For comprehensive and current results, perform a real-time search at Science.gov.

1

Unsteady Aerodynamic Validation Experiences From the Aeroelastic Prediction Workshop

NASA Technical Reports Server (NTRS)

The AIAA Aeroelastic Prediction Workshop (AePW) was held in April 2012, bringing together communities of aeroelasticians, computational fluid dynamicists and experimentalists. The extended objective was to assess the state of the art in computational aeroelastic methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. As a step in this process, workshop participants analyzed unsteady aerodynamic and weakly-coupled aeroelastic cases. Forced oscillation and unforced system experiments and computations have been compared for three configurations. This paper emphasizes interpretation of the experimental data, computational results and their comparisons from the perspective of validation of unsteady system predictions. The issues examined in detail are variability introduced by input choices for the computations, post-processing, and static aeroelastic modeling. The final issue addressed is interpreting unsteady information that is present in experimental data that is assumed to be steady, and the resulting consequences on the comparison data sets.

Heeg, Jennifer; Chawlowski, Pawel

2014-01-01

2

Experience with transonic unsteady aerodynamic calculations

NASA Technical Reports Server (NTRS)

Comparisons of calculated and experimental transonic unsteady pressures and airloads for four of the AGARD Two Dimensional Aeroelastic Configurations and for a rectangular supercritical wing are presented. The two dimensional computer code, XTRAN2L, implementing the transonic small perturbation equation was used to obtain results for: (1) pitching oscillations of the NACA 64A010A; NLR 7301 and NACA 0012 airfoils; (2) flap oscillations for the NACA 64A006 and NRL 7301 airfoils; and (3) transient ramping motions for the NACA 0012 airfoils. Results from the three dimensional code XTRAN3S are compared with data from a rectangular supercritical wing oscillating in pitch. These cases illustrate the conditions under which the transonic inviscid small perturbation equation provides reasonable predictions.

Edwards, J. W.; Bland, S. R.; Seidel, D. A.

1984-01-01

3

Unsteady aerodynamic forces on small-scale wings: experiments, simulations and models

for a 3D pitch-up maneuver of a rectangular plate at Re = 300 shows the effect of aspect ratio on vorticalUnsteady aerodynamic forces on small-scale wings: experiments, simulations and models Steven L for the unsteady lift and drag forces on small wings in various modes of flight, and to better understand

Dabiri, John O.

4

Bifurcations in unsteady aerodynamics

NASA Technical Reports Server (NTRS)

Nonlinear algebraic functional expansions are used to create a form for the unsteady aerodynamic response that is consistent with solutions of the time dependent Navier-Stokes equations. An enumeration of means of invalidating Frechet differentiability of the aerodynamic response, one of which is aerodynamic bifurcation, is proposed as a way of classifying steady and unsteady aerodynamic phenomena that are important in flight dynamics applications. Accomodating bifurcation phenomena involving time dependent equilibrium states within a mathematical model of the aerodynamic response raises an issue of memory effects that becomes more important with each successive bifurcation.

Tobak, M.; Unal, A.

1986-01-01

5

Bifurcations in unsteady aerodynamics

NASA Technical Reports Server (NTRS)

Nonlinear algebraic functional expansions are used to create a form for the unsteady aerodynamic response that is consistent with solutions of the time dependent Navier-Stokes equations. An enumeration of means of invalidating Frechet differentiability of the aerodynamic response, one of which is aerodynamic bifurcation, is proposed as a way of classifying steady and unsteady aerodynamic phenomena that are important in flight dynamics applications. Accommodating bifurcation phenomena involving time dependent equilibrium states within a mathematical model of the aerodynamic response raises an issue of memory effects that becomes more important with each successive bifurcation.

Tobak, M.; Unal, A.

1987-01-01

6

Unsteady aerodynamics of blade rows

NASA Technical Reports Server (NTRS)

The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.

Verdon, Joseph M.

1989-01-01

7

Progress in computational unsteady aerodynamics

NASA Technical Reports Server (NTRS)

After vigorous development for over twenty years, Computational Fluid Dynamics (CFD) in the field of aerospace engineering has arrived at a turning point toward maturity. This paper discusses issues related to algorithm development for the Euler/Navier Stokes equations, code validation and recent applications of CFD for unsteady aerodynamics. Algorithm development is a fundamental element for a good CFD program. Code validation tries to bridge the reliability gap between CFD and experiment. Many of the recent applications also take a multidisciplinary approach, which is a future trend for CFD applications. As computers become more affordable, CFD is expected to be a better scientific and engineering tool.

Obayashi, Shigeru

1993-01-01

8

NASA Technical Reports Server (NTRS)

As computational fluid dynamics methods mature, code development is rapidly transitioning from prediction of steady flowfields to unsteady flows. This change in emphasis offers a number of new challenges to the research community, not the least of which is obtaining detailed, accurate unsteady experimental data with which to evaluate new methods. Researchers at NASA Langley Research Center (LaRC) have been actively measuring unsteady pressure distributions for nearly 40 years. Over the last 20 years, these measurements have focused on developing high-quality datasets for use in code evaluation. This paper provides a sample of unsteady pressure measurements obtained by LaRC and available for government, university, and industry researchers to evaluate new and existing unsteady aerodynamic analysis methods. A number of cases are highlighted and discussed with attention focused on the unique character of the individual datasets and their perceived usefulness for code evaluation. Ongoing LaRC research in this area is also presented.

Schuster, David M.; Scott, Robert C.; Bartels, Robert E.; Edwards, John W.; Bennett, Robert M.

2000-01-01

9

Unsteady Aerodynamics of Insect Flight

The myth `bumble-bees can not fly according to conventional aerodynamics' simply reflects our poor understanding of unsteady viscous fluid dynamics. In particular, we lack a theory of vorticity shedding due to dynamic boundaries at the intermediate Reynolds numbers relevant to insect flight, typically between 10^2 and 10^4, where both viscous and inertial effects are important. In our study, we compute

Z. Jane Wang

2000-01-01

10

Unsteady aerodynamics modeling for flight dynamics application

NASA Astrophysics Data System (ADS)

In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

2012-02-01

11

Unsteady Aerodynamics of Insect Flight

NASA Astrophysics Data System (ADS)

The myth `bumble-bees can not fly according to conventional aerodynamics' simply reflects our poor understanding of unsteady viscous fluid dynamics. In particular, we lack a theory of vorticity shedding due to dynamic boundaries at the intermediate Reynolds numbers relevant to insect flight, typically between 10^2 and 10^4, where both viscous and inertial effects are important. In our study, we compute unsteady viscous flows, governed by the Navier-Stokes equation, about a two dimensional flapping wing which mimics the motion of an insect wing. I will present two main results: the existence of a prefered frequency in forward flight and its physical origin, and 2) the vortex dynamics and forces in hovering dragonfly flight.

Wang, Z. Jane

2000-03-01

12

Rotor blade unsteady aerodynamic gust response to inlet guide vane wakes

A series of experiments is performed in an extensively instrumented axial flow research compressor to investigate the fundamental flow physics of wake-generated periodic rotor blade row unsteady aerodynamics at realistic values of the reduced frequency. Unique unsteady data are obtained that describe the fundamental unsteady aerodynamic gust interaction phenomena on the first-stage rotor blades of a research axial flow compressor

S. R. Manwaring; S. Fleetner

1993-01-01

13

Unsteady aerodynamics and gust response in compressors and turbines

A comprehensive series of experiments and analyses was performed on compressor and turbine blading to evaluate the ability of current, practical, engineering\\/analysis models to predict unsteady aerodynamic loading of modern gas turbine blading. This is part of an ongoing effort to improve methods for preventing blading failure. The experiments were conducted in low-speed research facilities capable of simulating the relevant

S. R. Manwaring; D. C. Wisler

1993-01-01

14

Unsteady Aerodynamics - Subsonic Compressible Inviscid Case

NASA Technical Reports Server (NTRS)

This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.

Balakrishnan, A. V.

1999-01-01

15

Fourier functional analysis for unsteady aerodynamic modeling

NASA Technical Reports Server (NTRS)

A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

Lan, C. Edward; Chin, Suei

1991-01-01

16

Turbine blade unsteady aerodynamic loading and heat transfer

Stator indexing to minimize the unsteady aerodynamic loading of closely spaced airfoil rows in turbomachinery is a new technique for the passive control of flow-induced vibrations. This technique, along with the effects of steady blade loading, were studied by means of experiments performed in a two-stage low-speed research turbine. With the second vane row fixed, the inlet vane row was

David Alan Johnston

1998-01-01

17

Nonlinear, unsteady aerodynamic loads on rectangular and delta wings

NASA Technical Reports Server (NTRS)

Nonlinear unsteady aerodynamic loads on rectangular and delta wings in an incompressible flow are calculated by using an unsteady vortex-lattice model. Examples include flows past fixed wings in unsteady uniform streams and flows past wings undergoing unsteady motions. The unsteadiness may be due to gusty winds or pitching oscillations. The present technique establishes a reliable approach which can be utilized in the analysis of problems associated with the dynamics and aeroelasticity of wings within a wide range of angles of attack.

Atta, E. H.; Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

1977-01-01

18

NASA Technical Reports Server (NTRS)

Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.

Bartels, Robert E.

2011-01-01

19

Unsteady incompressible aerodynamics and forced response of detuned blade rows

NASA Technical Reports Server (NTRS)

A mathematical model is developed and utilized to demonstrate the enhanced forced response behavior associated with aerodynamic, structural, and combined aerodynamic-structural detuning of a loaded rotor operating in an incompressible flow field. The unsteady aerodynamic gust response and oscillating cascade aerodynamics are determined by developing both a complete first-order unsteady aerodynamic analysis and a locally analytical solution in individual grid elements of a body fitted computational grid. The aerodynamic detuning is accomplished by means of alternate circumferential airfoil spacing, with alternate blade structural detuning also considered. The beneficial forced response effects of these detuning techniques are then demonstrated by applying this model to various detuned rotor configurations.

Chiang, Hsiao-Wei D.; Fleeter, Sanford

1990-01-01

20

Unsteady aerodynamic modeling and active aeroelastic control

NASA Technical Reports Server (NTRS)

Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

Edwards, J. W.

1977-01-01

21

A linear aerodynamic analysis for unsteady transonic cascades

NASA Technical Reports Server (NTRS)

A potential flow analysis to predict unsteady airloads produced by the vibrations of turbomachinery blades operating at transonic Mach numbers is presented. The unsteady aerodynamic model includes the effects of blade geometry, finite mean pressure variation across the blade row, high frequency blade motion, and shock motion within the framework of a linearized, frequency domain formulation. The unsteady equations are solved implicit, least squares, finite difference approximation which is applicable on arbitrary grids. A numerical solution for the entire unsteady field is determined by matching a solution determined on a rectilinear type cascade mesh, which covers an extended blade passage region, to a solution determined on a detailed polar type local mesh, which covers and extends well beyond the supersonic region(s) adjacent to a blade surface. Cascades of double circular arc and flat plate blades demonstrate the unsteady analysis, and partially illustrate the effects of blade geometry, inlet Mach number, blade vibration frequency and shock motion on unsteady response.

Verdon, J. M.; Caspar, J. R.

1984-01-01

22

Algorithmic Enhancements for Unsteady Aerodynamics and Combustion Applications

NASA Technical Reports Server (NTRS)

Research in the FY01 focused on the analysis and development of enhanced algorithms for unsteady aerodynamics and chemically reacting flowfields. The research was performed in support of NASA Ames' efforts to improve the capabilities of the in-house computational fluid dynamics code, OVERFLOW. Specifically, the research was focused on the four areas: (1) investigation of stagnation region effects; (2) unsteady preconditioning dual-time procedures; (3) dissipation formulation for combustion; and (4) time-stepping methods for combustion.

Venkateswaran, Sankaran; Olsen, Michael (Technical Monitor)

2001-01-01

23

Role of computational fluid dynamics in unsteady aerodynamics for aeroelasticity

NASA Technical Reports Server (NTRS)

In the last two decades there have been extensive developments in computational unsteady transonic aerodynamics. Such developments are essential since the transonic regime plays an important role in the design of modern aircraft. Therefore, there has been a large effort to develop computational tools with which to accurately perform flutter analysis at transonic speeds. In the area of Computational Fluid Dynamics (CFD), unsteady transonic aerodynamics are characterized by the feature of modeling the motion of shock waves over aerodynamic bodies, such as wings. This modeling requires the solution of nonlinear partial differential equations. Most advanced codes such as XTRAN3S use the transonic small perturbation equation. Currently, XTRAN3S is being used for generic research in unsteady aerodynamics and aeroelasticity of almost full aircraft configurations. Use of Euler/Navier Stokes equations for simple typical sections has just begun. A brief history of the development of CFD for aeroelastic applications is summarized. The development of unsteady transonic aerodynamics and aeroelasticity are also summarized.

Guruswamy, Guru P.; Goorjian, Peter M.

1989-01-01

24

Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

NASA Technical Reports Server (NTRS)

A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 percent in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady aerodynamic model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -0.14 percent.

Pak, Chan-gi

2011-01-01

25

Unsteady aerodynamic models for agile flight at low Reynolds numbers

NASA Astrophysics Data System (ADS)

This work develops low-order models for the unsteady aerodynamic forces on a wing in response to agile maneuvers at low Reynolds number. Model performance is assessed on the basis of accuracy across a range of parameters and frequencies as well as of computational efficiency and compatibility with existing control techniques and flight dynamic models. The result is a flexible modeling procedure that yields accurate, low-dimensional, state-space models. The modeling procedures are developed and tested on direct numerical simulations of a two-dimensional flat plate airfoil in motion at low Reynolds number, Re=100, and in a wind tunnel experiment at the Illinois Institute of Technology involving a NACA 0006 airfoil pitching and plunging at Reynolds number Re=65,000. In both instances, low-order models are obtained that accurately capture the unsteady aerodynamic forces at all frequencies. These cases demonstrate the utility of the modeling procedure developed in this thesis for obtaining accurate models for different geometries and Reynolds numbers. Linear reduced-order models are constructed from either the indicial response (step response) or realistic input/output maneuvers using a flexible modeling procedure. The method is based on identifying stability derivatives and modeling the remaining dynamics with the eigensystem realization algorithm. A hierarchy of models is developed, based on linearizing the flow at various operating conditions. These models are shown to be accurate and efficient for plunging, pitching about various points, and combined pitch and plunge maneuvers, at various angle of attack and Reynolds number. Models are compared against the classical unsteady aerodynamic models of Wagner and Theodorsen over a large range of Strouhal number and reduced frequency for a baseline comparison. Additionally, state-space representations are developed for Wagner's and Theodorsen's models, making them compatible with modern control-system analysis. A number of computational tools are developed throughout this work. Highly unsteady maneuvers are visualized using finite-time Lyapunov exponent fields, which highlight separated flows and wake structures. A new fast method of computing these fields is presented. In addition, we generalize the immersed boundary projection method computations to use a moving base flow, which allows for the simulation of complex geometries undergoing large motions with up to an order of magnitude speed-up. The methods developed in this thesis provide a systematic approach to identify unsteady aerodynamic models from analytical, numerical, or experimental data. The resulting models are shown to be reduced-order models of the linearized Navier-Stokes equations that are expressed in state-space form, and they are, therefore, both efficient and accurate. The specific form of the model, which separates added-mass forces, quasi-steady lift, and transient forces, guarantees that the resulting models are accurate over the entire range of frequencies. Finally, the models are low-dimensional linear systems of ordinary differential equations, so that they are compatible with existing flight dynamic models as well as a wealth of modern control techniques.

Brunton, Steven L.

26

Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

NASA Technical Reports Server (NTRS)

A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 % in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -.14 %.

Pak, Chan-Gi

2011-01-01

27

Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code

NASA Technical Reports Server (NTRS)

The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.

Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.

2000-01-01

28

NASA Technical Reports Server (NTRS)

The body surface-panel method SOUSSA is applied to calculate steady and unsteady lift and pitching moment coefficients on a thin fighter-type wing model with and without a tip-mounted missile. Comparisons are presented with experimental results and with PANAIR and PANAIR-related calculations for Mach numbers from 0.6 to 0.9. In general the SOUSSA program, the experiments, and the PANAIR (and related) programs give lift and pitching-moment results which agree at least fairly well, except for the unsteady clean-wing experimental moment and the unsteady moment on the wing tip body calculated by a PANAIR-predecessor program at a Mach number of 0.8.

Cunningham, Herbert J.

1987-01-01

29

Numerical and experimental investigations on unsteady aerodynamics of flapping wings

NASA Astrophysics Data System (ADS)

The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils. As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle. In order to provide constructive suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carrie

Yu, Meilin

30

Linear/nonlinear behavior in unsteady transonic aerodynamics

NASA Technical Reports Server (NTRS)

The accurate calculation of the aerodynamic forces in unsteady transonic flow requires the solution of the nonlinear flow equations. The aeroelastician, on the other hand, seeks to treat his problems (flutter, for example) by means of linear equations whenever possible. He may do this, even when the underlying flow is nonlinear, if the perturbation forces are linear over some (perhaps small) range of unsteady amplitude of motion. This paper assesses the range of parameters over which linear behavior occurs. In particular calculations are made for an NACA 64A006 airfoil oscillating in pitch over a range of amplitudes, frequencies, and Mach numbers. The primary aerodynamic method used is the well known LTRAN2 code of Ballhaus and Goorjian that provides a finite-difference solution to the low frequency, small disturbance, two-dimensional potential flow equation. Comparisons are made with linear subsonic theory, local linearization, and, for steady flow, with the full potential equation code of Bauer, Garabedian, and Korn.

Dowell, E. H.; Williams, M. H.; Bland, S. R.

1981-01-01

31

Anodized aluminum pressure sensitive paint for unsteady aerodynamic applications

A comprehensive study of anodized aluminum pressure sensitive paint (AA-PSP) is documented. The study consisted of the development of AA-PSP and its application to unsteady aerodynamic fields at atmospheric conditions. Luminophore application mechanism and two-component application on anodized aluminum was studied for the development. Two-component application includes hydrophobic-coated AA-PSP and bi-luminophore system. It was found that the polarity of solvents

Hirotaka Sakaue

2003-01-01

32

Unsteady aerodynamics of an oscillating cascade in a compressible flow field

NASA Technical Reports Server (NTRS)

Fundamental experiments were performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate and quantify the unsteady aerodynamics of a cascade of biconvex airfoils executing torsion-mode oscillations at realistic reduced frequencies. Flush-mounted, high-response miniature pressure transducers were used to measure the unsteady airfoil surface pressures. The pressures were measured for three interblade phase angles at two inlet Mach numbers, 0.65 and 0.80, and two incidence angles, 0 and 7 deg. The time-variant pressures were analyzed by means of discrete Fourier transform techniques, and these unique data were then compared with predictions from a linearized unsteady cascade model. The experimental results indicate that the interblade phase angle had a major effect on the chordwise distributions of the airfoil surface unsteady pressure, and that reduced frequency, incidence angle, and Mach number had a somewhat less significant effect.

Buffum, Daniel H.; Boldman, Donald R.; Fleeter, Sanford

1987-01-01

33

Nonlinear programming extensions to rational function approximations of unsteady aerodynamics

NASA Technical Reports Server (NTRS)

This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.

Tiffany, Sherwood H.; Adams, William M., Jr.

1987-01-01

34

NASA Technical Reports Server (NTRS)

An analysis of the steady and unsteady aerodynamics of sharp-edged slender wings has been performed. The results show that slender wing theory can be modified to give the potential flow static and dynamic characteristics in incompressible flow. A semiempirical approximation is developed for the vortex-induced loads, and it is shown that the analytic approximation for sharp-edged slender wings gives good prediction of experimentally determined steady and unsteady aerodynamics at M = 0 and M = 1. The predictions are good not only for delta wings but also for so-called arrow and diamond wings. The results indicate that the effects of delta planform lifting surfaces can be included in a simple manner when determining elastic launch vehicle dynamic characteristics. For Part 1 see (N73-32763).

Ericsson, L. E.; Reding, J. P.

1973-01-01

35

System Identification and POD Method Applied to Unsteady Aerodynamics

NASA Technical Reports Server (NTRS)

The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes has proven to be a useful method for reducing the size of the aerodynamic model over those representations that use local variables at discrete grid points in the flow field. Eigenmodes and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with good effect. This suggests that system identification models may also be used to represent the aerodynamic flow field. Implicit in the use of a systems identification technique is the notion that a relative small state space model can be useful in describing a dynamical system. The POD model is first used to show that indeed a reduced order model can be obtained from a much larger numerical aerodynamical model (the vortex lattice method is used for illustrative purposes) and the results from the POD and the system identification methods are then compared. For the example considered, the two methods are shown to give comparable results in terms of accuracy and reduced model size. The advantages and limitations of each approach are briefly discussed. Both appear promising and complementary in their characteristics.

Tang, Deman; Kholodar, Denis; Juang, Jer-Nan; Dowell, Earl H.

2001-01-01

36

Computational, unsteady transonic aerodynamics and aeroelasticity about airfoils and wings

NASA Technical Reports Server (NTRS)

Research in the area of computational, unsteady transonic flows about airfoils and wings, including aeroelastic effects is reviewed. In the last decade, there have been extensive developments in computational methods in response to the need for computer codes with which to study fundamental aerodynamic and aeroelastic problems in the critical transonic regime. For example, large commercial aircraft cruise most effectively in the transonic flight regime and computational fluid dynamics (CDF) provides a new tool, which can be used in combination with test facilities to reduce the costs, time, and risks of aircraft development.

Goorjian, Peter M.; Guruswamy, Guru P.

1987-01-01

37

Prediction of Unsteady Aerodynamic Coefficients at High Angles of Attack

NASA Technical Reports Server (NTRS)

The nonlinear indicial response method is used to model the unsteady aerodynamic coefficients in the low speed longitudinal oscillatory wind tunnel test data of the 0.1 scale model of the F-16XL aircraft. Exponential functions are used to approximate the deficiency function in the indicial response. Using one set of oscillatory wind tunnel data and parameter identification method, the unknown parameters in the exponential functions are estimated. The genetic algorithm is used as a least square minimizing algorithm. The assumed model structures and parameter estimates are validated by comparing the predictions with other sets of available oscillatory wind tunnel test data.

Pamadi, Bandu N.; Murphy, Patrick C.; Klein, Vladislav; Brandon, Jay M.

2001-01-01

38

NASA Technical Reports Server (NTRS)

The program SUSSA ACTS, steady and unsteady subsonic and supersonic aerodynamics for aerospace complex transportation system, is presented. Fully unsteady aerodynamics is discussed first, followed by developments on normal wash, pressure distribution, generalized forces, supersonic formulation, numerical results, geometry preprocessor, the user manual, control surfaces, and first order formulation. The ILSWAR program was also discussed.

Morino, L.

1975-01-01

39

Some applications of the quasi vortex-lattice method in steady and unsteady aerodynamics

NASA Technical Reports Server (NTRS)

The quasi vortex-lattice method is reviewed and applied to the evaluation of backwash, with applications to ground effect analysis. It is also extended to unsteady aerodynamics, with particular interest in the calculation of unsteady leading-edge suction. Some applications in ornithopter aerodynamics are given.

Lan, C. E.

1976-01-01

40

NASA Technical Reports Server (NTRS)

An analysis of the steady and unsteady aerodynamics of the space shuttle orbiter has been performed. It is shown that slender wing theory can be modified to account for the effect of Mach number and leading edge roundness on both attached and separated flow loads. The orbiter unsteady aerodynamics can be computed by defining two equivalent slender wings, one for attached flow loads and another for the vortex-induced loads. It is found that the orbiter is in the transonic speed region subject to vortex-shock-boundary layer interactions that cause highly nonlinear or discontinuous load changes which can endanger the structural integrity of the orbiter wing and possibly cause snap roll problems. It is presently impossible to simulate these interactions in a wind tunnel test even in the static case. Thus, a well planned combined analytic and experimental approach is needed to solve the problem.

Ericsson, L. E.; Reding, J. P.

1976-01-01

41

An unsteady aerodynamic formulation for efficient rotor tonal noise prediction

NASA Astrophysics Data System (ADS)

An aerodynamic/aeroacoustic solution methodology for predction of tonal noise emitted by helicopter rotors and propellers is presented. It is particularly suited for configurations dominated by localized, high-frequency inflow velocity fields as those generated by blade-vortex interactions. The unsteady pressure distributions are determined by the sectional, frequency-domain Küssner-Schwarz formulation, with downwash including the wake inflow velocity predicted by a three-dimensional, unsteady, panel-method formulation suited for the analysis of rotors operating in complex aerodynamic environments. The radiated noise is predicted through solution of the Ffowcs Williams-Hawkings equation. The proposed approach yields a computationally efficient solution procedure that may be particularly useful in preliminary design/multidisciplinary optimization applications. It is validated through comparisons with solutions that apply the airloads directly evaluated by the time-marching, panel-method formulation. The results are provided in terms of blade loads, noise signatures and sound pressure level contours. An estimation of the computational efficiency of the proposed solution process is also presented.

Gennaretti, M.; Testa, C.; Bernardini, G.

2013-12-01

42

Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems

NASA Technical Reports Server (NTRS)

A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.

Silva, Walter A.

2008-01-01

43

Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems

NASA Technical Reports Server (NTRS)

A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.

Silva, Walter A.

2007-01-01

44

Unstructured-grid methods development for unsteady aerodynamic and aeroelastic analyses

NASA Technical Reports Server (NTRS)

The current status of unstructured grid methods development in the Unsteady Aerodynamics Branch at NASA-Langley is described. These methods are being developed for unsteady aerodynamic and aeroelastic analyses. The flow solvers are highlighted which were developed for the solution of the unsteady Euler equations and selected results are given which show various features of the capability. The results demonstrate 2-D and 3-D applications for both steady and unsteady flows. Comparisons are also made with solutions obtained using a structured grid code and with experimental data to determine the accuracy of the unstructured grid methodology. These comparisons show good agreement which thus verifies the accuracy.

Batina, John T.; Lee, Elizabeth M.; Kleb, William L.; Rausch, Russ D.

1991-01-01

45

NASA Technical Reports Server (NTRS)

An analysis of the unsteady aerodynamics of bodies with concave nose geometries was performed. The results show that the experimentally observed pulsating flow on spiked bodies and in forward facing cavities can be described by the developed simple mathematical model of the phenomenon. Static experimental data is used as a basis for determination of the oscillatory frequency of spike-induced flow pulsations. The agreement between predicted and measured reduced frequencies is generally very good. The spiked-body mathematical model is extended to describe the pulsations observed in forward facing cavities and it is shown that not only the frequency but also the pressure time history can be described with the accuracy needed to predict the experimentally observed time average effects. This implies that it should be possible to determine analytically the impact of the flow pulsation on the structural integrity of the nozzles for the jettisoned empty SRM-shells.

Ericsson, L. E.; Reding, J. P.

1976-01-01

46

NASA Technical Reports Server (NTRS)

Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.

Haviland, J. K.; Yoo, Y. S.

1976-01-01

47

Forcing function effects on unsteady aerodynamic gust response: Part 1--Forcing functions

The fundamental gust modeling assumption is investigated by means of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady periodic flow field is generated by rotating rows of perforated plates and airfoil cascades. In this paper, the measured unsteady flow fields are compared to linear-theory vortical gust requirements, with the resulting unsteady gust response of a downstream stator cascade correlated with linear theory predictions in an accompanying paper. The perforated-plate forcing functions closely resemble linear-theory forcing functions, with the static pressure fluctuations small and the periodic velocity vectors parallel to the downstream mean-relative flow angle over the entire periodic cycle. In contrast, the airfoil forcing functions exhibit characteristics far from linear-theory vortical gusts, with the alignment of the velocity vectors and the static pressure fluctuation amplitudes dependent on the rotor-loading conditions, rotor solidity, and the inlet mean-relative flow angle. Thus, these unique data clearly show that airfoil wakes, both compressor and turbine, are not able to be modeled with the boundary conditions of current state-of-the-art linear unsteady aerodynamic theory.

Henderson, G.H.; Fleeter, S. (Purdue Univ., West Lafayette, IN (United States). School of Mechanical Engineering)

1993-10-01

48

Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code

NASA Technical Reports Server (NTRS)

Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.

Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.

2009-01-01

49

Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data

NASA Technical Reports Server (NTRS)

Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.

Murphy, Patrick; Klein, Vladislav

2011-01-01

50

Unsteady Aerodynamic Effects on the Flight Characteristics of an F-16XL Configuration

NASA Technical Reports Server (NTRS)

Unsteady aerodynamic models based on windtunnel forced oscillation test data and analyzed with a fuzzy logic algorithm arc incorporated into an F-16XL flight simulation code. The reduced frequency needed in the unsteady models is numerically calculated by using a limited prior time history of state variables in a least-square sense. Numerical examples arc presented to show the accuracy of the calculated reduced frequency. Oscillatory control inputs are employed to demonstrate the differences in the flight characteristics based on unsteady and quasi-steady aerodynamic models. Application of the unsteady aerodynamic models is also presented and the results are compared with one set of F16XIL longitudinal maneuver flight data. It is shown that the main differences in dynamic response are in the lateral-directional characteristics, with the quasi-steady model being more stable than the flight vehicle, while the unsteady model being more unstable. Similar conclusions can also be made in a simulated rapid sideslipping roll. To improve unsteady aerodynamic modeling, it is recommended to acquire test data with coupled motions in pitch, roll and yaw.

Wang, Zhongjun; Lan, C. Edward; Brandon, Jay M.

2000-01-01

51

NASA Technical Reports Server (NTRS)

A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.

Silva, Walter A.

1993-01-01

52

Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications

NASA Technical Reports Server (NTRS)

Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.

Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.

1995-01-01

53

Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.

A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. PMID:25583859

Xu, B F; Wang, T G; Yuan, Y; Cao, J F

2015-02-28

54

Unsteady aerodynamic analysis of space shuttle vehicles. Part 1: Summary report

NASA Technical Reports Server (NTRS)

An analysis of the unsteady aerodynamics of space shuttle vehicles was performed. The results show that slender wing theory can be modified to give the potential flow static and dynamic characteristics over a large Mach number range from M = 0 to M 1. A semi-empirical analytic approximation is derived for the loads induced by the leading edge vortex; and it is shown that the developed analytic technique gives good prediction of experimentally determined steady and unsteady delta wing aerodynamics, including the effects of leading edge roundness. At supersonic speeds, attached leading edge flow is established and shock-induced flow separation effects become of concern. Analysis of experimental results for a variety of boost configurations led to a definition of the main features of the flow interference effects between orbiter (delta wing) and booster. The effects of control deflection on the unsteady aerodynamics of the delta-wing orbiter were also evaluated.

Ericsson, L. E.; Reding, J. P.

1973-01-01

55

NASA Technical Reports Server (NTRS)

Unsteady aerodynamic methods adopted for the study of aeroelasticity in helicopters are considered with focus on the development of a semiempirical model of unsteady aerodynamic forces acting on an oscillating profile at high incidence. The successive smoothing algorithm described leads to the model's coefficients in a very satisfactory manner.

Petot, D.; Loiseau, H.

1982-01-01

56

Unsteady Aerodynamic and Dynamic Analysis of the Meridian UAS in a Rolling-Yawing Motion

NASA Astrophysics Data System (ADS)

The nonlinear and unsteady aerodynamic effects of operating the Meridian unmanned aerial system (UAS) in crosswinds and at high angular rates is investigated in this work. The Meridian UAS is a large autonomous aircraft, with a V-tail configuration, operated in Polar Regions for the purpose of remotely measuring ice sheet thickness. The inherent nonlinear coupling produced by the V-tail, along with the strong atmospheric disturbances, has made classical model identification methods inadequate for proper model development. As such, a powerful tool known as Fuzzy Logic Modeling (FLM) was implemented to generate time-dependent, nonlinear, and unsteady aerodynamic models using flight test data collected in Greenland in 2011. Prior to performing FLM, compatibility analysis is performed on the data, for the purpose of systematic bias removal and airflow angle estimation. As one of the advantages of FLM is the ability to model unsteady aerodynamics, the reduced frequency for both longitudinal and lateral-directional motions is determined from the unbiased data, using Theodorsen's theory of unsteadiness, which serves as an input parameter in modeling. These models have been used in this work to identify pilot induced oscillations, unsteady coupling motions, unsteady motion due to the slipstream and cross wind interaction, and destabilizing motions and orientations. This work also assesses the accuracy of preliminary aircraft dynamic models developed using engineering level software, and addresses the autopilot Extended Kalman Filter state estimations.

Lykins, Ryan

57

NASA Technical Reports Server (NTRS)

A basic problem in flight dynamics is the mathematical formulation of the aerodynamic model for aircraft. This study is part of an ongoing effort at NASA Langley to develop a more general formulation of the aerodynamic model for aircraft that includes nonlinear unsteady aerodynamics and to develop appropriate test techniques that facilitate identification of these models. A methodology for modeling and testing using wide-band inputs to estimate the unsteady form of the aircraft aerodynamic model was developed previously but advanced test facilities were not available at that time to allow complete validation of the methodology. The new model formulation retained the conventional static and rotary dynamic terms but replaced conventional acceleration terms with more general indicial functions. In this study advanced testing techniques were utilized to validate the new methodology for modeling. Results of static, conventional forced oscillation, wide-band forced oscillation, oscillatory coning, and ramp tests are presented.

Murphy, Patrick C.; Klein, Vladislav

2003-01-01

58

Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor

NASA Astrophysics Data System (ADS)

Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA forcing functions remains significant. The intra-vane transport of NACA 65 and CDA rotor wakes is also observed within the time-variant passage velocity data. In general, the wake width and decay rate increase with rotor speed and compressor steady loading respectively.

Papalia, John J.

59

Estimation of Aircraft Unsteady Aerodynamic Parameters from Dynamic Wind Tunnel Testing

NASA Technical Reports Server (NTRS)

Improved aerodynamic mathematical models, for use in aircraft simulation or flight control design, are required when representing nonlinear unsteady aerodynamics. A key limitation of conventional aerodynamic models is the inability to map frequency and amplitude dependent data into the equations of motion directly. In an effort to obtain a more general formulation of the aerodynamic model, researchers have been led to a parallel requirement for more general testing methods. Testing for a more comprehensive model can lead to a very time consuming number of tests especially if traditional single frequency harmonic testing is attempted. This paper presents an alternative to traditional single frequency forced-oscillation testing by utilizing Schroeder sweeps to efficiently obtain the frequency response of the unsteady aerodynamic model. Schroeder inputs provide signals with a flat power spectrum over a specified frequency band. For comparison, experimental results using the traditional single-frequency inputs are also considered. A method for data analysis to determine an adequate unsteady aerodynamic model is presented. Discussion of associated issues that arise during this type of analysis and comparison of results using traditional single frequency analysis are provided.

Murphy, Patrick C.; Klein, Vladislav

2001-01-01

60

Survey of Unsteady Computational Aerodynamics for Horizontal Axis Wind Turbines

NASA Astrophysics Data System (ADS)

We present a short review of aerodynamic computational models for horizontal axis wind turbines (HAWT). Models presented have a various level of complexity to calculate aerodynamic loads on rotor of HAWT, starting with the simplest blade element momentum (BEM) and ending with the complex model of Navier-Stokes equations. Also, we present some computational aspects of these models.

Frunzulic?, F.; Dumitrescu, H.; Cardo?, V.

2010-09-01

61

NASA Technical Reports Server (NTRS)

The theoretical basis of flexible-aircraft modeling techniques encompassing aerodynamic, control, and elastic-structure effects is investigated analytically, with a focus on methods which employ minimum-state approximations for the unsteady aerodynamics. Rational-function approximations to generalized aerodynamic forces are reviewed; constraints and lag-coefficient optimization are explained; the problem of physical weighting in the minimum-state equations of motion is examined; and results of typical analyses from the NASA Active Flexible Wing project (Perry et al., 1988) are presented in extensive tables and graphs and discussed in detail. The minimum-state approach is shown to produce accurate models at significantly reduced computation costs.

Tiffany, Sherwood H.; Karpel, Mordechay

1989-01-01

62

APPLICATION OF A STATE-SPACE WAKE MODEL TO TILTROTOR WING UNSTEADY AERODYNAMICS

The Peters\\/He Finite State Wake Model is described in its application to fixed wing aerolasticity. Expressions for coupling this model with a wing, aerodynamically represented by a flat plate with a trailing edge flap, are developed, and fidelity issues are discussed. An application is presented where the wing\\/wake system is coupled to a proprotor model. The effects of unsteady wing

Martin Stettner; Daniel P. Schrage; David A. Peters

1994-01-01

63

Transonic unsteady aerodynamics in the vicinity of shock-buffet instability

NASA Astrophysics Data System (ADS)

A study of transonic unsteady aerodynamic responses in the vicinity of shock-buffet is presented. Navier-Stokes simulations of a NACA 0012 airfoil with a fitted 20% trailing edge flap are performed to compute the aerodynamic responses to prescribed pitch and flap motions, about mean flow conditions at shock-buffet onset, and while exhibiting shock buffet. The unsteady aerodynamic response is found to be fundamentally different from the response predicted by the linear aerodynamic theory. At mean angles of attack close to buffet onset noticeable damped resonance responses are observed at frequencies close to the buffet frequency. The responses grow as the mean angle of attack is increased towards buffet onset. Also, a phase lead is observed for the aerodynamic coefficients, for some range of frequencies. The large aerodynamic responses and phase lead appear in frequencies that are typical of structural elastic frequencies, suggesting that they may be responsible for transonic aeroelastic instabilities. At shock buffet conditions, prescribing sufficiently large pitch or flap harmonic motions results in synchronization of the buffet frequency with the excitation frequencies. At these conditions, the lift and pitching moment responses to prescribed pitch motion also result in resonance and phase lead, as in the pre-buffet case. Large prescribed flap motions eliminate the lift resonance response, and significantly reduce the lift coefficient amplitudes, indicating that the aerodynamic coefficients at these conditions can be controlled by prescribed structural motions.

Iovnovich, M.; Raveh, D. E.

2012-02-01

64

Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight. PMID:24278243

Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Kopp, Gregory A; Gurka, Roi

2013-01-01

65

NASA Technical Reports Server (NTRS)

A major challenge in the design and development of turbomachine airfoils for gas turbine engines is high cycle fatigue failures due to flutter and aerodynamically induced forced vibrations. In order to predict the aeroelastic response of gas turbine airfoils early in the design phase, accurate unsteady aerodynamic models are required. However, accurate predictions of flutter and forced vibration stress at all operating conditions have remained elusive. The overall objectives of this research program are to develop a transition model suitable for unsteady separated flow and quantify the effects of transition on airfoil steady and unsteady aerodynamics for attached and separated flow using this model. Furthermore, the capability of current state-of-the-art unsteady aerodynamic models to predict the oscillating airfoil response of compressor airfoils over a range of realistic reduced frequencies, Mach numbers, and loading levels will be evaluated through correlation with benchmark data. This comprehensive evaluation will assess the assumptions used in unsteady aerodynamic models. The results of this evaluation can be used to direct improvement of current models and the development of future models. The transition modeling effort will also make strides in improving predictions of steady flow performance of fan and compressor blades at off-design conditions. This report summarizes the progress and results obtained in the first year of this program. These include: installation and verification of the operation of the parallel version of TURBO; the grid generation and initiation of steady flow simulations of the NASA/Pratt&Whitney airfoil at a Mach number of 0.5 and chordal incidence angles of 0 and 10 deg.; and the investigation of the prediction of laminar separation bubbles on a NACA 0012 airfoil.

Capece, Vincent R.; Platzer, Max F.

2003-01-01

66

Nonreflecting boundary conditions for linearized unsteady aerodynamic calculations

NASA Technical Reports Server (NTRS)

The present method for the implementation of nonreflecting boundary conditions in 2D and 3D linearized unsteady flow computations is applied to cases of unsteady flows in turbomachine blade rows. The eigenmodes of a discrete representation of the governing equations are computed and used to construct nonreflecting boundary conditions. In 3D, a mixed numerical method is used; in 2D, the discrete representation of the governing equations is obtained from the discretized equations used by the flow solver itself. Wavenumbers and radial mode shapes are computed.

Hall, Kenneth C.; Lorence, Christopher B.; Clark, William S.

1993-01-01

67

NASA Technical Reports Server (NTRS)

Transonic steady and unsteady aerodynamic data were measured on a large elastic wing in the NASA Langley Transonic Dynamics Tunnel. The wing had a supercritical airfoil shape and a leading-edge sweepback of 28.8 deg. The wing was heavily instrumented to measure both static and dynamic pressures and deflections. A hydraulically driven outboard control surface was oscillated to generate unsteady airloads on the wing. Representative results from the wind tunnel tests are presented and discussed, and the unexpected occurrence of an unusual dynamic wing instability, which was sensitive to angle of attack, is reported.

Seidel, D. A.; Sandford, M. C.; Eckstrom, C. V.

1985-01-01

68

NASA Technical Reports Server (NTRS)

A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.

Tseng, K.; Morino, L.

1975-01-01

69

Identification of unsteady aerodynamics and aeroelastic integro-differential systems

NASA Technical Reports Server (NTRS)

The problem of estimating integro-differential models based on test or simulation data is dealt with. The identification techniques proposed for estimating parameters in models described by differential equations need to be considerably extended to deal with the integral terms. Conditions under which the integral terms may be approximated by algebraic values are discussed. The integro-differential models discussed are related to indicial models proposed by aerodynamicists to describe unsteady flow.

Gupta, N. K.; Iliff, K. W.

1985-01-01

70

Aerodynamic interactions of two airfoils in unsteady motion

Summary Aerodynamic interactions of two airfoils in tandem configuration moving parallelly forward and down at large angle of attack after an initial acceleration from rest are studied, using the method of solving the Navier-Stokes equations in moving overset grids. In the early time of the motion, force coefficients on the fore- and hind-airfoils are almost the same and are both

S. L. Lan; M. Sun

2001-01-01

71

NASA Technical Reports Server (NTRS)

Progress in the development of computational methods for steady and unsteady aerodynamics has perennially paced advancements in aeroelastic analysis and design capabilities. Since these capabilities are of growing importance in the analysis and design of high-performance aircraft, considerable effort has been directed toward the development of appropriate aerodynamic methodology. The contributions to those efforts from the integral-equations research program at the NASA Langley Research Center is reviewed. Specifically, the current scope, progress, and plans for research and development for inviscid and viscous flows are discussed, and example applications are shown in order to highlight the generality, versatility, and attractive features of this methodology.

Yates, E. Carson, Jr.

1990-01-01

72

Development of Unsteady Aerodynamic State-Space Models from CFD-Based Pulse Responses

NASA Technical Reports Server (NTRS)

A method for computing discrete-time state-space models of linearized unsteady aerodynamic behavior directly from aeroelastic CFD codes is presented. The method involves the treatment of CFD-based pulse responses as Markov parameters for use in a system identification /realization algorithm. Results are presented for the AGARD 445.6 Aeroelastic Wing with four aeroelastic modes at a Mach number of 0.96 using the EZNSS Euler/Navier-Stokes flow solver with aeroelastic capability. The System/Observer/Controller Identification Toolbox (SOCIT) algorithm, based on the Ho-Kalman realization algorithm, is used to generate 15th- and 32nd-order discrete-time state-space models of the unsteady aerodynamic response of the wing over the entire frequency range of interest.

Silva, Walter A.; Raveh, Daniella E.

2001-01-01

73

Application of the ASP3D Computer Program to Unsteady Aerodynamic and Aeroelastic Analyses

NASA Technical Reports Server (NTRS)

A new computer program has been developed called ASP3D (Advanced Small Perturbation - 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The paper presents unsteady aerodynamic and aeroelastic applications of ASP3D to assess the time dependent capability and demonstrate various features of the code.

Batina, John T.

2006-01-01

74

NASA Technical Reports Server (NTRS)

The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.

Edwards, John W.; Malone, John B.

1992-01-01

75

Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center

NASA Technical Reports Server (NTRS)

The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral equations and finite difference methods for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite difference solution of the transonic small perturbation equation, the integral equation program is given primary emphasis here because it is less well known.

Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.

1987-01-01

76

Recent developments on a general boundary integral formulation for the aerodynamic and aeroacoustic analyses of lifting bodies\\u000a (e.g., wings and rotors) are reviewed. The emphasis is on recent numerical results, specifically on the effects of the unsteadiness,\\u000a of the viscosity, and of the transonic nonlinearities. The boundary-element full-potential formulation for bodies in arbitrary\\u000a motion is outlined along with the its

L. Morino; M. Gennaretti; U. Iemma; F. Salvatore

1998-01-01

77

Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center

NASA Technical Reports Server (NTRS)

The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral-equations and finite-difference method for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite-difference solution of the transonic small-perturbation equation, the integral-equation program is given primary emphasis here because it is less well known.

Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.

1987-01-01

78

Influence of transition on steady and unsteady wind-turbine airfoil aerodynamics

NASA Astrophysics Data System (ADS)

Laminar--flow airfoils for large stall--regulated horizontal--axis wind turbines are designed to achieve a restrained maximum lift coefficient and a broad laminar low- drag bucket under steady flow conditions and at specific Reynolds numbers. Blind- comparisons of the 2000 NREL Unsteady Aerodynamics Experiment showed large discrepancies and illustrated the need for improved physics modeling. We have studied the S809 airfoil under static and dynamic (ramp-up, ramp-down, and oscillatory) conditions, using the four-equation transition model of Langtry and Menter (2009), which has been implemented as a library accessible by an OpenFOAM RANS solver. Model validation is performed using surface--pressure and lift/drag data from U. Glasgow (2009) and OSU (1995) wind tunnel experiments. Performance of the transition model is assessed by analyzing integrated performance metrics, as well as detailed surface pressure and pressure gradient, wall--shear stress, and boundary--layer profiles and separation points. Demonstration of model performance in the light-- and deep--stall regimes of dynamic stall is an important step in reducing uncertainties in full 3D simulations of turbines operating in the atmospheric boundary layer.

Paterson, Eric; Lavely, Adam; Vijayakumar, Ganesh; Brasseur, James

2011-11-01

79

Wing flutter boundary prediction using unsteady Euler aerodynamic method

NASA Technical Reports Server (NTRS)

Modifications to an existing 3D implicit upwind Euler/Navier-Stokes code for the aeroelastic analysis of wings are described. These modifications include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the governing flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 deg swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.

Lee-Rausch, Elizabeth M.; Batina, John T.

1993-01-01

80

NASA Technical Reports Server (NTRS)

This paper presents recent results in the unsteady aerodynamics and computational aeroelasticity research programs at the NASA Langley Research Center. These programs include development of two types of computational methods: methods that use structured computational meshes and those that use unstructured meshes. Results show that an aeroelastic analysis method that uses unsteady transonic small disturbance (TSD) potential aerodynamics and structured, Cartesian meshes is capable of accurate analysis of complex aircraft configurations. The paper describes recent enhancements to the TSD method that allow analysis of vehicles with swept, flexible vertical surfaces and flexible fuselages and presents selected results that verify the accuracy of the new capabilities. Modifications to a structured-mesh Euler/Navier-Stokes method to allow aeroelastic analysis are described, and a wing flutter analysis using the resulting method is presented. Advantages of using unstructured meshes for the analysis of complex configurations are discussed. The paper presents development of unstructured-mesh Euler/Navier-Stokes methods for unsteady aerodynamics and aeroelastic analysis. Spatial and temporal adaption methods on unstructured meshes are described, and selected results are presented.

Whitlow, Woodrow, Jr.

1993-01-01

81

Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks

NASA Technical Reports Server (NTRS)

A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.

1999-01-01

82

Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance

NASA Technical Reports Server (NTRS)

A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.

1998-01-01

83

Unsteady Aerodynamic Modeling in Roll for the NASA Generic Transport Model

NASA Technical Reports Server (NTRS)

Reducing the impact of loss-of-control conditions on commercial transport aircraft is a primary goal of the NASA Aviation Safety Program. One aspect in developing the supporting technologies is to improve the aerodynamic models that represent these adverse conditions. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. In this paper, a more general mathematical model is proposed for the subscale NASA Generic Transport Model (GTM) that covers both low and high angles of attack. Particular attention is devoted to the stall region where full-scale transports have demonstrated a tendency for roll instability. The complete aerodynamic model was estimated from dynamic wind-tunnel data. Advanced computational methods are used to improve understanding and visualize the flow physics within the region where roll instability is a factor.

Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.

2012-01-01

84

Physically weighted approximations of unsteady aerodynamic forces using the minimum-state method

NASA Technical Reports Server (NTRS)

The Minimum-State Method for rational approximation of unsteady aerodynamic force coefficient matrices, modified to allow physical weighting of the tabulated aerodynamic data, is presented. The approximation formula and the associated time-domain, state-space, open-loop equations of motion are given, and the numerical procedure for calculating the approximation matrices, with weighted data and with various equality constraints are described. Two data weighting options are presented. The first weighting is for normalizing the aerodynamic data to maximum unit value of each aerodynamic coefficient. The second weighting is one in which each tabulated coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. This weighting yields a better fit of the more important terms, at the expense of less important ones. The resulting approximate yields a relatively low number of aerodynamic lag states in the subsequent state-space model. The formulation forms the basis of the MIST computer program which is written in FORTRAN for use on the MicroVAX computer and interfaces with NASA's Interaction of Structures, Aerodynamics and Controls (ISAC) computer program. The program structure, capabilities and interfaces are outlined in the appendices, and a numerical example which utilizes Rockwell's Active Flexible Wing (AFW) model is given and discussed.

Karpel, Mordechay; Hoadley, Sherwood Tiffany

1991-01-01

85

NASA Technical Reports Server (NTRS)

Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

Batina, John T.

1990-01-01

86

Quasi-linear neural networks: application to the prediction and control of unsteady aerodynamics

NASA Astrophysics Data System (ADS)

The present work describes a new technique for the modeling of unsteady aerodynamics using neural networks. Surface pressure readings obtained from an airfoil pitched at constant rate between 0 and 60 degrees were evaluated for 6 different pitch rates and 9 different span locations. Using 5 of 54 records as a training set both a nonlinear and a linear neural network were trained on the time-varying pressure gradients. Thus, post-training, given the pressure distribution at any time (t) the models should predict the pressure distribution at time (t+(Delta) t). In addition, following training a linear equation system was calculated from the weight matrices of the linear neural network. The performance of both the linear equation system and the nonlinear network were evaluated using both sum-squared error and waveform correlations of the predicted and measured data. The results indicated that both models accurately predicted the unsteady flow fields to within 5% of the experimental data. Sum- squared errors were less than 0.01 and correlations were highly significant r > 0.09, (p < 0.01), for all 15 predicted pressure traces in each data set. Further, both models accurately extrapolated to any of the 49 records not used during training. Again, sum-squared errors were less than 0.01 and correlations were highly significant r > 0.90, (p < 0.01), in all cases. Overall, the results clearly indicated that it was possible to predict a wide range of unsteady flow field conditions including novel pitch rates and novel span locations. Further, the results clearly showed that these techniques facilitated the mathematical quantification of these unsteady flow fields. A linear equation system was readily calculated from the linear neural network. The capability to predict this phenomenon across a wide range of flight envelopes in turn provides a critical step towards the development of control systems targeted at exploiting unsteady aerodynamics for aircraft maneuverability enhancement.

Faller, William E.; Schreck, Scott J.; Luttges, M. W.

1993-09-01

87

A New Compendium of Unsteady Aerodynamic Test Cases for CFD: Summary of AVT WG-003 Activities

NASA Technical Reports Server (NTRS)

With the continuous progress in hardware and numerical schemes, Computational Unsteady Aerodynamics (CUA), that is, the application of Computational Fluid Dynamics (CFD) to unsteady flowfields, is slowly finding its way as a useful and reliable tool (turbulence and transition modeling permitting) in the aircraft, helicopter, engine and missile design and development process. Before a specific code may be used with confidence it is essential to validate its capability to describe the physics of the flow correctly, or at least to the level of approximation required, for which purpose a comparison with accurate experimental data is needed. Unsteady wind tunnel testing is difficult and expensive; two factors which dramatically limit the number of organizations with the capability and/or resources to perform it. Thus, unsteady experimental data is scarce, often classified and scattered in diverse documents. Additionally, access to the reports does not necessarily assure access to the data itself. The collaborative effort described in this paper was conceived with the aim of collecting into a single easily accessible document as much quality data as possible. The idea is not new. In the early 80's NATO's AGARD (Advisory Group for Aerospace Research & Development) Structures and Material Panel (SMP) produced AGARD Report No. 702 "Compendium of Unsteady Aerodynamic Measurements", which has found and continues to find extensive use within the CUA Community. In 1995 AGARD's Fluid Dynamics Panel (FDP) decided to update and expand the former database with new geometries and physical phenomena, and launched Working Group WG-22 on "Validation Data for Computational Unsteady Aerodynamic Codes". Shortly afterwards AGARD was reorganized as the RTO (Research and Technology Organization) and the WG was renamed as AVT (Applied Vehicle Technolology) WG-003. Contributions were received from AEDC, BAe, DLR, DERA, Glasgow University, IAR, NAL, NASA, NLR, and ONERA. The final publication with the results of the exercise is expected in the second part of 1999. The aim of the present paper is to announce and present the new database to the Aeroelasticity community. It is also intended to identify, together with one of the groups of end users it targets, deficiencies in the compendium that should be addressed by means of new wind tunnel tests or by obtaining access to additionally existing data.

Ruiz-Calavera, Luis P.; Bennett, Robert; Fox, John H.; Galbraith, Robert W.; Geurts, Evert; Henshaw, Micahel J. deC.; Huang, XingZhong; Kaynes, Ian W.; Loeser, Thomas; Naudin, Pierre; Tamayama, Masato

1999-01-01

88

Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction

NASA Technical Reports Server (NTRS)

The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.

Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)

2001-01-01

89

NASA Technical Reports Server (NTRS)

A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

Pototzky, Anthony S.

2008-01-01

90

Development of an unsteady aerodynamic analysis for finite-deflection subsonic cascades

NASA Technical Reports Server (NTRS)

An unsteady potential flow analysis, which accounts for the effects of blade geometry and steady turning, was developed to predict aerodynamic forces and moments associated with free vibration or flutter phenomena in the fan, compressor, or turbine stages of modern jet engines. Based on the assumption of small amplitude blade motions, the unsteady flow is governed by linear equations with variable coefficients which depend on the underlying steady low. These equations were approximated using difference expressions determined from an implicit least squares development and applicable on arbitrary grids. The resulting linear system of algebraic equations is block tridiagonal, which permits an efficient, direct (i.e., noniterative) solution. The solution procedure was extended to treat blades with rounded or blunt edges at incidence relative to the inlet flow.

Verdon, J. M.; Caspar, J. R.

1981-01-01

91

Hugoniot experiments with unsteady waves

NASA Astrophysics Data System (ADS)

Recent development of transparent shock wave standard materials, such as quartz, enables continuous tracking of shock waves using optical velocimetry, providing information on shock wave steadiness and pressure perturbations in the target. From a first order perturbation analysis, we develop a set of analytical formulas that connect the pressure perturbations at the drive surface to the shock velocity perturbations observed in measurements. With targets that incorporate a calibrated transparent witness material, such as quartz, and with the analytical formulas describing the perturbation response, it is possible to determine the sound speed and Grüneisen coefficient of an unknown sample by using evolution of the non-steady perturbations as a probe. These formulas can also be used to improve the accuracy of traditional shock wave impedance match Hugoniot experiments of opaque samples driven with non-steady waves.

Fratanduono, D. E.; Munro, D. H.; Celliers, P. M.; Collins, G. W.

2014-07-01

92

Unsteady aerodynamics and flow controlfor flapping wing flyers

The creation of micro air vehicles (MAVs) of the same general sizes and weight as natural fliers has spawned renewed interest in flapping wing flight. With a wingspan of approximately 15 cm and a flight speed of a few meters per second, MAVs experience the same low Reynolds number (104-105) flight conditions as their biological counterparts. In this flow regime,

Steven Ho; Hany Nassef; Nick Pornsinsirirak; Yu-Chong Tai; Chih-Ming Ho

93

NASA Technical Reports Server (NTRS)

Various control analysis, design, and simulation techniques of aeroservoelastic systems require the equations of motion to be cast in a linear, time-invariant state-space form. In order to account for unsteady aerodynamics, rational function approximations must be obtained to represent them in the first order equations of the state-space formulation. A computer program, MIST, has been developed which determines minimum-state approximations of the coefficient matrices of the unsteady aerodynamic forces. The Minimum-State Method facilitates the design of lower-order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena such as the outboard-wing acceleration response to gust velocity. Engineers using this program will be able to calculate minimum-state rational approximations of the generalized unsteady aerodynamic forces. Using the Minimum-State formulation of the state-space equations, they will be able to obtain state-space models with good open-loop characteristics while reducing the number of aerodynamic equations by an order of magnitude more than traditional approaches. These low-order state-space mathematical models are good for design and simulation of aeroservoelastic systems. The computer program, MIST, accepts tabular values of the generalized aerodynamic forces over a set of reduced frequencies. It then determines approximations to these tabular data in the LaPlace domain using rational functions. MIST provides the capability to select the denominator coefficients in the rational approximations, to selectably constrain the approximations without increasing the problem size, and to determine and emphasize critical frequency ranges in determining the approximations. MIST has been written to allow two types data weighting options. The first weighting is a traditional normalization of the aerodynamic data to the maximum unit value of each aerodynamic coefficient. The second allows weighting the importance of different tabular values in determining the approximations based upon physical characteristics of the system. Specifically, the physical weighting capability is such that each tabulated aerodynamic coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. In both cases, the resulting approximations yield a relatively low number of aerodynamic lag states in the subsequent state-space model. MIST is written in ANSI FORTRAN 77 for DEC VAX series computers running VMS. It requires approximately 1Mb of RAM for execution. The standard distribution medium for this package is a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. MIST was developed in 1991. DEC VAX and VMS are trademarks of Digital Equipment Corporation. FORTRAN 77 is a registered trademark of Lahey Computer Systems, Inc.

Karpel, M.

1994-01-01

94

Characterization and Control of Unsteady Aerodynamics on Wind Turbine Aerofoils

NASA Astrophysics Data System (ADS)

An experimental capability developed for testing two-dimensional aerofoils while dynamically pitching is discussed. Key to the approach are a dynamic pitch system, the rapid prototyping of aerofoils, inexpensive time-resolved pressure measurements, the ability to capture flow-field structure, and the ability to add compliance to the system. In addition to describing the system components, examples of typical results for characterization and control studies are given. Use of the data is also demonstrated through comparison of the results from a simulation with those from an experiment under the same conditions. Future uses of this experimental capability are also discussed.

Naughton, J.; Strike, J.; Hind, M.; Babbitt, A.; Magstadt, A.; Nikoueeyan, P.; Davidson, P.; Shareman, J.

2014-06-01

95

NASA Technical Reports Server (NTRS)

The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

Tiffany, Sherwood H.; Adams, William M., Jr.

1988-01-01

96

NSDL National Science Digital Library

Access to the article is free, however registration and sign-in are required. Why are flies and birds much more maneuverable than airplanes? In his Perspective, Dudley explains current thinking about the biomechanics of insect flight. He highlights a report in this issue (Dickinson et al.) of a robotic fly that reproduces many of the flight characteristics of its living counterpart and reveals unexpected force generation at the ends of the up- and downstrokes.

Robert Dudley (University of Texas at Austin; Integrative Biology)

1999-06-18

97

unsteady aerodynamic and hydrodynamic forces and structural dynamics such as power take (Figure 1) and tidal turbine projects with a higher degree of accuracy than current models. The wind plant such as frontal passages through a wind plant and their effect on turbine power production and mechanical loading

98

UNAERO: A package of FORTRAN subroutines for approximating unsteady aerodynamics in the time domain

NASA Technical Reports Server (NTRS)

This report serves as an instruction and maintenance manual for a collection of CDC CYBER FORTRAN IV subroutines for approximating the unsteady aerodynamic forces in the time domain. The result is a set of constant-coefficient first-order differential equations that approximate the dynamics of the vehicle. Provisions are included for adjusting the number of modes used for calculating the approximations so that an accurate approximation is generated. The number of data points at different values of reduced frequency can also be varied to adjust the accuracy of the approximation over the reduced-frequency range. The denominator coefficients of the approximation may be calculated by means of a gradient method or a least-squares approximation technique. Both the approximation methods use weights on the residual error. A new set of system equations, at a different dynamic pressure, can be generated without the approximations being recalculated.

Dunn, H. J.

1985-01-01

99

NASA Technical Reports Server (NTRS)

The input data required to execute the computer program ISCON are described. The program generates a numerical procedure for the determination of unsteady aerodynamic forces on arbitrarily interacting wings and tails in supersonic flow. A velocity potential gradient method is used. Constant Mach number is assumed throughout the flow field. Lifting surfaces are represented by trapezoidal elements which can be generated automatically by the program. The wake field is represented by rectangular strip elements. The formulation is reviewed as well as input overview and input format. Instruction on how to use ISCON, a sample problem, and the restart feature are discussed. Program size limitations, computer program flow, and error messages are also included along with a description of the SS31 program used to compute the coefficients of surface spline.

Crill, W.; Dale, B.

1977-01-01

100

Feasibility investigation of general time-domain unsteady aerodynamics of rotors

NASA Technical Reports Server (NTRS)

The feasibility of a general theory for the time-domain unsteady aerodynamics of helicopter rotors is investigated. The wake theory gives a linearized relation between the downwash and the wing bound circulation, in terms of the impulse response obtained directly in the time domain. This approach makes it possible to treat general wake configurations, including discrete wake vorticity with rolled-up and distorted geometry. The investigation establishes the approach for model order reduction; determines when a constrained identification method is needed; verifies the formulation of the theory for rolled-up, distorted trim wake geometry; and verifies the formulation of the theory for wake geometry perturbations. The basic soundness of the approach is demonstrated by the results presented. A research program to complete the development of the method is outlined. The result of this activity will be an approach for analyzing the aeroelastic stability and response of helicopter rotors, while retaining the important influence of the complicated rotor wake configuration.

Johnson, Wayne

1990-01-01

101

Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm

NASA Technical Reports Server (NTRS)

An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.

Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama

2001-01-01

102

NASA Technical Reports Server (NTRS)

Large-amplitude unsteady motion effects on the aerodynamic force and stability characteristics of flat-plate wings were investigated in a wind tunnel for the cases of two delta wings with respective leading edge sweeps of 70 and 45 deg, and a rectangular wing whose aspect ratio was equal to that of the 70-deg delta wing. Attention was given to the effects of reduced frequency and mean angle of attack. It is found that lags in vortex burst location and separation/reattachment of flow on the upper surface of the wing produced large overshoots and hysteresis loops in normal force and pitching moment coefficients that were a strong function of mean oscillation angle and reduced frequency.

Brandon, Jay M.; Shah, Gautam H.

1988-01-01

103

Aerodynamics of a linear oscillating cascade

NASA Technical Reports Server (NTRS)

The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

Buffum, Daniel H.; Fleeter, Sanford

1990-01-01

104

In this paper, we investigate aerodynamic phenomena occurring around the actuator arm of a hard disk drive using direct numerical simulation (DNS) and an experiment using laser Doppler vibrometer. Through numerical simulation we found a three-dimensional periodic spiral vortex in wake region of the actuator arm and that the weight-saving hole of an arm excites the vortex in contrast to

Naozumi TSUDA; Hiroyuki KUBOTERA; Masayuki TATEWAKI; Shigeho NODA; Masanori HASHIGUCHI; Tsugito MARUYAMA

2002-01-01

105

NASA Technical Reports Server (NTRS)

A simple vortex system, used to model unsteady aerodynamic effects into the rigid body longitudinal equations of motion of an aircraft, is described. The equations are used in the development of a parameter extraction algorithm. Use of the two parameter-estimation modes, one including and the other omitting unsteady aerodynamic modeling, is discussed as a means of estimating some acceleration derivatives. Computer generated data and flight data, used to demonstrate the use of the parameter-extraction algorithm are studied.

Queijo, M. J.; Wells, W. R.; Keskar, D. A.

1979-01-01

106

Transonic Unsteady Aerodynamics of the F/A-18E at Conditions Promoting Abrupt Wing Stall

NASA Technical Reports Server (NTRS)

A transonic wind tunnel test of an 8% F/A-18E model was conducted in the NASA Langley Research Center (LaRC) 16-Foot Transonic Tunnel (16-Ft TT) to investigate the Abrupt Wing Stall (AWS) characteristics of this aircraft. During this test, both steady and unsteady measurements of balance loads, wing surface pressures, wing root bending moments, and outer wing accelerations were performed. The test was conducted with a wide range of model configurations and test conditions in an attempt to reproduce behavior indicative of the AWS phenomenon experienced on full-scale aircraft during flight tests. This paper focuses on the analysis of the unsteady data acquired during this test. Though the test apparatus was designed to be effectively rigid. model motions due to sting and balance flexibility were observed during the testing, particularly when the model was operating in the AWS flight regime. Correlation between observed aerodynamic frequencies and model structural frequencies are analyzed and presented. Significant shock motion and separated flow is observed as the aircraft pitches through the AWS region. A shock tracking strategy has been formulated to observe this phenomenon. Using this technique, the range of shock motion is readily determined as the aircraft encounters AWS conditions. Spectral analysis of the shock motion shows the frequencies at which the shock oscillates in the AWS region, and probability density function analysis of the shock location shows the propensity of the shock to take on a bi-stable and even tri-stable character in the AWS flight regime.

Schuster, David M.; Byrd, James E.

2003-01-01

107

Application of unstructured grid methods to steady and unsteady aerodynamic problems

NASA Technical Reports Server (NTRS)

The purpose is to describe the development of unstructured grid methods which have several advantages when compared to methods which make use of structured grids. Unstructured grids, for example, easily allow the treatment of complex geometries, allow for general mesh movement for realistic motions and structural deformations of complete aircraft configurations which is important for aeroelastic analysis, and enable adaptive mesh refinement to more accurately resolve the physics of the flow. Steady Euler calculations for a supersonic fighter configuration to demonstrate the complex geometry capability; unsteady Euler calculations for the supersonic fighter undergoing harmonic oscillations in a complete-vehicle bending mode to demonstrate the general mesh movement capability; and vortex-dominated conical-flow calculations for highly-swept delta wings to demonstrate the adaptive mesh refinement capability are discussed. The basic solution algorithm is a multi-stage Runge-Kutta time-stepping scheme with a finite-volume spatial discretization based on an unstructured grid of triangles in 2D or tetrahedra in 3D. The moving mesh capability is a general procedure which models each edge of each triangle (2D) or tetrahedra (3D) with a spring. The resulting static equilibrium equations which result from a summation of forces are then used to move the mesh to allow it to continuously conform to the instantaneous position or shape of the aircraft. The adaptive mesh refinement procedure enriches the unstructured mesh locally to more accurately resolve the vortical flow features. These capabilities are described in detail along with representative results which demonstrate several advantages of unstructured grid methods. The applicability of the unstructured grid methodology to steady and unsteady aerodynamic problems and directions for future work are discussed.

Batina, John T.

1989-01-01

108

NASA Technical Reports Server (NTRS)

Experimental data were obtained to help validate analytical and computational fluid dynamics (CFD) codes used to compute unsteady cascade aerodynamics in a supersonicaxial- flow regime. Results from two analytical codes and one CFD code were compared with experimental data. One analytical code did not account for airfoil thickness or camber; another, using piston theory (piston code), accounted for thickness and camber upstream of the first shockwave/airfoil impingement locations. The Euler CFD code accounted fully for airfoil shape.

Ramsey, John K.; Erwin, Dan

2005-01-01

109

Introduction of the ASP3D Computer Program for Unsteady Aerodynamic and Aeroelastic Analyses

NASA Technical Reports Server (NTRS)

A new computer program has been developed called ASP3D (Advanced Small Perturbation 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP3D code is the result of a decade of developmental work on improvements to the small perturbation formulation, performed while the author was employed as a Senior Research Scientist in the Configuration Aerodynamics Branch at the NASA Langley Research Center. The ASP3D code is a significant improvement to the state-of-the-art for transonic aeroelastic analyses over the CAP-TSD code (Computational Aeroelasticity Program Transonic Small Disturbance), which was developed principally by the author in the mid-1980s. The author is in a unique position as the developer of both computer programs to compare, contrast, and ultimately make conclusions regarding the underlying formulations and utility of each code. The paper describes the salient features of the ASP3D code including the rationale for improvements in comparison with CAP-TSD. Numerous results are presented to demonstrate the ASP3D capability. The general conclusion is that the new ASP3D capability is superior to the older CAP-TSD code because of the myriad improvements developed and incorporated.

Batina, John T.

2005-01-01

110

A review of unsteady turbulent boundary-layer experiments

NASA Technical Reports Server (NTRS)

The essential results of a comprehensive review of existing unsteady turbulent boundary-layer experiments are presented. Different types of unsteady flow facilities are described, and the related unsteady turbulent boundary-layer experiments are cataloged and discussed. The measurements that were obtained in the various experiments are described, and a complete list of experimental results is presented. All the experiments that measured instantaneous values of velocity, turbulence intensity, or turbulent shear stress are identified, and the availability of digital data is indicated. The results of the experiments are analyzed, and several significant trends are identified. An assessment of the available data is presented, delineating gaps in the existing data, and indicating where new or extended information is needed. Guidelines for future experiments are included.

Carr, L. W.

1981-01-01

111

NASA Technical Reports Server (NTRS)

This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.

Srivastava, R.; Reddy, T. S. R.

1996-01-01

112

NASA Technical Reports Server (NTRS)

The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.

Srivastava, R.; Reddy, T. S. R.

1997-01-01

113

NASA Technical Reports Server (NTRS)

Tests were conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge. The pressure data were reduced to Fourier coefficient form for direct comparison, and were also processed to yield integrated loads and, particularly, the aerodynamic damping coefficient. Results from the unsteady Verdon/Caspar theory for cascaded blades with nonzero thickness and camber were compared with the experimental measurements. The three primary results are: (1) from the leading edge plane blade data, the cascade was judged to be periodic in unsteady flow over the range of parameters tested; (2) the interblade phase angle was found to be the single most important parameter affecting the stability of the oscillating cascade blades; and (3) the real blade theory and the experiment were in excellent agreement for the several cases chosen for comparison.

Carta, F. O.

1982-01-01

114

Advanced Small Perturbation Potential Flow Theory for Unsteady Aerodynamic and Aeroelastic Analyses

NASA Technical Reports Server (NTRS)

An advanced small perturbation (ASP) potential flow theory has been developed to improve upon the classical transonic small perturbation (TSP) theories that have been used in various computer codes. These computer codes are typically used for unsteady aerodynamic and aeroelastic analyses in the nonlinear transonic flight regime. The codes exploit the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP theory was developed methodically by first determining the essential elements required to produce full-potential-like solutions with a small perturbation approach on the requisite Cartesian grid. This level of accuracy required a higher-order streamwise mass flux and a mass conserving surface boundary condition. The ASP theory was further developed by determining the essential elements required to produce results that agreed well with Euler solutions. This level of accuracy required mass conserving entropy and vorticity effects, and second-order terms in the trailing wake boundary condition. Finally, an integral boundary layer procedure, applicable to both attached and shock-induced separated flows, was incorporated for viscous effects. The resulting ASP potential flow theory, including entropy, vorticity, and viscous effects, is shown to be mathematically more appropriate and computationally more accurate than the classical TSP theories. The formulaic details of the ASP theory are described fully and the improvements are demonstrated through careful comparisons with accepted alternative results and experimental data. The new theory has been used as the basis for a new computer code called ASP3D (Advanced Small Perturbation - 3D), which also is briefly described with representative results.

Batina, John T.

2005-01-01

115

NASA Technical Reports Server (NTRS)

A digital computer program was developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge and trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges were extracted analytically as a preliminary step to solving the integral equation of collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accomodated.

Petrarca, J. R.; Harrison, B. A.; Redman, M. C.; Rowe, W. S.

1979-01-01

116

NASA Technical Reports Server (NTRS)

Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

Shyam, Vikram; Ameri, Ali

2009-01-01

117

NASA Technical Reports Server (NTRS)

Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of turbomachinery blading. Emphasis is being placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, flow driven by small-amplitude unsteady excitations in which viscous effects are concentrated in thin layers are being considered. The resulting analyses should apply in many practical situations, lead to a better understanding of the relevent physics, and they will be efficient computationally, and therefore, appropriate for aeroelastic and aeroacoustic design applications. Under the present phase (Task 3), the effort was focused on providing inviscid and viscid prediction capabilities for subsonic unsteady cascade flows.

Verdon, Joseph M.; Barnett, Mark; Hall, Kenneth C.; Ayer, Timothy C.

1991-01-01

118

Unsteady Aerodynamic Response of a Linear Cascade of Airfoils in Separated Flow

NASA Technical Reports Server (NTRS)

The overall objective of this research program was to investigate methods to modify the leading edge separation region, which could lead to an improvement in aeroelastic stability of advanced airfoil designs. The airfoil section used is representative of current low aspect ratio fan blade tip sections. The experimental potion of this study investigated separated zone boundary layer from removal through suction slots. Suction applied to a cavity in the vicinity of the separation onset point was found to be the most effective location. The computational study looked into the influence of front camber on flutter stability. To assess the influence of the change in airfoil shape on stability the work-per-cycle was evaluated for torsion mode oscillations. It was shown that the front camberline shape can be an important factor for stabilizing the predicted work-per-cycle and reducing the predicted extent of the separation zone. In addition, data analysis procedures are discussed for reducing data acquired in experiments that involve periodic unsteady data. This work was conducted in support of experiments being conducted in the NASA Glenn Research Center Transonic Flutter Cascade. The spectral block averaging method is presented. This method is shown to be able to account for variations in airfoil oscillation frequency that can occur in experiments that force oscillate the airfoils to simulate flutter.

Capece, Vincent R.; Ford, Christopher; Bone, Christopher; Li, Rui

2004-01-01

119

Aeroassist flight experiment aerodynamics and aerothermodynamics

NASA Technical Reports Server (NTRS)

The problem is to determine the transitional flow aerodynamics and aerothermodynamics, including the base flow characteristics, of the Aeroassist Flight Experiment (AFE). The justification for the computational fluid dynamic (CFD) Application stems from MSFC's system integration responsibility for the AFE. To insure that the AFE objectives are met, MSFC must understand the limitations and uncertainties of the design data. Perhaps the only method capable of handling the complex physics of the rarefied high energy AFE trajectory is Bird's Direct Simulation Monte Carlo (DSMC) technique. The 3-D code used in this analysis is applicable only to the AFE geometry. It uses the Variable Hard Sphere (VHS) collision model and five specie chemistry model available from Langley Research Center. The code is benchmarked against the AFE flight data and used as an Aeroassisted Space Transfer Vehicle (ASTV) design tool. The code is being used to understand the AFE flow field and verify or modify existing design data. Continued application to lower altitudes is testing the capability of the Numerical Aerodynamic Simulation Facility (NASF) to handle 3-D DSMC and its practicality as an ASTV/AFE design tool.

Brewer, Edwin B.

1989-01-01

120

Unsteady analysis and experimental verification of the aerodynamic vibration mechanism of HDD arms

The authors investigate the flow structure in 3.5-in hard disk drives with a rotation speed of 10033 rpm, especially the unsteady flow around actuator arms with and without a weight-saving hole, and clarify the unsteady flow in detail. In the method of approach utilized in this investigation, they used: 1) a direct numerical simulation of the Navier-Stokes equations to analyze

Naozumi Tsuda; Hiroyuki Kubotera; Masayuki Tatewaki; Shigeho Noda; Masanori Hashiguchi; Tsugito Maruyama

2003-01-01

121

Aerodynamic vibration mechanism of HDD arms predicted by unsteady numerical simulations

Summary form only given. Concurrent with the increases in recording density and the advent of higher rotational speeds, the aerodynamic aspects of hard disk drives (HDDs) have become quite important. For further improvements of head positioning accuracy, it is necessary to reveal the aerodynamic mechanisms related to vibrations of the HDD arm. However, there have been only a few reports

H. Kubotera; N. Tsuda; M. Tatewaki; T. Maruyama

2002-01-01

122

Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by

Yasunari Kamada; Takao Maeda; Keita Naito; Yuu Ouchi; Masayoshi Kozawa

2008-01-01

123

A flight experiment to measure rarefied-flow aerodynamics

NASA Technical Reports Server (NTRS)

A flight experiment to measure rarefied-flow aerodynamics of a blunt lifting body is being developed by NASA. This experiment, called the Rarefied-Flow Aerodynamic Measurement Experiment (RAME), is part of the Aeroassist Flight Experiment (AFE) mission, which is a Pathfinder design tool for aeroassisted orbital transfer vehicles. The RAME will use flight measurements from accelerometers, rate gyros, and pressure transducers, combined with knowledge of AFE in-flight mass properties and trajectory, to infer aerodynamic forces and moments in the rarefied-flow environment, including transition into the hypersonic continuum regime. Preflight estimates of the aerodynamic measurements are based upon environment models, existing computer simulations, and ground test results. Planned maneuvers at several altitudes will provide a first-time opportunity to examine gas-surface accommondation effects on aerodynamic coefficients in an environment of changing atmospheric composition. A description is given of the RAME equipment design.

Blanchard, Robert C.

1990-01-01

124

NASA Technical Reports Server (NTRS)

The High Frequency Radiometer (HFR) is the only instrument on the Aeroassist Flight Experiment (AFE) with sufficient temporal resolution to discern the frequency of unsteady wake oscillations. Determining both the frequency and amplitude of wake unsteadiness during AFE atmospheric entry is essential for reliably predicting the geometry and motion of the wake of future Aeroassisted Space Transfer Vehicles (ASTV). These parameters directly affect the location and size of the pay- load and the weight of the required afterbody heat protection. The purpose of the AFE is to validate the technologies required for the design of ASTVs, which will be used to exploit Earth-lunar space. This validation will be conducted at a combination of vehicle size, altitude, and velocity not obtainable in ground-based facilities. The AFE will provide the experimental flight data needed to improve our understanding of hypersonic-wake physics and to validate computational predictions of the aerodynamic and heating loads, including afterbody radiative heating loads, on an ASTV. Reliable prediction of ASTV wake flows will ensure that payloads are located within the shear-layer envelope and will determine the amount of thermal protection the payloads require. Specifically, understanding the temporal nature of the wake unsteadiness is important for two reasons. Most importantly, analysis of ground-based experiments suggests that wake unsteadiness results in a variation of as much as +/- 5 deg in the shear-flow turning angle. This angle must be reliably predicted to avoid shear-layer impingement on the vehicle afterbody, which would result in heating rates of about 10 W/sq cm, of the same order as on the forebody stagnation point. Secondly, the energy associated with wake unsteadiness will reduce the static enthalpy of the wake fluid and cause an error of as much as 30% in the amount of predicted wake radiative heating. Therefore, the HFR flight data, which will quantify the frequency and amplitude of the wake unsteadiness, are required for the verification of computational models of ASTV flowfields. Measurement of wake unsteadiness has been endorsed by the Peer Science Steering Group and the AFE Computational Fluid Dynamics (CFD) Working Group. The Peer Science Steering Group has stressed that a reliable measurement of the wake unsteadiness is fundamental because incorporating unsteadiness represents a substantial challenge to the CFD community, and a reliable measurement will raise confidence in the computer simulation. The AFE CFD Working Group has stated that 44 any data which would prove the existence and effects of unsteady flow would be extremely valuable.

Strawa, A. W.; Park, C.; Deiwert, G. S.; Feiereisen, W.; Arnold, J. O.; Davy, W. C.; Craig, R. A.; Venkatapathy, E.

1990-01-01

125

Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

NASA Astrophysics Data System (ADS)

This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

126

Application of two-dimensional unsteady aerodynamic to a free-tip rotor response analysis

NASA Technical Reports Server (NTRS)

The free-tip rotor utilizes a rotor blade tip which is structurally decoupled from the blade inboard section. The tip is free to pitch about its own pitch axis to respond to the local flow angularity changes. The tip also experiences the heaving motion due to the flapping of the rotor blade. For an airfoil in any pitching and heaving motion which can be expanded into a Fourier series, the lift and moment calculated by Theodoren's theory is simply the linear combination of the lift and moment calculated for each harmonic. These lift and moment are then used to determine the response of the free-tip rotor. A parametric study is performed to determine the effect of mechanical damping, mechanical spring, sweep, friction, and a constant control moment on the free-tip rotor response characteristics and the resulting azimuthal lift distributions. The results showed that the free-tip has the capability to suppress the oscillatory lift distribution around the azimuth and to eliminate a significant negative life peak on the advancing tip. This result agrees with the result of the previous analysis based on the steady aerodynamics.

Yates, L.; Kumagai, H.

1985-01-01

127

This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411

Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

2014-08-13

128

NASA Astrophysics Data System (ADS)

The purpose of this paper is to study the effect of neighboring blade rows on the unsteady aerodynamic response of oscillating cascade blades on the basis of a genuine three-dimensional model. To this end, mathematical formulations based on the lifting surface theory are developed for a pair of contra-rotating annular cascades of oscillating blades. The mechanism of frequency scattering of blade loadings and mode scattering of acoustic waves resulting from interaction between the blade rows in relative rotational motions is mathematically explained. Simultaneous integral equations for all frequency components of blade loadings are derived from the flow tangency condition on the blade surfaces of both blade rows. The validity of the computation codes is verified.

Namba, Masanobu; Nishino, Ryohei

129

NASA Technical Reports Server (NTRS)

At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.

Panda, J.; Martin, F. W.; Sutliff, D. L.

2008-01-01

130

Falling parallelograms exhibit coupled motion of autogyration and tumbling, similar to the motion of falling tulip seeds, unlike maple seeds which autogyrate but do not tumble, or rectangular cards which tumble but do not gyrate. This coupled tumbling and autogyrating motion are robust, when card parameters, such as aspect ratio, internal angle, and mass density, are varied. We measure the three-dimensional (3D) falling kinematics of the parallelograms and quantify their descending speed, azimuthal rotation, tumbling rotation, and cone angle in each falling. The cone angle is insensitive to the variation of the card parameters, and the card tumbling axis does not overlap with but is close to the diagonal axis. In addition to this connection to the dynamics of falling seeds, these trajectories provide an ideal set of data to analyze 3D aerodynamic force and torque at an intermediate range of Reynolds numbers, and the results will be useful for constructing 3D aerodynamic force and torque models. Tracking these free falling trajectories gives us a nonintrusive method for deducing instantaneous aerodynamic forces. We determine the 3D aerodynamic forces and torques based on Newton-Euler equations. The dynamical analysis reveals that, although the angle of attack changes dramatically during tumbling, the aerodynamic forces have a weak dependence on the angle of attack. The aerodynamic lift is dominated by the coupling of translational and rotational velocities. The aerodynamic torque has an unexpectedly large component perpendicular to the card. The analysis of the Euler equation suggests that this large torque is related to the deviation of the tumbling axis from the principle axis of the card. PMID:23767634

Varshney, Kapil; Chang, Song; Wang, Z Jane

2013-05-01

131

Unsteady aerodynamic behavior of an airfoil with and without a slat

NASA Technical Reports Server (NTRS)

Unsteady flow behavior and load characteristics of a 2D VR-7 airfoil with and without a leading-edge slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 deg at Re = 200,000 to obtain the unsteady lift, drag, and pitching moment data. A fluorescent dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flowfield and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.

Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.

1993-01-01

132

Program user's manual for an unsteady helicopter rotor-fuselage aerodynamic analysis

NASA Technical Reports Server (NTRS)

The Rotor-Fuselage Analysis is a method of calculating the aerodynamic reaction between a helicopter rotor and fuselage. This manual describes the structure and operation of the computer programs that make up the Rotor-Fuselage Analysis, programs which prepare the input and programs which display the output.

Lorber, Peter F.

1988-01-01

133

Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

NASA Astrophysics Data System (ADS)

Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation's energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

Miller, M. S.; Shipley, D. E.

1994-08-01

134

NSDL National Science Digital Library

Aerodynamics is the study of what makes things go fast, right? More specifically, itâ??s the study of the interaction between bodies and the atmosphere. If youâ??ve been watching Wimbeldon lately, you might have been wondering about the aerodynamics of tennis. Or maybe you were riding your bike the other day and wondering how you could pick up a little more speed next time. This topic in depth highlights some fun websites on the science of aerodynamics.The first site (1) provides some general information on aerodynamics. For those wanting a little more on the theory of aerodynamics, the University of Sydney has published this web textbook, Aerodynamics for Students (2). When people think of aerodynamics, they generally think of aviation and flight, which is explained on this site (3). Aerodynamics also has applications in sports, such as tennis, sailing and cycling. This website provides explanations for sports applications whether you are a beginner in the study of aerodynamics or an instructor (4). The next website reviews the aerodynamics of cycling and has a form that lets you Calculate the Aerodynamic Drag and Propulsive Power of a Bicyclist (5). The last site, AeroNet (6), is an interactive site designed to provide information about topics involved with aviation in a fun way for anyone casually interested in flight, someone thinking about aviation as a profession, or a student doing research for physics class.

135

NASA Technical Reports Server (NTRS)

This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

Reddy, T. S. R.

1995-01-01

136

NASA Technical Reports Server (NTRS)

The technique of implicit differentiation has been used in combination with linearized lifting-surface theory to derive analytical expressions for aerodynamic sensitivities (i.e., rates of change of lifting pressures with respect to general changes in aircraft geometry, including planform variations) for steady or oscillating planar or nonplanar lifting surfaces in subsonic, sonic, or supersonic flow. The geometric perturbation is defined in terms of a single variable, and the user need only provide simple expressions or similar means for defining the continuous or discontinuous global or local perturbation of interest. Example expressions are given for perturbations of the sweep, taper, and aspect ratio of a wing with trapezoidal semispan planform. In addition to direct computational use, the analytical method presented here should provide benchmark criteria for assessing the accuracy of aerodynamic sensitivities obtained by approximate methods such as finite geometry perturbation and differencing. The present process appears to be readily adaptable to more general surface-panel methods.

Yates, E. Carson, Jr.

1987-01-01

137

NASA Technical Reports Server (NTRS)

Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.

Morino, L.

1980-01-01

138

NASA Astrophysics Data System (ADS)

This paper describes the design, calibration and application of an instrument that measures the effects of unsteady air flow (airwake) on a helicopter in flight. The instrument is a 1/54th-scale model helicopter that is mounted on a six-component dynamic force balance to measure the forces and moments that an airwake imposes onto the helicopter; it is therefore an 'Airwake Dynamometer' to which we have given the name AirDyn. The AirDyn has been designed, in particular, to measure the effect of a ship airwake on a helicopter translating over the ship's landing deck. The AirDyn, which has been implemented in a water tunnel, in preference to a wind tunnel, senses the integrated effect of a turbulent airwake on the helicopter, and the resulting unsteady forces and moments are an indication of the workload the pilot would need to exert to counteract these effects in a real helicopter. Binocular sensing elements and semiconductor strain gauges have been adopted to achieve high sensitivity and relatively high stiffness. The compact strain gauge balance is fitted into the helicopter fuselage, and protective coatings and a flexible bellows are used to seal the balance and protect it from the water. The coefficient matrix of the AirDyn has been obtained by static calibrations, while impulse excitation tests have confirmed that its frequency response is suitable for the measurements of unsteady loads. The application of the instrument is illustrated by using it to quantify the effect that a bulky ship mast has on the airwake and thus on a helicopter as it lands onto a simplified ship in a scaled 50 knot headwind.

Wang, Y.; Curran, J.; Padfield, G. D.; Owen, I.

2011-04-01

139

Aerodynamic vibration mechanism of HDD arms predicted by unsteady numerical simulations

With increases in recording density and higher rotation speeds, the aerodynamic aspect of hard disk drives (HDDs) is now quite significant. We studied the internal airflow of HDDs using a direct numerical simulation. We simulated two cases: the first had an arm with no weight-saving hole (no-hole case), while the second had an arm with a weight-saving hole (hole case).

Hiroyuki Kubotera; Naozumi Tsuda; Masayuki Tatewaki; Tsugito Maruyama

2002-01-01

140

NASA Technical Reports Server (NTRS)

A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated.

Riffel, R. E.; Rothrock, M. D.

1980-01-01

141

NASA Technical Reports Server (NTRS)

Bifurcation theory is used to analyze the nonlinear dynamic stability characteristics of an aircraft subject to single-degree-of-freedom. The requisite moment of the aerodynamic forces in the equations of motion is shown to be representable in a form equivalent to the response to finite amplitude oscillations. It is shown how this information can be deduced from the case of infinitesimal-amplitude oscillations. The bifurcation theory analysis reveals that when the bifurcation parameter is increased beyond a critical value at which the aerodynamic damping vanishes, new solutions representing finite amplitude periodic motions bifurcate from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solutions are stable or unstable. For the pitching motion of flat-plate airfoils flying at supersonic/hypersonic speed and for oscillation of flaps at transonic speed, the bifurcation is subcritical, implying either the exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop.

Hui, W. H.

1985-01-01

142

Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics

NASA Technical Reports Server (NTRS)

Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.

Bartels, Robert E.

2012-01-01

143

NASA Technical Reports Server (NTRS)

A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.44. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated.

Riffel, R. E.; Rothrock, M. D.

1980-01-01

144

NASA Technical Reports Server (NTRS)

This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.

Reddy, T. S. R.; Srivastava, R.

1996-01-01

145

NASA Technical Reports Server (NTRS)

A quasi-steady analysis of the aeroelastic stability of the lateral (antisymmetric) modes of the 747/orbiter vehicle was accomplished. The interference effect of the orbiter wake on the 747 tail furnishes an aerodynamic undamping contribution to the elastic modes. Likewise, the upstream influence of the 747 tail and aft fuselage on the orbiter beaver-tail rail fairing also is undamping. Fortunately these undamping effects cannot overpower the large damping contribution of the 747 tail and the modes are damped for the configurations analyzed. However, significant interference effects of the orbiter on the 747 tail have been observed in the pitch plane. The high response of the 747 vertical tail in the orbiter wave was also considered. Wind tunnel data points to flapping of the OMS pod wakes as the source of the wake resonance phenomenon.

Reding, J. P.; Ericsson, L. E.

1976-01-01

146

A Cartesian grid method for simulation of the unsteady aerodynamics of microscale flapping flight

NASA Astrophysics Data System (ADS)

Recent improvements in MEMS technology is making it possible to develop microscale mechanical devices capable of operating in gases and liquids at low Reynolds number. In the current work a method has been developed to be able to simulate the operation of such devices computationally. The method imposes arbitrary solid/fluid boundaries on Cartesian grids, thus avoiding complexities with body-fitted grid methods. This thesis explains the numerical approximations used for solving the governing equations, the discretization of the equations, and the implementation of the immersed fluid/solid boundary conditions. The method is validated by comparing computed results of flows over an infinitely thin plate, a cylinder, and a sphere, and it is found that the method predicts both steady and unsteady flows with sufficient accuracy. The method performs similarly whether the solid objects translates through the grid or remains fixed in the grid with an imposed flow field. The method was then used to compute the fluid dynamics and force generation of a microscale flapping cantilever beam propulsion device. Both two-dimensional and three-dimensional flow features were explored, and the investigation showed that the cantilever produces thrust and can therefore potentially be used as a simple propulsion mechanism. Finally, the method was used to simulate an idealized model of fruit fly wing in hovering flight. The computed flow fields and force dynamics compared well with an equivalent experimental model, although some discrepancies were found due to a thicker wing being used in the computations for numerical reasons.

Emblemsvag, Jo-Einar

147

NASA Technical Reports Server (NTRS)

A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.

Lawless, Patrick B.; Fleeter, Sanford

1991-01-01

148

Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta

The aerodynamic mechanisms employed durng the flight of the hawkmoth, Manduca sexta, have been investigated through smoke visualization studies with tethered moths. Details of the flow around the wings and of the overall wake structure were recorded as stereophotographs and high-speed video sequences. The changes in flow which accompanied increases in flight speed from 0.4 to 5.7 m s-1 were analysed. The wake consists of an alternating series of horizontal and vertical vortex rings which are generated by successive down- and upstrokes, respectively. The downstroke produces significantly more lift than the upstroke due to a leading-edge vortex which is stabilized by a radia flow moving out towards the wingtip. The leading-edge vortex grew in size with increasing forward flight velocity. Such a phenomenon is proposed as a likely mechanism for lift enhancement in many insect groups. During supination, vorticity is shed from the leading edge as postulated in the 'flex' mechanism. This vorticity would enhance upstroke lift if it was recaptured diring subsequent translation, but it is not. Instead, the vorticity is left behind and the upstroke circulation builds up slowly. A small jet provides additional thrust as the trailing edges approach at the end of the upstroke. The stereophotographs also suggest that the bound circulation may not be reversed between half strokes at the fastest flight speeds.

Willmott, A. P.; Ellington, C. P.; Thomas, A. L. R.

1997-01-01

149

NASA Technical Reports Server (NTRS)

An exploratory analysis has been made of the aeroelastic stability of the Space Shuttle Launch Configuration, with the objective of defining critical flow phenomena with adverse aeroelastic effects and developing simple analytic means of describing the time-dependent flow-interference effects so that they can be incorporated into a computer program to predict the aeroelastic stability of all free-free modes of the shuttle launch configuration. Three critical flow phenomana have been identified: (1) discontinuous jump of orbiter wing shock, (2) inlet flow between orbiter and booster, and (3) H.O. tank base flow. All involve highly nonlinear and often discontinuous aerodynamics which cause limit cycle oscillations of certain critical modes. Given the appropriate static data, the dynamic effects of the wing shock jump and the HO tank bulbous base effect can be analyzed using the developed quasi-steady techniques. However, further analytic and experimental efforts are required before the dynamic effects of the inlet flow phenomenon can be predicted for the shuttle launch configuration.

Reding, J. P.; Ericsson, L. E.

1976-01-01

150

Unsteady Aerodynamic Testing Using the Dynamic Plunge Pitch and Roll Model Mount

NASA Technical Reports Server (NTRS)

A final report on the DyPPiR tests that were run are presented. Essentially it consists of two parts, a description of the data reduction techniques and the results. The data reduction techniques include three methods that were considered: 1) signal processing of wind on - wind off data; 2) using wind on data in conjunction with accelerometer measurements; and 3) using a dynamic model of the sting to predict the sting oscillations and determining the aerodynamic inputs using an optimization process. After trying all three, we ended up using method 1, mainly because of its simplicity and our confidence in its accuracy. The results section consists of time history plots of the input variables (angle of attack, roll angle, and/or plunge position) and the corresponding time histories of the output variables, C(sub L), C(sub D), C(sub m), C(sub l), C(sub m), C(sub n). Also included are some phase plots of one or more of the output variable vs. an input variable. Typically of interest are pitch moment coefficient vs. angle of attack for an oscillatory motion where the hysteresis loops can be observed. These plots are useful to determine the "more interesting" cases. Samples of the data as it appears on the disk are presented at the end of the report. The last maneuver, a rolling pull up, is indicative of the unique capabilities of the DyPPiR, allowing combinations of motions to be exercised at the same time.

Lutze, Frederick H.; Fan, Yigang

1999-01-01

151

Synthesized airfoil data method for prediction of dynamic stall and unsteady airloads

NASA Technical Reports Server (NTRS)

A detailed analysis of dynamic stall experiments has led to a set of relatively compact analytical expressions, called synthesized unsteady airfoil data, which accurately describe in the time-domain the unsteady aerodynamic characteristics of stalled airfoils. An analytical research program was conducted to expand and improve this synthesized unsteady airfoil data method using additional available sets of unsteady airfoil data. The primary objectives were to reduce these data to synthesized form for use in rotor airload prediction analyses and to generalize the results. Unsteady drag data were synthesized which provided the basis for successful expansion of the formulation to include computation of the unsteady pressure drag of airfoils and rotor blades. Also, an improved prediction model for airfoil flow reattachment was incorporated in the method. Application of this improved unsteady aerodynamics model has resulted in an improved correlation between analytic predictions and measured full scale helicopter blade loads and stress data.

Gangwani, S. T.

1983-01-01

152

Aerodynamics of ski jumping: experiments and CFD simulations

NASA Astrophysics Data System (ADS)

The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required.

Meile, W.; Reisenberger, E.; Mayer, M.; Schmölzer, B.; Müller, W.; Brenn, G.

2006-12-01

153

Full-scale wind turbine rotor aerodynamics research

The United States Department of Energy and the National Renewable Energy Laboratory (NREL) are conducting research to improve wind turbine technology at the NREL National Wind Technology Center (NWTC). One program, the Combined Experiment, has focused on making measurements needed to understand aerodynamic and structural responses of horizontal-axis wind turbines (HAWT). A new phase of this program, the Unsteady Aerodynamics Experiment, will focus on quantifying unsteady aerodynamic phenomena prevalent in stall-controlled HAWTs. Optimally twisted blades and innovative instrumentation and data acquisition systems will be used in these tests. Data can now be acquired and viewed interactively during turbine operations. This paper describes the NREL Unsteady Aerodynamics Experiment and highlights planned future research activities.

Simms, D A; Butterfield, C P

1994-11-01

154

NASA Technical Reports Server (NTRS)

Changes to be made that provide increased accuracy and increased user flexibility in prediction of unsteady loadings caused by control surface motions are described. Analysis flexibility is increased by reducing the restrictions on the location of the downwash stations relative to the leading edge and the edges of the control surface boundaries. Analysis accuracy is increased in predicting unsteady loading for high Mach number analysis conditions through use of additional chordwise downwash stations. User guideline are presented to enlarge analysis capabilities of unusual wing control surface configurations. Comparative results indicate that the revised procedures provide accurate predictions of unsteady loadings as well as providing reductions of 40 to 75 percent in computer usage cost required by previous versions of this program.

Rowe, W. S.; Petrarca, J. R.

1980-01-01

155

The lift and thrust associated with insect flight strongly depend on the complex wake patterns produced by wing-wing and wing-wake interactions. We propose to investigate the aerodynamics of dragonfly using a simplified wing-wing model from the perspective of many-body force decomposition (JFM 600, p95) and the associated force elements. The aerodynamic force, lift or thrust, of the wing-wing system is

Chin-Chou Chu; Chien C. Chang; Chen-Ta Hsieh

2009-01-01

156

NASA Technical Reports Server (NTRS)

Tests were conducted a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blade along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge. The tests were conducted for all 96 combinations 2 mean camberline incidence angles 2 pitching amplitudes 3 reduced frequencies and 8 interblade phase angles. The pressure data were reduced to Fourier coefficient form for direct comparison, and were also processed to yield integrated loads and particularly, the aerodynamic damping coefficient. Data obtained during the test program, reproduced from the printout of the data reduction program are complied. A further description of the contents of this report is found in the text that follows.

Carta, F. O.

1981-01-01

157

Vortex method simulation of 3D and unsteady vortices in a swirling flow apparatus experimented in

In this study, as the vortex method (VM) has been dramatically developed as an easy-to-handle tool for analysis of unsteady vortex-flows in various engineering and scientific fields, its applicability into numerical investigation of the vortex rope phenomenon was examined in a draft tube model which was experimented by the group of Prof. Romeo Susan-Resiga in \\

A. Ojima; K. Kamemoto

2010-01-01

158

Active distributed aerodynamic control for load reduction on wind turbine blades is an innovative concept, inspired by rotorcraft research, often named as smart rotor control. In this stage of research, unsteady aerodynamic models and small scale experimental setups are developed, investigating the potential and implementation of such concepts. This paper describes a successful wind tunnel experiment on a dynamically scaled

A. K. Barlas

2007-01-01

159

NASA Technical Reports Server (NTRS)

The design-point and off-design performance of an embedded 1.5-stage portion of a variable-speed power turbine (VSPT) was assessed using Reynolds-Averaged Navier-Stokes (RANS) analyses with mixing-planes and sector-periodic, unsteady RANS analyses. The VSPT provides one means by which to effect the nearly 50 percent main-rotor speed change required for the NASA Large Civil Tilt-Rotor (LCTR) application. The change in VSPT shaft-speed during the LCTR mission results in blade-row incidence angle changes of as high as 55 . Negative incidence levels of this magnitude at takeoff operation give rise to a vortical flow structure in the pressure-side cove of a high-turn rotor that transports low-momentum flow toward the casing endwall. The intent of the effort was to assess the impact of unsteadiness of blade-row interaction on the time-mean flow and, specifically, to identify potential departure from the predicted trend of efficiency with shaft-speed change of meanline and 3-D RANS/mixing-plane analyses used for design.

Welch, Gerard E.

2012-01-01

160

NASA Technical Reports Server (NTRS)

The first objective of the program is to introduce the meritorious counterflow methodology in microgravity in order to quantify the steady and unsteady characteristics of weakly-burning premixed and diffusion flames for a wide variety of conditions including elevated pressures. Subsequently, through detailed modeling and comparisons with the experimental data, to provide physical insight into the elementary mechanisms controlling the flame response. The configuration offers good control over the parameters of interest and can be modelled closely. The knowledge which will be gained from the counterflow flames will be subsequently used to analyze near-limit phenomena related to other configurations by conducting detailed numerical simulations including multidimensional ones. Among the problems to be analyzed are the downward and upward propagation of near-limit flames in tubes and phenomena observed in spherical and cylindrical geometries.

Egolfopoulos, Fokion N.

1995-01-01

161

Incipient torsional stall flutter aerodynamic experiments on a swept three-dimensional wing

NASA Technical Reports Server (NTRS)

The aerodynamics of small amplitude pitching motions near stall have been studied experimentally in order to improve understanding of the torsional stall flutter problem for propeller blades. A model wing was oscillated in pitch at several small amplitudes over a wide and representative range of conditions. Unsteady surface pressures were measured and integrated to determine the aerodynamic damping at five spanwise stations. Strong negative damping was found for motions centered near static stall for all studied reduced frequencies, Mach numbers, and sweep angles. The 30-deg sweptback configuration was found to become negatively damped over the entire span nearly simultaneously, while the unswept model exhibited local regions of negative damping that moved toward the wing tip as the mean angle of attack was increased.

Lorber, Peter F.; Carta, Franklin O.

1991-01-01

162

NASA Astrophysics Data System (ADS)

The lift and thrust associated with insect flight strongly depend on the complex wake patterns produced by wing-wing and wing-wake interactions. We propose to investigate the aerodynamics of dragonfly using a simplified wing-wing model from the perspective of many-body force decomposition (JFM 600, p95) and the associated force elements. The aerodynamic force, lift or thrust, of the wing-wing system is analyzed in terms of its four constituent components, each of which is directly related to a physical effect. These force components for each individual wing include two potential contributions credited to the wing motion itself, contribution from the vorticity within the flow, and contributions from the surface vorticity on its and other wing's surfaces. The potential contribution due to added-mass effect is often non-negligible. Nevertheless, the major contribution to the forces comes from the vorticity within the flow. The relative importance of these components relies heavily on the motions of the two wings such as the respective angles of attack, the amplitude and speed of translational motions, and the amplitude and speed of wing rotations. In addition to the dynamic stall vortex, several important mechanisms of high lift or thrust are also identified.

Chu, Chin-Chou; Chang, Chien C.; Hsieh, Chen-Ta

2009-11-01

163

Unsteady high-pressure flow experiments with applications to explosive volcanic eruptions

Motivated by the hypothesis that volcanic blasts can have supersonic regions, we investigate the role of unsteady flow in jets from a high-pressure finite reservoir. We examine the processes for formation of far-field features, such as Mach disk shocks, by using a shock tube facility and numerical experiments to investigate phenomena to previously unobtained pressure ratios of 250:1. The Mach

M. M. Orescanin; J. M. Austin; S. W. Kieffer

2010-01-01

164

Modeling of Unsteady Three-dimensional Flows in Multistage Machines

NASA Technical Reports Server (NTRS)

Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.

Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)

2003-01-01

165

NASA Technical Reports Server (NTRS)

The effects of harmonic or constant-rate-ramp pitching motions (giving angles of attack from 0 to 75 deg) on the aerodynamic performance of a fighter-aircraft model with highly swept leading-edge extensions are investigated experimentally in the NASA Langley 12-ft low-speed wind tunnel. The model configuration and experimental setup are described, and the results of force and moment measurements and flow visualizations are presented graphically and discussed in detail. Large force overshoots and hysteresis are observed and attributed to lags in vortical-flow development and breakup. The motion variables have a strong influence on the persistence of dynamic effects, which are found to affect pitch-rate capability more than flight-path turning performance.

Brandon, Jay M.; Shah, Gautam H.

1990-01-01

166

Aerodynamic calculations related to tethered sub-satellite experiments

NASA Technical Reports Server (NTRS)

The results are presented of four aerodynamic studies that were in support of a broader, preliminary inquiry concerning the potential use of downward-deployed tethered sub-satellites for in-flight aerothermodynamic research. There are a multitude of questions regarding the general tethered satellite concept and the present report addresses only a few of these. A method for estimating drag and local surface pressure and shear on orbiting or re-entereing bodies is described, and examples based on the planned TSS-2 (Tethered Satellite System) are given. The problem of pressure measurement are explored, taking into account thermal transpiration, lag time, and the disturbed flow field created by the satellite body. The performance of an aerodynamic stabilizer, a ring-tail design, is calculated and its influence on satellite motion is illustrated. A method for optimizing future satellite shapes for desired aerodynamic properties is transitional rarefied flow with given geometric constraints is proposed and examples are shown.

Potter, J. Leith; Rockaway, J. Kent

1991-01-01

167

NASA Astrophysics Data System (ADS)

The Cyclogiro is the name given by NASA researchers in the '30s to an aerodynamic configuration of several large aspect ratio rectangular airfoils with horizontal span, placed on the circumference of a vertical circle of radius of the order of the airfoil chord, and rotating around the circle center at high speed, with periodically changing angle of attack. This configuration produces aerodynamic forces that can be applied to lift and thrust, depending on the phase angle between the instantaneous position and angle of attack. The original approach was to install such rotors instead of an aircraft wing, and thus combine the lift & thrust producing functions. As a result of the state of knowledge of unsteady aerodynamics at the time disparities between predictions and measured forces remained unexplained. This, combined with low efficiency resulted in the concept being abandoned. In the present study the concept is revisited, as a possible propulsor/lift generator for a hover-capable micro-UAV. Preliminary analysis showed that scaling down to rotor airfoil sizes of 10-15 cm span and 2 cm chord will reduce the centrifugal forces to manageable proportions while the aerodynamic forces would be comparable to those obtained by conventional rotors. A series of experiments was performed, showing disparities of up to 30theory. Visualization showed that this difference resulted mainly from interactions between single foil wakes with the following foils, and a numerical study confirmed the magnitude of the effects, in good agreement with the experiments.

Iosilevski, Gil; Levy, Yuval; Weihs, Daniel

2001-11-01

168

Aerodynamic Effects in a Dropped Ping-Pong Ball Experiment*

TENNIS The official rules of table tennis specify the characteristics and properties of a ping-pong ball' the official rules were changed by the International Table Tennis Federation in September 2000 and and considers the applicability of aerodynamic models in light of the experimental results. BACKGROUND: TABLE

Nagurka, Mark L.

169

The measured hydraulic data collected in the Flood Plain Simulation Facility located at the Gulf Coast Hydroscience Center, near Bay St. Louis, Miss., are summarized for a series of experiments designed to study steady and unsteady flow over uniform grass roughness. All experiments were conducted during the 1973 and 1974 test seasons. Tables of measured ground-surface elevations, water-surface elevations, and point velocities are included for all experiments. A total of 19 steady flow experiments and 7 unsteady flow experiments for varying grass heights are included. The tabulated point velocities and water-surface elevations for the unsteady flow experiments were selected to represent the general changes in the flow variables as the flood wave passed through the facility but do not include all collected data. However, all data that were collected have been stored on computer disk storage and may be retrieved using the listing programs and memory locations. (Woodard-USGS)

Collins, Dannie L.; Flynn, Kathleen M.

1978-01-01

170

Inverse problems and optimal experiment design in unsteady heat transfer processes identification

NASA Technical Reports Server (NTRS)

Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

Artyukhin, Eugene A.

1991-01-01

171

This report summarizes and makes available to other investigators the measured hydraulic data collected during a series of experiments designed to study the effect of patterned bed roughness on steady and unsteady open-channel flow. The patterned effect of the roughness was obtained by clear-cut mowing of designated areas of an otherwise fairly dense coverage of coastal Bermuda grass approximately 250 mm high. All experiments were conducted in the Flood Plain Simulation Facility during the period of October 7 through December 12, 1974. Data from 18 steady flow experiments and 10 unsteady flow experiments are summarized. Measured data included are ground-surface elevations, grass heights and densities, water-surface elevations and point velocities for all experiments. Additional tables of water-surface elevations and measured point velocities are included for the clear-cut areas for most experiments. One complete set of average water-surface elevations and one complete set of measured point velocities are tabulated for each steady flow experiment. Time series data, on a 2-minute time interval, are tabulated for both water-surface elevations and point velocities for each unsteady flow experiment. All data collected, including individual records of water-surface elevations for the steady flow experiments, have been stored on computer disk storage and can be retrieved using the computer programs listed in the attachment to this report. (Kosco-USGS)

Collins, Dannie L.; Flynn, Kathleen M.

1979-01-01

172

Within wind energy research there is a drive towards the development of a “smart rotor”; a rotor of which the loading can be measured and controlled through the application of a sensor system, a control system and an aerodynamic device. Most promising solutions from an aerodynamic point of view are trailing edge flaps, either hinged or continuously deformable. An experiment

A. W. Hulskamp; A. Beukers; H. E. N. Bersee; J. W. Van Wingerden; T. Barlas

2007-01-01

173

A High Altitude-Low Reynolds Number Aerodynamic Flight Experiment

NASA Technical Reports Server (NTRS)

A sailplane is currently being developed at NASA's Dryden Flight Research Center to support a high altitude flight experiment. The purpose of the experiment is to measure the performance characteristics of an airfoil at altitudes between 100,000 and 70,000 feet at Mach numbers between 0.65 and 0.5. The airfoil lift and drag are measured from pilot and static pressures. The location of the separation bubble and vortex shedding are measured from a hot film strip. The details of the flight experiment are presented. A comparison of several estimates of the airfoil performance is also presented. The airfoil, APEX-16, was designed by Drela (MIT) with his MSES code. A two dimensional Navier-Stokes analysis has been performed by Tatineni and Zhong (UCLA) and another at the Dryden Flight Research Center. The role these analysis served to define the experiment is discussed.

Greer, Don; Krake, Keith; Hamory, Phil; Drela, Mark; Lee, Seunghee (Technical Monitor)

1999-01-01

174

NASA Technical Reports Server (NTRS)

Results are presented on the aerodynamic characteristics of the Magellan spacecraft during the October 1994 Termination Experiment, including the effects of the thruster engine exhaust plumes upon the molecular free stream around the spacecraft and upon the aerodynamics coefficients. As Magellan passed through the Venusian atmosphere, the solar arrays were turned in opposite directions relative to the free stream creating a torque on the spacecraft. The spacecraft control system was programmed to counter the effects of this torque with attitude control engines to maintain an inertially fixed attitude. The orientation and reaction engine telemetry returned from Magellan are used to create a model of the aerodynamic torques. Geometric models of the Magellan spacecraft are analyzed with the aid of both free molecular and Direct Simulation Monte Carlo codes. The simulated aerodynamic torques determined are compared to the measured torques. The Direct Simulation Monte Carlo method is also used to model the attitude engine exhaust plumes, the free stream disturbance caused by these plumes, and the resulting torques acting on the spacecraft compared to no-exhaust plume cases. The effect of the exhaust plumes was found to be sufficiently large that thrust reversal is possible.

Cestero, Francisco J.; Tolson, Robert H.

1998-01-01

175

Aerodynamics of Small Vehicles

NASA Astrophysics Data System (ADS)

In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

Mueller, Thomas J.

176

An unsteady airfoil theory applied to pitching motions validated against experiment and computation

NASA Astrophysics Data System (ADS)

An inviscid theoretical method that is applicable to non-periodic motions and that accounts for large amplitudes and non-planar wakes (large-angle unsteady thin airfoil theory) is developed. A pitch-up, hold, pitch-down motion for a flat plate at Reynolds number 10,000 is studied using this theoretical method and also using computational (immersed boundary method) and experimental (water tunnel) methods. Results from theory are compared against those from computation and experiment which are also compared with each other. The variation of circulatory and apparent-mass loads as a function of pivot location for this motion is examined. The flow phenomena leading up to leading-edge vortex shedding and the limit of validity of the inviscid theory in the face of vortex-dominated flows are investigated. Also, the effect of pitch amplitude on leading-edge vortex shedding is examined, and two distinctly different vortex-dominated flows are studied using dye flow visualizations from experiment and vorticity plots from computation.

Ramesh, Kiran; Gopalarathnam, Ashok; Edwards, Jack R.; Ol, Michael V.; Granlund, Kenneth

2013-11-01

177

NASA Technical Reports Server (NTRS)

Computer data are provided for tests conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge.

Carta, F. O.

1981-01-01

178

NASA Technical Reports Server (NTRS)

Two scaled models of the Aeroassist Flight Experiment (AFE) vehicle were tested in two air wind tunnels and one CF4 tunnel. The tests were to determine the static longitudinal aerodynamic characteristics, and shock shapes for the configuration in hypersonic continuum flow. The tests were conducted with a range of angle of attack to evaluate the effects of Mach number, Reynolds numbers, and normal shock density ratio.

Wells, William L.

1989-01-01

179

NASA Technical Reports Server (NTRS)

Existing interpretations of the trailing edge condition, addressing both theoretical and experimental works in steady, as well as unsteady flows are critically reviewed. The work of Kutta and Joukowski on the trailing edge condition in steady flow is reviewed. It is shown that for most practical airfoils and blades (as in the case of most turbomachine blades), this condition is violated due to rounded trailing edges and high frequency effects, the flow dynamics in the trailing edge region being dominated by viscous forces; therefore, any meaningful modelling must include viscous effects. The question of to what extent the trailing edge condition affects acoustic radiation from the edge is raised; it is found that violation of the trailing edge condition leads to significant sound diffraction at the tailing edge, which is related to the problem of noise generation. Finally, various trailing edge conditions in unsteady flow are discussed, with emphasis on high reduced frequencies.

Radwan, S. F.; Rockwell, D. O.; Johnson, S. H.

1982-01-01

180

Wind turbine blade aerodynamics: The analysis of field test data

Data obtained from the National Renewable Energy Laboratory site test of a wind turbine (The Combined Experiment) was analyzed specifically to capture information regarding the aerodynamic loading experienced by the machine rotor blades. The inflow conditions were shown to be extremely variable. These inflows yielded three different operational regimes about the blades. Each regime produced very different aerodynamic loading conditions. Two of these regimes could not have been readily predicted from wind tunnel data. These conditions are being subjected to further analyses to provide new guidelines for both designers and operators. The roles of unsteady aerodynamics effects are highlighted since periods of dynamic stall were shown to be associated with brief episodes of high aerodynamic forces.

Luttges, M.W.; Miller, M.S.; Robinson, M.C.; Shipley, D.E.; Young, T.S. [Colorado Univ., Boulder, CO (United States). Dept. of Aerospace Engineering Sciences

1994-08-01

181

NASA Technical Reports Server (NTRS)

Data from the High Resolution Accelerometer Package (HiRAP) experiment on the Space Shuttle Orbiter have been analyzed for 10 flights to produce lift-drag (L/D) ratios in the free molecule, transition, and continuum flow flight regimes. Freestream density is also obtained in the altitude range from 60 km to 160 km using an aerodynamic model based upon earlier flight analysis of accelerometer data. The results of the L/D analysis of the latest four flights have been compared with the aerodynamic model developed from the first six HiRAP missions. The new data agree with the established flight-derived model, thereby validating earlier analysis. However, the arithmetic mean of the 10 flight-derived L/D values in the free molecular flow regime is 0.053 (+ or - 0.1) as compared to the initial value of 0.10 (+ or - 0.3), determined from STS-6. Updates to the Orbiter aerodynamic model values and calibration factors have been incorporated into the density calculations for all 10 flights to provide realistic absolute density. The derived density altitude profiles, which have been normalized to the U.S. Standard Atmosphere 1976, are characterized by a large amplitude wave pattern relative to the standard as seen in the initial flight analysis.

Blanchard, R. C.; Larman, K. T.

1987-01-01

182

Aerodynamic Database Development for the Hyper-X Airframe Integrated Scramjet Propulsion Experiments

NASA Technical Reports Server (NTRS)

This paper provides an overview of the activities associated with the aerodynamic database which is being developed in support of NASA's Hyper-X scramjet flight experiments. Three flight tests are planned as part of the Hyper-X program. Each will utilize a small, nonrecoverable research vehicle with an airframe integrated scramjet propulsion engine. The research vehicles will be individually rocket boosted to the scramjet engine test points at Mach 7 and Mach 10. The research vehicles will then separate from the first stage booster vehicle and the scramjet engine test will be conducted prior to the terminal decent phase of the flight. An overview is provided of the activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts for all phases of the Hyper-X flight tests. A brief summary of the Hyper-X research vehicle aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics. Brief comments on the planned post flight data analysis efforts are also included.

Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.

2000-01-01

183

Oscillating aerodynamics and flutter of an aerodynamically detuned cascade in an incompressible flow

NASA Technical Reports Server (NTRS)

A mathematical model is developed and utilized to demonstrate the enhanced torsion mode stability associated with alternate blade circumferential aerodynamic detuning of a rotor operating in an incompressible flow field. The oscillating cascade aerodynamics, including steady loading effects, are determined by developing a complete first order unsteady aerodynamic analysis. An unsteady aerodynamic influence coefficient technique is then utilized, thereby enabling the stability of both conventional uniformly spaced rotors and detuned nonuniform circumferentially spaced rotors to be determined. To demonstrate the enhanced flutter aeroelastic stability associated with this aerodynamic detuning mechanism, this model is applied to a baseline unstable rotor with a Gostelow flow geometry.

Chiang, Hsiao-Wei D.; Fleeter, Sanford

1989-01-01

184

NASA Technical Reports Server (NTRS)

A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.

Hanson, Donald B.

1994-01-01

185

In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565

Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

2015-03-01

186

In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds

Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier–Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565

Lentink, David; Haselsteiner, Andreas F.; Ingersoll, Rivers

2015-01-01

187

Quasi-steady aerodynamic analysis of propeller-wing interaction

NASA Astrophysics Data System (ADS)

A quasi-steady scheme for the analysis of aerodynamic interaction between a propeller and a wing has been developed. The quasi-steady analysis uses a 3D steady vortex lattice method for the propeller and a 3D unsteady panel method for the wing. The aerodynamic coupling is represented by periodic loads, which are decomposed into harmonics and the harmonic amplitudes are found iteratively. Each stage of the iteration involves the solution of an isolated propeller or wing problem, the interaction being done through the Fourier transform of the induced velocity field. The propeller analysis code was validated by comparing the predicted velocity field about an isolated propeller with detailed laser Doppler velocimeter measurements, and the quasi-steady scheme by comparison with mean loads measured in a wing-propeller experiment. Comparisons have also been made among the fluctuating loads predicted by the present method, an unsteady panel scheme and a quasi-steady vortex lattice scheme. Copyright

Cho, Jinsoo; Cho, Jaeheon

1999-08-01

188

NASA Astrophysics Data System (ADS)

An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with experiments and other research results. The rotor cascade shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using the unsteady Navier-Stokes solver. Two objective functions were defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed. A parallel genetic algorithm was used as an optimizer and the penalty method was introduced. Each individual's objective function was computed simultaneously by using a 32 processor distributed memory computer. One optimization took about four days.

Lee, Eun Seok

2000-10-01

189

NASA Technical Reports Server (NTRS)

Typical analytical models for interaction between rotor and stator in a turbofan analyze the effect of wakes from the rotor impinging on the stator, producing unsteady loading, and thereby generating noise. Reflection/transmission characteristics of the rotor are sometimes added in a separate calculation. In those models, there is a one-to-one relationship between wake harmonics and noise harmonics; that is, the BPF (blade passing frequency) wake harmonic causes only the BPF noise harmonic, etc. This report presents a more complete model in which flow tangency boundary conditions are satisfied on two cascades in relative motion for several harmonics simultaneously. By an extension of S.N. Smith's code for two dimensional flat plate cascades, the noise generation/frequency scattering/blade row reflection problem is solved in a single matrix inversion. It is found that the BPF harmonic excitation of the stator scatters considerable energy in the higher BPF harmonics due to relative motion between the blade rows. Furthermore, when swirl between the rotor and stator is modeled, a 'mode trapping' effect occurs which explains observations on fans operating at rotational speeds below BFP cuton: the BPF mode amplifies between blade rows by multiple reflections but cannot escape to the inlet and exit ducts. However, energy scattered into higher harmonics does propagate and dominates the spectrum at two and three times BPF. This report presents the complete derivation of the theory, comparison with a previous (more limited) coupled rotor/stator interaction theory due to Kaji and Okazaki, exploration of the mode trapping phenomenon, and parametric studies showing the effects of vane/blade ratio and rotor/stator interaction. For generality, the analysis applies to stages where the rotor is either upstream or downstream of the stator and to counter rotation stages. The theory has been coded in a FORTRAN program called CUP2D, documented in Volume 2 of this report. It is concluded that the new features of this analysis - unsteady coupling, frequency scattering, and flow turning between rotor and stator - have a profound effect on noise generation caused by rotor/stator interaction. Treating rotors and stators as isolated cascades is not adequate for noise analysis and prediction.

Hanson, Donald B.

1994-01-01

190

We compare computational, experimental and quasi-steady forces in a generic hovering wing undergoing sinusoidal motion along a horizontal stroke plane. In particular, we investigate unsteady effects and compare two-dimensional (2D) computations and three-dimensional (3D) experiments in several qualitatively different kinematic patterns. In all cases, the computed drag compares well with the experiments. The computed lift agrees in the cases in which the sinusoidal changes in angle of attack are symmetrical or advanced with respect to stroke positions, but lags behind the measured 3D lift in the delayed case. In the range of amplitudes studied here, 3-5 chords, the force coefficients have a weak dependence on stroke amplitude. As expected, the forces are sensitive to the phase between stroke angle and angle of attack, a result that can be explained by the orientation of the wing at reversal. This dependence on amplitude and phase suggests a simple maneuver strategy that could be used by a flapping wing device. In all cases the unsteady forces quickly reach an almost periodic state with continuous flapping. The fluid forces are dominated by the pressure contribution. The force component directly proportional to the linear acceleration is smaller by a factor proportional to the ratio of wing thickness and stroke amplitude; its net contribution is zero in hovering. The ratio of wing inertia and fluid force is proportional to the product of the ratio of wing and fluid density and the ratio of wing thickness and stroke amplitude; it is negligible in the robotic wing experiment, but need not be in insect flight. To identify unsteady effects associated with wing acceleration, and coupling between rotation and translation, as well as wake capture, we examine the difference between the unsteady forces and the estimates based on translational velocities, and compare them against the estimate of the coupling between rotation and translation, which have simple analytic forms for sinusoidal motions. The agreement and disagreement between the computed forces and experiments offer further insight into when the 3D effects are important. A main difference between a 3D revolving wing and a 2D translating wing is the absence of vortex shedding by a revolving wing over a distance much longer than the typical stroke length of insects. No doubt such a difference in shedding dynamics is responsible in part for the differences in steady state force coefficients measured in 2D and 3D. On the other hand, it is unclear whether such differences would have a significant effect on transient force coefficients before the onset of shedding. While the 2D steady state force coefficients underpredict 3D forces, the transient 2D forces measured prior to shedding are much closer to the 3D forces. In the cases studied here, the chord is moving between 3 to 5 chords, typical of hovering insect stroke length, and the flow does not appear to separate during each stroke in the cases of advanced and symmetrical rotation. In these cases, the wing reverses before the leading edge vortex would have time to separate even in 2D. This suggests that the time scale for flow separation in these strokes is dictated by the flapping frequency, which is dimensionally independent. In such cases, the 2D unsteady forces turn out to be good approximations of 3D experiments. PMID:14691093

Wang, Z Jane; Birch, James M; Dickinson, Michael H

2004-01-01

191

Neural network prediction of three-dimensional unsteady separated flowfields

NASA Astrophysics Data System (ADS)

Unsteady surface pressures were measured on a wing pitching beyond static stall. Surface pressure measurements confirmed that the pitching wing generated a rapidly evolving, three-dimensional unsteady surface pressure field. Using these data, both linear and nonlinear neural networks were developed. A novel quasilinear activation function enabled extraction of a linear equation system from the weight matrices of the linear network. This equation set was used to predict unsteady surface pressures and unsteady aerodynamic loads. Neural network predictions were compared directly to measured surface pressures and aerodynamic loads. The neural network accurately predicted both temporal and spatial variations for the unsteady separated flowfield as well as for the aerodynamic loads. Consistent results were obtained using either the linear or nonlinear neural network. In addition, fluid mechanics modeled by the linear equation set were consistent with established vorticity dynamics principles.

Schreck, Scott J.; Faller, William E.; Luttges, Marvin W.

1995-01-01

192

ERIC Educational Resources Information Center

This paper details a successful and inexpensive implementation of a remote laboratory into a distance control systems course using readily available hardware and software. The physical experiment consists of a beach ball and a dc blower; the control objective is to make the height of the aerodynamically levitated beach ball track a reference…

Jernigan, S. R.; Fahmy, Y.; Buckner, G. D.

2009-01-01

193

Unsteady laminar pipe flow of a Carbopol gel. Part I: experiment

A experimental study of low Reynolds numbers unsteady pipe flows of a yield stress shear thinning fluid (Carbopol- 980) is presented. The investigation of the solid-fluid transition in a rheometric flow in the presence and in the ab- sence of the wall slip reveals a coupling between the irreversible deformation states and the wall slip phenomenon. Particularly, the presence of wall slip nearly suppresses the scaling of the deformation power deficit associated to the rheological hysteresis with the rate at which the material is forced. The irreversible solid-fluid transition and the wall slip behaviour emerge in the same range of the applied stresses and thus, the two phenomena appear to be coupled to each other. In-situ measurements of the flow fields performed during an increasing/decreasing stepped pressure ramp reveal three distinct flow regimes: solid (pluglike), solid-fluid and fluid. The deformation power deficit associated with the hysteresis observed during the increasing/decreasing branches of the pressure ramps reveals a dependence on the rate at which the unsteady flow is driven consistent with that observed during the rheological measurements in the presence of slip. The dependence of the slip velocity on the wall shear stresses reveals a Navier-type slip behaviour only within the fluid flow regime, which indicates that the wall slip phenomenon is directly coupled to the solid-fluid transition. A universal scaling of the slip velocity with the wall velocity gradients is found and the slip length is independent on the characteristic time of forcing t0. The paper closes with a discussion of the main findings, their possible impact on our current understanding of the yielding and slip behaviour of Carbopol gels. Several steps worth being pursued by future experimental/theoretical studies are proposed.

Antoine Poumaere; Miguel Moyers-Gonzalez; Cathy Castelain; Teodor Burghelea

2013-01-21

194

PRESSURE MEASUREMENT IN A TWO DIMENSIONAL UNSTEADY FLOW

PRESSURE MEASUREMENT IN A TWO DIMENSIONAL UNSTEADY FLOW William Walker Virginia Polytechnic to obtain unsteady aerodynamic data from a two dimensional wing, and analyzing the pressure variations with time over the wing surface. The data was gathered by using electronic pressure transducers

Patil, Mayuresh

195

Optimum Shape Design for Unsteady Flows with Time-Accurate Continuous and Discrete Adjoint Methods

rotors and turbomachinery blades operate in unsteady flows and are constantly subjected to unsteady loads an inverse design at Mach 0.6. Aerodynamic shape optimization of rotor airfoils in an unsteady viscous flowLomax turbulence model. A response-surface methodology was then employed to optimize the rotor blade. The objective

Jameson, Antony

196

Unsteady laminar pipe flow of a Carbopol gel. Part I: experiment

A experimental study of low Reynolds numbers unsteady pipe flows of a yield stress shear thinning fluid (Carbopol- 980) is presented. The investigation of the solid-fluid transition in a rheometric flow in the presence and in the ab- sence of the wall slip reveals a coupling between the irreversible deformation states and the wall slip phenomenon. Particularly, the presence of wall slip nearly suppresses the scaling of the deformation power deficit associated to the rheological hysteresis with the rate at which the material is forced. The irreversible solid-fluid transition and the wall slip behaviour emerge in the same range of the applied stresses and thus, the two phenomena appear to be coupled to each other. In-situ measurements of the flow fields performed during an increasing/decreasing stepped pressure ramp reveal three distinct flow regimes: solid (pluglike), solid-fluid and fluid. The deformation power deficit associated with the hysteresis observed during the increasing/decreasing branches of the pr...

Poumaere, Antoine; Castelain, Cathy; Burghelea, Teodor

2013-01-01

197

Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage

NASA Technical Reports Server (NTRS)

A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.

Boyd, David D., Jr.

1999-01-01

198

NASA Technical Reports Server (NTRS)

The paper experimentally and theoretically studies the effects of periodic unsteady wake flow and aerodynamic characteristics on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experiments were carried out at Reynolds number of 110,000 (based on suction surface length and exit velocity). For one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, intermittency behaviors were experimentally and theoretically investigated. The current investigation attempts to extend the intermittency unsteady boundary layer transition model developed in previously to the LPT cases, where separation occurs on the suction surface at a low Reynolds number. The results of the unsteady boundary layer measurements and the intermittency analysis were presented in the ensemble-averaged and contour plot forms. The analysis of the boundary layer experimental data with the flow separation, confirms the universal character of the relative intermittency function which is described by a Gausssian function.

Oeztuerk, B; Schobeiri, M. T.; Ashpis, David E.

2005-01-01

199

NASA Technical Reports Server (NTRS)

The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.

Cassell, Alan M.

2013-01-01

200

Theory and Low-Order Modeling of Unsteady Airfoil Flows

NASA Astrophysics Data System (ADS)

Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It is hypothesized, and verified with experimental and computational data, that LEV formation always occurs at the same critical value of LESP irrespective of motion kinematics. Further, the applicability of the LESP criterion in influencing the occurrence of LEV formation is demonstrated. To model the growth and convection of leading-edge vortices, the unsteady thin-airfoil theory is augmented with discrete-vortex shedding from the leading edge. The LESP criterion is used to predict and modulate the shedding of leading-edge vorticity. Comparisons with experiments and CFD for test-cases with different airfoils, Reynolds numbers and motion kinematics, show that the method performs remarkably well in predicting force coefficients and flowfields for unsteady flows. The use of a single empirical parameter - the critical LESP value, allows the determination of onset, growth and termination of leading-edge vortex shedding. In the final part of the research, the discrete-vortex model is extended to flows where the freestream velocity is varying or small in comparison with motion velocity. With this extension, the method is made applicable to a larger set of 2D flows such as perching and hovering maneuvers, gusts, and sinusoidally varying freestream. Abstractions of perching and hovering are designed as test cases and used to validate the low-order model's performance in highly-unsteady, vortex-dominated flows. Alongside development of the low-order methodology, several features of unsteady flows are studied and analyzed with the aid of CFD and experiments. While remaining computationally inexpensive and retaining the essential flow-physics, the method is seen to be successful in prediction of both force coefficients and flow histories.

Ramesh, Kiran

201

A blade element momentum (BEM), vortex lattice (VL) and a Reynolds-avera ged thin-layer Navier-Stokes method (RaNS) were evaluated for their ability to predict the aerodynamic performance of the Combined Experiment Phase II Horizontal Axis Wind Turbine. To evaluate blade stall modeling, the BEM and VL methods utilized the Du-Selig stall delay model along with experimental and computationally derived airfoil characteristics.

Earl P. N. Duque; Wayne Johnson; Rotorcraft Aeromechanics Branch; Regina Cortes; Karen Yee

2000-01-01

202

An aerodynamic model for one and two degree of freedom wing rock of slender delta wings

NASA Technical Reports Server (NTRS)

The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.

Hong, John

1993-01-01

203

Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

NASA Technical Reports Server (NTRS)

Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations, the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At ARC a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft, and it solves the Euler/Navier-Stokes equations. The purpose of this cooperative agreement was to enhance ENSAERO in both algorithm and geometric capabilities. During the last five years, the algorithms of the code have been enhanced extensively by using high-resolution upwind algorithms and efficient implicit solvers. The zonal capability of the code has been extended from a one-to-one grid interface to a mismatching unsteady zonal interface. The geometric capability of the code has been extended from a single oscillating wing case to a full-span wing-body configuration with oscillating control surfaces. Each time a new capability was added, a proper validation case was simulated, and the capability of the code was demonstrated.

Obayashi, Shigeru

1994-01-01

204

Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the

Radoslav Bozinoski

2009-01-01

205

Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

NASA Technical Reports Server (NTRS)

Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

Mangalam, Arun S.; Moes, Timothy R.

2004-01-01

206

Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

NASA Technical Reports Server (NTRS)

Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

Mangalam, Arun S.; Moes, Timothy R.

2004-01-01

207

Computational unsteady aerodynamics for lifting surfaces

NASA Technical Reports Server (NTRS)

Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency.

Edwards, John W.

1988-01-01

208

Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade

NASA Technical Reports Server (NTRS)

An approach to passive flutter control is aerodynamic detuning, defined as designed pasage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamicaly detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentialy spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.

Hoyniak, D.; Fleeter, S.

1986-01-01

209

NSDL National Science Digital Library

The following resource is from Lessonopoly, which has created student activities and lesson plans to support the video series, Science of the Olympic Winter Games, created by NBC Learn and the National Science Foundation. Featuring exclusive footage from NBC Sports and contributions from Olympic athletes and NSF scientists, the series will help teach your students valuable scientific concepts. In this particular lesson, students will learn about the role of scientific research in the design of competition suits for athletes in the Winter Olympics. Students will also explore and research the concept of aerodynamics, and conduct their own scientific experiment to gain an understanding of this concept.

2010-01-01

210

We study the chaotic motion of a small rigid sphere, lighter than the fluid in a three-dimensional vortex of finite height. Based on the results of Eulerian and Lagrangian measurements, a sequence of models is set up. The time-independent model is a generalization of the Burgers vortex. In this case, there are two types of attractors for the particle: a fixed point on the vortex axis and a limit cycle around the vortex axis. Time dependence might combine these regular attractors into a single chaotic attractor, however its robustness is much weaker than what the experiments suggest. To construct an aperiodically time-dependent advection dynamics in a simple way, Gaussian noise is added to the particle velocity in the numerical simulation. With an appropriate choice of the noise properties, mimicking the effect of local turbulence, a reasonable agreement with the experimentally observed particle statistics is found. PMID:25122364

Vanyó, József; Vincze, Miklós; Jánosi, Imre M; Tél, Tamás

2014-07-01

211

DOE's effort to reduce truck aerodynamic drag through joint experiments and computations

Class 8 tractor-trailers are responsible for 11-12% of the total US consumption of petroleum. Overcoming aero drag represents 65% of energy expenditure at highway speeds. Most of the drag results from pressure differences and reducing highway speeds is very effective. The goal is to reduce aerodynamic drag by 25% which would translate to 12% improved fuel economy or 4,200 million

Kambiz Salari; Fred Browand; Kidambi Sreenivas; W. David Pointer; Lafayette Taylor; Ramesh Pankajakshan; David Whitfield; Dennis Plocher; Jason M. Ortega; Tai Merzel; Rose McCallen; Stephen M Walker; James T Heineck; Basil Hassan; Christopher John Roy; B. Storms; James Ross; Robert Englar; Mike Rubel; Anthony Leonard; Charles Radovich; Craig Eastwood; John Paschkewitz; Paul Castellucci; Lawrence Justin. DeChant

2005-01-01

212

Computational methods for unsteady transonic flows

NASA Technical Reports Server (NTRS)

Computational methods for unsteady transonic flows are surveyed with emphasis upon applications to aeroelastic analysis and flutter prediction. Computational difficulty is discussed with respect to type of unsteady flow; attached, mixed (attached/separated) and separated. Significant early computations of shock motions, aileron buzz and periodic oscillations are discussed. The maturation of computational methods towards the capability of treating complete vehicles with reasonable computational resources is noted and a survey of recent comparisons with experimental results is compiled. The importance of mixed attached and separated flow modeling for aeroelastic analysis is discussed and recent calculations of periodic aerodynamic oscillations for an 18 percent thick circular arc airfoil are given.

Edwards, John W.; Thomas, James L.

1987-01-01

213

Computational methods for unsteady transonic flows

NASA Technical Reports Server (NTRS)

Computational methods for unsteady transonic flows are surveyed with emphasis on prediction. Computational difficulty is discussed with respect to type of unsteady flow; attached, mixed (attached/separated) and separated. Significant early computations of shock motions, aileron buzz and periodic oscillations are discussed. The maturation of computational methods towards the capability of treating complete vehicles with reasonable computational resources is noted and a survey of recent comparisons with experimental results is compiled. The importance of mixed attached and separated flow modeling for aeroelastic analysis is discussed, and recent calculations of periodic aerodynamic oscillations for an 18 percent thick circular arc airfoil are given.

Edwards, John W.; Thomas, J. L.

1987-01-01

214

Characterization of unsteady flow processes in a centrifugal compressor stage

Numerical experiments have been implemented to characterize the unsteady loading on the rotating impeller blades in a modem centrifugal compressor. These consist of unsteady Reynolds-averaged Navier Stokes simulations of ...

Gould, Kenneth A. (Kenneth Arthur)

2006-01-01

215

ERIC Educational Resources Information Center

Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

Weltner, Klaus

1990-01-01

216

Aerodynamic Characteristics of Water Rocket and Stabilization of Flight Trajectory

The aerodynamic characteristics of water rockets are analyzed experimentally by wind tunnel testing. Aerodynamic devices such as vortex generators and dimples are tested and their effectiveness to the flight performance of water rocket is discussed. Attaching vortex generators suppresses the unsteady body fluttering. Dimpling the nose reduces the drag coefficient in high angles of attack. Robust design approach is applied

Rikio Watanabe; Nobuyuki Tomita; Toshiaki Takemae

2004-01-01

217

NASA Technical Reports Server (NTRS)

A flight experiment was conducted to evaluate a pressure measurement system which uses pneumatic tubing and remotely located electronically scanned pressure transducer modules for in-flight unsteady aerodynamic studies. A parametric study of tubing length and diameter on the attenuation and lag of the measured signals was conducted. The hardware was found to operate satisfactorily at rates of up to 500 samples/sec per port in flight. The signal attenuation and lag due to tubing were shown to increase with tubing length, decrease with tubing diameter, and increase with altitude over the ranges tested. Measurable signal levels were obtained for even the longest tubing length tested, 4 ft, at frequencies up to 100 Hz. This instrumentation system approach provides a practical means of conducting detailed unsteady pressure surveys in flight.

Curry, Robert E.; Gilyard, Glenn B.

1989-01-01

218

Unsteady transonic flow past airfoils in rigid-body motion. [UFLO5

With the aim of developing a fast and accurate computer code for predicting the aerodynamic forces needed for a flutter analysis, some basic concepts in computational transonics are reviewed. The unsteady transonic flow past airfoils in rigid body motion is adequately described by the potential flow equation as long as the boundary layer remains attached. The two dimensional unsteady transonic potential flow equation in quasilinear form with first order radiation boundary conditions is solved by an alternating direction implicit scheme in an airfoil attached sheared parabolic coordinate system. Numerical experiments show that the scheme is very stable and is able to resolve the higher nonlinear transonic effects for filter analysis within the context of an inviscid theory.

Chang, I C

1981-03-01

219

NASA Astrophysics Data System (ADS)

This paper describes a methodology to extract aerial vehicles’ aerodynamic characteristics from visually tracked trajectory data. The technique is being developed to study the aerodynamics of centimeter-scale aircraft and develop flight simulation models. Centimeter-scale aircraft remains a largely unstudied domain of aerodynamics, for which traditional techniques like wind tunnels and computational fluid dynamics have not yet been fully adapted and validated. The methodology takes advantage of recent progress in commercial, vision-based, motion-tracking systems. This system dispenses from on-board navigation sensors and enables indoor flight testing under controlled atmospheric conditions. Given the configuration of retro-reflective markers affixed onto the aerial vehicle, the vehicle’s six degrees-of-freedom motion can be determined in real time. Under disturbance-free conditions, the aerodynamic forces and moments can be determined from the vehicle’s inertial acceleration, and furthermore, for a fixed-wing vehicle, the aerodynamic angles can be plotted from the vehicle’s kinematics. By combining this information, we can determine the temporal evolution of the aerodynamic coefficients, as they change throughout a trajectory. An attractive feature of this technique is that trajectories are not limited to equilibrium conditions but can include non-equilibrium, maneuvering flight. Whereas in traditional wind-tunnel experiments, the operating conditions are set by the experimenter, here, the aerodynamic conditions are driven by the vehicle’s own dynamics. As a result, this methodology could be useful for characterizing the unsteady aerodynamics effects and their coupling with the aircraft flight dynamics, providing insight into aerodynamic phenomena taking place at centimeter scale flight.

Mettler, B. F.

2010-09-01

220

Experimental characterization of high speed centrifugal compressor aerodynamic forcing functions

NASA Astrophysics Data System (ADS)

The most common and costly unexpected post-development gas turbine engine reliability issue is blade failure due to High Cycle Fatigue (HCF). HCF in centrifugal compressors is a coupled nonlinear fluid-structure problem for which understanding of the phenomenological root causes is incomplete. The complex physics of this problem provides significant challenges for Computational Fluid Dynamics (CFD) techniques. Furthermore, the available literature fails to address the flow field associated with the diffuser potential field, a primary cause of forced impeller vibration. Because of the serious nature of HCF, the inadequacy of current design approaches to predict HCF, and the fundamental lack of benchmark experiments to advance the design practices, there exists a need to build a database of information specific to the nature of the diffuser generated forcing function as a foundation for understanding flow induced blade vibratory failure. The specific aim of this research is to address the fundamental nature of the unsteady aerodynamic interaction phenomena inherent in high-speed centrifugal compressors wherein the impeller exit flow field is dynamically modulated by the vaned diffuser potential field or shock structure. The understanding of this unsteady aerodynamic interaction is fundamental to characterizing the impeller forcing function. Unsteady static pressure measurement at several radial and circumferential locations in the vaneless space offer a depiction of pressure field radial decay, circumferential variation and temporal fluctuation. These pressure measurements are coupled with high density, full field measurement of the velocity field within the diffuser vaneless space at multiple spanwise positions. The velocity field and unsteady pressure field are shown to be intimately linked. A strong momentum gradient exiting the impeller is shown to extend well across the vaneless space and interact with the diffuser vane leading edge. The deterministic unsteady pressure field is found to be dominated by the blade-vane interaction. HCF concerns are illuminated by persistent pressure waves extending radially across the vaneless space and impacting the impeller pressure surface. Finally, the average impeller exit flow field is found to present a highly unsteady velocity field to the downstream vane row, challenging the common design assumption of a rapid mixing model for diffuser design.

Gallier, Kirk

221

Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations

NASA Technical Reports Server (NTRS)

Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

Farassat, F.; Myers, M. K.

1986-01-01

222

Aerodynamics via acoustics - Application of acoustic formulas for aerodynamic calculations

NASA Technical Reports Server (NTRS)

Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

Farassat, F.; Myers, M. K.

1986-01-01

223

Numerical calculations of two dimensional, unsteady transonic flows with circulation

NASA Technical Reports Server (NTRS)

The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.

Beam, R. M.; Warming, R. F.

1974-01-01

224

Compensations during Unsteady Locomotion.

Locomotion in a complex environment is often not steady, but the mechanisms used by animals to power and control unsteady locomotion (stability and maneuverability) are not well understood. We use behavioral, morphological, and impulsive perturbations to determine the compensations used during unsteady locomotion. At the level both of the whole-body and of joints, quasi-stiffness models are useful for describing adjustments to the functioning of legs and joints during maneuvers. However, alterations to the mechanics of legs and joints often are distinct for different phases of the step cycle or for specific joints. For example, negotiating steps involves independent changes of leg stiffness during compression and thrust phases of stance. Unsteady locomotion also involves parameters that are not part of the simplest reduced-parameter models of locomotion (e.g., the spring-loaded inverted pendulum) such as moments of the hip joint. Extensive coupling among translational and rotational parameters must be taken into account to stabilize locomotion or maneuver. For example, maneuvers with morphological perturbations (increased rotational inertial turns) involve changes to several aspects of movement, including the initial conditions of rotation and ground-reaction forces. Coupled changes to several parameters may be employed to control maneuvers on a trial-by-trial basis. Compensating for increased rotational inertia of the body during turns is facilitated by the opposing effects of several mechanical and behavioral parameters. However, the specific rules used by animals to control translation and rotation of the body to maintain stability or maneuver have not been fully characterized. We initiated direct-perturbation experiments to investigate the strategies used by humans to maintain stability following center-of-mass (COM) perturbations. When walking, humans showed more resistance to medio-lateral perturbations (lower COM displacement). However, when running, humans could recover from the point of maximum COM displacement faster than when walking. Consequently, the total time necessary for recovery was not significantly different between walking and running. Future experiments will determine the mechanisms used for compensations during unsteady locomotion at the behavioral, joint, and muscle levels. Using reduced-parameter models will allow common experimental and analytical frameworks for the study of both stability and maneuverability and the determination of general control strategies for unsteady locomotion. PMID:24948138

Qiao, Mu; Jindrich, Devin L

2014-12-01

225

NASA Technical Reports Server (NTRS)

A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.

Tseng, K.; Morino, L.

1975-01-01

226

Research on unsteady transonic flow theory

NASA Technical Reports Server (NTRS)

A two-dimensional theory is considered for the unsteady flow disturbances caused by aeroelastic deformations of a thick wing at high subsonic freestream Mach numbers, having a single, internally embedded supercritical (locally supersonic) steady flow region adjacent to the low pressure side of the wing. The theory develops a matrix of unsteady aerodynamic influence coefficients (AICs) suitable as a strip theory for aeroelastic analysis of large aspect ratio thick wings of moderate sweep, typical of a wide class of current and future aircraft. The theory derives the linearized unsteady flow solutions separately for both the subcritical and supercritical regions. These solutions are coupled together to give the requisite (wing pressure-downwash) AICs by the intermediate step of defining flow disturbances on the sonic line, and at the shock wave; these intermediate quantities are then algebraically eliminated by expressing them in terms of the wing surface downwash.

Revell, J. D.

1973-01-01

227

Development of a linearized unsteady Euler analysis for turbomachinery blade rows

NASA Technical Reports Server (NTRS)

A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.

Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.

1995-01-01

228

Some remarks on the design of transonic tunnels with low levels of flow unsteadiness

NASA Technical Reports Server (NTRS)

The principal sources of flow unsteadiness in the circuit of a transonic wind tunnel are presented. Care must be taken to avoid flow separations, acoustic resonances and large scale turbulence. Some problems discussed are the elimination of diffuser separations, the aerodynamic design of coolers and the unsteadiness generated in ventilated working sections.

Mabey, D. G.

1976-01-01

229

NASA Technical Reports Server (NTRS)

This document describes the aerodynamic design of an experimental hybrid laminar flow control (HLFC) wing panel intended for use on a Boeing 757 airplane to provide a facility for flight research on high Reynolds number HLFC and to demonstrate practical HLFC operation on a full-scale commercial transport airplane. The design consists of revised wing leading edge contour designed to produce a pressure distribution favorable to laminar flow, definition of suction flow requirements to laminarize the boundary layer, provisions at the inboard end of the test panel to prevent attachment-line boundary layer transition, and a Krueger leading edge flap that serves both as a high lift device and as a shield to prevent insect accretion on the leading edge when the airplane is taking off or landing.

1999-01-01

230

Extension and validation of an unsteady wake model for rotors

NASA Technical Reports Server (NTRS)

A new three-dimensional, finite-state induced-flow model is extended to treat nonlinearities associated with the mass flow induced through the rotor plane. This new theory is then applied to the correlation of a recent set of unsteady, hover laser Doppler velocimetry inflow measurements conducted in the Aeroelastic Rotor Test Chamber at Georgia Institute of Technology. Although the model is intended primarily as a representation of unsteady aerodynamics for aeroelasticity applications, the results show that it has an excellent capability in predicting the inflow distribution in hover except near the root and tip. In addition, the computed unsteady spanwise lift distribution of a rotor is compared with that from an unsteady vortex lattice method for pitch oscillations at various frequencies. The new model is shown to be capable of prediction of unsteady loads typical of aeroelastic response.

Su, AY; Yoo, Kyung M.; Peters, David A.

1992-01-01

231

NASA Technical Reports Server (NTRS)

Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.

Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen

1999-01-01

232

Supersonic flutter analysis of wings using an unsteady 3D panel method

A frequency-domain flutter analysis scheme for wings is developed using an unsteady 3D panel method. The unsteady aerodynamic force calculation is based on the s-plane unsteady nonplanar lifting surface method, and a finite element method is used to structurally model the wing. The flutter analysis is done using the normal mode approach and a U–g method in frequency-domain. The U–g

Jinsoo Cho; Younhyuck Chang

2001-01-01

233

NASA Astrophysics Data System (ADS)

Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

Wilson, R. E.

1981-05-01

234

NASA Technical Reports Server (NTRS)

Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

Wilson, R. E.

1981-01-01

235

Modern helicopter rotor aerodynamics

NASA Astrophysics Data System (ADS)

The helicopter rotor wake is among the most complex fluid dynamic structures being three dimensional and in many cases unsteady. The wake begins at the blade(s) where the flow can be transonic near the blade tip and undergo compressible dynamic stall. Farther down in the wake, the flow is essentially incompressible. Moreover, the rotor blades undergo complex unsteady motions because of the necessity to balance moments; they are elastic as well. In this paper, the fundamental aeromechanics of the wake and the flow on the blade is discussed and the primary methods of analysis, computation, and experiment employed to uncover the physics of the rotor wake are described.

Conlisk, A. T.

2001-07-01

236

Unsteady, three-dimensional, Navier-Stokes simulations of multistage turbomachinery flows

Hub corner stall regions, endwall boundary layers, tip leakage flows and airfoil wakes combine to form the 3D flowfields found in axial turbomachines. Turbomachinery flow fields are also inherently unsteady because of the relative motion between rotor and stator airfoils. This relative motion causes complex time-varying aerodynamic interactions to occur between the different aerodynamic structures and the rotor and stator

Karen L. Gundy-Burlet; Man M. Rai; Nateri K. Madavan

1993-01-01

237

Fluid mechanics of dynamic stall. I - Unsteady flow concepts

NASA Technical Reports Server (NTRS)

Advanced military aircraft 'supermaneuverability' requirements entail the sustained operation of airfoils at stalled flow conditions. The present work addresses the effects of separated flow on vehicle dynamics; an analytic method is presented which employs static experimental data to predict the separated flow effect on incompressible unsteady aerodynamics. The key parameters in the analytic relationship between steady and nonsteady aerodynamics are the time-lag before a change of flow conditions can affect the separation-induced aerodynamic loads, the accelerated flow effect, and the moving wall effect.

Ericsson, L. E.; Reding, J. P.

1988-01-01

238

Direct use of linear time-domain aerodynamics in aeroservoelastic analysis: Aerodynamic model

NASA Technical Reports Server (NTRS)

The work presented here is the first part of a continuing effort to expand existing capabilities in aeroelasticity by developing the methodology which is necessary to utilize unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis. The ultimate objective is to define a fully integrated state-space model of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to efficiently determine the vehicle's aeroservoelastic stability. Here, the current status of developing a state-space model for linear or near-linear time-domain indicial aerodynamic forces is presented.

Woods, J. A.; Gilbert, Michael G.

1990-01-01

239

Unsteady Separated Flow Simulations Using a Cluster of Workstations

The possibility of predicting the full three- dimensional, unsteady, separated flow around complex ship and helicopter geometries is explored using un- structured grids in a parallel flow solver. The flow solver used is a modified version of the Parallel Un- structured Maritime Aerodynamics (PUMA) software. Since this requires immense computational resources, one has to often depend on expensive supercomputers to

Anirudh Modi; Lyle N. Long; Robert P. Hansen

1999-01-01

240

NASA Technical Reports Server (NTRS)

On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.

Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John

2013-01-01

241

Reciprocity relations in aerodynamics

NASA Technical Reports Server (NTRS)

Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

Heaslet, Max A; Spreiter, John R

1953-01-01

242

NASA Technical Reports Server (NTRS)

Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

Mehta, R. D.

1985-01-01

243

NASA Astrophysics Data System (ADS)

Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

Mehta, R. D.

244

NASA Technical Reports Server (NTRS)

The SOUSSA (steady, oscillatory, and unsteady subsonic and supersonic aerodynamics) program is the computational implementation of a general potential flow analysis (by the Green's function method) that can generate pressure distributions on complete aircraft having arbitrary shapes, motions and deformations. Some applications of the initial release version of this program to several wings in steady and oscillatory motion, including flutter are presented. The results are validated by comparisons with other calculations and experiments. Experiences in using the program as well as some recent improvements are described.

Yates, E. C., Jr.; Cunningham, H. J.; Desmarais, R. N.; Silva, W. A.; Drobenko, B.

1982-01-01

245

NASA Technical Reports Server (NTRS)

Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

1992-01-01

246

Design and Predictions for High-Altitude (Low Reynolds Number) Aerodynamic Flight Experiment

NASA Technical Reports Server (NTRS)

A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters or an airfoil at high altitudes (70,000 - 100,000 ft), low Reynolds numbers (2 x 10(exp 5) - 7 x 10(exp 5)), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pilot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary-layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented as well as several predictions of the airfoil performance.

Greer, Donald; Harmory, Phil; Krake, Keith; Drela, Mark

2000-01-01

247

Design and Predictions for a High-Altitude (Low-Reynolds-Number) Aerodynamic Flight Experiment

NASA Technical Reports Server (NTRS)

A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.

Greer, Donald; Hamory, Phil; Krake, Keith; Drela, Mark

1999-01-01

248

and turbomachinery blades operate in unsteady flow and are constantly subjected to unsteady loads. Therefore, optimal multiplier !r = reduced frequency I. Introduction THE majority of work in aerodynamic shape optimization has on both structured and unstructured grids. Unlike fixed-wing aircraft, helicopter rotors

Jameson, Antony

249

Assessment of the derivative-moment transformation method for unsteady-load estimation

NASA Astrophysics Data System (ADS)

It is often difficult, if not impossible, to measure the aerodynamic or hydrodynamic forces on a moving body. For this reason, a classical control-volume technique is typically applied to extract the unsteady forces. However, measuring the acceleration term within the volume of interest using particle image velocimetry (PIV) can be limited by optical access, reflections, as well as shadows. Therefore, in this study, an alternative approach, termed the derivative-moment transformation (DMT) method, is introduced and tested on a synthetic data set produced using numerical simulations. The test case involves the unsteady loading of a flat plate in a two-dimensional, laminar periodic gust. The results suggest that the DMT method can accurately predict the acceleration term so long as appropriate spatial and temporal resolutions are maintained. The major deficiency, which is more dominant for the direction of drag, was found to be the determination of pressure and unsteady terms in the wake. The effect of control-volume size was investigated, suggesting that larger domains work best by minimizing the associated error in the determination of the pressure field. When decreasing the control-volume size, wake vortices, which produce high gradients across the control surfaces, are found to substantially increase the level of error. On the other hand, it was shown that for large control volumes, and with realistic spatial resolution, the accuracy of the DMT method would also suffer. Therefore, a delicate compromise is required when selecting control-volume size in future experiments.

Mohebbian, Ali; Rival, David E.

2012-08-01

250

Impact of Periodic Unsteadiness on Performance and Heat Load in Axial Flow Turbomachines

NASA Technical Reports Server (NTRS)

Results of an analytical and experimental investigation, directed at the understanding of the impact of periodic unsteadiness on the time-averaged flows in axial flow turbomachines, are presented. Analysis of available experimental data, from a large-scale rotating rig (LSRR) (low speed rig), shows that in the time-averaged axisymmetric equations the magnitude of the terms representing the effect of periodic unsteadiness (deterministic stresses) are as large or larger than those due to random unsteadiness (turbulence). Numerical experiments, conducted to highlight physical mechanisms associated with the migration of combustor generated hot-streaks in turbine rotors, indicated that the effect can be simulated by accounting for deterministic stress like terms in the time-averaged mass and energy conservation equations. The experimental portion of this program shows that the aerodynamic loss for the second stator in a 1-1/2 stage turbine are influenced by the axial spacing between the second stator leading edge and the rotor trailing edge. However, the axial spacing has little impact on the heat transfer coefficient. These performance changes are believed to be associated with the change in deterministic stress at the inlet to the second stator. Data were also acquired to quantify the impact of indexing the first stator relative to the second stator. For the range of parameters examined, this effect was found to be of the same order as the effect of axial spacing.

Sharma, Om P.; Stetson, Gary M.; Daniels, William A,; Greitzer, Edward M.; Blair, Michael F.; Dring, Robert P.

1997-01-01

251

Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

NASA Technical Reports Server (NTRS)

A technique for approximating the modal aerodynamic influence coefficients matrices by using basis functions has been developed and validated. An application of the resulting approximated modal aerodynamic influence coefficients matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle.

Li, Wesley W.; Pak, Chan-gi

2011-01-01

252

New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity

NASA Technical Reports Server (NTRS)

This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.

Pak, Chan-gi; Jutte, Christine V.

2009-01-01

253

Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

NASA Technical Reports Server (NTRS)

Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

2014-01-01

254

Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

Becker, B.G.; Lane, D.A.; Max, N.L.

1995-03-01

255

NASA Technical Reports Server (NTRS)

An engineering methodology has been developed to predict the convective heating and pressure environments to the base surfaces of the Aeroassist Flight Experiment (AFE) vehicle during its earth aeropass. Data obtained from prior flight vehicles, wind tunnel tests, CFD analysis of AFE, and simple one-dimensional isentropic flow expansion relationships along with standard aeroheating methods were employed. With the exception of one corner, the AFE base surfaces are immersed in separated flow and are, therefore, exposed to heating and pressure that are small compared to the front face of the aerobrake.

Sambamurthi, Jay; Warmbrod, John; Seaford, Mark

1989-01-01

256

Quasi-steady aerodynamic analysis of propeller-wing interaction

A quasi-steady scheme for the analysis of aerodynamic interaction between a propeller and a wing has been developed. The quasi-steady analysis uses a 3D steady vortex lattice method for the propeller and a 3D unsteady panel method for the wing. The aerodynamic coupling is represented by periodic loads, which are decomposed into harmonics and the harmonic amplitudes are found iteratively.

Jinsoo Cho; Jaeheon Cho

1999-01-01

257

Development of a Linearized Unsteady Euler Analysis with Application to Wake/Blade-Row Interactions

NASA Technical Reports Server (NTRS)

A three-dimensional, linearized, Euler analysis is being developed to provide a comprehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operating within a cylindrical annular duct are presented in this report. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to far-field eigen analyses, is also described. The linearized aerodynamic and numerical models have been implemented into the three-dimensional unsteady flow code, LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or vortical excitations. The intent is to validate the LINFLUX analysis via numerical results for simple benchmark unsteady flows and to demonstrate this analysis via application to a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX is becoming a reliable and useful unsteady aerodynamic prediction capability that can be applied, in the future, to assess the three-dimensional flow physics important to blade-row, aeroacoustic and aeroelastic responses.

Verdon, Joseph M.; Montgomery, Matthew D.; Chuang, H. Andrew

1999-01-01

258

A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows

NASA Technical Reports Server (NTRS)

A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.

Montgomery, Matthew D.; Verdon, Joseph M.

1996-01-01

259

Numerical and experimental study of unsteady flow field and vibration in radial inflow turbines

The blades of turbocharger impellers are exposed to unsteady aerodynamic forces, which cause blade vibrations and may lead to failures. An indispensable requirement for a safe design of radial inflow turbines is a detailed knowledge of the exciting forces. Up to now, only a few investigations relating to unsteady aerodynamic forces in radial turbines have been presented. To give a detailed insight into the complex phenomena, a comprehensive research project was initiated at the Institut fuer Thermische Stroemungsmaschinen, at the University of Karlsruhe. A turbocharger test rig was installed in the high-pressure, high-temperature laboratory of the institute. The present paper gives a description of the test rig design and the measuring techniques. The flow field in a vaneless radial inflow turbine was analyzed using laser-Doppler anemometry. First results of unsteady flow field investigations in the turbine scroll and unsteady phase-resolved measurements of the flow field in the turbine rotor will be discussed. Moreover, results from finite element calculations analyzing frequencies and mode shapes are presented. As vibrations in turbines of turbochargers are assumed to be predominantly excited by unsteady aerodynamic forces, a method to predict the actual transient flow in a radial turbine utilizing the commercial Navier-Stokes solver TASCflow3d was developed. Results of the unsteady calculations are presented and comparisons with the measured unsteady flow field are made. As a major result, the excitation effect of the tongue region in a vaneless radial inflow turbine can be demonstrated.

Kreuz-Ihli, T.; Filsinger, D.; Schulz, A.; Wittig, S.

2000-04-01

260

NASA Technical Reports Server (NTRS)

An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on body length) of 17.9 x 10 to the 6th power. Seven wings with leading edge sweep angles from -20 deg to 60 deg were tested on a common body over an angle of attack range from -12 deg to 10 deg. All wings had a common span, aspect ratio, taper ratio, planform area, and thickness ratio. Wings were translated longitudinally on the body to make tests possible with the total and exposed mean aerodynamic chords located at a fixed body station. Aerodynamic forces were found to be independent of wing sweep and translation, and pitching moments were constant when the exposed wing mean aerodynamic chord was located at a fixed body station. Thus, the Hypersonic Isolation Principle was verified. Theory applied with tangent wedge pressures on the wing and tangent cone pressures on the body provided excellent predictions of aerodynamic force coefficients but poor estimates of moment coefficients.

Penland, J. A.; Pittman, J. L.

1985-01-01

261

Aerodynamic characteristics of flapping motion in hover

The aim of the present work is to understand the aerodynamic phenomena and the vortex topology of an unsteady flapping motion\\u000a by means of numerical and experimental methods. Instead of the use of real insect\\/bird wing geometries and kinematics which\\u000a are highly complex and difficult to imitate by an exact modeling, a simplified model is used in order to understand

D. Funda Kurtulus; Laurent David; Alain Farcy; Nafiz Alemdaroglu

2008-01-01

262

NASA Technical Reports Server (NTRS)

Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

1993-01-01

263

Progressive Aerodynamic Model Identification From Dynamic Water Tunnel Test of the F-16XL Aircraft

NASA Technical Reports Server (NTRS)

Development of a general aerodynamic model that is adequate for predicting the forces and moments in the nonlinear and unsteady portions of the flight envelope has not been accomplished to a satisfactory degree. Predicting aerodynamic response during arbitrary motion of an aircraft over the complete flight envelope requires further development of the mathematical model and the associated methods for ground-based testing in order to allow identification of the model. In this study, a general nonlinear unsteady aerodynamic model is presented, followed by a summary of a linear modeling methodology that includes test and identification methods, and then a progressive series of steps suggesting a roadmap to develop a general nonlinear methodology that defines modeling, testing, and identification methods. Initial steps of the general methodology were applied to static and oscillatory test data to identify rolling-moment coefficient. Static measurements uncovered complicated dependencies of the aerodynamic coefficient on angle of attack and sideslip in the stall region making it difficult to find a simple analytical expression for the measurement data. In order to assess the effect of sideslip on the damping and unsteady terms, oscillatory tests in roll were conducted at different values of an initial offset in sideslip. Candidate runs for analyses were selected where higher order harmonics were required for the model and where in-phase and out-of-phase components varied with frequency. From these results it was found that only data in the angle-of-attack range of 35 degrees to 37.5 degrees met these requirements. From the limited results it was observed that the identified models fit the data well and both the damping-in-roll and the unsteady term gain are decreasing with increasing sideslip and motion amplitude. Limited similarity between parameter values in the nonlinear model and the linear model suggest that identifiability of parameters in both terms may be a problem. However, the proposed methodology can still be used with careful experiment design and carefully selected values of angle of attack, sideslip, amplitude, and frequency of the oscillatory data.

Murphy, Patrick C.; Klein, Vladislav; Szyba, Nathan M.

2004-01-01

264

Computational Aerodynamics of Insects' Flapping Flight

NASA Astrophysics Data System (ADS)

The kinematics of the Insects' flapping flight is modeled through mathematical and computational observations with commercial software. Recently, study on the insects' flapping flight became one of the challenging research subjects in the field of aeronautics because of its potential applicability to intelligent micro-robots capable of autonomous flight and the next generation aerial-vehicles. In order to uncover its curious unsteady characteristics, many researchers have conducted experimental and computational studies on the unsteady aerodynamics of insects' flapping flight. In the present paper, the unsteady flow physics around insect wings is carried out by utilizing computer software e-AIRS. The e-AIRS (e-Science Aerospace Integrated Research System) analyzes and models the results of computational and experimental aerodynamics, along with integrated research process of these two research activities. Stroke angles and phase angles, the important two factors in producing lift of the airfoils are set as main parameters to determine aerodynamic characteristics of the insects' flapping flight. As a result, the optimal phase angle to minimize the drag and to maximize the lift are found. Various simulations indicate that using proper value of variables produce greater thrust due to an optimal angle of attack at the initial position during down stroke motion.

Yang, Kyung Dong; Kyung, Richard

2011-11-01

265

Dragonfly Flight: Novel Uses of Unsteady Separated Flows

NASA Astrophysics Data System (ADS)

Studies of insect flight have revealed novel mechanisms of production of aerodynamic lift. In the present study, large lift forces were measured during flight episodes elicited from dragonflies tethered to a force balance. Simultaneously, stroboscopic photographs provided stop-action views of wing motion and the flow-field structure surrounding the insect. Wing kinematics were correlated with both instantaneous lift generation and vortex-dominated flow fields. The large lift forces appear to be produced by unsteady flow-wing interactions. This successful utilization of unsteady separated flows by insects may signal the existence of a whole new class of fluid dynamic uses that remain to be explored.

Somps, Chris; Luttges, Marvin

1985-06-01

266

Basis Function Approximation of Transonic Aerodynamic Influence Coefficient Matrix

NASA Technical Reports Server (NTRS)

A technique for approximating the modal aerodynamic influence coefficients [AIC] matrices by using basis functions has been developed and validated. An application of the resulting approximated modal AIC matrix for a flutter analysis in transonic speed regime has been demonstrated. This methodology can be applied to the unsteady subsonic, transonic and supersonic aerodynamics. The method requires the unsteady aerodynamics in frequency-domain. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root-locus et cetera. The unsteady aeroelastic analysis for design optimization using unsteady transonic aerodynamic approximation is being demonstrated using the ZAERO(TradeMark) flutter solver (ZONA Technology Incorporated, Scottsdale, Arizona). The technique presented has been shown to offer consistent flutter speed prediction on an aerostructures test wing [ATW] 2 configuration with negligible loss in precision in transonic speed regime. These results may have practical significance in the analysis of aircraft aeroelastic calculation and could lead to a more efficient design optimization cycle

Li, Wesley Waisang; Pak, Chan-Gi

2010-01-01

267

Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil

NASA Technical Reports Server (NTRS)

The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.

Ghia, K. N.; Osswald, G. A.; Ghia, U.

1986-01-01

268

Detailed unsteady aerodynamic measurements have been taken in a single-stage transonic fan with a very high stator-hub loading. Two-dimensional dynamic yawmeter probes, capable of measuring mean and fluctuating levels of stagnation pressure, static pressure, and yaw angle have been traversed at rotor exit, and downstream of the stator along with several types of pneumatic three-dimensional probe. Part 1 of this paper describes the dynamic yawmeters and their performance, and presents ensemble-averaged stagnation pressure and random stagnation pressure unsteadiness measurements taken at rotor exit. These are used to illustrate the salient features of the rotor flow field, and the effects of compressor aerodynamic loading. Part 2 presents measurements taken at stator exit.

Cherrett, M.A.; Bryce, J.D.; Ginder, R.B. [Defence Research Agency, Farnborough (United Kingdom)

1995-10-01

269

Unsteady transition measurements on a pitching three-dimensional wing

NASA Technical Reports Server (NTRS)

Boundary layer transition measurements were made during an experimental study of the aerodynamics of a rectangular wing undergoing unsteady pitching motions. The wing was tested at chordwise Mach numbers between 0.2 and 0.6, at sweep angles of 0, 15, and 30 deg, and for steady state, sinusoidal, and constant pitch rate motions. The model was scaled to represent a full size helicopter rotor blade, with chord Reynolds numbers between 2 and 6 x 10(exp 6). Sixteen surface hot-film gages were located along three spanwise stations: 0.08, 0.27, and 0.70 chords from the wing tip. Qualitative heat transfer information was obtained to identify the unsteady motion of the point of transition to turbulence. In combination with simultaneous measurements of the unsteady surface pressure distributions, the results illustrate the effects of compressibility, sweep, pitch rate, and proximity to the wing tip on the transition and relaminarization locations.

Lorber, Peter F.; Carta, Franklin O.

1992-01-01

270

PREFACE: Aerodynamic sound Aerodynamic sound

NASA Astrophysics Data System (ADS)

The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the reduction of bluff-body noise. Xiaoyu Wang and Xiaofeng Sun discuss the interaction of fan stator and acoustic treatments using the transfer element method. S Saito and his colleagues in JAXA report the development of active devices for reducing helicopter noise. The paper by A Tamura and M Tsutahara proposes a brand new methodology for aerodynamic sound by applying the lattice Boltzmann finite difference method. As the method solves the fluctuation of air density directly, it has the advantage of not requiring modeling of the sound generation. M A Langthjem and M Nakano solve the hole-tone feedback cycle in jet flow by a numerical method. Y Ogami and S Akishita propose the application of a line-vortex method to the three-dimensional separated flow from a bluff body. I hope that a second issue on aerodynamic sound will be published in FDR in the not too distant future.

Akishita, Sadao

2010-02-01

271

Simulations of the Unsteady Flow through the Fastrac Supersonic Turbine

NASA Technical Reports Server (NTRS)

Analysis of the unsteady aerodynamic environment in the Fastrac supersonic turbine is presented. Modal analysis of the turbine blades indicated possible resonance in crucial operating ranges of the turbopump. Unsteady computational fluid dynamics (CFD) analysis was conducted to support the aerodynamic and structural dynamic assessments of the turbine. Before beginning the analysis, two major problems with current unsteady analytical capabilities had to be addressed: modeling a straight centerline nozzle with the turbine blades and exit guide vanes (EGVs), and reducing run times significantly while maintaining physical accuracy. Modifications were made to the CFD code used in this study to allow the coupled nozzle/blade/EGV analysis and to incorporate Message Passing Interface (MPI) software. Because unsteadiness is a key issue for the Fastrac turbine [and future rocket engine turbines such as for the Reusable Launch Vehicle (RI.V)], calculations were performed for two nozzle-to-blade axial gaps. Calculations were also performed for the nozzle alone, and the results were imposed as an inlet boundary condition for a blade/EGV calculation for the large gap case. These results are compared to the nozzle/blade/EGV results.

Griffin, Lisa W.; Dorney, Daniel J.

1999-01-01

272

A wake bending unsteady dynamic inflow model of tiltrotor in conversion flight of tiltrotor aircraft

The aerodynamics, dynamic responses and aeroelasticity of tiltrotor aircraft in the tilting of rotor i.e. in conversion flight\\u000a are extraordinarily complicated. The traditional quasi-steady assumption model can not reflect the unsteady aerodynamic problems\\u000a in the tilting of rotor. The CFD method based on the vortex theory can get better results, but it consumes a lot of computing\\u000a resources. In this

HaiLong Yue; PinQi Xia

2009-01-01

273

Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.

MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s?¹, operate in a Reynolds number regime of 10? or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs. PMID:22126793

Nakata, T; Liu, H; Tanaka, Y; Nishihashi, N; Wang, X; Sato, A

2011-12-01

274

A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows

NASA Technical Reports Server (NTRS)

A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.

Montgomery, Matthew D.; Verdon, Joseph M.

1997-01-01

275

Aerodynamic Design Using Neural Networks

NASA Technical Reports Server (NTRS)

The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

Rai, Man Mohan; Madavan, Nateri K.

2003-01-01

276

NSDL National Science Digital Library

This web page describes current research about insect flight dynamics. It focuses on the work of biologist R. McNeill Alexander of the University of Leeds, whose research team has built large-scale models of insects to test their flight aerodynamics in wind tunnels. At the bottom of the page is a small (160 x 120) QuickTime video of a Morpho butterfly (Order Lepidoptera, Family Nymphalidae) with detailed views of its wing scales. It is an excerpt from the Alien Empire miniseries of the Public Broadcasting Service's Nature series. The video requires QuickTime and may not be accessible to those with older or slow computers. The link to the "enhanced multimedia video clip" did not work at the time of this review.

0000-00-00

277

Aeroelastic control of stability and forced response of supersonic rotors by aerodynamic detuning

NASA Technical Reports Server (NTRS)

Aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row, is a new approach to passive flutter and forced response control. In this paper, a mathematical model for aerodynamic detuning is developed and utilized to demonstrate the aeroelastic stability enhancement due to aerodynamic detuning of supersonic blade rows. In particular, a model is developed to analyze both the torsion mode and the coupled bending-torsion mode unstalled supersonic flutter and torsion mode aerodynamically forced response characteristics of an aerodynamically detuned rotor operating in a supersonic inlet flow field with a subsonic leading edge locus. As small solidity variations do not have a dominant effect on the steady-state performance of a rotor, the aerodynamic detuning mechanism considered is nonuniform circumferential spacing of adjacent blades.

Hoyniak, Daniel; Fleeter, Sanford

1987-01-01

278

Measurements of Unsteady Wake Interference Between Tandem Cylinders

NASA Technical Reports Server (NTRS)

A multi-phase, experimental study in the Basic Aerodynamics Research Tunnel at the NASA Langley Research Center has provided new insight into the unsteady flow interaction around cylinders in tandem arrangement. Phase 1 of the study characterized the mean and unsteady near-field flow around two cylinders of equal diameter using 2-D Particle Image Velocimetry (PIV) and hot-wire anemometry. These measurements were performed at a Reynolds number of 1.66 x 10(exp 5), based on cylinder diameter, and spacing-to-diameter ratios, L/D, of 1.435 and 3.7. The current phase, Phase 2, augments this dataset by characterizing the surface flow on the same configurations using steady and unsteady pressure measurements and surface flow visualization. Transition strips were applied to the front cylinder during both phases to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the front and rear cylinders show the effects of L/D on flow symmetry, pressure recovery, and the location of flow separation and attachment. Mean streamlines and instantaneous vorticity obtained from the PIV data are used to explain the flow structure in the gap and near-wake regions and its relationship to the unsteady surface pressures. The combination of off-body and surface measurements provides a comprehensive dataset to develop and validate computational techniques for predicting the unsteady flow field at higher Reynolds numbers.

Jenkins, Luther N.; Neuhart, Dan H.; McGinley, Cahterine B.; Choudhari, Meelan M.; Khorrami, Mehdi R.

2006-01-01

279

Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

NASA Technical Reports Server (NTRS)

In the last two decades, there have been extensive developments in computational aerodynamics, which constitutes a major part of the general area of computational fluid dynamics. Such developments are essential to advance the understanding of the physics of complex flows, to complement expensive wind-tunnel tests, and to reduce the overall design cost of an aircraft, particularly in the area of aeroelasticity. Aeroelasticity plays an important role in the design and development of aircraft, particularly modern aircraft, which tend to be more flexible. Several phenomena that can be dangerous and limit the performance of an aircraft occur because of the interaction of the flow with flexible components. For example, an aircraft with highly swept wings may experience vortex-induced aeroelastic oscillations. Also, undesirable aeroelastic phenomena due to the presence and movement of shock waves occur in the transonic range. Aeroelastically critical phenomena, such as a low transonic flutter speed, have been known to occur through limited wind-tunnel tests and flight tests. Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At Ames a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft and it solves the Euler/Navier-Stokes equations. The purpose of this contract is to continue the algorithm enhancements of ENSAERO and to apply the code to complicated geometries. During the last year, the geometric capability of the code was extended to simulate transonic flows, a wing with oscillating control surface. Single-grid and zonal approaches were tested. For the zonal approach, a new interpolation technique was introduced. The key development of the algorithm was an interface treatment between moving zones for a control surface using the virtual-zone concept. The work performed during the period, 1 Apr. 1992 through 31 Mar. 1993 is summarized. Additional details on the various aspects of the study are given in the Appendices.

Obayashi, Shigeru

1993-01-01

280

Dynamics of coherent flow structures of a pulsating unsteady glottal jet in human phonation.

NASA Astrophysics Data System (ADS)

The primary sound source for human voice is oscillation of the vocal folds in the larynx. Phonation is the self-sustained oscillation of the viscoelastic vocal fold tissue driven by the air flow from the lung. It is due to the flow-induced Hopf instability of the biomechanical-aerodynamic system of vocal folds coupled to the aeroacoustic driving air flow. The aim of this study is to provide insight to the aero-acoustic part of the primary sound source of human voice. A physical rubber model of vocal folds with air flow conditions typical for human phonation was used. This model exhibits self-sustained oscillations similar to those in human phonation. The oscillating physical model can be regarded as a dynamic slit-like orifice that discharges a pulsating unsteady jet. A left-right flapping of the glottal jet axis was detected using hotwire anemometer measurements of the unsteady glottal jet. Flow visualization experiments revealed the detachment of the glottal jet from the physical model folds during the accelerating and decelerating phase of the jet pulsation. Roll-up of large-scale vortex rings as well as secondary vortex shedding in the form of Von Karman street due to shear layer instability were found downstream of the physical model.

Neubauer, Juergen; Miraghaie, Reza; Berry, David

2004-11-01

281

A Numerical Model of Unsteady, Subsonic Aeroelastic Behavior. Ph.D Thesis

NASA Technical Reports Server (NTRS)

A method for predicting unsteady, subsonic aeroelastic responses was developed. The technique accounts for aerodynamic nonlinearities associated with angles of attack, vortex-dominated flow, static deformations, and unsteady behavior. The fluid and the wing together are treated as a single dynamical system, and the equations of motion for the structure and flow field are integrated simultaneously and interactively in the time domain. The method employs an iterative scheme based on a predictor-corrector technique. The aerodynamic loads are computed by the general unsteady vortex-lattice method and are determined simultaneously with the motion of the wing. Because the unsteady vortex-lattice method predicts the wake as part of the solution, the history of the motion is taken into account; hysteresis is predicted. Two models are used to demonstrate the technique: a rigid wing on an elastic support experiencing plunge and pitch about the elastic axis, and an elastic wing rigidly supported at the root chord experiencing spanwise bending and twisting. The method can be readily extended to account for structural nonlinearities and/or substitute aerodynamic load models. The time domain solution coupled with the unsteady vortex-lattice method provides the capability of graphically depicting wing and wake motion.

Strganac, Thomas W.

1987-01-01

282

Unsteady, three-dimensional, Navier-Stokes simulations of multistage turbomachinery flows

NASA Technical Reports Server (NTRS)

Hub corner stall regions, endwall boundary layers, tip leakage flows and airfoil wakes combine to form the 3D flowfields found in axial turbomachines. Turbomachinery flow fields are also inherently unsteady because of the relative motion between rotor and stator airfoils. This relative motion causes complex time-varying aerodynamic interactions to occur between the different aerodynamic structures and the rotor and stator airfoils. It is necessary to understand the 3D unsteady aerodynamics associated with these interactions in order to design turbomachines that are both lightweight and compact as well as reliable and efficient. The current study uses a time-accurate 3D thin-layer Navier-Stokes zonal approach to investigate the unsteady aerodynamics of multistage turbines and compressors. Relative motion between rotor and stator airfoils is accounted for by the use of systems of patched and overlaid grids. Time-averaged surface pressures, surface flow visualizations, and time-averaged flow field contours have been computed for a 1 1/2-stage turbine and are in good agreement with experimental data. This favorable comparison represents an initial validation of the current method for unsteady computations of multistage turbomachinery flows.

Gundy-Burlet, Karen L.; Rai, Man M.; Madavan, Nateri K.

1993-01-01

283

Numerical Analysis of a Local Angle of Attack to HAWT Rotor Blade in Unsteady Flow Conditions

Summary: Precise prediction of performance of a wind turbine largely depends on accurate knowledge of flow around the rotor as it is subject to induced velocity caused by the spiral vortex wake and the unsteady aerodynamic loads caused by rapid change of wind direction. In this paper flow around a horizontal axis wind turbine rotor in a yawed flow condition

Hiroshi IMAMURA; Daisuke TAKEZAKI; Yutaka HASEGAWA

284

The effect of steady aerodynamic loading on the flutter stability of turbomachinery blading

NASA Technical Reports Server (NTRS)

An aeroelastic analysis is presented which accounts for the effect of steady aerodynamic loading on the aeroelastic stability of a cascade of compressor blades. The aeroelastic model is a two degree of freedom model having bending and torsional displacements. A linearized unsteady potential flow theory is used to determine the unsteady aerodynamic response coefficients for the aeroelastic analysis. The steady aerodynamic loading was caused by the addition of airfoil thickness and camber and steady flow incidence. The importance of steady loading on the airfoil unsteady pressure distribution is demonstrated. Additionally, the effect of steady loading on the tuned flutter behavior and flutter boundaries indicates that neglecting either airfoil thickness, camber or incidence could result in nonconservative estimates of flutter behavior.

Smith, Todd E.; Kadambi, Jaikrishnan R.

1991-01-01

285

The effect of steady aerodynamic loading on the flutter stability of turbomachinery blading

NASA Technical Reports Server (NTRS)

An aeroelastic analysis is presented which accounts for the effect of steady aerodynamic loading on the aeroelastic stability of a cascade of compressor blades. The aeroelastic model is a two degree of freedom model having bending and torsional displacements. A linearized unsteady potential flow theory is used to determine the unsteady aerodynamic response coefficients for the aeroelastic analysis. The steady aerodynamic loading was caused by the addition of airfoil thickness and camber and steady flow incidence. The importance of steady loading on the airfoil unsteady pressure distribution is demonstrated. Additionally, the effect of steady loading on the tuned flutter behavior and flutter boundaries indicates that neglecting either airfoil thickness, camber or incidence could result in nonconservative estimates of flutter behavior.

Smith, Todd E.; Kadambi, Jaikrishnan R.

1990-01-01

286

Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor

NASA Technical Reports Server (NTRS)

The effect of aerodynamic detuning on the supersonic flow induced forced response behavior of a turbomachine blade row is analyzed using an aeroelastic model. The rotor is modeled as a flat plate airfoil cascade representing an unwrapped rotor annulus; the aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading on the blading, due to the convection of the transverse gust past the airfoil cascade as well as that resulting from the motion of the cascade, is developed in terms of influence coefficients. The model developed here is then used to analyze the effect of aerodynamic detuning on the flow induced forced response behavior of a twelve-bladed rotor with Verdon's Cascade B flow geometry.

Hoyniak, D.; Fleeter, S.

1985-01-01

287

NASA Technical Reports Server (NTRS)

An overview is presented of the entire procedure developed for the aerodynamic design of the contoured wind tunnel liner for the NASA supercritical, laminar flow control (LFC), swept wing experiment. This numerical design procedure is based upon the simple idea of streamlining and incorporates several transonic and boundary layer analysis codes. The liner, presently installed in the Langley 8 Foot Transonic Pressure Tunnel, is about 54 ft long and extends from within the existing contraction cone, through the test section, and into the diffuser. LFC model testing has begun and preliminary results indicate that the liner is performing as intended. The liner design results presented in this paper, however, are examples of the calculated requirements and the hardware implementation of them.

Newman, P. A.; Anderson, E. C.; Peterson, J. B., Jr.

1984-01-01

288

Aerodynamic performance measurements at moderate Re

NASA Astrophysics Data System (ADS)

There has been renewed interest in the aerodynamics of lifting wings at Reynolds numbers from 10^4 to 10^5, partly due to engineering requirements of small-scale, remotely piloted aircraft, and partly because birds and bats operate in this regime. Even when the wings do not flap or pitch or plunge, the flow over the small aspect ratio wings is likely to be three-dimensional and unsteady. Wind tunnel test results are described where force measurements are combined with DPIV studies. Some problems and principles of such measurement programs will also be discussed.

Rosen, M.; McArthur, J.; Spedding, G. R.

2004-11-01

289

Reduced order models for nonlinear aerodynamics

NASA Technical Reports Server (NTRS)

Reduced order models are needed for reliable, efficient and accurate prediction of aerodynamic forces to analyze fluid structure interaction problems in turbomachinery, including propfans. Here, a finite difference, time marching Navier-Stokes code is validated for unsteady airfoil motion by comparing results with those from classical potential flow. The Navier-Stokes code is then analyzed for calculation of primitive and exact estimates of eigenvalues and eigenvectors associated with fluid-airfoil interaction. A variational formulation for the Euler equations and Navier-Stokes equations will be the basis for reduction of order through an eigenvector transformation.

Mahajan, Aparajit J.; Dowell, Earl H.; Bliss, Donald B.

1988-01-01

290

Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics

NASA Astrophysics Data System (ADS)

The unsteady vortex-lattice method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally expensive potential-flow models, such as the doublet-lattice method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the unsteady vortex-lattice method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the unsteady vortex-lattice method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The unsteady vortex-lattice method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.

Murua, Joseba; Palacios, Rafael; Graham, J. Michael R.

2012-11-01

291

Unsteady Velocity Measurements Taken Behind a Model Helicopter Rotor Hub in Forward Flight

NASA Technical Reports Server (NTRS)

Drag caused by separated flow behind the hub of a helicopter has an adverse effect on aerodynamic performance of the aircraft. To determine the effect of separated flow on a configuration used extensively for helicopter aerodynamic investigations, an experiment was conducted using a laser velocimeter to measure velocities in the wake of a model helicopter hub operating at Mach-scaled conditions in forward flight. Velocity measurements were taken using a laser velocimeter with components in the vertical and downstream directions. Measurements were taken at 13 stations downstream from the rotor hub. At each station, measurements were taken in both a horizontal and vertical row of locations. These measurements were analyzed for harmonic content based on the rotor period of revolution. After accounting for these periodic velocities, the remaining unsteady velocities were treated as turbulence. Turbulence intensity distributions are presented. Average turbulent intensities ranged from approximately 2 percent of free stream to over 15 percent of free stream at specific locations and azimuths. The maximum average value of turbulence was located near the rear-facing region of the fuselage.

Berry, John D.

1997-01-01

292

Remote boundary conditions for unsteady multidimensional aerodynamic computations

NASA Technical Reports Server (NTRS)

The behavior of gas dynamic flows which are perturbations of a uniform stream in terms of information transfer across artificial (computational) boundaries remote from the source of disturbance are discussed. A set of boundary conditions is derived involving vorticity, entropy, and pressure-velocity relationships derived from bicharacteristic equations.

Roe, P. L.

1989-01-01

293

Ris-PhD-Report Wind Turbines: Unsteady Aerodynamics and

as input (Amiet, R. K.: 1975, Acoustic radiation from an airfoil in a turbulent stream). The two models, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements

294

Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 1

NASA Technical Reports Server (NTRS)

Computational fluid dynamics methods have been widely accepted for transonic aeroelastic analysis. Previously, calculations with the TSD methods were used for 2-D airfoils, but now the TSD methods are applied to the aeroelastic analysis of the complete aircraft. The Symposium papers are grouped into five subject areas, two of which are covered in this part: (1) Transonic Small Disturbance (TSD) theory for complete aircraft configurations; and (2) Full potential and Euler equation methods.

Bland, Samuel R. (compiler)

1989-01-01

295

Unsteady aerodynamic characterization of a military aircraft in vertical gusts

NASA Technical Reports Server (NTRS)

The effects of 2.5-m/sec vertical gusts on the flight characteristics of a 1:8.6 scale model of a Mirage 2000 aircraft in free flight at 35 m/sec over a distance of 30 m are investigated. The wind-tunnel setup and instrumentation are described; the impulse-response and local-coefficient-identification analysis methods applied are discussed in detail; and the modification and calibration of the gust-detection probes are reviewed. The results are presented in graphs, and good general agreement is obtained between model calculations using the two analysis methods and the experimental measurements.

Lebozec, A.; Cocquerez, J. L.

1985-01-01

296

Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 2

NASA Technical Reports Server (NTRS)

This two part document contains copies of the text and figures for the papers presented at the symposium held at NASA Langley on 20 to 22 May, 1987. The papers are grouped in five subject areas. The areas covered by this part includes the following: Methods for vortex and viscous flows; Aeroelastic applications, and Experimental results and cascade flows.

Bland, Samuel R. (compiler)

1989-01-01

297

Micro air vehicle motion tracking and aerodynamic modeling

NASA Astrophysics Data System (ADS)

Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics exhibited quasi-steady effects caused by small variations in the angle of attack. The quasi-steady effects, or small unsteady effects, caused variations in the aerodynamic characteristics (particularly incrementing the lift curve), and the magnitude of the influence depended on the angle-of-attack rate. In addition to nominal gliding flight, MAVs in general are capable of flying over a wide flight envelope including agile maneuvers such as perching, hovering, deep stall and maneuvering in confined spaces. From the captured motion trajectories, the aerodynamic characteristics during the numerous unsteady flights were gathered without the complexity required for unsteady wind tunnel tests. Experimental results for the MAVs show large flight envelopes that included high angles of attack (on the order of 90 deg) and high angular rates, and the aerodynamic coefficients had dynamic stall hysteresis loops and large values. From the large number of unsteady high angle-of-attack flights, an aerodynamic modeling method was developed and refined for unsteady MAV flight at high angles of attack. The method was based on a separation parameter that depended on the time history of the angle of attack and angle-of-attack rate. The separation parameter accounted for the time lag inherit in the longitudinal characteristics during dynamic maneuvers. The method was applied to three MAVs and showed general agreement with unsteady experimental results and with nominal gliding flight results. The flight tests with the MAVs indicate that modern motion tracking systems are capable of capturing the flight trajectories, and the captured trajectories can be used to determine the aerodynamic characteristics. From the captured trajectories, low Reynolds number MAV flight is explored in both nominal gliding flight and unsteady high angle-of-attack flight. Building on the experimental results, a modeling method for the longitudinal characteristics is developed that is applicable to the full flight envelope.

Uhlig, Daniel V.

298

Unsteady transonic flow calculations for wing-fuselage configurations

NASA Technical Reports Server (NTRS)

Unsteady transonic flow calculations are presented for wing-fuselage configurations. Calculations are performed by extending the XTRAN3S unsteady transonic small-disturbance code to allow the treatment of a fuselage. Details of the XTRAN3S fuselage modeling are discussed in the context of the small-disturbance equation. Transonic calculations are presented for three wing-fuselage configurations with leading edge sweep angles ranging from 0 deg to 46.76 deg. Simple bending and torsion modal oscillations of the wing are calculated. Sectional lift and moment coefficients for the wing-alone and wing-fuselage cases are compared and the effects of fuselage aerodynamic interference on the unsteady wing loading are revealed. Tabulated generalized aerodynamic forces used in flutter analyses, indicate small changes in the real in-phase component and as much as a 30% change in the imaginary component when the fuselage is included in the calculation. These changes result in a 2 to 5% increase in total magnitude and a several degree increase in phase.

Batina, J. T.

1986-01-01

299

An unsteady helicopter rotor: Fuselage interaction analysis

NASA Technical Reports Server (NTRS)

A computational method was developed to treat unsteady aerodynamic interactions between a helicopter rotor, wake, and fuselage and between the main and tail rotors. An existing lifting line prescribed wake rotor analysis and a source panel fuselage analysis were coupled and modified to predict unsteady fuselage surface pressures and airloads. A prescribed displacement technique is used to position the rotor wake about the fuselage. Either a rigid blade or an aeroelastic blade analysis may be used to establish rotor operating conditions. Sensitivity studies were performed to determine the influence of the wake fuselage geometry on the computation. Results are presented that describe the induced velocities, pressures, and airloads on the fuselage and on the rotor. The ability to treat arbitrary geometries is demonstrated using a simulated helicopter fuselage. The computational results are compared with fuselage surface pressure measurements at several locations. No experimental data was available to validate the primary product of the analysis: the vibratory airloads on the entire fuselage. A main rotor-tail rotor interaction analysis is also described, along with some hover and forward flight.

Lorber, Peter F.; Egolf, T. Alan

1988-01-01

300

Aeroacoustics. [analysis of properties of sound generated by aerodynamic forces

NASA Technical Reports Server (NTRS)

An analysis was conducted to determine the properties of sound generated by aerodynamic forces or motions originating in a flow, such as the unsteady aerodynamic forces on propellers or by turbulent flows around an aircraft. The acoustics of moving media are reviewed and mathematical models are developed. Lighthill's acoustic analogy and the application to turbulent flows are analyzed. The effects of solid boundaries are calculated. Theories based on the solution of linearized vorticity and acoustic field equations are explained. The effects of nonuniform mean flow on the generation of sound are reported.

Goldstein, M., E.

1974-01-01

301

NASA Technical Reports Server (NTRS)

A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

Jones, R. T. (compiler)

1979-01-01

302

NASA Technical Reports Server (NTRS)

The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

1992-01-01

303

NASA Technical Reports Server (NTRS)

Recent experience in the application of an optimized, second-order, backward-difference (BDF2OPT) temporal scheme is reported. The primary focus of the work is on obtaining accurate solutions of the unsteady Reynolds-averaged Navier-Stokes equations over long periods of time for aerodynamic problems of interest. The baseline flow solver under consideration uses a particular BDF2OPT temporal scheme with a dual-time-stepping algorithm for advancing the flow solutions in time. Numerical difficulties are encountered with this scheme when the flow code is run for a large number of time steps, a behavior not seen with the standard second-order, backward-difference, temporal scheme. Based on a stability analysis, slight modifications to the BDF2OPT scheme are suggested. The performance and accuracy of this modified scheme is assessed by comparing the computational results with other numerical schemes and experimental data.

Vatsa, Veer N.; Carpenter, Mark H.; Lockard, David P.

2009-01-01

304

An investigation was conducted on the suppression of subsynchronous vibrations due to aerodynamic response to surge in a two-stage centrifugal compressor with air foil bearings. Unsteady aerodynamic response to surge caused excessive subsynchronous shaft vibration which might result in reduced bearing life. Notably, subsynchronous vibrations associated with rigid mode frequencies were more severe than any other subsynchronous vibrations. The objective

Y. B. Lee; T. H. Kim; C. H. Kim; N. S. Lee

2003-01-01

305

Unsteady flow phenomena in industrial centrifugal compressor stage

NASA Technical Reports Server (NTRS)

The results of an experimental investigation on a typical centrifugal compressor stage running on an atmospheric pressure test rig are shown. Unsteady flow was invariably observed at low flow well before surge. In order to determine the influence of the statoric components, the same impeller was repeatedly tested with the same vaneless diffuser, but varying return channel geometry. Experimental results show the strong effect exerted by the return channel, both on onset and on the behavior of unsteady flow. Observed phenomena have been found to confirm well the observed dynamic behavior of full load tested machines when gas density is high enough to cause appreciable mechanical vibrations. Therefore, testing of single stages at atmospheric pressure may provide a fairly accurate prediction of this kind of aerodynamic excitation.

Bonciani, L.; Terrinoni, L.; Tesei, A.

1982-01-01

306

The present conference on aplied aerodynamics encompasses computational fluid dynamics, drag prediction/analysis, experimental aerodynamics, high angles of attack, rotor/propeller aerodynamics, super/hypersonic aerodynamics, unsteady aerodynamics, vortex physics, high-speed civil-transport aeroacoustics, and airfoil/wing aerodynamics. Specific issues addressed include high-speed civil-transport air-breathing propulsion, generic hypersonic inlet-module analysis, an investigation on spoiler effects, high-alpha vehicle dynamics, space-station resource node flow-field analysis, a numerical simulation of sabot discard aerodynamics, and vortex control using pneumatic blowing. Also addressed are Navier-Stokes solutions for the F/A-18 Wing-LEX fuselage, tail venting for enhanced yaw damping at spinning conditions, an investigation of rotor wake interactions with a body in low-speed forward flight, and multigrid calculations of 3D viscous cascade flows.

Not Available

1991-01-01

307

Experimental analysis methods for unsteady flows in turbomachines

NASA Astrophysics Data System (ADS)

Various methods for measuring unsteady flows, developed at the ONERA Aerodynamics Department, and suitable for industrial turbomachines are described. These methods are presented in two parts corresponding respectively to two types of measurements: (1) measurements within flows (upstream or downstream the rotor) and (2) measurements on internal surfaces of the machine (on fixed or mobile blades or on the casing of the rotor section). Fast response time pressure transducers and probes generally used in industrial turbomachines and hot film wall gauges well adapted for an easy determination of the nature of the boundary layer were studied.

Larguier, R.

308

Calculation and Correlation of the Unsteady Flowfield in a High Pressure Turbine

NASA Technical Reports Server (NTRS)

Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.

Bakhle, Milind A.; Liu, Jong S.; Panovsky, Josef; Keith, Theo G., Jr.; Mehmed, Oral

2002-01-01

309

Unsteady Turbopump Flow Simulations

NASA Technical Reports Server (NTRS)

The objective of the current effort is two-fold: 1) to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine; and 2) to provide high-fidelity unsteady turbopump flow analysis capability to support the design of pump sub-systems for advanced space transportation vehicle. Since the space launch systems in the near future are likely to involve liquid propulsion system, increasing the efficiency and reliability of the turbopump components is an important task. To date, computational tools for design/analysis of turbopump flow are based on relatively lower fidelity methods. Unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available, at least, for real-world engineering applications. Present effort is an attempt to provide this capability so that developers of the vehicle will be able to extract such information as transient flow phenomena for start up, impact of non-uniform inflow, system vibration and impact on the structure. Those quantities are not readily available from simplified design tools. In this presentation, the progress being made toward complete turbo-pump simulation capability for a liquid rocket engine is reported. Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for the performance evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbopump, which contains 106 zones with 34.5 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability and the performance of the parallel versions of the code will be presented.

Centin, Kiris C.; Kwak, Dochan

2001-01-01

310

Unsteady Free-Wake Vortex Particle Model for HAWT

NASA Astrophysics Data System (ADS)

In the design of horizontal axis wind turbines (HAWT) one problem is to determine the aeroelastic behaviour of the rotor blades for the various wind inflow conditions. A step in this process is to predict with accuracy the aerodynamic loads on the blades. The Vortex Lattice Method (VLM) provides a transparent investigation concerning the role of various physical parameters which influence the aerodynamic problem. In this paper we present a method for the calculation of the non-uniform induced downwash of a HAWT rotor using the vortex ring model for the lifting surface coupled with an unsteady free-wake vortex particle model. Comparative studies between results obtained with different models of wake for a generic HAWT are presented.

Bogateanu, R.; Frunzulic?, F.; Cardos, V.

2010-09-01

311

Aerodynamic effects of flexibility in flapping wings

Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ? 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic insects and, to a limited extent, in understanding the aerodynamics of flapping insect wings. PMID:19692394

Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

2010-01-01

312

Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.

In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (?(md)) and mid-upstroke (?(mu)), and the duration (??) and time of initiation (?(p)) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high ?(md) and low ?(mu) produces larger vertical force with less aerodynamic power, and low ?(md) and high ?(mu) is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low ?(md) and high ?(mu) is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The present study suggests that manipulating the angle of attack during a flapping cycle is the most effective way to control the aerodynamic forces and corresponding power expenditure for a dragonfly-like inclined flapping wing. PMID:22278952

Park, Hyungmin; Choi, Haecheon

2012-03-01

313

The Aerodynamics of Deforming Wings at Low Reynolds Number

NASA Astrophysics Data System (ADS)

Flapping flight has gained much attention in the past decade driven by the desire to understand capabilities observed in nature and the desire to develop agile small-scale aerial vehicles. Advancing our current understanding of unsteady aerodynamics is an essential component in the development of micro-air vehicles (MAV) intended to utilize flight mechanics akin to insect flight. Thus the efforts undertaken that of bio-mimicry. The complexities of insect wing motion are dissected and simplified to more tractable problems to elucidate the fundamentals of unsteady aerodynamics in biologically inspired kinematics. The MAV's fruition would satisfy long established needs in both the military and civilian sectors. Although recent studies have provided great insight into the lift generating mechanisms of flapping wings the deflection response of such wings remains poorly understood. This dissertation numerically and experimentally investigates the aerodynamic performance of passively and actively deflected wings in hover and rotary kinematics. Flexibility is distilled to discrete lines of flexion which acknowledging major flexion lines in insect wings to be the primary avenue for deformation. Of primary concern is the development of the leading-edge vortex (LEV), a high circulation region of low pressure above the wing to which much of the wing's lift generation is attributed. Two-dimensional simulations of wings with chord-wise flexibility in a freestream reveal a lift generating mechanism unavailable to rigid wings with origins in vortical symmetry breaking. The inclusion of flexibility in translating wings accelerated from rest revealed the formation time of the initial LEV was very weakly dependent on the flexible stiffness of the wing, maintaining a universal time scale of four to five chords of travel before shedding. The frequency of oscillatory shedding of the leading and trailing-edge vortices that develops after the initial vortex shedding was shown to be responsive to flexibility satisfying an inverse proportionality to stiffness. In hover, an effective pitch angle can be defined in a flexible wing that accounts for deflection which shifts results toward trend lines of rigid wings. Three-dimensional simulations examining the effects of two distinct deformation modes undergoing prescribed deformation associated with root and tip deflection demonstrated a greater aerodynamic response to tip deflection in hover. Efficiency gains in flexion wings over rigid wing counterpart were shown to be dependent on Reynolds number with efficiency in both modes increasing with increased Reynolds number. Additionally, while the leading-edge vortex axis proved insensitive to deformation, the shape and orientation of the LEV core is modified. Experiments on three-dimensional dynamically-scaled fruit fly wings with passive deformation operating in the bursting limit Reynolds number regime revealed enhanced leading-edge vortex bursting with tip deflection promoting greater LEV core flow deceleration in stroke. Experimental studies on rotary wings highlights a universal formation time of the leading-edge vortex independent of Reynolds number, acceleration profile and aspect ratio. Efforts to replicate LEV bursting phenomena of higher aspect ratio wings in a unity aspect ratio wing such that LEV growth is no limited by span but by the LEV traversing the chord revealed a flow regime of oscillatory lift generation reminiscent of behavior exhibited in translating wings that also maintains magnitude peak to peak.

Medina, Albert

314

NASA Technical Reports Server (NTRS)

Previous wind tunnel tests of fighter configurations have shown that thrust reverser jets can induce large, unsteady aerodynamic forces and moments during operation in ground proximity. This is a concern for STOL configurations using partial reversing to spoil the thrust while keeping the engine output near military (MIL) power during landing approach. A novel test technique to simulate approach and landing was developed under a cooperative Northrop/NASA/USAF program. The NASA LaRC Vortex Research Facility was used for the experiments in which a 7-percent F-18 model was moved horizontally at speeds of up to 100 feet per second over a ramp simulating an aircraft to ground rate of closure similar to a no-flare STOL approach and landing. This paper presents an analysis of data showing the effect of reverser jet orientation and jet dynamic pressure ratio on the transient forces for different angles of attack, and flap and horizontal tail deflection. It was found, for reverser jets acting parallel to the plane of symmetry, that the jets interacted strongly with the ground, starting approximately half a span above the ground board. Unsteady rolling moment transients, large enough to cause the probable upset of an aircraft, and strong normal force and pitching moment transients were measured. For jets directed 40 degrees outboard, the transients were similar to the jet-off case, implying only minor interaction.

Humphreys, A. P.; Paulson, J. W., Jr.; Kemmerly, G. T.

1988-01-01

315

Integrated modeling of insect flight: From morphology, kinematics to aerodynamics

NASA Astrophysics Data System (ADS)

An integrated and rigorous model for the simulation of insect flapping flight is addressed. The method is very versatile, easily integrating the modeling of realistic wing-body morphology, realistic flapping-wing and body kinematics, and unsteady aerodynamics in insect flight. A morphological model is built based on an effective differential geometric method for reconstructing geometry of and a specific grid generator for the wings and body; and a kinematic model is constructed capable to mimic the realistic wing-body kinematics of flapping flight. A fortified FVM-based NS solver for dynamically moving multi-blocked, overset-grid systems is developed and verified to be self-consistent by a variety of benchmark tests; and evaluation of flapping energetics is established on inertial and aerodynamic forces, torques and powers. Validation of this integrated insect dynamic flight simulator is achieved by comparisons of aerodynamic force-production with measurements in terms of the time-varying and mean lift and drag forces. Results for three typical insect hovering flights (hawkmoth, honeybee and fruitfly) over a wide rang of Reynolds numbers from O(10 2) to O(10 4) demonstrate its feasibility in accurately modeling and quantitatively evaluating the unsteady aerodynamic mechanisms in insect flapping flight.

Liu, Hao

2009-02-01

316

Examination of forced unsteady separated flow fields on a rotating wind turbine blade

The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

Huyer, S. [Univ. of Colorado, Boulder, CO (US)] [Univ. of Colorado, Boulder, CO (US)

1993-04-01

317

Unsteady Simulation of the Viscous Flow About a V-22 Rotor and Wing in Hover

NASA Technical Reports Server (NTRS)

Results of an unsteady thin-layer Navier-Stokes simulation of a 0.658-scale V-22 rotor and wing configuration in hover are presented. All geometric components of the flapped-wing and rotor test rig, including rotor blades, are accurately modeled. Rotor motion and rotor/airframe interference effects are simulated directly using moving body overset grid methods. Tiltrotor hover aerodynamics are visualized via unsteady particle trace images. Wing download predictive ability is demonstrated. Simulation results are compared with experimental data.

Meakin, Robert L.

1996-01-01

318

Unsteady processes in machines.

Couplings in machines and mechanisms always have play and friction. While under loading, stick-slip phenomena and impact events can take place. Such processes are modeled as multibody systems whose structure is time variant or unsteady. The time-variant number of degrees of freedom is due to stick-slip contacts. The coupling characteristics become unsteady, for instance there exist jumps in the loads, if impacts occur. For establishing a uniform theory for such phenomena we use a Lagrangian approach connecting the additional constraint equations and the equations of motion by Lagrange multipliers, which are proportional to the constraint forces. Stick-slip and impact events are evaluated by indicator functions leading to special numerical algorithms for the search of switching points. Contact problems are formulated as a complementarity problem which can be solved by efficient algorithms. The theory is applied to rattling in gears, impact drilling machines, turbine blade dampers, and a woodpecker toy. In some of these applications, chaos as a result of bifurcations is possible, which results from variations in the parameters. (c) 1994 American Institute of Physics. PMID:12780146

Pfeiffer, Friedrich

1994-12-01

319

NASA Technical Reports Server (NTRS)

The present study, which is the first of a series of investigations of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary layer flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed on a large-scale, high-subsonic unsteady turbine cascade research facility with an integrated wake generator and test section unit. Blade Pak B geometry was used in the cascade. The wakes were generated by continuously moving cylindrical bars device. Boundary layer investigations were performed using hot wire anemometry at Reynolds number of 110,000, based on the blade suction surface length and the exit velocity, for one steady and two unsteady inlet flow conditions, with the corresponding passing frequencies, wake velocities, and turbulence intensities. The reduced frequencies cover the entire operation range of LP-turbines. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re = 50,000, 75,000, 100,000, 110,000, and 125,000. For each Reynolds number, surface pressure measurements are carried out at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extension of the separation zone as well as its behavior under unsteady wake flow. The results, presented in ensemble-averaged and contour plot forms, help to understand the physics of the separation phenomenon under periodic unsteady wake flow.

Ozturk, Burak; Schobeiri, Meinhard T.

2009-01-01

320

Prediction of incidence effects on oscillating airfoil aerodynamics by a locally analytical method

NASA Technical Reports Server (NTRS)

A complete mathematical model is formulated to analyze the effects of mean-flow incidence angle on the unsteady aerodynamics of an oscillating airfoil in an incompressible flow field. A velocity potential formulation is utilized. The steady flow is independent of the unsteady flow field but coupled to it through the boundary conditions on the oscillating airfoil. The numerical solution technique for both the steady and unsteady flow fields is based on a locally analytical method. The flow model and solution method are then verified through the excellent correlation obtained with the Theodorsen oscillating-flat-plate and Sears transverse-gust classical solutions. The effects of mean flow incidence on the steady and oscillating airfoil aerodynamics are then investigated.

Chiang, Hsiao-Wei D.; Fleeter, Sanford

1988-01-01

321

Aerodynamic Characteristics of an Aerospace Vehicle During a Subsonic Pitch-Over Maneuver

NASA Technical Reports Server (NTRS)

Time-dependent CFD has been used to predict aerospace vehicle aerodynamics during a subsonic rotation maneuver. The inviscid 3D3U code is employed to solve the 3-D unsteady flow field using an unstructured grid of tetrahedra. As this application represents a challenge to time-dependent CFD, observations concerning spatial and temporal resolution are included. It is shown that even for a benign rotation rate, unsteady aerodynamic effects are significant during the maneuver. Possibly more significant, however, the rotation maneuver creates ow asymmetries leading to yawing moment, rolling moment, and side force which are not present in the quasi-steady case. A series of steady solutions at discrete points in the maneuver are also computed for comparison with wind tunnel measurements and as a means of quantifying unsteady effects.

Kleb, William L.

1996-01-01

322

NSDL National Science Digital Library

For those wanting a little more on the theory of aerodynamics, the University of Sydney has published this web textbook, "Aerodynamics for Students". In addition to information on fluid dynamics, flight theory, gas dynamics, propulsion, aircraft performance, and aeroelasticity, the textbook also includes data tables, computer programs, and simulations to aid in the study and understanding of aerodynamics. This textbook is a great resource for undergraduates studying engineering.

323

Beginner's Guide to Aerodynamics

NSDL National Science Digital Library

NASA's "Beginner's Guide to Aerodynamics" provides some general information on the basics of aerodynamics. The site allows users to explore at their own pace and level of interest. Some of the topics that are available here are: equations of motion, free falling, air resistance, force, gas properties, and atmosphere. Movies, reading materials, and activities are all available to accommodate a variety of different learning styles. This is an excellent resource, with great reference materials for anyone interested in learning more about aerodynamics.

324

Asymmetric Uncertainty Expression for High Gradient Aerodynamics

NASA Technical Reports Server (NTRS)

When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

Pinier, Jeremy T

2012-01-01

325

Future Challenges and Opportunities in Aerodynamics

NASA Technical Reports Server (NTRS)

Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.

Kumar, Ajay; Hefner, Jerry N.

2000-01-01

326

In vivo recording of aerodynamic force with an aerodynamic force platform

Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on tethered experiments with robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here we demonstrate a new aerodynamic force platform (AFP) for nonintrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is ...

Lentink, David; Ingersoll, Rivers

2014-01-01

327

NASA Technical Reports Server (NTRS)

Thin-film resistance gages were used to measure cylinder surface heat-transfer rates in the near wake of the Aeroassist Flight Experiment vehicle configuration, while surface-streamline directions were ascertained by the oil-flow techniques under the same configuration and test conditions. Both heat transfer distributions and flow over the entire cylinder surface were influenced by impingement of that portion of the free shear layer originating at the forebody shoulder in the upper symmetry plane. Heating rate distributions predicted with a Navier-Stokes solver computer code were in general agreement with measurements.

Wells, William L.

1989-01-01

328

Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

NASA Technical Reports Server (NTRS)

A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

Mahajan, Aparajit J.; Kaza, Krishna Rao V.

1992-01-01

329

Unsteady Newton-Busemann flow theory. III - Frequency dependence and indicial response

NASA Technical Reports Server (NTRS)

Hui and Tobak applied the complete unsteady Newton-Busemann flow theory to the study of dynamic stability of oscillating aerofoils and bodies in revolution. The present article extends the results to general frequencies that may be applicable to flutter analysis. The results are likewise applied to the indicial response fluctuations in unsteady flow at very high Mach numbers. The study shows that for a group of body shapes in Newtonian flow (including the cone and wedge), the aerodynamic response to a step change in angle of attack or pitching velocity contains an initial-instant impulse followed by a rapid adjustment to the new steady-flow conditions. The impulse component is in effect an apparent mass term analogous to that which occurs initially in the aerodynamic indicial response at the zero Mach number limit.

Hui, W. H.

1982-01-01

330

A verification of unsteady Navier-Stokes solutions around oscillating airfoils

NASA Technical Reports Server (NTRS)

A finite difference solution code for the two dimensional Navier-Stokes equations was combined with a moving-grid system. The thin layer Navier-Stokes equations with a turbulence model are solved in a time-accurate manner in order to study the unsteady aerodynamics around airfoils undergoing small amplitude pitching or heaving motions in the transonic regime. The accuracy of the solutions obtained by the use of the present moving-grid technqiue is investigated. The effects of the minimum grid size and the integrating time-step size on the solutions are also checked. Some of the solutions obtained by the present method are compared with experimental results. It is demonstrated that the unsteady aerodynamics around oscillating airfoils can be predicted fairly well by the present code for cases in which the dynamic angle of attack or displacement is small.

Nakamichi, J.

1986-01-01

331

Status and prospects of computational fluid dynamics for unsteady transonic viscous flows

NASA Technical Reports Server (NTRS)

Applications of computational aerodynamics to aeronautical research, design, and analysis have increased rapidly over the past decade, and these applications offer significant benefits to aeroelasticians. The past developments are traced by means of a number of specific examples, and the trends are projected over the next several years. The crucial factors that limit the present capabilities for unsteady analyses are identified; they include computer speed and memory, algorithm and solution methods, grid generation, turbulence modeling, vortex modeling, data processing, and coupling of the aerodynamic and structural dynamic analyses. The prospects for overcoming these limitations are presented, and many improvements appear to be readily attainable. If so, a complete and reliable numerical simulation of the unsteady, transonic viscous flow around a realistic fighter aircraft configuration could become possible within the next decade. The possibilities of using artificial intelligence concepts to hasten the achievement of this goal are also discussed.

Mccroskey, W. J.; Kutler, P.; Bridgeman, J. O.

1984-01-01

332

Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests

R. D. Mehta

1985-01-01

333

Computation of dragonfly aerodynamics

NASA Astrophysics Data System (ADS)

Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.

Gustafson, Karl; Leben, Robert

1991-04-01

334

Computation of dragonfly aerodynamics

Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.

Karl Gustafson; Robert Leben

1991-01-01

335

Uncertainty in Computational Aerodynamics

NASA Technical Reports Server (NTRS)

An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

2003-01-01

336

Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils

NASA Technical Reports Server (NTRS)

This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.

Lee, Byung Joon; Liou, Meng-Sing

2012-01-01

337

System Identification of a Vortex Lattice Aerodynamic Model

NASA Technical Reports Server (NTRS)

The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.

Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.

2001-01-01

338

Study of aerodynamic methods for improving truck fuel economy

Results are reported of a 3-year program to investigate aerodynamic means to reduce fuel consumption of tractor-trailer trucks. The study considered the benefit of aerodynamic add-on devices to reduce the aerodynamic drag on existing vehicles, and the influence of design alternatives in reducing the drag of future vehicles. Results are obtained for scaled-models in water table and wind-tunnel experiments, and

F. T. Jr. Buckley; C. H. Marks; W. H. Jr. Walston

1978-01-01

339

A study of aerodynamic methods for improving truck fuel economy

Results of a 3-year program to investigate aerodynamic means to reduce fuel consumption of tractor-trailer trucks are reported. The study considers the benefit of aerodynamic add-on devices to reduce the aerodynamic drag on existing vehicles, and the influence of design alternatives in reducing the drag of future vehicles. Results are obtained for scaled-models in water table and wind-tunnel experiments, and

F. T. Jr. Buckley; C. H. Marks; W. H. Walston Jr

1978-01-01

340

The aerodynamics of hovering flight in Drosophila.

Using 3D infrared high-speed video, we captured the continuous wing and body kinematics of free-flying fruit flies, Drosophila melanogaster, during hovering and slow forward flight. We then 'replayed' the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. Hovering animals generate a U-shaped wing trajectory, in which large drag forces during a downward plunge at the start of each stroke create peak vertical forces. Quasi-steady mechanisms could account for nearly all of the mean measured force required to hover, although temporal discrepancies between instantaneous measured forces and model predictions indicate that unsteady mechanisms also play a significant role. We analyzed the requirements for hovering from an analysis of the time history of forces and moments in all six degrees of freedom. The wing kinematics necessary to generate sufficient lift are highly constrained by the requirement to balance thrust and pitch torque over the stroke cycle. We also compare the wing motion and aerodynamic forces of free and tethered flies. Tethering causes a strong distortion of the stroke pattern that results in a reduction of translational forces and a prominent nose-down pitch moment. The stereotyped distortion under tethered conditions is most likely due to a disruption of sensory feedback. Finally, we calculated flight power based directly on the measurements of wing motion and aerodynamic forces, which yielded a higher estimate of muscle power during free hovering flight than prior estimates based on time-averaged parameters. This discrepancy is mostly due to a two- to threefold underestimate of the mean profile drag coefficient in prior studies. We also compared our values with the predictions of the same time-averaged models using more accurate kinematic and aerodynamic input parameters based on our high-speed videography measurements. In this case, the time-averaged models tended to overestimate flight costs. PMID:15939772

Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H

2005-06-01

341

NASA Astrophysics Data System (ADS)

Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the inherently three-dimensional ow structures that are prevalent in many of today's "real-world" problems. Increases in computational capacity and the development of efficient numerical methods can change this and allow for the solution of the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for practical three-dimensional aerodynamic applications. An integral part of this capability has been the performance and accuracy of the turbulence models coupled with advanced parallel computing techniques. This report begins with a brief literature survey of the role fully three-dimensional, unsteady, Navier-Stokes solvers have on the current state of numerical analysis. Next, the process of creating a baseline three-dimensional Multi-Block FLOw procedure called MBFLO3 is presented. Solutions for an inviscid circular arc bump, laminar at plate, laminar cylinder, and turbulent at plate are then presented. Results show good agreement with available experimental, numerical, and theoretical data. Scalability data for the parallel version of MBFLO3 is presented and shows efficiencies of 90% and higher for processes of no less than 100,000 computational grid points. Next, the description and implementation techniques used for several turbulence models are presented. Following the successful implementation of the URANS and DES procedures, the validation data for separated, non-reattaching flows over a NACA 0012 airfoil, wall-mounted hump, and a wing-body junction geometry are presented. Results for the NACA 0012 showed significant improvement in flow predictions for the three-dimensional DES when compared to experiment. The initial results using the RANS and DES procedures compared well with experimental data for the wall-mounted hump as well. Using the RANS model, the onset of separation was accurately predicted while the reattachment point was over-predicted. The RANS procedure also over-predicted the mean pressure, skin friction, and velocity profiles in the separation zone. The DES procedure showed much better results for the secondary flow of a wing/endwall junction; the three-dimensional structures resolved in the wake of the DES improved the local flow physics in the separation region and the predictions of the mean pressure distribution, skin friction, and streamwise velocity. The DES procedure exhibited a three-dimensional ow structure in the wake, with a 13.65% shorter mean separation region compared to RANS and a mean reattachment length that is in good agreement with experimental measurements. DES predictions of the pressure coefficient in the separation region also exhibit good agreement with experiment and are more accurate than RANS predictions.

Bozinoski, Radoslav

342

Aerodynamics of advanced axial-flow turbomachinery

NASA Technical Reports Server (NTRS)

A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.

Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.

1980-01-01

343

NSDL National Science Digital Library

Aerodynamics is the study of what makes things go fast, right? More specifically, itâ??s the study of the interaction between bodies and the atmosphere. This topic in depth highlights some fun websites on the science of aerodynamics, for beginners to researchers. If youâ??ve been watching Wimbeldon lately, you might have been wondering about the aerodynamics of tennis. Or maybe you were riding your bike the other day and wondering how you could pick up a little more speed next time. These sites can help explain.

344

Aerodynamic: Applications of Force and Flow

NSDL National Science Digital Library

This resource guide from the Middle School Portal 2 project, written specifically for teachers, provides links to exemplary resources including background information, lessons, career information, and related national science education standards. Although there is a great deal of historical information about aerodynamics that could be discussed here, we purposely narrowed the stream of resources to those that encourage students to experiment with technological design and function. Given these learning experiences, student should be prepared to articulate preferences in vehicle design and understand how the principles of aerodynamics influence vehicle performance.

Quentin Briggs

345

NASA Technical Reports Server (NTRS)

Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed, built, and tested at NASA Dryden Flight Research Center. The results from the full order model and the approximate reduced order model are analyzed and compared.

Pak, Chan-gi; Li, Wesley W.

2009-01-01

346

NASA Technical Reports Server (NTRS)

Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

Horstman, Raymond H.

1992-01-01

347

Science of Cycling: Aerodynamics

NSDL National Science Digital Library

This website, from the Exploratorium, reviews the aerodynamics of cycling. Wind resistance is often one of the biggest challenges that professional and amateur cyclists face. This site has a form that lets you "Calculate the Aerodynamic Drag and Propulsive Power of a Bicyclist". Use the form to calculate resistance using different inclines, velocity, weight or wind velocity. At the bottom of the page, you can find useful information and tips on reducing resistance. Check it out before your next bike ride!

348

Unsteady potential flow past a propeller blade section

NASA Technical Reports Server (NTRS)

An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.

Takallu, M. A.

1990-01-01

349

Turbine disk cavity aerodynamics and heat transfer

NASA Technical Reports Server (NTRS)

Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

Johnson, B. V.; Daniels, W. A.

1992-01-01

350

Numerical studies of unsteady transonic flow over an oscillating airfoil

NASA Technical Reports Server (NTRS)

A finite-difference solution to the Navier-Stokes equations combined with a time-varying grid-generation technique was used to compute unsteady transonic flow over an oscillating airfoil. These computations were compared with experimental data (obtained at Ames Research Center) which form part of the AGARD standard configuration for aeroelastic analysis. A variety of approximations to the full Navier-Stokes equations was used to determine the effect of frequency, shock-wave motion, flow separation, and airfoil geometry on unsteady pressures and overall air loads. Good agreement is shown between experiment and theory with the limiting factor being the lack of a reliable turbulence model for high-Reynolds-number, unsteady transonic flows.

Chyu, W. J.; Davis, S. S.

1984-01-01

351

Unsteady flow in cavitating turbopumps

NASA Technical Reports Server (NTRS)

Unsteady flow in a cavitating axial inducer pump is analyzed with the help of a simple two-dimensional cascade model. This problem was motivated by a desire to study the effect of unsteady cavitation on the so-called POGO instability in the operation of liquid rocket engines. Here, an important feature is a closed loop coupling between several different modes of oscillation, one of which is due to the basic unsteady characteristics of the cavitation itself. The approaching and leaving flow velocities up- and downstream of the inducer oscillate, and the cavity-blade system participates dynamically with the basic pulsating flow. In the present work, attention is focused on finding a transfer matrix that relates the set of upstream variables to those downstream. This quantity, which is essentially equivalent to cavitation compliance in the quasi-static analyses, is found to be complex and frequency dependent.

Kim, J. H.; Acosta, A. J.

1975-01-01

352

Spatial Characteristics of the Unsteady Differential Pressures on 16 percent F/A-18 Vertical Tails

NASA Technical Reports Server (NTRS)

Buffeting is an aeroelastic phenomenon which plagues high performance aircraft at high angles of attack. For the F/A-18 at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their turbulent wake. The resulting buffeting of the vertical tails is a concern from fatigue and inspection points of view. Previous flight and wind-tunnel investigations to determine the buffet loads on the tail did not provide a complete description of the spatial characteristics of the unsteady differential pressures. Consequently, the unsteady differential pressures were considered to be fully correlated in the analyses of buffet and buffeting. The use of fully correlated pressures in estimating the generalized aerodynamic forces for the analysis of buffeting yielded responses that exceeded those measured in flight and in the wind tunnel. To learn more about the spatial characteristics of the unsteady differential pressures, an available 16%, sting-mounted, F-18 wind-tunnel model was modified and tested in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center as part of the ACROBAT (Actively Controlled Response Of Buffet-Affected Tails) program. Surface pressures were measured at high angles of attack on flexible and rigid tails. Cross-correlation and cross-spectral analyses of the pressure time histories indicate that the unsteady differential pressures are not fully correlated. In fact, the unsteady differential pressure resemble a wave that travels along the tail. At constant angle of attack, the pressure correlation varies with flight speed.

Moses, Robert W.; Ashley, Holt

1998-01-01

353

The acoustics and unsteady wall pressure of a circulation control airfoil

NASA Astrophysics Data System (ADS)

A Circulation Control (CC) airfoil uses a wall jet exiting onto a rounded trailing edge to generate lift via the Coanda effect. The aerodynamics of the CC airfoil have been studied extensively. The acoustics of the airfoil are, however, much less understood. The primary goal of the present work was to study the radiated sound and unsteady surface pressures of a CC airfoil. The focus of this work can be divided up into three main categories: characterizing the unsteady surface pressures, characterizing the radiated sound, and understanding the acoustics from surface pressures. The present work is the first to present the unsteady surface pressures from the trailing edge cylinder of a circulation control airfoil. The auto-spectral density of the unsteady surface pressures at various locations around the trailing edge are presented over a wide range of the jets momentum coefficient. Coherence of pressure and length scales were computed and presented. Single microphone measurements were made at a range of angles for a fixed observer distance in the far field. Spectra are presented for select angles to show the directivity of the airfoil's radiated sound. Predictions of the acoustics were made from unsteady surface pressures via Howe's curvature noise model and a modified Curle's analogy. A summary of the current understanding of the acoustics from a CC airfoil is given along with suggestions for future work.

Silver, Jonathan C.

354

Numerical modeling of wind turbine aerodynamic noise in the time domain.

Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine. PMID:23363200

Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

2013-02-01

355

NASA Technical Reports Server (NTRS)

A time-accurate approximate-factorization (AF) algorithm is described for solution of the three-dimensional unsteady transonic small-disturbance equation. The AF algorithm consists of a time-linearization procedure coupled with a subiteration technique. The algorithm is the basis for the Computational Aeroelasticity Program-Transonic Small Disturbance (CAP-TSD) computer code, which was developed for the analysis of unsteady aerodynamics and aeroelasticity of realistic aircraft configurations. The paper describes details on the governing flow equations and boundary conditions, with an emphasis on documenting the finite-difference formulas of the AF algorithm.

Batina, John T.

1992-01-01

356

Aerodynamic design and analysis of a highly loaded turbine exhaust

NASA Technical Reports Server (NTRS)

The aerodynamic design and analysis of a turbine exhaust volute manifold is described. This turbine exhaust system will be used with an advanced gas generator oxidizer turbine designed for very high specific work. The elevated turbine stage loading results in increased discharge Mach number and swirl velocity which, along with the need for minimal circumferential variation of fluid properties at the turbine exit, represent challenging volute design requirements. The design approach, candidate geometries analyzed, and steady state/unsteady CFD analysis results are presented.

Huber, F. W.; Montesdeoca, X. A.; Rowey, R. J.

1993-01-01

357

Attention was drawn to the flying skill of dragonflies by many aerodynamicists. While some have tried to explain this exceptional flight capability using known steady aerodynamics, there was growing realization by others that the dragonfly uses principles of unsteady separated flow to sustain flight. The moving wings generate shear flows that accumulate vorticity and form vortices. In an effort to

Daniel Chasman

1989-01-01

358

The effect of aerodynamic asymmetries on turbomachinery flutter

NASA Astrophysics Data System (ADS)

In this paper, the effect of aerodynamic asymmetries on the flutter characteristics of turbomachinery blades is investigated. Specifically, the present method is used to study the effect of leading edge blending in loaded and unloaded rotors. The unsteady aerodynamic response of the blades to self-excited vibrations is modeled using a harmonic balance method, which allows one to model the entire wheel using complex periodic boundary conditions and a computational grid spanning a single sector (symmetry group). This reduces the computational and memory requirements dramatically compared to similar time-accurate analyses. It is shown that alternate blending degrades the stability of a loaded rotor whereas it improves the stability of an unloaded rotor. On the other hand, when blends are spaced five blades apart their effect is less pronounced.

Ekici, Kivanc; Kielb, Robert E.; Hall, Kenneth C.

2013-01-01

359

The predicted effect of aerodynamic detuning on coupled bending-torsion unstalled supersonic flutter

NASA Technical Reports Server (NTRS)

A mathematical model is developed to predict the enhanced coupled bending-torsion unstalled supersonic flutter stability due to alternate circumferential spacing aerodynamic detuning of a turbomachine rotor. The translational and torsional unsteady aerodynamic coefficients are developed in terms of influence coefficients, with the coupled bending-torsion stability analysis developed by considering the coupled equations of motion together with the unsteady aerodynamic loading. The effect of this aerodynamic detuning on coupled bending-torsion unstalled supersonic flutter as well as the verification of the modeling are then demonstrated by considering an unstable 12 bladed rotor, with Verdon's uniformly spaced Cascade B flow geometry as a baseline. However, with the elastic axis and center of gravity at 60 percent of the chord, this type of aerodynamic detuning has a minimal effect on stability. For both uniform and nonuniform circumferentially space rotors, a single degree of freedom torsion mode analysis was shown to be appropriate for values of the bending-torsion natural frequency ratio lower than 0.6 and higher 1.2. When the elastic axis and center of gravity are not coincident, the effect of detuning on cascade stability was found to be very sensitive to the location of the center of gravity with respect to the elastic axis. In addition, it was determined that when the center of gravity was forward of an elastic axis located at midchord, a single degree of freedom torsion model did not accurately predict cascade stability.

Hoyniak, D.; Fleeter, S.

1986-01-01

360

Powered-Lift Aerodynamics and Acoustics. [conferences

NASA Technical Reports Server (NTRS)

Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

1976-01-01

361

Wind Tunnel Measurements and Calculations of Aerodynamic Interactions Between Tiltrotor Aircraft

NASA Technical Reports Server (NTRS)

Wind tunnel measurements and calculations of the aerodynamic interactions between two tiltrotor aircraft in helicopter mode are presented. The measured results include the roll moment and thrust change on the downwind aircraft, as a function of the upwind aircraft position (longitudinal, lateral, and vertical). Magnitudes and locations of the largest interactions are identified. The calculated interactions generally match the measurements, with discrepancies attributed to the unsteadiness of the wake and aerodynamic forces on the airframe. To interpret the interactions in terms of control and power changes on the aircraft, additional calculations are presented for trimmed aircraft with gimballed rotors.

Johnson, Wayne; Yamauchi, Gloria K.; Derby, Michael R.; Wadcock, Alan J.

2002-01-01

362

Application of CFD techniques toward the validation of nonlinear aerodynamic models

NASA Technical Reports Server (NTRS)

Applications of computational fluid dynamics (CFD) methods to determine the regimes of applicability of nonlinear models describing the unsteady aerodynamic responses to aircraft flight motions are described. The potential advantages of computational methods over experimental methods are discussed and the concepts underlying mathematical modeling are reviewed. The economic and conceptual advantages of the modeling procedure over coupled, simultaneous solutions of the gas dynamic equations and the vehicle's kinematic equations of motion are discussed. The modeling approach, when valid, eliminates the need for costly repetitive computation of flow field solutions. For the test cases considered, the aerodynamic modeling approach is shown to be valid.

Schiff, L. B.; Katz, J.

1985-01-01

363

Inviscid analysis of unsteady blade tip flow correlation studies

NASA Technical Reports Server (NTRS)

Two computer programs, VSAERO-TS and VSAERO-H, were used for computing the unsteady subsonic aerodynamic characteristics of arbitrarily shaped wings oscillating in pitch. Program VSAERO-TS is a time-stepping analysis capable of treating large amplitude motions while program VSAERO-H uses harmonic wake and small amplitude assumptions. A comparison between the computed (VSAERO-TS and VSAERO-H) and DFVLR test results for chordwise pressure distributions for rectangular, swept, taper and ogee blade tips is presented in this report. A wide range of angles of attack (mean) from 0 to 12 deg and reduced frequencies of 0.1, 0.2 and 0.3 are covered in this report. Also, the comparison includes several spanwise stations.

Rao, B. M.; Maskew, B.

1985-01-01

364

Unsteady flow and dynamic response analyses for helicopter rotor blades

NASA Technical Reports Server (NTRS)

Research is presented on helicopter rotor blade vibration and on two and three dimensional analyses of unsteady incompressible viscous flow past oscillating helicopter rotor blades. A summary is presented of the two international research collaborations which resulted from the NASA project: the collaboration under the auspices of NATO between the University of Wisconsin-Milwaukee, University of Brussels, Belgium and the Aerodynamics Research Establishment in Goettingen, West Germany, and the collaboration under the auspices of the National Science Foundation between UWM and the University of Hamburg and the Ship Research Establishment in Hamburg, West Germany. A summary is given of the benefits from the NASA project to UWM, the College of Engineering and Applied Science, and the participants on the project.

Bratanow, T.

1979-01-01

365

Aerodynamic Drag and Gyroscopic Stability

This paper describes the effects on aerodynamic drag of rifle bullets as the gyroscopic stability is lowered from 1.3 to 1.0. It is well known that a bullet can tumble for stability less than 1.0. The Sierra Loading Manuals (4th and 5th Editions) have previously reported that ballistic coefficient decreases significantly as gyroscopic stability, Sg, is lowered below 1.3. These observations are further confirmed by the experiments reported here. Measured ballistic coefficients were compared with gyroscopic stabilities computed using the Miller Twist Rule for nearly solid metal bullets with uniform density and computed using the Courtney-Miller formula for plastic-tipped bullets. The experiments reported here also demonstrate a decrease in aerodynamic drag near Sg = 1.23 +/- 0.02. It is hypothesized that this decrease in drag over a narrow band of Sg values is due to a rapid damping of coning motions (precession and nutation). Observation of this drag decrease at a consistent value of Sg demonstrates the relati...

Courtney, Elya R

2013-01-01

366

Investigation of unsteady flow in axial turbine stage

NASA Astrophysics Data System (ADS)

The never ending process to increase the efficiency of turbine stages introduced an idea to create an axial turbine stage test rig as part of closed loop transonic wind tunnel at Vyzkumny a zkusebni letecky ustav (VZLU). Studying of unsteady flow field behaviours in turbine stages is nowadays essential in the development process. Therefore, the test rig was designed with focusing on possibility of detailed studying of unsteady flow fields in turbine stages. New methodologies and new instrumentations were developed at VZLU and successfully integrated to gain valuable information from experiments with turbine stages. Two different turbine stages were tested during the facility introduction process. The measurement of these two models demonstrated how flexible the test rig is. One of them was an enlarged model of small gas turbine stage. The other was scaled-down model of stage of intermediate-pressure steam turbine. The external characteristics of both models were acquired during experiments as well as the detailed unsteady flow field measurement. Turbine stages were tested in various regimes in order to check the capabilities of the facility, methodology and instrumentation together. The paper presents results of unsteady flow field investigation in the enlarged turbine stage with unshrouded rotor. The interaction of structures developed in a stator with the rotor flow field is depicted and the influence of turbine load on evolution of secondary flows in rotor is analysed.

Jelínek, Tomáš; N?mec, Martin

2012-04-01

367

NASA Technical Reports Server (NTRS)

This paper describes model structures and parameter estimation algorithms suitable for the identification of unsteady aerodynamic models from input-output data. The model structures presented are state space models and include linear time-invariant (LTI) models and linear parameter-varying (LPV) models. They cover a wide range of local and parameter dependent identification problems arising in unsteady aerodynamics and nonlinear flight dynamics. We present a residue algorithm for estimating model parameters from data. The algorithm can incorporate apriori information and is described in detail. The algorithms are evaluated on the F-16XL wind-tunnel test data from NAS Langley Research Center. Results of numerical evaluation are presented. The paper concludes with a discussion major issues and directions for future work.

Prasanth, Ravi K.; Klein, Vladislav; Murphy, Patrick C.; Mehra, Raman K.

2005-01-01

368

A compilation of unsteady turbulent boundary-layer experimental data

NASA Technical Reports Server (NTRS)

An extensive literature search was conducted and those experiments related to unsteady boundary layer behavior were cataloged. In addition, an international survey of industrial, university, and governmental research laboratories was made in which new and ongoing experimental programs associated with unsteady turbulent boundary layer research were identified. Pertinent references were reviewed and classified based on the technical emphasis of the various experiments. Experiments that include instantaneous or ensemble averaged profiles of boundary layer variables are stressed. The experimental apparatus and flow conditions are described and summaries of acquired data and significant conclusions are summarized. Measurements obtained from the experiments which exist in digital form were stored on magnetic tape. Instructions are given for accessing these data sets for further analysis.

Carr, L. W.

1981-01-01

369

NASA Technical Reports Server (NTRS)

The results of an integrated study of structures, aerodynamics, and controls using the STARS program on two advanced airplane configurations are presented. Results for the X-29A include finite element modeling, free vibration analyses, unsteady aerodynamic calculations, flutter/divergence analyses, and an aeroservoelastic controls analysis. Good correlation is shown between STARS results and various other verified results. The tasks performed on the Oblique Wing Research Aircraft include finite element modeling and free vibration analyses.

Dawson, Kenneth S.; Fortin, Paul E.

1987-01-01

370

NSDL National Science Digital Library

This Web site serves as an online aerodynamics textbook for college students. Offered by the department of Aerospace, Mechanical, and Mechatronic Engineering at the University of Sydney, the material is divided into several main categories. These include fluid mechanics, aerodynamics, gasdynamics, aircraft performance, and propulsion. Each of these sections has many specific topics that are discussed in detail. There are MATLAB, Excel, and FORTRAN files and data sheets that accompany the reading, but they are best used as reference and are not needed to understand most of the material.

371

Aerodynamics of thrust vectoring

NASA Technical Reports Server (NTRS)

Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

Tseng, J. B.; Lan, C. Edward

1989-01-01

372

Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design

NASA Technical Reports Server (NTRS)

This paper summarizes the state of 3D CFD based models of the time average flow field within axial flow multistage turbomachines. Emphasis is placed on models which are compatible with the industrial design environment and those models which offer the potential of providing credible results at both design and off-design operating conditions. The need to develop models which are free of aerodynamic input from semi-empirical design systems is stressed. The accuracy of such models is shown to be dependent upon their ability to account for the unsteady flow environment in multistage turbomachinery. The relevant flow physics associated with some of the unsteady flow processes present in axial flow multistage machinery are presented along with procedures which can be used to account for them in 3D CFD simulations. Sample results are presented for both axial flow compressors and axial flow turbines which help to illustrate the enhanced predictive capabilities afforded by including these procedures in 3D CFD simulations. Finally, suggestions are given for future work on the development of time average flow models.

Adamczyk, John J.

1999-01-01

373

The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows

NASA Technical Reports Server (NTRS)

This volume contains the papers presented at the Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, held at the California State University, Long Beach, from 13 to 15 January 1992. The symposium, like its immediate predecessors, considers the calculation of flows of relevance to aircraft, ships, and missiles with emphasis on the solution of two-dimensional unsteady and three-dimensional equations.

1992-01-01

374

Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements. PMID:21831896

Nakata, Toshiyuki; Liu, Hao

2012-01-01

375

An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing

NASA Astrophysics Data System (ADS)

An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 < Str < 0.4 used by flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.

Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi

2011-08-01

376

MODELING STRATEGIES FOR UNSTEADY TURBULENT FLOWS IN THE LOWER PLENUM OF THE VHTR

Validation simulations are presented for turbulent flow in a staggered tube bank, geometry similar to that in the lower plenum of a block very high temperature reactor. Steady 2D RANS predictions are compared to unsteady 2D RANS results and experiment. The unsteady calculations account for the fact that nonturbulent fluctuations (due to vortex-shedding) are present in the flow. The unsteady computations are shown to predict the mean variables and the total shear stress quite well. Previous workers have presented results that indicated that 3D simulations were necessary to obtain reasonable results. Best practices are based on requirements for the ASME Journal of Fluids Engineering.

Richard W. Johnson

2006-09-01

377

AEROSPACE SCIENCES Applied aerodynamics

. In Europe, Airbus delivered the first A380 for use in passenger revenue service, while aerodynamic design in noise emission and fuel burn com- pared to existing aircraft. Next-generation tactical transport AFRL enable future transport air- craft to take off and land in short distances while providing fast

Xu, Kun

378

Freight Wing Trailer Aerodynamics

Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design

Sean Graham; Patrick Bigatel

2004-01-01

379

Control of flow separation and mixing by aerodynamic excitation

NASA Technical Reports Server (NTRS)

The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

Rice, Edward J.; Abbott, John M.

1990-01-01

380

NASA Technical Reports Server (NTRS)

A method is developed to determine the flow field of a body of revolution in separated flow. The technique employed is the use of the computer to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the required two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separation regions and wake vortex patterns are determined.

Marshall, F. J.; Deffenbaugh, F. D.

1974-01-01

381

NASA Technical Reports Server (NTRS)

A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described.

Marshall, F. J.; Deffenbaugh, F. D.

1974-01-01

382

NASA Technical Reports Server (NTRS)

A transonic unsteady aerodynamic and aeroelasticity code has been developed for application to realistic aircraft configurations. The new code is called CAP-TSD which is an acronym for Computational Aeroelasticity Program - Transonic Small Disturbance. The CAP-TSD code uses a time-accurate approximate factorization algorithm for solution of the unsteady transonic small-disturbance equation that is efficient for solution of steady and unsteady transonic flow problems including supersonic freestream flows. The new code can treat complete aircraft geometries with multiple lifting surfaces and bodies. Applications to wings in supersonic freestream flow are presented. Comparisons with selected exact solutions from linear theory are presented showing generally favorable results. Calculations for both steady and oscillatory cases for the F-5 and RAE tailplane models are compared with experimental data and also show good overall agreement. Selected steady calculations are further compared with a steady flow Euler code.

Bennett, Robert M.; Bland, Samuel R.; Batina, John T.; Gibbons, Michael D.; Mabey, Dennis G.

1987-01-01

383

Airfoil Ice-Accretion Aerodynamics Simulation

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

2007-01-01

384

Airfoil optimization for unsteady flows with application to high-lift noise reduction

NASA Astrophysics Data System (ADS)

The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far-field pressure fluctuations. Validation and application results for this novel hybrid URANS/FW-H optimization algorithm show that it is possible to optimize the shape of an airfoil in an unsteady flow environment to minimize its radiated far-field noise while maintaining good aerodynamic performance.

Rumpfkeil, Markus Peer

385

Inlet Flow Distortion and Unsteady Blade Response in a Transonic Axial-Compressor Rotor

NASA Technical Reports Server (NTRS)

This paper describes the unsteady blade surface pressures on the first-stage rotor blades of a two-stage transonic axial flow compressor experiencing inlet flow distortion. This study was conducted to demonstrate the ability of a full annulus unsteady Reynolds-averaged Navier-Stokes numerical technique to predict unsteady pressures on the rotor blades operating in a distorted inflow. A total pressure distortion produced by a variable mesh screen mounted near the inlet was used to excite the unsteady blade loading on the rotor. On-blade pressure transducers were used to measure the unsteady blade surface pressure. These pressures and the resulting transient load on the rotor blades were compared to the numerical prediction. It is important to develop numerical techniques to predict these transient loads to better understand the response of compressor blades to forcing functions. With this enhanced understanding and ability to predict these transient forces, more robust compressors can be developed. In the study, a high definition of the inlet flow distortion was achieved by rotating the distortion screens. In this manner the inlet flow distortion and the distortion at the first stage stator leading edge were measured at approximately every 0.7 degrees. This full annulus high definition of the inlet flow distortion was used as the inlet boundary condition for the numerical technique. The experimental measurements and numerical analyses are highly complementary in this study. Detailed comparisons between the measurements and the numerical analyses indicate that the current numerical procedure calculates the unsteady aerodynamic pressure on the blade surfaces reasonably well. Further, the agreement of the measured and predicted rotor exit flow distortion at the first stage stator leading edge provides verification of the numerical technique.

Rabe, D. C.; Williams, C.; Hah, C.

1999-01-01

386

On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

NASA Technical Reports Server (NTRS)

The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the physics of the separation phenomenon under periodic unsteady wake flow. Several physical mechanisms are discussed.

Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

2005-01-01

387

On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

NASA Technical Reports Server (NTRS)

The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flowconditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the physics of the separation phenomenon under periodic unsteady wake flow. Several physical mechanisms are discussed.

Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

2003-01-01

388

Aerodynamic analysis of an isolated vehicle wheel

NASA Astrophysics Data System (ADS)

Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

Le?niewicz, P.; Kulak, M.; Karczewski, M.

2014-08-01

389

Physics of Forced Unsteady Separation

NASA Technical Reports Server (NTRS)

This report contains the proceedings of a workshop held at NASA Ames Research Center in April 1990. This workshop was jointly organized by NASA, the Air Force Office of Scientific Research (AFOSR), and the Army Research Office (ARO), and was directed toward improved understanding of the physical processes that cause unsteady separation to occur. The proceedings contain the written contributions for the workshop, and include selected viewgraphs used in the various presentations.

Carr, Lawrence W. (editor)

1992-01-01

390

Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

NASA Technical Reports Server (NTRS)

The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

1994-01-01

391

NASA Astrophysics Data System (ADS)

For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition under which the unsteadiness of tip leakage flow would occur were investigated by dynamic measuring in different clearances, inlet velocities and incidences. From the experiment it is found that increasing tip clearance size or reducing rotor tip incidence can affect the strength of the tip clearance flow. Then the experimental results also indicate the tip leakage shows instability in certain conditions, and the frequency of unsteadiness is great influenced by inflow angle. The condition of occurrence of tip leakage flow unsteadiness is when the leakage flow is strong enough to reach the pressure side of the adjacent blade. The main cause of tip leakage flow unsteadiness is the tip blade loading.

Li, Chengqing; Ke, Tingfeng; Zhang, Jingxuan; Zhang, Hongwu; Huang, Weiguang

2013-04-01

392

Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures

NASA Technical Reports Server (NTRS)

In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.

Khorrami, Mehdi R.; Neuhart, Danny H.

2012-01-01

393

Compendium of NASA Langley reports on hypersonic aerodynamics

NASA Technical Reports Server (NTRS)

Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems.

Sabo, Frances E.; Cary, Aubrey M.; Lawson, Shirley W.

1987-01-01

394

New Acoustic and Aerodynamic Phenomena due to Non-Uniform Rotation of Propellers

NASA Astrophysics Data System (ADS)

A study is reported of the influence of non-uniform rotation—which is inherent to piston engine driven propellers—on the aerodynamics and aeroacoustics of multi-blade propellers by numerical simulation. The combination of aerodynamic predictions with a 3-D unsteady free wake panel method and aeroacoustic predictions based on Farassat's Formulation 1A of the Ffowcs Williams and Hawkings equation is used to achieve this goal. The numerical results show that non-uniform rotation has a significant influence on propeller aerodynamics and can lead to an increase in the generated noise. In case of a mismatch between the periodicity of the non-uniformity and the basic blade passage frequency, additional harmonics (“subharmonics”) are generated. For a periodicity coincidence, the effects are masked due to an overlapping of the frequencies. The level of such subharmonics may be high enough to increase the overall A-weighted noise. The azimuthal directivity of the of the propeller noise remains no longer axisymmetric, and changes to a wave-like harmonic variation. The number of undulations per revolution depends on the order of the non-uniformity and is not related to the number of propeller blades. The polar directivity pattern also changes substantially from that known for uniform rotation. A frequency domain analysis of the unsteady pressure distribution shows that the subharmonics perceived at a space-fixed location are not due to an aerodynamic or acoustic interaction but rather the consequence of a motion geometry or Doppler effect.

YIN, J. P.; AHMED, S. R.; DOBRZYNSKI, W.

1999-08-01

395

Advanced Aerodynamic Control Effectors

NASA Technical Reports Server (NTRS)

A 1990 research program that focused on the development of advanced aerodynamic control effectors (AACE) for military aircraft has been reviewed and summarized. Data are presented for advanced planform, flow control, and surface contouring technologies. The data show significant increases in lift, reductions in drag, and increased control power, compared to typical aerodynamic designs. The results presented also highlighted the importance of planform selection in the design of a control effector suite. Planform data showed that dramatic increases in lift (greater than 25%) can be achieved with multiple wings and a sawtooth forebody. Passive porosity and micro drag generator control effector data showed control power levels exceeding that available from typical effectors (moving surfaces). Application of an advanced planform to a tailless concept showed benefits of similar magnitude as those observed in the generic studies.

Wood, Richard M.; Bauer, Steven X. S.

1999-01-01

396

Race car performance depends on elements such as the engine, tires,\\u000d\\u000a\\u0009suspension, road, aerodymamics, and of course the driver. In recent\\u000d\\u000a\\u0009years, however vehicle aerodynamics gained increased attention, mainly\\u000d\\u000a\\u0009due to the utilization of the negative lift (downforce) principle,\\u000d\\u000a\\u0009yielding several important performance improvements. This review\\u000d\\u000a\\u0009briefly explains the significance of the aerodynamic down force and\\u000d\\u000a\\u0009how it improves race

Joseph Katz

2006-01-01

397

NASA Technical Reports Server (NTRS)

Means for relatively simple and quick procedures are examined for estimating aerodynamic coefficients of lifting reentry vehicles. The methods developed allow aerospace designers not only to evaluate the aerodynamics of specific shapes but also to optimize shapes under given constraints. The analysis was also studied of the effect of thermomolecular flow on pressures measured by an orifice near the nose of a Space Shuttle Orbiter at altitudes above 75 km. It was shown that pressures corrected for thermomolecular flow effect are in good agreement with values predicted by independent theoretical methods. An incidental product was the insight gained about the free molecular thermal accommodation coefficient applicable under 'real' conditions of high speed flow in the Earth's atmosphere. The results are presented as abstracts of referenced papers. One reference paper is presented in its entirety.

Potter, J. Leith

1992-01-01

398

Aerodynamics and vortical structures in hovering fruitflies

NASA Astrophysics Data System (ADS)

We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.

Meng, Xue Guang; Sun, Mao

2015-03-01

399

NASA Technical Reports Server (NTRS)

This slide presentation reviews some of the basic principles of aerodynamics. Included in the presentation are: a few demonstrations of the principles, an explanation of the concepts of lift, drag, thrust and weight, a description of Bernoulli's principle, the concept of the airfoil (i.e., the shape of the wing) and how that effects lift, and the method of controlling an aircraft by manipulating the four forces using control surfaces.

Cole, Jennifer Hansen

2010-01-01

400

Effect of an unsteady swirled turbulent flow on the motion of a single solid particle

NASA Astrophysics Data System (ADS)

An unsteady swirled turbulent flow between two rotating flat disks is modeled. The flow is directed along the radius toward the rotation axis. A quasi-steady character of the turbulent flow, caused by oscillations of the radial velocity at the entrance to the gap between the disks with a period close to the time of dynamic relaxation of the particle, is studied with the use of the known two-equation Wilcox's k-? model of turbulence. The influence of the Stokes number and the frequency and amplitude of oscillations of the carrier medium on the motion of single particles in the field of centrifugal and aerodynamic forces is considered.

Shvab, A. V.; Khairullina, V. Yu.

2011-01-01

401

Size effects on insect hovering aerodynamics: an integrated computational study.

Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design. PMID:19258688

Liu, H; Aono, H

2009-03-01

402

Unsteady Flow Simulation: A Numerical Challenge

The prediction of unsteady flow field in turbine blades as well as in the turbomachinery stages is now an affordable item, and is required by the reduced margin for increasing efficiency, stability and life of propulsion components. The numerical tools are now capable to run within reasonable time 3D unsteady calculation for full stage, and the new techniques on the

Francesco Martelli; Elisabetta Belardini; Paolo Adami

403

Evaluation of Turbulence Models for Unsteady Flows of an Oscillating Airfoil

NASA Technical Reports Server (NTRS)

Unsteady flowfields of a two-dimensional oscillating airfoil are calculated using an implicit, finite-difference, Navier Stokes numerical scheme. Five widely used turbulence models are used with the numerical scheme to assess the accuracy and suitability of the models for simulating the retreating blade stall of helicopter rotor in forward flight. Three unsteady flow conditions corresponding to an essentially attached flow, light-stall, and deep-stall cases of an oscillating NACA 0015 wing experiment were chosen as test cases for computations. Results of unsteady airloads hysteresis curves, harmonics of unsteady pressures, and instantaneous flowfield patterns are presented. Some effects of grid density, time-step size, and numerical dissipation on the unsteady solutions relevant to the evaluation of turbulence models are examined. Comparison of unsteady airloads with experimental data show that all models tested are deficient in some sense and no single model predicts airloads consistently and in agreement with experiment for the three flow regimes. The chief findings are that the simple algebraic model based on the renormalization group theory (RNG) offers some improvement over the Baldwin Lomax model in all flow regimes with nearly same computational cost. The one-equation models provide significant improvement over the algebraic and the half-equation models but have their own limitations. The Baldwin-Barth model overpredicts separation and underpredicts reattachment. In contrast, the Spalart-Allmaras model underpredicts separation and overpredicts reattachment.

Srinivasan, G. R.; Ekaterinaris, J. A.; McCroskey, W. J.

1995-01-01

404

NASA Technical Reports Server (NTRS)

The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.

Mccain, W. E.

1982-01-01

405

Aerodynamic measurements concerned with a turret model

NASA Technical Reports Server (NTRS)

An experimental investigation was carried out in the 14 by 14 ft Ames transonic wind tunnel on a turret model. The aerodynamic parameters measured were steady and unsteady pressures (static and total fluid pressures), local mean velocities, and local mean densities at selected locations along the optical beam path for the azimuth look angles of 90, 120, and 150 degrees from the turret. The test stream Mach numbers considered are 0.55, 0.65 and 0.75, and the Reynolds number per meter is in the range of 10 million. The results indicate that severe optical degradation can be expected at aft look azimuth, angles, this degradation in optical performance increases as the azimuth angle is increased. The ratio of rms static pressure to the local mean static pressure peaks in the range of 0.07 to 0.12 and the ratio of rms total pressure to the local mean total pressure peaks in the range of 0.02 to 0.04. These values depend on the Mach number and the aft look azimuth angle. The scale lengths obtained from correlation considerations are also presented.

Raman, K. R.

1981-01-01

406

Oscillating cascade aerodynamics at large mean incidence

NASA Technical Reports Server (NTRS)

The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 deg and 10 deg; the Reynolds number was 0.9 x l0(exp 6). For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

Buffum, Daniel H.; King, Aaron J.; El-Aini, Yehia M.; Capece, Vincent R.

1996-01-01

407

Investigation into the aerodynamics of swashplateless rotors using CFD-CSD analysis

NASA Astrophysics Data System (ADS)

This study obtains a better understanding of the aerodynamics of integrated trailing edge flap (TEF) based swashplateless rotors. Both two dimensional (2D) and three dimensional (3D) analysis/simulations are performed to understand the behavior of TEF airfoils and integrated TEF based swashplateless rotors. The 2D aerodynamics of TEF airfoils is explored in detail. A semi-empirical approach is developed for modeling drag for TEF airfoils in steady flows based on baseline airfoil drag data alone. Extensive 2D CFD simulations are performed for a wide range of flow conditions in order to better understand various aspects of the aerodynamics of TEF airfoils. The trends in the airloads (lift, drag, pitching moment, hinge moment) for TEF airfoils are obtained. Nonlinear phenomena such as flow separation, shocks and unsteady vortex shedding are investigated, and the flow conditions and trends associated with them are studied. The effect of airfoil properties such as thickness and overhang are studied. Various approaches are used to model the effect of gaps at the leading edge of the flap. An approximate "gap averaging" technique is developed, which provides good predictions of steady airloads at almost the same computational cost as a simulation where the gap is not modeled. Direct modeling of the gap is done by using a patched mesh in the gap region. To solve problems (such as poor grid quality/control and poor convergence) that are associated with the patched mesh simulations, an alternate approach using overlapping meshes is used. It is seen that for TEF airfoils, the presence of gaps adversely affects the effectiveness of the flap. The change in airloads is not negligible, especially at the relatively higher flap deflections associated with swashplateless TEF rotors. Finally, uncoupled and coupled computational fluid/structural dynamics (CFD-CSD) simulations of conventional (baseline) and swashplateless TEF rotors is performed in hovering flight. The CFD-CSD code is validated against experiment and good agreement is observed. It is observed that the baseline UH-60 rotor performs better than the swashplateless UH-60 rotor. For an untwisted NACA0012 airfoil based rotor, the performance is similar for the baseline and swashplateless configurations. The effect of gaps on the performance of swashplateless TEF rotors is also investigated. It is seen that the presence of chordwise gaps significantly affects the effectiveness of the TEF to control the rotor. Spanwise gaps also affect the performance of swashplateless rotors but their effect is not as significant.

Jose, Arun Isaac

408

Computational aspects of unsteady flows

NASA Technical Reports Server (NTRS)

The calculation of unsteady flows and the development of numerical methods for solving unsteady boundary layer equations and their application to the flows around important configurations such as oscillating airfoils are presented. A brief review of recent work is provided with emphasis on the need for numerical methods which can overcome possible problems associated with flow reversal and separation. The zig-zag and characteristic box schemes are described in this context, and when embodied in a method which permits interaction between solutions of inviscid and viscous equations, the characteristic box scheme is shown to avoid the singularity associated with boundary layer equations and prescribed pressure gradient. Calculations were performed for a cylinder started impulsively from rest and oscillating airfoils. The results are presented and discussed. It is conlcuded that turbulence models based on an algebraic specification of eddy viscosity can be adequate, that location of translation is important to the calculation of the location of flow separation and, therefore, to the overall lift of an oscillating airfoil.

Cebeci, T.; Carr, L. W.; Khattab, A. A.; Schimke, S. M.

1985-01-01

409

NASA Technical Reports Server (NTRS)

A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.

Hanson, D. B.

1991-01-01

410

NASA Technical Reports Server (NTRS)

The current paper reports on an investigation of steady and unsteady flow effects of circumferential grooves casing treatment in a transonic compressor rotor. Circumferential grooves casing treatment is used mainly to increase stall margin in axial compressors with a relatively small decrease in aerodynamic efficiency. It is widely believed that flow mechanisms of circumferential grooves casing treatment near stall conditions are not yet well understood even though this treatment has been used widely in real engines. Numerical analysis based on steady Reynolds-averaged Navier-Stokes (RANS) has been the primary tool used to understand flow mechanism for circumferential grooves casing treatment. Although steady RANS explains some flow effects of circumferential grooves casing treatment, it does not calculate all the measured changes in the compressor characteristics. Therefore, design optimization of circumferential grooves with steady RANS has not been very successful. As a compressor operates toward the stall condition, the flow field becomes transient. Major sources of self-generated flow unsteadiness are shock oscillation and interaction between the passage shock and the tip leakage vortex. In the present paper, an unsteady Reynolds-averaged Navier-Stokes (URANS) approach is applied to study the effects of circumferential grooves in a transonic compressor. The results from URANS are compared with the results from RANS and measured data. The current investigation shows that there are significant unsteady flow effects on the performance of the circumferential grooves casing treatment. For the currently investigated rotor, the unsteady effects are of the same magnitude as the steady effects in terms of extending the compressor stall margin.

Hah, Chunill

2011-01-01

411

Freight Wing Trailer Aerodynamics

Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

Graham, Sean (Primary Investigator); Bigatel, Patrick

2004-10-17

412

Robustness of de Saint Venant equations for simulating unsteady flows

Long-wave motion in open channels can be expressed mathematically by the one-dimensional de Saint Venant equations describing conservation of fluid mass and momentum. Numerical simulation models, based on either depth/velocity or water-level/discharge dependent-variable formulations of these equations, are typically used to simulate unsteady open-channel flow. However, the implications and significance of selecting either dependent-variable form - on model development, discretization and numerical solution processes, and ultimately on the range-of-application and simulation utility of resulting models - are not well known. Results obtained from a set of numerical experiments employing two models - one based on depth/velocity and the other on water-level/discharge equation formulations - reveal the sensitivity of the two equation sets to various channel properties and dynamic flow conditions. In particular, the effects of channel gradient, channel width-to-depth ratio, flow-resistance coefficient, and flow unsteadiness are analyzed and discussed.

Baltzer, Robert A.; Schaffranek, Raymond W.; Lai, Chintu

1995-01-01

413

Vortex scale of unsteady separation on a pitching airfoil.

The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment. PMID:12495998

Fuchiwaki, Masaki; Tanaka, Kazuhiro

2002-10-01

414

Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage

NASA Technical Reports Server (NTRS)

Two recent research endeavors in turbomachinery at NASA Glenn Research Center have focused on compression system stall inception and compression system aerothermodynamic performance. Physical experiment and computational research are ongoing in support of these research objectives. TURBO, an unsteady, three-dimensional, Navier-Stokes computational fluid dynamics code commissioned and developed by NASA, has been utilized, enhanced, and validated in support of these endeavors. In the research which follows, TURBO is shown to accurately capture compression system flow range-from choke to stall inception-and also to accurately calculate fundamental aerothermodynamic performance parameters. Rigorous full-annulus calculations are performed to validate TURBO s ability to simulate the unstable, unsteady, chaotic stall inception process; as part of these efforts, full-annulus calculations are also performed at a condition approaching choke to further document TURBO s capabilities to compute aerothermodynamic performance data and support a NASA code assessment effort.

Herrick, Gregory P.; Hathaway, Michael D.; Chen, Jen-Ping

2009-01-01

415

Aerodynamics: The Mathematical Implications

NSDL National Science Digital Library

This unit from the Yale-New Haven Teachers Institute is "an attempt to develop a unit in mathematics that will provide topics for students interested in the aviation trades." The unit can be used to cover all areas of mathematics from areas in geometry sectors to basic addition of fraction and decimal numbers. These general math concepts will be introduced using aerodynamics and aviation language and it is hoped that students will begin "to understand the applicability of some of the mathematics concepts they have learned." This curriculum unit also includes sample lesson plans and references.

2007-06-14

416

Aerodynamic design using numerical optimization

NASA Technical Reports Server (NTRS)

The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.

Murman, E. M.; Chapman, G. T.

1983-01-01

417

Aerodynamics of a Party Balloon

ERIC Educational Resources Information Center

It is well-known that a party balloon can be made to fly erratically across a room, but it can also be used for quantitative measurements of other aspects of aerodynamics. Since a balloon is light and has a large surface area, even relatively weak aerodynamic forces can be readily demonstrated or measured in the classroom. Accurate measurements…

Cross, Rod

2007-01-01

418

On Wings: Aerodynamics of Eagles.

ERIC Educational Resources Information Center

The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

Millson, David

2000-01-01

419

Stability limits of unsteady open capillary channel flow

NASA Astrophysics Data System (ADS)

This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.

Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.

420

NASA Technical Reports Server (NTRS)

This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

Zahm, A F

1924-01-01