matter in pristine chondrites requires the understanding of the effect of post-accretion processes. In chondrites of petrologic type 3, thermal metamorphism modified to various extents the composition and structure of carbonaceous matter. Interestingly, this process controls the degree of structural order of carbonaceous matter, and clues on the thermal history of the parent body may be recovered from the physico-chemical study of carbonaceous matter. Following this framework, geothermometers based on Raman spectrometry of carbonaceous matter and covering a wide range of temperatures (100-650 °C) have been developed over recent years, both on terrestrial rocks and chondrites. While Raman data have been largely interpreted in terms of temperature, they are also the fingerprint of certain metamorphic conditions, especially in the low temperature range relevant to poorly ordered carbonaceous matter. This study investigates the Raman spectra of two series of chondritic carbonaceous matter and coal samples formed from different precursors and under different metamorphic conditions. The Raman spectra of Polyaromatic Carbonaceous Matter (PCM) from 42 chondrites and 27 coal samples, measured with visible (514 nm) and ultra-violet (244 nm) excitation wavelengths, are analyzed. The Raman spectra of low rank coals and chondrites of petrologic types 1 and 2, which contain the more disordered PCM, reflect the distinct carbon structures of their precursors. The 514 nm Raman spectra of high rank coals and chondrites of petrologic type 3 exhibit continuous and systematic spectral differences reflecting different carbon structures present during the metamorphism event. They result from differences in the chemical structures of the precursors concerning for instance the reticulation of polyaromatic units or an abundance of ether functional groups, or possibly from a lack of carbonization processes to efficiently expel oxygen heteroatoms, due to weak lithostatic pressure and confinement. These results suggest that the use of lowtemperature carbon thermometers should be restricted to a given geological context. At the same time, the sensitivity of Raman spectra to precursors and certain metamorphic conditions could be used to obtain information other than temperature. The analysis also provides evidence of the accretion of relatively homogeneous PCM precursors among ordinary CO and CV carbonaceous chondrite parent bodies, given that the 514nm Raman spectra of PCM efficiently trace the metamorphism grades. Looking closer, however, the 514 nm Raman data are more scattered in chondrites than in coals and the maturity tracers are less sensitive and miscorrelate with the atomic H/C ratio, suggesting slight compositional and structural differences among the PCM precursors accreted.

  19. Celebrating the Ordinary

    ERIC Educational Resources Information Center

    Horst, Carol

    2010-01-01

    Memento. Memoir. Memorable. Memory. Memorial. Commemorate. In Memoriam. These words may remind a person of stone monuments, or larger-than-life heroes and loved ones far distanced by space and time. The act of remembering, though, also belongs in the world of the everyday and the ordinary, and has a valuable place in an art classroom. In this

  20. A search for H-chondritic chromite grains in sediments that formed immediately after the breakup of the L-chondrite parent body 470 Ma ago

    NASA Astrophysics Data System (ADS)

    Heck, Philipp R.; Schmitz, Birger; Rout, Surya S.; Tenner, Travis; Villalon, Krysten; Cronholm, Anders; Terfelt, Fredrik; Kita, Noriko T.

    2016-03-01

    A large abundance of L-chondritic material, mainly in the form of fossil meteorites and chromite grains from micrometeorites, has been found in mid-Ordovician 470 Ma old sediments globally. The material has been determined to be ejecta from the L chondrite parent body breakup event, a major collision in the asteroid belt 470 Ma ago. In this study we search the same sediments for H-chondritic chromite grains in order to improve our understanding of the extraterrestrial flux to Earth after the asteroid breakup event. We have used SIMS in conjunction with quantitative SEM/EDS to determine the three oxygen isotopic and elemental compositions, respectively, of a total of 120 randomly selected, sediment-dispersed extraterrestrial chromite grains mainly representing micrometeorites from 470 Ma old post-breakup limestone from the Thorsberg quarry in Sweden and the Lynna River site in Russia. We show that 99% or more of the grains are L-chondritic, whereas the H-chondritic fraction is 1% or less. The L-/H-chondrite ratio after the breakup thus was >99 compared to 1.1 in today's meteoritic flux. This represents independent evidence, in agreement with previous estimates based on sediment-dispersed extraterrestrial chromite grain abundances and sedimentation rates, of a two orders of magnitude higher post-breakup flux of L-chondritic material in the micrometeorite fraction. Finally, we confirm the usefulness of three oxygen isotopic SIMS analyses of individual extraterrestrial chromite grains for classification of equilibrated ordinary chondrites. The H- and L-chondritic chromites differ both in their three oxygen isotopic and elemental compositions, but there is some overlap between the groups. In chromite, TiO2 is the oxide most resistant to diagenesis, and the combined application of TiO2 and oxygen three-isotope analysis can resolve uncertainties arising from the compositional overlaps.

  1. Chondrite thermal histories from Low-CA pyroxene microstructures: Autometamorphism versus prograde metamorphism revisited

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.; Jones, Rhian H.; Papike, J. J.

    1993-01-01

    In order to constrain the thermal histories of chondritic meteorites, a detailed study of the microstructures of low-Ca pyroxenes produced experimentally and in types 4 and 5 ordinary chondrites was carried out. Cooling experiments on synthetic MgSiO3 at cooling rates between 2 and 10000 C/hr from the protopyroxene stability field into that of orthopyroxene (OPX) were performed and the products of these experiments were annealed for a variety of annealing times. There are clear microstructural differences between samples which were cooled and those which were subsequently annealed. A comparison of the microstructures observed in the experimental samples with those in H4-5 ordinary chondrites shows that they cannot have experienced a single stage cooling history, as proposed for the autometamorphism model.

  2. Fluid Inclusions in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Saylor, J.; Zolensky, M. E.; Bodnar, R. J.; Le L.; Schwandt, C.

    2001-01-01

    Fluid inclusions are present in carbonaceous chondrites. Of the chondrites studied (CI1, CM1 and 2, CV3) fluid inclusions were found only in CM2s and CI1s, and by extrapolation are most likely to be found there in the future. Additional information is contained in the original extended abstract.

  3. The Tsarev meteorite - Petrology and bidirectional reflectance spectra of a shock-blackened L chondrite

    NASA Technical Reports Server (NTRS)

    Britt, D. T.; Pieters, C. M.; Petaev, M. I.; Zaslavskaia, N. I.

    1989-01-01

    The Tsarev meteorite is a highly shocked black L5 ordinary chondrite. Meteorites of this class may have been subjected to regolith processes on or near the surface of ordinary chondrite bodies. The study of their optical alteration can provide valuable support in the spectral search for ordinary chondrite parent bodies. Although Tsarev is very dark in a cut-surface hand sample, it is characterized by subtle variations in apparent darkness, called in this work grey and black areas. Both areas are substantially optically altered from normal ordinary chondrites and are characterized by a much lower albedo and strongly suppressed absorption features. Although both areas are altered, they show differences in albedo and the strength of absorption features. Particulate samples from the black area have a slightly higher albedo and stronger absorption features, while the particulate samples from the grey area show a systematic suppression of spectral features and albedo. Chemical, mineralogical, and spectral analyses suggest that the spectral differences can be the result of one or a combination of several factors, including shock effects on the crystallographic structure of the minerals and differences in the size, distribution, and amount of metal and troilite grains.

  4. The Galatia, Kansas, chondrite

    NASA Technical Reports Server (NTRS)

    Van Schmus, W. R.; Keil, K.; Lange, D. E.; Conrad, G. H.

    1978-01-01

    The paper describes the Galatia meteorite found August 1971 approximately 7 km ENE of Galatia, Barton County, Kansas (98 deg 53 min W, 38 deg 39.5 min N). The single stone weighed 23.9 kg and is partially weathered. Olivine (Fa 24.9) and pyroxene (Fs 20.9) compositions indicate L-group classification, and textural observations indicate that the stone is of petrologic type 6. While Galatia is similar in many respects to the Otis L6 chondrite found 20 miles to the west, Galatia does not have the brecciated structure of Otis and is therefore not part of the same fall.

  5. Cat Mountain: A meteoritic sample of an impact-melted chondritic asteroid

    NASA Technical Reports Server (NTRS)

    Kring, David A.

    1993-01-01

    Although impact cratering and collisional disruption are the dominant geologic processes affecting asteroids, samples of impact melt breccias comprise less than 1 percent of ordinary chondritic material and none exist among enstatite and carbonaceous chondrite groups. Because the average collisional velocity among asteroids is sufficiently large to produce impact melts, this paucity of impact-melted material is generally believed to be a sampling bias, making it difficult to determine the evolutionary history of chondritic bodies and how impact processes may have affected the physical properties of asteroids (e.g., their structural integrity and reflectance spectra). To help address these and related issues, the first petrographic description of a new chondritic impact melt breccia sample, tentatively named Cat Mountain, is presented.

  6. Heterogeneous distribution of 26Al at the birth of the Solar System: Evidence from corundum-bearing refractory inclusions in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Makide, Kentaro; Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.; Hutcheon, Ian D.; Hellebrand, Eric; Petaev, Michail I.

    2013-06-01

    We report on the mineralogy, petrology, and in situ oxygen- and magnesium-isotope measurements using secondary ion mass spectrometry of 10 corundum-bearing calcium-aluminum-rich inclusions (CAIs) from the Adelaide (ungrouped), Murray and Murchison (CM) carbonaceous chondrites. We also measured in situ oxygen-isotope compositions of several isolated corundum grains in the matrices of Murray and Murchison. Most of the corundum-bearing objects studied are uniformly 16O-rich [?17O values range from -17 to -28 (2? = 2.5) (?17Oavr = -23 5)], suggesting that they formed in a 16O-rich gas of approximately solar composition and largely avoided subsequent thermal processing in an 16O-poor gaseous reservoir. There is a large spread of the initial 26Al/27Al ratio [(26Al/27Al)0] in the corundum-bearing CAIs. Two Adelaide CAIs show no resolvable excess of radiogenic 26Mg (?26Mg?): the inferred (26Al/27Al)0 are (0.6 2.0) 10-6 and (-0.9 1.2) 10-6, respectively. Slopes of the model 26Al-26Mg isochrons in five CAIs from Murray and Murchison are (4.4 0.2) 10-5, (3.3 0.3) 10-5, (4.1 0.3) 10-5, (3.9 0.4) 10-5, and (4.0 2.0) 10-6, respectively. These values are lower than the canonical (26Al/27Al)0 ratio of (5.23 0.13) 10-5 inferred from the whole-rock magnesium-isotope measurements of the CV CAIs, but similar to the (26Al/27Al)0 ratio of (4.1 0.2) 10-5 in the corundum-bearing CAI F5 from Murray. Five other previously studied corundum-bearing CAIs from Acfer 094 (ungrouped) and CM carbonaceous chondrites showed no resolvable ?26Mg?. We conclude that the corundum-bearing CAIs, as well as the solar corundum grains from matrices and acid-resistant residues of unequilibrated ordinary and carbonaceous chondrites, recorded heterogeneous distribution of 26Al in the Solar System during an epoch of CAI formation. The 26Al-rich and 26Al-poor corundum-bearing CAIs and solar corundum grains represent different generations of refractory objects formed during this epoch. As a result, its duration cannot be inferred from 26Al-26Mg systematics of CAIs. Oxygen-isotope composition of the protoplanetary disk was probably heterogeneous during this time reflecting either initial differences in oxygen isotopic compositions of the solid and gaseous reservoirs in the early Solar System or rapid isotopic evolution of these reservoirs in the protoplanetary disk with time. We suggest that 26Al was injected into the protosolar molecular cloud core, possibly by a wind from a neighboring massive star or by or a low-mass asymptotic giant branch star, prior to formation of CAIs and refractory grains, and was subsequently homogenized through the protoplanetary disk by radial mixing.

  7. Temperature and Oxygen Fugacity Constraints on CK and R Chondrites and Implications for Water and Oxidation in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Righter, K.; Neff, K. E.

    2007-01-01

    Recent chondritic meteorite finds in Antarctica have included CB, CH, CK and R chondrites, the latter two of which are among the most oxidized materials found in meteorite collections. In this study we present petrographic and mineralogic data for a suite of CK and R chondrites, and compare to previous studies of CK and R, as well as some CV chondrites. In particular we focus on the opaque minerals magnetite, chromite, sulfides, and metal as well as unusual silicates hornblende, biotite, and plagioclase. Several mineral thermometers and oxy-barometers are utilized to calculate temperatures and oxygen fugacities for these unusual meteorites compared to other more common chondrite groups. R and CK chondrites show lower equilibrium temperatures than ordinary chondrites, even though they are at similar petrologic grades (e.g., thermal type 6). Oxygen fugacity calculated for CV and R chondrites ranges from values near the iron-wustite (IW) oxygen buffer to near the fayalite-magnetite-quartz (FMQ) buffer. In comparison, the fO2 recorded by ilmenite-magnetite pairs from CK chondrites are much higher, from FMQ+3.1 to FMQ+5.2. The latter values are the highest recorded for materials in meteorites, and place some constraints on the formation conditions of these magnetite-bearing chondrites. Differences between mineralogic and O isotopic compositions of CK and R chondrites suggest two different oxidation mechanisms, which may be due to high and low water: rock ratios during metamorphism, or to different fluid compositions, or both.

  8. Temperature and oxygen fugacity constraints on CK and R chondrites and implications for water and oxidation in the early solar system

    NASA Astrophysics Data System (ADS)

    Righter, K.; Neff, K. E.

    Recent chondritic meteorite finds in Antarctica have included CB, CH, CK and R chondrites, the latter two of which are among the most oxidized materials found in meteorite collections. In this study we present petrographic and mineralogic data for a suite of CK and R chondrites, and compare to previous CK and R chondrites, as well as some CV. In particular we focus on the opaque minerals - magnetite, chromite, sulfides, and metal - as well as unusual silicates - hornblende, biotite, and plagioclase. Several mineral thermometers and oxy-barometers are utilized to calculate temperatures and oxygen fugacities for these unusual meteorites compared to other more common chondrite groups. R and CK chondrites show lower equilibrium temperatures than ordinary chondrites, even though they are at similar petrologic grades (e.g., thermal type 6). Oxygen fugacity calculated for CV and R chondrites ranges from values near the iron-wustite (IW) oxygen buffer to near the fayalite-magnetite-quartz (FMQ) buffer. In comparison, the fO 2 recorded by ilmenite-magnetite pairs from CK chondrites are much higher, from FMQ + 2 to FMQ + 4.5. The latter values are the highest recorded for materials in meteorites, and place some constraints on the formation conditions of these magnetite-bearing chondrites. Differences between mineralogic and O isotopic compositions of CK and R chondrites suggest two different oxidation mechanisms, which may be due to high and low water:rock ratios during metamorphism, or to different fluid compositions, or both.

  9. Silver isotope variations in chondrites: Volatile depletion and the initial 107Pd abundance of the solar system

    NASA Astrophysics Data System (ADS)

    Schnbchler, M.; Carlson, R. W.; Horan, M. F.; Mock, T. D.; Hauri, E. H.

    2008-11-01

    The extinct radionuclide 107Pd decays to 107Ag (half-life of 6.5 Ma) and is an early solar system chronometer with outstanding potential to study volatile depletion in the early solar system. Here, a comprehensive Ag isotope study of carbonaceous and ordinary chondrites is presented. Carbonaceous chondrites show limited variations ( ?107Ag = -2.1 to +0.8) in Ag isotopic composition that correlate with the Pd/Ag ratios. Assuming a strictly radiogenic origin of these variations, a new initial 107Pd/ 108Pd of 5.9 (2.2) 10 -5 for the solar system can be deduced. Comparing the Pd-Ag and Mn-Cr data for carbonaceous chondrites suggests that Mn-Cr and Pd-Ag fractionation took place close to the time of calcium-aluminium-rich inclusion (CAI) and chondrule formation 4568 Ma ago. Using the new value for the initial 107Pd abundance, the revised ages for the iron-rich meteorites Gibeon (IVA, 8.5 +3.2/-4.6 Ma), Grant (IIIAB, 13.0 +3.5/-4.9 Ma) and Canyon Diablo (IA, 19.5 +24.1/-10.4 Ma) are consistent with cooling rates and the closure temperature of the Pd-Ag system. In contrast to carbonaceous chondrites, ordinary chondrites show large stable isotope fractionation of order of 1 permil for 107Ag/ 109Ag. This indicates that different mechanisms of volatile depletion were active in carbonaceous and ordinary chondrites. Nebular processes and accretion, as experienced by carbonaceous chondrites, did not led to significant Ag isotope fractionation, while the significant Ag isotope variations in ordinary chondrites are most likely inflicted by open system parent body metamorphism.

  10. Chondritic Asteroids--When Did Aqueous Alteration Happen?

    NASA Astrophysics Data System (ADS)

    Doyle, P. M.

    2015-06-01

    Using a synthesized fayalite (Fe2SiO4) standard for improved 53Mn-53Cr radiometric age dating, Patricia Doyle (previously at the University of Hawaii and now at the University of Cape Town, South Africa) and coauthors from Hawaii, the National Astronomical Observatory of Japan, University of Chicago, and Lawrence Livermore National Laboratory in California, analyzed aqueously formed fayalite in the ordinary chondrite Elephant Moraine 90161 (L3.05) and in the carbonaceous chondrites Asuka 881317 (CV3) and MacAlpine Hills 88107 (CO3-like) from Antarctica. The data obtained indicate that liquid water existed - and aqueous alteration started - on the chondritic parent bodies about three million years earlier than previously determined. This discovery has implications for understanding when and where the asteroids accreted. The 53Mn-53Cr chronology of chondrite aqueous alteration, combined with thermodynamic calculations and physical modeling, signifies that hydrated asteroids, at least those sampled by meteorites, accreted in the inner Solar System (2-4 AU) near the main asteroid belt 2-4 million years after the beginning of the Solar System, rather than migrating inward after forming in the Solar System's colder, outer regions beyond Jupiter's present orbit (5-15 AU).

  11. Thermal evolution model for the H chondrite asteroid-instantaneous formation versus protracted accretion

    NASA Astrophysics Data System (ADS)

    Henke, S.; Gail, H.-P.; Trieloff, M.; Schwarz, W. H.

    2013-09-01

    We present a model of the thermal evolution of asteroids. Assuming an onion shell model for the H chondrite parent body we obtain constraints for the H chondrite asteroid parameters by fitting empirical H chondrite cooling ages of Estacado, Guarea, Kernouv, Mt. Browne, Richardton, Allegan, Nadiabondi, Ste. Marguerite, and Forest Vale by using a genetic algorithm for parameter optimisation. The model improves previous calculations on the thermal history calculated in the instantaneous accretion approximation considering sintering and porosity dependent heat conduction. The model is extended to include a finite growth time of the parent body to study whether the meteoritic record constrains the duration of the growth phase of the parent body where it assembles most of its mass. It is found that only short accretion times of up to 0.1 Ma are compatible with the empirical data on H chondrite cooling histories. Best fit models yield excellent agreement with the cooling age data. Particularly, they indicate that (i) 26Al was the major heat source driving metamorphism, while 60Fe contributed rather marginally, (ii) maximum temperatures remained below partial melting temperatures throughout the body, indicating that no partial differentiation occurred on the H chondrite parent asteroid, (iii) the H chondrite asteroid formed 2 Ma after CAIs, briefly after most ordinary chondrite chondrules formed (if 26Al abundance defines a chronological sequence).

  12. On the Relationship between Cosmic Ray Exposure Ages and Petrography of CM Chondrites

    NASA Technical Reports Server (NTRS)

    Takenouchi, A.; Zolensky, M. E.; Nishiizumi, K.; Caffee, M.; Velbel, M. A.; Ross, K.; Zolensky, A.; Lee, L.; Imae, N.; Yamaguchi, A.; Mikouchi, T.

    2014-01-01

    Carbonaceous (C) chondrites are potentially the most primitive among chondrites because they mostly escaped thermal metamorphism that affected the other chondrite groups. C chondrites are chemically distinguished from other chondrites by their high Mg/Si ratios and refractory elements, and have experienced various degrees of aqueous alteration. They are subdivided into eight subgroups (CI, CM, CO, CV, CK, CR, CB and CH) based on major element and oxygen isotopic ratios. Their elemental ratios vary over a wide range, in contrast to those of ordinary and enstatite chondrites which are relatively uniform. It is critical to know how many separate bodies are represented by the C chondrites. In this study we defined 4 distinct cosmic-ray exposure (CRE) age groups of CMs and systematically characterized the petrography in each of the 4 CRE age groups to determine whether the groups have significant petrographic differences with such differences probably reflecting different parent body (asteroid) geological processing, or multiple original bodies. We have reported the results of a preliminary grouping at the NIPR Symp. in 2013 [3], however, we revised the grouping and here report our new results.

  13. Magnesium isotopic composition of the Earth and chondrites

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Li, Wang-Ye; Ke, Shan; Marty, Bernard; Dauphas, Nicolas; Huang, Shichun; Wu, Fu-Yuan; Pourmand, Ali

    2010-07-01

    To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (0.06 on ? 25Mg and 0.07 on ? 26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL). Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of ? 25Mg = -0.13 0.05 (2SD) and ? 26Mg = -0.26 0.07 (2SD) for global oceanic basalts ( n = 110) and ? 25Mg = -0.13 0.03 (2SD) and ? 26Mg = -0.25 0.04 (2SD) for global peridotite xenoliths ( n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with ? 25Mg = -0.15 0.04 (2SD) and ? 26Mg = -0.28 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes. Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 0.04 for ? 25Mg and -0.25 0.07 for ? 26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites. The chondritic composition of the Earth implies that Mg isotopes were well mixed during accretion of the inner solar system.

  14. Photometric and polarimetric properties of the Bruderheim chondritic meteorite.

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Hilgeman, T.; Veverka, J.; Noland, M.

    1973-01-01

    Study of the spectral, photometric, and polarimetric properties of the Bruderheim olivine-hypersthene chondritic meteorite. This meteorite is representative of the most common meteoritic material recovered on earth, and, hence, could also be the most common in interplanetary space. Yet, comparison with astronomical data indicates that none of the asteroids in the main belt for which adequate observations exist can be matched with Bruderheim properties. Only the surface of the Apollo asteroid Icarus does, in light of polarization and photometry data, appear to be consistent with an ordinary chondrite composition. This suggests the possibility that this material, although common in earth-crossing orbits, is rare as a surface constituent in the main asteroid belt.

  15. Chondrules in CK carbonaceous chondrites and thermal history of the CV-CK parent body

    NASA Astrophysics Data System (ADS)

    Chaumard, NoëL.; Devouard, Bertrand

    2016-01-01

    CK chondrites are the only group of carbonaceous chondrites with petrologic types ranging from 3 to 6. It is commonly reported than ~15 vol% of CK4-6 samples are composed of chondrules. The modal abundance of chondrules estimated here for 18 CK3-6 (including five CK3s) ranges from zero (totally recrystallized) to 50.5%. Although almost all chemically re-equilibrated with the host matrix, we recognized in CK3s and Tanezrouft (Tnz) 057 (CK4) up to 85% of chondrules as former type I chondrules. Mean diameters of chondrules range from 0.22 to 1.05 mm for Karoonda (CK4) and Tnz 057 (CK4), respectively. Up to ~60% of chondrules in CK3-4 are surrounded by igneous rims (from ~20 μm to 2 mm width). Zoned olivines were found in unequilibrated chondrules from DaG 431 (CK3-an), NWA 4724 (CK3.8), NWA 4423 (CK3.9), and Tnz 057 (CK4). We modeled Fe/Mg interdiffusion profiles measured in zoned olivines to evaluate the peak metamorphic temperatures and time scales of the CK parent body metamorphism, and proposed a two-stage diffusion process in order to account for the position of inflection points situated within chondrules. Time scales inferred from Fe/Mg interdiffusion in olivine from unequilibrated chondrules are on the order of tens to a hundred thousand years (from 50 to 70,000 years for peak metamorphic temperatures of 1140 and 920 K, respectively). These durations are longer than what is commonly accepted for shock metamorphism and shorter than what is required for nuclide decay. Using the concept of a continuous CV-CK metamorphic series, which is reinforced by this study, we estimated peak metamorphic temperatures <850 K for CV, 850-920 K for CK3, and 920-1140 K for CK4-6 chondrites considering a duration of 70,000 years.

  16. Chondrules in CK carbonaceous chondrites and thermal history of the CV-CK parent body

    NASA Astrophysics Data System (ADS)

    Chaumard, NoëL.; Devouard, Bertrand

    2016-03-01

    CK chondrites are the only group of carbonaceous chondrites with petrologic types ranging from 3 to 6. It is commonly reported than ~15 vol% of CK4-6 samples are composed of chondrules. The modal abundance of chondrules estimated here for 18 CK3-6 (including five CK3s) ranges from zero (totally recrystallized) to 50.5%. Although almost all chemically re-equilibrated with the host matrix, we recognized in CK3s and Tanezrouft (Tnz) 057 (CK4) up to 85% of chondrules as former type I chondrules. Mean diameters of chondrules range from 0.22 to 1.05 mm for Karoonda (CK4) and Tnz 057 (CK4), respectively. Up to ~60% of chondrules in CK3-4 are surrounded by igneous rims (from ~20 μm to 2 mm width). Zoned olivines were found in unequilibrated chondrules from DaG 431 (CK3-an), NWA 4724 (CK3.8), NWA 4423 (CK3.9), and Tnz 057 (CK4). We modeled Fe/Mg interdiffusion profiles measured in zoned olivines to evaluate the peak metamorphic temperatures and time scales of the CK parent body metamorphism, and proposed a two-stage diffusion process in order to account for the position of inflection points situated within chondrules. Time scales inferred from Fe/Mg interdiffusion in olivine from unequilibrated chondrules are on the order of tens to a hundred thousand years (from 50 to 70,000 years for peak metamorphic temperatures of 1140 and 920 K, respectively). These durations are longer than what is commonly accepted for shock metamorphism and shorter than what is required for nuclide decay. Using the concept of a continuous CV-CK metamorphic series, which is reinforced by this study, we estimated peak metamorphic temperatures <850 K for CV, 850-920 K for CK3, and 920-1140 K for CK4-6 chondrites considering a duration of 70,000 years.

  17. Magnetite in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Hua, Xin; Buseck, Peter R.

    1997-03-01

    Magnetite (Fe3O4) occurs in many carbonaceous chondrites (CCs) and has long attracted the attention of meteorite researchers. However, its origin is unresolved; suggestions range from condensates from the solar nebular to products from aqueous alteration on the meteorite parent body. The report of possible evidence of former life in ancient Martian meteorite ALH84001 suggested an additional and highly intriguing origin for certain meteoritic magnetite, namely as magnetosomes from bacteria. However, a recent publication reports TEM evidence of spiral defects running through some of the the magnetite in ALHA84001, interpreted as evidence for a high temperature origin. These studies provide special interest to the occurrence of magnetite in meteorites. Using SEM, we studied magnetite from the Orgueil, Murchison, and Kaba and Mokoia meteorites, and obtained images at a nm-scale. We also did EMPA measurements to determine the compositions of the magnetite and surrounding minerals.

  18. Effect of metamorphism on isolated olivine grains in CO3 chondrites

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.

    1993-01-01

    The presence of a metamorphic sequence in the CO3 chondrite group has been shown previously to result in changes in properties of chondrule silicates. However, the role of isolated olivine grains during metamorphism of these chondrites has not been addressed. Isolated olivine grains in two metamorphosed CO3 chondrites, Lance and Isna, have been investigated in this study in order to assess the compositional properties of isolated olivine grains that may be attributable to metamorphism. Compositional changes in isolated olivines with increasing petrologic subtype are very similar to changes in chondrule olivines in the same chondrites. Olivine compositions from all occurrences (chondrules, isolated grains, and matrix) converge with increasing petrologic subtype. The degree of equilibration of minor elements is qualitatively related to the diffusion rate of each element in olivine, suggesting that diffusion-controlled processes are the most important processes responsible for compositional changes within the metamorphic sequence. The data are consistent with metamorphism taking place in a closed system on the CO3 chondrite parent body. Fe-poor olivine grains in metamorphosed chondrites are characterized by an Fe-rich rim, which is the result of diffusion of Fe into the grains from Fe-rich matrix. In some instances, 'complex', Fe-rich rims have been identified, which appear to have originated as igneous overgrowths and subsequently to have been overprinted by diffusion processes during metamorphism. Processes experienced by CO3 chondrites are more similar to those experienced by the ordinary chondrites than to those encountered by other carbonaceous chondrites, such as the CV3 group.

  19. To Be an Ordinary Department

    ERIC Educational Resources Information Center

    Colburn, Forrest D.

    2003-01-01

    In this article, the author shares his experience being the "chair" of the Department of Latin American and Puerto Rican Studies at Lehman College of the City University of New York. He also shares how this department proved to be an "ordinary" department at an "ordinary" liberal arts college. However, to conclude that they are an ordinary

  20. Nonlinear ordinary difference equations

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1979-01-01

    Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.

  1. Validity of trace element cosmothermometer. [for accretion range of chondrites

    NASA Technical Reports Server (NTRS)

    Anders, E.; Larimer, J. W.

    1975-01-01

    A reply is made to previous criticisms of the claim that the range of accretion of ordinary chondrites can be narrowed to 500-420 K (from 560-405 K) using volatile metals as cosmothermometers. Questions concerning uncertainties in vapor pressure data, entropy of mixing, methods of analysis, uncertainties in condensation curves, metamorphic transport, alloy formation, condensation of Tl, condensation of In, and concordance with other thermometers (FeO contents of silicates) are addressed. It is concluded that the original claim is valid.

  2. Chondrites, S asteroids, and space weathering: Thumping noises from the coffin?

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Clark, B. E.

    1993-01-01

    Most of the spectral characteristics of ordinary chondrites and S-asteroids in the visible and infrared can be reduced to three numerical values. These values represent the depth of the absorption band resulting from octahedrally coordinated Fe(sup 2+), the reflectance at 0.56 microns and the slope of the continuum (as measured according to convention). By plotting these three characteristics, it is possible to immediately compare the spectral characteristics of large numbers of ordinary chondrites and S-asteroids. Commonality of spectral characteristics between these populations can thus be evaluated on the basis of overlap in position on three two-coordinate systems: albedo vs. band depth, band depth vs. slope, and slope vs. albedo. In order to establish identity, members of the two populations must overlap on all three of these independent parameter spaces. In this coordinate system, spectra of 23 ordinary chondrites (representing all metamorphic grades), and 39 S-asteroids were compared. It was found that there was no overlap between the two populations in terms of the slope vs. band depth parameters, nor were most chondrites identical to the S-asteroids with respect to the other criteria. However, the controversial question remains: Where are the parent bodies of the chondrites? Perhaps an even more critical question is: Where are our samples of the S-asteroids? Considering the geography of the asteroid belt and the theory that early solar-system electromagnetic induction heating differentiated protoasteroids in the inner portion of the main belt, it was suggested that although S-asteroids and ordinary chondrites have very similar mineralogy, the S-asteroids are mixtures of metallic nickel iron and silicates which resulted from magmatism induced by electromagnetic heating whereas chondrites were only slightly metamorphosed nebular condensates. In this scenario chondrites would have been derived from a population of bodies with thermal lag times so short that they were not subjected to melting during the phase of the electromagnetic induction heating event but only to various degrees of pervasive metamorphism. Furthermore, these objects would then have been too small to be observed and systematically included in the library of asteroidal spectra. It was also suggested that the parametric distribution of S-asteroid spectra could be reproduced by mixing various proportions of NiFe meteorite and achondritic materials. This has also been demonstrated in the laboratory.

  3. Formation and Processing of Amorphous Silicates in Primitive Carbonaceous Chondrites and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Messenger, S.

    2012-01-01

    Chondritic-porous interplanetary dust particles (CP IDPs) exhibit strongly heterogeneous and unequilibrated mineralogy at sub-micron scales, are enriched in carbon, nitrogen and volatile trace elements, and contain abundant presolar materials [1-4]. These observations suggest that CP IDPs have largely escaped the thermal processing and water-rock interactions that have severely modified or destroyed the original mineralogy of primitive meteorites. CP IDPs are believed to represent direct samples of the building blocks of the Solar System - a complex mixture of nebular and presolar materials largely unperturbed by secondary processing. The chemical and isotopic properties of CP IDPs and their atmospheric entry velocities are also consistent with cometary origins. GEMS (glass with embedded metal and sulfides) grains are a major silicate component of CP IDPs. GEMS grains are < 0.5 microns in diameter objects that consist of numerous 10 to 50 nm-sized Fe-Ni metal and Fe-Ni sulfide grains dispersed in a Mg-Si-Al-Fe amorphous silicate matrix [2, 5]. Based on their chemistry and isotopic compositions, most GEMS appear to be non-equilibrium condensates from the early solar nebula [2]. If GEMS grains are a common nebular product, then they should also be abundant in the matrices of the most physically primitive chondritic meteorites. Although amorphous silicates are common in the most primitive meteorites [6-9], their relationship to GEMS grains and the extent to which their compositions and microstructure have been affected by parent body processing (oxidation and aqueous alteration) is poorly constrained. Here we compare and contrast the chemical, microstructural and isotopic properties of amorphous silicates in primitive carbonaceous chondrites to GEMS grains in IDPs.

  4. Studies of kamacite, perryite and schreibersite in E-chondrites and aubrites

    NASA Astrophysics Data System (ADS)

    Easton, A. J.

    1986-03-01

    The bulk composition of metal (kamacite plus perryite) was determined in eleven E-chondrites and eight aubrites. The data are compatible with the subdivision of the E-chondrites into two groups (Yavnel, 1963; Anders, 1964), St Mark's and St Sauveur belonging to type I (Easton, 1985). The Ni content of kamacite plus perryite in Kota Kota (5.49 percent) is within the range covered by the remaining E-chondrites. Normative perryite constitutes 2.1 percent of Kota Kota and 2.7 percent of South Oman. The Ni content in the bulk metal of Aubres, Bishopville, Norton County and Pena Blanca Spring is about half the average Ni content in the metal of E-chondrites or the remaining aubrites (Bustee, Khor Temiki, Mayo Belwa and Shallowater). High Ga/Ni ratios distinguish the metal in E-chondrites and aubrites from that in ordinary chondrites. The composition of both bulk metal and individual grains in aubrites makes it unlikely that they represent residual metal trapped during magmatic differentation and/or fractional crystallization of E6 material. Compositional differences between metal grains strongly indicate that the aubrites are polymict breccias.

  5. Partial asteroid differentiation revealed by paleomagnetism of R-chondrite meteorites

    NASA Astrophysics Data System (ADS)

    Cournède, Cécile; Gattacceca, Jérôme; Rochette, Pierre

    2014-05-01

    The study of the paleomagnetism of extraterrestrial material allows constraining magnetic fields in the early solar system. This can help us to understand primordial aspects of the history of the early solar system. Indeed, nebular or solar magnetic fields could have played a major role in the accretion process that generated the primary components of our solar system. Internal fields (i.e. generated by a dynamo within a solid body) are also of substantial interest since they provide information on parent body evolution, especially on parent body differentiation. In this study we focused on Rumuruti chondrites (R chondrites) [1]. This meteorite group is of particular interest because R chondrites parent body is believed to have formed at a heliocentric distance greater than ordinary chondrites and less than carbonaceous chondrites [2]. As such, more than a simple new chondrite group, R chondrites offer the possibility to estimate the magnetic fields strength present in a yet unstudied part of the early solar system. Only preliminary paleomagnetic data are available for these meteorites [3]. We performed a detailed magnetic and paleomagnetic study of two R chondrites, PCA91002 and LAP03639. Our aim was to establish the nature and the origin of the magnetic field recorded in these meteorites. Our results show that these two meteorites contain sulfide (pyrrhotite). Magnetite was also found in PCA91002. Paleomagnetic analyses using thermal and alternating field demagnetization evidenced a stable and homogenous magnetization in both R chondrites. Because magnetic carriers in these meteorites are secondary phases formed during a metamorphic event several Myr after the parent body formation (I-Xe dating on magnetite, [4]), the magnetization was acquired after the possible existence of solar and nebular magnetic fields. Therefore the magnetizing field was most probably of internal origin. Using alternating field normalizing methods we estimate that the magnetization was acquired in a magnetic field of about 5 µT. In view of the intensity and the likely internal (dynamo) origin of the magnetizing field, partial differentiation of the R chondrite parent body seems necessary. This idea, with a chondritic crust overlying a differentiated inner body has recently been proposed for CV chondrites parent body [5,6]. [1] Schulze et al., 1994. Meteoritics 29, 275-286. [2] Khan et al., 2013. 44th Lunar and Planet. Sci. Conf., abstract 2059. [3] Gattacceca and Rochette 2004. Earth Planet . Sci. Lett., 277, 377-393. [4] Claydon et al., 2013. 44th Lunar and Planet. Sci. Conf., abstract 2211. [5] Carporzen et al., 2011. Proc. National Acad. Sci., 108, 6386-6389. [6] Elkins-Tanton et al., 2011. Earth Planet . Sci. Lett., 305, 1-10.

  6. ALH85085: a unique volatile-poor carbonaceous chondrite with possible implications for nebular fractionation processes

    USGS Publications Warehouse

    Grossman, J.N.; Rubin, A.E.; MacPherson, G.J.

    1988-01-01

    Allan Hills 85085 is a unique chondrite with affinities to the Al Rais-Renazzo clan of carbonaceous chondrites. Its constituents are less than 50 ??m in mean size. Chondrules and microchondrules of all textures are present; nonporphyritic chondrules are unusually abundant. The mean compositions of porphyritic, nonporphyritic and barred olivine chondrules resemble those in ordinary chondrites except that they are depleted in volatile elements. Ca-, Al-rich inclusions are abundant and largely free of nebular alteration; they comprise types similar to those in CM and CO chondrites, as well as unique types. Calcium dialuminate occurs in several inclusions. Metal, silicate and sulfide compositions are close to those in CM-CO chondrites and Al Rais and Renazzo. C1-chondrite clasts and metal-rich "reduced" clasts are present, but opaque matrix is absent. Siderophile abundances in ALH85085 are extremely high (e.g., Fe Si = 1.7 ?? solar), and volatiles are depleted (e.g., Na Si = 0.25 ?? solar, S Si = 0.03 ?? solar). Nonvolatile lithophile abundances are similar to those in Al Rais, Renazzo, and CM and CO chondrites. ALH85085 agglomerated when temperatures in the nebula were near 1000 K, in the same region where Renazzo, Al Rais and the CI chondrites formed. Agglomeration of high-temperature material may thus be a mechanism by which the fractionation of refractory lithophiles occurred in the nebula. Chondrule formation must have occurred at high temperatures when clumps of precursors were small. After agglomeration, ALH85085 was annealed and lightly shocked. C1 and other clasts were subsequently incorporated during late-stage brecciation. ?? 1988.

  7. Spectral alteration effects in chondritic gas-rich breccias - Implications for S-Class and Q-Class asteroids

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey F.; Keil, Klaus

    1988-01-01

    Reflection spectra were obtained from sawed or freshly broken surfaces of gas-rich matrix regions in a number of ordinary chondrites (Dubrovnik, Cangas de Onis, Olivenza, and Dimmitt) which are believed to represent lithified portions of asteroid regoliths that were once directly exposed to space, with the purpose of relating these chondrites to Class S asteroids. However, the observations did not detect curved red continuum characteristic for Class S asteroid spectra, suggesting that it is unlikely for any well-observed Class S asteroid to be a source of ordinary chondrites. It is suggested that the newly discovered spectral class 'Q', of which asteroid 1982 Apollo is the prototype, provides a viable alternative of a parent body.

  8. Serpentine Nanotubes in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Dodony, Istvan; Buseck, Peter R.

    2004-01-01

    The CM chondrites are primitive meteorites that formed during the early solar system. Although they retain much of their original physical character, their matrices and fine-grained rims (FGRs) sustained aqueous alteration early in their histories [1- 3]. Serpentine-group minerals are abundant products of such alteration, and information regarding their structures, compositions, and spatial relationships is important for determining the reactions that produced them and the conditions under which they formed. Our recent work on FGRs and matrices of the CM chondrites has revealed new information on the structures and compositions of serpentine-group minerals [4,5] and has provided insights into the evolution of these primitive meteorites. Here we report on serpentine nanotubes from the Mighei and Murchison CM chondrites [6].

  9. Reflectance spectra of primitive chondrites

    NASA Astrophysics Data System (ADS)

    Trigo-Rodrguez, J. M.; Moyano-Cambero, C. E.; Llorca, J.

    2013-05-01

    We are studying a wide sample of pristine carbonaceous chondrites from the NASA Antarctic collection in order to get clues on the physico-chemical processes occurred in the parent bodies of these meteorites. We are obtaining laboratory reflectance spectra of different groups of carbonaceous chondrites, but here we focus in CM and CI chondrites. We discuss the main spectral features that can be used to identify primitive carbonaceous asteroids by remote sensing techniques. Two different spectrometers were used covering the entire 0.3 to 30 ?m electromagnetic window. Only a handful of Near Earth Objects (NEOs) exhibit bands or features clearly associated with aqueous alteration. Among them are the target asteroids of Osiris Rex and Marco Polo-R missions.

  10. Chondritic meteorites and the solar nebula

    NASA Astrophysics Data System (ADS)

    Wood, J. A.

    Present understanding of the formation of chondritic meteorites in the solar nebula is reviewed, focusing on the nebular history of chondritic material. The stages in the history of chondritic material are summarized. The processing of chondrules and refractory inclusions is considered, and the relatedness of chondrules and refractory inclusions is discussed.

  11. Magnetite-sulfide chondrules and nodules in CK carbonaceous chondrites - Implications for the timing of CK oxidation

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1993-01-01

    CK carbonaceous chondrites contain rare (about 0.1 vol pct) magnetite-sulfide chondrules that range from about 240 to 500 microns in apparent diameter and have ellipsoidal to spheroidal morphologies, granular textures, and concentric layering. They resemble the magnetite-sulfide nodules occurring inside mafic silicate chondrules in CK chondrites. It seems likely that the magnetite-sulfide chondrules constitute the subset of magnetite-sulfide nodules that escaped as immiscible droplets from their molten silicate chondrule hosts during chondrule formation. The intactness of the magnetite-sulfide chondrules and nodules implies that oxidation of CK metal occurred before agglomeration. Hence, the pervasive silicate darkening of CK chondrites was caused by the shock mobilization of magnetite and sulfide, not metallic Fe-Ni and sulfide as in shock-darkened ordinary chondrites.

  12. Porosity of Chondrites: Some Regularities

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Kuyunko, N. S.

    1996-03-01

    Porosity depends on processes of formation and evolutionary history of composite materials of chondrites. The same processes may stipulate, in particular, the content of radiogenic 4He and 40Ar in the meteorites. We have analysed the distribution of porosity of H and L chondrites depending on ratio of T(sub)4/T(sub)40, (where T(sub)4 and T(sub)40 are U, Th-He and K-Ar gas-retention ages, respectively) for determination of possible interrelation between these features of meteorites.

  13. REE and Hf distribution among mineral phases in the CV-CK clan: A way to explain present-day Hf isotopic variations in chondrites

    NASA Astrophysics Data System (ADS)

    Martin, Cline; Debaille, Vinciane; Lanari, Pierre; Goderis, Steven; Vandendael, Isabelle; Vanhaecke, Frank; Vidal, Olivier; Claeys, Philippe

    2013-11-01

    Chondrites are among the most primitive objects in the Solar System and constitute the main building blocks of telluric planets. Among the radiochronometers currently used for dating geological events, Sm-Nd and Lu-Hf are both composed of refractory, lithophile element. They are thought to behave similarly as the parent elements (Sm and Lu) are generally less incompatible than the daughter elements (Nd and Hf) during geological processes. As such, their respective average isotopic compositions for the solar system should be well defined by the average of chondrites, called Chondritic Uniform Reservoir (CHUR). However, while the Sm-Nd isotopic system shows an actual spread of less than 4% in the average chondritic record, the Lu-Hf system shows a larger variation range of 28% [Bouvier A., Vervoort J. D. and Patchett P. J. (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett.273, 48-57]. To better understand the contrast between Sm-Nd and Lu-Hf systems, the REE and Hf distribution among mineral phases during metamorphism of Karoonda (CK) and Vigarano-type (CV) carbonaceous chondrites has been examined. Mineral modes were determined from elemental mapping on a set of five CK chondrites (from types 3-6) and one CV3 chondrite. Trace-element patterns are obtained for the first time in all the chondrite-forming minerals of a given class (CK chondrites) as well as one CV3 sample. This study reveals that REE are distributed among both phosphates and silicates. Only 30-50% of Sm and Nd are stored in phosphates (at least in chondrites types 3-5); as such, they are not mobilized during early stages of metamorphism. The remaining fraction of Sm and Nd is distributed among the same mineral phases; these elements are therefore not decoupled during metamorphism. Of the whole-rock total of Lu, the fraction held in phosphate decreases significantly as the degree of metamorphism increases (30% for types 3 and 4, less than 5% in type 6). In contrast to Lu, Hf is mainly hosted by silicates with little contribution from phosphates throughout the CK metamorphic sequence. A significant part of Sm and Nd are stored in phosphates in types 3-5, and these elements behave similarly during CK chondrite metamorphism. That explains the robustness of the Sm/Nd ratios in chondrites through metamorphism, and the slight discrepancies observed in the present-day isotopic Nd values in chondrites. On the contrary, Lu and Hf are borne by several different minerals and consequently they are redistributed during metamorphism-induced recrystallization. The Lu/Hf ratios are therefore significantly disturbed during chondrites metamorphism, leading to the high discrepancies observed in present-day Hf isotopic values in chondrites.

  14. In Search of Ordinary Heroes.

    ERIC Educational Resources Information Center

    Reissman, Rose

    1995-01-01

    Inspired by Miep Gies's selfless hiding of Anne Frank, a class of urban middle schoolers came up with definitions and characteristics of "ordinary," nonglitzy heroes. One student suggested that the school create its own ordinary hero hall of fame; students then researched possible nominees and held an induction ceremony for those nominated. (MLH)

  15. The Carlisle Lakes-type chondrites: A new grouplet with high. Delta. sup 17 O and evidence for nebular oxidation

    SciTech Connect

    Weisberg, M.K. Brooklyn Coll., NY ); Prinz, M. ); Kojima, Hideyasu; Yanai, Keizo ); Clayton, R.N.; Mayeda, T.K. )

    1991-09-01

    Carlisle Lakes, ALH85151, and Y75302 are similar ungrouped chondrites which have petrologic and bulk compositional similarities to the ordinary chondrites, but are more oxidized; and their oxygen isotopic compositions differ. They represent a new grouplet which the authors call the Carlisle Lakes-type chondrites. They have the highest {Delta}{sup 17}O values (up to 2.91) measured to date. The whole chondrites and most of their chondrules plot on the same mass fractionation line on an oxygen 3-isotope diagram. They are olivine rich (>70 vol%), essentially metal free, and most olivine is FeO rich, equilibrated at Fa{sub 38}. Rare olivine and pyroxene grains in chondrules and fragments are zoned, and these are important in discerning the history of these chondrites. The zoning does not appear to have formed during crystallization from a melt droplet chondrule, but post-dated chondrule formation. Two hypotheses are postulated to explain the zoning: (1) parent-body thermal metamorphism and (2) nebular gas-solid exchange reactions accompanied by condensation of new FeO-rich olivine, utilizing existing olivine surfaces as nucleation sites. The occurrence of steep Fe-Mg compositional gradients of core-to-rim profiles, oscillatory zoning in olivine, fayalitic rims of Fa{sub 45} that exceed instead of approach the equilibrium composition of the matrix (Fa{sub 38}), and olivine-filled veins in zoned pyroxenes are more compatible with the nebular hypothesis. The Carlisle Lakes-type chondrites may have originally been derived from an ordinary chondrite-like precursor which was later oxidized, prior to its final lithification. However, the oxygen isotopic compositions of the whole chondrites and most of their chondrules suggest that the precursor probably formed in an oxygen isotopically distinct environment.

  16. Aqueous activity and sources of water on the chondrite parent asteroids

    NASA Astrophysics Data System (ADS)

    Krot, A.; Alexander, C.; Nagashima, K.; Ciesla, F.; Fujiya, W.

    2014-07-01

    Ages of aqueous alteration of asteroids: Most chondrite parent asteroids experienced aqueous alteration resulting in the formation of secondary minerals, including phyllosilicates, magnetite, Fe,Ni-sulfides, carbonates [(Ca,Mg,Fe,Mn)CO_3)], and fayalite [(Fe,Mn)_2SiO_4] [1]. Mineralogical observations and thermodynamic analysis suggest that the alteration of the various chondrite groups occurred under different physico-chemical conditions (temperature, redox conditions, pH, water/rock ratio). The chronology of aqueous activity on the chondrite parent asteroids can be inferred from ^{53}Mn-^{53}Cr dating (^{53}Mn decays to ^{53}Cr with half-life of 3.7 Myr) of aqueously-formed carbonates and fayalite measured with secondary ion mass-spectrometry. Recently reported ^{53}Mn-^{53}Cr ages of carbonates in CM [2,3], CI [4], CR [5] chondrites, and fayalite in CV [6], CO [6], and LL [7] chondrites indicate that aqueous alteration on the ordinary and carbonaceous chondrite (CC) parent asteroids occurred nearly contemporaneously, 3-5 Myr after formation of Ca,Al-rich inclusions (CAIs), the earliest Solar System solids dated [8]. Accretion ages of chondrite parent asteroids: Assuming uniform distribution of a short-lived radionuclide ^{26}Al (decays to ^{26}Mg with half-life of 0.7 Myr) in the disk at the canonical level (^{26}Al/^{27}Al 510^{-5}), the timing of aqueous alteration combined with estimates of peak metamorphic temperatures and thermal modelling of the ordinary and CC parent asteroids suggest that these bodies accreted 2-3 Myr after CAI formation [2,3,7]. The inferred accretion ages of ordinary and CC parent asteroids are generally consistent with average ^{26}Al-^{26}Mg ages (^{26}Al decays to ^{26}Mg with half-life of 0.7 Myr) of their chondrules [9,10], suggesting that chondrule formation was rapidly followed by accretion and that ^{26}Al was the major heating source of aqueous alteration and thermal metamorphism on these bodies. The observed variations in the degree of aqueous alteration within a chondrite group may indicate that water ices accreted heterogeneously or that there was a fluid flow in their parent bodies. Sources of water on the chondrite parent asteroids: According to the Grand Tack and Nice models, the extensively hydrated (C-, D-, and P-type) asteroids formed between and beyond the giant planets and were scattered into the main asteroid belt during a period of giant planet migration [11,12]. Bulk D/H ratio of chondrite water ices can potentially be used for testing this model, but cannot be measured directly. Alexander et al. [13] used the bulk hydrogen and carbon isotopic compositions of chondrites to estimate the water D/H ratio for a number of chondrite groups. The estimated D/H ratio of water in the extensively hydrated CI, CM, CR and ungrouped carbonaceous chondrite Tagish Lake (spectrally similar to D-type asteroids) are significantly lower than in the measured comets from Oort Cloud comets; the D/H ratio of water in CRs, however, is similar to that in the Jupiter Family Comet Hartley 2 [14]. Alexander et al. [13] concluded that CC parent asteroids accreted 3-7 au from the Sun. These data provide important constraints on the Grand Tack and Nice models.

  17. Magnetite-Pentlandite Chondrules in CK Chondrites

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.

    1992-07-01

    Opaque-mineral-rich chondrules are among the least common chondrule types and have received scant attention since their discovery by Gustav Rose in 1864. This category includes chondrules comprised principally of metallic Fe-Ni (Tschermak, 1885; Gooding and Keil, 1981) or chrome-spinel (Ramdohr, 1967; Krot et al., 1992). Here I report the occurrence of seven magnetite-pentlandite chondrules in Karoonda (CK4), PCA82500 (CK4/5) and EET90007 (CK5). The chondrules range in size from 225x255 micrometers to 440x570 micrometers and have ellipsoidal or spheroidal morphologies. All are concentrically layered: five of the chondrules have 20-60-micrometer-thick magnetite rims surrounding pentlandite-rich cores or mantles; two of the chondrules have thin pentlandite rims surrounding magnetite-rich cores and mantles. One chondrule from Karoonda has four distinct alternating layers of magnetite and pentlandite. Accessory phases, which occur in one or more of the chondrules, include pyrrhotite, chlorapatite, ilmenite, and chalcopyrite. The chondrules have finely to coarsely granular textures; in the center of one chondrule from PCA82500 there is a 25x100 micrometers subhedral crystal of pentlandite. All of the chondrules appear to be recrystallized, presumably due to metamorphism of their host rocks. The magnetite-pentlandite chondrules are very similar to the magnetite-pentlandite-rich nodules within mafic silicate chondrules in CK chondrites. I examined four nodules that range in size from 58x64 micrometers to 400x670 micrometers and have ellipsoidal or spheroidal morphologies. All but one are concentrically layered; one nodule from a Karoonda chondrule has four concentric layers of magnetite+-pentlandite. The nodules probably formed from immiscible sulfide-oxide droplets within their molten silicate chondrule hosts during chondrule formation. Upon cooling, magnetite and monosulfide solid solution (Mss) precipitated during cotectic crystallization; the Mss transformed into pentlandite after cooling below 610 degrees C. Dense immiscible liquid droplets tend to get expelled from the equators of their spinning molten spheroidal hosts if they do not happen to be located in the molten spheroids' centers where the centrifugal forces are minimal. This phenomenon also affected the four magnetite-pentlandite nodules: one nodule is near the margin and three are at the centers of their host silicate chondrules. The similarities in size, shape, mineralogy, and texture between the magnetite-pentlandite chondrules and nodules indicate that these chondrules constitute the set of immiscible nodule droplets that were lost to their mafic silicate chondrule hosts after melting. The occurrence of magnetite-pentlandite chondrules and nodules has important implications for the timing of CK chondrite oxidation. If oxidation had occurred after agglomeration and transformed metallic Fe-Ni into magnetite, the large (factor of 2) increase in molar volume would have disrupted the nodules and chondrules and destroyed the evidence for rhythmic layering. The intactness of the chondrules and nodules implies that the oxidation of fine-grained metallic Fe-Ni into magnetite probably occurred before agglomeration, either during chondrule formation in a region of high fo(sub)2 or within porous chondrule-precursor dust clumps after nebular temperatures cooled below ~130 degrees C. Hence, the pervasive silicate darkening of CK chondrites (Kallemeyn et al., 1991; Rubin, 1992) was caused by the shock mobilization of magnetite and pentlandite, not metallic Fe-Ni and troilite as in shock-darkened ordinary chondrites. References: Gooding J.L. and Keil K. (1981) Meteoritics 16, 17- 43; Kallemeyn G.W., Rubin A.E. and Wasson J.T. (1991) Geochim. Cosmochim. Acta 55, 881-892; Krot A., Ivanova M.A. and Wasson J.T. (1992) Earth Planet. Sci. Lett., submitted; Ramdohr P. (1967) Geochim. Cosmochim. Acta 31, 1961-1967; Rubin A.E. (1992) Geochim. Cosmochim. Acta 56, 1705-1714; Tschermak G. (1885) Die Mikroskopische Beschaffenheit der Meteoriten. Schweizerbart'sche Verlagshandlung, Stuttgart.

  18. Petrology and geochemistry of chondrules and metal in NWA 5492 and GRO 95551: A new type of metal-rich chondrite

    NASA Astrophysics Data System (ADS)

    Weisberg, Michael K.; Ebel, Denton S.; Nakashima, Daisuke; Kita, Noriko T.; Humayun, Munir

    2015-10-01

    Northwest Africa (NWA) 5492 and Grosvenor Mountains (GRO) 95551 are metal-rich chondrites having silicate (olivine and pyroxene) compositions that are more reduced than those in other metal-rich chondrites, such as the CH and CB chondrites. Additionally, sulfides in NWA 5492 and GRO 95551 are more abundant and not related to the metal, as in the CB chondrites. Average metal compositions in NWA 5492 and GRO 95551 are close to H chondrite metal. Oxygen isotope ratios of NWA 5492 and GRO 95551 components (chondrules and fragments) show a range of compositions with most having ?17O values >0. Since there is no matrix component, their average chondrule + fragment oxygen isotopic compositions are considered to be representative of whole rock and (?17O values) are sandwiched between the values for enstatite (E) and ordinary (O) chondrites. These data argue for a close relationship between NWA 5492 and GRO 95551 and suggest that they are the first examples of a new type of metal-rich chondrite. Oxygen isotope ratios of chondrules in NWA 5492 and GRO 95551 show considerable overlap with chondrules in O, E and R chondrites, with average compositions indistinguishable from LL3 chondrules, suggesting considerable mixing between these Solar System materials during chondrule formation and/or that their precursors experienced similar formation environments and/or processes. Another characteristic shared between NWA 5492 and GRO 95551 and O, E and R chondrites is that they are all relatively dry (low abundances of hydrated minerals), compared to many C chondrites and have fewer, smaller CAIs than many C chondrites. (No CAIs were found in NWA 5492 or GRO 95551 but they contain rare Al-rich chondrules.) We suggest that O, E, R and the NWA 5492 and GRO 95551 chondrites are closely related Solar System materials.

  19. Iodine-Xenon dating of chondrules from the Qingzhen and Kota Kota enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Whitby, J. A.; Gilmour, J. D.; Turner, G.; Prinz, M.; Ash, R. D.

    2002-01-01

    Initial 129I/ 127I values (I-Xe ages) have been obtained for individual mineralogically characterized chondrules and interchondrule matrix from the enstatite chondrites Qingzhen (EH3) and Kota Kota (EH3). In view of the absence of aqueous alteration and the low-peak metamorphic temperatures experienced by these meteorites, we suggest that the I-Xe ages for the chondrules record the event in which they were formed. These ages are within the range recorded for chondrules from ordinary chondrites, demonstrating that chondrules formed during the same time interval in the source regions of both ordinary chondrites and enstatite chondrites. The timing of this chondrule-forming episode or episodes brackets the I-Xe closure age of planetesimal bodies such as the Shallowater aubrite parent body. Although chondrule formation need not have occurred close to planetesimals, the existence of planetesimals at the same time as chondrule formation provides constraints on models of this process. Whichever mechanisms are proposed to form and transport chondrules, they must be compatible with models of the protosolar nebula which predict the formation of differentiated bodies on the same timescale at the same heliocentric distance.

  20. Igneous Graphite in Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1997-01-01

    Igneous graphite. a rare constituent in terrestrial mafic and ultramafic rocks. occurs in three EH and one EL enstatite chondrite impact-melt breccias as 2-150 Ilm long euhedrallaths. some with pyramidal terminations. In contrast. graphite in most enstatite chondrites exsolved from metallic Fe-Ni as polygonal. rounded or irregular aggregates. Literature data for five EH chondrites on C combusting at high temperatures show that Abee contains the most homogeneous C isotopes (i.e. delta(sup 13)C = -8.1+/-2.1%); in addition. Abee's mean delta(sup l3)C value is the same as the average high-temperature C value for the set of five EH chondrites. This suggests that Abee scavenged C from a plurality of sources on its parent body and homogenized the C during a large-scale melting event. Whereas igneous graphite in terrestrial rocks typically forms at relatively high pressure and only moderately low oxygen fugacity (e.g., approx. 5 kbar. logfO2, approx. -10 at 1200 C ). igneous graphite in asteroidal meteorites formed at much lower pressures and oxygen fugacities.

  1. Magnetic study of CM chondrites

    NASA Astrophysics Data System (ADS)

    Cournde, C.; Gattacceca, J.; Zanda, B.; Rochette, P.

    2012-04-01

    The study of the paleomagnetism of carbonaceous chondrites can lead to an estimate of the magnetic fields present in the early solar system. CM chondrites contain abundant magnetite formed during aqueous alteration on their parent body, and have not been heated after that, making them interesting targets for paleomagnetism. We performed a detailed and comparative magnetic study (paleomagnetism and rock magnetism) of three CM chondrites: Paris, Cold Bokkeveled and Murchison. These three meteorites cover a wide range of aqueous alteration, with increasing alteration from Paris [1] to Murchison to Cold Bokkeveld [2]. Paris is a unique CM chondrite significantly less aqueously altered than other CM chondrites. Our magnetic data show that in contrast with other CM, Paris meteorite contains abundant FeNi metal (of nebular origin) together with magnetite and pyrrhotite (of asteroidal origin). Paleomagnetic results of Paris show that unfortunately the meteorite has been exposed to a strong artificial magnetic field (magnet), precluding the study of the natural magnetization (of possible nebular origin) carried by FeNi. However, a high-coercivity magnetization carried by pyrrhotite is still preserved in the meteorite. It is homogeneous in direction and intensity at the scale of the meteorite. We interpret this high-coercivity magnetization as a pre-terrestrial chemical remanent magnetization acquired on the parent body in a field of a few T. Our preliminary results on Murchison also evidenced an stable and homogeneous magnetization in the meteorite. Therefore a long-lasting stable magnetizing field seems necessary to account for the paleomagnetism of both meteorites. Because crystallization of pyrrhotite and magnetite occurred several Myr after the formation of the parent body [3] (i.e. after possible existence of strong solar and nebular magnetic field), the magnetizing field was most probably created on the parent body. In view of its intensity, the most plausible origin for the magnetizing field is an internally generated dynamo field. This would imply that the parent body of CM chondrites was partially differentiated with a convecting metallic core. Such process has recently been proposed for the parent body of CV chondrites [4, 5]. [1] Zanda et al., 2010. Meteoritics Planetary Sci., 45, 222-222. [2] Rubin et al., 2007. Geo. et Cosmo. Acta, 71, 2361-2382 [3] Krot et al., 2005. UCRL-BOOK-217207 [4] Carporzen et al., 2011. Proc. National Acad. Sci., 108, 6386-6389. [5] Elkins-Tanton et al., 2011. Earth Planet . Sci. Lett., 305, 1-10.

  2. 2D Size Distribution of Chondrules and Chondritic Fragments of an Ordinary Chondrite from Lut Desert (Iran)

    NASA Astrophysics Data System (ADS)

    Pourkhorsandi, H.; Mirnejad, H.

    2014-09-01

    2D size measurement of chondrules and chondiritic fragments of a meteorite from Lut desert of Iran is conducted. Chondrules exhibit a size range of 55-1800 µm (average 437 µm). Chondiritic fragments show a size range of 46-1220 µm (average 261 µm).

  3. Chemical and physical studies of type 3 chondrites. I - Metamorphism related studies of Antarctic and other type 3 ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Sears, D. W.; Grossman, J. N.; Melcher, C. L.

    1982-01-01

    New thermoluminescence (TL) sensitivity measurements on 17 finds and one fall are presented, and petrologic assignments are made on the basis of TL sensitivity and silicate heterogeneity. The correlation that exists between TL sensitivity and glow curve shape is discussed, with the difference in the glow curve shapes of meteorite types 3.4 and less and type 3.5 and greater being tentatively attributed to an order-disorder transition in plagioclase, the TL phosphor. A correlation between TL sensitivity and heteogeneity of the silicate composition is found, but it tends to break down in the most heterogeneous meteorites. For Antarctic meteorites, the TL data show a much more restricted range in TL sensitivity than in silicate heterogeneity. The Quinyambie meteorite is the only one not consistent with the observed trend. Several explanations are offered, none of them totally satisfactory.

  4. Petrography, stable isotope compositions, microRaman spectroscopy, and presolar components of Roberts Massif 04133: A reduced CV3 carbonaceous chondrite

    PubMed Central

    Davidson, Jemma; Schrader, Devin L; Alexander, Conel M O'D; Lauretta, Dante S; Busemann, Henner; Franchi, Ian A; Greenwood, Richard C; Connolly, Harold C; Domanik, Kenneth J; Verchovsky, Alexander

    2014-01-01

    Here, we report the mineralogy, petrography, C-N-O-stable isotope compositions, degree of disorder of organic matter, and abundances of presolar components of the chondrite Roberts Massif (RBT) 04133 using a coordinated, multitechnique approach. The results of this study are inconsistent with its initial classification as a Renazzo-like carbonaceous chondrite, and strongly support RBT 04133 being a brecciated, reduced petrologic type >3.3 Vigarano-like carbonaceous (CV) chondrite. RBT 04133 shows no evidence for aqueous alteration. However, it is mildly thermally altered (up to approximately 440 °C); which is apparent in its whole-rock C and N isotopic compositions, the degree of disorder of C in insoluble organic matter, low presolar grain abundances, minor element compositions of Fe,Ni metal, chromite compositions and morphologies, and the presence of unequilibrated silicates. Sulfides within type I chondrules from RBT 04133 appear to be pre-accretionary (i.e., did not form via aqueous alteration), providing further evidence that some sulfide minerals formed prior to accretion of the CV chondrite parent body. The thin section studied contains two reduced CV3 lithologies, one of which appears to be more thermally metamorphosed, indicating that RBT 04133, like several other CV chondrites, is a breccia and thus experienced impact processing. Linear foliation of chondrules was not observed implying that RBT 04133 did not experience high velocity impacts that could lead to extensive thermal metamorphism. Presolar silicates are still present in RBT 04133, although presolar SiC grain abundances are very low, indicating that the progressive destruction or modification of presolar SiC grains begins before presolar silicate grains are completely unidentifiable. PMID:26640360

  5. Formation timescales of CV chondrites from component specific Hf-W systematics

    NASA Astrophysics Data System (ADS)

    Becker, Maike; Hezel, Dominik C.; Schulz, Toni; Elfers, Bo-Magnus; Münker, Carsten

    2015-12-01

    Carbonaceous chondrites are an important meteorite group that closely resembles the bulk composition of the solar system. We report the first elemental and isotope dataset for Hf-W in carbonaceous chondrites that includes chondrules, matrix, magnetic fractions as well as bulk compositions. Our study focuses on the three CV3 chondrites, Allende, Vigarano and Bali. Compared to bulk chondrites, matrix splits have low Hf/W ratios and ε182W compositions, whereas chondrule splits are characterized by high, but more variable, Hf/W ratios and ε182W compositions. Thus, Hf/W ratios behave complementary between chondrules and matrix in the analysed CV chondrites, supporting the view that both components formed from the same parental reservoir. Strong nucleosynthetic effects were observed in most of the analysed CV3 components, especially in matrices and chondrule splits that were found to have large ε183W anomalies of several ε-units. All separates define a rough correlation between initial 182W/184W and 183W/184W ratios, in agreement with theoretical model trends based on calculations for stellar nucleosynthesis. Our results, therefore, indicate a heterogeneous distribution of s- and r-process W isotopes among the different CV3 chondrite components, arguing for selective thermal processing of early solar system matter during chondrule formation. After correcting for nucleosynthetic anomalies, chondrules and matrix splits of reduced (Vigarano) as well as oxidised (Allende) CV3 chondrites define a linear correlation in ε182W vs. 180Hf/184W space, which is interpreted as an isochron, covering an age interval within the first ∼2.6 Ma after solar system formation. As peak metamorphic temperatures for CV3 chondrites were well below the 182Hf-182W closure temperature, the resulting isochron within its error most likely defines a common formation interval for all components. The calculated age interval is for the first time based on a combined chondrule-matrix isochron, a marked difference compared to previous studies where only chondrules were analysed. Notably, our formation age interval covers previously reported chondrule formation ages determined using 26Al and Pb-Pb chronometry, illustrating that chondrule and matrix formation started contemporaneously with CAI formation and lasted over a time interval of about 2-3 Ma. Our results also corroborate previous models from ordinary chondrites, in that chondrite parent bodies were not the first planetesimals to have formed in the early solar system.

  6. Carbonates in the Kaidun chondrite. [Abstract only

    NASA Technical Reports Server (NTRS)

    Weisberg, M. K.; Prinz, M.; Zolensky, M. E.; Ivanov, A. V.

    1994-01-01

    Kaidun is a remarkable chondrite breccia fall containing lithic clasts that span a wide range of chondrite groups including C and E chondrites, as well as having clasts with characteristics not yet found in existing chondrite samples. The dominant lithology in Kaidun appears to be CR chondritic, consonant with recent O isotope data. The carbonates in Kaidun are presented as one mineralogical basis for comparing it to the other hydrated chondrites and to better understand its relative alteration history. The four polished thin sections of Kaidun studied contained a variety of lithologies that we classified into four groups -- CR, E, CM-like, and dark inclusions (DIs). DIs contain sulfide and magnetite morphologies that superficially resemble CI chondrites, and some of the previously reported CI lithologies in Kaidun may be what we term DIs. Carbonates were found in all lithologies studied. Carbonates in Kaidun are similar in composition to those in CR chondrites. Some of the DIs in Kaidun, previously characterized as CI, have carbonates similar to those in CR chondrites and are unlike those in CI or CM chondrites. Most carbonates in Kaidun and CR chondrites are calcites, some of which formed at temperatures above 250 C. Dolomite is less common and some may be metastable. Alteration temperatures in the Renazzo CR chondrite were estimated to be approximately 300 C, based on O isotope fractionation between phyllosilicates and magnetite. Temperatures of up to 450 C were proposed for the alteration of a CR-like dark inclusion in Kaidun, based on the presence of hydrothermal pentlandite veins. The alteration temperatures for Kaidun and the other CR chondrites are considerably higher than those suggested for CI or CM parent bodies.

  7. Oxygen-isotopes in magnetite and fayalite in CV chondrites Kaba and Mokoia

    NASA Astrophysics Data System (ADS)

    Choi, Byeon-Gak; Krot, Alexander N.; Wasson, John T.

    2000-11-01

    We report in situ measurements of oxygen-isotope compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoia. In both meteorites the magnetite and the secondary olivine (fayalite, Fa90-100) have O-isotope compositions near the terrestrial fractionation (TF) line; the mean 17O (=17O-0.5218O) value is -1% In contrast, the compositions of nearby primary (chondrule), low-FeO olivines (Fa1-2) are well below the TF line; 17O values range from -3% to -9% Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoia imply that the oxygen isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoia the fayalite and magnetite differ in 18O by 20% whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoia magnetite and fayalite may indicate formation in isotopic equilibrium in a water-rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The 17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7-8% lower than that in that incorporated into the LL parent body (Choi et al., 1998), suggesting that the O-isotopic composition of the nebular gas was spatially or temporally variable.

  8. The Steingarden Nunataks L6 Chondrites STG 07002, 07003, 07004: Relationship to Type 7 Chondrites

    NASA Astrophysics Data System (ADS)

    Brandstätter, F.; Koeberl, C.; Topa, D.

    2014-09-01

    Steingarden Nunataks L6 chondrites STG 07002, 07003 and 07004 have several features in common with some recently described L7 chondrites. The similarities comprise microscopic textures as well as the mineral chemistry of major silicates and opaques.

  9. Magnetic record in chondrite meteorites

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Faris, J. L.; Obryan, M. V.

    1993-01-01

    What we know about the magnetic record in chondrite meteorites based on new data and previously published results is summarized. Strips from thin slabs of chondrite meteorites were cut into near cubical subsamples (several mm on edge) numbering approximately 60 to approximately 120 per meteorite. A common orientation was assigned to each subsample from a given meteorite in order to ensure that we could discover the vector makeup of the bulk meteorite. The new data set includes: Shaw (L7), Roy (L5/6), Claytonville (L5), Plainview (H5), Etter (H5), Leoville (C3V), and Allende (C3V). In addition to these new results, literature data of sufficient detail, e.g. Bjurbole (L4), ALH769 (L6), Abee (E4), Allende (C3V), and Olivenza (L5), is considered.

  10. Chemical and petrographic correlations among carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Van Schmus, W. R.; Hayes, J. M.

    1974-01-01

    Detailed study of the petrographic and chemical properties of carbonaceous chondrites shows that the four distinct petrographic subtypes may be related to one of two distinct chemical subdivisions. These subdivisions are recognized primarily by the relative abundances of the nonvolatile elements Si, Ca, Al, Ti, Cu and Fe. C1, C2 and C3(O) chondrites form one subdivision. Vigarano subtype chondrites form the other subdivision and include chondrites previously referred to as C2, C3 and C4. Normalized to silicon, the abundances of Ca, Al and Ti are relatively enriched in Vigarano subtype chondrites, whereas Fe and Cu are relatively more abundant in C1, C2 and C3(O) chondrites. Volatile elements tend to correlate with petrographic subtypes rather than with chemical subdivisions.

  11. Rare-earth abundances in chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Evensen, N. M.; Hamilton, P. J.; Onions, R. K.

    1978-01-01

    Fifteen chondrites, including eight carbonaceous chondrites, were analyzed for rare earth element abundances by isotope dilution. Examination of REE for a large number of individual chondrites shows that only a small proportion of the analyses have flat unfractionated REE patterns within experimental error. While some of the remaining analyses are consistent with magmatic fractionation, many patterns, in particular those with positive Ce anomalies, can not be explained by known magmatic processes. Elemental abundance anomalies are found in all major chondrite classes. The persistence of anomalies in chondritic materials relatively removed from direct condensational processes implies that anomalous components are resistant to equilibrium or were introduced at a late stage of chondrite formation. Large-scale segregation of gas and condensate is implied, and bulk variations in REE abundances between planetary bodies is possible.

  12. New component of the Mezo-Madaras breccia - a microchondrule- and carbon-bearing L-related chondrite

    SciTech Connect

    Michel-Levy, M.C.

    1988-03-01

    Microchondrules with apparent diameters 2-150 microns are found in a black carbon-bearing inclusion in Mazo-Madaras. Some are homogeneous (glassy or microcrystalline); others show two phases (mainly silica and pyroxene-rich glass). The bulk chemical composition of the inclusion is related to the host chondrite, in which silica-pyroxene chondrules are ubiquitous. Small black lumps of the same kind are dispersed in bulk Mezo-madaras. This L-related carbon-bearing material may represent a new specimen of C-rich ordinary chondrite. 13 references.

  13. A refractory inclusion in the Kaba CV3 chondrite - Some implications for the origin of spinel-rich objects in chondrites

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Post, J. E.

    1985-01-01

    The first detailed petrographic and mineralogical study of a Ca, Al-rich inclusion (CAI) from the Kaba CV3 chondrite is reported. This 'fine-grained' CAI contains abundant small, rounded, rimmed, spinel-rich objects which have important features in common with the spinel-rich objects in other carbonaceous and ordinary chondrites. These nodules are interpreted as fractionated distillation residues of primitive dust. However, the available data do not unambiguously rule out a condensation origin for at least some of these objects. Finally, the preservation of distinct diopside-hedenbergite rims on the spinel-rich bodies and the small grain size of many minerals in the CAI matrix material both suggest that the CAI accreted cool and had a relatively cool thermal history in the Kaba parent body.

  14. A refractory inclusion in the Kaba CV3 chondrite - Some implications for the origin of spinel-rich objects in chondrites

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Post, J. E.

    1985-11-01

    The first detailed petrographic and mineralogical study of a Ca, Al-rich inclusion (CAI) from the Kaba CV3 chondrite is reported. This 'fine-grained' CAI contains abundant small, rounded, rimmed, spinel-rich objects which have important features in common with the spinel-rich objects in other carbonaceous and ordinary chondrites. These nodules are interpreted as fractionated distillation residues of primitive dust. However, the available data do not unambiguously rule out a condensation origin for at least some of these objects. Finally, the preservation of distinct diopside-hedenbergite rims on the spinel-rich bodies and the small grain size of many minerals in the CAI matrix material both suggest that the CAI accreted cool and had a relatively cool thermal history in the Kaba parent body.

  15. Ordinary People, Ordinary Places: The Civil Rights Movement. [Lesson Plan].

    ERIC Educational Resources Information Center

    2002

    Martin Luther King, Jr. framed the goals and strategies of the Civil Rights Movement for a national audience, and with his message of nonviolent protest, he inspired ordinary African Americans to demand equal rights as American citizens. This lesson focuses on the individual men and women who embraced King's message and advanced the Civil Rights

  16. Volatile elements in chondrites - Metamorphism or nebular fractionation

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Gros, J.; Higuchi, H.; Morgan, J. W.; Anders, E.

    1978-01-01

    Three of the most highly metamorphosed meteorites of their respective classes, Shaw (LL7), Karoonda (C5), and Coolidge (C4), were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Comparison with data by Lipschutz and coworkers (1977) on artificially heated primitive meteorites shows that the natural metamorphism of meteorites cannot have taken place in a system open to volatiles. Shaw, metamorphosed at 1300 C for more than 1 million yr, is less depleted in In, Bi, Ag, Te, Zn, and Tl than Krymka heated at 1000 C for 1 week. Karoonda, metamorphosed at 600 C for many millennia, is less depleted in Bi and Tl than Allende heated at 600 C for 1 week. Data on primordial noble gases also show that the volatile-element patterns of ordinary and carbonaceous chondrites were established by nebular condensation and changed little, if at all, during metamorphism. For enstatite chondrites, the evidence is still incomplete but seems to favor a nebular origin of the volatile pattern.

  17. Photometric and polarimetric properties of the Bruderheim chondritic meteorite

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Veverka, J.; Noland, M.; Hilgeman, T.

    1973-01-01

    Photometric and polarimetric laboratory measurements were made as a function of phase angle in the U(0.36 microns), G(0.54 microns) and R(0.67 microns) bands for 0, 30 and 60 deg incident illumination on four particle size ranges of Bruderheim, an L6 olivine-hypersthene chondritic meteorite. The four particle size ranges were: 0.25-4.76 mm coated with less than 74 microns powder, 74-250 microns, and less than 37 microns. In addition, normal reflectance measurements were made in the spectral range from 0.31 to 1.1 microns. Comparison with astronomical data reveals that none of the asteroids in the main belt for which adequate observations exist can be matched with Bruderheim, which is representative of the most common meteoritic material encountered by the Earth. However, it appears from the polarization and photometry data that the surface of the Apollo asteroid Icarus is consistent with an ordinary chondrite composition. This suggests the possibility that this material, although common in Earth-crossing orbits, is rare as a surface constituent in the main asteroid belt.

  18. Oxygen Isotope Systematics of Chondrules from the Least Equilibrated H Chondrite

    NASA Technical Reports Server (NTRS)

    Kita, N. T.; Kimura, M.; Ushikubo, T.; Valley, J. W.; Nyquist, L. E.

    2008-01-01

    Oxygen isotope compositions of bulk chondrules and their mineral separates in type 3 ordinary chondrites (UOC) show several % variability in the oxygen three isotope diagram with slope of approx.0.7 [1]. In contrast, ion microprobe analyses of olivine and pyroxene phenocrysts in ferromagnesian chondrules from LL 3.0-3.1 chondrites show mass dependent isotopic fractionation as large as 5% among type I (FeO-poor) chondrules, while type II (FeO-rich) chondrules show a narrow range (less than or equal to 1%) of compositions [2]. The .Delta(exp 17)O (=delta(exp 17)O-0.52xdelta(exp 18)O) values of olivine and pyroxene in these chondrules show a peak at approx.0.7% that are systematically lower than those of bulk chondrule analyses as well as the bulk LL chondrites [2]. Further analyses of glass in Semarkona chondrules show .17O values as high as +5% with highly fractionated d18O (max +18%), implying O-16-poor glass in chondrules were altered as a result of hydration in the parent body at low temperature [3]. Thus, chondrules in LL3.0-3.1 chondrites do not provide any direct evidence of oxygen isotope exchange between solid precursor and O-16-depleted gas during chondrule melting events. To compare the difference and/or similarity between chondrules from LL and H chondrites, we initiated systematic investigations of oxygen isotopes in chondrules from Yamato 793408 (H3.2), one of the least equilibrated H chondrite [4]. In our preliminary study of 4 chondrules, we reported distinct oxygen isotope ratios from dusty olivine and refractory forsterite (RF) grains compared to their host chondrules and confirmed their relict origins [5].

  19. Micro-Scale Distributions of Major and Trace Elements in Chondrites

    NASA Technical Reports Server (NTRS)

    Ireland, T. R.; Zolensky, M.

    2011-01-01

    The Hayabusa spacecraft has successfully returned to Earth after two touchdowns on the surface of Asteroid 25143 Itokawa. This asteroid is classified as an S-type and inferred to consist of materials similar to ordinary chondrites or primitive achondrites [1]. More than 1500 particles have been identified consisting of olivine, pyroxene, plagioclase, Fe sulfide and Fe metal, with compositions consistent with being of LL origin. While the chondritic components are familiar to us, the level of detail to which the Itokawa samples will be exposed to will be unprecedented given that the samples are reasonably large and accessible to a wide variety of techniques. In many ways, we expect that our knowledge base of the comparator chondrites will be found to be wanting. Chondrites are the building blocks of the solar system. However, these rocks are essentially breccias and they are quite variable in bulk element compositions as well as compositions of the individual components. We have initiated a program of analysis for chondrites focusing on major and trace element distributions between the mineral components and the matrix. The issues to be addressed include the homogeneity of matrix and chondrule components and the representivity of any given sample to the bulk meteorite. This may be particularly important given the limited numbers of Itokawa grains that may be available for a specific analysis. As an initial study, we have taken thin sections of carbonaceous chondrites to study the representivity of the matrix compositions. Spot locations were constrained to limited regions of the sections so as to assess the variability of a local scale. Further work will be required to assess variability over a centimeter scale.

  20. Formation and transformations of Fe-rich serpentines by asteroidal aqueous alteration processes: A nanoscale study of the Murray chondrite

    NASA Astrophysics Data System (ADS)

    Elmaleh, Agnès; Bourdelle, Franck; Caste, Florent; Benzerara, Karim; Leroux, Hugues; Devouard, Bertrand

    2015-06-01

    Fe-rich serpentines are an abundant product of the early aqueous alteration events that affected the parent bodies of CM carbonaceous chondrites. Alteration assemblages in these meteorites show a large chemical variability and although water-rock interactions occurred under anoxic conditions, serpentines contain high amounts of ferric iron. To date very few studies have documented Fe valence variations in alteration assemblages of carbonaceous chondrites, limiting the understanding of the oxidation mechanisms. Here, we report results from a nanoscale study of a calcium-aluminum-rich inclusion (CAI) from the Murray chondrite, in which alteration resulted in Fe import and Ca export by the fluid phase and in massive Fe-rich serpentines formation. We combined scanning and transmission electron microscopies and scanning transmission X-ray microscopy for characterizing the crystal chemistry of Fe-serpentines. We used reference minerals with known crystallographic orientations to quantify the Fe valence state in Fe-rich serpentines using X-ray absorption spectroscopy at the Fe L2,3-edges, yielding a robust methodology that would prove valuable for studying oxidation processes in other terrestrial or extra-terrestrial cases of serpentinization. We suggest that aqueous Fe2+ was transported to the initially Fe-depleted CAI, where local changes in pH conditions, and possibly mineral catalysis by spinel promoted the partial oxidation of Fe2+ into Fe3+ by water and the formation of Fe-rich serpentines close to the cronstedtite endmember. Such mechanisms produce H2, which opens interesting perspectives as hydrogen may have reacted with carbon species, or escaped and yield increasingly oxidizing conditions in the parent asteroid. From the results of this nanoscale study, we also propose transformations of the initial cronstedtite, destabilized by later input of Al- and Mg-rich solutions, leading to Fe2+ leaching from serpentines, as well as to random serpentine-chlorite interstratifications. Such transformations towards polysomatic assemblages that are un-equilibrated from the structural, chemical and redox point of views are probably controlled by the various rates of alteration of primary minerals, but also by porosity gradients, as in terrestrial hydrothermal systems. We suggest that the proposed mechanisms may have played a role in the early formation of (Fe2+,Fe3+)-rich serpentines documented in CM chondrites, as well as in their transformation with on-going alteration towards Fe-poorer compositions inferred from previous petrologic, mineralogical and magnetic studies of CM chondrites.

  1. Chondrites and the Protoplanetary Disk, Part 4

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics discussed include: Cosmochemical fractionations, Chondritic meteorites and their components, Jet flows: Formation and thermal processing of solids in protoplanetary disks, A Search for Solar-System processing signatures in presolar grains, Experimental study of iron metal condensation, The chondrite types and their origins, Spinel-rich spherules from murchison, etc.

  2. Ordinary Differential Equation System Solver

    Energy Science and Technology Software Center (ESTSC)

    1992-03-05

    LSODE is a package of subroutines for the numerical solution of the initial value problem for systems of first order ordinary differential equations. The package is suitable for either stiff or nonstiff systems. For stiff systems the Jacobian matrix may be treated in either full or banded form. LSODE can also be used when the Jacobian can be approximated by a band matrix.

  3. A large shock vein in L chondrite Roosevelt County 106: Evidence for a long-duration shock pulse on the L chondrite parent body

    NASA Astrophysics Data System (ADS)

    Sharp, Thomas G.; Xie, Zhidong; de Carli, Paul S.; Hu, Jinping

    2015-11-01

    A large shock-induced melt vein in L6 ordinary chondrite Roosevelt County 106 contains abundant high-pressure minerals, including olivine, enstatite, and plagioclase fragments that have been transformed to polycrystalline ringwoodite, majorite, lingunite, and jadeite. The host chondrite at the melt-vein margins contains olivines that are partially transformed to ringwoodite. The quenched silicate melt in the shock veins consists of majoritic garnets, up to 25 ?m in size, magnetite, maghemite, and phyllosilicates. The magnetite, maghemite, and phyllosilicates are the terrestrial alteration products of magnesiowstite and quenched glass. This assemblage indicates crystallization of the silicate melt at approximately 20-25 GPa and 2000 C. Coarse majorite garnets in the centers of shock veins grade into increasingly finer grained dendritic garnets toward the vein margins, indicating increasing quench rates toward the margins as a result of thermal conduction to the surrounding chondrite host. Nanocrystalline boundary zones, that contain wadsleyite, ringwoodite, majorite, and magnesiowstite, occur along shock-vein margins. These zones represent rapid quench of a boundary melt that contains less metal-sulfide than the bulk shock vein. One-dimensional finite element heat-flow calculations were performed to estimate a quench time of 750-1900 ms for a 1.6-mm thick shock vein. Because the vein crystallized as a single high-pressure assemblage, the shock pulse duration was at least as long as the quench time and therefore the sample remained at 20-25 GPa for at least 750 ms. This relatively long shock pulse, combined with a modest shock pressure, implies that this sample came from deep in the L chondrite parent body during a collision with a large impacting body, such as the impact event that disrupted the L chondrite parent body 470 Myr ago.

  4. Testing of an H-chondrite as a Candidate for the Bulk Martian Mantle Composition

    NASA Astrophysics Data System (ADS)

    Hutchins, K.; Agee, C. B.; Draper, D. S.

    2009-12-01

    Several models for the bulk composition of the martian mantle have been proposed in the past. Other researchers have used these starting compositions (or similar variations) to model crystallization of the martian mantle from an early, extensive magma ocean. Borg and Draper (2003) used the silicate fraction of the Homestead L5 ordinary chondrite (Mg# of 76.6 and FeO content of ~16 wt%) as their starting composition for the magma ocean, which is similar in composition to the Dreibus and Wnke (1985) model martian mantle composition (Mg# of 75 and FeO content of ~18 wt%). Borg and Draper (2003) determined that garnet must be an early crystallizing phase at the onset of magma ocean crystallization in order to impart a superchondritic CaO/Al2O3 ratio to the residual liquid (aluminum is sequestered into the crystallizing garnet, thus depleting the residual liquid in aluminum and raising the CaO/Al2O3 ratio). Such a process is required to account for the superchondritic CaO/Al2O3 ratios (~1.0 to 1.4 compared to the chondritic value of ~0.80) seen in the shergottite meteorites (martian basaltic meteorites). This ratio should remain relatively unperturbed by subsequent crystallization of olivine low-Ca pyroxene. Borg and Draper (2003) also concluded that the L-chondrite starting composition was too FeO-rich to produce the source regions of the shergottite meteorites. They proposed that an H chondrite (Mg# of 80 and FeO content of ~13 wt%) would make a better starting composition for the magma ocean. We conducted high-pressure melting experiments on the Farmville H4 ordinary chondrite from 3 to 17 GPa. We used the compositions of these melts (representing possible compositions of an early martian magma ocean), to constrain the compositions of likely source rocks for the calculated parent liquids of the shergottites. We infer that a magma ocean having a bulk composition like that of Farmville yields source rocks that are a better match to sources of the most primitive martian basalt parent liquids than does a Homestead-composition magma ocean. We therefore conclude that the Dreibus-Wnke model martian mantle (similar in composition to an L chondrite) is too FeO rich to produce the shergottite source rocks. We advocate that an H chondrite is a better candidate for a bulk martian mantle composition.

  5. H/L chondrite LaPaz Icefield 031047 ? A feather of Icarus?

    SciTech Connect

    Wittmann, Axel; Friedrich, Jon M.; Troiano, Julianne; Macke, Robert J.; Britt, Daniel T.; Swidle, Timothy D.; Weirich, John R.; Rumble III, Douglas; Lasue, Jeremie; King, David A.

    2011-10-28

    Antarctic meteorite LAP 031047 is an ordinary chondrite composed of loosely consolidated chondritic fragments. Its petrography, oxygen isotopic composition and geochemical inventory are ambiguous and indicate an intermediate character between H and L chondrites. Petrographic indicators suggest LAP 031047 suffered a shock metamorphic overprint below {approx}10 GPa, which did not destroy its unusually high porosity of {approx}27 vol%. Metallographic textures in LAP 031047 indicate heating above {approx}700 C and subsequent cooling, which caused massive transformation of taenite to kamacite. The depletion of thermally labile trace elements, the crystallization of chondritic glass to microcrystalline plagioclase of unusual composition, and the occurrence of coarsely crystallized chondrule fragments is further evidence for post-metamorphic heating to {approx}700-750 C. However, this heating event had a transient character because olivine and low-Ca pyroxene did not equilibrate. Nearly complete degassing up to very high temperatures is indicated by the thorough resetting of LAP 031047's Ar-Ar reservoir {approx}100 {+-} 55 Ma ago. A noble gas cosmic-ray exposure age indicates it was reduced to a meter-size fragment at < 0.5 Ma. In light of the fact that shock heating cannot account for the thermal history of LAP 031047 in its entirety, we test the hypothesis that this meteorite belonged to the near-surface of an Aten or Apollo asteroid that underwent heating during orbital passages close to the Sun.

  6. Origin and history of chondrite regolith, fragmental and impact-melt breccias from Spain

    NASA Technical Reports Server (NTRS)

    Casanova, I.; Keil, K.; Wieler, R.; San Miguel, A.; King, E. A.

    1990-01-01

    Six ordinary chondrite breccias from the Museo Nacional de Ciencias Naturales, Madrid (Spain), are described and classified as follows: the solar gas-rich regolith breccia Oviedo (H5); the premetamorphic fragmental breccias Cabezo de Mayo (type 6, L-LL), and Sevilla (LL4); the fragmental breccias Canellas (H4) and Gerona (H5); and the impact melt breccia, Madrid (L6). It is confirmed that chondrites with typical light-dark structures and petrographic properties typical of regolith breccias may (Oviedo) or may not (Canellas) be solar gas-rich. Cabezo de Mayo and Sevilla show convincing evidence that they were assembled prior to peak metamorphism and were equilibrated during subsequent reheating. Compositions of olivine and low-Ca pyroxene in host chondrite and breccia clasts in Cabezo de Mayo are transitional between groups L and LL. It is suggested, based on mineralogic and oxygen isotopic compositions of host and clasts, that the rock formed on the L parent body by mixing, prior to peak metamorphism. This was followed by partial equilibrium of two different materials: the indigenous L chondrite host and exotic LL melt rock clasts.

  7. Simulation of possible regolith optical alteration effects on carbonaceous chondrite meteorites

    NASA Astrophysics Data System (ADS)

    Clark, Beth E.; Fanale, Fraser P.; Robinson, Mark S.

    1993-03-01

    As the spectral reflectance search continues for links between meteorites and their parent body asteroids, the effects of optical surface alteration processes need to be considered. We present the results of an experimental simulation of the melting and recrystallization that occurs to a carbonaceous chondrite meteorite regolith powder upon heating. As done for the ordinary chondrite meteorites, we show the effects of possible parent-body regolith alteration processes on reflectance spectra of carbonaceous chondrites (CC's). For this study, six CC's of different mineralogical classes were obtained from the Antarctic Meteorite Collection: two CM meteorites, two CO meteorites, one CK, and one CV. Each sample was ground with a ceramic mortar and pestle to powders with maximum grain sizes of 180 and 90 microns. The reflectance spectra of these powders were measured at RELAB (Brown University) from 0.3 to 2.5 microns. Following comminution, the 90 micron grain size was melted in a nitrogen controlled-atmosphere fusion furnace at an approximate temperature of 1700 C. The fused sample was immediately held above a flow of nitrogen at 0 C for quenching. Following melting and recrystallization, the samples were reground to powders, and the reflectance spectra were remeasured. The effects on spectral reflectance for a sample of the CM carbonaceous chondrite called Murchison are shown.

  8. Simulation of possible regolith optical alteration effects on carbonaceous chondrite meteorites

    NASA Technical Reports Server (NTRS)

    Clark, Beth E.; Fanale, Fraser P.; Robinson, Mark S.

    1993-01-01

    As the spectral reflectance search continues for links between meteorites and their parent body asteroids, the effects of optical surface alteration processes need to be considered. We present the results of an experimental simulation of the melting and recrystallization that occurs to a carbonaceous chondrite meteorite regolith powder upon heating. As done for the ordinary chondrite meteorites, we show the effects of possible parent-body regolith alteration processes on reflectance spectra of carbonaceous chondrites (CC's). For this study, six CC's of different mineralogical classes were obtained from the Antarctic Meteorite Collection: two CM meteorites, two CO meteorites, one CK, and one CV. Each sample was ground with a ceramic mortar and pestle to powders with maximum grain sizes of 180 and 90 microns. The reflectance spectra of these powders were measured at RELAB (Brown University) from 0.3 to 2.5 microns. Following comminution, the 90 micron grain size was melted in a nitrogen controlled-atmosphere fusion furnace at an approximate temperature of 1700 C. The fused sample was immediately held above a flow of nitrogen at 0 C for quenching. Following melting and recrystallization, the samples were reground to powders, and the reflectance spectra were remeasured. The effects on spectral reflectance for a sample of the CM carbonaceous chondrite called Murchison are shown.

  9. Evidence for a source of H chondrites in the outer main asteroid belt

    NASA Astrophysics Data System (ADS)

    Nedelcu, D. A.; Birlan, M.; Popescu, M.; B?descu, O.; Pricopi, D.

    2014-07-01

    Aims: In this paper we report near-infrared spectroscopic observations of one of the largest potentially hazardous asteroids, (214869) 2007 PA8. Mineralogical analysis of this object was followed by the investigation of the dynamical delivery mechanism from its probable source region, based on long-term numerical integrations. Methods: The spectrum of (214869) 2007 PA8 was analysed using the positions of 1 ?m and 2 ?m bands and by curve-matching with RELAB meteorites spectra. Its dynamical evolution was investigated by means of a 200 000-year numerical integration in the past of 1275 clones followed to the source region. Results: (214869) 2007 PA8 has a very young surface with a composition more akin to H chondrites than to any other type of ordinary chondrite. It arrived from the outer Main Belt in the near-Earth space via the 5:2 mean motion resonance with Jupiter by eccentricity pumping. Identification of its source region far from (6) Hebe raises the possibility of the existence of a second parent body of the H chondrites that has a radically different post-accretion history. Future spectroscopic surveys in the 5:2 resonance region will most likely discover other asteroids with an H chondrite composition. Figure 2 is available in electronic form at http://www.aanda.org

  10. What Are Space Exposure Histories Telling Us about CM Carbonaceous Chondrites?

    NASA Technical Reports Server (NTRS)

    Takenouchi, A.; Zolensky, Michael E.; Nishiizumi, K.; Caffee, M.; Velbel, M. A.; Ross, K.; Zolensky, P.; Le, L.; Imae, N.; Yamaguchi, A.; Mikouchi, T.

    2013-01-01

    Chondrites are chemically primitive and carbonaceous (C) chondrites are potentially the most primitive among them because they mostly escaped thermal metamor-phism that affected the other chondrite groups and ratios of their major, non-volatile and most of the volatile elements are similar to those of the Sun. Therefore, C chondrites are ex-pected to retain a good record of the origin and early history of the solar system. Carbonaceous chondrites are chemically differentiated from other chondrites by their high Mg/Si ratios and refractory elements, and have experienced various degrees of aqueous alteration. They are subdivided into eight subgroups (CI, CM, CO, CV, CK, CR, CB and CH) based on major element and oxygen isotopic ratios. Their elemental ratios spread over a wide range though those of ordinary and enstatite chondrites are relatively uniform. It is critical to know how many sepa-rate bodies are represented by the C chondrites. In this study, CM chondrites, the most abundant carbona-ceous chondrites, are examined. They are water-rich, chon-drule- and CAI-bearing meteorites and most of them are brec-cias. High-temperature components such as chondrules, iso-lated olivine and CAIs in CMs are frequently altered and some of them are replaced by clay minerals and surrounded by sul-fides whose Fe was derived from mafic silicates. On the basis of degrees of aqueous alteration, CMs have been classified into subtypes from 1 to 2, although Rubin et al. [1] assigned subtype 1 to subtype 2 and subtype 2 to subtype 2.6 using various petrologic properties. The classification is based on petrographic and mineralogic properties. For example, though tochilinite (2[(Fe, Mg, Cu, Ni[])S] 1.57-1.85 [(Mg, Fe, Ni, Al, Ca)(HH)2]) clumps are produced during aqueous alteration, they disappear and sulfide appears with increasing degrees of aqueous alteration. Cosmic-ray exposure (CRE) age measurements of CM chondrites reveal an unusual feature. Though CRE ages of other chondrite groups range from several Myr to tens of Myr, CMs exposure ages are not longer than 7 Myr with one-third of the CM having less than 1 Myr CRE age. For those CM chondrites that have CRE ages <1 Myr, there are two discern-able CRE peaks. Because a CRE age reflects how long a me-teorite is present as a separate body in space, the peaks pre-sumably represent collisional events on the parent body (ies) [2]. In this study we defined 4 distinct CRE age groups of CMs and systematically characterized the petrography in each of the 4 CRE age groups to determine whether the groups have significant petrographic differences, with such differences probably reflecting different parent body (asteroid) geological processing, or multiple original bodies.

  11. Thermally Mobile Trace Elements in Carbonaceous Chondrites From Cold and Hot Deserts

    NASA Technical Reports Server (NTRS)

    Lipschutz, M. E.

    2000-01-01

    Some decades ago, Anders and co-workers used RNAA to classify a number of trace elements as being volatile during nebular condensation and accretion into primitive objects based upon their strong depletion in (equilibrated) ordinary chondrites relative to C1 chondrites. Such elements, e.g. Ag, Bi, Cd, Cs, In, Se, Te, Tl, Zn and others, exhibit nearly constant, C1-normalized atomic abundances in C2 (CM2) and in C3 chondrites. They interpreted the near-constancy of these abundances according to a 2-component model in which volatiles were introduced into carbonaceous (and other) chondrites as C1 material which was diluted with differing proportions of high-temperature (i.e. volatile-free) components. In this view, mean volatile element abundances of 0.48 in C2 and 0.24-0.29 x C1 in C3 chondrites indicated that C2 and C3 chondrites are, respectively, about 1:1 and 1:2-3 mixtures of C1-like and high temperature materials. More recently, Xiao and Lipschutz found that C-normalized abundances of such volatile elements are nearly constant in most C2-6 chondrites (i.e. 25 non-Antarctic meteorites, nearly all falls, and 36 Antarctic finds) consistent with a 2-component mixing model. However, rather than being quantized, mean volatile element contents in each chondrite define a continuum from 0.92-0.14 x C1 for these 61 chondrites. A few carbonaceous chondrites, the first having been the NIPR consortium samples B-7904, Y-82162 and Y-86720, show an altered pattern: many of the volatile elements in each exhibit the usual constancy of C1-normalized atomic abundances, but modified by further depletion of Cd and other elements like Tl and Bi. These are the most mobile trace elements, i.e. those most readily vaporized and lost from primitive meteorites during week-long heating at greater than or equal to 400 C under low ambient pressures (initially 10(exp -5) atm H2), simulating metamorphic conditions in a primitive parent body. Similarities between mobile element data for B-7904, Y-82162 and Y-86720 with those for Murchison heated at 500-700 C, suggest that these Antarctic C1 - and C2-like chondrites were metamorphosed at temperatures like these in the interiors of their parent bodies. Metamorphic temperatures inferred from RNAA data and textural/mineralogic alterations are internally consistent, agreeing., with those evident in heated Murchison samples. These 3 chondrites were also heated late in their histories since all have lost cosmogenic He-3, presumably during close solar approach, and B-7904 and Y-86720 seem also to have lost substantial proportions of radiogenic He-4 and Ar-40 cf. data in. Similarities in spectral reflectance data for C-, G-, B- and F- asteroids, for these meteorites and for heated Murchison samples suggest that thermally metamorphosed interior materials in these asteroids were excavated by impacts and re-deposited on them, forming their present surfaces. Establishment of the thermal metamorphic histories of carbonaceous chondrites, then, is essential to establishing the evolution and present-day nature of C-type and related asteroids.

  12. Thermally Mobile Trace Elements in Carbonaceous Chondrites from Cold and Hot Deserts

    NASA Technical Reports Server (NTRS)

    Lipschutz, M. E.

    1999-01-01

    Some decades ago, Anders and co-workers used RNAA to classify a number of trace elements as being volatile during nebular condensation and accretion into primitive objects based upon their strong depletion in (equilibrated) ordinary chondrites relative to C1 chondrites. Such elements, e.g. Ag, Bi, Cd, Cs, In, Se, Te, Tl, Zn and others, exhibit nearly constant, C1-normalized atomic abundances in C2 (CM2) and in C3 chondrites. They interpreted the near-constancy of these abundances according to a 2-component model in which volatiles were introduced into carbonaceous (and other) chondrites as Cl material which was diluted with differing proportions of high-temperature (i.e. volatile-free) components. In this view, mean volatile element abundances of 0.48 in C2 and 0.24-0.29 x C1 in C3 chondrites indicated that C2 and C3 chondrites are, respectively, about 1:1 and 1:2-3 mixtures of Cl-like and high temperature materials. More recently, C1 normalized abundances of such volatile elements are nearly constant in most C2-6 chondrites (i.e. 25 non-Antarctic meteorites, nearly all falls, and 36 Antarctic finds) consistent with a 2- component mixing model. However, rather than being quantized, mean volatile element contents in each chondrite define a continuum from 0.92-0.14 x Cl for these 61 chondrites. A few carbonaceous chondrites - the first having been the NIPR consortium samples B-7904, Y-82162 and Y-86720 - show an altered pattern: many of the volatile elements in each exhibit the usual constancy of C1-normalized atomic abundances, but modified by further depletion of Cd and other elements like Tl and Bi. These are the most mobile trace elements, i.e. those most readily vaporized and lost from primitive meteorites during week-long heating at greater than or equal to 400 C under low ambient pressures (initially 10 (exp -5) atm H2), simulating metamorphic conditions in a primitive parent body. Similarities between mobile element data for B-7904, Y-82162 and Y-86720 with those for Murchison heated at 500-700 C suggest that these Antarctic C1 and C2-like chondrites were metamorphosed at temperatures like these in the interiors of their parent bodies. Metamorphic temperatures inferred from RNAA data and textural/mineralogic alterations are internally consistent, agreeing with those evident in heated Murchison samples. These 3 chondrites were also heated late in their histories since all have lost cosmogenic 3-He, presumably during close solar approach, and B-7904 and Y-86720 seem also to have lost substantial proportions of radiogenic He-4 and Ar-40, cf. data. Similarities in spectral reflectance data for C-, G-, B- and F- asteroids, for these meteorites and for heated Murchison samples suggest that thermally metamorphosed interior materials in these asteroids were excavated by impacts and re-deposited on them, forming their present surfaces. Establishment of the thermal metamorphic histories of carbonaceouis chondrites, then, is essential to establishing the evolution and present-day nature of C-type and related asteroids.

  13. Spectral reflectance properties of carbonaceous chondrites: 6. CV chondrites

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Hudon, P.; Hiroi, T.; Gaffey, M. J.; Mann, P.; Bell, J. F.

    2012-09-01

    Multiple reflectance spectra of 11 CV chondrites have been measured to determine spectral-compositional relationships for this meteorite class and to aid the search for CV parent bodies. The reflectance of CV chondrite spectra is variable, ranging from ∼5% to 13% at 0.56 μm, and ∼5% to 15% at the 0.7 μm region local reflectance maximum. Overall slopes range from slightly blue to red for powders, while slab spectra are strongly blue-sloped. With increasing average grain size and/or removal of the finest fraction, CV spectra generally become more blue-sloped. CV spectra are characterized by ubiquitous absorption features in the 1 and 2 μm regions. The 1 μm region is usually characterized by a band centered near 1.05-1.08 μm and a band or shoulder near 1.3 μm that are characteristic of Fe-rich olivine. Band depths in the 1 μm region for powdered CVs and slabs range from ∼1% to 10%. The 2 μm region is characterized by a region of broad absorption that extends beyond 2 μm and usually includes band minima near 1.95 and 2.1 μm; these features are characteristic of Fe2+-bearing spinel. The sample suite is not comprehensive enough to firmly establish whether spectral differences exist between CVR, CVOxA, and CVOxB subclasses, or as a function of metamorphic grade. However, we believe that the mineralogic and petrologic differences that exist between these classes, and with varying petrologic subtype (CV3.0->3.7), may not be significant enough to result in measurable spectral differences that exceed spectral variations within a subgroup, within an individual meteorite, or as a function of grain size. Terrestrial weathering seems to affect CV spectra most noticeably in the visible region, resulting in more red-sloped spectra for finds as compared to falls. The search for CV parent bodies should focus on the detection of olivine and spinel absorption bands, specifically absorption features near 1.05, 1.3, 1.95, and 2.1 μm, as these are the most commonly seen spectral features of CV chondrites.

  14. Origin of spinel-rich chondrules and inclusions in carbonaceous and ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Kornacki, A. S.; Fegley, B., Jr.

    1984-01-01

    The evaluation of three models of the origin of spinel-rich chondrules and inclusions presented here includes new calculations of the major-element refractory mineral condensation sequence from a gas of solar composition over a wide pressure interval. Condensation calculations show that spinel-rich chondrules did not crystallize from metastable liquid condensates, and that spinel-rich inclusions are not aggregates of refractory nebular condensates. It is proposed that spinel-rich objects are fractionated distillation residues of small aggregates of primitive dust that lost Ca, Si-rich partial melts by evaporation, ablation, or splashing during collisions. This model also explains why spinel-rich chondrules and inclusions (1) are usually smaller than melilite-rich chondrules and inclusions; (2) often have highly fractionated trace-element compositions; and (3) usually do not contain Pt-metal nuggets even when they are more enriched in the Pt-group metals than nugget-bearing melilite-rich objects.

  15. Origin of spinel-rich chondrules and inclusions in carbonaceous and ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Kornacki, A. S.; Fegley, B.

    1984-02-01

    The evaluation of three models of the origin of spinel-rich chondrules and inclusions presented here includes new calculations of the major-element refractory mineral condensation sequence from a gas of solar composition over a wide pressure interval. Condensation calculations show that spinel-rich chondrules did not crystallize from metastable liquid condensates, and that spinel-rich inclusions are not aggregates of refractory nebular condensates. It is proposed that spinel-rich objects are fractionated distillation residues of small aggregates of primitive dust that lost Ca, Si-rich partial melts by evaporation, ablation, or splashing during collisions. This model also explains why spinel-rich chondrules and inclusions (1) are usually smaller than melilite-rich chondrules and inclusions; (2) often have highly fractionated trace-element compositions; and (3) usually do not contain Pt-metal nuggets even when they are more enriched in the Pt-group metals than nugget-bearing melilite-rich objects.

  16. Cosmogenic Records in 18 Ordinary Chondrites from the Dar Al Gani Region, Libya. 1; Noble Gases

    NASA Technical Reports Server (NTRS)

    Schultz, L.; Franke, L.; Welten, K. C.; Nishiizumi, K.; Jull, A. J. T.

    2003-01-01

    In the last decade thousands of meteorites have been recovered from hot deserts in the Sahara and Oman. One of the main meteorite concentration surfaces in the Sahara is the Dar al Gani plateau in Libya, which covers a total area of 8000 km2. More than 1000 meteorites have been reported from this area. The geological setting, meteorite pairings and the meteorite density of the Dar al Gani (DaG) field are described in more detail in [1]. In this work we report concentrations of the noble gas isotopes of He, Ne, Ar as well as 84Kr and 132Xe in 18 DaG meteorites. In a separate paper we will report the cosmogenic radionuclides [2]. We discuss the thermal history and cosmic-ray exposure (CRE) history of these meteorites, and evaluate the effects of the hot desert environment on the noble gas record.

  17. Fusion Crust and the Measurement of Surface Ages of Antarctic Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Akridge, Jannette M. C.; Benoit, Paul H.; Sears, Derek W. G.

    1997-01-01

    Natural thermoluminescence (TL) reflects radiation exposure and storage temperature. Meteorites generally exhibit thermoluminescence acquired during their long exposure to galactic cosmic rays in space. During atmospheric passage, temperatures are high enough to completely drain the TL, in the first mm of material under the fusion crust. We therefore refer to this surface layer as "fusion crust" although it does include some unmelted material just below the crust. When the meteorite lands on earth this drained layer will begin to build up natural TL once again due to radiation from cosmic rays and internal radionuclides. Cosmic ray annual dose is estimated to be between 0.04 and 0.06 rad/yr on the earth's surface in Antarctica while the internal radionuclides contribute only about 0.01 rad/yr. Therefore the total annual dose received by the meteorite while it is on the surface is between 0.05 and 0.07 rad/yr. If the meteorite is buried deeply in the ice it is effectively shielded from most cosmic rays and thus only internal radioactivity contributes to the annual dose.

  18. The natural thermoluminescence of meteorites. IV - Ordinary chondrites at the Lewis Cliff ice field

    NASA Technical Reports Server (NTRS)

    Benoit, Paul H.; Sears, Hazel; Sears, Derek W. G.

    1992-01-01

    Results of natural thermoluminescence (TL) measurements of 302 meteorites from the vicinity of the Lewis Cliff in the Beardmore region of Antarctica are presented in order to identify fragments of a single fall and to elucidate ice sheet movements and the mechanisms by which meteorite concentration occurs at this site. From the distribution of meteorites on the ice, the shape of the fields of 'paired' meteorites, and trends in the natural TL data, it is inferred that there is a western component to the movement of the ice at this location, as well as the previously supposed movement to the north. The western vector explains the concentration of meteorites along the western edge of the ice tongue. These new natural TL data identify several recent falls and several meteorites which probably had unusually small perihelia immediately prior to capture by the earth.

  19. Various Nitrogen Isotopic Compositions in H-Chondrite Metal

    NASA Astrophysics Data System (ADS)

    Hashizume, K.; Sugiura, N.

    1992-07-01

    Previous works of the authors (1,2) have revealed that nitrogen isotopes in bulk ordinary chondrites are various in a range of - 15< delta^15N < +45 o/oo (after reduction of the contribution of cosmogenic nitrogen). Recently, the isotopically anomalous nitrogen components in equilibrated H-chondrites, both the heavy nitrogen and the light nitrogen, have proved to be concentrated in the metal portion. The metal portion was prepared by etching the magnetic portion by a concentrated NaOH at 100-160 degrees C which dissolves phosphate and troilite, and attacks the silicates together with a slight amount of metal. Nitrogen is extracted from the purified metal by a stepwise combustion method and its isotope is measured by a mass-spectrometer with a high sensitivity. The results of nitrogen analyses are described in the table. The remarkable point is that nitrogen contents in the metal are almost constant, though the isotopic ratio differs by approximately 160 o/oo. Since behaviors of nitrogen in the metal are very sensitive to temperature, nitrogen study in the metal phase of ordinary chondrites is possible to give us interesting information concerning the behavior of volatile elements during the metamorphic and/or cooling sequences. The large differences of nitrogen isotopic ratios among H-chondrites suggest that isotopic heterogeneity already existed during the accretionary stage, since there seems to be little chance to explain the observations by any other processes expected after the formation of their parent bodies. Acknowledgement: We are indebted to Drs. C. Perron and P. Pellas of Museum National d'Histoire Naturelle, Paris, for introducing to us the etching technique to purify the metal. References: (1) Hashizume K. and Sugiura N. (1990) Meteoritics 25, 370. (2) Hashizume K. and Sugiura N. ( 1992) submitted to Geochim. Cosmochim. Acta. Table 1. Nitrogen isotopic composition in H-chondrite metal. -----------------------Metal---------------------------Whole Rock Sample------Class-N----delta^15N(mean)-delta^15N(peak)-N---- delta^15N(mean) Forest Vale-H4-------------------------48+-12----------3.07-10+-8 Ochansk-----H4----1.73-14.1+-2.3-------15+-7----------------- Allegan-----H5----1.71-13.8+-2.0-------16+-4-----------0.70--8+-4 Jilin-------H5----1.56-99.4+-7.0-------119+-7----------0.89-4.5+- 3 Plainview---H5----1.92-61.1+-3.7-------99+-4-----------1.72-33+-1 Guarena-----H6----(<2)------------------44+-4----------1.14--15+- 2 Nitrogen content (N) and delta^15N are in units of ppm and o/oo, respectively. Errors are 1 sigma. Whole rock data are from references (1,2). Nitrogen amounts and mean delta^15N are taken from 800 degrees C and above fractions. (They were not available for Forest Vale and Guarena due to large amounts of contaminating nitrogen.)

  20. Porosity and Permeability of Chondritic Materials

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Corrigan, Catherine M.; Dahl, Jason; Long, Michael

    1996-01-01

    We have investigated the porosity of a large number of chondritic interplanetary dust particles and meteorites by three techniques: standard liquid/gas flow techniques, a new, non-invasive ultrasonic technique, and image processing of backscattered images . The latter technique is obviously best suited to sub-kg sized samples. We have also measured the gas and liquid permeabilities of some chondrites by two techniques: standard liquid/gas flow techniques, and a new, non-destructive pressure release technique. We find that chondritic IDP's have a somewhat bimodal porosity distribution. Peaks are present at 0 and 4% porosity; a tail then extends to 53%. These values suggest IDP bulk densities of 1.1 to 3.3 g/cc. Type 1-3 chondrite matrix porosities range up to 30%, with a peak at 2%. The bulk porosities for type 1-3 chondrites have the same approximate range as exhibited by matrix, indicating that other components of the bulk meteorites (including chondrules and aggregates) have the same average porosity as matrix. These results reveal that the porosity of primitive materials at scales ranging from nanogram to kilogram are similar, implying similar accretion dynamics operated through 12 orders of size magnitude. Permeabilities of the investigated chondrites vary by several orders of magnitude, and there appears to be no simple dependence of permeability with degree of aqueous alteration, or chondrite type.

  1. Evidence for primitive nebular components in chondrules from the Chainpur chondrite

    NASA Technical Reports Server (NTRS)

    Grossman, J. N.; Wasson, J. T.

    1982-01-01

    In view of the fact that the least equilibrated ordinary chondrites contain chondrules that have changed little since the time of their formation in the early solar system, and are therefore excellent indicators of the physical and chemical nature of the solar nebula, 36 chondrules were separated from the Chainpur chondrite and analyzed for 20 elements and petrographic properties. The dominant nebular components found are: (1) a mixture of metal and sulfide whose composition is similar to whole rock metal and sulfide, (2) Ir-rich metal, (3) olivine-rich silicates, (4) pyroxene-rich silicates, and possibly (5) a component containing the more volatile lithophiles. Although etching experiments confirm that chondrule rims are enriched in metal, troilite and moderately volatile elements relative to the bulk chondrules, a large fraction of the volatiles remains in the unetched interior.

  2. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  3. Shock Effects in Experimentally Shocked Samples of the H6 Chondrite Kernouve

    NASA Astrophysics Data System (ADS)

    Schmitt, R. T.; Deutsch, A.; Stoffler, D.

    1993-07-01

    Introduction: A new classification of shock metamorphism in chondrites has recently been published [1]. This classification scheme, which is based on a microscopic investigation of shock effects in olivine and plagioclase, was calibrated using shock recovery experiments with single crystals and natural rocks. In the past, only a few shock experiments have been made with ordinary chondrite material [2-4]. Here, we report the first results of shock experiments using the H6 chondrite Kernouve. Kernouve is one of the best examples for an unshocked ordinary chondrite and results of previous shock experiments are also available for this meteorite [4]. Experimental methods: Sample disks (diameter: 13 mm, thickness: 0.5 mm) of Kernouve (provided by B. Zanda, Paris) were used for shock-loading experiments at room temperature and pressures of 10, 15, 20, 35 and 60 GPa. The experimental set-up with a high-explosive-driven flyer plate was described earlier by [5]. Microscopic Shock Effects: Olivine of the unshocked chondrite shows sharp extinction and some irregular fractures. Olivine in the experimentally shocked samples displays the following pressure dependent features: Irregular fractures (10-60 GPa); undulatory extinction (10-20 GPa); planar fractures (10-60 GPa); weak mosaickism with a domain size of 25 micrometers diameter (10-20 GPa); strong mosaickism with a domain size of 5 micrometers (20-60 GPa); planar deformation features (20-60 GPa); and staining (60 GPa). The abundance of planar fractures in olivine decreases with increasing shock pressure from 94% in the 10-GPa sample to 14% in the 60-GPa sample. Well- developed planar deformation features (PDFs) were found in the 35-GPa sample. PDFs and planar fractures both display a similar orientation. In contrast to natural PDFs [1], PDFs in olivine grains from experimentally shocked Kernouve samples are shorter (up to 20 micrometers) and weakly bent. Plagioclase of the unshocked sample is characterized by sharp extinction. In the pressure range from 10 to 20 GPa, plagioclase displays undulatory extinction. In the 35-GPa sample most of the plagioclase is transformed to maskelynite (diaplectic glass). This transformation is complete in the 60-GPa sample. The first effects of localized shock-induced melting are observed in the 35- GPa sample, where a few melt pockets occur. The 60-GPa sample shows abundant melt pockets, shock veins, and troilite injections into fractures of the silicates. Troilite of the unshocked sample is monocrystalline. In the pressure range from 10 to 20 GPa, troilite shows undulatory extinction and twinning. The 35- and 60-GPa samples contain only recrystallized troilite. This troilite is polycrystalline and consists of equant grains with 120-degree angles between grain boundaries. Shock Classification and Conclusions: Using the classification scheme of [1], the experimentally shocked Kernouve samples can be classified into the following stages: Unshocked--S1; 10 GPa--S3; 15 and 20 GPa--S4; 35 GPa--S5; and 60 GPa--S6. The transition between shock stage 3 and 4 appears to be somewhat lower than proposed by [1] and occurs in the pressure range of 10 to 15 GPa, probably near to 15 GPa.The investigation of the experimentally shocked chondrite Kernouve shows the same pressure-dependent features as observed in naturally shocked ordinary chondrites [1]. For this reason shock recovery experiments provide an important basis for a better understanding of natural shock features in ordinary chondrites. References: [1] St"ffler D. et al. (1991) GCA, 55, 3845-3867. [2] Bogard D. D. et al. (1987) GCA, 51, 2035-2044. [3] Dai C.-D. et al. (1991) Chin. Sci. Bull., 36, 1984-1988. [4] Sears D. W. et al. (1984) GCA, 48, 343-360. [5] M ller W. F. and Hornemann U. (1969) EPSL, 7, 251-264.

  4. Carbonaceous chondrite clasts in the Kapoeta howardite

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.; Papike, J. J.

    1993-01-01

    A petrographic and mineralogical study of a number of carbonaceous chondrite clasts in the Kapoeta howardite has been carried out. Most of the clasts have mineralogical and chemical properties which link them to the CM carbonaceous chondrites. Some clasts contain chondrules which often have well-developed fine-grained rims, but many have been extensively brecciated. PCP-rich objects are common and pentlandite and pyrrhotite also occur. Calcite has also been found. The remainder of the clasts are extremely fine-grained and appear to be closely related to CI carbonaceous chondrites. In these clasts magnetite framboids are common and finegrained sulfides and magnetite occur disseminated throughout the matrix.

  5. Thermal metamorphism. [of chondrite parent bodies

    NASA Technical Reports Server (NTRS)

    Mcsween, Harry Y., Jr.; Sears, Derek W. G.; Dodd, Robert T.

    1988-01-01

    Most chondrites have experienced thermal metamorphism, resulting in changes in texture, mineralogy and possibly chemical composition. The physical conditions for metamorphism range from approximately 400 to 1000 C at low lithostatic pressure. Metamorphism may have resulted from decay of short-lived radionuclides, electromagnetic induction or accretion of hot materials. Several thermal models for chondrite parent bodies have been proposed. The least metamorphosed type-3 chondrites probably carry the most information about the early solar system, but even these have been affected to some degree by thermal processing.

  6. SEM exploration of carbonaceus chondrites .

    NASA Astrophysics Data System (ADS)

    Guaita, C.

    Some Carbonaceus Chondrites (CC) were studied by a last generation SEM microscope (Scanning Electron Microscope), equipped with an EDS probe. Pictures taken by the BSE detector shown a complex internal morphology, in which big gray chondrules, small white spots of metallic oxides and, above all, a number of black inclusions of Carbon material were present. In particular, the aspect of the Carbon inclusions was very suggestive, being sometimes similar to tar drops. This work demonstrates that the SEM, a normal instrument in the study of meteoritic rocks, is strongly useful also in the case of CC, the most interesting of all meteorites, being rich of thousands of the same Carbon molecules from which the Earth life arose.

  7. Hotter, Faster: A Thermal Model for the H-Chondrite Parent Body Consistent with Chronology and Cooling Rates

    NASA Astrophysics Data System (ADS)

    McSween, H. Y., Jr.; Bennett, M. E., III

    1995-09-01

    HOTTER, FASTER: A THERMAL MODEL FOR THE H-CHONDRITE PARENT BODY CONSISTENT WITH CHRONOLOGY AND COOLING RATES. H. Y. McSween, Jr. and M. E. Bennett, III, Department of Geological Sciences, University of Tennessee, Knoxville, TN 37996, USA. Because of the abundant sampling and relatively low shock levels of H chondrites, their thermal histories are more tightly constrained than for other ordinary chondrites; consequently, rigorous models for the thermal evolution of their parent asteroid can be formulated that are not possible for other chondrite groups. A revised thermal model for the H-chondrite parent asteroid [Bennett and McSween], based on heating by decay of 26Al, follows the formulation of [Miyamoto and Fujii] except: the unfounded constraint that the relative volumes of different petrologic types must mimic meteorite fall statistics is removed, a shortened thermal history of 60 Ma [Gopel et al] rather than 100 Ma is adopted, and improved geothermometry constraints and measurements of thermal properties [Yomogida and Matsui] are used. Our new model predicts a parent body of approximately 88 kilometers radius, containing a much larger volumetric proportion (71%) of H6 material than in the previous model, with a high thermal gradient and correspondingly small proportions of H5 and H4 material (together comprising 10%) near the surface. Constraints on chronology and cooling rates from H chondrites are used as independent tests of the model. 26Al heating requires that the body accreted 1.5-3.1 Ma after formation of CAIs to reach the measured peak temperature for H6 chondrites, consistent with the 3.0 + 2.6 Ma estimate from Pb/Pb chronology [Gopel et al]. Times of Pb isotopic closure, relative to CAIs, in H-chondrite phosphates (3-5 Ma for H4, 10-16 Ma for H5, 42-62 Ma for H6, from [Gopel et al]) precisely overlap the thermal model estimates. In particular, the markedly shorter duration of heating for H4-5 chondrites agrees with model predictions. The model also predicts post-metamorphic cooling rates through the temperature interval 800-500K of 26 K/Ma for H4, 22 K/Ma for H5, and 16 K/Ma for H6. These values approximately coincide, in both trend and magnitude, with metallographic and fission track cooling rate data for unshocked H chondrites [Lipschutz et al]. _

  8. Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula

    NASA Astrophysics Data System (ADS)

    Huss, Gary R.; Meshik, Alex P.; Smith, Julie B.; Hohenberg, C. M.

    2003-12-01

    We have determined abundances of presolar diamond, silicon carbide, graphite, and Xe-P1 (Q-Xe) in eight carbonaceous chondrites by measuring the abundances of noble gas tracers in acid residues. The meteorites studied were Murchison (CM2), Murray (CM2), Renazzo (CR2), ALHA77307 (CO3.0), Colony (CO3.0), Mokoia (CV3 ox), Axtell (CV3 ox), and Acfer 214 (CH). These data and data obtained previously by Huss and Lewis (1995) provide the first reasonably comprehensive database of presolar-grain abundances in carbonaceous chondrites. Evidence is presented for a currently unrecognized Ne-E(H) carrier in CI and CM2 chondrites. After accounting for parent-body metamorphism, abundances and characteristics of presolar components still show large variations across the classes of carbonaceous chondrites. These variations correlate with the bulk compositions of the host meteorites and imply that the same thermal processing that was responsible for generating the compositional differences between the various chondrite groups also modified the initial presolar-grain assemblages. The CI chondrites and CM2 matrix have the least fractionated bulk compositions relative to the sun and the highest abundances of most types of presolar material, particularly the most fragile types, and thus are probably most representative of the material inherited from the sun's parent molecular cloud. The other classes can be understood as the products of various degrees of heating of bulk molecular cloud material in the solar nebula, removing the volatile elements and destroying the most fragile presolar components, followed by chondrule formation, metal-silicate fractionation in some cases, further nebula processing in some cases, accretion, and parent body processing. If the bulk compositions and the characteristics of the presolar-grain assemblages in various chondrite classes reflect the same processes, as seems likely, then differential condensation from a nebula of solar composition is ruled out as the mechanism for producing the chondrite classes. Presolar grains would have been destroyed if the nebula had been completely vaporized. Our analysis shows that carbonaceous chondrites reflect all stages of nebular processing and thus are no more closely related to one another than they are to ordinary and enstatite chondrites.

  9. Interstellar grains in museums. [carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1973-01-01

    It is argued that carbonaceous chondrites, particularly of type I, are probably collections of interstellar grains which have been mildly transformed through exposure to higher than normal temperatures, resulting in a loss of volatile materials.

  10. Carbonaceous Chondrite Clasts in HED Achondrites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Weisberg, M. K.; Buchanan, P. C.; Mittlefehldt, David W.

    1996-01-01

    Since carbonaceous chondrite planetesimals are attractive candidates for the progenitors of HED asteroid(s), we have performed a survey of HED meteorites in order to locate and characterize the mineralogy, chemistry, and petrography of the oft-reported carbonaceous chondrite clasts by microprobe, SEM-EDX. and TEM techniques. We examined samples of all HEDs we could lay our gloved hands on, and found carbonaceous chondrite clasts in the howardites Kapoeta, Jodzie, EET 87513, Y 793497, LEW 85441, LEW 87015, and G'Day, the polymict eucrites LEW 97295 and LEW 95300, and the diogenite Ellemeet. We verified previous suggestions that the majority (about 80%) of these clasts are CM2 material, but we discovered that a significant proportion are CR2 (about 20%) and other rare types are present. We conclude that chondritic compounds of mixed CM2 and CR2 materials should be investigated in future geochemical modeling of the origin of the HED asteroid(s).

  11. Tin in a chondritic interplanetary dust particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1989-01-01

    Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029 A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Sn-rich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend toward nonchondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.

  12. Luminescence Characterization of Tsarev L5 Chondrite

    NASA Astrophysics Data System (ADS)

    Vokhmintsev, A. S.; Weinstein, I. A.; Grokhovsky, V. I.

    2015-07-01

    This work presents the investigation results of spectral and kinetic properties of Tsarev L5 chondrite using photo- and thermoluminescence techniques. Dose fading estimates for laboratory TL response were fulfilled also.

  13. Saturation magnetization measurements of carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Hyman, M.; Rowe, M. W.

    1986-03-01

    The saturation magnetization of some carbonaceous chondrites was studied using a Faraday balance. The authors present measurements on the magnetite contents of some CM2, CV3 and a CV5 chondrites. The method was also used to measure the content of metallic nickel-iron in Ornans, 3.40.3%. Of the CM2 chondrites examined, only Bells, Essebi and Haripura had magnetite contents over about 1% by weight. A number of CV chondrites have magnetite between 2.3 and 13%, with little or no metallic iron. Leoville and Vigarano contain both magnetite and metallic iron, complicating the saturation magnetization results. Arch and Allende have very little metallic iron or magnetite, probably <1% of either.

  14. New L Chondrites from Antofagasta, Chile

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Zolensky, M.; Martinez de Los Rios, E.

    1992-07-01

    Desert regions can be productive meteorite recovery locations because of low humidity, minimal ground cover and, in favorable situations, high prevailing winds to deflate surfaces. For these reasons we have made reconnaissance searches of a particularly arid Atacama Desert tract between Antofagasta and Mejillones, Chile (approx. 23 degrees 15'S, 70 degrees 30'W). One of us (EMR) had previously collected new ordinary chondrites from this same area, which has been named Pampa (a), (b), (c), and (e). The Pampa de Agua Blanca (PAB) chondrite is also apparently from this same area. In our brief 1991 reconnaissance we found additional specimens of (a) and (c). All of these meteorites have been found as multiple stones, necessitating pairing studies. Consequently, we examined our finds (a, b, c, and e), borrowed specimens from the Field Museum (a, b, PAB) and Robert Haag (c), and have performed the first detailed studies of the Pampa meteorites. Here we summarize results of these studies. Shock levels refer to the classification developed by Stoffler et al. (1991). PAMPA (a): This weathered meteorite is represented by several partially fusion-crusted fragments with a combined mass of approximately 380 g. No distinct chondrules are evident in thin section, although some chondrule fragments are present; considerable recrystallization is evident and plagioclase (Ab(sub)80Or5-Ab(sub)83Or(sub)5) is present as clear grains. Diopside and hydroxylapatite are also present. Olivine (Fo(sub)75.0 mean, 0.4% mean deviation-PMD) exhibits no shock effects. We classify Pampa (a) as L6, shock level 1. PAMPA (b): This is a weathered meteorite represented by numerous individual stones with a combined weight of approximately 10 kg. We examined thin sections from four individual stones of (b). A few distinct barred chondrules are evident in thin section, along with numerous chondrule and aggregate fragments. Olivine (Fo(sub)74.8 mean, 0.9 PMD) exhibits undulatory extinction, planar fractures, minor mosaicism and very rare (<25%) planar deformation features. We classify Pampa (b) as L4/5, shock level 4. PAMPA (c): This is a highly weathered, desert-varnished meteorite represented by numerous stones with a combined weight of approximately 25 kg. We examined sections from three stones of (c); the most notable feature of the meteorite is considerable darkening. Metal is almost entirely weathered. A few distinct barred and excentroradial chondrules are evident, along with numerous chondrule and aggregate fragments. Olivine (Fo(sub)75.3 mean, 0.8 PMD) exhibits undulatory extinction, planar fractures, mosaicism, planar deformation features, and melt veins and pockets. Some turbid glass is present. We classify Pampa (c) as L4, shock level 6. The classification of Pampa (c) given in the Meteoritical Bulletin (Graham, 1989) (L6) is incorrect. PAMPA (e): This is a weathered meteorite represented by numerous individual stones with an unknown total mass. No distinct chondrules are present in the single thin section available to us. Considerable recrystallization is evident, and clear plagioclase grains are present. Olivine (Fo(sub)75.0 mean, 0.07 PMD) exhibits no shock effects. We classify Pampa (e) as L6, shock level 1. PAMPA de AGUA BLANCA: This is a weathered meteorite represented by specimens totaling 10 g. No distinct chondrules are evident in thin section. Olivine (Fo(sub)75.2 mean, 0.2 PMD) exhibits undulatory extinction, planar fractures, minor mosaicism and very rare (<25%) planar deformation features. Clear plagioclase (Ab(sub)76Or(sub)8-Ab(sub)84Or(sub)5) grains are present. We classify Pampa de Agua Blanca as L6, shock level 4. We conclude by noting that the Atacama Desert in general, and the Antofagasta area in particular, appears to be a fruitful region for future meteorite searches. We note with curiosity that all chondrites found to date in the Antofogasta-Mejillones area have been of the L persuasion. METEORITE OLIVINE (Fo) PYROXENE (En) GLASS? SHOCK CLASS. MEAN PMD CaO MEAN PMD Pampa (a) L6 75.0 0.4 <=0.05 77.2 0.7 NO 1 Pampa (b) L

  15. Calcium-Aluminum-rich Inclusions in Chondritic Meteorites

    NASA Astrophysics Data System (ADS)

    MacPherson, G. J.

    2003-12-01

    Calcium-aluminum-rich inclusions (CAIs) are submillimeter- to centimeter-sized clasts in chondritic meteorites, whose ceramic-like chemistry and mineralogy set them apart from other chondrite components. Since their first descriptions more than 30 years ago (e.g., Christophe Michel-Lvy, 1968), they have been the objects of a vast amount of study. At first, interest centered on the close similarity of their mineralogy to the first phases predicted by thermodynamic calculations to condense out of a gas of solar composition during cooling from very high temperatures (e.g., Lord, 1965; Grossman, 1972). Immediately thereafter, CAIs were found to be extremely old (4.56 Ga) and to possess unusual isotopic compositions (in particular, in magnesium and oxygen) suggestive of a presolar dust component. In short, they appear to be the oldest and most primitive objects formed in the infant solar system.In the late 1980s (e.g., MacPherson et al., 1988), the attention of most workers in the field was focused on understanding the petrogenesis and isotopic compositions of CAIs within a relatively restricted number of chondrite varieties. Much has changed since then. We now have extended our data sets beyond CV and CM chondrites to CAIs from ordinary, enstatite, and a wider range of carbonaceous chondrites. Out of this has emerged an ironic fact: the large centimeter-sized CAI "marbles" (the so-called type Bs; see below) that are so prominent in CV chondrites, and upon which so many of the original concepts were based owing to the abundance and availability of material from the Allende meteorite, turn out to be the exceptions rather than the norm. Indeed, we now know that the Allende parent body itself experienced so much postaccretion reprocessing that its CAIs reveal only a murky picture of the early solar nebula. Another profound change since 1988 has been the development of ion microprobe technology permitting microanalysis of oxygen isotopes within standard petrographic thin sections. One of the debates raging in 1988 centered on the difficulty of making CAIs at the distance of the asteroid belt where the host chondrites presumably accreted. Since then, a combination of isotopic (especially beryllium-boron and oxygen) evidence and theoretical modeling have suggested the interesting possibility that CAIs all formed very close to the infant sun and were later dispersed out to the respective chondrite accretion regions. Yet another difference from 1988 is that the science of meteoritics has matured past the point where workers study CAIs without consideration of other chondritic components, most notably chondrules. Bulk composition differences aside, CAIs and chondrules are both products of very high temperature events in the earliest solar system. Like chondrules, many CAIs apparently solidified from partially to completely molten droplets. Moreover, chondrules and CAIs both have far more complex histories than was generally recognized in the late 1980s: both may have experienced multiple melting episodes, followed by prolonged nebular and/or asteroidal modification due to gaseous or liquid interactions and reheating as a result of shock processes. In short, although CAIs are still recognized as being the oldest objects formed in our solar system and possessing isotopic traces of the presolar dust from which they ultimately formed, they are a long way from being the primitive condensates they were once thought to be. Rather than stressing the unusual isotopic characteristics of CAIs and the presolar implications, this chapter will instead treat CAIs as probes of the earliest solar system that reveal the nature of the high-temperature events, their chronology, and the likely locales where such events occurred.This chapter is not, and does not pretend to be, an exhaustive review of the sum of knowledge about CAIs. Indeed, so much new data have been generated since 1988, especially isotopic data from an ever-growing number of sophisticated ion microprobe labs, that it would far beyond the space limitations of this chapter to a

  16. Petrologic evidence for collisional heating of chondritic asteroids

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1995-01-01

    The identification of the mechanism(s) responsible for heating asteroids is among the major problems in planetary science. Because of difficulties with models of electromagnetic induction and the decay of short-lived radionuclides, it is worthwhile to evaluate the evidence for collisional heating. New evidence for localized impact heating comes from the high proportion of relict type-6 material among impact-melt-bearing ordinary chondrites (OC). This relict material was probably metamorphosed by residual heat within large craters. Olivine aggregates composed of faceted crystals with 120 deg triple junctions occur within the melted regions of the Chico and Rose City OC melt rocks; the olivine aggregates formed from shocked, mosaicized olivine grains that underwent contact metamorphism. Large-scale collisional heating is supoorted by the correlation in OC between petrologic type and shock stage; no other heating mechanism can readily account for this correlation. The occurrence of impact-melt-rock clasts in OC that have been metamorphosed along with their whole rocks indicates that some impact events preceded or accompanied thermal metamorphism. Such impacts events, occurring during or shortly after accretion, are probably responsible for substantially melting approximately 0.5% of OC. These events must have heated a larger percentage of OC to subsolidus temperatures sufficient to have caused significant metamorphism. If collisional heating is viable, then OC parent asteroids must have been large; large OC asteroids in the main belt may include those of the S(IV) spectral subtype. Collisional heating is inconsistent with layered ('onion-shell') structures in OC asteroids (wherein the degree of metamorphism increases with depth), but the evidence for such structures is weak. It seems likely that collisional heating played an important role in metamorphosing chondritic asteroids.

  17. Chemical and physical studies of type 3 chondrites. VIII - Thermoluminescence and metamorphism in the CO chondrites

    NASA Technical Reports Server (NTRS)

    Keck, Bradly D.; Sears, Derek W. G.

    1987-01-01

    A possible relationship between the thermoluminescence (TL) properties of CO chondrites and their metamorphic history was investigated by measuring the TL properties of seven normal CO chondrites and of the Colony and the Allan Hills A77307 (ALHA 77307) CO-related chondrites. With the exception of Colony and ALHA 77307, whose maximum induced TL emission is at approximately 350 C, the CO chondrites were found to exhibit two TL peaks: a 130 C and a 250 C peaks. Among the CO chondrites, the 130 C peak showed a 100-fold range in TL sensitivity and was found to correlate with various metamorphism-related phenomena, such as silicate heterogeneity, metal composition, and McSween's metamorphic subtypes. The peak at 250 did not show these correlations and, with exception of Colony, showed little variation.

  18. Petrology of Amoeboid Olivine Aggregates in Antarctic CR Chondrites: Comparison With Other Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2016-01-01

    Amoeboid olivine aggregates (AOAs) are important refractory components of carbonaceous chondrites and have been interpreted to represent solar nebular condensates that experienced high-temperature annealing, but largely escaped melting. In addition, because AOAs in primitive chondrites are composed of fine-grained minerals (forsterite, anorthite, spinel) that are easily modified during post crystallization alteration, the mineralogy of AOAs can be used as a sensitive indicator of metamorphic or alteration processes. AOAs in CR chondrites are particularly important because they show little evidence for secondary alteration. In addition, some CR AOAs contain Mn-enriched forsterite (aka low-iron, Mn-enriched or LIME olivine), which is an indicator of nebular formation conditions. Here we report preliminary results of the mineralogy and petrology of AOAs in Antarctic CR chondrites, and compare them to those in other carbonaceous chondrites.

  19. Effects of Microsecond Pulse Laser Irradiation on Vis-NIR Reflectance Spectrum of Carbonaceous Chondrite Simulant: Implications for Martian Moons and Primitive Asteroids

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Moroz, L. V.; Shingareva, T. V.; Basilevsky, A. T.; Pieters, M.

    2003-01-01

    Goal of this study is to make a progress in understanding the optical effects of space weathering on small bodies believed to be similar in composition to carbonaceous chondrites: C, G, B, F, T, D, and P asteroids and possibly Martian satellites Phobos and Deimos. The companion work focuses on petrological and mineralogical aspects of this process. One of the main factors of space weathering is meteorite and micrometeorite bombardment leading, in particular, to impact melting of components of the regolith. Studies of lunar regolith and laboratory experiments simulating impact melting show that the melting products differ from the unmelted material in mineralogy and distribution of chemical components among different phases that results in spectral changes. We simulate impact melting of CM chondrite by pulse laser irradiation of an artificial analog of such a meteorite. The analog is a mixture of 46 wt.% non-magnetic fraction of L5 ordinary chondrite Tsarev, 47 wt.% serpentine, 5 wt.% kerite, and 2 wt.% calcite. It simulates rather well bulk chemistry, including volatiles such as H2O and CO2, and only approximately the CM chondrite mineralogy. Thus, we do not expect the mixture to be spectrally similar to CM chondrites, but expect the laser melting products to be similar to those formed by impact melting of natural CM chondrites.

  20. Silicate sulfidation and chemical differences between enstatite chondrites and Earth

    NASA Astrophysics Data System (ADS)

    Lehner, S. W.; Petaev, M. I.; Buseck, P. R.

    2013-12-01

    Isotopic similarity between the Earth-Moon system and enstatite chondrites (ECs) led to the idea that ECs were Earth's building blocks [1-3]. However, compared to Earth's mantle, ECs have low Fe0/Fe ratios, are enriched in volatile elements, and depleted in refractory lithophile elements and Mg [4]. Therefore, deriving Earth composition from ECs requires a loss of volatiles during or prior to accretion and sequestering a large fraction of Si in the deep Earth. Alternatively, the isotopic similarity between the Earth and ECs is explained by their formation from a common precursor that experienced different evolutionary paths resulting in the chemical difference [4]. The vestiges of such a precursor are still present in the unequilibrated ECs as FeO-rich silicates with O isotopic compositions identical to bulk ECs and Earth [5]. Conversion of such a precursor into the characteristic EC mineral assemblage requires high-temperature processing in an H-poor environment with high fS2 and fO2 close to that of the classic solar nebula [6], consistent with redox conditions inferred from Ti4+/Ti3+ ratios in EC pyroxene [7]. Under such conditions reaction of FeO-rich silicates with S-rich gas results in their replacement by the assemblage of FeO-poor silicates; Fe, Mg, Ca sulfides; free silica; and Si-bearing Fe,Ni metal alloy. The progressive sulfidation of ferromagnesian silicates in chondrules results in loss of Mg and addition of Fe, Mn, S, Na, K and, perhaps, other volatiles [6]. At the advanced stages of silicate sulfidation recorded in the metal-sulfide nodules [8], a portion of Si is reduced and dissolved in the Fe,Ni metal. This process is known to fractionate Si isotopes [9,10] and would explain the differences between the ECs and Earth's mantle [11]. The sulfidation of silicates also produces porous S-rich silica, a peculiar phase observed so far only in the ECs. It consists of a sinewy SiO2-rich framework enclosing numerous vesicles filled with beam-sensitive material and contains minor elements such as Na, Ca, Mg, or Fe, which also occur in the adjacent minerals. Its high S content and vesicular nature point to formation by quenching of a high-temperature melt saturated with a gaseous phase. The porous silica occurs in ~50% of chondrules [12], metal-sulfide nodules, and as inter-chondrule clasts, suggesting it is a good tracer of silicate sulfidation. Refs: [1] Javoy M. (1995) GRL 22: 2219-2222. [2] Javoy M. et al. (2010) EPSL 293: 259-268. [3] Kaminski E. & Javoy M. (2013) EPSL 365: 97-107. [4] Jacobsen S.B. et al. (2013) LPSC 44: #2344. [5] Weisberg M.K. et al. (2011) GCA 75: 6556-6569. [6] Lehner S.W. et al. (2013) GCA 101: 34-56. [7] Simon S.B. et al. (2013) LPSC 44: #2270. [8] Lehner S.W. et al. (2012) LPSC 43: #2252. [9] Shahar A. et al. (2011) GCA 75: 7688-7697. [10] Kempl J. et al. (2013) EPSL 368: 61-68. [11] Fitoussi C. & Bourdon B. (2012) Science 335: 1477-1480. [12] Piani L. et al. (2013) MetSoc 76: # 5178.

  1. I-Xe ages of enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Hopp, Jens; Trieloff, Mario; Ott, Ulrich

    2016-02-01

    In order to elucidate the early thermal history of enstatite chondrite parent bodies we determined 129I-129Xe whole rock ages of enstatite chondrites (5 EH, 2 EL, one EH impact melt) relative to the Shallowater reference meteorite (4562.3 ± 0.4 Ma, all errors are 1σ). I-Xe ages of both EL6 chondrites (LON 94100: -4.38 ± 0.60 Ma and Neuschwanstein: -3.87 ± 0.73 Ma - negative sign indicates ages younger than Shallowater) agree well with data of other EL6 chondrites. LON 94100 displayed a second isochron at lower temperatures equivalent to a younger age of -5.25 ± 1.17 Ma, perhaps reflecting different retention temperatures of respective carrier phases during sequential cooling. The enstatite chondrites Abee (EH4), Indarch (EH4), EET 96135 (EH4/5) and St. Marks (EH5) encompass a I-Xe age range of +0.57 ± 1.05 Ma (EET 96135 #1) to -0.45 ± 0.72 Ma (Abee), again in agreement with previously reported ages of EH chondrites. Only the age of St. Marks differs strongly from previously reported younger ages, now being more in accordance with other members of the EH clan. The EH3 chondrite Sahara 97096 showed the youngest I-Xe age of -7.87 ± 0.46 Ma distinctly younger than other I-Xe ages of EH chondrites, including other EH3s. Due to the apparent high retention temperature of the I-Xe system in enstatite (estimated >800 °C) this young age implies a later resetting of the I-Xe system by a severe thermal, likely impact-induced, event. The EH impact melt LAP 02225 records a similarly young thermal event. Though no isochron relationship could be established, the data fall within an apparent I-Xe age range of +5 to +15 Ma, similar to Sahara 97096. Overall, EH chondrite parent body experienced a thermal history determined by a complex interplay between impact disturbances and parent body metamorphism.

  2. Exposure ages of carbonaceous chondrites, 1

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Caffee, M. W.; Finkel, R. C.; Southon, J. R.; Nagai, H.; Honda, M.; Sharma, P.; Imamura, M.; Kobayashi, K.

    1993-01-01

    The recent exposure histories of carbonaceous chondrites have been investigated using cosmogenic radionuclides. Our results may indicate a clustering of exposure ages of C1 and C2 chondrites into two peaks, 0.2 My and 0.6 My, perhaps implying two collisional events of Earth-crossing parent bodies. Among carbonaceous chondrites are some having short exposure ages which Mazor et al. hypothesized cluster into a small number of families. This hypothesis is based on spallogenic Ne-21 exposure ages, which in some instances are difficult to determine owing to the large amounts of trapped noble gases in carbonaceous chondrites. Also, since Ne-21 is stable, it integrates a sample's entire exposure history, so meteorites with complex exposure histories are difficult to understand using exclusively Ne-21. Cosmogenic radionuclides provide an alternative means of determining the recent cosmic ray exposure duration. To test the hypothesis of Mazor et al. we have begun a systematic investigation of exposure histories of Antarctic and non-Antarctic carbonaceous chondrites especially C2s.

  3. Workshop on Parent-Body and Nebular Modification of Chondritic Materials

    NASA Technical Reports Server (NTRS)

    Krot, A. N. (Editor); Zolensky, M. E. (Editor); Scott, E. R. D. (Editor)

    1997-01-01

    The purpose of the workshop was to advance our understanding of solar nebula and asteroidal processes from studies of modification features in chondrites and interplanetary dust particles. As reflected in the program contained in this volume, the workshop included five regular sessions, a summary session, and a poster session. Twenty-three posters and 42 invited and contributed talks were presented. Part 1 of this report contains the abstracts of these presentations. The focus of the workshop included: (1) mineralogical, petrologic, chemical, and isotopic observations of the alteration mineralogy in interplanetary dust particles, ordinary and carbonaceous chondrites, and their components (Ca-Al-rich inclusions, chondrules, and matrix) to constrain the conditions and place of alteration; (2) sources of water in chondrites; (3) the relationship between aqueous alteration and thermal metamorphism; (4) short-lived radionuclides, AI-26, Mn-53, and I-129, as isotopic constraints on timing of alteration; (5) experimental and theoretical modeling of alteration reactions; and (6) the oxidation state of the solar nebula. There were approximately 140 participants at the workshop, probably due in part to the timeliness of the workshop goals and the workshop location. In the end few new agreements were achieved between warring factions, but new research efforts were forged and areas of fruitful future exploration were highlighted. Judged by these results, the workshop was successful.

  4. Olivine in terminal particles of Stardust aerogel tracks and analogous grains in chondrite matrix

    NASA Astrophysics Data System (ADS)

    Frank, David R.; Zolensky, Michael E.; Le, Loan

    2014-10-01

    The dearth of both major and minor element analyses of anhydrous silicate phases in chondrite matrix has thus far hindered their comparison to the Wild 2 samples. We present 68 analyses of olivine (Fa0-97) in the coarse-grained terminal particles of Stardust aerogel tracks and a comprehensive dataset (>103 analyses) of analogous olivine grains (5-30 ?m) isolated in CI, CM, CR, CH, CO, CV3-oxidized, CV3-reduced, C3-ungrouped (Acfer 094 and Ningqiang), L/LL 3.0-4, EH3, and Kakangari chondrite matrix. These compositions reveal that Wild 2 likely accreted a diverse assortment of material that was radially transported from various carbonaceous and ordinary chondrite-forming regions. The Wild 2 olivine includes amoeboid olivine aggregates (AOAs), refractory forsterite, type I and type II chondrule fragments and/or microchondrules, and rare relict grain compositions. In addition, we have identified one terminal particle that has no known compositional analog in the meteorite record and may be a signature of low-temperature, aqueous processing in the Kuiper Belt. The generally low Cr content of FeO-rich olivine in the Stardust samples indicates that they underwent mild thermal metamorphism, akin to a petrologic grade of 3.05-3.15.

  5. Degree of Weathering of H-Chondrites From Frontier Mountain, Antarctica

    NASA Technical Reports Server (NTRS)

    Welten, K. C.; Nishiizumi, K.

    2000-01-01

    One of the factors that determines the survival time of meteorites on the Earth's surface is the rate of weathering. For meteorites from hot deserts, a clear correlation is found between the degree of weathering, and the terrestrial age, but for Antarctic meteorites this correlation is weak or even lacking. The lack of a clear correlation can partly be attributed to the two-stage history of many Antarctic meteorites, which spend part of their terrestrial residence time in the ice before they are exposed on the ice. Recently, it was found that for Lewis Cliff (LEW) meteorites local conditions on the ice play an important role in the weathering process. This work focuses on weathering effects in ordinary chondrites from Frontier Mountain (FRO), North Victoria Land. Although most FRO meteorites were classified as weathering category A or B, many are contaminated with terrestrial uranium, deposited from meltwater. This suggests that weathering plays a more significant role than the qualitative A-B-C weathering index indicates. We therefore determined the degree of weathering more quantitatively, by deriving the amount of oxidized metal from the concentrations of Fe and Ni in the nonmagnetic fraction of 23 H-chondrites and 1 L-chondrite The results will be compared with those of LEW meteorites and will be discussed in terms of terrestrial age and location of find on the ice.

  6. Degree of Weathering of H-Chondrites from Frontier Mountain, Antarctica

    NASA Technical Reports Server (NTRS)

    Welten, K. C.; Nishiizumi, Kunihiko

    1999-01-01

    One of the factors that determines the survival time of meteorites on the Earth's surface is the rate of weathering. For meteorites from hot deserts, a clear correlation is found between the degree of weathering and the terrestrial age, but for Antarctic meteorites this correlation is weak or even lacking. The lack of a clear correlation can partly be attributed to the two-stage history of many Antarctic meteorites, which spend part of their terrestrial residence time in the ice before they are exposed on the ice. Recently, it was found that for Lewis Cliff (LEW) meteorites local conditions on the ice play an important role in the weathering process. This work focuses on weathering effects in ordinary chondrites from Frontier Mountain (FRO), North Victoria Land. Although most FRO meteorites were classified as weathering category A or B, many are contaminated with terrestrial uranium, deposited from meltwater. This suggests that weathering plays a more significant role than the qualitative A-B-C weathering index indicates. We therefore determined the degree of weathering more quantitatively, by deriving the amount of oxidized metal from the concentrations of Fe and Ni in the nonmagnetic fraction of 23 H-chondrites and 1 L-chondrite. The results will be compared with those of LEW meteorites and will be discussed in terms of terrestrial age and location of find on the ice.

  7. Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year timescales

    PubMed Central

    Dyl, Kathryn A.; Bischoff, Addi; Ziegler, Karen; Young, Edward D.; Wimmer, Karl; Bland, Phil A.

    2012-01-01

    Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water–rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water–rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water–rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H2O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa-1Al-1 exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1–10 y. This result has wide-ranging implications for the geological history of chondritic asteroids. PMID:23093668

  8. 146Sm-142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula.

    PubMed

    Gannoun, Abdelmouhcine; Boyet, Maud; Rizo, Hanika; El Goresy, Ahmed

    2011-05-10

    The short-lived (146)Sm-(142)Nd chronometer (T(1/2) = 103 Ma) is used to constrain the early silicate evolution of planetary bodies. The composition of bulk terrestrial planets is then considered to be similar to that of primitive chondrites that represent the building blocks of rocky planets. However for many elements chondrites preserve small isotope differences. In this case it is not always clear to what extent these variations reflect the isotope heterogeneity of the protosolar nebula rather than being produced by the decay of parent isotopes. Here we present Sm-Nd isotopes data measured in a comprehensive suite of enstatite chondrites (EC). The EC preserve (142)Nd/(144)Nd ratios that range from those of ordinary chondrites to values similar to terrestrial samples. The EC having terrestrial (142)Nd/(144)Nd ratios are also characterized by small (144)Sm excesses, which is a pure p-process nuclide. The correlation between (144)Sm and (142)Nd for chondrites may indicate a heterogeneous distribution in the solar nebula of p-process matter synthesized in supernovae. However to explain the difference in (142)Nd/(144)Nd ratios, 20% of the p-process contribution to (142)Nd is required, at odds with the value of 4% currently proposed in stellar models. This study highlights the necessity of obtaining high-precision (144)Sm measurements to interpret properly measured (142)Nd signatures. Another explanation could be that the chondrites sample material formed in different pulses of the lifetime of asymptotic giant branch stars. Then the isotope signature measured in SiC presolar would not represent the unique s-process signature of the material present in the solar nebula during accretion. PMID:21515828

  9. 146Sm142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula

    PubMed Central

    Gannoun, Abdelmouhcine; Boyet, Maud; Rizo, Hanika; El Goresy, Ahmed

    2011-01-01

    The short-lived 146Sm142Nd chronometer (T1/2=103Ma) is used to constrain the early silicate evolution of planetary bodies. The composition of bulk terrestrial planets is then considered to be similar to that of primitive chondrites that represent the building blocks of rocky planets. However for many elements chondrites preserve small isotope differences. In this case it is not always clear to what extent these variations reflect the isotope heterogeneity of the protosolar nebula rather than being produced by the decay of parent isotopes. Here we present SmNd isotopes data measured in a comprehensive suite of enstatite chondrites (EC). The EC preserve 142Nd/144Nd ratios that range from those of ordinary chondrites to values similar to terrestrial samples. The EC having terrestrial 142Nd/144Nd ratios are also characterized by small 144Sm excesses, which is a pure p-process nuclide. The correlation between 144Sm and 142Nd for chondrites may indicate a heterogeneous distribution in the solar nebula of p-process matter synthesized in supernovae. However to explain the difference in 142Nd/144Nd ratios, 20% of the p-process contribution to 142Nd is required, at odds with the value of 4% currently proposed in stellar models. This study highlights the necessity of obtaining high-precision 144Sm measurements to interpret properly measured 142Nd signatures. Another explanation could be that the chondrites sample material formed in different pulses of the lifetime of asymptotic giant branch stars. Then the isotope signature measured in SiC presolar would not represent the unique s-process signature of the material present in the solar nebula during accretion. PMID:21515828

  10. Extraterrestrial Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    Nucleobases in Carbonaceous Chondrites Z. Martins (1), O. Botta (2), M. L. Fogel (3), M. A. Sephton (4), D. P. Glavin (2), J. S. Watson (5), J. P. Dworkin (2), A. W. Schwartz (6) and P. Ehrenfreund (1,6). (1) Astrobiology Laboratory, Leiden Institute of Chemistry, Leiden, The Netherlands, (2) NASA Goddard Space Flight Center, Goddard Center for Astrobiology, Greenbelt, MD, USA, (3) GL, Carnegie Institution of Washington, Washington DC, USA, (4) Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London, UK, (5) Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, UK, (6) Radboud University Nijmegen, Nijmegen, The Netherlands. E-mail: z.martins@chem.leidenuniv.nl/Phone:+31715274440 Nucleobases are crucial compounds in terrestrial biochemistry, because they are key components of DNA and RNA. Carbonaceous meteorites have been analyzed for nucleobases by different research groups [1-5]. However, significant quantitative and qualitative differences were observed, leading to the controversial about the origin of these nucleobases. In order to establish the origin of these compounds in carbonaceous chondrites and to assess the plausibility of their exogenous delivery to the early Earth, we have performed formic acid extraction of samples of the Murchison meteorite [6], followed by an extensive purification procedure, analysis and quantification by high-performance liquid chromatography with UV absorption detection and gas chromatography-mass spectrometry. Our results were qualitatively consistent with previous results [3, 4], but showed significant quantitative differences. Compound specific carbon isotope values were obtained, using gas chromatography-combustion- isotope ratio mass spectrometry. A soil sample collected in the proximity of the Murchison meteorite fall site was subjected to the same extraction, purification and analysis procedure. Our stable carbon isotope measurements clearly demonstrate that the nucleobases in the Murchison meteorite are indigenous to the meteorite, and clearly differ from the values determined for the terrestrial nucleobases measured in the soil collected at the impact site. These results support the hypothesis that nucleobases were exogenously delivered to the early Earth, and may have been important for the prebiotic chemistry on our young planet. With regard to the detection of traces of life on other planets such as Mars it is essential to characterize organic materials that have been exogenously delivered to the early planets. The analysis of the composition and isotopic fractionation of extraterrestrial material using complementary techniques can provide crucial insights into the formation of our Solar System, extraterrestrial delivery processes and subsequent addition and incorporation into the carbonaceous material available on the young planets. Ultimately, these parameters form an essential reference point for interpreting biosignatures that may be left in the ancient rock record on a planetary body. References: [1] Hayatsu R. et al. 1975. Geochimica et Cosmochimica Acta 39: 471- 488. [2] Folsome C. E. et al. 1971. Nature 232: 108-109. [3] Stoks P. G. & Schwartz A. W. 1979. Nature 282: 709-710. [4] Stoks P.G. & Schwartz A. W. 1981. Geochimica et Cosmochimica Acta 45: 563-569. [5] Shimoyama A. et al. 1990. Geochemical Journal 24: 343-348. [6] Martins Z. et al. 2004. Meteoritics & Planetary Science 39: A5145. 2

  11. An H chondrite stream: Identification and confirmation

    SciTech Connect

    Dodd, R.T.; Wolf, S.F.; Lipschutz, M.E.

    1993-08-25

    Fall data indicate that a significant, elongate cluster of co-orbital H chondrite falls in May between 1855 and 1895 (H Cluster 1) records encounters with two or three closely spaced and probably related meteoroid stream components, each of which was met near its perihelion. Although meteorites included in the Cluster vary widely in petrographic type (3-6), shock facies (a-d), and {sup 21}Ne exposure age (<5 to 50 Ma), they have a distinct labile trace element signature that confirms a common thermal history and, thus, a common source region within an H chondrite parent body. Hence, meteorites selected by one criterion (fall parameters) as distinguishable from all other H chondrites, are distinguished from them by another completely different criterion (contents of labile trace elements). 36 refs., 12 figs., 7 tabs.

  12. Experimental vaporization of the Holbrook chondrite

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.; Muenow, D. W.

    1977-01-01

    The vapor phase composition obtained by heating samples of the Holbrook L6 chondrite to 1300 C was determined quantitatively by Knudsen cell-quadrupole mass spectrometry. Maximum observed vapor pressures, produced at 1200 C, are reported for Na, K, Fe, and Ni, and the implications of the Na/K ratio are considered. The Fe and Ni data are discussed with attention to their migration in individual equilibrated chondrites. S2 (with minor SO2), H2O, and CO2 were also present in the high-temperature gas phase. Vesicles formed by the release of intrinsically derived volatiles are compared with vesicles in the Ibitira eucrite. Chondrite evolution is briefly discussed.

  13. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Chen, James H.; Zhang, Junjun; Papanastassiou, Dimitri A.; Davis, Andrew M.; Travaglio, Claudia

    2014-12-01

    Thermal ionization mass spectrometry (TIMS) was used to measure the calcium isotopic compositions of carbonaceous, ordinary, enstatite chondrites as well as eucrites and aubrites. We find that after correction for mass-fractionation by internal normalization to a fixed 42Ca/44Ca ratio, the 43Ca/44Ca and 46Ca/44Ca ratios are indistinguishable from terrestrial ratios. In contrast, the 48Ca/44Ca ratios show significant departure from the terrestrial composition (from -2 ε in eucrites to +4 ε in CO and CV chondrites). Isotopic anomalies in ε48Ca correlate with ε50Ti: ε 48Ca=(1.09±0.11)×ε 50Ti+(0.03±0.14). Further work is needed to identify the carrier phase of 48Ca-50Ti anomalies but we suggest that it could be perovskite and that the stellar site where these anomalies were created was also responsible for the nucleosynthesis of the bulk of the solar system inventory of these nuclides. The Earth has identical 48Ca isotopic composition to enstatite chondrites (EH and EL) and aubrites. This adds to a long list of elements that display nucleosynthetic anomalies at a bulk planetary scale but show identical or very similar isotopic compositions between enstatite chondrites, aubrites, and Earth. This suggests that the inner protoplanetary disk was characterized by a uniform isotopic composition (IDUR for Inner Disk Uniform Reservoir), sampled by enstatite chondrites and aubrites, from which the Earth drew most of its constituents. The terrestrial isotopic composition for 17O, 48Ca, 50Ti, 62Ni, and 92Mo is well reproduced by a mixture of 91% enstatite, 7% ordinary, and 2% carbonaceous chondrites. The Earth was not simply made of enstatite chondrites but it formed from the same original material that was later modified by nebular and disk processes. The Moon-forming impactor probably came from the same region as the other embryos that made the Earth, explaining the strong isotopic similarity between lunar and terrestrial rocks.

  14. Hydrogen and major element concentrations on 433 Eros: Evidence for an L- or LL-chondrite-like surface composition

    NASA Astrophysics Data System (ADS)

    Peplowski, Patrick N.; Bazell, David; Evans, Larry G.; Goldsten, John O.; Lawrence, David J.; Nittler, Larry R.

    2015-03-01

    A reanalysis of NEAR X-ray/gamma-ray spectrometer (XGRS) data provides robust evidence that the elemental composition of the near-Earth asteroid 433 Eros is consistent with the L and LL ordinary chondrites. These results facilitated the use of the gamma-ray measurements to produce the first in situ measurement of hydrogen concentrations on an asteroid. The measured value, 1100-700+1600 ppm, is consistent with hydrogen concentrations measured in L and LL chondrite meteorite falls. Gamma-ray derived abundances of hydrogen and potassium show no evidence for depletion of volatiles relative to ordinary chondrites, suggesting that the sulfur depletion observed in X-ray data is a surficial effect, consistent with a space-weathering origin. The newfound agreement between the X-ray, gamma-ray, and spectral data suggests that the NEAR landing site, a ponded regolith deposit, has an elemental composition that is indistinguishable from the mean surface. This observation argues against a pond formation process that segregates metals from silicates, and instead suggests that the differences observed in reflectance spectra between the ponds and bulk Eros are due to grain size differences resulting from granular sorting of ponded material.

  15. Pb Pb dating constraints on the accretion and cooling history of chondrites

    NASA Astrophysics Data System (ADS)

    Bouvier, Audrey; Blichert-Toft, Janne; Moynier, Frdric; Vervoort, Jeffrey D.; Albarde, Francis

    2007-03-01

    We have analyzed the Pb isotopic compositions of whole-rocks and various components (CAIs, chondrules, and/or mineral separates) of two carbonaceous chondrites, Allende (CV3) and Murchison (CM2), and nine ordinary chondrites, Sainte Marguerite (H4), Nadiabondi and Forest City (H5), Kernouv (H6), Bjurble (L/LL4), Elenovka and Ausson (L5), Tuxtuac (LL5), and Saint-Sverin (LL6) by MC-ICP-MS. Three CAI fractions from Allende define an isochron with an age of 4568.1 9.4 Ma (MSWD = 0.08) and plot on the same isochron as fragments of the Efremovka inclusion E60 analyzed by Amelin et al. [Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002a). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science297, 1679-1683]. When these two groups of samples are combined, the isochron yields an age of 4568.5 0.5 (MSWD = 0.90), which is our best estimate of the age of the Solar System. Chondrules and pyroxene-olivine fractions from the ordinary chondrites yield ages that reflect the blocking of Pb isotope equilibration with the nebular gas. The combination of these ages with the corresponding metamorphic phosphate ages provides constraints on the thermal history of the different chondrite parent bodies. Among the H chondrites, Sainte Marguerite cooled to below 1100 K within a few My at 4565 Ma and to 800 K at 4563 Ma. Nadiabondi appears to have experienced a slightly more protracted cooling history with the corresponding interval lasting from 4559 to 4556 Ma. The data from Forest City and Kernouv show evidence of late-stage perturbation with resulting U/Pb fractionation. Likewise, Pb isotopes in Tuxtuac (LL5) record a cooling history lasting from 4555 to 4544 Ma, which may indicate that the cooling history for the LL parent body was more prolonged than for the H parent body. We suggest a thermal evolution model for the growth of the planetary bodies based on the release of radiogenic heat from 26Al and 60Fe. This model incorporates the accretion rate, which determines the time at which the radiogenic heat becomes efficiently trapped, and the terminal size of the parent body, which controls its overall thermal inertia. The parent bodies of carbonaceous chondrites, which show little indication of metamorphic transformation, collect cooler nebular material at a relatively late stage. Small asteroids of 10-50 km radius accreting within 1-3 My could be the parent bodies of H and LL chondrites. The parent body of the L chondrites is likely to be a larger asteroid ( r > 100 km) or possibly the product of collisions of smaller planetary bodies.

  16. EL3 Chondrite (not Aubrite) Northwest Africa 2828: An Unusual Paleo-meteorite Occurring as Cobbles in a Terrestrial Conglomerate

    NASA Astrophysics Data System (ADS)

    Kuehner, S. M.; Irving, A. J.; Bunch, T. E.; Wittke, J. H.

    2006-12-01

    Although we recently classified NWA 2828 as an aubrite [1], our examination of new material (now comprising over 120 stones totaling >27 kg) requires revision of that classification. New information on the find site in Algeria indicates that these stones were excavated from a subsurface deposit, and we have found terrestrial rhyolite pebbles and sandy matrix attached to several NWA 2828 stones (see images at http://www.ess.washington.edu/meteoritics). Thus this is a rare example of a paleo-meteorite or 'fossil' meteorite. Some stones contain sparse (<5 vol.%) but very distinct round, radial pyroxene chondrules (up to 3 mm across), as well as rounded, fine-grained aggregates (up to 6 mm across) rich in either enstatite or sodic plagioclase. Remnant Na-Al-Si-rich glass is present within cavities in chondrules, both between enstatite blades and in annular zones. The matrix contains pervasive 0.2-0.5 mm cavities with coatings of calcite and minor halite and gypsum. Iron sulfate (after troilite), jarosite, an inhomogeneous (possibly amorphous) phase rich in Fe, Cr, Si, Ca, Ti, P, S and Cl, minor native sulfur and silica also are present, and brown Fe-rich rinds on one stone contain up to 6.5 wt.% Ni. These secondary minerals signify terrestrial alteration of primary metal, sulfides, phosphides, nitrides and glass in an ancient fluvial and/or acidic lacustrine environment. The dominant primary phase in NWA 2828 is enstatite (En98.4Wo1.4), which forms stubby prismatic grains (lacking polysynthetic twinning indicative of inverted clinoenstatite [cf., 1]). Our original classification was based on a very small specimen of an apparently igneous-textured rock, but the discovery of chondrules and the absence of twinned enstatite now suggests that it is instead an unequilibrated enstatite chondrite. Additional primary phases noted previously [1] are sodic plagioclase (An14- 15Or3-4), troilite, graphite, daubreelite, alabandite, oldhamite, schreibersite, glass and very rare kamacite. The well-formed, round chondrules containing glass coupled with the unrecrystallized matrix lead us to re-classify NWA 2828 as an EL3 chondrite. We also must revise our opinion [1] about the relationship between NWA 2828 and material classified as EL chondrites NWA 2965 and NWA 2736, which evidently come from the more extensively weathered top of the same ancient conglomerate layer as NWA 2828. [1] Irving A.J. et al. (2006) 69th Met. Soc. Mtg., #5264 (MAPS 41 Suppl., A84)

  17. Potentially hazardous Asteroid 2007 LE: Compositional link to the black chondrite Rose City and Asteroid (6) Hebe

    NASA Astrophysics Data System (ADS)

    Fieber-Beyer, Sherry K.; Gaffey, Michael J.; Bottke, William F.; Hardersen, Paul S.

    2015-04-01

    The research is an integrated effort beginning with telescopic observations and extending through detailed mineralogical characterizations to provide constraints on the albedo, diameter, composition, and meteorite affinity of near-Earth object-potentially hazardous asteroid (NEO-PHA 2007 LE). Results of the analysis indicate a diameter of 0.56 kilometers (km) and an albedo of 0.08. 2007 LE exhibits a 1-?m absorption feature without a discernible Band II feature. Compositional analysis of 2007 LE reveal Fs17 and Fa19 values, which are consistent with the Fa and Fs values for the H-type ordinary chondrites (Fs14.5-18 and Fa16-20) and of Asteroid (6) Hebe (Fs17 and Fa15). Spectroscopically, 2007 LE does not appear like the average H-chondrite spectra, exhibiting a reddened spectrum and subdued absorption feature. Further investigation of the meteorite classes yielded a black chondrite, Rose City, which is both similar in mineralogy and spectrally to PHA 2007 LE. Dynamical analysis could not directly link the fall of the Rose City meteorite to 2007 LE. As it stands, 2007 LE and Rose City have a compositional link, and both could come from the same parent body/possible family, one known source of the H chondrites is (6) Hebe.

  18. Petrology and Stable Isotopes of LEW 87232, A New Kakangari-type Chondrite

    NASA Astrophysics Data System (ADS)

    Weisberg, M. K.; Prinz, M.; Clayton, R. N.; Mayeda, T. K.; Grady, M. M.; Franchi, I. A.

    1993-07-01

    The discovery of new chondrite groups is an important step in widening our understanding of the primitive asteroidal materials on which models of early solar system processes are based. LEW87232 was tentatively classified as a CR chondrite [1] and our interest in the CR group and its diversity [2] led us to study this meteorite. This petrologic and stable isotope study shows that LEW87232 is, in fact, a new member of the rare Kakangari-type chondrite grouplet. Kakangari was recognized as the first member of a new chondrite group with petrologic, bulk chemical, and oxygen isotopic characteristics that sharply distinguish it from other chondrites [3-7]. Lea Co. 002 was found to be a second member [8]. Texturally, LEW87232 consists of chondrules, fragments, and metal spheres (chondrules) set in a fine-grained matrix. The chondrule mean diameter is 0.4 nm (some up to 1.6 mm). Most chondrules are porphyritic pyroxene, and olivine is poikilitically enclosed in the pyroxene. Rarely, chondrules are olivine rich. Metal chondrules consist of kamacite with exsolved taenite and are rimmed by, and enclose, lath-shaped pyroxene that is similar in size and morphology to the matrix pyroxene; accessory apatite and schreibersite are associated with the metal. The matrix consists mainly of low-Ca-pyroxene laths 1-3 micrometers wide, up to 15 micrometers long, and it is intermixed with an Fe oxide, possibly ferrihydrite. Ferrihydrite was identified in Kakangari [9]. Mineral compositions in chondrules, fragments, and matrix are fairly homogeneous, and similar, with pyroxene Wo0.2-0.5Fs2.6-3.6, olivine Fa0.5-2.9, Ca-pyroxene Wo45Fs0.8, and plagioclase An~60. Kamacite (Ni ~ 5.6%) and taenite (Ni ~ 27%) are homogeneous. Kakangari has similar mineral compositions [7]. Bulk compositions of the chondrules and matrix are strikingly similar, reflecting similarities in their modes and mineral compositions. Stable Isotopes: LEW87232 nitrogen, total delta-15N = +10.6 permil, [N] = 80.6 ppm, is closest to that of ordinary chondrites and differs from that of Kakangari, which has lighter N (total delta-15N = -20 permil). Total [C] = 1989 ppm and is also closest to ordinary chondrites. Kakangari total [C] = 864 [10]. Combustion temperatures indicate the presence of some organic component with delta-15N ~ +4 to +8 permil released at low T. N released above 1000 degrees C may be a combination of spallogenic N, with N possibly from SiC. The oxygen isotope compositions of Kakangari-type chondrites are shown in the figure. Whole rock LEW87232 plots close to the other Kakangari-type chondrites. Chondrule compositions are similar to those in Kakangari, but are displaced toward lower delta-18O values perhaps, in part, due to weathering. Chondrules from Kakangari-type chondrites generally have oxygen compositions similar to enstatite chondrite chondrules (shown by the loop) and some extend toward more 16O-rich compositions. Conclusions: LEW87232 is shown to be a Kakangari-type meteorite and it further defines this distinct chondrite grouplet. Characteristics that distinguish the Kakangari-type grouplet from other chondrite groups include (1) the oxygen isotope composition of the chondrules and matrix, (2) the high metal and pyroxene abundances and low FeO content of the silicates that indicate an oxidation state between H and E chondrites, (3) the Mg- and pyroxene-rich nature and similarity of the chondrules and matrix, (4) the unique intergrowths of matrix pyroxene within and rimming metal chondrules, suggesting that abundant Mg-rich pyroxene crystals formed in the nebula and were present during chondrule formation. References: [1] Mason B. (1992) Ant. Met. News., 15, 24. [2] Weisberg M. K. et al. (1993) GCA, 57, 1567-1586. [3] Graham A. L. and Hutchison R. (1974) Nature, 251, 128-129. [4] Clayton R. N. et al. (1976) LPSC, VII, 160-162. [5] Clayton R. N. et al. (1976) EPSL, 30, 10-18. [6] Davis A. M. et al. (1977) Nature, 265, 230-232. [7] Prinz M. et al. (1989) LPSC, XX, 870-871. [8] Prinz M. et al. (1991) LPSC, XXII, 1097-1098. [9] Brearley A. J. (1989) GCA, 53, 2395-2411. [10] Grady M. M. and Pillinger C. T. (1986) GCA, 50, 255-263. [11] Clayton R. N. and Mayeda T. K. (1985) LPSC, XVI, 142-143.

  19. Mineralogy and matrix composition of CR chondrites Renazzo and EET 87770, and ungrouped chondrites Essebi and MAC 87300

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.

    1991-01-01

    The fine-grained mineralogy of the matrix of two CR chondrites, Renazzo and EET 87770, and the ungrouped (but possible related) Essebi and MAC 87300 chondrites was characterized using standard microprobe (focussed beam) and transmission electron microscopy (TEM) techniques (using ultramicrotomed sections). These results are compared to previously obtained results for 31 other carbonaceous chondrites.

  20. Non-nebular Origin of Dark Mantles Around Chondrules and Inclusions in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Trigo-Rodriquez, Josep M.; Rubin, Alan E.; Wasson, John T.

    2006-01-01

    Our examination of nine CM chondrites that span the aqueous alteration sequence leads us to conclude that compact dark fine mantles surrounding chondrules and inclusions in CM chondrites are not discrete fine-grained rims acquired in the solar nebula as modeled by Metzler et al. [Accretionary dust mantles in CM chondrites: evidence for solar nebula processes. Geochim. Cosmochim. Acta 56, 1992, 2873-28971. Nebular processes that lead to agglomeration produce materials with porosities far higher than those in the dark mantles. We infer that the mantles were produced from porous nebular materials on the CM parent asteroid by impact-compaction (a process that produces the lowest porosity adjacent to chondrules and inclusions). Compaction was followed by aqueous alteration that formed tochilinite, serpentine, Ni-bearing sulfide, and other secondary products in voids in the interchondrule regions. Metzler et al. reported a correlation between mantle thickness and the radius of the enclosed object. In Yamato 791 198 we find no correlation when all sizes of central objects and dark lumps are included but a significant correlation (r(sup 2) = 0.44) if we limit consideration to central objects with radii >35 microns; a moderate correlation is also found in QUE 97990. We suggest that impact-induced shear of a plum-pudding-like precursor produced the observed "mantles"; these were shielded from comminution during impact events by the adjacent stronger chondrules and inclusions. Some mantles in CM chondrites with low degrees of alteration show distinct layers that may largely reflect differences in porosity. Typically, a gray, uniform inner layer is surrounded by an outer layer consisting of darker silicates with BSE-bright speckles. The CM-chondrite objects characterized as "primary accretionary rocks" by Metzler et al. did not form in the nebula, but rather on the parent body. The absence of solar-flare particle tracks and solar-wind-implanted rare gases in these clasts reflect their lithified nature and low surface/volume ratios during the period when they resided in the regolith and were subject to irradiation by solar particles. The clasts are analogous to the light-colored metamorphosed clasts in ordinary-chondrite regolith breccias (which also lack solar-flare particle tracks and solar-wind gas).

  1. Zaoyang chondrite cooling history from pyroxene Fe(2+)-Mg intracrystalline ordering and exolutions

    NASA Technical Reports Server (NTRS)

    Molin, G. M.; Tribaudino, M.; Brizi, E.

    1993-01-01

    The Zaoyang ordinary chondrite fell as a single 14.15-kg mass in Hubey province (China) in October 1984 and was classified as a non-brecciated H5 chondrite, shock facies b. Cooling rate in pyroxenes can be calculated down to about 1000 C by using fine textures and at still lower temperatures (700 to 200 C) by intracrystalline ordering processes. The crystal chemistry of clinopyroxene and orthopyroxene from the matrix of the H5 Zaoyang chondrite has been investigated by X-ray structure refinement and detailed microprobe analysis. By comparison with terrestrial pyroxenes cell and polyhedral volumes in clino- and orthopyroxenes show a low crystallization pressure. Fe(2+) and Mg are rather disordered in M1 and M2 sites of clino- and orthopyroxenes; the closure temperatures of the exchange reaction are 600 and 512 C respectively, which is consistent with a quite fast cooling rate, estimated of the order of one degree per day. The closure temperature for the intercrystalline Ca-Mg exchange reaction for clino- and orthopyroxene showing clinopyroxene lamellae about 10 microns thick. Kinetic evaluations based on the thickness of exolved lamellae give a cooling rate of not more than a few degrees per 10(exp 4) years. The different cooling rates obtained from Fe(2+)-Mg intracrystalline partitioning and exolution lamellae suggest an initial episode of slow cooling at 900 C, followed by faster cooling at temperatures of 600-500 C at low pressure conditions. The most probable scenario of the meteorite history seems that the exolved orthopyroxene entered the parental chondrite body after exolution had taken place at high temperature. Subsequent fast cooling occurred at low temperature after the formation of the body.

  2. Alkaline Element Fractionations in LL-chondritic Breccias

    NASA Astrophysics Data System (ADS)

    Misawa, K.; Yokoyama, T.; Okano, O.

    2010-12-01

    Introduction: Fractionation of moderately volatile lithophile elements including alkaline elements was an important process in the early solar system. Alkali-rich igneous fragments (K-rich fragments) were found in brecciated LL-chondrites. These fragments in Kraehenberg (LL5), Bhola (LL3-6), and Yamato (Y)-74442 (LL4) show fractionated alkaline element patterns; for example, abundances of alkaline elements in the Kraehenberg fragment are ~0.5 x CI for Na, ~12 x CI for K,~45 x CI for Rb, and ~70 x CI for Cs [1]. In order to understand moderately volatile element fractionations, we have undertaken mineralogical and petrological studies on K-rich fragments in Kraehenberg [1], Bhola [2], and Y-74442 [3, 4]. Results and Discussion: Kraehenberg, Bhola, and Y-74442 consist of mineral fragments, K-rich fragments, impact-melt clasts, chondrules, and matrix. K-rich fragments in these meteorites are composed of 10-100 µm-sized euhedral olivine (~60 vol.%) and groundmass of brown glasses (~40 vol.%, including microcrystalline pyroxene) which are highly enriched in alkaline elements. Dendritic pyroxene and chromite (~1 µm in size) along with troilite (~10 µm in size) are commonly observed in the groundmass. The textures are different from those of impact melt clasts in ordinary chondrites. Chemical compositions of olivine in the K-rich fragments fall within the compositional range of equilibrated LL-chondrites (Fa26-32 [5]). Groundmass glasses in the Kraehenberg, Bhola, and Y-74442 fragments are almost identical in composition when plotted on a Na+K+Al-oxides-Ca+Mg+Fe-oxides-SiO2 ternary diagram [1]. The fractionation trend is also observed in an angular igneous fragment in Siena (LL5) [6]. The lack of K isotopic fractionation effects in the K-rich clast in Kraehenberg [7] implies that the enrichment of (heavier) alkaline elements occurred near-equilibrium conditions. The K-rich fragments in Kraehenberg and Y-74442 could be early solar system materials (~4.56 Ga [8, 9]). Similarities in textures, compositions, and fractionation patterns of the K-rich fragments suggest that they might be formed from related precursor materials with related processes. Complementarity of K-rich fragments and differentiated body alkali abundance patterns suggests that the fractionation could have occurred in the early solar nebula. Refs: [1] Wlotzka F. et al. (1983) Geochim. Cosmochim. Acta 47, 743. [2] Noonan A.F. et al. (1978) Geol. Survey Open File Report 78-701, 311. [3] Yanai K. et al. (1978) Mem. Natl. Inst. Polar Res. Spec. Issue 8, 110. [4] Ikeda Y. and Takeda H. (1979) Mem. Natl. Inst. Polar Res. Spec. Issue 15, 123. [5] Dodd R.T. (1981) Meteorites pp. 368, Cambridge Univ. Press. [6] Fodor R.V. and Keil K. (1978) Catalog of lithic fragments in LL-chondrites, Inst. Meteoritics Spec. Publ. No. 19, pp. 38, Univ. New Mexico, Albuquerque. [7] Humayun M. and Clayton R.N. (1995) Geochim. Cosmochim. Acta 59, 2131. [8] Kempe W. and Mueller O. (1969) Meteorite Res., pp. 418. [9] Nishiya N. et al. (1995) Okayama Univ. Earth Sci. Rep. 2, 91.

  3. I-129/I-127 variations among enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Kennedy, B. M.; Hudson, B.; Hohenberg, C. M.; Podosek, F. A.

    1988-01-01

    The iodine isotopic compositions and corresponding I-Xe ages were obtained for eight enstatite chondrites, bringing the total number of enstatite chondrites examined by the I-Xe technique to 11. Iodine isotopic compositions of these 11 chondrites indicate a well-defined hiatus correlated with the hiatus in chemical composition defining the two distinct enstatite groups: EH(4,5) and EL(6). Judging by the I-129/I-127 ratios and assuming that both the EH and EL groups originated from a reservoir with a uniform initial iodine isotopic composition, the EH(4,5) chondrites were estimated to be about 4 mln older than the El chondrites.

  4. Spectral reflectance properties of carbonaceous chondrites: 8. Other carbonaceous chondrites: CH, ungrouped, polymict, xenolithic inclusions, and R chondrites

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Hudon, P.; Hiroi, T.; Gaffey, M. J.; Mann, P.

    2012-11-01

    We have analyzed reflectance spectra (0.3-2.5 ?m) of a number of ungrouped or tentatively grouped carbonaceous chondrites (CCs), possible CC-type xenoliths in an aubrite (Cumberland Falls) and a howardite (PRA 04401), a CH chondrite (PCA 91467), a CC polymict breccia (Kaidun), and some R chondrites. The best approach to analysis relies largely on characterizing spectrally active phases - i.e., those phases that contribute diagnostic absorption features, involving absorption band wavelength position, band depth, shape of absorption features, combined with albedo and spectral slope. Mafic silicate (hydrous and/or anhydrous) absorption features are ubiquitous in the CCs and R chondrites we have examined. Combining information on these features along with albedo and spectral slopes allows reasonable inferences to be made concerning their uniqueness. Reflectance spectra of Coolidge show contributions from both olivine and Fe oxyhydroxides (from terrestrial weathering), and its high reflectance and mafic silicate band depths are consistent with a petrologic grade >3 and inconsistent with CVs. The CC nature of the Cumberland Falls inclusions from spectral analysis is inconclusive, but they do exhibit spectral features consistent with their overall mineralogy. DaG 430, which has petrologic characteristics of both CV and CK chondrites, has a spectrum that is not fully consistent with either group. The spectrum of EET 96029 is consistent with some, but not all CM2 chondrites. GRO 95566, a meteorite with some affinities to CM2s, most resembles the Renazzo CR2 chondrite, consistent with their similar mineralogies, and its spectral properties can be related to its major mineralogic characteristics. Spectra of Kaidun are most consistent with CR chondrites, which form the bulk of this meteorite. The reflectance spectrum of MCY 92005 is consistent with its recent classification as a CM2 chondrite. The R3 chondrite MET 01149 shares many characteristics with CKs, but differs in terms of its slightly red slope and 2 ?m region absorption feature. The combination of high reflectance, deep 1 ?m band and, to a lesser extent, slightly red slope and weak 2 ?m region absorption band, distinguishes PRE 95404 from CV3s, to which it was initially assigned. The LAP 04840 R6 spectrum is dominated by olivine, consistent with a petrologic grade >3. Its reflectance is somewhat lower than for the R3 chondrites, and falls within the range of many CCs. Its most characteristic feature is the metal-OH absorption bands in the 2.3 ?m region. Analysis and assignment of PCA 91467 (CH3) is complicated by the presence of terrestrial weathering products. Its red spectral slope is consistent with its high metal content. Reflectance spectra of the howardite PRA 04401, which contains ?40% CM2-like inclusions, is dominated by the howardites pyroxene absorption bands, and expected CM2-type absorption bands near 0.7 and 1.1 ?m are not seen. The CC xenoliths do reduce overall reflectance and pyroxene absorption band depths significantly, and probably add an overall red slope, when compared to inclusion-free howardites. QUE 99038, which has been linked to CM2, CO, or CR chondrites is not spectrally consistent with any of these groups. The 2 ?m band, high overall reflectance, and dominant olivine absorption band are all generally inconsistent with CM2 and CR2-3 chondrites. It resembles the CO3 chondrite ALH 77003 in the 1 ?m region, but differs in the 2 ?m region. The red-sloped, nearly featureless spectrum of Tagish Lake is unique among carbonaceous chondrites. It probably arises from the highly aromatic nature of the organic component and its intimate association with the phyllosilicate-rich matrix, which makes up a high proportion of this meteorite. Our results suggest that the meteorites included in this study can usually be determined to be either unique or to be placed with a reasonable degree of confidence into established CC groups. Our analysis has also provided insights into the degree to which spectral analysis can be used for characterizatio

  5. Reclassification of Villalbeto de la PeaOccurrence of a winonaite-related fragment in a hydrothermally metamorphosed polymict L-chondritic breccia

    NASA Astrophysics Data System (ADS)

    Bischoff, Addi; Dyl, Kathryn A.; Horstmann, Marian; Ziegler, Karen; Wimmer, Karl; Young, Edward D.

    2013-04-01

    The Villalbeto de la Pea meteorite that fell in 2004 in Spain was originally classified as a moderately shocked L6 ordinary chondrite. The recognition of fragments within the Villalbeto de la Pea meteorite clearly bears consequences for the previous classification of the rock. The oxygen isotope data clearly show that an exotic eye-catching, black, and plagioclase-(maskelynite)-rich clast is not of L chondrite heritage. Villalbeto de la Pea is, consequently, reclassified as a polymict chondritic breccia. The oxygen isotope data of the clast are more closely related to data for the winonaite Tierra Blanca and the anomalous silicate-bearing iron meteorite LEW 86211 than to the ordinary chondrite groups. The REE-pattern of the bulk inclusion indicates genetic similarities to those of differentiated rocks and their minerals (e.g., lunar anorthosites, eucritic, and winonaitic plagioclases) and points to an igneous origin. The An-content of the plagioclase within the inclusion is increasing from the fragment/host meteorite boundary (approximately An10) toward the interior of the clast (approximately An52). This is accompanied by a successive compositionally controlled transformation of plagioclase into maskelynite by shock. As found for plagioclase, compositions of individual spinels enclosed in plagioclase (maskelynite) also vary from the border toward the interior of the inclusion. In addition, huge variations in oxygen isotope composition were found correlating with distance into the object. The chemical and isotopical profiles observed in the fragment indicate postaccretionary metamorphism under the presence of a volatile phase.

  6. Primordial lightning: Evidence preserved in chondrites

    NASA Technical Reports Server (NTRS)

    Eisenhour, D.; Buseck, P. R.

    1993-01-01

    An increasing body of evidence suggests that transient heating events were important in forming or modifying many constituents of chondritic meteorites. For example, chondrule compositions and textures imply high cooling rates (approximately 5 to greater than 2000 C/hr) with only limited exposure to elevated temperatures (greater than 1200 C). Similarly, experimental studies of CAI's exhibiting igneous textures suggest cooling rates from 0.5 to 1000 C/hr, and thermal pulses as short as milliseconds may be responsible for CAI rim formation. Additionally, the spectrum of organic compounds observed in chondrites suggests that transient heating may also have played an important role in their formation. The exact nature of these transient events is less clear. A variety of mechanisms have been proposed (e.g., shock melting, drag heating, volcanism, electric discharges, and magnetic reconnection). However, a consensus is lacking as to which or what combination of these mechanisms was responsible for the range of features we observe in chondrites today. Much of the difficulty lies in the inability to identify features unique to any given process. Here we discuss electric discharges ('lightning') as a transient heat source and describe its unique signature preserved in chondrites.

  7. Intensive parameters of enstatite chondrite metamorphism

    NASA Technical Reports Server (NTRS)

    Fogel, Robert A.; Hess, Paul C.; Rutherford, Malcolm J.

    1989-01-01

    A geothermometer based on the assemblage kamacite-quartz-enstatite-oldhamite-troilite found in enstatite chondrites is described. Data obtained with the geothermometer reveal that the EL6 meteorites experienced temperatures exceeding 1000 C. These temperatures imply a metal-sulfide melting event that may have fractionated the melt from the source region.

  8. Evidence of Microfossils in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rozanov, Alexei Y.; Zhmur, S. I.; Gorlenko, V. M.

    1998-01-01

    Investigations have been carried out on freshly broken, internal surfaces of the Murchison, Efremovka and Orgueil carbonaceous chondrites using Scanning Electron Microscopes (SEM) in Russia and the Environmental Scanning Electron Microscope (ESEM) in the United States. These independent studies on different samples of the meteorites have resulted in the detection of numerous spherical and ellipsoidal bodies (some with spikes) similar to the forms of uncertain biogenicity that were designated "organized elements" by prior researchers. We have also encountered numerous complex biomorphic microstructures in these carbonaceous chondrites. Many of these complex bodies exhibit diverse characteristics reminiscent of microfossils of cyanobacteria such as we have investigated in ancient phosphorites and high carbon rocks (e.g. oil shales). Energy Dispersive Spectroscopy (EDS) analysis and 2D elemental maps shows enhanced carbon content in the bodies superimposed upon the elemental distributions characteristic of the chondritic matrix. The size, distribution, composition, and indications of cell walls, reproductive and life cycle developmental stages of these bodies are strongly suggestive of biology' These bodies appear to be mineralized and embedded within the meteorite matrix, and can not be attributed to recent surface contamination effects. Consequently, we have interpreted these in-situ microstructures to represent the lithified remains of prokaryotes and filamentous cyanobacteria. We also detected in Orgueil microstructures morphologically similar to fibrous kerite crystals. We present images of many biomorphic microstructures and possible microfossils found in the Murchison, Efremovka, and Orgueil chondrites and compare these forms with known microfossils from the Cambrian phosphate-rich rocks (phosphorites) of Khubsugul, Northern Mongolia.

  9. Experimental Data in Support of the 1991 Shock Classification of Chondrites

    NASA Astrophysics Data System (ADS)

    Schmitt, R. T.; Stoffler, D.

    1995-09-01

    We present results of shock recovery experiments performed on the H6(S1) chondrite Kernouv . These data and new observations on ordinary chondrites confirm the recently proposed classification system [1] and provide additional criteria for determining the shock stage, the shock pressure, and, under certain conditions, also the ambient (pre-shock) temperature during shock metamorphism of any chondrite sample. Two series of experiments at 293 K and 920 K and 10, 15, 20, 25, 30, 45, and 60 GPa were made with a high explosive device [2] using 0.5 mm thick disks of the Kernouv chondrite. Shock effects in olivine, orthopyroxene, plagioclase, and troilite and shock-induced melt products were studied by optical [3], electron optical and X-ray diffraction methods. All essential characteristics of the six progressive stages of shock metamorphism (S1 - S6) observed in natural samples of chondrites [1] have been reproduced experimentally except for opaque shock veins and the high pressure polymorphs of olivine and pyroxene (ringwoodite/wadsleyite and majorite), well known from naturally shocked chondrites. This is probably due to the special sample and containment geometry and the extremely short pressure pulses (0.2 - 0.8 microseconds) in the experiments. The shock experiments provided a clear understanding of the shock wave behavior of troilite and of the shock-induced melting, mobilization, and exsolution-recrystallization of composite troilite-metal grains. At 293 K troilite is monocrystalline up to 35 GPa displaying undulatory extinction from 10 to 25 GPa, partial recrystallization from 30 - 45 GPa, and complete recrystallization above 45 GPa. Local melting of troilite/metal grains starts at 30 GPa and composite grains displaying exsolution textures of both phases are formed which get mobilized and deposited into fractures of neighbouring silicate grains above 45 GPa. For a pre-shock temperature of 293 K the pressure at which diagnostic shock effects are formed, is somewhat lower in the experimentally shocked Kernouve than in single crystals [1] (Table 1). Based on the Kernouve calibration and on new observations made in natural samples of shocked chondrites an updated version of the 1991 shock classification system is given in Table 1 which holds for low temperatures. In general, the increase of the pre-shock temperature (e.g., 920 K) leads to a distinct decrease of the pressure at which certain shock effects are produced (Table 1). This effect, most distinct for recrystallization and melting phenomena in olivine and troilite, can be used as a pre-shock thermometer. Provided that a post-shock thermal event can be excluded, an estimate of the pre-shock ambient temperature of chondrites of shock stages S2 - S5 can be made by monitoring the texture of troilite. If troilite is monocrystalline, this temperature was low. Polycrystalline troilite indicates a pre-shock temperature higher than 300 K, probably as high as some 900 K. For chondrites of shock stage S6, the ambient pre-shock temperature exceeded 300 K distinctly if olivine near local melt zones lacks the yellow-brown staining characteristic for shock metamorphism at low temperatures. References: [1] Stoffler D. et al. (1991) GCA, 55, 3845-3867. [2] Stoffler D. and Langenhorst F. (1994) Meteoritics, 29, 155-181. [3] Schmitt R. T. et al. (1993) Meteoritics, 29, 529-530.

  10. Chondrites and the Protoplanetary Disk, Part 3

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: Ca-, Al-Rich Inclusions and Ameoboid Olivine Aggregates: What We Know and Don t Know About Their Origin. Aluminium-26 and Oxygen Isotopic Distributions of Ca-Al-rich Inclusions from Acfer 214 CH Chondrite. The Trapping Efficiency of Helium in Fullerene and Its Implicatiion to the Planetary Science. Constraints on the Origin of Chondritic Components from Oxygen Isotopic Compositions. Role of Planetary Impacts in Thermal Processing of Chondrite Materials. Formation of the Melilite Mantle of the Type B1 CAIs: Flash Heating or Transport? The Iodine-Xenon System in Outer and Inner Portions of Chondrules from the Unnamed Antarctic LL3 Chondrite. Nucleosynthesis of Short-lived Radioactivities in Massive Stars. The Two-Fluid Analysis of the Kelvin-Helmholtz Instability in the Dust Layer of a Protoplanetary Disk: A Possible Path to the Planetesimal Formation Through the Gravitational Instability. Shock-Wave Heating Model for Chonodrule Formation: Heating Rate and Cooling Rate Constraints. Glycine Amide Hydrolysis with Water and OH Radical: A Comparative DFT Study. Micron-sized Sample Preparation for AFM and SEM. AFM, FE-SEM and Optical Imaging of a Shocked L/LL Chondrite: Implications for Martensite Formation and Wave Propagation. Infrared Spectroscopy of Chondrites and Their Components: A Link Between Meteoritics and Astronomy? Mid-Infrared Spectroscopy of CAI and Their Mineral Components. The Origin of Iron Isotope Fractionation in Chondrules, CAIs and Matrix from Allende (CV3) and Chainpur (LL3) Chondrites. Protoplanetary Disk Evolution: Early Results from Spitzer. Kinetics of Evaporation-Condensation in a Melt-Solid System and Its Role on the Chemical Composition and Evolution of Chondrules. Oxygen Isotope Exchange Recorded Within Anorthite Single Crystal in Vigarano CAI: Evidence for Remelting by High Temperature Process in the Solar Nebula. Chondrule Forming Shock Waves in Solar Nebula by X-Ray Flares. Organic Globules with Anormalous Nitrogen Isotopic Compositions in the Tagish Lake Meteorite: Products of Primitive Organic Reactions. Yet Another Chondrule Formation Scenario. CAIs are Not Supernova Condensates. Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System. A Nearby Supernova Injected Short-lived Radionuclides into Our Protoplanetary Disk. REE+Y Systematics in CC and UOC Chondrules. Meteoritic Constraints on Temperatures, Pressures, Cooling Rates, Chemical Compositions, and Modes of Condensation in the Solar Nebula. The I-Xe Record of Long Equilibration in Chondrules from the Unnamed Antarctic Meteorite L3/LL3. Early Stellar Evolution.

  11. Evidence for a Carbonaceous Chondrite Parent Body With Near-TFL Oxygen Isotopes From Unique Metachondrite Northwest Africa 2788

    NASA Astrophysics Data System (ADS)

    Bunch, T. E.; Irving, A. J.; Rumble, D.; Korotev, R. L.

    2006-12-01

    Metachondrites: Metachondrites are newly recognized groups of stony meteorites that lack chondrules, but which have elemental and oxygen isotopic compositions and textures suggesting that they have been transformed by metamorphism or partial melting from precursor ordinary and carbonaceous chondrites on relatively large parent bodies [1]. The best known examples have affinities to CR (e.g., LEW 88763), CV (e.g., NWA 3133), H, L and LL chondrites; conversely there is evidence that winonaites and acapulcoites also are metachondrites derived from chondritic precursors (represented by rare chondrites such as NWA 1463 and Monument Draw). With increased sampling of new meteorites from both hot and cold desert regions, there is an emerging realization that the early solar system was populated with many relatively large differentiated planetary bodies complete with metallic cores, silicate mantles and chondritic regoliths of various types. The affinity of a particular metachondrite to a specific chondrite class relies mainly on oxygen isotopic analysis combined with distinctive elemental ratios in bulk rocks and constituent minerals (notably Fe/Mn and Ca/Na ratios, which are quite different for ordinary vs. various carbonaceous chondrite classes). Northwest Africa 2788: This specimen exhibits a metamorphic texture with triple grain junctions (grain size is mostly <0.5 mm, a few grains reach nearly 1 mm), and is composed of orthopyroxene (63 vol.%, Fs18.0Wo1.3, FeO/MnO = 30), olivine (27 vol.%, Fa21.4, FeO/MnO = 57-61), clinopyroxene (5 vol.%, Fs7.4Wo49.8, TiO2 = 0.74 wt.%, Cr2O3 = 0.63 wt.%, FeO/MnO = 19), plagioclase (5 vol.%, An53.9Or3), and accessory merrillite, troilite and metal. Replicate oxygen isotopic analyses of acid-washed bulk samples by laser fluorination gave ?18O = 6.004, 6.082; ?17O = 3.082, 3.102; ?17O = -0.076, -0.097 per mil (for TFL slope of 0.526); these values plot close to but below the TFL. The elevated Fe/Mn ratios in the mafic silicates coupled with the relatively calcic plagioclase are hallmarks of carbonaceous chondrite bulk compositions [2], but the oxygen isotopic compositions are quite unlike those of any known chondrite class. Bulk rock abundances by INAA relative to Allende analyzed simultaneously are 0.89 times for Fe and ~1.2 times for Cr, REE and Hf. We conclude that NWA 2788 is a unique metachondrite sampled from a new, perhaps now-disaggregated parent body accreted from a distinctive oxygen isotopic reservoir. It is possible that this body also may harbor or have harbored chondrule-bearing carbonaceous regolith materials ('CT chondrites') that are yet to be found or recognized. [1] Irving A. J. et al. (2005) 68th Met. Soc. Mtg., #5218; Bunch T. E. et al. (2005) LPS XXXVI, #2308 [2] Wasson J. T. and Kallemyn G. W. (1988) Phil. Trans. Roy. Soc. Lond. A325, 535-544.

  12. Ordinary Stoichiometry of Extraordinary Microbes

    NASA Astrophysics Data System (ADS)

    Neveu, M.; Poret-Peterson, A. T.; Anbar, A. D.; Elser, J. J.

    2013-12-01

    Life on Earth seems to be composed of the same chemical elements in relatively conserved stoichiometric proportions. However, this observation is largely based on observations of biota from habitats spanning a moderate range of temperature and chemical composition (e.g., temperate lakes, forests, grasslands, oceanic phytoplankton). Whether this stoichiometry is conserved in settings that differ radically from such "normal" planetary settings may provide insight into the habitability of environments with radically different stoichiometries, and into possible stoichiometries for putative life beyond Earth. Here we report the first measurements of elemental stoichiometries of microbial extremophiles from hot springs of Yellowstone National Park (YNP). These phototrophic and chemotrophic microbes were collected in locations spanning large ranges of temperature (ambient to boiling) and pH (1 to 9). Microbial biomass was carefully extracted from hot spring sediment substrata following a procedure adapted from [1], which conserves cellular elemental abundances [2]. Their C and N contents were determined by Elemental Analysis Isotope Ratio Mass Spectrometry, and their P and trace element (Mg, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and non-biogenic Al and Ti) contents were measured by Inductively Coupled Plasma Mass Spectrometry. Residual mineral contamination was an issue in some samples with low measured C and N; we eliminated these from our results. Even in the remaining samples, contamination sometimes prevented accurate determinations of cellular Mg, Ca, Mn, and Fe abundances; however, the cellular Ni, Cu, Zn, and Mo contents were several-fold above contamination level. Although hot spring water and sediment elemental abundances varied by orders of magnitude, the data showed that the extremophiles have a major and trace element stoichiometry similar to those previously measured in "normal" microbial biomass [3-6]. For example, biomass C:N:P ratios resembled those commonly observed in temperate lakes (e.g., C:P ratios of 260 to 1600 and N:P ratios of 35 to 200) while cellular C:Fe ratios were of a similar magnitude to those of marine phytoplankton. Exceptions were Al and Ti, much higher than previously measured, likely because of contamination from residual sediment. Moreover, the low phosphorus contents (high C:P and N:P ratios) are suggestive of limited P supply. Chemotrophs and phototrophs had similar elemental compositions to one another, although Mg, Mn, Ni, and Zn abundances were higher and nearly constant in phototrophs, due to their importance in phototrophic metabolism. Despite the tremendous physical and chemical diversity of YNP environments, the stoichiometry of life in these settings is surprisingly ordinary. Thus, our study supports the view that the biological stoichiometry of life is heavily constrained by the elemental composition of core biomolecules, and that even life in extreme environments must operate within these constraints. In the frame of life detection in exotic locales, these results suggest a general elemental biosignature for life as we know it. References: [1] Amalfitano and Fazi. 2008. J. Microbiol. Meth. 75:237 [2] Neveu et al. L&O: Meth., in review [3] Ho et al. 2003. J. Phycol. 39:1145 [4] Nuester et al. 2012. Front. Microbiol. 3:150 [5] Sterner and Elser. 2002. Ecological Stoichiometry. Princeton U. Press [6] Twining et al. 2011. Deep-Sea Res. II 58:325

  13. I-Xe studies of individual chondrules: What can they tell us about chondrule formation?

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Hohenberg, C. M.

    1994-01-01

    In the past 14 years, I-Xe studies have been performed on nearly 100 individual chondrules from five different meteorites. More than half the studied chondrules come from the unequilibrated ordinary chondrites (UOC's) Chainpur, Semarkona, and Tieschitz. However, 'unequilibrated' does not necessarily mean 'unaltered,' and the I-Xe studies of chondrules from UOC's have ultimately been interpreted in terms of postformation alteration. Two types of constraints on chondrule formation are discussed: (1) the duration, location, and timing of postformation alteration (in solids over a 50-m.y. span); and (2) the ages of the earliest formed chondrules (a few million years after the earliest solids).

  14. The Origin of Chondrules and Refractory Inclusions in Chondritic Meteorites

    NASA Astrophysics Data System (ADS)

    Shu, Frank H.; Shang, Hsien; Gounelle, Matthieu; Glassgold, Alfred E.; Lee, Typhoon

    2001-02-01

    Examples of calcium-aluminum-rich inclusions (CAIs) surrounded by thick chondrule mantles have been found in chondritic meteorites and cast doubt on the conventional belief that CAIs and chondrules possessed different spacetime origins in the primitive solar nebula. We study specific processes by which such objects, and the more common ordinary CAIs and chondrules, might have formed by flare heating of primitive rocks interior to the inner edge of a gaseous accretion disk that has been truncated by magnetized funnel flow onto the central proto-Sun. Motivated by the appearance of the chains of Herbig-Haro knots that define collimated optical jets from many young stellar objects (YSOs), we adopt the model of a fluctuating X-wind, where the inner edge of the solar nebula undergoes periodic radial excursions on a timescale of ~30 yr, perhaps in response to protosolar magnetic cycles. Flares induced by the stressing of magnetic fields threading both the star and the inner edge of the fluctuating disk melt or partially melt solids in the transition zone between the base of the funnel flow and the reconnection ring, and in the reconnection ring itself. The rock melts stick when they collide at low velocities. Surface tension pulls the melt aggregate into a quasi-spherical core/mantle structure, where the core consists mainly of refractories and the mantle mainly of moderate volatiles. Orbital drift of rocks past the inner edge of the disk or infall of large objects from the funnel flow replaces the steady loss of material by the plasma drag of the coronal gas that corotates with the stellar magnetosphere. In quasi-steady state, agglomeration of molten or heat-softened rocks leads to a differential size-distribution in radius R proportional to R-3e-Lt/tLR, where tL~20 yr is the drift time of an object of fiducial radius L?1 cm and t is the time since the last inward excursion of the base of the funnel flow and X-wind. Thus, during the ~30 yr interval between successive flushing of the reconnection ring, flash-heated and irradiated rocks have a chance to grow to millimeter and centimeter sizes. The evaporation of the moderately volatile mantles above large refractory cores, or the dissolving of small refractory cores inside thick ferromagnesian mantles before launch, plus extended heating in the X-wind produce the CAIs or chondrules that end up at planetary distances in the parent bodies of chondritic meteorites.

  15. Mn-Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Fujiya, Wataru; Sugiura, Naoji; Sano, Yuji; Hiyagon, Hajime

    2013-01-01

    53Mn-53Cr ages have been measured for dolomites in three CI chondrites and an ungrouped C2 chondrite Tagish Lake. For an accurate age determination, we utilized, in contrast to previous works, a matrix-matched carbonate standard to appropriately correct the observed Mn/Cr ratios. The Mn-Cr data of the dolomites most likely represent isochrons with chronological significances and the obtained ages are concentrated in 4563.8-4562.5 million years ago (4.4-5.7 million years after the birth of the solar system). The ages of the CI and Tagish Lake dolomites are very similar to those of carbonates in CM chondrites, although CI and CM chondrites are likely to have different alteration histories. The similar carbonate ages in various carbonaceous chondrites suggest that the aqueous activities in hydrous asteroids initiated almost concurrently. If this is the case, the most plausible heat source for the aqueous alteration is the decay energy of short-lived radionuclides, especially 26Al. We carried out a model calculation for the thermal history of the CI chondrite parent body assuming that 26Al is the dominant heat source. By two different approaches to estimate the accretion time of the CI chondrite parent body, we conclude that it accreted 3.0-3.9 million years after the birth of the solar system. This is also likely to be the case for the CM chondrite and Tagish Lake parent bodies, because the result of the calculation is not sensitive to the ice abundance. Therefore, we stress that near the condensation front of water ice, meteorite parent bodies with abundant ice accreted almost simultaneously at 3-4 million years after CAI formation. Combining our Mn-Cr ages of the dolomites with those of breunnerites reported previously (the youngest one is 4554.6 million years ago), we found that the aqueous alteration in the CI chondrite parent body lasted for at least 9 million years. Therefore, the parent body should be large enough (>50 km in radius) so that the internal heat had been kept for 9 million years.

  16. Deducing Wild 2 Components with a Statistical Dataset of Olivine in Chondrite Matrix

    NASA Technical Reports Server (NTRS)

    Frank, D. R.; Zolensky, M. E.; Le, L.

    2012-01-01

    Introduction: A preliminary exam of the Wild 2 olivine yielded a major element distribution that is strikingly similar to those for aqueously altered carbonaceous chondrites (CI, CM, and CR) [1], in which FeO-rich olivine is preferentially altered. With evidence lacking for large-scale alteration in Wild 2, the mechanism for this apparent selectivity is poorly understood. We use a statistical approach to explain this distribution in terms of relative contributions from different chondrite forming regions. Samples and Analyses: We have made a particular effort to obtain the best possible analyses of both major and minor elements in Wild 2 olivine and the 5-30 micrometer population in chondrite matrix. Previous studies of chondrite matrix either include larger isolated grains (not found in the Wild 2 collection) or lack minor element abundances. To overcome this gap in the existing data, we have now compiled greater than 10(exp 3) EPMA analyses of matrix olivine in CI, CM, CR, CH, Kakangari, C2-ungrouped, and the least equilibrated CO, CV, LL, and EH chondrites. Also, we are acquiring TEM/EDXS analyses of the Wild 2 olivine with 500s count times, to reduce relative errors of minor elements with respect to those otherwise available. Results: Using our Wild 2 analyses and those from [2], the revised major element distribution is more similar to anhydrous IDPs than previous results, which were based on more limited statistics (see figure below). However, a large frequency peak at Fa(sub 0-1) still persists. All but one of these grains has no detectable Cr, which is dissimilar to the Fa(sub 0-1) found in the CI and CM matrices. In fact, Fa(sub 0-1) with strongly depleted Cr content is a composition that appears to be unique to Kakangari and enstatite (highly reduced) chondrites. We also note the paucity of Fa(sub greater than 58), which would typically indicate crystallization in a more oxidizing environment [3]. We conclude that, relative to the bulk of anhydrous IDPs, Wild 2 may have received a larger contribution from the Kakangari and/or enstatite chondrite forming regions. Alternatively, Wild 2 may have undergone accretion in an anomalously reducing region, marked by nebular condensation of this atypical forsterite. In [4], a similar conclusion was reached with an Fe-XANES study. We will also use similar lines of reasoning, and our previous conclusions in [5], to constrain the relative contributions of silicates that appear to have been radially transported from different ordinary and carbonaceous chondrite forming regions to the Kuiper Belt. In addition, the widespread depletion of Cr in these FeO-rich (Fa(sub greater than 20)) fragments is consistent with mild thermal metamorphism in Wild 2.

  17. Chemical characteristics and origin of H chondrite regolith breccias

    NASA Technical Reports Server (NTRS)

    Lipschutz, M. E.; Biswas, S.; Mcsween, H. Y., Jr.

    1983-01-01

    Petrologic data and contents of Ag, Bi, Cd, Co, Cs, Ga, In, Rb, Se, Te, Tl and Zn-trace elements spanning the volatility/mobility range-in light and dark portions of H chondrite regolith breccias and L chondrite fragmental breccias are reported. The chemical/petrologic characteristics of H chondrite regolith breccias differ from those of nonbrecciated chondrites or fragmental breccias. Petrologic characteristics and at least some trace element contents of H chondrite regolith breccias reflect primary processes; contents of the most volatile/mobile elements may reflect either primary or secondary processing, possibly within layered H chondrite parent object(s). Chemical/petrologic differences existed in different regions of the parent(s). Regoligh formation and gardening and meteoroid compaction were not so severe as to alter compositions markedly.

  18. On the chemical composition of L-chondrites

    NASA Technical Reports Server (NTRS)

    Neal, C. W.; Dodd, R. T.; Jarosewich, E.; Lipschutz, M. E.

    1980-01-01

    Radiochemical neutron activation analysis of Ag, As, Au, Bi, Co, Cs, Ga, In, Rb, Sb, Te, Tl, and Zn and major element data in 14 L4-6 and 3 LL5 chondrites indicates that the L group is unusually variable and may represent at least 2 subgroups differing in formation history. Chemical trends in the S/Fe rich subgroup support textural evidence indicating late loss of a shock formed Fe-Ni-S melt; the S/Fe poor subgroup seemingly reflects nebular fractionation only. Highly mobile In and Zn apparently reflect shock induced loss from L chondrites. However, contrasting chemical trends in several L chondrite sample sets indicate that these meteorites constitute a more irregular sampling of, or more heterogeneous parent material than do carbonaceous or enstatite chondrites. Data for 15 chondrites suggest higher formation temperatures and/or degrees of shock than for LL5 chondrites.

  19. Aqueous alteration in CV carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Maurice, M.; Trigo-Rodrguez, J. M.; Mestres, N.

    2012-09-01

    Several sections of CV chondrites belonging to the NASA Antarctic collection are being studied by our group in order to better understand the nature and physical processes occurred on the CV parent asteroid. We compare them with several sections of more common representative specimens from historic falls like e.g. Allende and Mokoia to find evidence of impact-induced heating and aqueous alteration. Once identified relevant features, we obtain mineralogical clues by using a Raman spectrometer.

  20. Size distributions in two porous chondritic micrometeorites

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1993-01-01

    Quantitative size measurements of granular units (GUs), and nm-sized minerals in these units, in two porous chondritic micrometeorites are investigated. The matrix of these micrometeorites consist of loosely packed, 0.1 micron-sized, GUs. These objects were a major component of the solar nebula dust that accreted into protoplanets. The matrix in micrometeorite W7010*A2 has a fractal dimension with a small coefficient that supports efficient sticking of carbon-rich GUs during accretion. The fractal nature of the matrix provides a way to calculate the density using the aggregate size. The resulting very low density for porous chondritic micrometeorites is 0.08-0.14 g/cu cm, which supports the view that they are the solid debris from unconsolidated solar system bodies. Chondritic GUs contain ultrafine olivines, pyroxenes, and sulfides, embedded in hydrocarbons and amorphous carbons. Nanocrystals in the micrometeorites W7010*A2 and U2015*B show log normal size distributions. The high incidence of disk-shaped grains, a changeover from disk-shaped to euhedral grains, the unevolved nature of the size distributions, and multiple populations for grains less than 127 nm in size, are consistent with continuous postaccretion nucleation and growth in amorphous GUs, including coarsening via Ostwald ripening.

  1. Polyhedral Serpentine Grains in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Zega, Thomas J.; Garvie, Laurence A. J.; Dodony, Istvan; Stroud, Rhonda M.; Buseck, Peter R.

    2005-01-01

    CM chondrites are primitive rocks that experienced aqueous alteration in the early solar system. Their matrices and fine-grained rims (FGRs) sustained the effects of alteration, and the minerals within them hold clues to the aqueous reactions. Sheet silicates are an important product of alteration, and those of the serpentine group are abundant in the CM2 chondrites. Here we expand on our previous efforts to characterize the structure and chemistry of serpentines in CM chondrites and report results on a polyhedral form that is structurally similar to polygonal serpentine. Polygonal serpentine consists of tetrahedral (T) sheets joined to M(2+)-centered octahedral (O) sheets (where (M2+) is primarily Mg(2+) and Fe(2+)), which give rise to a 1:1 (TO) layered structure with a 0.7-nm layer periodicity. The structure is similar to chrysotile in that it consists of concentric lizardite layers wrapped around the fiber axis. However, unlike the rolled-up chrysotile, the tetrahedral sheets of the lizardite layers are periodically inverted and kinked, producing sectors. The relative angles between sectors result in 15- and 30-sided polygons in terrestrial samples.

  2. The meteorite Moss - a rare carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Bilet, M.; Roaldset, E.

    2014-07-01

    On July 14, 2006, at about 10:20 a.m. local daylight time (UTC+2), a bright fireball travelling SSE-NNV was witnessed from the Baltic Sea to SE Norway. On the east side of the Oslo fiord, around Moss, an explosion and a rumbling sound was heard, and pieces were observed falling. Rapid recovery of meteorite stones gave an opportunity for detailed petrological and geochemical investigations, including analyses of indigenous organic species, and short lived isotopes. The meteorite is a chondritic stone meteorite, with some carbon (0.21-0.25 wt% C). The cosmic-ray exposure (CRE) age is 14 Ma, i.e. when Moss was ejected from its parent body. Gas retention ages are approximately 3.95x10^9 yr (U/Th/He) and 4.43x10^9 yr (K/Ar), respectively. The meteorite has the official name Moss, and is classified as carbonaceous chondrite type CO3.6. It was the first witnessed fall of a CO3 chondrite since Kainsaz in Russia in 1937.

  3. Amino acids of the Nogoya and Mokoia carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Moore, C. B.

    1976-01-01

    Amino acids were found in acid hydrolyzed, hot water extracts of the Nogoya (C2) and Mokoia (C3V) chondrites. About 40 n moles/g of amino acids were found in the Nogoya extract while Mokoia contained less than 1 n mole/g. The amino acid composition of Nogoya differs from that of other C2 chondrites studied earlier. The results from Mokoia are similar to previous data obtained from the C3V chondrite Allende.

  4. Chemistry and oxygen isotopic composition of cluster chondrite clasts and their components in LL3 chondrites

    NASA Astrophysics Data System (ADS)

    Metzler, Knut; Pack, Andreas

    2016-01-01

    Cluster chondrites are characterized by close-fit textures of deformed and indented chondrules, taken as evidence for hot chondrule accretion (Metzler). We investigated seven cluster chondrite clasts from six brecciated LL3 chondrites and measured their bulk oxygen isotopic and chemical composition, including REE, Zr, and Hf. The same parameters were measured in situ on 93 chondrules and 4 interchondrule matrix areas. The CI-normalized REE patterns of the clasts are flat, showing LL-chondritic concentrations. The mean chemical compositions of chondrules in clasts and other LL chondrites are indistinguishable and we conclude that cluster chondrite chondrules are representative of the normal LL chondrule population. Type II chondrules are depleted in MgO, Al2O3 and refractory lithophiles (REE, Zr, Hf) by factors between 0.65 and 0.79 compared to type I chondrules. The chondrule REE patterns are basically flat with slight LREE < HREE fractionations. Many chondrules exhibit negative Eu anomalies while matrix shows a complementary pattern. Chondrules scatter along a correlation line with a slope of 0.63 in the oxygen 3-isotope diagram, interpreted as the result of O-isotope exchange between chondrule melts and 18O-rich nebular components. In one clast, a distinct anticorrelation between chondrule size and ?18O is found, which may indicate a more intense oxygen isotope exchange by smaller chondrules. In some clasts the ?18O values of type I chondrules are correlated with concentrations of SiO2 and MnO and anticorrelated with MgO, possibly due to the admixture of a SiO2- and MnO-rich component to chondrule melts during oxygen isotope exchange. Two chondrules with negative anomalies in Sm, Eu, and Yb were found and may relate their precursors to refractory material known from group III CAIs. Furthermore, three chondrules with strong LREE > HREE and Zr/Hf fractionations were detected, whose formation history remains to be explained.

  5. Chemistry and oxygen isotopic composition of cluster chondrite clasts and their components in LL3 chondrites

    NASA Astrophysics Data System (ADS)

    Metzler, Knut; Pack, Andreas

    2016-02-01

    Cluster chondrites are characterized by close-fit textures of deformed and indented chondrules, taken as evidence for hot chondrule accretion (Metzler). We investigated seven cluster chondrite clasts from six brecciated LL3 chondrites and measured their bulk oxygen isotopic and chemical composition, including REE, Zr, and Hf. The same parameters were measured in situ on 93 chondrules and 4 interchondrule matrix areas. The CI-normalized REE patterns of the clasts are flat, showing LL-chondritic concentrations. The mean chemical compositions of chondrules in clasts and other LL chondrites are indistinguishable and we conclude that cluster chondrite chondrules are representative of the normal LL chondrule population. Type II chondrules are depleted in MgO, Al2O3 and refractory lithophiles (REE, Zr, Hf) by factors between 0.65 and 0.79 compared to type I chondrules. The chondrule REE patterns are basically flat with slight LREE < HREE fractionations. Many chondrules exhibit negative Eu anomalies while matrix shows a complementary pattern. Chondrules scatter along a correlation line with a slope of 0.63 in the oxygen 3-isotope diagram, interpreted as the result of O-isotope exchange between chondrule melts and 18O-rich nebular components. In one clast, a distinct anticorrelation between chondrule size and δ18O is found, which may indicate a more intense oxygen isotope exchange by smaller chondrules. In some clasts the δ18O values of type I chondrules are correlated with concentrations of SiO2 and MnO and anticorrelated with MgO, possibly due to the admixture of a SiO2- and MnO-rich component to chondrule melts during oxygen isotope exchange. Two chondrules with negative anomalies in Sm, Eu, and Yb were found and may relate their precursors to refractory material known from group III CAIs. Furthermore, three chondrules with strong LREE > HREE and Zr/Hf fractionations were detected, whose formation history remains to be explained.

  6. Aqueous alteration in the Kaba CV3 carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Buseck, Peter R.

    1990-01-01

    Results from TEM and SEM examinations of the Kaba CV3 carbonaceous chondrite are presented, showing that the chondrules and the matrix of Kaba have undergone pervasive low-temperature aqueous alteration, resulting in the formation of Fe-bearing saponite from glass and enstatite in chondrules, and from anhydrous silicates in matrix. The alteration products in Kaba were found to resemble those in other aqueously altered carbonaceous chondrites such as the Mokoia CV3 and in Orgueil CI chondrites and Y-82162 chondrites. However, Kaba lacks the abundant high-Al phyllosilicates, reported for CAIs from Mokoia, and the serpentine and ferrihydrite, found in Orgueil.

  7. Aqueous alteration in the Kaba CV3 carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Keller, Lindsay P.; Buseck, Peter R.

    1990-07-01

    Results from TEM and SEM examinations of the Kaba CV3 carbonaceous chondrite are presented, showing that the chondrules and the matrix of Kaba have undergone pervasive low-temperature aqueous alteration, resulting in the formation of Fe-bearing saponite from glass and enstatite in chondrules, and from anhydrous silicates in matrix. The alteration products in Kaba were found to resemble those in other aqueously altered carbonaceous chondrites such as the Mokoia CV3 and in Orgueil CI chondrites and Y-82162 chondrites. However, Kaba lacks the abundant high-Al phyllosilicates, reported for CAIs from Mokoia, and the serpentine and ferrihydrite, found in Orgueil.

  8. On the aerodynamic redistribution of chondrite components in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Jacquet, Emmanuel; Gounelle, Matthieu; Fromang, Sbastien

    2012-07-01

    Despite being all roughly of solar composition, primitive meteorites (chondrites) present a diversity in their chemical, isotopic and petrographic properties, and in particular a first-order dichotomy between carbonaceous and non-carbonaceous chondrites. We investigate here analytically the dynamics of their components (chondrules, refractory inclusions, metal/sulfide and matrix grains) in protoplanetary disks prior to their incorporation in chondrite parent bodies. We find the dynamics of the solids, subject to gas drag, to be essentially controlled by the gas-solid decoupling parameterS ? St/?, the ratio of the dimensionless stopping time to the turbulence parameter. The decoupling of the solid particles relative to the gas is significant when S exceeds unity. S is expected to increase with time and heliocentric distance. On the basis of (i) abundance of refractory inclusions, (ii) proportion of matrix, (iii) lithophile element abundances, and (iv) oxygen isotopic composition of chondrules, we propose that non-matrix chondritic components had S < 1 when carbonaceous chondrites accreted and S > 1 when the other chondrites accreted. This suggests that accretion of carbonaceous chondrites predated on average that of the other chondrites and that refractory inclusions are genetically related to their host carbonaceous chondrites.

  9. Carbonate abundances and isotopic compositions in chondrites

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'd.; Bowden, R.; Fogel, M. L.; Howard, K. T.

    2015-04-01

    We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are ?13C ? 25-75 and ?18O ? 15-35, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0-130 C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (?18O ? 5) and the C isotopes were controlled by equilibrium with CO and/or CH4 (?13C ? -33 or -20 for CO- or CH4-dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (?18O ? -5.5, and ?13C ? -31 or -17 for CO- or CH4-dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10-40 C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (?13C ? 65-80) and less altered samples (?13C ? 30-40). This bimodality can still be explained by precipitation from fluids with the same isotopic composition (?18O ? -9.25, and ?13C ? -21 or -8 for CO- or CH4-dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2-rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO-dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2-H2O ices that experienced temperatures of >50-100 K suggests that the chondrites formed at radial distances of <4-15 AU.

  10. Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite

    NASA Technical Reports Server (NTRS)

    Jones, R. H.; Scott, E. R. D.

    1989-01-01

    Detailed petrologic studies have been made of 15 type IA, Fe-poor, porphyritic olivine chondrules in Semarkona (LL3.0). Major and minor element concentrations in olivines, pyroxenes, and mesostases, and bulk composition so the chondrules are measured along with zoning profiles in the olivine and pyroxene crystals. The mineral compositions and textures are best interpreted in terms of closed system crystallization in which the olivines and pyroxenes crystallized in situ from a melt corresponding to the bulk composition of the chondrule. Relict olivine grains are not found in the chondrules. Crystallization probably occurred at a cooling rate of the order of 1000 C/hr. Precursor materials of the chondrules were composed of two components, one refractory Ca-, Al-, and Ti-rich, and one less refractory Si-, Fe-, Cr-, and Mn-rich. The evidence is consistent with Semarkona being one of the least metamorphosed ordinary chondrites.

  11. Oxygen Isotope Compositions of the Kaidun Meteorite - Indications for Aqeuous Alteration of E-Chondrites

    NASA Technical Reports Server (NTRS)

    Ziegler, K.; Zolensky, M.; Young, E. D.; Ivanov, A.

    2012-01-01

    The Kaidun microbreccia is a unique meteorite due to the diversity of its constituent clasts. Fragments of various types of carbonaceous (CI, CM, CV, CR), enstatite (EH, EL), and ordinary chondrites, basaltic achondrites, and impact melt products have been described, and also several unknown clasts [1, and references therein]. The small mm-sized clasts represent material from different places and times in the early solar system, involving a large variety of parent bodies [2]; meteorites are of key importance to the study of the origin and evolution of the solar system, and Kaidun is a collection of a range of bodies evidently representing samples from across the asteroid belt. The parent-body on which Kaidun was assembled is believed to be a C-type asteroid, and 1-Ceres and the martian moon Phobos have been proposed [1-4]. Both carbonaceous (most oxidized) and enstatite (most reduced) chondrite clasts in Kaidun show signs of aqueous alterations that vary in type and degree and are most likely of pre-Kaidun origin [1, 4].

  12. Santa Lucia (2008) (L6) Chondrite, a Recent Fall: Composition, Noble Gases, Nitrogen and Cosmic Ray Exposure Age

    NASA Astrophysics Data System (ADS)

    Mahajan, Ramakant R.; Varela, Maria Eugenia; Joron, Jean Louis

    2015-11-01

    The Santa Lucia (2008)—one the most recent Argentine meteorite fall, fell in San Juan province, Argentina, on 23 January 2008. Several masses (total ~6 kg) were recovered. Most are totally covered by fusion crust. The exposed interior is of light-grey colour. Chemical data [olivine (Fa24.4) and low-Ca pyroxene (En77.8 Fs20.7 Wo1.6)] indicate that Santa Luica (2008) is a member of the low iron L chondrite group, corresponding to the equilibrated petrologic type 6. The meteorite name was approved by the Nomenclature Committee (NomCom) of the Meteoritical Society (Meteoritic Bulletin, no. 97). We report about the chemical composition of the major mineral phases, its bulk trace element abundance, its noble gas and nitrogen data. The cosmic ray exposure age based on cosmogenic 3He, 21Ne, and 38Ar around 20 Ma is comparable to one peak of L chondrites. The radiogenic K-Ar age of 2.96 Ga, while the young U, Th-He are of 1.2 Ga indicates that Santa Lucia (2008) lost radiogenic 4He more recently. Low cosmogenic (22Ne/21Ne)c and absence of solar wind noble gases are consistent with irradiation in a large body. Heavy noble gases (Ar/Kr/Xe) indicated trapped gases similar to ordinary chondrites. Krypton and neon indicates irradiation in large body, implying large pre-atmospheric meteoroid.

  13. R Raman Spectroscopy and Petrology of Antarctic CR Chondrites: Comparison with Other Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Fagan, T. J.; Yamaguchi, A.; Mikouchi, T.; Zolensky, M. E.; Yasutake, M.

    2015-01-01

    In Renazzo-like carbonaceous (CR) chondrites, abundant original Fe,Ni-metal is preserved in chrondules, but the matrix is characterized by fine-grained magnetite with phyllosilicate. This combination of reduced Fe in chrodrules with oxidized Fe and phyllosilicate in the matrix has been attributed to aqueous alteration of matrix at relatively low temperatures.

  14. Rumuruti: A New Carlisle Lakes-type Chondrite

    NASA Astrophysics Data System (ADS)

    Schulze, H.; Otto, J.

    1993-07-01

    We report here preliminary results of the investigation of a meteorite that fell on January 28, 1934, at 10:45 p.m. at Rumuruti, Kenya. The stone, weighing originally about 75 g, was part of a shower of a few pounds. It was picked up immediately after the fall and has been in the collection of the Museum fur Naturkunde in Berlin since 1938, but it has never been investigated. The stone has a black crust. A cut exhibits a nice light-dark structure typical of regolithic breccias. The numerous clasts are light-grey and reach up to 7 mm. The groundmass is dark grey. The portion of chondrules in the meteorite is rather small. They are often broken or irregularly shaped. The mineralogical investigation revealed a quite equilibrated olivine with a high fayalite content ranging in composition from Fa37 to Fa42 and averaging Fa39 (PMD 2.4; n = 66). The grains are up to 400 micrometers and often appear to be fragments of larger lithologies. Low-Ca pyroxene is much less abundant. It is unequilibrated with a mean of approximately Fs26 (n = 2). It is smaller than olivine (up to ~100 micrometers) and often shows polysynthetical twinning. A Ca-rich pyroxene was measured having En43Fs17Wo40. The common plagioclase reaches several micrometers and is mostly of oligoclasic composition with a mean of Ab85An11Or5 (n = 15), similar to OCs [1]. Also whitlockite of a composition similar to OCs [2] has been observed. Common sulfides comprise pentlandite (~35 wt% Ni) and low-Ni iron sulfide, which is pyrrhotite according to powder diffraction patterns. They occur individually or intergrown as grains of up to 1 mm. Pentlandite partly forms flame-like exsolutions in pyrrhotite. Also chalcopyrite, which is otherwise a rare mineral in meteorites [3], can be observed in grains of up to 50 micrometers. It is generally intergrown with the other sulfides. The common chromian spinel is Ti-rich (TiO2 ~6 wt%), Cr2O3 ranges from 32 to 48 wt%, and FeO from 37 to 53 wt%. For charge balance a high Fe3+-content is required (12-51 mol% of the iron). The mean composition of this spinel phase can be expressed as a mixture of the end members chromite (55 mol%), ulvospinel (17 mol%), magnetite (15 mol%), and spinel (9 mol%). Only the magnetite (4-25 mol%) and the chromite component (46-68 mol%) are strongly variable, obviously substituting each other. Chromian spinel occurs intergrown with the sulfides, as xenomorphic or chondrulelike individual grains (up to 200 micrometers) or as inclusions