For comprehensive and current results, perform a real-time search at Science.gov.

1

Experience with transonic unsteady aerodynamic calculations

NASA Technical Reports Server (NTRS)

Comparisons of calculated and experimental transonic unsteady pressures and airloads for four of the AGARD Two Dimensional Aeroelastic Configurations and for a rectangular supercritical wing are presented. The two dimensional computer code, XTRAN2L, implementing the transonic small perturbation equation was used to obtain results for: (1) pitching oscillations of the NACA 64A010A; NLR 7301 and NACA 0012 airfoils; (2) flap oscillations for the NACA 64A006 and NRL 7301 airfoils; and (3) transient ramping motions for the NACA 0012 airfoils. Results from the three dimensional code XTRAN3S are compared with data from a rectangular supercritical wing oscillating in pitch. These cases illustrate the conditions under which the transonic inviscid small perturbation equation provides reasonable predictions.

Edwards, J. W.; Bland, S. R.; Seidel, D. A.

1984-01-01

2

Bifurcations in unsteady aerodynamics

NASA Technical Reports Server (NTRS)

Nonlinear algebraic functional expansions are used to create a form for the unsteady aerodynamic response that is consistent with solutions of the time dependent Navier-Stokes equations. An enumeration of means of invalidating Frechet differentiability of the aerodynamic response, one of which is aerodynamic bifurcation, is proposed as a way of classifying steady and unsteady aerodynamic phenomena that are important in flight dynamics applications. Accomodating bifurcation phenomena involving time dependent equilibrium states within a mathematical model of the aerodynamic response raises an issue of memory effects that becomes more important with each successive bifurcation.

Tobak, M.; Unal, A.

1986-01-01

3

Bifurcations in unsteady aerodynamics

NASA Technical Reports Server (NTRS)

Nonlinear algebraic functional expansions are used to create a form for the unsteady aerodynamic response that is consistent with solutions of the time dependent Navier-Stokes equations. An enumeration of means of invalidating Frechet differentiability of the aerodynamic response, one of which is aerodynamic bifurcation, is proposed as a way of classifying steady and unsteady aerodynamic phenomena that are important in flight dynamics applications. Accommodating bifurcation phenomena involving time dependent equilibrium states within a mathematical model of the aerodynamic response raises an issue of memory effects that becomes more important with each successive bifurcation.

Tobak, M.; Unal, A.

1987-01-01

4

Unsteady Aerodynamics Experiment Phases II-IV Test Configurations and Available Data Campaigns

The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale three-dimensional aerodynamic behavior of horizontal axis wind turbines. To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic stall regimes. Much of the effort in the earlier phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phases II-IV of the experiment is contained in this report.

Simms, D. A.; Hand, M. M.; Fingersh, L. J.; Jager, D. W.

1999-08-19

5

Unsteady aerodynamics of blade rows

NASA Technical Reports Server (NTRS)

The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.

Verdon, Joseph M.

1989-01-01

6

Progress in computational unsteady aerodynamics

NASA Technical Reports Server (NTRS)

After vigorous development for over twenty years, Computational Fluid Dynamics (CFD) in the field of aerospace engineering has arrived at a turning point toward maturity. This paper discusses issues related to algorithm development for the Euler/Navier Stokes equations, code validation and recent applications of CFD for unsteady aerodynamics. Algorithm development is a fundamental element for a good CFD program. Code validation tries to bridge the reliability gap between CFD and experiment. Many of the recent applications also take a multidisciplinary approach, which is a future trend for CFD applications. As computers become more affordable, CFD is expected to be a better scientific and engineering tool.

Obayashi, Shigeru

1993-01-01

7

Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics

NASA Technical Reports Server (NTRS)

Computer program SOUSSA-P (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics--Production Version) accurately and efficiently evaluates steady and unsteady aerodynamic loads on aircraft having arbitrary shapes and motions, including structural deformations.

Desmarais, R. N.; Cunningham, H. J.; Yates, E. C. J.; Morino, L.; Preuss, R. D.; Smolka, S. A.; Tseng, K.; Averick, J.

1982-01-01

8

Rotor/fuselage unsteady interactional aerodynamics: A new computational model

NASA Astrophysics Data System (ADS)

A new unsteady rotor/fuselage interactional aerodynamics model has been developed. This model loosely couples a Generalized Dynamic Wake Theory (GDWT) to a Navier-Stokes solution procedure. This coupling is achieved using a newly developed unsteady pressure jump boundary condition in the Navier-Stokes model. The new unsteady pressure jump boundary condition models each rotor blade as a moving pressure jump which travels around the rotor azimuth and is applied between two adjacent planes in a cylindrical, non-rotating grid. Comparisons are made between predictions using this new model and experiments for an isolated rotor and for a coupled rotor/fuselage configuration.

Boyd, David Douglas, Jr.

1999-11-01

9

Unsteady aerodynamics of advanced ducted fan

A three-dimensional linear frequency domain panel method has been extended to study the unsteady aerodynamics, aeroelasticity, and aeroacoustics of advanced ducted fans. Additional contributions are to extend and improve previous lifting surface theory to include for stator rows and planar supersonic tip Mach numbers, and radiated noise estimation. A two-dimensional viscous wake model is incorporated to account for the influence

Wen-Liang Huang

1996-01-01

10

Unsteady Aerodynamics - Subsonic Compressible Inviscid Case

NASA Technical Reports Server (NTRS)

This paper presents a new analytical treatment of Unsteady Aerodynamics - the linear theory covering the subsonic compressible (inviscid) case - drawing on some recent work in Operator Theory and Functional Analysis. The specific new results are: (a) An existence and uniqueness proof for the Laplace transform version of the Possio integral equation as well as a new closed form solution approximation thereof. (b) A new representation for the time-domain solution of the subsonic compressible aerodynamic equations emphasizing in particular the role of the initial conditions.

Balakrishnan, A. V.

1999-01-01

11

Aerodynamic Force Modeling for Unsteady Wing Ryan Jantzen

Aerodynamic Force Modeling for Unsteady Wing Maneuvers Ryan Jantzen and Kunihiko Taira Florida, Wright-Patterson Air Force Base, OH We report on the development of an aerodynamic force model for a flat focus is placed on examining the influence of large-amplitude wing motion on the unsteady aerodynamics

12

Unsteady aerodynamics and gust response in compressors and turbines

A comprehensive series of experiments and analyses was performed on compressor and turbine blading to evaluate the ability of current, practical, engineering/analysis models to predict unsteady aerodynamic loading of modern gas turbine blading. This is part of an ongoing effort to improve methods for preventing blading failure. The experiments were conducted in low-speed research facilities capable of simulating the relevant aerodynamic features of turbomachinery. Unsteady loading on compressor and turbine blading was generated by upstream wakes and, additionally for compressors, by a rotating inlet distortion. Fast-response hot-wire anemometry and pressure transducers embedded in the airfoil surfaces were used to determine the aerodynamic gusts and resulting unsteady pressure responses acting on the airfoils. This is the first time that gust response measurements for turbines have been reported in the literature. Several different analyses were used to predict the unsteady component of the blade loading: (1) a classical flat-plate analysis, (2) a two-dimensional linearized flow analysis with a frozen gust model, (3) a two-dimensional linearized flow analysis with a distorted gust model, (4) a two-dimensional linearized Euler analysis, and (5) a two-dimensional nonlinear Euler analysis. Also for the first time, a detailed comparison of these analyses methods is made and the importance of properly accounting for both vortical and potential disturbances is demonstrated. The predictions are compared with experiment and their abilities assessed to help guide designers in using these prediction schemes.

Manwaring, S.R.; Wisler, D.C. (Aerodynamics Research Lab., Cincinnati, OH (United States). GE Aircraft Engines)

1993-10-01

13

Fourier functional analysis for unsteady aerodynamic modeling

NASA Technical Reports Server (NTRS)

A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.

Lan, C. Edward; Chin, Suei

1991-01-01

14

Nonlinear, unsteady aerodynamic loads on rectangular and delta wings

NASA Technical Reports Server (NTRS)

Nonlinear unsteady aerodynamic loads on rectangular and delta wings in an incompressible flow are calculated by using an unsteady vortex-lattice model. Examples include flows past fixed wings in unsteady uniform streams and flows past wings undergoing unsteady motions. The unsteadiness may be due to gusty winds or pitching oscillations. The present technique establishes a reliable approach which can be utilized in the analysis of problems associated with the dynamics and aeroelasticity of wings within a wide range of angles of attack.

Atta, E. H.; Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

1977-01-01

15

Unsteady incompressible aerodynamics and forced response of detuned blade rows

NASA Technical Reports Server (NTRS)

A mathematical model is developed and utilized to demonstrate the enhanced forced response behavior associated with aerodynamic, structural, and combined aerodynamic-structural detuning of a loaded rotor operating in an incompressible flow field. The unsteady aerodynamic gust response and oscillating cascade aerodynamics are determined by developing both a complete first-order unsteady aerodynamic analysis and a locally analytical solution in individual grid elements of a body fitted computational grid. The aerodynamic detuning is accomplished by means of alternate circumferential airfoil spacing, with alternate blade structural detuning also considered. The beneficial forced response effects of these detuning techniques are then demonstrated by applying this model to various detuned rotor configurations.

Chiang, Hsiao-Wei D.; Fleeter, Sanford

1990-01-01

16

Unsteady aerodynamics and flow control for flapping wing flyers

NASA Astrophysics Data System (ADS)

The creation of micro air vehicles (MAVs) of the same general sizes and weight as natural fliers has spawned renewed interest in flapping wing flight. With a wingspan of approximately 15 cm and a flight speed of a few meters per second, MAVs experience the same low Reynolds number (10 4-10 5) flight conditions as their biological counterparts. In this flow regime, rigid fixed wings drop dramatically in aerodynamic performance while flexible flapping wings gain efficacy and are the preferred propulsion method for small natural fliers. Researchers have long realized that steady-state aerodynamics does not properly capture the physical phenomena or forces present in flapping flight at this scale. Hence, unsteady flow mechanisms must dominate this regime. Furthermore, due to the low flight speeds, any disturbance such as gusts or wind will dramatically change the aerodynamic conditions around the MAV. In response, a suitable feedback control system and actuation technology must be developed so that the wing can maintain its aerodynamic efficiency in this extremely dynamic situation; one where the unsteady separated flow field and wing structure are tightly coupled and interact nonlinearly. For instance, birds and bats control their flexible wings with muscle tissue to successfully deal with rapid changes in the flow environment. Drawing from their example, perhaps MAVs can use lightweight actuators in conjunction with adaptive feedback control to shape the wing and achieve active flow control. This article first reviews the scaling laws and unsteady flow regime constraining both biological and man-made fliers. Then a summary of vortex dominated unsteady aerodynamics follows. Next, aeroelastic coupling and its effect on lift and thrust are discussed. Afterwards, flow control strategies found in nature and devised by man to deal with separated flows are examined. Recent work is also presented in using microelectromechanical systems (MEMS) actuators and angular speed variation to achieve active flow control for MAVs. Finally, an explanation for aerodynamic gains seen in flexible versus rigid membrane wings, derived from an unsteady three-dimensional computational fluid dynamics model with an integrated distributed control algorithm, is presented.

Ho, Steven; Nassef, Hany; Pornsinsirirak, Nick; Tai, Yu-Chong; Ho, Chih-Ming

2003-11-01

17

Unsteady aerodynamic modeling and active aeroelastic control

NASA Technical Reports Server (NTRS)

Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

Edwards, J. W.

1977-01-01

18

Bifurcations in unsteady aerodynamics-implications for testing

NASA Technical Reports Server (NTRS)

The various forms of bifurcations that can occur between steady and unsteady aerodynamic flows are reviewed. Examples are provided to illustrate the various ways in which bifurcations may intervene to influence the outcome of dynamics tests involving unsteady aerodynamics. The presence of bifurcation phenomena in such tests must be taken into consideration to ensure the proper interpretation of results, and some recommendations are made to that end.

Chapman, Gary T.; Tobak, Murray

1988-01-01

19

Application of neural networks to unsteady aerodynamic control

NASA Technical Reports Server (NTRS)

The problem under consideration in this viewgraph presentation is to understand, predict, and control the fluid mechanics of dynamic maneuvers, unsteady boundary layers, and vortex dominated flows. One solution is the application of neural networks demonstrating closed-loop control. Neural networks offer unique opportunities: simplify modeling of three dimensional, vortex dominated, unsteady separated flow fields; are effective means for controlling unsteady aerodynamics; and address integration of sensors, controllers, and time lags into adaptive control systems.

Faller, William E.; Schreck, Scott J.; Luttges, Marvin W.

1994-01-01

20

Algorithmic Enhancements for Unsteady Aerodynamics and Combustion Applications

NASA Technical Reports Server (NTRS)

Research in the FY01 focused on the analysis and development of enhanced algorithms for unsteady aerodynamics and chemically reacting flowfields. The research was performed in support of NASA Ames' efforts to improve the capabilities of the in-house computational fluid dynamics code, OVERFLOW. Specifically, the research was focused on the four areas: (1) investigation of stagnation region effects; (2) unsteady preconditioning dual-time procedures; (3) dissipation formulation for combustion; and (4) time-stepping methods for combustion.

Venkateswaran, Sankaran; Olsen, Michael (Technical Monitor)

2001-01-01

21

A new approach to finite state modelling of unsteady aerodynamics

NASA Technical Reports Server (NTRS)

This paper presents a novel technique for formulating a high quality finite state unsteady aerodynamic model by applying Bode plot methods, used in control engineering. Indicial response functions for both fixed wing and rotary wing applications are obtained using these finite state unsteady aerodynamic models. It is shown that the rotary wing indicial response function has a fundamentally different characteristic when compared to fixed wing indicial response. The rotary wing indicial response function is oscillatory in nature while the fixed wing indicial response function is nonoscillatory. Furthermore it should be emphasized that this is the first that a rotary-wing indicial response function has been presented in the literature.

Venkatesan, C.; Friedmann, P. P.

1986-01-01

22

Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

NASA Technical Reports Server (NTRS)

A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 percent in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady aerodynamic model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -0.14 percent.

Pak, Chan-gi

2011-01-01

23

A technique for measuring unsteady aerodynamics in turbomachinery

NASA Astrophysics Data System (ADS)

A technique is presented that measures unsteady pressure downstream from the transonic rotor utilizing a total pressure probe with a high response pressure transducer. The development of new computation codes permits the unsteady characteristics of the flow to be obtained. Test results are described that show the unsteady measurements obtained downstream of a transonic rotor with inlet distortion. Algorithms used in the analyses are discussed in detail. It is also shown that static pressure can be determined with this system by taking into account the position angle of the transducer. It is concluded that the test analyses confirm the validity of this aerodynamic measuring technique.

Huard, J.

24

CHSSI Software for Geometrically Complex Unsteady Aerodynamic Applications

NASA Technical Reports Server (NTRS)

A comprehensive package of scalable overset grid CFD software is reviewed. The software facilitates accurate simulation of complete aircraft aerodynamics, including viscous effects, unsteadiness, and relative motion between component parts. The software significantly lowers the manpower and computer costs normally associated with such efforts. The software is discussed in terms of current capabilities and planned future enhancements.

Chan, William M.; Meakin, Robert L.; Potsdam, Mark A.

2001-01-01

25

Application of Approximate Unsteady Aerodynamics for Flutter Analysis

NASA Technical Reports Server (NTRS)

A technique for approximating the modal aerodynamic influence coefficient (AIC) matrices by using basis functions has been developed. A process for using the resulting approximated modal AIC matrix in aeroelastic analysis has also been developed. The method requires the unsteady aerodynamics in frequency domain, and this methodology can be applied to the unsteady subsonic, transonic, and supersonic aerodynamics. The flutter solution can be found by the classic methods, such as rational function approximation, k, p-k, p, root locus et cetera. The unsteady aeroelastic analysis using unsteady subsonic aerodynamic approximation is demonstrated herein. The technique presented is shown to offer consistent flutter speed prediction on an aerostructures test wing (ATW) 2 and a hybrid wing body (HWB) type of vehicle configuration with negligible loss in precision. This method computes AICs that are functions of the changing parameters being studied and are generated within minutes of CPU time instead of hours. These results may have practical application in parametric flutter analyses as well as more efficient multidisciplinary design and optimization studies.

Pak, Chan-gi; Li, Wesley W.

2010-01-01

26

Unsteady Aerodynamic Model Tuning for Precise Flutter Prediction

NASA Technical Reports Server (NTRS)

A simple method for an unsteady aerodynamic model tuning is proposed in this study. This method is based on the direct modification of the aerodynamic influence coefficient matrices. The aerostructures test wing 2 flight-test data is used to demonstrate the proposed model tuning method. The flutter speed margin computed using only the test validated structural dynamic model can be improved using the additional unsteady aerodynamic model tuning, and then the flutter speed margin requirement of 15 % in military specifications can apply towards the test validated aeroelastic model. In this study, unsteady aerodynamic model tunings are performed at two time invariant flight conditions, at Mach numbers of 0.390 and 0.456. When the Mach number for the unsteady model tuning approaches to the measured fluttering Mach number, 0.502, at the flight altitude of 9,837 ft, the estimated flutter speed is approached to the measured flutter speed at this altitude. The minimum flutter speed difference between the estimated and measured flutter speed is -.14 %.

Pak, Chan-Gi

2011-01-01

27

Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code

NASA Technical Reports Server (NTRS)

The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.

Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.

2000-01-01

28

Numerical solution techniques for unsteady transonic aerodynamics problems

NASA Technical Reports Server (NTRS)

Basic concepts of finite difference solution techniques for unsteady transonic flows are presented. The hierarchy of mathematical forumulations that approximate the Navier-Stokes equations are reviewed. The basic concepts involved in constructing numerical algorthms to solve these formulations are given. Semi-implicit and implicit schemes are constructed and analyzed. The discussion focuses primarily on techniques for solving the low frequency transonic small disturbance equation. This is the simplest formulation that contains the essence of inviscid unsteady transonic flow physics. The low frequency formulation is emphasized here because codes based on this theory can be run in minutes of processor time on currently available computers. Furthermore, numerical techniques involved in solving this simple formulation also apply to the more complicated formulations. Extensions to these formulations are briefly described. An indication of the present capability for solving unsteady transonic flows is provided. Important areas of future research for the advancement of computational unsteady transonic aerodynamics are described.

Ballhaus, W. F.; Bridgeman, J. O.

1980-01-01

29

Unsteady aerodynamics of fluttering and tumbling plates

NASA Astrophysics Data System (ADS)

We investigate the aerodynamics of freely falling plates in a quasi-two-dimensional flow at Reynolds number of 10(3) , which is typical for a leaf or business card falling in air. We quantify the trajectories experimentally using high-speed digital video at sufficient resolution to determine the instantaneous plate accelerations and thus to deduce the instantaneous fluid forces. We compare the measurements with direct numerical solutions of the two-dimensional Navier Stokes equation. Using inviscid theory as a guide, we decompose the fluid forces into contributions due to acceleration, translation, and rotation of the plate. For both fluttering and tumbling we find that the fluid circulation is dominated by a rotational term proportional to the angular velocity of the plate, as opposed to the translational velocity for a glider with fixed angle of attack. We find that the torque on a freely falling plate is small, i.e. the torque is one to two orders of magnitude smaller than the torque on a glider with fixed angle of attack. Based on these results we revise the existing ODE models of freely falling plates. We get access to different kinds of dynamics by exploring the phase diagram spanned by the Reynolds number, the dimensionless moment of inertia, and the thickness-to-width ratio. In agreement with previous experiments, we find fluttering, tumbling, and apparently chaotic motion. We further investigate the dependence on initial conditions and find brief transients followed by periodic fluttering described by simple harmonics and tumbling with a pronounced period-two structure. Near the cusp-like turning points, the plates elevate, a feature which would be absent if the lift depended on the translational velocity alone.

Andersen, A.; Pesavento, U.; Wang, Z. Jane

2005-10-01

30

High performance parallelized implicit Euler solver for the analysis of unsteady aerodynamic flows

NASA Astrophysics Data System (ADS)

Simulation of transient flows is more and more useful for industrial applications in aeronautics. For instance, the unsteady aerodynamic coefficients can be of great importance in order to predict the behavior of flying bodies: this is in particular the case for missiles which are spun around their longitudinal axis. It is also well known that the experimental tools used to evaluate the unsteady aerodynamic characteristics present a certain number of limitations: complexity of the experiments, limited degree of accuracy, high costs and delays. In this context, the Computational Aerodynamics Department of Matra Defense has been developing a software library called AEROLOG for the prediction of the steady and unsteady aerodynamics of tactical missiles using Computational Fluid Dynamics (CFD) techniques. The aim of this paper is as follows: (1) Detailed presentation of the numerical method, with particular emphasis on the high performances in terms of computational time achieved thanks to the use of an implicit scheme combined with a domain decomposition of structured mesh well suited for vector and parallel implementation, and (2) Analysis of 2-D and 3-D unsteady numerical simulations corresponding to academic and industrial cases, showing the accuracy of the method together with its range of applications.

Borel, C.; Bredif, M.

31

NASA Technical Reports Server (NTRS)

The body surface-panel method SOUSSA is applied to calculate steady and unsteady lift and pitching moment coefficients on a thin fighter-type wing model with and without a tip-mounted missile. Comparisons are presented with experimental results and with PANAIR and PANAIR-related calculations for Mach numbers from 0.6 to 0.9. In general the SOUSSA program, the experiments, and the PANAIR (and related) programs give lift and pitching-moment results which agree at least fairly well, except for the unsteady clean-wing experimental moment and the unsteady moment on the wing tip body calculated by a PANAIR-predecessor program at a Mach number of 0.8.

Cunningham, Herbert J.

1987-01-01

32

Unsteady transonic aerodynamics during wing flutter

NASA Astrophysics Data System (ADS)

Unsteady pressure distributions of a two-dimensional super-critical wing while it was fluttering were measured in the transonic flow regime. The results were compared with those by the Navier-Stokes code which includes wind-tunnel wall effects. Although there were discrepancies between the experimental results and the analytical model for the pressure phase delay distribution, no disagreements were observed for the pitching first harmonics provided that there was no large flow separation. In the tests, the flutter was forced to be suppressed soon after its onset before it reached a limit cycle oscillation (LCO) where the amplitude of the pitching angle was supposed to be over 2 degrees.

Saitoh, Kenichi; Tamayama, Masato; Yoshimoto, Norio; Ueda, Tetsuhiko

2012-09-01

33

Unsteady aerodynamic modeling based on POD-observer method

A new hybrid approach to constructing reduced-order models (ROM) of unsteady aerodynamics applicable to aeroelastic analysis\\u000a is presented by using proper orthogonal decomposition (POD) in combination with observer techniques. Fluid modes are generated\\u000a through POD by sampling observations of solutions derived from the full-order model. The response in the POD training is projected\\u000a onto the fluid modes to determine the

Chao Yang; XiaoYan Liu; ZhiGang Wu

2010-01-01

34

Nonlinear programming extensions to rational function approximations of unsteady aerodynamics

NASA Technical Reports Server (NTRS)

This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.

Tiffany, Sherwood H.; Adams, William M., Jr.

1987-01-01

35

NASA Technical Reports Server (NTRS)

An analysis of the steady and unsteady aerodynamics of sharp-edged slender wings has been performed. The results show that slender wing theory can be modified to give the potential flow static and dynamic characteristics in incompressible flow. A semiempirical approximation is developed for the vortex-induced loads, and it is shown that the analytic approximation for sharp-edged slender wings gives good prediction of experimentally determined steady and unsteady aerodynamics at M = 0 and M = 1. The predictions are good not only for delta wings but also for so-called arrow and diamond wings. The results indicate that the effects of delta planform lifting surfaces can be included in a simple manner when determining elastic launch vehicle dynamic characteristics. For Part 1 see (N73-32763).

Ericsson, L. E.; Reding, J. P.

1973-01-01

36

Unsteady Aerodynamics Effected by Controlled Trapped Vorticity Concentrations

NASA Astrophysics Data System (ADS)

The transitory response of the flow-about a free-moving airfoil to time-dependent fluidic actuation that yields aerodynamic forces and moments in the absence of conventional control surfaces is investigated in wind tunnel experiments. Desired maneuvers are achieved using a 2-DOF feedback-controlled traverse that is programmed for trim and dynamic characteristics. Bi-directional changes in the pitching moment are effected by controllable, nominally-symmetric trapped vorticity concentrations on both the suction and pressure surfaces near the trailing edge. Actuation is independently applied on each surface by hybrid actuators that are each comprised of a miniature [O(0.01c)] obstruction integrated with synthetic jets which manipulate and regulate vorticity flux near the surface. Simultaneous measurements of the unsteady forces and moments and of the associated velocity field above and in the near wake of the airfoil are used to asses the coupling between the flow and vehicle dynamics with emphasis on control authority and optimal actuator placement and operating parameters. Flow control effectiveness is demonstrated by closed-loop response to a momentary force disturbance analogous to the response to a sudden gust in free flight.

Brzozowski, Daniel; Glezer, Ari

2008-11-01

37

Unsteady Aerodynamic Interaction between Two Bodies at Hypersonic Speed

NASA Astrophysics Data System (ADS)

This paper presents experimental results of unsteady aerodynamic interactions including Shock/Shock Interaction (SSI) and Shock/Boundary Layer Interaction (SBLI) between two bodies at hypersonic speed. These interactions can be seen in space vehicles consisting of multi-bodies, such as a TSTO, or at a scramjet engine inlet. The present study considers the effect of a flat plate below the SSI where a boundary-layer is developed on the plate surface. More specifically, the interacted flow for a combination of a flat plate (FP) and a hemi-circular cylinder (HCC) is examined at a hypersonic speed (M?=8.1) the distributions of surface pressure and heat transfer rate are measured. To obtain various SSI patterns, the clearance between two bodies (FP and HCC) is changed. Results show that unsteadiness at the SSI point causes a feedback loop between the two bodies; a jet flow impinges on the FP, the effect of which propagates upstream where the jet impinges on the FP, and the aerodynamic and aerothermodynamic loads reach their maxima. Finally, we found that the feedback loop can be destroyed by installing a fence on the FP to reduce unsteadiness of flow field.

Ozawa, Hiroshi; Kitamura, Keiichi; Hanai, Katsuhisa; Mori, Koichi; Nakamura, Yoshiaki

38

Active flutter control using generalized unsteady aerodynamic theory

NASA Technical Reports Server (NTRS)

This paper describes the application of generalized unsteady aerodynamic theory to the problem of active flutter control. The controllability of flutter modes is investigated. It is shown that the response of aeroelastic systems is composed of a portion due to a rational transform and a portion due to a nonrational transform. The oscillatory response characteristic of flutter is due to the rational portion, and a theorem is given concerning the construction of a linear, finite-dimensional model of this portion of the system. The resulting rational model is unique and does not require state augmentation. Active flutter control designs using optimal regulator synthesis are presented.

Edwards, J. W.; Breakwell, J. V.; Bryson, A. E., Jr.

1977-01-01

39

Prediction of Unsteady Aerodynamic Coefficients at High Angles of Attack

NASA Technical Reports Server (NTRS)

The nonlinear indicial response method is used to model the unsteady aerodynamic coefficients in the low speed longitudinal oscillatory wind tunnel test data of the 0.1 scale model of the F-16XL aircraft. Exponential functions are used to approximate the deficiency function in the indicial response. Using one set of oscillatory wind tunnel data and parameter identification method, the unknown parameters in the exponential functions are estimated. The genetic algorithm is used as a least square minimizing algorithm. The assumed model structures and parameter estimates are validated by comparing the predictions with other sets of available oscillatory wind tunnel test data.

Pamadi, Bandu N.; Murphy, Patrick C.; Klein, Vladislav; Brandon, Jay M.

2001-01-01

40

Some applications of the quasi vortex-lattice method in steady and unsteady aerodynamics

NASA Technical Reports Server (NTRS)

The quasi vortex-lattice method is reviewed and applied to the evaluation of backwash, with applications to ground effect analysis. It is also extended to unsteady aerodynamics, with particular interest in the calculation of unsteady leading-edge suction. Some applications in ornithopter aerodynamics are given.

Lan, C. E.

1976-01-01

41

The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers

NASA Astrophysics Data System (ADS)

Aircraft that maneuver through large angles of attack will experience large regions of flow separation over the wing and fuselage. The separated flow field is characterized by unsteadiness and strong vortical flow structures that can interact with various components of the aircraft. These complicated flow interactions are the primary cause of most flight dynamic instabilities, airload nonlinearities and flow field time lags. The aerodynamic and the vortical flow structure over simple delta wings undergoing either a pitching or rolling motion is presented. This article reviews experimental information on the flow structure over delta wings and complete aircraft configurations. First, the flow structure of leading-edge vortices and their influence on delta wing aerodynamics for stationary models is presented. This is followed by a discussion of the effect of large amplitude motion on the vortex structure and aerodynamic characteristic of pitching and rolling delta wings. The relationship between the flow structure and the unsteady airloads is reviewed. The unsteady motion of the delta wing results in a modification of the flow field. Delays in flow separation, vortex formation, vortex position and the onset of vortex breakdown are all affected by the model motion. These flow changes cause a corresponding modification in the aerodynamic loads. Data is presented which shows the importance of flow field hysteresis in either vortex position or breakdown and the influence on the aerodynamic characteristics of a maneuvering delta wing. The free-to-roll motion of a double-delta wing is also presented. The complicated flow structure over a double-delta wing gives rise to damped, chaotic and wing rock motions as the angle of attack is increased. The concept of a critical state is discussed and it is shown that crossing a critical state produces large transients in the dynamic airloads. Next, several aircraft configurations are examined to show the importance of unsteady aerodynamics on the flight dynamics of aircraft maneuvering at large angles of attack. The rolling characteristics of the F-18 and X-31 configurations are examined. The influence of the vortical flow structure on the rolling motion is established. Finally, a brief discussion of nonlinear aerodynamic modeling is presented. The importance of critical states and the transient aerodynamics associated with crossing a critical state are examined.

Nelson, Robert C.; Pelletier, Alain

2003-04-01

42

NASA Technical Reports Server (NTRS)

Research on arbitrary motion unsteady aerodynamics, emphasizing applications to rotary wing aeroelastic problems, is reviewed. Generalization of Greenberg's theory and its application to hingeless rotor aeroelastic stability; a technique for formulating finite state approximations to unsteady aerodynamic theories, suitable for fixed and rotary-wing applications, and its application to generalize Loewy's theory; comparison of fixed wing and rotary wing indicial response functions; influence of arbitrary motion aerodynamics, as represented by dynamic inflow on a helicopter in ground resonance; and comparison of dynamic inflow with arbitrary motion unsteady airfoil aerodynamics are covered.

Friedmann, P. P.

1985-01-01

43

PHYSICAL REVIEW E 87, 053021 (2013) Unsteady aerodynamic forces and torques on falling, these trajectories provide an ideal set of data to analyze 3D aerodynamic force and torque at an intermediate range of Reynolds numbers, and the results will be useful for constructing 3D aerodynamic force and torque models

Wang, Z. Jane

44

NASA Technical Reports Server (NTRS)

Over the past three years, the National Aeronautics and Space Administration (NASA) has initiated design, development, and testing of a new human-rated space exploration system under the Constellation Program. Initial designs within the Constellation Program are scheduled to replace the present Space Shuttle, which is slated for retirement within the next three years. The development of vehicles for the Constellation system has encountered several unsteady aerodynamics challenges that have bearing on more traditional unsteady aerodynamic and aeroelastic analysis. This paper focuses on the synergy between the present NASA challenges and the ongoing challenges that have historically been the subject of research and method development. There are specific similarities in the flows required to be analyzed for the space exploration problems and those required for some of the more nonlinear unsteady aerodynamic and aeroelastic problems encountered on aircraft. The aggressive schedule, significant technical challenge, and high-priority status of the exploration system development is forcing engineers to implement existing tools and techniques in a design and application environment that is significantly stretching the capability of their methods. While these methods afford the users with the ability to rapidly turn around designs and analyses, their aggressive implementation comes at a price. The relative immaturity of the techniques for specific flow problems and the inexperience with their broad application to them, particularly on manned spacecraft flight system, has resulted in the implementation of an extensive wind tunnel and flight test program to reduce uncertainty and improve the experience base in the application of these methods. This provides a unique opportunity for unsteady aerodynamics and aeroelastic method developers to test and evaluate new analysis techniques on problems with high potential for acquisition of test and even flight data against which they can be evaluated. However, researchers may be required to alter the geometries typically used in their analyses, the types of flows analyzed, and even the techniques by which computational tools are verified and validated. This paper discusses these issues and provides some perspective on the potential for new and innovative approaches to the development of methods to attack problems in nonlinear unsteady aerodynamics.

Schuster, David M.

2008-01-01

45

Finite state modelling of unsteady aerodynamics and its application to a rotor dynamic problem

NASA Technical Reports Server (NTRS)

The paper presents a method for formulating finite state unsteady aerodynamic models in the time domain from frequency domain unsteady aerodynamics. The method is based on recognizing that the lift deficiency function represents an aerodynamic transfer function and utilizes the Bode plot technique, used in control systems engineering, to construct approximation to the lift deficiency function. Indicial response functions for both fixed wing and rotary wing applications are obtained, using these finite state unsteady aerodynamic models. It is shown that the rotary wing indicial response function is oscillatory and thus it is fundamentally different when compared to the fixed wing indicial response function which is nonoscillatory. Certain aspects of the finite state aerodynamic model are demonstrated by applying it to the flapping dynamics of an articulated helicopter rotor blade. The influence of unsteady aerodynamics on the damping characteristics of the rotor is examined. The same problem is also treated by using a different unsteady aerodynamic model, namely dynamic inflow. Based on a comparison of the results obtained with these two unsteady aerodynamic models, useful conclusions are drawn regarding some fundamental features of these theories.

Friedmann, P. P.; Venkatesan, C.

1985-01-01

46

Calculation of unsteady aerodynamics for four AGARD standard aeroelastic configurations

NASA Technical Reports Server (NTRS)

Calculated unsteady aerodynamic characteristics for four Advisory Group for Aeronautical Research Development (AGARD) standard aeroelastic two-dimensional airfoils and for one of the AGARD three-dimensional wings are reported. Calculations were made using the finite-difference codes XTRAN2L (two-dimensional flow) and XTRAN3S (three-dimensional flow) which solve the transonic small disturbance potential equations. Results are given for the 36 AGARD cases for the NACA 64A006, NACA 64A010, and NLR 7301 airfoils with experimental comparisons for most of these cases. Additionally, six of the MBB-A3 airfoil cases are included. Finally, results are given for three of the cases for the rectangular wing.

Bland, S. R.; Seidel, D. A.

1984-01-01

47

Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems

NASA Technical Reports Server (NTRS)

A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.

Silva, Walter A.

2007-01-01

48

Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems

NASA Technical Reports Server (NTRS)

A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.

Silva, Walter A.

2008-01-01

49

aerodynamic response. PhD thesis. http://theses.gla.ac.uk/2091/ Copyright and moral rights for this thesis-LAYER FUNCTIONAL APPROXIMATION OF NON-LINEAR UNSTEADY AERODYNAMIC RESPONSE by Flavio Donizeti Marques Thesis 1997 CopYright 1997 Flavio Donizet i Marques, #12;Abstract Non-linear unsteady aerodynamic effects

Glasgow, University of

50

Surface pressure data from the National Renewable Energy Laboratory's ''Unsteady Aerodynamics Experiment'' were analyzed to characterize the impact of three-dimensionality, unsteadiness, and flow separation effects observed to occur on downwind horizontal axis wind turbines (HAWT). Surface pressure and strain gage data were collected from two rectangular planform blades with S809 airfoil cross-sections, one flat and one twisted. Both blades were characterized by the maximum leading edge suction pressure and by the azimuth, velocity, and yaw at which it occurred. The occurrence of dynamic stall at all but the inboard station (30% span) shows good quantitative agreement with the theoretical limits on inflow velocity and yaw that should yield dynamic stall events. A full three-dimensional characterization of the surface pressure topographies combined with flow visualization data from surface mounted tufts offer key insights into the three-dimensional processes involved in the unsteady separation process and may help to explain the discrepancies observed with force measurements at 30% span. The results suggest that quasi-static separation and dynamic stall analysis methods relying on purely two-dimensional flow characterizations may not be capable of simulating the complex three-dimensional flows observed with these data.

Robinson, M. C.; Hand, M. M.; Simms, D. A.; Schreck, S. J.

1999-04-05

51

Unsteady Aerodynamic Models for Turbomachinery Aeroelastic and Aeroacoustic Applications

NASA Technical Reports Server (NTRS)

Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows of axial-flow turbomachines. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of the blading. The emphasis has been placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, high Reynolds number flows driven by small amplitude unsteady excitations have been considered. The resulting analyses should apply in many practical situations and lead to a better understanding of the relevant flow physics. In addition, they will be efficient computationally, and therefore, appropriate for use in aeroelastic and aeroacoustic design studies. Under the present effort, inviscid interaction and linearized inviscid unsteady flow models have been formulated, and inviscid and viscid prediction capabilities for subsonic steady and unsteady cascade flows have been developed. In this report, we describe the linearized inviscid unsteady analysis, LINFLO, the steady inviscid/viscid interaction analysis, SFLOW-IVI, and the unsteady viscous layer analysis, UNSVIS. These analyses are demonstrated via application to unsteady flows through compressor and turbine cascades that are excited by prescribed vortical and acoustic excitations and by prescribed blade vibrations. Recommendations are also given for the future research needed for extending and improving the foregoing asymptotic analyses, and to meet the goal of providing efficient inviscid/viscid interaction capabilities for subsonic and transonic unsteady cascade flows.

Verdon, Joseph M.; Barnett, Mark; Ayer, Timothy C.

1995-01-01

52

NASA Technical Reports Server (NTRS)

Unsteady aerodynamic methods adopted for the study of aeroelasticity in helicopters are considered with focus on the development of a semiempirical model of unsteady aerodynamic forces acting on an oscillating profile at high incidence. The successive smoothing algorithm described leads to the model's coefficients in a very satisfactory manner.

Petot, D.; Loiseau, H.

1982-01-01

53

The computer program SUSSA ACTS (Steady and Unsteady, Subsonic and Supersonic Aerodynamics for Complex Transportation Systems) are presented in the final version. The numerical formulation and the description of the program and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, in both subsonic and supersonic flows, are discussed. The mathematical

K. Tseng; L. Morino

1974-01-01

54

Mechanism of unsteady aerodynamic heating with sudden change in surface temperature

The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden\\u000a change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and\\u000a numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood\\u000a of the initial and final

Hao Chen; Lin Bao

2009-01-01

55

NASA Technical Reports Server (NTRS)

A review is given of seven research projects which are aimed at improving the generality, accuracy, and computational efficiency of steady and unsteady aerodynamic theory for use in aeroelastic analysis and design. These projects indicate three major thrusts of current research efforts: (1) more realistic representation of steady and unsteady subsonic and supersonic loads on aircraft configurations of general shape with emphasis on structural-design applications, (2) unsteady aerodynamics for application in active-controls analyses, and (3) unsteady aerodynamics for the frequently critical transonic speed range. The review of each project includes theoretical background, description of capabilities, results of application, current status, and plans for further development and use.

Yates, E. C., Jr.; Bland, S. R.

1976-01-01

56

Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics

NASA Technical Reports Server (NTRS)

The use of canards in advanced aircraft for control and improved aerodynamic performance is a topic of continued interest and research. In addition to providing maneuver control and trim, the influence of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag. In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards, the unsteady aerodynamic performance associated with the canard-wing interaction is of particular interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield are further increased. The development and integration of advanced computational technologies provide for the time-accurate Navier-Stokes simulations of the steady and unsteady canard-wing-body flox,fields. Simulation, are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of angles of attack. For the static configurations, the effects of canard positioning and fixed deflection angles on aerodynamic performance and canard-wing vortex interaction are considered. For non-static configurations, the analyses of the canard-wing body flowfield includes the unsteady aerodynamics associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady flowfield associated with moving canards which are typically used as primary control surfaces are considered as well. The steady and unsteady effects of the canard on surface pressure integrated forces and moments, and canard-wing vortex interaction are presented in detail including the effects of the canard on the static and dynamic stability characteristics. The current study provides an understanding of the steady and unsteady canard-wing-body flowfield. Emphasis is placed on the effects of the canard on aerodynamic performance as well as the detailed flow physics of the canard-wing flowfield interactions. The computational tools developed to accurately predict the time-accurate flowfield of moving canards provides for the capability of coupled fluids-controls simulations desired in the detailed design and analysis of advanced aircraft.

Eugene, L. Tu

1996-01-01

57

Development of a linearized unsteady aerodynamic analysis for cascade gust response predictions

NASA Technical Reports Server (NTRS)

A method for predicting the unsteady aerodynamic response of a cascade of airfoils to entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady background flow. A splitting technique is used to decompose the linearized unsteady velocity into rotational and irrotational parts leading to equations for the complex amplitudes of the linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only sequentially. The entropic and rotational velocity fluctuations are described by transport equations for which closed-form solutions in terms of the mean-flow drift and stream functions can be determined. The potential fluctuation is described by an inhomogeneous convected wave equation in which the source term depends on the rotational velocity field, and is determined using finite-difference procedures. The analytical and numerical techniques used to determine the linearized unsteady flow are outlined. Results are presented to indicate the status of the solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described herein leads to very efficient predictions of cascade unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

Verdon, Joseph M.; Hall, Kenneth C.

1990-01-01

58

Unsteady Aerodynamic and Dynamic Analysis of the Meridian UAS in a Rolling-Yawing Motion

NASA Astrophysics Data System (ADS)

The nonlinear and unsteady aerodynamic effects of operating the Meridian unmanned aerial system (UAS) in crosswinds and at high angular rates is investigated in this work. The Meridian UAS is a large autonomous aircraft, with a V-tail configuration, operated in Polar Regions for the purpose of remotely measuring ice sheet thickness. The inherent nonlinear coupling produced by the V-tail, along with the strong atmospheric disturbances, has made classical model identification methods inadequate for proper model development. As such, a powerful tool known as Fuzzy Logic Modeling (FLM) was implemented to generate time-dependent, nonlinear, and unsteady aerodynamic models using flight test data collected in Greenland in 2011. Prior to performing FLM, compatibility analysis is performed on the data, for the purpose of systematic bias removal and airflow angle estimation. As one of the advantages of FLM is the ability to model unsteady aerodynamics, the reduced frequency for both longitudinal and lateral-directional motions is determined from the unbiased data, using Theodorsen's theory of unsteadiness, which serves as an input parameter in modeling. These models have been used in this work to identify pilot induced oscillations, unsteady coupling motions, unsteady motion due to the slipstream and cross wind interaction, and destabilizing motions and orientations. This work also assesses the accuracy of preliminary aircraft dynamic models developed using engineering level software, and addresses the autopilot Extended Kalman Filter state estimations.

Lykins, Ryan

59

The influence of neighboring blade rows on the unsteady aerodynamic response of cascades

In this paper, the authors present an analysis of the unsteady aerodynamic response of cascades due to incident gusts (the forced response problem) or blade vibration (the flutter problem) when the cascade is part of a multistage fan, compressor, or turbine. Most current unsteady aerodynamic models assume the cascade to be isolated in an infinitely long duct. This assumption, however, neglects the potentially important influence of neighboring blade rows. They present an elegant and computationally efficient method to model these neighboring blade row effects. In the present method, they model the unsteady aerodynamic response due to so-called spinning modes (pressure and vorticity waves), with each mode corresponding to a different circumferential wave number and frequency. Then, for each mode, they compute the reflection and transmission coefficients for each blade row. These coefficients can be obtained from any of the currently available unsteady linearized aerodynamic models of isolated cascades. A set of linear equations is then constructed that couples together the various spinning modes, and the linear equations are solved via LU decomposition. Numerical results are presented for both the gust response and blade vibration problems. To validate the model, the authors compare their results to other analytical models, and to a multistage vortex lattice model. They show that the effect of neighboring blade rows on the aerodynamic damping of vibrating cascades is significant, but nevertheless can be modeled with a small number of modes.

Hall, K.C.; Silkowski, P.D. [Duke Univ., Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science

1997-01-01

60

Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor

NASA Astrophysics Data System (ADS)

Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA forcing functions remains significant. The intra-vane transport of NACA 65 and CDA rotor wakes is also observed within the time-variant passage velocity data. In general, the wake width and decay rate increase with rotor speed and compressor steady loading respectively.

Papalia, John J.

61

NASA Technical Reports Server (NTRS)

Progress is reported in the development of reliable nonlinear vortex methods for predicting the steady and unsteady aerodynamic loads of highly sweptback wings at large angles of attack. Abstracts of the papers, talks, and theses produced through this research are included. The modified nonlinear discrete vortex method and the nonlinear hybrid vortex method are highlighted.

Kandil, O. A.

1981-01-01

62

Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight. PMID:24278243

Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Kopp, Gregory A; Gurka, Roi

2013-01-01

63

NASA Technical Reports Server (NTRS)

This paper presents in a unified manner recent research on arbitrary motion unsteady aerodynamics with an emphasis on applications to a number of rotary wing aeroelastic problems. The term arbitrary motion is used to denote growing or decaying oscillations with a certain frequency. The specific topics treated in this paper are: (1) generalization of Greenberg's theory and its application to hingeless rotor aeroelastic stability; (2) description of a new technique for formulating finite state approximations to unsteady aerodynamic theories, which are suitable for both fixed-wing and rotary-wing applications, and its application to generalize Loewy's theory; (3) comparison of fixed wing and rotary-wing indicial response functions; (4) influence of a arbitrary motion aerodynamics, as represented by dynamic inflow on a helicopter in ground resonance and (5) comparison of dynamic inflow with arbitrary motion unsteady airfoil aerodynamics. From the discussion of these topics a number of useful conclusions on the fundamental nature of arbitrary motion aerodynamics and its role in rotary-wing aeroelasticity are obtained.

Friedmann, P. P.

1985-01-01

64

Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight. PMID:24278243

Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J.; Bezner-Kerr, Wayne; Guglielmo, Christopher G.; Kopp, Gregory A.; Gurka, Roi

2013-01-01

65

Arbitrary motion unsteady aerodynamics and its application to rotary-wing aeroelasticity

NASA Technical Reports Server (NTRS)

This paper presents in a unified manner recent research on arbitrary motion unsteady aerodynamics with an emphasis on applications to a number of rotary wing aeroelastic problems. The term arbitrary motion is used to denote growing or decaying oscillations with a certain frequency. The specific topics treated in this paper are: (1) generalization of Greenberg's theory and its application to hingeless rotor aeroelastic stability; (2) description of a new technique for formulating finite state approximations to steady aerodynamic theories, which are suitable for both fixed-wing and rotary-wing applications, and its application to generalize Loewy's theory; (3) comparison of fixed wing and rotary-wing indicial response functions; (4) influence of arbitrary motion aerodynamics, as represented by dynamic inflow on a helicopter in ground resonance. From the discussion of these topics a number of useful conclusions on the fundamental nature of arbitrary motion aerodynamics and its role in rotary-wing aeroelasticity are obtained.

Friedmann, P. P.

1986-01-01

66

unsteady aerodynamic and hydrodynamic forces and structural dynamics such as power take Review and Analysis NREL researchers assist industry partners with power system design review realistic models that simulate the behavior of wind and water power systems in complex environments

67

NASA Technical Reports Server (NTRS)

Progress in the development of computational methods for steady and unsteady aerodynamics has perennially paced advancements in aeroelastic analysis and design capabilities. Since these capabilities are of growing importance in the analysis and design of high-performance aircraft, considerable effort has been directed toward the development of appropriate aerodynamic methodology. The contributions to those efforts from the integral-equations research program at the NASA Langley Research Center is reviewed. Specifically, the current scope, progress, and plans for research and development for inviscid and viscous flows are discussed, and example applications are shown in order to highlight the generality, versatility, and attractive features of this methodology.

Yates, E. Carson, Jr.

1990-01-01

68

Development of Unsteady Aerodynamic State-Space Models from CFD-Based Pulse Responses

NASA Technical Reports Server (NTRS)

A method for computing discrete-time state-space models of linearized unsteady aerodynamic behavior directly from aeroelastic CFD codes is presented. The method involves the treatment of CFD-based pulse responses as Markov parameters for use in a system identification /realization algorithm. Results are presented for the AGARD 445.6 Aeroelastic Wing with four aeroelastic modes at a Mach number of 0.96 using the EZNSS Euler/Navier-Stokes flow solver with aeroelastic capability. The System/Observer/Controller Identification Toolbox (SOCIT) algorithm, based on the Ho-Kalman realization algorithm, is used to generate 15th- and 32nd-order discrete-time state-space models of the unsteady aerodynamic response of the wing over the entire frequency range of interest.

Silva, Walter A.; Raveh, Daniella E.

2001-01-01

69

NASA Technical Reports Server (NTRS)

The status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications is discussed in terms of the flowfield state - low angle high speed flows and high angle vortex dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.

Edwards, John W.; Malone, John B.

1992-01-01

70

NASA Technical Reports Server (NTRS)

The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.

Edwards, John W.; Malone, John B.

1992-01-01

71

NASA Technical Reports Server (NTRS)

Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.

Klein, Vladislav; Noderer, Keith D.

1995-01-01

72

Estimating unsteady aerodynamic forces on a cascade in a three-dimensional turbulence field

NASA Technical Reports Server (NTRS)

An analytical method has been developed to estimate the unsteady aerodynamic forces caused by flow field turbulence on a wind tunnel turning vane cascade system (vane set). This method approximates dynamic lift and drag by linearly perturbing the appropriate steady state force equations, assuming that the dynamic loads are due only to free stream turbulence and that this turbulence is homogeneous, isotropic, and Gaussian. Correlation and unsteady aerodynamic effects are also incorporated into the analytical model. Using these assumptions, equations relating dynamic lift and drag to flow turbulence, mean velocity, and vane set geometry are derived. From these equations, estimates for the power spectra and rms (root mean squared value, delta) loading of both lift and drag can be determined.

Norman, T.; Johnson, W.

1985-01-01

73

Wing flutter boundary prediction using an unsteady Euler aerodynamic method

NASA Technical Reports Server (NTRS)

Modifications to an existing three-dimensional, implicit, upwind Euler/Navier-Stokes code (CFL3D Version 2.1) for the aeroelastic analysis of wings are described. These modifications, which were previously added to CFL3D Version 1.0, include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time-integration with the government flow equations. The paper gives a brief description of these modifications and presents unsteady calculations which check the modifications to the code. Euler flutter results for an isolated 45 degree swept-back wing are compared with experimental data for seven freestream Mach numbers which define the flutter boundary over a range of Mach number from 0.499 to 1.14. These comparisons show good agreement in flutter characteristics for freestream Mach numbers below unity. For freestream Mach numbers above unity, the computed aeroelastic results predict a premature rise in the flutter boundary as compared with the experimental boundary. Steady and unsteady contours of surface Mach number and pressure are included to illustrate the basic flow characteristics of the time-marching flutter calculations and to aid in identifying possible causes for the premature rise in the computational flutter boundary.

Lee-Rausch, Elizabeth M.; Batina, John T.

1993-01-01

74

Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks

NASA Technical Reports Server (NTRS)

A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.

1999-01-01

75

Unsteady Aerodynamic Modeling in Roll for the NASA Generic Transport Model

NASA Technical Reports Server (NTRS)

Reducing the impact of loss-of-control conditions on commercial transport aircraft is a primary goal of the NASA Aviation Safety Program. One aspect in developing the supporting technologies is to improve the aerodynamic models that represent these adverse conditions. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. In this paper, a more general mathematical model is proposed for the subscale NASA Generic Transport Model (GTM) that covers both low and high angles of attack. Particular attention is devoted to the stall region where full-scale transports have demonstrated a tendency for roll instability. The complete aerodynamic model was estimated from dynamic wind-tunnel data. Advanced computational methods are used to improve understanding and visualize the flow physics within the region where roll instability is a factor.

Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.

2012-01-01

76

An analytical technique for approximating unsteady aerodynamics in the time domain

NASA Technical Reports Server (NTRS)

An analytical technique is presented for approximating unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade approximation was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable approximating functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade approximation having fourth order numerator and second order denominator polynomials.

Dunn, H. J.

1980-01-01

77

Bifurcations In Unsteady Flows

NASA Technical Reports Server (NTRS)

Report discusses various types of bifurcations occurring between steady and unsteady aerodynamic flows. Provides examples to illustrate ways bifurcations influence results of experiments. Recommends experimenters take bifurcation phenomena into account in interpretation of measurements.

Chapman, Gary T.; Tobak, Murray

1992-01-01

78

Unsteady supersonic aerodynamic theory by the method of potential gradient

NASA Technical Reports Server (NTRS)

A generalized solution of the hyperbolic wave equation has been derived. The method used has been further developed to relate the velocity components at a field point to the potential gradient distribution in the dependence domain. Singular integrals have been evaluated in closed form, while numerical integration methods are suggested for treating more complex but analytic functions. Idealization of the lifting surfaces by trapezoidal elements with two sides parallel to the streamlines is computationally efficient because line integrations along the other two sides need only be considered. Furthermore, all the integrands vanish on the Mach cone and the need for determining the hyperbolic curves of intersection of the cone with the lifting surface is avoided. Generalized aerodynamic coefficients for three AGARD planforms have been calculated and compared with the available results.

Jones, W. P.; Appa, K.

1977-01-01

79

NASA Astrophysics Data System (ADS)

Large-amplitude forced oscillation data for an F-18 configuration are analyzed with two modeling methods: Fourier functional analysis to form the indicial integrals, and a generalized dynamic aerodynamic model for stability and control analysis. The indicial integral is first applied to calculate the pitch damping parameter for comparison with the conventional forced oscillation test. It is shown that the reduced frequency affects the damping much more strongly than the test amplitude. Using the indicial integral models in a flight simulation code for an F-18 configuration, it is found that the configuration with unsteady aerodynamics becomes unstable in pitch if the pitch rate is high, in contrast to the quasi-steady configuration which depends mainly on the instantaneous angle of attack. In a pitch-up maneuver in the post-stall regime the configuration with unsteady aerodynamics can stay at a high pitch attitude and angle of attack without losing altitude for a much longer duration than the quasi-steady model. However, the speed will decrease faster because of higher drag. The newly developed generalized dynamic aerodynamic model is of the nonlinear algebraic form with the coefficients being determined from a set of large amplitude oscillatory experimental data by using least-square fitting. The resulting model coefficients are functions of the reduced frequency and amplitude. The new aerodynamic models have been verified with data in harmonic oscillation with a smaller amplitude and in constant pitch-rate motions. The new algebraic models are especially useful in stability and control analysis, and are used in bifurcation analysis and control studies for the same F-18 HARV configuration. The results show significant differences in the equilibrium surfaces and dynamic stability. It is also shown that control gains developed with the conventional quasi-steady aerodynamic data may not be adequate when the effect of unsteady aerodynamics is significant. A numerical longitudinal pilot-induced oscillation (PIO) prediction method is developed. This method is based on modeling the PIO phenomena as limit cycle oscillations and the pilot action as feedback control. Not only the PIO susceptibility but also the PIO severity can be predicted by using the proposed method.

Lin, Guofeng

80

NASA Astrophysics Data System (ADS)

A harmonic balance technique for the analysis of unsteady flows about helicopter rotors in forward flight and hover is presented in this paper. The aerodynamics of forward flight are highly nonlinear, with transonic flow on the advancing blade, subsonic flow on the retreating blade, and stalled flow over the inner portion of the rotor. Nevertheless, the unsteady flow is essentially periodic in time making it well suited for frequency domain analysis. The present method uses periodic boundary conditions that allows one to model the flow field on a computational grid around a single helicopter blade, no matter the actual blade count. Using this approach, we compute several solutions, each one corresponding to one of several instants in time over one period. These time levels are coupled to each other through a spectral time derivative operator in the interior of the computational domain and through the far-field and periodic boundary conditions around the boundary of the domain. In this paper, we apply the method to the three-dimensional Euler equations (although the method can also be applied to three-dimensional viscous flows), and examine the steady and unsteady aerodynamics about wings and rotors.

Ekici, Kivanc; Hall, Kenneth C.; Dowell, Earl H.

2008-06-01

81

Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction

NASA Technical Reports Server (NTRS)

The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.

Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)

2001-01-01

82

Development of an unsteady aerodynamic analysis for finite-deflection subsonic cascades

NASA Technical Reports Server (NTRS)

An unsteady potential flow analysis, which accounts for the effects of blade geometry and steady turning, was developed to predict aerodynamic forces and moments associated with free vibration or flutter phenomena in the fan, compressor, or turbine stages of modern jet engines. Based on the assumption of small amplitude blade motions, the unsteady flow is governed by linear equations with variable coefficients which depend on the underlying steady low. These equations were approximated using difference expressions determined from an implicit least squares development and applicable on arbitrary grids. The resulting linear system of algebraic equations is block tridiagonal, which permits an efficient, direct (i.e., noniterative) solution. The solution procedure was extended to treat blades with rounded or blunt edges at incidence relative to the inlet flow.

Verdon, J. M.; Caspar, J. R.

1981-01-01

83

Unsteady aerodynamics and flow control for flapping wing flyers

The creation of micro air vehicles (MAVs) of the same general sizes and weight as natural fliers has spawned renewed interest in flapping wing flight. With a wingspan of approximately 15cm and a flight speed of a few meters per second, MAVs experience the same low Reynolds number (104–105) flight conditions as their biological counterparts. In this flow regime, rigid

Steven Ho; Hany Nassef; Nick Pornsinsirirak; Yu-Chong Tai; Chih-Ming Ho

2003-01-01

84

NASA Technical Reports Server (NTRS)

Various control analysis, design, and simulation techniques of aeroservoelastic systems require the equations of motion to be cast in a linear, time-invariant state-space form. In order to account for unsteady aerodynamics, rational function approximations must be obtained to represent them in the first order equations of the state-space formulation. A computer program, MIST, has been developed which determines minimum-state approximations of the coefficient matrices of the unsteady aerodynamic forces. The Minimum-State Method facilitates the design of lower-order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena such as the outboard-wing acceleration response to gust velocity. Engineers using this program will be able to calculate minimum-state rational approximations of the generalized unsteady aerodynamic forces. Using the Minimum-State formulation of the state-space equations, they will be able to obtain state-space models with good open-loop characteristics while reducing the number of aerodynamic equations by an order of magnitude more than traditional approaches. These low-order state-space mathematical models are good for design and simulation of aeroservoelastic systems. The computer program, MIST, accepts tabular values of the generalized aerodynamic forces over a set of reduced frequencies. It then determines approximations to these tabular data in the LaPlace domain using rational functions. MIST provides the capability to select the denominator coefficients in the rational approximations, to selectably constrain the approximations without increasing the problem size, and to determine and emphasize critical frequency ranges in determining the approximations. MIST has been written to allow two types data weighting options. The first weighting is a traditional normalization of the aerodynamic data to the maximum unit value of each aerodynamic coefficient. The second allows weighting the importance of different tabular values in determining the approximations based upon physical characteristics of the system. Specifically, the physical weighting capability is such that each tabulated aerodynamic coefficient, at each reduced frequency value, is weighted according to the effect of an incremental error of this coefficient on aeroelastic characteristics of the system. In both cases, the resulting approximations yield a relatively low number of aerodynamic lag states in the subsequent state-space model. MIST is written in ANSI FORTRAN 77 for DEC VAX series computers running VMS. It requires approximately 1Mb of RAM for execution. The standard distribution medium for this package is a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. It is also available on a TK50 tape cartridge in DEC VAX BACKUP format. MIST was developed in 1991. DEC VAX and VMS are trademarks of Digital Equipment Corporation. FORTRAN 77 is a registered trademark of Lahey Computer Systems, Inc.

Karpel, M.

1994-01-01

85

Characterization and Control of Unsteady Aerodynamics on Wind Turbine Aerofoils

NASA Astrophysics Data System (ADS)

An experimental capability developed for testing two-dimensional aerofoils while dynamically pitching is discussed. Key to the approach are a dynamic pitch system, the rapid prototyping of aerofoils, inexpensive time-resolved pressure measurements, the ability to capture flow-field structure, and the ability to add compliance to the system. In addition to describing the system components, examples of typical results for characterization and control studies are given. Use of the data is also demonstrated through comparison of the results from a simulation with those from an experiment under the same conditions. Future uses of this experimental capability are also discussed.

Naughton, J.; Strike, J.; Hind, M.; Babbitt, A.; Magstadt, A.; Nikoueeyan, P.; Davidson, P.; Shareman, J.

2014-06-01

86

Calculation of unsteady transonic aerodynamics for oscillating wings with thickness

NASA Technical Reports Server (NTRS)

An analytical approach is presented to account for some of the nonlinear characteristics of the transonic flow equation for finite thickness wings undergoing harmonic oscillation at sonic flight speed in an inviscid, shock-free fluid. The thickness effect is accounted for in the analysis through use of the steady local Mach number distribution over the wing at its mean position by employing the local linearization concept and a coordinate transformation. Computed results are compared with that of the linearized theory and experiments. Based on the local linearization concept, an alternate formulation avoiding the limitations of the coordinate transformation method is presented.

Ruo, S. Y.; Theisen, J. G.

1975-01-01

87

NASA Technical Reports Server (NTRS)

The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

Tiffany, Sherwood H.; Adams, William M., Jr.

1988-01-01

88

Three-dimensional unsteady computations of the flow past a fruit fly Drosophila under hovering and free flight conditions are computed. The kinematics of the wings and the body of the fruit fly are prescribed from experimental observations. The computed unsteady lift and thrust forces are validated with experimental results and are in excellent agreement. The unsteady aerodynamic origin of the time-varying yaw moment is identified. The differences in the kinematics between the right and the left wings show that subtle change in the stroke angle and deviation angle can result in the yaw moment for the turning maneuver. The computed yaw moment reaches a peak value at the beginning of the maneuver and remains positive throughout the remainder of the maneuver. The origin of the yaw moment is investigated by computing the center of pressures on each wing and the individual moment arms. This investigation leads to the conclusion that it is the forward force and a component of the lift force that combine to produce the turning moment while the side force alone produces the restoring torque during the maneuver. The vorticity shed from the wing's leading edge and the tips show a loop like structure that during stroke reversals pinches off into Lambda-like structures that have not been previously observed in the wakes of flapping fliers. PMID:17297147

Ramamurti, Ravi; Sandberg, William C

2007-03-01

89

NASA Technical Reports Server (NTRS)

The method of integral relations is applied in a one-strip approximation to the perturbation equations governing small motions of an inclined, sharp-edged, flat surface about the mean supersonic steady flow. Algebraic expressions for low reduced-frequency aerodynamics are obtained and a set of ordinary differential equations are obtained for general oscillatory motion. Results are presented for low reduced-frequency aerodynamics and for the variation of the unsteady forces with frequency. The method gives accurate results for the aerodynamic forces at low reduced frequency which are in good agreement with available experimental data. However, for cases in which the aerodynamic forces vary rapidly with frequency, the results are qualitatively correct, but of limited accuracy. Calculations indicate that for a range of inclination angles near shock detachment such that the flow in the shock layer is low supersonic, the aerodynamic forces vary rapidly both with inclination angle and with reduced frequency.

Bennett, R. M.

1972-01-01

90

Feasibility investigation of general time-domain unsteady aerodynamics of rotors

NASA Technical Reports Server (NTRS)

The feasibility of a general theory for the time-domain unsteady aerodynamics of helicopter rotors is investigated. The wake theory gives a linearized relation between the downwash and the wing bound circulation, in terms of the impulse response obtained directly in the time domain. This approach makes it possible to treat general wake configurations, including discrete wake vorticity with rolled-up and distorted geometry. The investigation establishes the approach for model order reduction; determines when a constrained identification method is needed; verifies the formulation of the theory for rolled-up, distorted trim wake geometry; and verifies the formulation of the theory for wake geometry perturbations. The basic soundness of the approach is demonstrated by the results presented. A research program to complete the development of the method is outlined. The result of this activity will be an approach for analyzing the aeroelastic stability and response of helicopter rotors, while retaining the important influence of the complicated rotor wake configuration.

Johnson, Wayne

1990-01-01

91

NASA Technical Reports Server (NTRS)

An experimental influence coefficient technique was used to obtain unsteady aerodynamic influence coefficients and, consequently, unsteady pressures for a cascade of symmetric airfoils oscillating in pitch about mid-chord. Stagger angles of 0 deg and 10 deg were investigated for a cascade with a gap-to-chord ratio of 0.417 operating at an axial Mach number of 1.9, resulting in a supersonic leading-edge locus. Reduced frequencies ranged from 0.056 to 0.2. The influence coefficients obtained determine the unsteady pressures for any interblade phase angle. The unsteady pressures were compared with those predicted by several algorithms for interblade phase angles of 0 deg and 180 deg.

Ramsey, John K.; Erwin, Dan

2004-01-01

92

Aerodynamics of a linear oscillating cascade

NASA Technical Reports Server (NTRS)

The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

Buffum, Daniel H.; Fleeter, Sanford

1990-01-01

93

Low dimensional state-space representations for classical unsteady aerodynamic models

NASA Astrophysics Data System (ADS)

This work develops reduced order models for the unsteady aerodynamic forces on a small wing in response to agile maneuvers and gusts. In particular, the classical unsteady models of Wagner and Theodorsen are cast into a low-dimensional state-space framework. Low order state-space models are more computationally efficient than the classical formulations, and are well suited for modification with nonlinear dynamics and the application of control techniques. Reduced order models are obtained using the eigensystem realization algorithm on force data from the direct numerical simulation (DNS) of a pitching or plunging 2D flat plate at Reynolds numbers between 100 and 1000. Models are tested on rapid pitch and plunge maneuvers with a range of effective angle-of-attack. We evaluate the performance of the models based on agreement with results from DNS, in particular, the ability to reproduce lift forces over a range of pitching and plunging frequencies. Bode plots of the reduced order models, Wagner's and Theodorsen's methods, and DNS provide a concise assessment.

Brunton, Steven L.; Rowley, Clarence W.

2010-11-01

94

NASA Technical Reports Server (NTRS)

The basic unsteady aerodynamic environment of the rotary wing is summarized. Some of the observed trends in the state of the art are discussed. Some of the research needs that will require attention are reported. A review of a number of research investigations as a part of a joint NASA/Army rotorcraft project is presented. The research is directed toward achieving a better understanding of rotor unsteady airfoils. The investigations include: (1) rotor maneuver loads; (2) level flight and maneuver wake prediction; (3) tip-vortex flow; (4) blade-vortex interactions; (5) dynamic stall; (6) transient Mach number air loads; and (7) development of variable geometry rotors.

Ward, J. F.; Young, W. H., Jr.

1973-01-01

95

NASA Technical Reports Server (NTRS)

A study was conducted to investigate the feasibility of using combined subsonic and supersonic linear theory as a means for solving unsteady transonic flow problems in an economical and yet realistic manner. With some modification, existing linear theory methods are combined into a single program and a simple algorithm is derived for determining interference between lifting surface elements of different Mach number. The method is applied to a wide variety of problems for which measured unsteady pressure distributions and Mach number distributions are available. By comparing theory and experiment, the transonic method solutions show a significant improvement over uniform flow solutions. It is concluded that with these refinements the method will provide a means for performing realistic transonic flutter and dynamic response analyses at costs which are compatible with current linear theory based solutions.

Cunningham, A. M., Jr.

1973-01-01

96

NASA Technical Reports Server (NTRS)

Experimental data were obtained to help validate analytical and computational fluid dynamics (CFD) codes used to compute unsteady cascade aerodynamics in a supersonicaxial- flow regime. Results from two analytical codes and one CFD code were compared with experimental data. One analytical code did not account for airfoil thickness or camber; another, using piston theory (piston code), accounted for thickness and camber upstream of the first shockwave/airfoil impingement locations. The Euler CFD code accounted fully for airfoil shape.

Ramsey, John K.; Erwin, Dan

2005-01-01

97

Transonic Unsteady Aerodynamics of the F/A-18E at Conditions Promoting Abrupt Wing Stall

NASA Technical Reports Server (NTRS)

A transonic wind tunnel test of an 8% F/A-18E model was conducted in the NASA Langley Research Center (LaRC) 16-Foot Transonic Tunnel (16-Ft TT) to investigate the Abrupt Wing Stall (AWS) characteristics of this aircraft. During this test, both steady and unsteady measurements of balance loads, wing surface pressures, wing root bending moments, and outer wing accelerations were performed. The test was conducted with a wide range of model configurations and test conditions in an attempt to reproduce behavior indicative of the AWS phenomenon experienced on full-scale aircraft during flight tests. This paper focuses on the analysis of the unsteady data acquired during this test. Though the test apparatus was designed to be effectively rigid. model motions due to sting and balance flexibility were observed during the testing, particularly when the model was operating in the AWS flight regime. Correlation between observed aerodynamic frequencies and model structural frequencies are analyzed and presented. Significant shock motion and separated flow is observed as the aircraft pitches through the AWS region. A shock tracking strategy has been formulated to observe this phenomenon. Using this technique, the range of shock motion is readily determined as the aircraft encounters AWS conditions. Spectral analysis of the shock motion shows the frequencies at which the shock oscillates in the AWS region, and probability density function analysis of the shock location shows the propensity of the shock to take on a bi-stable and even tri-stable character in the AWS flight regime.

Schuster, David M.; Byrd, James E.

2003-01-01

98

Experiments on the unsteady ground vortex

NASA Technical Reports Server (NTRS)

The ground vortex formed by a jet impinging on the ground in the presence of a cross flow has been studied experimentally. High speed motion pictures and spectral measurements were obtained to study the unsteady features of this flowfield. A very low frequency 'puffing' action was observed. Since this unsteadiness could not be correlated with any other oscillations in the flowfield, the low frequency oscillations must come from the gross features of the ground vortex itself. Namely, jet fluid accumulates in the ground vortex until the vortex is so large that the flowfield breaks up, the ground vortex is swept away, a new smaller vortex forms, and the process repeats itself.

Cimbala, John M.; Gaublomme, Donald P.; Stinebring, David R.; Billet, Michael L.

1989-01-01

99

NASA Technical Reports Server (NTRS)

This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.

Srivastava, R.; Reddy, T. S. R.

1996-01-01

100

NASA Technical Reports Server (NTRS)

The program DuctE3D is used for steady or unsteady aerodynamic and aeroelastic analysis of ducted fans. This guide describes the input data required and the output files generated, in using DuctE3D. The analysis solves three dimensional unsteady, compressible Euler equations to obtain the aerodynamic forces. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either the time domain or the frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis and aeroelastic analysis of an isolated fan row.

Srivastava, R.; Reddy, T. S. R.

1997-01-01

101

Identification of an unsteady aerodynamic model up to high angle of attack regime

NASA Astrophysics Data System (ADS)

The harmonic oscillatory tests for a fighter aircraft configuration using the Dynamic Plunge-Pitch-Roll (DyPPiR) model mount at Virginia Tech Stability Wind Tunnel are described and analyzed. The corresponding data reduction methods are developed on the basis of multirate digital signal processing techniques. Since the model is sting-mounted to the support system of DyPPiR, the Discrete Fourier Transform (DFT) is first used to identify the frequencies of the elastic modes of sting. Then the sampling rate conversion systems are built up in digital domain to resample the data at a lower rate without introducing distortions to the signals of interest. Finally linear-phase Finite Impulse Response (FIR) filters are designed by Remez exchange algorithm to extract the aerodynamic characteristics responses to the programmed motions from the resampled measurements. These data reduction procedures are also illustrated through examples. The results obtained from the harmonic oscillatory tests are then illustrated and the associated flow mechanisms are discussed. Since no significant hysteresis loops are observed for the lift and the drag coefficients for the current angle of attack range and the tested reduced frequencies, the dynamic lags of separated and vortex flow effects are small in the current oscillatory tests. However, large hysteresis loops are observed for pitch moment coefficient in the current tests. This observation suggests that at current flow conditions, pitch moment has large pitch rate dotalpha dependencies. Then the nondimensional maximum pitch rate \\ qsb{max} is introduced to characterize these harmonic oscillatory motions. It is found that at current flow conditions, all the hysteresis loops of pitch moment coefficient with same \\ qsb{max} are tangential to one another at both top and bottom of the loops, implying approximately same maximum offset of these loops from static values. Several cases are also illustrated. Based on the results obtained and those from references, a state-space model is developed to describe the unsteady aerodynamic characteristics up to the high angle of attack regime. A nondimensional coordinate is introduced as the state variable describing the flow separation or vortex burst. First-order differential equation is used to govern the dynamics of flow separation or vortex bursting through this state variable. To be valid for general configurations, Taylor series expansions in terms of the input variables are used in the determination of aerodynamic characteristics, resembling the current approach of the stability derivatives. However, these derivatives are longer constant. They are dependent on the state variable of flow separation or vortex burst. In this way, the changes in stability derivatives with the angle of attack are included dynamically. The performance of the model is then validated by the wind-tunnel measurements of an NACA 0015 airfoil, a 70sp° delta wing and, finally two F-18 aircraft configurations. The results obtained show that within the framework of the proposed model, it is possible to obtain good agreement with different unsteady wind tunnel data in high angle-of-attack regime.

Fan, Yigang

1997-12-01

102

Advanced Small Perturbation Potential Flow Theory for Unsteady Aerodynamic and Aeroelastic Analyses

NASA Technical Reports Server (NTRS)

An advanced small perturbation (ASP) potential flow theory has been developed to improve upon the classical transonic small perturbation (TSP) theories that have been used in various computer codes. These computer codes are typically used for unsteady aerodynamic and aeroelastic analyses in the nonlinear transonic flight regime. The codes exploit the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP theory was developed methodically by first determining the essential elements required to produce full-potential-like solutions with a small perturbation approach on the requisite Cartesian grid. This level of accuracy required a higher-order streamwise mass flux and a mass conserving surface boundary condition. The ASP theory was further developed by determining the essential elements required to produce results that agreed well with Euler solutions. This level of accuracy required mass conserving entropy and vorticity effects, and second-order terms in the trailing wake boundary condition. Finally, an integral boundary layer procedure, applicable to both attached and shock-induced separated flows, was incorporated for viscous effects. The resulting ASP potential flow theory, including entropy, vorticity, and viscous effects, is shown to be mathematically more appropriate and computationally more accurate than the classical TSP theories. The formulaic details of the ASP theory are described fully and the improvements are demonstrated through careful comparisons with accepted alternative results and experimental data. The new theory has been used as the basis for a new computer code called ASP3D (Advanced Small Perturbation - 3D), which also is briefly described with representative results.

Batina, John T.

2005-01-01

103

NASA Technical Reports Server (NTRS)

Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.

Shyam, Vikram; Ameri, Ali

2009-01-01

104

NASA Technical Reports Server (NTRS)

Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of turbomachinery blading. Emphasis is being placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, flow driven by small-amplitude unsteady excitations in which viscous effects are concentrated in thin layers are being considered. The resulting analyses should apply in many practical situations, lead to a better understanding of the relevent physics, and they will be efficient computationally, and therefore, appropriate for aeroelastic and aeroacoustic design applications. Under the present phase (Task 3), the effort was focused on providing inviscid and viscid prediction capabilities for subsonic unsteady cascade flows.

Verdon, Joseph M.; Barnett, Mark; Hall, Kenneth C.; Ayer, Timothy C.

1991-01-01

105

Unsteady Aerodynamic Response of a Linear Cascade of Airfoils in Separated Flow

NASA Technical Reports Server (NTRS)

The overall objective of this research program was to investigate methods to modify the leading edge separation region, which could lead to an improvement in aeroelastic stability of advanced airfoil designs. The airfoil section used is representative of current low aspect ratio fan blade tip sections. The experimental potion of this study investigated separated zone boundary layer from removal through suction slots. Suction applied to a cavity in the vicinity of the separation onset point was found to be the most effective location. The computational study looked into the influence of front camber on flutter stability. To assess the influence of the change in airfoil shape on stability the work-per-cycle was evaluated for torsion mode oscillations. It was shown that the front camberline shape can be an important factor for stabilizing the predicted work-per-cycle and reducing the predicted extent of the separation zone. In addition, data analysis procedures are discussed for reducing data acquired in experiments that involve periodic unsteady data. This work was conducted in support of experiments being conducted in the NASA Glenn Research Center Transonic Flutter Cascade. The spectral block averaging method is presented. This method is shown to be able to account for variations in airfoil oscillation frequency that can occur in experiments that force oscillate the airfoils to simulate flutter.

Capece, Vincent R.; Ford, Christopher; Bone, Christopher; Li, Rui

2004-01-01

106

Aerodynamic Effects in a Dropped Ping-Pong Ball Experiment*

Aerodynamic Effects in a Dropped Ping-Pong Ball Experiment* MARK NAGURKA Dept. of Mechanical addresses aerodynamic modeling issues related to a simple experiment in which a ping- pong ball is dropped) between bounce sounds, after a ping-pong ball is dropped onto a hard table surface. (Musician Arthur

Nagurka, Mark L.

107

Application of two-dimensional unsteady aerodynamic to a free-tip rotor response analysis

NASA Technical Reports Server (NTRS)

The free-tip rotor utilizes a rotor blade tip which is structurally decoupled from the blade inboard section. The tip is free to pitch about its own pitch axis to respond to the local flow angularity changes. The tip also experiences the heaving motion due to the flapping of the rotor blade. For an airfoil in any pitching and heaving motion which can be expanded into a Fourier series, the lift and moment calculated by Theodoren's theory is simply the linear combination of the lift and moment calculated for each harmonic. These lift and moment are then used to determine the response of the free-tip rotor. A parametric study is performed to determine the effect of mechanical damping, mechanical spring, sweep, friction, and a constant control moment on the free-tip rotor response characteristics and the resulting azimuthal lift distributions. The results showed that the free-tip has the capability to suppress the oscillatory lift distribution around the azimuth and to eliminate a significant negative life peak on the advancing tip. This result agrees with the result of the previous analysis based on the steady aerodynamics.

Yates, L.; Kumagai, H.

1985-01-01

108

NASA Technical Reports Server (NTRS)

The input data required to execute the computer program AIC/INT (aerodynamic influence coefficients with interference) are presented. The purpose of the computer program is to generate aerodynamic forces for a pair of plane and interfering nearly parallel, non-coplanar wings at supersonic Mach numbers. A finite element technique has been employed. Planforms are described by triangular elements and diaphragm regions are generated automatically.

Paine, A. A.

1972-01-01

109

Unsteady aerodynamic and heat transfer processes in a transonic turbine stage

The effect of the interaction of the wake from a nozzle guide vane with the rotor may be simulated in part by means of a stationary rotor and a moving wake system. This technique is applied to a transonic rotor blade cascade, and the unsteady measurements of surface pressure and heat transfer rate are compared with baseline data obtained without

D. A. Ashworth; J. E. Lagraff; D. L. Schultz; K. J. Grindrod

1985-01-01

110

NASA Technical Reports Server (NTRS)

A program is presented to determine the flow-induced unsteady aerodynamic loads on space-shuttle orbiter configurations in the early reentry phase. Experiments on 8 degree half-angle cone/flat-base configurations were conducted at free-stream Mach numbers of 6 and 15 and Reynolds numbers corresponding to shuttle reentry. Data are available at free-stream Mach-numbers of 0.67, 2.5, 3, 4, 6, 15, and 22. It is shown that empirical expressions could be developed for the Mach-number dependence of the overall fluctuation pressure under an attached turbulent boundary layer and under a separated base-flow region.

Heller, H. H.; Clemente, A. R.

1974-01-01

111

NASA Technical Reports Server (NTRS)

Spatial adaption procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaption procedures were developed and implemented within a two-dimensional unstructured-grid upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in a high gradient region or the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational costs. A detailed description is given of the enrichment and coarsening procedures and comparisons with alternative results and experimental data are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady transonic results, obtained using spatial adaption for the NACA 0012 airfoil, are shown to be of high spatial accuracy, primarily in that the shock waves are very sharply captured. The results were obtained with a computational savings of a factor of approximately fifty-three for a steady case and as much as twenty-five for the unsteady cases.

Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.

1991-01-01

112

Program user's manual for an unsteady helicopter rotor-fuselage aerodynamic analysis

NASA Technical Reports Server (NTRS)

The Rotor-Fuselage Analysis is a method of calculating the aerodynamic reaction between a helicopter rotor and fuselage. This manual describes the structure and operation of the computer programs that make up the Rotor-Fuselage Analysis, programs which prepare the input and programs which display the output.

Lorber, Peter F.

1988-01-01

113

Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation`s energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

Miller, M.S.; Shipley, D.E. [Univ. of Colorado, Boulder, CO (United States). BioServe Space Technologies

1994-08-01

114

Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

NASA Astrophysics Data System (ADS)

Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation's energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

Miller, M. S.; Shipley, D. E.

1994-08-01

115

NASA Technical Reports Server (NTRS)

This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

Reddy, T. S. R.

1995-01-01

116

NASA Technical Reports Server (NTRS)

Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.

Morino, L.

1980-01-01

117

NASA Technical Reports Server (NTRS)

A nonlinear least squares algorithm for aircraft parameter estimation from flight data was developed. The postulated model for the analysis represented longitudinal, short period motion of an aircraft. The corresponding aerodynamic model equations included indicial functions (unsteady terms) and conventional stability and control derivatives. The indicial functions were modeled as simple exponential functions. The estimation procedure was applied in five examples. Four of the examples used simulated and flight data from small amplitude maneuvers to the F-18 HARV and X-31A aircraft. In the fifth example a rapid, large amplitude maneuver of the X-31 drop model was analyzed. From data analysis of small amplitude maneuvers ft was found that the model with conventional stability and control derivatives was adequate. Also, parameter estimation from a rapid, large amplitude maneuver did not reveal any noticeable presence of unsteady aerodynamics.

Klein, Vladislav; Noderer, Keith D.

1996-01-01

118

NASA Technical Reports Server (NTRS)

The technique of implicit differentiation has been used in combination with linearized lifting-surface theory to derive analytical expressions for aerodynamic sensitivities (i.e., rates of change of lifting pressures with respect to general changes in aircraft geometry, including planform variations) for steady or oscillating planar or nonplanar lifting surfaces in subsonic, sonic, or supersonic flow. The geometric perturbation is defined in terms of a single variable, and the user need only provide simple expressions or similar means for defining the continuous or discontinuous global or local perturbation of interest. Example expressions are given for perturbations of the sweep, taper, and aspect ratio of a wing with trapezoidal semispan planform. In addition to direct computational use, the analytical method presented here should provide benchmark criteria for assessing the accuracy of aerodynamic sensitivities obtained by approximate methods such as finite geometry perturbation and differencing. The present process appears to be readily adaptable to more general surface-panel methods.

Yates, E. Carson, Jr.

1987-01-01

119

NASA Astrophysics Data System (ADS)

This paper describes the design, calibration and application of an instrument that measures the effects of unsteady air flow (airwake) on a helicopter in flight. The instrument is a 1/54th-scale model helicopter that is mounted on a six-component dynamic force balance to measure the forces and moments that an airwake imposes onto the helicopter; it is therefore an 'Airwake Dynamometer' to which we have given the name AirDyn. The AirDyn has been designed, in particular, to measure the effect of a ship airwake on a helicopter translating over the ship's landing deck. The AirDyn, which has been implemented in a water tunnel, in preference to a wind tunnel, senses the integrated effect of a turbulent airwake on the helicopter, and the resulting unsteady forces and moments are an indication of the workload the pilot would need to exert to counteract these effects in a real helicopter. Binocular sensing elements and semiconductor strain gauges have been adopted to achieve high sensitivity and relatively high stiffness. The compact strain gauge balance is fitted into the helicopter fuselage, and protective coatings and a flexible bellows are used to seal the balance and protect it from the water. The coefficient matrix of the AirDyn has been obtained by static calibrations, while impulse excitation tests have confirmed that its frequency response is suitable for the measurements of unsteady loads. The application of the instrument is illustrated by using it to quantify the effect that a bulky ship mast has on the airwake and thus on a helicopter as it lands onto a simplified ship in a scaled 50 knot headwind.

Wang, Y.; Curran, J.; Padfield, G. D.; Owen, I.

2011-04-01

120

NASA Technical Reports Server (NTRS)

A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated.

Riffel, R. E.; Rothrock, M. D.

1980-01-01

121

NASA Technical Reports Server (NTRS)

Bifurcation theory is used to analyze the nonlinear dynamic stability characteristics of an aircraft subject to single-degree-of-freedom. The requisite moment of the aerodynamic forces in the equations of motion is shown to be representable in a form equivalent to the response to finite amplitude oscillations. It is shown how this information can be deduced from the case of infinitesimal-amplitude oscillations. The bifurcation theory analysis reveals that when the bifurcation parameter is increased beyond a critical value at which the aerodynamic damping vanishes, new solutions representing finite amplitude periodic motions bifurcate from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solutions are stable or unstable. For the pitching motion of flat-plate airfoils flying at supersonic/hypersonic speed and for oscillation of flaps at transonic speed, the bifurcation is subcritical, implying either the exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop.

Hui, W. H.

1985-01-01

122

Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics

NASA Technical Reports Server (NTRS)

Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.

Bartels, Robert E.

2012-01-01

123

NASA Technical Reports Server (NTRS)

A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.44. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated.

Riffel, R. E.; Rothrock, M. D.

1980-01-01

124

NASA Technical Reports Server (NTRS)

This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.

Reddy, T. S. R.; Srivastava, R.

1996-01-01

125

A Cartesian grid method for simulation of the unsteady aerodynamics of microscale flapping flight

NASA Astrophysics Data System (ADS)

Recent improvements in MEMS technology is making it possible to develop microscale mechanical devices capable of operating in gases and liquids at low Reynolds number. In the current work a method has been developed to be able to simulate the operation of such devices computationally. The method imposes arbitrary solid/fluid boundaries on Cartesian grids, thus avoiding complexities with body-fitted grid methods. This thesis explains the numerical approximations used for solving the governing equations, the discretization of the equations, and the implementation of the immersed fluid/solid boundary conditions. The method is validated by comparing computed results of flows over an infinitely thin plate, a cylinder, and a sphere, and it is found that the method predicts both steady and unsteady flows with sufficient accuracy. The method performs similarly whether the solid objects translates through the grid or remains fixed in the grid with an imposed flow field. The method was then used to compute the fluid dynamics and force generation of a microscale flapping cantilever beam propulsion device. Both two-dimensional and three-dimensional flow features were explored, and the investigation showed that the cantilever produces thrust and can therefore potentially be used as a simple propulsion mechanism. Finally, the method was used to simulate an idealized model of fruit fly wing in hovering flight. The computed flow fields and force dynamics compared well with an equivalent experimental model, although some discrepancies were found due to a thicker wing being used in the computations for numerical reasons.

Emblemsvag, Jo-Einar

126

Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta

The aerodynamic mechanisms employed durng the flight of the hawkmoth, Manduca sexta, have been investigated through smoke visualization studies with tethered moths. Details of the flow around the wings and of the overall wake structure were recorded as stereophotographs and high-speed video sequences. The changes in flow which accompanied increases in flight speed from 0.4 to 5.7 m s-1 were analysed. The wake consists of an alternating series of horizontal and vertical vortex rings which are generated by successive down- and upstrokes, respectively. The downstroke produces significantly more lift than the upstroke due to a leading-edge vortex which is stabilized by a radia flow moving out towards the wingtip. The leading-edge vortex grew in size with increasing forward flight velocity. Such a phenomenon is proposed as a likely mechanism for lift enhancement in many insect groups. During supination, vorticity is shed from the leading edge as postulated in the 'flex' mechanism. This vorticity would enhance upstroke lift if it was recaptured diring subsequent translation, but it is not. Instead, the vorticity is left behind and the upstroke circulation builds up slowly. A small jet provides additional thrust as the trailing edges approach at the end of the upstroke. The stereophotographs also suggest that the bound circulation may not be reversed between half strokes at the fastest flight speeds.

Willmott, A. P.; Ellington, C. P.; Thomas, A. L. R.

1997-01-01

127

NASA Technical Reports Server (NTRS)

The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.

Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.

2003-01-01

128

Unsteady Aerodynamic Testing Using the Dynamic Plunge Pitch and Roll Model Mount

NASA Technical Reports Server (NTRS)

A final report on the DyPPiR tests that were run are presented. Essentially it consists of two parts, a description of the data reduction techniques and the results. The data reduction techniques include three methods that were considered: 1) signal processing of wind on - wind off data; 2) using wind on data in conjunction with accelerometer measurements; and 3) using a dynamic model of the sting to predict the sting oscillations and determining the aerodynamic inputs using an optimization process. After trying all three, we ended up using method 1, mainly because of its simplicity and our confidence in its accuracy. The results section consists of time history plots of the input variables (angle of attack, roll angle, and/or plunge position) and the corresponding time histories of the output variables, C(sub L), C(sub D), C(sub m), C(sub l), C(sub m), C(sub n). Also included are some phase plots of one or more of the output variable vs. an input variable. Typically of interest are pitch moment coefficient vs. angle of attack for an oscillatory motion where the hysteresis loops can be observed. These plots are useful to determine the "more interesting" cases. Samples of the data as it appears on the disk are presented at the end of the report. The last maneuver, a rolling pull up, is indicative of the unique capabilities of the DyPPiR, allowing combinations of motions to be exercised at the same time.

Lutze, Frederick H.; Fan, Yigang

1999-01-01

129

A comparison of baseline aerodynamic performance of optimally-twisted versus non-twisted HAWT blades

NREL has completed the initial twisted blade field tests of the ``Unsteady Aerodynamics Experiment.`` This test series continues systematic measurements of unsteady aerodynamic phenomena prevalent in stall-controlled horizontal axis wind turbines (HAWTs). The blade twist distribution optimizes power production at a single angle of attack along the span. Abrupt transitions into and out of stall are created due to rapid changes in inflow. Data from earlier experiments have been analyzed extensively to characterize the steady and unsteady response of untwisted blades. In this report, a characterization and comparison of the baseline aerodynamic performance of the twisted versus non-twisted blade sets will be presented for steady flow conditions.

Simms, D.A.; Robinson, M.C.; Hand, M.M.; Fingersh, L.J.

1995-01-01

130

NREL has completed the initial twisted blade field tests of the Unsteady Aerodynamics Experiment. This test series continues systematic measurements of unsteady aerodynamic phenomena prevalent in stall-controlled horizontal axis wind turbines (HAWTs). The blade twist distribution optimizes power production at a single angle of attack along the span. Abrupt transitions into and out of stall are created due to rapid changes in inflow. Data from earlier experiments have been analyzed extensively to characterize the steady and unsteady response of untwisted blades. In this report, a characterization and comparison of the baseline aerodynamic performance of the twisted versus non-twisted blade sets will be presented for steady flow conditions.

Simms, D.A.; Robinson, M.C.; Hand, M.M.; Fingersh, L.J. [National Renewable Energy Lab., Golden, CO (United States)

1996-10-01

131

The Analysis of Underexpanded Jet Flows for Hypersonic Aerodynamic Experiments in

The Analysis of Underexpanded Jet Flows for Hypersonic Aerodynamic Experiments in Vacuum Chambers V of rarefied-gas flows [1]- [3] and aerodynamics of hypersonic probes in wind tunnels [4]-[7]. The objective using quantum concepts [9], [10]. Aerodynamic characteristics of wedges, disks, and plates are studied

Riabov, Vladimir V.

132

Experiments on the unsteadiness associated with a ground vortex

NASA Technical Reports Server (NTRS)

The ground vortex formed by a jet impinging on the ground in the presence of a crossflow has been studied experimentally. High speed motion pictures and spectral measurements were obtained to study the unsteady features of this flowfield. A very low-frequency pulsation or 'puffing' instability was observed. Since this unsteadiness could not be correlated with any other oscillations in the flowfield, the low-frequency oscillations must come from the gross features of the ground vortex itself. Namely, jet fluid accumulates in the ground vortex until the vortex is so large that the flowfield breaks up, the ground vortex is swept away, a new smaller vortex forms, and the process repeats itself. Measurements of the frequency of these oscillations are presented for the first time, and data on the vertical extent (height) of the ground vortex are also shown.

Cimbala, J. M.; Billet, M. L.; Gaublomme, D. P.; Oefelein, J. C.

1991-01-01

133

NASA Technical Reports Server (NTRS)

Tests were conducted a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blade along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge. The tests were conducted for all 96 combinations 2 mean camberline incidence angles 2 pitching amplitudes 3 reduced frequencies and 8 interblade phase angles. The pressure data were reduced to Fourier coefficient form for direct comparison, and were also processed to yield integrated loads and particularly, the aerodynamic damping coefficient. Data obtained during the test program, reproduced from the printout of the data reduction program are complied. A further description of the contents of this report is found in the text that follows.

Carta, F. O.

1981-01-01

134

Aerodynamic and Aerothermodynamic Layout of the Hypersonic Flight Experiment Shefex

NASA Astrophysics Data System (ADS)

The purpose of the SHarp Edge Flight EXperiment SHEFEX is the investigation of possible new shapes for future launcher or reentry vehicles [1]. The main focus is the improvement of common space vehicle shapes by application of facetted surfaces and sharp edges. The experiment will enable the time accurate investigation of the flow effects and their structural answer during the hypersonic flight from 90 km down to an altitude of 20 km. The project, being performed under responsibility of the German Aerospace Center (DLR) is scheduled to fly on top of a two-stage solid propellant sounding rocket for the first half of 2005. The paper contains a survey of the aerodynamic and aerothermodynamic layout of the experimental vehicle. The results are inputs for the definition of the structural layout, the TPS and the flight instrumentation as well as for the preparation of the flight test performed by the Mobile Rocket Base of DLR.

Eggers, Th.

2005-02-01

135

Incipient torsional stall flutter aerodynamic experiments on a swept three-dimensional wing

NASA Technical Reports Server (NTRS)

The aerodynamics of small amplitude pitching motions near stall have been studied experimentally in order to improve understanding of the torsional stall flutter problem for propeller blades. A model wing was oscillated in pitch at several small amplitudes over a wide and representative range of conditions. Unsteady surface pressures were measured and integrated to determine the aerodynamic damping at five spanwise stations. Strong negative damping was found for motions centered near static stall for all studied reduced frequencies, Mach numbers, and sweep angles. The 30-deg sweptback configuration was found to become negatively damped over the entire span nearly simultaneously, while the unswept model exhibited local regions of negative damping that moved toward the wing tip as the mean angle of attack was increased.

Lorber, Peter F.; Carta, Franklin O.

1991-01-01

136

Unsteady high-pressure flow experiments with applications to explosive volcanic eruptions

Motivated by the hypothesis that volcanic blasts can have supersonic regions, we investigate the role of unsteady flow in jets from a high-pressure finite reservoir. We examine the processes for formation of far-field features, such as Mach disk shocks, by using a shock tube facility and numerical experiments to investigate phenomena to previously unobtained pressure ratios of 250:1. The Mach

M. M. Orescanin; J. M. Austin; S. W. Kieffer

2010-01-01

137

NASA Technical Reports Server (NTRS)

The first objective of the program is to introduce the meritorious counterflow methodology in microgravity in order to quantify the steady and unsteady characteristics of weakly-burning premixed and diffusion flames for a wide variety of conditions including elevated pressures. Subsequently, through detailed modeling and comparisons with the experimental data, to provide physical insight into the elementary mechanisms controlling the flame response. The configuration offers good control over the parameters of interest and can be modelled closely. The knowledge which will be gained from the counterflow flames will be subsequently used to analyze near-limit phenomena related to other configurations by conducting detailed numerical simulations including multidimensional ones. Among the problems to be analyzed are the downward and upward propagation of near-limit flames in tubes and phenomena observed in spherical and cylindrical geometries.

Egolfopoulos, Fokion N.

1995-01-01

138

Modeling of Unsteady Three-Dimensional Flows in Multistage Machines

NASA Astrophysics Data System (ADS)

Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.

Hall, Kenneth C.; Pratt, Edmund T., Jr.

2003-01-01

139

Aerodynamic Design of Road Vehicles

NASA Technical Reports Server (NTRS)

Guidebook discusses design of road vehicles to reduce aerodynamic drag. Book presents strategy for integrating aerodynamic design into vehicle design. Book written for readers lacking experience in aerodynamics.

Kurtz, D. W.

1985-01-01

140

The measured hydraulic data collected in the Flood Plain Simulation Facility located at the Gulf Coast Hydroscience Center, near Bay St. Louis, Miss., are summarized for a series of experiments designed to study steady and unsteady flow over uniform grass roughness. All experiments were conducted during the 1973 and 1974 test seasons. Tables of measured ground-surface elevations, water-surface elevations, and point velocities are included for all experiments. A total of 19 steady flow experiments and 7 unsteady flow experiments for varying grass heights are included. The tabulated point velocities and water-surface elevations for the unsteady flow experiments were selected to represent the general changes in the flow variables as the flood wave passed through the facility but do not include all collected data. However, all data that were collected have been stored on computer disk storage and may be retrieved using the listing programs and memory locations. (Woodard-USGS)

Collins, Dannie L.; Flynn, Kathleen M.

1978-01-01

141

Inverse problems and optimal experiment design in unsteady heat transfer processes identification

NASA Technical Reports Server (NTRS)

Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

Artyukhin, Eugene A.

1991-01-01

142

Recent darrieus Vertical-Axis Wind Turbine aerodynamical experiments at Sandia National Laboratories

NASA Astrophysics Data System (ADS)

The aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment were examined. The experiments are intended to reduce VAWT cost of energy an increase system reliability. The experiments include: (1) chordwise pressure surveys; (2) circumferential blade acceleration surveys; (3) effects of blade camber; (4) pitch and offset; (5) blade blowing; and (6) use of sections designed specifically for VAWT application.

Klimas, P. C.

143

Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories

NASA Astrophysics Data System (ADS)

Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.

Klimas, P. C.

1981-05-01

144

Conventional radiative furnaces require sample containment that encourages contamination at elevated temperatures and generally need windows which restrict the entrance and exit solid angles required for diffraction and scattering measurements. We describe a contactless windowless furnace based on aerodynamic levitation and laser heating which has been designed for high temperature neutron scattering experiments. Data from initial experiments are reported for

Claude Landron; Louis Hennet; Jean-Pierre Coutures; Tudor Jenkins; Chantal Alétru; Neville Greaves; Alan Soper; Gareth Derbyshire

2000-01-01

145

The relationship of unsteadiness in downwash to the quality of parameter estimates

NASA Technical Reports Server (NTRS)

This paper investigates the relative importance of including unsteady effects in the lift and downwash in the longitudinal dynamics and parameter extraction algorithm. A simple vortex system has been used to model unsteady aerodynamic effects into the longitudinal equations of motion of an aircraft. Computer-generated data and flight data were used to demonstrate that inclusion of unsteady aerodynamics in the parameter-extraction algorithm produced aerodynamic parameters that were different from those extracted when unsteady aerodynamics were left out of the algorithm. The differences between derivatives associated with the two extraction algorithms (with and without unsteady aerodynamics) were related to acceleration derivatives which usually cannot be extracted individually.

Wells, W. R.; Keskar, D. A.

1979-01-01

146

This report summarizes and makes available to other investigators the measured hydraulic data collected during a series of experiments designed to study the effect of patterned bed roughness on steady and unsteady open-channel flow. The patterned effect of the roughness was obtained by clear-cut mowing of designated areas of an otherwise fairly dense coverage of coastal Bermuda grass approximately 250 mm high. All experiments were conducted in the Flood Plain Simulation Facility during the period of October 7 through December 12, 1974. Data from 18 steady flow experiments and 10 unsteady flow experiments are summarized. Measured data included are ground-surface elevations, grass heights and densities, water-surface elevations and point velocities for all experiments. Additional tables of water-surface elevations and measured point velocities are included for the clear-cut areas for most experiments. One complete set of average water-surface elevations and one complete set of measured point velocities are tabulated for each steady flow experiment. Time series data, on a 2-minute time interval, are tabulated for both water-surface elevations and point velocities for each unsteady flow experiment. All data collected, including individual records of water-surface elevations for the steady flow experiments, have been stored on computer disk storage and can be retrieved using the computer programs listed in the attachment to this report. (Kosco-USGS)

Collins, Dannie L.; Flynn, Kathleen M.

1979-01-01

147

Aerodynamic and Aerothermodynamic Layout of the Hypersonic Flight Experiment Shefex

The purpose of the SHarp Edge Flight EXperiment SHEFEX is the investigation of possible new shapes for future launcher or reentry vehicles [1]. The main focus is the improvement of common space vehicle shapes by application of facetted surfaces and sharp edges. The experiment will enable the time accurate investigation of the flow effects and their structural answer during the

Th. Eggers

2005-01-01

148

An unsteady airfoil theory applied to pitching motions validated against experiment and computation

NASA Astrophysics Data System (ADS)

An inviscid theoretical method that is applicable to non-periodic motions and that accounts for large amplitudes and non-planar wakes (large-angle unsteady thin airfoil theory) is developed. A pitch-up, hold, pitch-down motion for a flat plate at Reynolds number 10,000 is studied using this theoretical method and also using computational (immersed boundary method) and experimental (water tunnel) methods. Results from theory are compared against those from computation and experiment which are also compared with each other. The variation of circulatory and apparent-mass loads as a function of pivot location for this motion is examined. The flow phenomena leading up to leading-edge vortex shedding and the limit of validity of the inviscid theory in the face of vortex-dominated flows are investigated. Also, the effect of pitch amplitude on leading-edge vortex shedding is examined, and two distinctly different vortex-dominated flows are studied using dye flow visualizations from experiment and vorticity plots from computation.

Ramesh, Kiran; Gopalarathnam, Ashok; Edwards, Jack R.; Ol, Michael V.; Granlund, Kenneth

2013-11-01

149

NASA Technical Reports Server (NTRS)

Results are presented on the aerodynamic characteristics of the Magellan spacecraft during the October 1994 Termination Experiment, including the effects of the thruster engine exhaust plumes upon the molecular free stream around the spacecraft and upon the aerodynamics coefficients. As Magellan passed through the Venusian atmosphere, the solar arrays were turned in opposite directions relative to the free stream creating a torque on the spacecraft. The spacecraft control system was programmed to counter the effects of this torque with attitude control engines to maintain an inertially fixed attitude. The orientation and reaction engine telemetry returned from Magellan are used to create a model of the aerodynamic torques. Geometric models of the Magellan spacecraft are analyzed with the aid of both free molecular and Direct Simulation Monte Carlo codes. The simulated aerodynamic torques determined are compared to the measured torques. The Direct Simulation Monte Carlo method is also used to model the attitude engine exhaust plumes, the free stream disturbance caused by these plumes, and the resulting torques acting on the spacecraft compared to no-exhaust plume cases. The effect of the exhaust plumes was found to be sufficiently large that thrust reversal is possible.

Cestero, Francisco J.; Tolson, Robert H.

1998-01-01

150

Aerodynamics of Small Vehicles

NASA Astrophysics Data System (ADS)

In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

Mueller, Thomas J.

151

Aerodynamics of Heavy Vehicles

NASA Astrophysics Data System (ADS)

We present an overview of the aerodynamics of heavy vehicles, such as tractor-trailers, high-speed trains, and buses. We introduce three-dimensional flow structures around simplified model vehicles and heavy vehicles and discuss the flow-control devices used for drag reduction. Finally, we suggest important unsteady flow structures to investigate for the enhancement of aerodynamic performance and future directions for experimental and numerical approaches.

Choi, Haecheon; Lee, Jungil; Park, Hyungmin

2014-01-01

152

NASA Technical Reports Server (NTRS)

Computer data are provided for tests conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge.

Carta, F. O.

1981-01-01

153

Comparison of Aerodynamic Noise Propagation Markus P. Rumpfkeil

signatures. cylinder,14 and for a slat trailing-edge fComparison of Aerodynamic Noise Propagation Techniques Markus P. Rumpfkeil University of Dayton the computation of aerodynamic noise via different hybrid noise prediction methods is presented. An unsteady

Rumpfkeil, Markus Peer

154

NASA Technical Reports Server (NTRS)

Existing interpretations of the trailing edge condition, addressing both theoretical and experimental works in steady, as well as unsteady flows are critically reviewed. The work of Kutta and Joukowski on the trailing edge condition in steady flow is reviewed. It is shown that for most practical airfoils and blades (as in the case of most turbomachine blades), this condition is violated due to rounded trailing edges and high frequency effects, the flow dynamics in the trailing edge region being dominated by viscous forces; therefore, any meaningful modelling must include viscous effects. The question of to what extent the trailing edge condition affects acoustic radiation from the edge is raised; it is found that violation of the trailing edge condition leads to significant sound diffraction at the tailing edge, which is related to the problem of noise generation. Finally, various trailing edge conditions in unsteady flow are discussed, with emphasis on high reduced frequencies.

Radwan, S. F.; Rockwell, D. O.; Johnson, S. H.

1982-01-01

155

NASA Technical Reports Server (NTRS)

Data from the High Resolution Accelerometer Package (HiRAP) experiment on the Space Shuttle Orbiter have been analyzed for 10 flights to produce lift-drag (L/D) ratios in the free molecule, transition, and continuum flow flight regimes. Freestream density is also obtained in the altitude range from 60 km to 160 km using an aerodynamic model based upon earlier flight analysis of accelerometer data. The results of the L/D analysis of the latest four flights have been compared with the aerodynamic model developed from the first six HiRAP missions. The new data agree with the established flight-derived model, thereby validating earlier analysis. However, the arithmetic mean of the 10 flight-derived L/D values in the free molecular flow regime is 0.053 (+ or - 0.1) as compared to the initial value of 0.10 (+ or - 0.3), determined from STS-6. Updates to the Orbiter aerodynamic model values and calibration factors have been incorporated into the density calculations for all 10 flights to provide realistic absolute density. The derived density altitude profiles, which have been normalized to the U.S. Standard Atmosphere 1976, are characterized by a large amplitude wave pattern relative to the standard as seen in the initial flight analysis.

Blanchard, R. C.; Larman, K. T.

1987-01-01

156

Aerodynamic Database Development for the Hyper-X Airframe Integrated Scramjet Propulsion Experiments

NASA Technical Reports Server (NTRS)

This paper provides an overview of the activities associated with the aerodynamic database which is being developed in support of NASA's Hyper-X scramjet flight experiments. Three flight tests are planned as part of the Hyper-X program. Each will utilize a small, nonrecoverable research vehicle with an airframe integrated scramjet propulsion engine. The research vehicles will be individually rocket boosted to the scramjet engine test points at Mach 7 and Mach 10. The research vehicles will then separate from the first stage booster vehicle and the scramjet engine test will be conducted prior to the terminal decent phase of the flight. An overview is provided of the activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts for all phases of the Hyper-X flight tests. A brief summary of the Hyper-X research vehicle aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics. Brief comments on the planned post flight data analysis efforts are also included.

Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.

2000-01-01

157

Oscillating aerodynamics and flutter of an aerodynamically detuned cascade in an incompressible flow

NASA Technical Reports Server (NTRS)

A mathematical model is developed and utilized to demonstrate the enhanced torsion mode stability associated with alternate blade circumferential aerodynamic detuning of a rotor operating in an incompressible flow field. The oscillating cascade aerodynamics, including steady loading effects, are determined by developing a complete first order unsteady aerodynamic analysis. An unsteady aerodynamic influence coefficient technique is then utilized, thereby enabling the stability of both conventional uniformly spaced rotors and detuned nonuniform circumferentially spaced rotors to be determined. To demonstrate the enhanced flutter aeroelastic stability associated with this aerodynamic detuning mechanism, this model is applied to a baseline unstable rotor with a Gostelow flow geometry.

Chiang, Hsiao-Wei D.; Fleeter, Sanford

1989-01-01

158

NASA Technical Reports Server (NTRS)

A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.

Hanson, Donald B.

1994-01-01

159

NASA Astrophysics Data System (ADS)

An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with experiments and other research results. The rotor cascade shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using the unsteady Navier-Stokes solver. Two objective functions were defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed. A parallel genetic algorithm was used as an optimizer and the penalty method was introduced. Each individual's objective function was computed simultaneously by using a 32 processor distributed memory computer. One optimization took about four days.

Lee, Eun Seok

2000-10-01

160

DOE's effort to reduce truck aerodynamic drag through joint experiments and computations.

Class 8 tractor-trailers are responsible for 11-12% of the total US consumption of petroleum. Overcoming aero drag represents 65% of energy expenditure at highway speeds. Most of the drag results from pressure differences and reducing highway speeds is very effective. The goal is to reduce aerodynamic drag by 25% which would translate to 12% improved fuel economy or 4,200 million gal/year. Objectives are: (1) In support of DOE's mission, provide guidance to industry in the reduction of aerodynamic drag; (2) To shorten and improve design process, establish a database of experimental, computational, and conceptual design information; (3) Demonstrate new drag-reduction techniques; and (4) Get devices on the road. Some accomplishments are: (1) Concepts developed/tested that exceeded 25% drag reduction goal; (2) Insight and guidelines for drag reduction provided to industry through computations and experiments; (3) Joined with industry in getting devices on the road and providing design concepts through virtual modeling and testing; and (4) International recognition achieved through open documentation and database.

Salari, Kambiz (Lawrence Livermore National Laboratory); Browand, Fred (University of Southern California); Sreenivas, Kidambi (University of Tennessee, Chattanooga); Pointer, W. David (Argonne National Laboratory); Taylor, Lafayette (University of Tennessee, Chattanooga); Pankajakshan, Ramesh (University of Tennessee, Chattanooga); Whitfield, David (University of Tennessee, Chattanooga); Plocher, Dennis (University of Southern California); Ortega, Jason M. (Lawrence Livermore National Laboratory); Merzel, Tai (University of Southern California); McCallen, Rose (Lawrence Livermore National Laboratory); Walker, Stephen M (NASA Ames Research Center); Heineck, James T (NASA Ames Research Center); Hassan, Basil; Roy, Christopher John (Auburn University); Storms, B. (NASA Ames Research Center); Ross, James (NASA Ames Research Center); Englar, Robert (Georgia Tech Research Institute); Rubel, Mike (Caltech); Leonard, Anthony (Caltech); Radovich, Charles (University of Southern California); Eastwood, Craig (Lawrence Livermore National Laboratory); Paschkewitz, John (Lawrence Livermore National Laboratory); Castellucci, Paul (Lawrence Livermore National Laboratory); DeChant, Lawrence Justin.

2005-08-01

161

Active Control of Aerodynamic Forces on a Rapidly Maneuvering Airfoil

NASA Astrophysics Data System (ADS)

The unsteady aerodynamic forces and moments on a rapidly maneuvering free-moving airfoil are investigated in wind tunnel experiments. The airfoil is mounted on a 2-DOF traverse and its trim and dynamic characteristics are controlled using position and attitude feedback loops that are actuated by servo motors. The motion of the airfoil is effected by bi-directional changes in the pitching moment using controllable trapped vorticity concentrations on both the suction and pressure surfaces near the trailing edge that are induced and regulated by hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and velocity measurements that are taken phase-locked to the commanded actuation waveform. The unsteady flow characteristics induced by the fluidic actuation during a prescribed maneuver are compared with the effects of a simple rigid-body motion of the airfoil when an external torque is used to achieve a similar maneuver. It is shown that the time-dependent aerodynamic forces and induced flow fields in the near wake of the moving airfoil are significantly different, emphasizing the role of the coupling between the flow control actuation and the model's unsteady aerodynamics.

Brzozowski, Daniel; Culp, John; Glezer, Ari

2009-11-01

162

NASA Technical Reports Server (NTRS)

Typical analytical models for interaction between rotor and stator in a turbofan analyze the effect of wakes from the rotor impinging on the stator, producing unsteady loading, and thereby generating noise. Reflection/transmission characteristics of the rotor are sometimes added in a separate calculation. In those models, there is a one-to-one relationship between wake harmonics and noise harmonics; that is, the BPF (blade passing frequency) wake harmonic causes only the BPF noise harmonic, etc. This report presents a more complete model in which flow tangency boundary conditions are satisfied on two cascades in relative motion for several harmonics simultaneously. By an extension of S.N. Smith's code for two dimensional flat plate cascades, the noise generation/frequency scattering/blade row reflection problem is solved in a single matrix inversion. It is found that the BPF harmonic excitation of the stator scatters considerable energy in the higher BPF harmonics due to relative motion between the blade rows. Furthermore, when swirl between the rotor and stator is modeled, a 'mode trapping' effect occurs which explains observations on fans operating at rotational speeds below BFP cuton: the BPF mode amplifies between blade rows by multiple reflections but cannot escape to the inlet and exit ducts. However, energy scattered into higher harmonics does propagate and dominates the spectrum at two and three times BPF. This report presents the complete derivation of the theory, comparison with a previous (more limited) coupled rotor/stator interaction theory due to Kaji and Okazaki, exploration of the mode trapping phenomenon, and parametric studies showing the effects of vane/blade ratio and rotor/stator interaction. For generality, the analysis applies to stages where the rotor is either upstream or downstream of the stator and to counter rotation stages. The theory has been coded in a FORTRAN program called CUP2D, documented in Volume 2 of this report. It is concluded that the new features of this analysis - unsteady coupling, frequency scattering, and flow turning between rotor and stator - have a profound effect on noise generation caused by rotor/stator interaction. Treating rotors and stators as isolated cascades is not adequate for noise analysis and prediction.

Hanson, Donald B.

1994-01-01

163

Unsteady laminar pipe flow of a Carbopol gel. Part I: experiment

A experimental study of low Reynolds numbers unsteady pipe flows of a yield stress shear thinning fluid (Carbopol- 980) is presented. The investigation of the solid-fluid transition in a rheometric flow in the presence and in the ab- sence of the wall slip reveals a coupling between the irreversible deformation states and the wall slip phenomenon. Particularly, the presence of wall slip nearly suppresses the scaling of the deformation power deficit associated to the rheological hysteresis with the rate at which the material is forced. The irreversible solid-fluid transition and the wall slip behaviour emerge in the same range of the applied stresses and thus, the two phenomena appear to be coupled to each other. In-situ measurements of the flow fields performed during an increasing/decreasing stepped pressure ramp reveal three distinct flow regimes: solid (pluglike), solid-fluid and fluid. The deformation power deficit associated with the hysteresis observed during the increasing/decreasing branches of the pressure ramps reveals a dependence on the rate at which the unsteady flow is driven consistent with that observed during the rheological measurements in the presence of slip. The dependence of the slip velocity on the wall shear stresses reveals a Navier-type slip behaviour only within the fluid flow regime, which indicates that the wall slip phenomenon is directly coupled to the solid-fluid transition. A universal scaling of the slip velocity with the wall velocity gradients is found and the slip length is independent on the characteristic time of forcing t0. The paper closes with a discussion of the main findings, their possible impact on our current understanding of the yielding and slip behaviour of Carbopol gels. Several steps worth being pursued by future experimental/theoretical studies are proposed.

Antoine Poumaere; Miguel Moyers-Gonzalez; Cathy Castelain; Teodor Burghelea

2013-01-21

164

ATRAN3S: An unsteady transonic code for clean wings

NASA Technical Reports Server (NTRS)

The development and applications of the unsteady transonic code ATRAN3S for clean wings are discussed. Explanations of the unsteady, transonic small-disturbance aerodynamic equations that are used and their solution procedures are discussed. A detailed user's guide, along with input and output for a sample case, is given.

Guruswamy, G. P.; Goorjian, P. M.; Merritt, F. J.

1985-01-01

165

Lattice of plates in an unsteady supersonic flow

The supersonic unsteady flow of a gas past a lattice of thin, slightly curved profiles has been investigated in several studies. The paper [1] is devoted to an evaluation of the effect of wind tunnel walls on the unsteady aerodynamic characteristics of a profile, and [2] investigates the effects of the boundaries of a free jet. These cases are equivalent

D. N. Gorelov

1966-01-01

166

PRESSURE MEASUREMENT IN A TWO DIMENSIONAL UNSTEADY FLOW

PRESSURE MEASUREMENT IN A TWO DIMENSIONAL UNSTEADY FLOW William Walker Virginia Polytechnic to obtain unsteady aerodynamic data from a two dimensional wing, and analyzing the pressure variations with time over the wing surface. The data was gathered by using electronic pressure transducers

Patil, Mayuresh

167

Dynamic control of aerodynamic forces on a moving platform using active flow control

NASA Astrophysics Data System (ADS)

The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a two degree-of-freedom traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the trailing edge of the airfoil using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and particle image velocimetry (PIV) measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in both trajectory tracking and disturbance rejection maneuvers. The time-varying aerodynamic lift and pitching moment are estimated from a PIV wake survey using a reduced order model based on classical unsteady aerodynamic theory. These measurements suggest that the entire flow over the airfoil readjusts within 2--3 convective time scales, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.

Brzozowski, Daniel P.

168

Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage

NASA Technical Reports Server (NTRS)

A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.

Boyd, David D., Jr.

1999-01-01

169

NASA Technical Reports Server (NTRS)

The paper experimentally and theoretically studies the effects of periodic unsteady wake flow and aerodynamic characteristics on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experiments were carried out at Reynolds number of 110,000 (based on suction surface length and exit velocity). For one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, intermittency behaviors were experimentally and theoretically investigated. The current investigation attempts to extend the intermittency unsteady boundary layer transition model developed in previously to the LPT cases, where separation occurs on the suction surface at a low Reynolds number. The results of the unsteady boundary layer measurements and the intermittency analysis were presented in the ensemble-averaged and contour plot forms. The analysis of the boundary layer experimental data with the flow separation, confirms the universal character of the relative intermittency function which is described by a Gausssian function.

Oeztuerk, B; Schobeiri, M. T.; Ashpis, David E.

2005-01-01

170

Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade

NASA Technical Reports Server (NTRS)

An approach to passive flutter control is aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamically detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus is analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentially spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.

Hoyniak, D.; Fleeter, S.

1985-01-01

171

NASA Technical Reports Server (NTRS)

The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.

Cassell, Alan M.

2013-01-01

172

Theory and Low-Order Modeling of Unsteady Airfoil Flows

NASA Astrophysics Data System (ADS)

Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It is hypothesized, and verified with experimental and computational data, that LEV formation always occurs at the same critical value of LESP irrespective of motion kinematics. Further, the applicability of the LESP criterion in influencing the occurrence of LEV formation is demonstrated. To model the growth and convection of leading-edge vortices, the unsteady thin-airfoil theory is augmented with discrete-vortex shedding from the leading edge. The LESP criterion is used to predict and modulate the shedding of leading-edge vorticity. Comparisons with experiments and CFD for test-cases with different airfoils, Reynolds numbers and motion kinematics, show that the method performs remarkably well in predicting force coefficients and flowfields for unsteady flows. The use of a single empirical parameter - the critical LESP value, allows the determination of onset, growth and termination of leading-edge vortex shedding. In the final part of the research, the discrete-vortex model is extended to flows where the freestream velocity is varying or small in comparison with motion velocity. With this extension, the method is made applicable to a larger set of 2D flows such as perching and hovering maneuvers, gusts, and sinusoidally varying freestream. Abstractions of perching and hovering are designed as test cases and used to validate the low-order model's performance in highly-unsteady, vortex-dominated flows. Alongside development of the low-order methodology, several features of unsteady flows are studied and analyzed with the aid of CFD and experiments. While remaining computationally inexpensive and retaining the essential flow-physics, the method is seen to be successful in prediction of both force coefficients and flow histories.

Ramesh, Kiran

173

Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

NASA Technical Reports Server (NTRS)

Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

Mangalam, Arun S.; Moes, Timothy R.

2004-01-01

174

Real-Time Unsteady Loads Measurements Using Hot-Film Sensors

NASA Technical Reports Server (NTRS)

Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.

Mangalam, Arun S.; Moes, Timothy R.

2004-01-01

175

Aerodynamic detuning for aeroelastic control of stability and forced response of supersonic rotors

NASA Technical Reports Server (NTRS)

An unsteady aerodynamic model is developed to analyze flutter and aerodynamically forced response of aerodynamically detuned supersonic axial flow rotors. Alternate blade aerodynamic detuning is considered, accomplished by alternating the circumferential spacing of adjacent blades as small solidity variations which do not have a dominant effect on the steady performance of a rotor. The unsteady aerodynamics are determined by developing an influence coefficient technique which is appropriate for both aerodynamically tuned and detuned rotor configurations. Torsion mode rotor stability and aerodynamically forced response are then analyzed with this unsteady aerodynamic model by combining it with a single-degree-of-freedom structural model. The effects of this detuning on the flutter and forced response characteristics of supersonic axial flow rotors is then demonstrated by considering baseline twelve bladed rotors.

Spara, Karen M.; Fleeter, Sanford

1991-01-01

176

Aerodynamic detuning analysis of an unstalled supersonic turbofan cascade

NASA Technical Reports Server (NTRS)

An approach to passive flutter control is aerodynamic detuning, defined as designed pasage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic detuning directly affects the fundamental driving mechanism for flutter. A model to demonstrate the enhanced supersonic aeroelastic stability associated with aerodynamic detuning is developed. The stability of an aerodynamicaly detuned cascade operating in a supersonic inlet flow field with a subsonic leading edge locus analyzed, with the aerodynamic detuning accomplished by means of nonuniform circumferential spacing of adjacent rotor blades. The unsteady aerodynamic forces and moments on the blading are defined in terms of influence coefficients in a manner that permits the stability of both a conventional uniformally spaced rotor configuration as well as the detuned nonuniform circumferentialy spaced rotor to be determined. With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then utilized to demonstrate the potential enhanced aeroelastic stability associated with this particular type of aerodynamic detuning.

Hoyniak, D.; Fleeter, S.

1986-01-01

177

Computational unsteady aerodynamics for lifting surfaces

NASA Technical Reports Server (NTRS)

Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency.

Edwards, John W.

1988-01-01

178

Unsteady transonic flow past airfoils in rigid-body motion. [UFLO5

With the aim of developing a fast and accurate computer code for predicting the aerodynamic forces needed for a flutter analysis, some basic concepts in computational transonics are reviewed. The unsteady transonic flow past airfoils in rigid body motion is adequately described by the potential flow equation as long as the boundary layer remains attached. The two dimensional unsteady transonic potential flow equation in quasilinear form with first order radiation boundary conditions is solved by an alternating direction implicit scheme in an airfoil attached sheared parabolic coordinate system. Numerical experiments show that the scheme is very stable and is able to resolve the higher nonlinear transonic effects for filter analysis within the context of an inviscid theory.

Chang, I C

1981-03-01

179

Experimental characterization of high speed centrifugal compressor aerodynamic forcing functions

NASA Astrophysics Data System (ADS)

The most common and costly unexpected post-development gas turbine engine reliability issue is blade failure due to High Cycle Fatigue (HCF). HCF in centrifugal compressors is a coupled nonlinear fluid-structure problem for which understanding of the phenomenological root causes is incomplete. The complex physics of this problem provides significant challenges for Computational Fluid Dynamics (CFD) techniques. Furthermore, the available literature fails to address the flow field associated with the diffuser potential field, a primary cause of forced impeller vibration. Because of the serious nature of HCF, the inadequacy of current design approaches to predict HCF, and the fundamental lack of benchmark experiments to advance the design practices, there exists a need to build a database of information specific to the nature of the diffuser generated forcing function as a foundation for understanding flow induced blade vibratory failure. The specific aim of this research is to address the fundamental nature of the unsteady aerodynamic interaction phenomena inherent in high-speed centrifugal compressors wherein the impeller exit flow field is dynamically modulated by the vaned diffuser potential field or shock structure. The understanding of this unsteady aerodynamic interaction is fundamental to characterizing the impeller forcing function. Unsteady static pressure measurement at several radial and circumferential locations in the vaneless space offer a depiction of pressure field radial decay, circumferential variation and temporal fluctuation. These pressure measurements are coupled with high density, full field measurement of the velocity field within the diffuser vaneless space at multiple spanwise positions. The velocity field and unsteady pressure field are shown to be intimately linked. A strong momentum gradient exiting the impeller is shown to extend well across the vaneless space and interact with the diffuser vane leading edge. The deterministic unsteady pressure field is found to be dominated by the blade-vane interaction. HCF concerns are illuminated by persistent pressure waves extending radially across the vaneless space and impacting the impeller pressure surface. Finally, the average impeller exit flow field is found to present a highly unsteady velocity field to the downstream vane row, challenging the common design assumption of a rapid mixing model for diffuser design.

Gallier, Kirk

180

Hypersonic flutter of a curved shallow panel with aerodynamic heating

NASA Technical Reports Server (NTRS)

The general equations describing the nonlinear fluttering oscillations of shallow, curved, heated orthotropic panels have been derived. The formulation takes into account the location of the panel on the surface of a generic hypersonic vehicle, when calculating the aerodynamic loads. It is also shown that third order piston theory produces unsteady aerodynamic loading which is in close agreement with that based upon direct solution of the Euler equations. Results, for simply supported panels, are obtained using Galerkin's method combined with direct numerical integration in time to compute stable limit cycle amplitudes. These results illustrate the sensitivity of the aeroelastic behavior to the unsteady aerodynamic assumptions, temperature, orthotropicity and flow orientation.

Bein, T.; Friedmann, P.; Zhong, X.; Nydick, I.

1993-01-01

181

Numerical calculations of two dimensional, unsteady transonic flows with circulation

NASA Technical Reports Server (NTRS)

The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.

Beam, R. M.; Warming, R. F.

1974-01-01

182

Aerodynamics via acoustics - Application of acoustic formulas for aerodynamic calculations

NASA Technical Reports Server (NTRS)

Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

Farassat, F.; Myers, M. K.

1986-01-01

183

Aerodynamics Via Acoustics: Application of Acoustic Formulas for Aerodynamic Calculations

NASA Technical Reports Server (NTRS)

Prediction of aerodynamic loads on bodies in arbitrary motion is considered from an acoustic point of view, i.e., in a frame of reference fixed in the undisturbed medium. An inhomogeneous wave equation which governs the disturbance pressure is constructed and solved formally using generalized function theory. When the observer is located on the moving body surface there results a singular linear integral equation for surface pressure. Two different methods for obtaining such equations are discussed. Both steady and unsteady aerodynamic calculations are considered. Two examples are presented, the more important being an application to propeller aerodynamics. Of particular interest for numerical applications is the analytical behavior of the kernel functions in the various integral equations.

Farassat, F.; Myers, M. K.

1986-01-01

184

Development of a linearized unsteady Euler analysis for turbomachinery blade rows

NASA Technical Reports Server (NTRS)

A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.

Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.

1995-01-01

185

STALL MARGIN IMPROVEMENT USING FEEDBACK CONTROL TO MITIGATE INLET DISTORTION UNSTEADINESS

Experimental control of unsteadiness due to inlet flow separation is described. The control scheme is presented as part of an overall archi- tecture for integrated inlet\\/compressor control that attempts to mitigate both the source of separation in serpentine inlets and the effects on compressor operability. Experimental results on unsteadiness reduction at the aero-dynamic interface plane are used as inputs to

Zack Warfield; James D. Paduano; Douglas G. MacMartin

186

Some remarks on the design of transonic tunnels with low levels of flow unsteadiness

NASA Technical Reports Server (NTRS)

The principal sources of flow unsteadiness in the circuit of a transonic wind tunnel are presented. Care must be taken to avoid flow separations, acoustic resonances and large scale turbulence. Some problems discussed are the elimination of diffuser separations, the aerodynamic design of coolers and the unsteadiness generated in ventilated working sections.

Mabey, D. G.

1976-01-01

187

NASA Technical Reports Server (NTRS)

This document describes the aerodynamic design of an experimental hybrid laminar flow control (HLFC) wing panel intended for use on a Boeing 757 airplane to provide a facility for flight research on high Reynolds number HLFC and to demonstrate practical HLFC operation on a full-scale commercial transport airplane. The design consists of revised wing leading edge contour designed to produce a pressure distribution favorable to laminar flow, definition of suction flow requirements to laminarize the boundary layer, provisions at the inboard end of the test panel to prevent attachment-line boundary layer transition, and a Krueger leading edge flap that serves both as a high lift device and as a shield to prevent insect accretion on the leading edge when the airplane is taking off or landing.

1999-01-01

188

NASA Technical Reports Server (NTRS)

Aerodynamic experiments were performed on an oscillating NACA 0012 airfoil utilizing a tunnel-spanning wing in both unswept and 30 degree swept configurations. The airfoil was tested in steady state and in oscillatory pitch about the quarter chord. The unsteady aerodynamic loading was measured using pressure transducers along the chord. Numerical integrations of the unsteady pressure transducer responses were used to compute the normal force, chord force, and moment components of the induced loading. The effects of sweep on the induced aerodynamic load response was examined. For the range of parameters tested, it was found that sweeping the airfoil tends to delay the onset of dynamic stall. Sweeping was also found to reduce the magnitude of the unsteady load variation about the mean response. It was determined that at mean incidence angles greater than 9 degrees, sweep tends to reduce the stability margin of the NACA 0012 airfoil; however, for all cases tested, the airfoil was found to be stable in pure pitch. Turbulent eddies were found to convect downstream above the upper surface and generate forward-moving acoustic waves at the trailing edge which move upstream along the lower surface.

St.hilaire, A. O.; Carta, F. O.; Fink, M. R.; Jepson, W. D.

1979-01-01

189

NASA Technical Reports Server (NTRS)

Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.

Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen

1999-01-01

190

Supersonic flutter analysis of wings using an unsteady 3D panel method

A frequency-domain flutter analysis scheme for wings is developed using an unsteady 3D panel method. The unsteady aerodynamic force calculation is based on the s-plane unsteady nonplanar lifting surface method, and a finite element method is used to structurally model the wing. The flutter analysis is done using the normal mode approach and a U–g method in frequency-domain. The U–g

Jinsoo Cho; Younhyuck Chang

2001-01-01

191

NASA Technical Reports Server (NTRS)

The vibration and buckling characteristics of a series of 140 deg ring-supported conical shells have been investigated experimentally and analytically. Experimental results were obtained from 14 conical shells, each attached to a solid nose cap at the small end. The large (base) end was either free or attached to a solid ring of rectangular cross section. The size of the solid base rings of rectangular cross section was systematically varied to provide a wide range of edge restraint. Shell buckling was induced by aerodynamic loading at a Mach number of 3; the vibration data were obtained prior to the wind tunnel tests. The experimental vibration data indicated that the size of the base rings had a pronounced effect on the magnitude of the frequencies and on the frequency spectrum. For vibration modes having less than two circumferential waves, the frequencies descreased with increasing ring size; whereas, for modes with several circumferential waves, the frequencies initially increased rapidly with ring size and then became relatively insensitive to further increases in ring size. This latter behavior was similar to the trend exhibited by the variation of buckling pressure with ring size. The experimental results were in excellent qualitative agreement with theoretical results and indicated that current shell-of-revolution analyses are adequate for predicting the vibration and buckling behavior of ring-supported shells, at least for the simple isotropic shells considered in this investigation.

Miserentino, R.; Dixon, S. C.

1972-01-01

192

Aerodynamic data collected from the National Renewable Energy Laboratory`s Combined Experiment have shown three distinct performance regimes when the turbine is operated under relatively steady flow conditions. Operating at blade angles of attack below static stall, excellent agreement is achieved with two-dimensional wind tunnel data. Around the static stall angle, the cycle average normal force produced is greater than the static test data. Span locations near the hub produce extremely large values of normal force coefficient, well in excess of the two-dimensional data results. These performance regimes have been shown to be a function of the three-dimensional flow structure and cycle averaged dynamic stall effects. Power generation and root bending moments have also been shown to be directly dependent on the inflow wind velocity. Aerodynamic data, including episodes of dynamic stall, have been correlated on a cycle by cycle basis with the structural and power generation characteristics of a horizontal axis wind turbine. Instantaneous unsteady forces and resultant power generation indicate that peak transient levels can significantly exceed cycle averaged values. Strong coupling between transient aerodynamic and resonant response of the turbine was also observed. These results provide some initial insight into the contribution of unsteady aerodynamics on undesirable turbine structural response and fatigue life.

Shipley, D.E.; Miller, M.S.; Robinson, M.C.; Luttges, M.W. [Colorado Univ., Boulder, CO (United States). Dept. of Aerospace Engineering Sciences; Simms, D.A. [National Renewable Energy Lab., Golden, CO (United States)

1994-08-01

193

Fluid mechanics of dynamic stall. I - Unsteady flow concepts

NASA Technical Reports Server (NTRS)

Advanced military aircraft 'supermaneuverability' requirements entail the sustained operation of airfoils at stalled flow conditions. The present work addresses the effects of separated flow on vehicle dynamics; an analytic method is presented which employs static experimental data to predict the separated flow effect on incompressible unsteady aerodynamics. The key parameters in the analytic relationship between steady and nonsteady aerodynamics are the time-lag before a change of flow conditions can affect the separation-induced aerodynamic loads, the accelerated flow effect, and the moving wall effect.

Ericsson, L. E.; Reding, J. P.

1988-01-01

194

Reciprocity relations in aerodynamics

NASA Technical Reports Server (NTRS)

Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

Heaslet, Max A; Spreiter, John R

1953-01-01

195

Aerodynamic mathematical modeling - basic concepts

NASA Technical Reports Server (NTRS)

The mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers is reviewed. Bryan's original formulation, linear aerodynamic indicial functions, and superposition are considered. These concepts are extended into the nonlinear regime. The nonlinear generalization yields a form for the aerodynamic response that can be built up from the responses to a limited number of well defined characteristic motions, reproducible in principle either in wind tunnel experiments or flow field computations. A further generalization leads to a form accommodating the discontinuous and double valued behavior characteristics of hysteresis in the steady state aerodynamic response.

Tobak, M.; Schiff, L. B.

1981-01-01

196

Unsteady transonic flow calculations for realistic aircraft configurations

NASA Technical Reports Server (NTRS)

A transonic unsteady aerodynamic and aeroelasticity code has been developed for application to realistic aircraft configurations. The new code is called CAP-TSD which is an acronym for Computational Aeroelasticity Program - Transonic Small Disturbance. The CAP-TSD code uses a time-accurate approximate factorization (AF) algorithm for solution of the unsteady transonic small-disturbance equation. The AF algorithm is very efficient for solution of steady and unsteady transonic flow problems. It can provide accurate solutions in only several hundred time steps yielding a significant computational cost savings when compared to alternative methods. The new code can treat complete aircraft geometries with multiple lifting surfaces and bodies including canard, wing, tail, control surfaces, launchers, pylons, fuselage, stores, and nacelles. Applications are presented for a series of five configurations of increasing complexity to demonstrate the wide range of geometrical applicability of CAP-TSD. These results are in good agreement with available experimental steady and unsteady pressure data. Calculations for the General Dynamics one-ninth scale F-16C aircraft model are presented to demonstrate application to a realistic configuration. Unsteady results for the entire F-16C aircraft undergoing a rigid pitching motion illustrated the capability required to perform transonic unsteady aerodynamic and aeroelastic analyses for such configurations.

Batina, John T.; Seidel, David A.; Bland, Samuel R.; Bennett, Robert M.

1987-01-01

197

Aerodynamic and Aeroelastic Insights using Eigenanalysis

NASA Technical Reports Server (NTRS)

This paper presents novel analytical results for eigenvalues and eigenvectors produced using discrete time aerodynamic and aeroelastic models. An unsteady, incompressible vortex lattice aerodynamic model is formulated in discrete time; the importance of several modeling parameters is examined. A detailed study is made of the behavior of the aerodynamic eigenvalues both in discrete and continuous time. The aerodynamic model is then incorporated into aeroelastic equations of motion. Eigenanalyses of the coupled equations produce stability results and modal characteristics which are valid for critical and non-critical velocities. Insight into the modeling and physics associated with aeroelastic system behavior is gained by examining both the eigenvalues and the eigenvectors. Potential pitfalls in discrete time model construction and analysis are examined.

Heeg, Jennifer; Dowell, Earl H.

1999-01-01

198

Aerodynamic and Aeroelastic Insights using Eigenanalysis

NASA Technical Reports Server (NTRS)

This paper presents novel analytical results for eigenvalues and eigenvectors produced using discrete time aerodynamic and aeroelastic models. An unsteady, incompressible vortex lattice aerodynamic model is formulated in discrete time; the importance of several modeling parameters is examined. A detailed study is made of the behavior of the aerodynamic eigenvalues both in discrete and continuous time. The aerodynamic model is then incorporated into aeroelastic equations of motion. Eigenanalyses of the coupled equations produce stability results and modal characteristics which are valid for critical and non-critical velocities. Insight into the modeling and physics associated with aeroelastic system behavior is gained by examining both the eigenvalues and the eigenvectors. Potential pitfalls in discrete time model construction and analysis are examined.

Heeg, Jennifer; Dowell, Earl H.

2004-01-01

199

NASA Astrophysics Data System (ADS)

Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

Mehta, R. D.

200

NASA Technical Reports Server (NTRS)

The SOUSSA (steady, oscillatory, and unsteady subsonic and supersonic aerodynamics) program is the computational implementation of a general potential flow analysis (by the Green's function method) that can generate pressure distributions on complete aircraft having arbitrary shapes, motions and deformations. Some applications of the initial release version of this program to several wings in steady and oscillatory motion, including flutter are presented. The results are validated by comparisons with other calculations and experiments. Experiences in using the program as well as some recent improvements are described.

Yates, E. C., Jr.; Cunningham, H. J.; Desmarais, R. N.; Silva, W. A.; Drobenko, B.

1982-01-01

201

NASA Technical Reports Server (NTRS)

Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

1992-01-01

202

Design and Predictions for a High-Altitude (Low-Reynolds-Number) Aerodynamic Flight Experiment

NASA Technical Reports Server (NTRS)

A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.

Greer, Donald; Hamory, Phil; Krake, Keith; Drela, Mark

1999-01-01

203

Design and Predictions for High-Altitude (Low Reynolds Number) Aerodynamic Flight Experiment

NASA Technical Reports Server (NTRS)

A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters or an airfoil at high altitudes (70,000 - 100,000 ft), low Reynolds numbers (2 x 10(exp 5) - 7 x 10(exp 5)), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pilot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary-layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented as well as several predictions of the airfoil performance.

Greer, Donald; Harmory, Phil; Krake, Keith; Drela, Mark

2000-01-01

204

New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity

NASA Technical Reports Server (NTRS)

This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.

Pak, Chan-gi; Jutte, Christine V.

2009-01-01

205

Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

NASA Technical Reports Server (NTRS)

Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

2014-01-01

206

Entry aerodynamics and heating

NASA Technical Reports Server (NTRS)

An overview of the problems of entry aerodynamics and heating is given with emphasis on survival of the probe, predictability of performance, and reliability of performance. Technological challenges to performance prediction are considered and include: turbulent heat transfer, radiation blockage, chemical state of the shock layer, afterbody heat transfer, asymmetric ablation, and real-gas aerodynamics. It is indicated that various obstacles must be overcome in order to achieve technology readiness. These obstacles are considered to be: extrapolations from ground tests to flight; lack of flight experience; lack of parametric data; and uncertain knowledge of atmospherics.

Olstad, W.

1974-01-01

207

Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

Becker, B.G.; Lane, D.A.; Max, N.L.

1995-03-01

208

Development of a Linearized Unsteady Euler Analysis with Application to Wake/Blade-Row Interactions

NASA Technical Reports Server (NTRS)

A three-dimensional, linearized, Euler analysis is being developed to provide a comprehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operating within a cylindrical annular duct are presented in this report. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to far-field eigen analyses, is also described. The linearized aerodynamic and numerical models have been implemented into the three-dimensional unsteady flow code, LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or vortical excitations. The intent is to validate the LINFLUX analysis via numerical results for simple benchmark unsteady flows and to demonstrate this analysis via application to a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX is becoming a reliable and useful unsteady aerodynamic prediction capability that can be applied, in the future, to assess the three-dimensional flow physics important to blade-row, aeroacoustic and aeroelastic responses.

Verdon, Joseph M.; Montgomery, Matthew D.; Chuang, H. Andrew

1999-01-01

209

A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows

NASA Technical Reports Server (NTRS)

A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.

Montgomery, Matthew D.; Verdon, Joseph M.

1996-01-01

210

Computational Sports Aerodynamics of a Moving Sphere: Simulating a Ping Pong Ball in Free Flight

Computational Sports Aerodynamics of a Moving Sphere: Simulating a Ping Pong Ball in Free Flight such as tennis, golf and ping pong balls tends to be very unsteady and viscous, with occasionally transitional, baseball, soccer ball, ping pong ball, golf ball and cricket ball is concerned with aerodynamics as much

Jameson, Antony

211

Progressive Aerodynamic Model Identification From Dynamic Water Tunnel Test of the F-16XL Aircraft

NASA Technical Reports Server (NTRS)

Development of a general aerodynamic model that is adequate for predicting the forces and moments in the nonlinear and unsteady portions of the flight envelope has not been accomplished to a satisfactory degree. Predicting aerodynamic response during arbitrary motion of an aircraft over the complete flight envelope requires further development of the mathematical model and the associated methods for ground-based testing in order to allow identification of the model. In this study, a general nonlinear unsteady aerodynamic model is presented, followed by a summary of a linear modeling methodology that includes test and identification methods, and then a progressive series of steps suggesting a roadmap to develop a general nonlinear methodology that defines modeling, testing, and identification methods. Initial steps of the general methodology were applied to static and oscillatory test data to identify rolling-moment coefficient. Static measurements uncovered complicated dependencies of the aerodynamic coefficient on angle of attack and sideslip in the stall region making it difficult to find a simple analytical expression for the measurement data. In order to assess the effect of sideslip on the damping and unsteady terms, oscillatory tests in roll were conducted at different values of an initial offset in sideslip. Candidate runs for analyses were selected where higher order harmonics were required for the model and where in-phase and out-of-phase components varied with frequency. From these results it was found that only data in the angle-of-attack range of 35 degrees to 37.5 degrees met these requirements. From the limited results it was observed that the identified models fit the data well and both the damping-in-roll and the unsteady term gain are decreasing with increasing sideslip and motion amplitude. Limited similarity between parameter values in the nonlinear model and the linear model suggest that identifiability of parameters in both terms may be a problem. However, the proposed methodology can still be used with careful experiment design and carefully selected values of angle of attack, sideslip, amplitude, and frequency of the oscillatory data.

Murphy, Patrick C.; Klein, Vladislav; Szyba, Nathan M.

2004-01-01

212

Aerodynamic and flowfield hysteresis of slender wing aircraft undergoing large-amplitude motions

NASA Technical Reports Server (NTRS)

The implication of maneuvers through large angles of incidence is discussed by examining the unsteady aerodynamic loads, surface pressures, vortical position, and breakdown on slender, flat plate delta wings. Two examples of large amplitude unsteady motions are presented. First, the unsteady characteristics of a 70 degree swept delta wing undergoing pitch oscillation from 0 to 60 degrees is examined. Data is presented that shows the relationship between vortex breakdown and the overshoot and undershoot of the aerodynamic loads and surface pressure distribution. The second example examines the leading edge vortical flow over an 80 degree swept wing undergoing a limit cycle roll oscillation commonly called wing rock.

Nelson, Robert C.; Arena, Andrew S., Jr.; Thompson, Scott A.

1991-01-01

213

Prediction of Hyper-X Stage Separation Aerodynamics Using CFD

NASA Technical Reports Server (NTRS)

The NASA X-43 "Hyper-X" hypersonic research vehicle will be boosted to a Mach 7 flight test condition mounted on the nose of an Orbital Sciences Pegasus launch vehicle. The separation of the research vehicle from the Pegasus presents some unique aerodynamic problems, for which computational fluid dynamics has played a role in the analysis. This paper describes the use of several CFD methods for investigating the aerodynamics of the research and launch vehicles in close proximity. Specifically addressed are unsteady effects, aerodynamic database extrapolation, and differences between wind tunnel and flight environments.

Buning, Pieter G.; Wong, Tin-Chee; Dilley, Arthur D.; Pao, Jenn L.

2000-01-01

214

NASA Technical Reports Server (NTRS)

An aerodynamic computer code, capable of predicting unsteady and C sub m values for an airfoil undergoing dynamic stall, is used to predict the amplitudes and frequencies of a wing undergoing torsional stall flutter. The code, developed at United Technologies Research Corporation (UTRC), is an empirical prediction method designed to yield unsteady values of normal force and moment, given the airfoil's static coefficient characteristics and the unsteady aerodynamic values, alpha, A and B. In this experiment, conducted in the PSU 4' x 5' subsonic wind tunnel, the wing's elastic axis, torsional spring constant and initial angle of attack are varied, and the oscillation amplitudes and frequencies of the wing, while undergoing torsional stall flutter, are recorded. These experimental values show only fair comparisons with the predicted responses. Predictions tend to be good at low velocities and rather poor at higher velocities.

Muffoletto, A. J.

1982-01-01

215

Aerodynamic Flow Control of a Maneuvering Airfoil

NASA Astrophysics Data System (ADS)

The unsteady aerodynamic forces and moments on a maneuvering, free-moving airfoil are varied in wind tunnel experiments by controlling vorticity generation/accumulation near the surface using hybrid synthetic jet actuators. The dynamic characteristics of the airfoil that is mounted on a 2-DOF traverse are controlled using position and attitude feedback loops that are actuated by servo motors. Bi-directional changes in the pitching moment are induced using controllable trapped vorticity concentrations on the suction and pressure surfaces near the trailing edge. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and velocity measurements that are taken phase-locked to the commanded actuation waveform. The time scales associated with the actuation process is determined from PIV measurements of vorticity flux downstream of the trailing edge. Circulation time history shows that the entire flow over the airfoil readjusts within about 1.5 TCONV, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales commensurate with the flow's convective time scale, and that the maneuver response is only limited by the inertia of the platform. Supported by AFSOR.

Brzozowski, Daniel P.; Culp, John; Glezer, Ari

2010-11-01

216

Unsteady airloads on rotary wings in subsonic, compressible flow

REFFRENCES 1Jones, W. P. , McCrosky, W. J. , and Costes, J. J. , "Unsteady Aerodynamics of Helicopter Rotor Blades, " NATO AGARD Report No. 595, April 1972. Loewy, R. G. , "A Two-Dimensional Approximation to the Unsteady Aerodynamics of Rotary Wings...Q -e 1 + irE dA A13e dB A13f 4v@ P A13g IV. C'' ? dS = ? dS Z A14a A14b V. S' ? dS= 0 AI5 This integral represents a source distribution over S. For problems involving a wing with camber but zero thickness, this in- tegral may be ignored...

Schatzle, Paul Russell

1976-01-01

217

A New Procedure for Simulating Unsteady Flows Through Turbomachinery Blade Passages

NASA Technical Reports Server (NTRS)

The development of two new unsteady wake-blade row aerodynamic interaction models and of a rotor-stator unsteady aerodynamic interaction model are outlined. The solutions of Adamczyk's average-passage flow model were used. The responses to the potential disturbances through a blade row were calculated using the MSUTC code. This code can run with and without the use of wall functions. The solver is an implicit finite volume method with flux Jacobians which are evaluated by the flux-vector splitting and the residual fluxes by the Roe's flux-difference splitting.

Chen, Jen Ping; Celestina, M. L.; Adamczyk, John J.

1996-01-01

218

Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil

NASA Technical Reports Server (NTRS)

The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.

Ghia, K. N.; Osswald, G. A.; Ghia, U.

1986-01-01

219

Turbine disk cavity aerodynamics and heat transfer

Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant

B. V. Johnson; W. A. Daniels

1992-01-01

220

Introduction. Computational aerodynamics.

The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used. PMID:17519203

Tucker, Paul G

2007-10-15

221

Unsteady Aspects of an Oblique Shock Reflection over a Heated Wall

NASA Astrophysics Data System (ADS)

In supersonic flows, when an oblique shock wave impinges a boundary layer and makes it separate, strong aerodynamical loads at low frequency are created. This study aims at studying density effects on these structures by means of wall heating. Experiments are conducted at Mach 2.3. The temperature of the floor of the test section can be heated up to twice the recovery value. The interaction length is investigated through mean schlieren visualizations. It turns out that the interaction length increases of about 30% between the adiabatic case and the heated one, whatever the adverse pressure gradient involved. Hotwire measurements are performed in the external flow in order to characterize the unsteadiness of the reflected shock. Results show that lower frequencies are involved in the heated case, in accordance with the Strouhal number of the interaction based on the interaction length L and the external velocity Ue: St=f*LUe ˜0.03.

Jaunet, Vincent; Dupont, Pierre; Dussauge, Jean-Paul

2011-11-01

222

Simulations of the Unsteady Flow through the Fastrac Supersonic Turbine

NASA Technical Reports Server (NTRS)

Analysis of the unsteady aerodynamic environment in the Fastrac supersonic turbine is presented. Modal analysis of the turbine blades indicated possible resonance in crucial operating ranges of the turbopump. Unsteady computational fluid dynamics (CFD) analysis was conducted to support the aerodynamic and structural dynamic assessments of the turbine. Before beginning the analysis, two major problems with current unsteady analytical capabilities had to be addressed: modeling a straight centerline nozzle with the turbine blades and exit guide vanes (EGVs), and reducing run times significantly while maintaining physical accuracy. Modifications were made to the CFD code used in this study to allow the coupled nozzle/blade/EGV analysis and to incorporate Message Passing Interface (MPI) software. Because unsteadiness is a key issue for the Fastrac turbine [and future rocket engine turbines such as for the Reusable Launch Vehicle (RI.V)], calculations were performed for two nozzle-to-blade axial gaps. Calculations were also performed for the nozzle alone, and the results were imposed as an inlet boundary condition for a blade/EGV calculation for the large gap case. These results are compared to the nozzle/blade/EGV results.

Griffin, Lisa W.; Dorney, Daniel J.

1999-01-01

223

Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.

MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s?¹, operate in a Reynolds number regime of 10? or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs. PMID:22126793

Nakata, T; Liu, H; Tanaka, Y; Nishihashi, N; Wang, X; Sato, A

2011-12-01

224

NASA Astrophysics Data System (ADS)

To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-? turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.

Zhu, Lifu; Jin, Yingzi; Li, Yi; Jin, Yuzhen; Wang, Yanping; Zhang, Li

2013-08-01

225

Reduction of Unsteady STATOR-ROTOR Interaction Using Trailing Edge Blowing

NASA Astrophysics Data System (ADS)

An aeroacoustic investigation was performed to assess the effects of adding mass flow at the trailing edges of stators upstream of an aircraft engine simulator. By using trailing edge blowing to minimize the shed wakes of the stators, the flow into the rotor was made more uniform, hence reducing the unsteady stator-rotor interaction. In these experiments, a reduced number of stators (four) was used in a 1/14 scale model inlet which was coupled to a 4·1in (10·4 cm) turbofan engine simulator. Steady state measurements of the aerodynamic flow field and acoustic far field were made in order to evaluate the aeroacoustic performance at three simulator speeds: 30k, 50k, and 70kr.p.m. The lowest test speed (30k r.p.m.) showed a noise reduction as large as 8·9dB in the blade passing tone. At 50k and 70kr.p.m., the reduction in blade passing tone was 5·5 and 2·6dB respectively. In addition, trailing edge blowing reduced the overall sound pressure level in every case. Aerodynamic measurements showed that fan face distortion was significantly reduced due to trailing edge blowing. The addition of trailing edge blowing from the four upstream stators did not change the operating point of the fan, and the mass flow added by the blowing was less than 1% of the fan mass flow rate. The results of these experiments clearly demonstrate that blowing from the trailing edges of the stators is effective in reducing unsteady stator-rotor interaction and the subsequent forward radiated noise.

LEITCH, THOMAS A.; SAUNDERS, C. A.; NG, W. F.

2000-08-01

226

A Computational Model for Rotor-Fuselage Interactional Aerodynamics

NASA Technical Reports Server (NTRS)

A novel unsteady rotor-fuselage interactional aerodynamics model has been developed. This model loosely couples a Generalized Dynamic Wake Theory (GDWT) to a thin-layer Navier-Stokes solution procedure. This coupling is achieved using an unsteady pressure jump boundary condition in the Navier-Stokes model. The new unsteady pressure jump boundary condition models each rotor blade as a moving pressure jump which travels around the rotor azimuth and is applied between two adjacent planes in a cylindrical, non-rotating grid. Comparisons are made between measured and predicted time-averaged and time-accurate rotor inflow ratios. Additional comparisons are made between measured and predicted unsteady surface pressures on the top centerline and sides of the fuselage.

Boyd, D. Douglas, Jr.; Barnwell, Richard W.; Gorton, Susan Althoff

2000-01-01

227

NASA Technical Reports Server (NTRS)

The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.

Mccain, W. E.

1984-01-01

228

Aerodynamic Design Using Neural Networks

NASA Technical Reports Server (NTRS)

The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

Rai, Man Mohan; Madavan, Nateri K.

2003-01-01

229

Ornithopters or mechanical birds produce aerodynamic lift and thrust through the flapping motion of their wings. Here, we use an experimental apparatus to investigate the effects of a wing's twisting stiffness on the generated thrust force and the power required at different flapping frequencies. A flapping wing system and an experimental set-up were designed to measure the unsteady aerodynamic and

K. Mazaheri; A. Ebrahimi

2010-01-01

230

Aeroelastic control of stability and forced response of supersonic rotors by aerodynamic detuning

NASA Technical Reports Server (NTRS)

Aerodynamic detuning, defined as designed passage-to-passage differences in the unsteady aerodynamic flow field of a rotor blade row, is a new approach to passive flutter and forced response control. In this paper, a mathematical model for aerodynamic detuning is developed and utilized to demonstrate the aeroelastic stability enhancement due to aerodynamic detuning of supersonic blade rows. In particular, a model is developed to analyze both the torsion mode and the coupled bending-torsion mode unstalled supersonic flutter and torsion mode aerodynamically forced response characteristics of an aerodynamically detuned rotor operating in a supersonic inlet flow field with a subsonic leading edge locus. As small solidity variations do not have a dominant effect on the steady-state performance of a rotor, the aerodynamic detuning mechanism considered is nonuniform circumferential spacing of adjacent blades.

Hoyniak, Daniel; Fleeter, Sanford

1987-01-01

231

Adjoint sensitivity analysis of time averaged quantities for unsteady flows

NASA Astrophysics Data System (ADS)

Sensitivity analysis is an essential gradient for data assimilation, aerodynamic design, uncertainty quantification and optimal flow control. In particular. the adjoint sensitivity analysis method has been shown to solve very high dimensional optimization problems typically found these applications. This talk focuses on recent developments in extending adjoint sensitivity analysis to unsteady flows. The adjoint equation of unsteady flows must be integrated backwards in time. Each backward time step must use the flow solution at the corresponding time. As a result, the entire time history of the flow solution must be either stored or recalculated. The invention of checkpointing schemes provides an economic solution to this challenge. In particular, the dynamic checkpointing scheme makes this solution more practical for computational fluid dynamics problems. In unsteady flows, the quantities of interest are often long time averages. We demonstrate that sensitivity analysis of these long time averaged quantities poses significant new challenge. A novel windowing scheme is developed to compute correct sensitivity for periodic unsteady flows, such as in laminar vortex shedding. Initial investigation of sensitivity analysis of chaotic unsteady flows, i.e., transitional and turbulent flows, is also discussed.

Wang, Qiqi

2011-11-01

232

Measurements of Unsteady Wake Interference Between Tandem Cylinders

NASA Technical Reports Server (NTRS)

A multi-phase, experimental study in the Basic Aerodynamics Research Tunnel at the NASA Langley Research Center has provided new insight into the unsteady flow interaction around cylinders in tandem arrangement. Phase 1 of the study characterized the mean and unsteady near-field flow around two cylinders of equal diameter using 2-D Particle Image Velocimetry (PIV) and hot-wire anemometry. These measurements were performed at a Reynolds number of 1.66 x 10(exp 5), based on cylinder diameter, and spacing-to-diameter ratios, L/D, of 1.435 and 3.7. The current phase, Phase 2, augments this dataset by characterizing the surface flow on the same configurations using steady and unsteady pressure measurements and surface flow visualization. Transition strips were applied to the front cylinder during both phases to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the front and rear cylinders show the effects of L/D on flow symmetry, pressure recovery, and the location of flow separation and attachment. Mean streamlines and instantaneous vorticity obtained from the PIV data are used to explain the flow structure in the gap and near-wake regions and its relationship to the unsteady surface pressures. The combination of off-body and surface measurements provides a comprehensive dataset to develop and validate computational techniques for predicting the unsteady flow field at higher Reynolds numbers.

Jenkins, Luther N.; Neuhart, Dan H.; McGinley, Cahterine B.; Choudhari, Meelan M.; Khorrami, Mehdi R.

2006-01-01

233

NSDL National Science Digital Library

This web page describes current research about insect flight dynamics. It focuses on the work of biologist R. McNeill Alexander of the University of Leeds, whose research team has built large-scale models of insects to test their flight aerodynamics in wind tunnels. At the bottom of the page is a small (160 x 120) QuickTime video of a Morpho butterfly (Order Lepidoptera, Family Nymphalidae) with detailed views of its wing scales. It is an excerpt from the Alien Empire miniseries of the Public Broadcasting Service's Nature series. The video requires QuickTime and may not be accessible to those with older or slow computers. The link to the "enhanced multimedia video clip" did not work at the time of this review.

0000-00-00

234

Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

NASA Technical Reports Server (NTRS)

In the last two decades, there have been extensive developments in computational aerodynamics, which constitutes a major part of the general area of computational fluid dynamics. Such developments are essential to advance the understanding of the physics of complex flows, to complement expensive wind-tunnel tests, and to reduce the overall design cost of an aircraft, particularly in the area of aeroelasticity. Aeroelasticity plays an important role in the design and development of aircraft, particularly modern aircraft, which tend to be more flexible. Several phenomena that can be dangerous and limit the performance of an aircraft occur because of the interaction of the flow with flexible components. For example, an aircraft with highly swept wings may experience vortex-induced aeroelastic oscillations. Also, undesirable aeroelastic phenomena due to the presence and movement of shock waves occur in the transonic range. Aeroelastically critical phenomena, such as a low transonic flutter speed, have been known to occur through limited wind-tunnel tests and flight tests. Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At Ames a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft and it solves the Euler/Navier-Stokes equations. The purpose of this contract is to continue the algorithm enhancements of ENSAERO and to apply the code to complicated geometries. During the last year, the geometric capability of the code was extended to simulate transonic flows, a wing with oscillating control surface. Single-grid and zonal approaches were tested. For the zonal approach, a new interpolation technique was introduced. The key development of the algorithm was an interface treatment between moving zones for a control surface using the virtual-zone concept. The work performed during the period, 1 Apr. 1992 through 31 Mar. 1993 is summarized. Additional details on the various aspects of the study are given in the Appendices.

Obayashi, Shigeru

1993-01-01

235

The effect of steady aerodynamic loading on the flutter stability of turbomachinery blading

NASA Technical Reports Server (NTRS)

An aeroelastic analysis is presented which accounts for the effect of steady aerodynamic loading on the aeroelastic stability of a cascade of compressor blades. The aeroelastic model is a two degree of freedom model having bending and torsional displacements. A linearized unsteady potential flow theory is used to determine the unsteady aerodynamic response coefficients for the aeroelastic analysis. The steady aerodynamic loading was caused by the addition of airfoil thickness and camber and steady flow incidence. The importance of steady loading on the airfoil unsteady pressure distribution is demonstrated. Additionally, the effect of steady loading on the tuned flutter behavior and flutter boundaries indicates that neglecting either airfoil thickness, camber or incidence could result in nonconservative estimates of flutter behavior.

Smith, Todd E.; Kadambi, Jaikrishnan R.

1990-01-01

236

The effect of steady aerodynamic loading on the flutter stability of turbomachinery blading

An aeroelastic analysis is presented that accounts for the effect of steady aerodynamic loading on the aeroelastic stability of a cascade of compressor blades. The aeroelastic model is a two-degree-of-freedom model having bending and torsional displacements. A linearized unsteady potential flow theory is used to determine the unsteady aerodynamic response coefficients for the aeroelastic analysis. The steady aerodynamic loading was caused by the addition of (1) airfoil thickness and camber and (2) steady flow incidence. The importance of steady loading on the airfoil unsteady pressure distribution is demonstrated. Additionally, the effect of the steady loading on the tuned flutter behavior and flutter boundaries indicates that neglecting either airfoil thickness, camber, or incidence could result in nonconservative estimates of flutter behavior.

Smith, T.E. (Sverdrup Technology, Inc., Brook Park, OH (United States)); Kadambi, J.R. (Case Western Reserve Univ., Cleveland, OH (United States))

1993-01-01

237

Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor

NASA Technical Reports Server (NTRS)

The effect of aerodynamic detuning on the supersonic flow induced forced response behavior of a turbomachine blade row is analyzed using an aeroelastic model. The rotor is modeled as a flat plate airfoil cascade representing an unwrapped rotor annulus; the aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading on the blading, due to the convection of the transverse gust past the airfoil cascade as well as that resulting from the motion of the cascade, is developed in terms of influence coefficients. The model developed here is then used to analyze the effect of aerodynamic detuning on the flow induced forced response behavior of a twelve-bladed rotor with Verdon's Cascade B flow geometry.

Hoyniak, D.; Fleeter, S.

1985-01-01

238

Unsteady Velocity Measurements Taken Behind a Model Helicopter Rotor Hub in Forward Flight

NASA Technical Reports Server (NTRS)

Drag caused by separated flow behind the hub of a helicopter has an adverse effect on aerodynamic performance of the aircraft. To determine the effect of separated flow on a configuration used extensively for helicopter aerodynamic investigations, an experiment was conducted using a laser velocimeter to measure velocities in the wake of a model helicopter hub operating at Mach-scaled conditions in forward flight. Velocity measurements were taken using a laser velocimeter with components in the vertical and downstream directions. Measurements were taken at 13 stations downstream from the rotor hub. At each station, measurements were taken in both a horizontal and vertical row of locations. These measurements were analyzed for harmonic content based on the rotor period of revolution. After accounting for these periodic velocities, the remaining unsteady velocities were treated as turbulence. Turbulence intensity distributions are presented. Average turbulent intensities ranged from approximately 2 percent of free stream to over 15 percent of free stream at specific locations and azimuths. The maximum average value of turbulence was located near the rear-facing region of the fuselage.

Berry, John D.

1997-01-01

239

Rolling with the flow: bumblebees flying in unsteady wakes.

Our understanding of how variable wind in natural environments affects flying insects is limited because most studies of insect flight are conducted in either smooth flow or still air conditions. Here, we investigate the effects of structured, unsteady flow (the von Karman vortex street behind a cylinder) on the flight performance of bumblebees (Bombus impatiens). Bumblebees are 'all-weather' foragers and thus frequently experience variable aerial conditions, ranging from fully mixed, turbulent flow to unsteady, structured vortices near objects such as branches and stems. We examined how bumblebee flight performance differs in unsteady versus smooth flow, as well as how the orientation of unsteady flow structures affects their flight performance, by filming bumblebees flying in a wind tunnel under various flow conditions. The three-dimensional flight trajectories and orientations of bumblebees were quantified in each of three flow conditions: (1) smooth flow, (2) the unsteady wake of a vertical cylinder (inducing strong lateral disturbances) and (3) the unsteady wake of a horizontal cylinder (inducing strong vertical disturbances). In both unsteady conditions, bumblebees attenuated the disturbances induced by the wind quite effectively, but still experienced significant translational and rotational fluctuations as compared with flight in smooth flow. Bees appeared to be most sensitive to disturbance along the lateral axis, displaying large lateral accelerations, translations and rolling motions in response to both unsteady flow conditions, regardless of orientation. Bees also displayed the greatest agility around the roll axis, initiating voluntary casting maneuvers and correcting for lateral disturbances mainly through roll in all flow conditions. Both unsteady flow conditions reduced the upstream flight speed of bees, suggesting an increased cost of flight in unsteady flow, with potential implications for foraging patterns and colony energetics in natural, variable wind environments. PMID:24031057

Ravi, Sridhar; Crall, James D; Fisher, Alex; Combes, Stacey A

2013-11-15

240

Transonic Unsteady Aerodynamics and Aeroelasticity 1987, part 2

NASA Technical Reports Server (NTRS)

This two part document contains copies of the text and figures for the papers presented at the symposium held at NASA Langley on 20 to 22 May, 1987. The papers are grouped in five subject areas. The areas covered by this part includes the following: Methods for vortex and viscous flows; Aeroelastic applications, and Experimental results and cascade flows.

Bland, Samuel R. (compiler)

1989-01-01

241

Unsteady aerodynamic characterization of a military aircraft in vertical gusts

NASA Technical Reports Server (NTRS)

The effects of 2.5-m/sec vertical gusts on the flight characteristics of a 1:8.6 scale model of a Mirage 2000 aircraft in free flight at 35 m/sec over a distance of 30 m are investigated. The wind-tunnel setup and instrumentation are described; the impulse-response and local-coefficient-identification analysis methods applied are discussed in detail; and the modification and calibration of the gust-detection probes are reviewed. The results are presented in graphs, and good general agreement is obtained between model calculations using the two analysis methods and the experimental measurements.

Lebozec, A.; Cocquerez, J. L.

1985-01-01

242

Aeroacoustics. [analysis of properties of sound generated by aerodynamic forces

NASA Technical Reports Server (NTRS)

An analysis was conducted to determine the properties of sound generated by aerodynamic forces or motions originating in a flow, such as the unsteady aerodynamic forces on propellers or by turbulent flows around an aircraft. The acoustics of moving media are reviewed and mathematical models are developed. Lighthill's acoustic analogy and the application to turbulent flows are analyzed. The effects of solid boundaries are calculated. Theories based on the solution of linearized vorticity and acoustic field equations are explained. The effects of nonuniform mean flow on the generation of sound are reported.

Goldstein, M., E.

1974-01-01

243

NASA Technical Reports Server (NTRS)

A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

Jones, R. T. (compiler)

1979-01-01

244

NASA Technical Reports Server (NTRS)

The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

1992-01-01

245

NASA Astrophysics Data System (ADS)

An experimental study of an oscillating normal shock wave subject to unsteady periodic forcing in a parallel-walled duct has been conducted. Measurements of the pressure rise across the shock have been taken and the dynamics of unsteady shock motion have been analysed from high-speed schlieren video (available with the online version of the paper). A simple analytical and computational study has also been completed. It was found that the shock motion caused by variations in back pressure can be predicted with a simple theoretical model. A non-dimensional relationship between the amplitude and frequency of shock motion in a diverging duct is outlined, based on the concept of a critical frequency relating the relative importance of geometry and disturbance frequency for shock dynamics. The effects of viscosity on the dynamics of unsteady shock motion were found to be small in the present study, but it is anticipated that the model will be less applicable in geometries where boundary layer separation is more severe. A movie is available with the online version of the paper.

Bruce, P. J. K.; Babinsky, H.

246

NASA Technical Reports Server (NTRS)

Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

1990-01-01

247

The aerodynamic characteristics of cup-like body in supersonic flow

NASA Astrophysics Data System (ADS)

We have conducted an experiment of a rigid cup-like body in the supersonic wind tunnel of the Institute of Space and Astronautical Science (ISAS) to obtain its fundamental aerodynamic characteristics in supersonic mach number regions. This rigid cup-like body has a shape of hemisphere, which has an outer diameter of 86 mm, and it has been placed by a sting with its mouth toward the supersonic free stream. In order to obtain the internal and external pressure distribution of the cup-like body, pressure sensors have been distributed in tangential and radial directions on the internal and external surfaces of the cup. The pressure sensors used in this experiment have the shape of a disc, whose diameter and thickness were approximately 6 mm and 0.6 mm, respectively. These sensors have been flush mounted on the each surface of the cup. As a result, we have observed not only the steady shock-wave pattern but also the unsteady shock-wave pattern at some test conditions. This unsteady shock pattern had an unsymmetrical shape and showed oscillation with time. We have obtained the frequency of the oscillating shock wave from the pressure data, which also had showed tremendous oscillation. In terms of pressure distribution, we have studied the correlation between the pressure fluctuations at every two points. Based on these discussions, we have made a presumption that the tangential flow existed inside of the cup and that this inertial flow had something to do with the unsteady shock wave, and we have verified this presumption experimentally.

Hiraki, Koju; Hinada, Motoki; Nakajima, Takashi; Inatani, Yoshifumi

248

Calculation and Correlation of the Unsteady Flowfield in a High Pressure Turbine

NASA Technical Reports Server (NTRS)

Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.

Bakhle, Milind A.; Liu, Jong S.; Panovsky, Josef; Keith, Theo G., Jr.; Mehmed, Oral

2002-01-01

249

Unsteady Flowfield in a High-Pressure Turbine Modeled by TURBO

NASA Technical Reports Server (NTRS)

Forced response, or resonant vibrations, in turbomachinery components can cause blades to crack or fail because of the large vibratory blade stresses and subsequent high-cycle fatigue. Forced-response vibrations occur when turbomachinery blades are subjected to periodic excitation at a frequency close to their natural frequency. Rotor blades in a turbine are constantly subjected to periodic excitations when they pass through the spatially nonuniform flowfield created by upstream vanes. Accurate numerical prediction of the unsteady aerodynamics phenomena that cause forced-response vibrations can lead to an improved understanding of the problem and offer potential approaches to reduce or eliminate specific forced-response problems. The objective of the current work was to validate an unsteady aerodynamics code (named TURBO) for the modeling of the unsteady blade row interactions that can cause forced response vibrations. The three-dimensional, unsteady, multi-blade-row, Reynolds-averaged Navier-Stokes turbomachinery code named TURBO was used to model a high-pressure turbine stage for which benchmark data were recently acquired under a NASA contract by researchers at the Ohio State University. The test article was an initial design for a high-pressure turbine stage that experienced forced-response vibrations which were eliminated by increasing the axial gap. The data, acquired in a short duration or shock tunnel test facility, included unsteady blade surface pressures and vibratory strains.

Bakhle, Milind A.; Mehmed, Oral

2003-01-01

250

Unsteady Turbopump Flow Simulations

NASA Technical Reports Server (NTRS)

The objective of the current effort is two-fold: 1) to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine; and 2) to provide high-fidelity unsteady turbopump flow analysis capability to support the design of pump sub-systems for advanced space transportation vehicle. Since the space launch systems in the near future are likely to involve liquid propulsion system, increasing the efficiency and reliability of the turbopump components is an important task. To date, computational tools for design/analysis of turbopump flow are based on relatively lower fidelity methods. Unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available, at least, for real-world engineering applications. Present effort is an attempt to provide this capability so that developers of the vehicle will be able to extract such information as transient flow phenomena for start up, impact of non-uniform inflow, system vibration and impact on the structure. Those quantities are not readily available from simplified design tools. In this presentation, the progress being made toward complete turbo-pump simulation capability for a liquid rocket engine is reported. Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for the performance evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. Relative motion of the grid system for rotor-stator interaction was obtained by employing overset grid techniques. Time-accuracy of the scheme has been evaluated by using simple test cases. Unsteady computations for SSME turbopump, which contains 106 zones with 34.5 Million grid points, are currently underway on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability and the performance of the parallel versions of the code will be presented.

Centin, Kiris C.; Kwak, Dochan

2001-01-01

251

Unsteady Simulation of the Viscous Flow About a V-22 Rotor and Wing in Hover

NASA Technical Reports Server (NTRS)

Results of an unsteady thin-layer Navier-Stokes simulation of a 0.658-scale V-22 rotor and wing configuration in hover are presented. All geometric components of the flapped-wing and rotor test rig, including rotor blades, are accurately modeled. Rotor motion and rotor/airframe interference effects are simulated directly using moving body overset grid methods. Tiltrotor hover aerodynamics are visualized via unsteady particle trace images. Wing download predictive ability is demonstrated. Simulation results are compared with experimental data.

Meakin, Robert L.

1996-01-01

252

The Aerodynamics of Deforming Wings at Low Reynolds Number

NASA Astrophysics Data System (ADS)

Flapping flight has gained much attention in the past decade driven by the desire to understand capabilities observed in nature and the desire to develop agile small-scale aerial vehicles. Advancing our current understanding of unsteady aerodynamics is an essential component in the development of micro-air vehicles (MAV) intended to utilize flight mechanics akin to insect flight. Thus the efforts undertaken that of bio-mimicry. The complexities of insect wing motion are dissected and simplified to more tractable problems to elucidate the fundamentals of unsteady aerodynamics in biologically inspired kinematics. The MAV's fruition would satisfy long established needs in both the military and civilian sectors. Although recent studies have provided great insight into the lift generating mechanisms of flapping wings the deflection response of such wings remains poorly understood. This dissertation numerically and experimentally investigates the aerodynamic performance of passively and actively deflected wings in hover and rotary kinematics. Flexibility is distilled to discrete lines of flexion which acknowledging major flexion lines in insect wings to be the primary avenue for deformation. Of primary concern is the development of the leading-edge vortex (LEV), a high circulation region of low pressure above the wing to which much of the wing's lift generation is attributed. Two-dimensional simulations of wings with chord-wise flexibility in a freestream reveal a lift generating mechanism unavailable to rigid wings with origins in vortical symmetry breaking. The inclusion of flexibility in translating wings accelerated from rest revealed the formation time of the initial LEV was very weakly dependent on the flexible stiffness of the wing, maintaining a universal time scale of four to five chords of travel before shedding. The frequency of oscillatory shedding of the leading and trailing-edge vortices that develops after the initial vortex shedding was shown to be responsive to flexibility satisfying an inverse proportionality to stiffness. In hover, an effective pitch angle can be defined in a flexible wing that accounts for deflection which shifts results toward trend lines of rigid wings. Three-dimensional simulations examining the effects of two distinct deformation modes undergoing prescribed deformation associated with root and tip deflection demonstrated a greater aerodynamic response to tip deflection in hover. Efficiency gains in flexion wings over rigid wing counterpart were shown to be dependent on Reynolds number with efficiency in both modes increasing with increased Reynolds number. Additionally, while the leading-edge vortex axis proved insensitive to deformation, the shape and orientation of the LEV core is modified. Experiments on three-dimensional dynamically-scaled fruit fly wings with passive deformation operating in the bursting limit Reynolds number regime revealed enhanced leading-edge vortex bursting with tip deflection promoting greater LEV core flow deceleration in stroke. Experimental studies on rotary wings highlights a universal formation time of the leading-edge vortex independent of Reynolds number, acceleration profile and aspect ratio. Efforts to replicate LEV bursting phenomena of higher aspect ratio wings in a unity aspect ratio wing such that LEV growth is no limited by span but by the LEV traversing the chord revealed a flow regime of oscillatory lift generation reminiscent of behavior exhibited in translating wings that also maintains magnitude peak to peak.

Medina, Albert

253

Reducing aerodynamic vibration with piezoelectric actuators: a genetic algorithm optimization

NASA Astrophysics Data System (ADS)

Modern high performance aircraft fly at high speeds and high angles of attack. This can result in "buffet" aerodynamics, an unsteady turbulent flow that causes vibrations of the wings, tails, and body of the aircraft. This can result in decreased performance and ride quality, and fatigue failures. We are experimenting with controlling these vibrations by using piezoceramic actuators attached to the inner and outer skin of the aircraft. In this project, a tail or wing is investigated. A "generic" tail finite element model is studied in which individual actuators are assumed to exactly cover individual finite elements. Various optimizations of the orientations and power consumed by these actuators are then performed. Real coded genetic algorithms are used to perform the optimizations and a design space approximation technique is used to minimize costly finite element runs. An important result is the identification of a power consumption threshold for the entire system. Below the threshold, vibration control performance of optimized systems decreases with decreasing values of power supplied to the entire system.

Hu, Zhenning; Jakiela, Mark; Pitt, Dale M.; Burnham, Jay K.

2004-07-01

254

Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor

NASA Technical Reports Server (NTRS)

High performance aircraft-engine fan and compressor blades are vulnerable to aerodynamically forced vibrations generated by inlet flow distortions due to wakes from upstream blade and vane rows, atmospheric gusts, and maldistributions in inlet ducts. In this report, an analysis is developed to predict the flow-induced forced response of an aerodynamically detuned rotor operating in a supersonic flow with a subsonic axial component. The aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading acting on the blading, as a result of the convection of the transverse gust past the airfoil cascade and the resulting motion of the cascade, is developed in terms of influence coefficients. This analysis is used to investigate the effect of aerodynamic detuning on the forced response of a 12-blade rotor, with Verdon's Cascade B flow geometry as a uniformly spaced baseline configuration. The results of this study indicate that, for forward traveling wave gust excitations, aerodynamic detuning is very beneficial, resulting in significantly decreased maximum-amplitude blade responses for many interblade phase angles.

Hoyniak, D.; Fleeter, S.

1985-01-01

255

NASA Technical Reports Server (NTRS)

The present study, which is the first of a series of investigations of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary layer flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed on a large-scale, high-subsonic unsteady turbine cascade research facility with an integrated wake generator and test section unit. Blade Pak B geometry was used in the cascade. The wakes were generated by continuously moving cylindrical bars device. Boundary layer investigations were performed using hot wire anemometry at Reynolds number of 110,000, based on the blade suction surface length and the exit velocity, for one steady and two unsteady inlet flow conditions, with the corresponding passing frequencies, wake velocities, and turbulence intensities. The reduced frequencies cover the entire operation range of LP-turbines. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re = 50,000, 75,000, 100,000, 110,000, and 125,000. For each Reynolds number, surface pressure measurements are carried out at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extension of the separation zone as well as its behavior under unsteady wake flow. The results, presented in ensemble-averaged and contour plot forms, help to understand the physics of the separation phenomenon under periodic unsteady wake flow.

Ozturk, Burak; Schobeiri, Meinhard T.

2009-01-01

256

Membrane wing aerodynamics for micro air vehicles

NASA Astrophysics Data System (ADS)

The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

2003-10-01

257

Asymmetric Uncertainty Expression for High Gradient Aerodynamics

NASA Technical Reports Server (NTRS)

When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

Pinier, Jeremy T

2012-01-01

258

Future Challenges and Opportunities in Aerodynamics

NASA Technical Reports Server (NTRS)

Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.

Kumar, Ajay; Hefner, Jerry N.

2000-01-01

259

Aerodynamic damping of blade flap motions at high angles of attack

The YawDyn computer code is used to calculate the aerodynamic damping for a typical teetering rotor configuration. The code has been modified to calculate the net work done by aerodynamic forces in one complete rotor revolution. All cases were run for a teetering rotor similar to the ESI-80 with a specified teeter angle motion in order to isolate the aerodynamic effects from the inertial and gravitational loads. Effects of nonlinear static stall, dynamic stall, dynamic inflow, and delayed static stall due to rotation stability of flap motions in high winds. Contributions of the various steady and unsteady aerodynamic effects are presented for two airfoils: the LS(1) and the NREL Thin Airfoil Family (S805A, S806, S807). Teeter stability is compared for a blade with 10{degree} of linear twist and a blade with optimum aerodynamic twist.

Hansen, A.C. [Univ. of Utah, Salt Lake City, UT (United States). Mechanical Engineering Dept.

1995-09-01

260

Aerodynamic damping of blade flap motions at high angles of attack

The YawDyn computer code is used to calculate the aerodynamic damping for a typical teetering rotor configuration. The code has been modified to calculate the net work done by aerodynamic forces in one complete rotor revolution. All cases were run for a teetering rotor similar to the ESI-80 with a specified teeter angle motion in order to isolate the aerodynamic effects from the inertial and gravitational loads. Effects of nonlinear static stall, dynamic stall, dynamic inflow, and delayed static stall due to rotation are analyzed separately and in combinations to explain the stability of flap motions in high winds. Contributions of the various steady and unsteady aerodynamic effects are presented for two airfoils: the LS(1) and the NREL Thin Airfoil Family (S805A, S806, S807). Teeter stability is compared for a blade with 10 deg of linear twist and a blade with optimum aerodynamic twist.

Hansen, A.C. [Univ. of Utah, Salt Lake City, UT (United States). Mechanical Engineering Dept.

1995-08-01

261

Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

NASA Technical Reports Server (NTRS)

A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

Mahajan, Aparajit J.; Kaza, Krishna Rao V.

1992-01-01

262

Unsteady Newton-Busemann flow theory. III - Frequency dependence and indicial response

NASA Technical Reports Server (NTRS)

Hui and Tobak applied the complete unsteady Newton-Busemann flow theory to the study of dynamic stability of oscillating aerofoils and bodies in revolution. The present article extends the results to general frequencies that may be applicable to flutter analysis. The results are likewise applied to the indicial response fluctuations in unsteady flow at very high Mach numbers. The study shows that for a group of body shapes in Newtonian flow (including the cone and wedge), the aerodynamic response to a step change in angle of attack or pitching velocity contains an initial-instant impulse followed by a rapid adjustment to the new steady-flow conditions. The impulse component is in effect an apparent mass term analogous to that which occurs initially in the aerodynamic indicial response at the zero Mach number limit.

Hui, W. H.

1982-01-01

263

A verification of unsteady Navier-Stokes solutions around oscillating airfoils

NASA Technical Reports Server (NTRS)

A finite difference solution code for the two dimensional Navier-Stokes equations was combined with a moving-grid system. The thin layer Navier-Stokes equations with a turbulence model are solved in a time-accurate manner in order to study the unsteady aerodynamics around airfoils undergoing small amplitude pitching or heaving motions in the transonic regime. The accuracy of the solutions obtained by the use of the present moving-grid technqiue is investigated. The effects of the minimum grid size and the integrating time-step size on the solutions are also checked. Some of the solutions obtained by the present method are compared with experimental results. It is demonstrated that the unsteady aerodynamics around oscillating airfoils can be predicted fairly well by the present code for cases in which the dynamic angle of attack or displacement is small.

Nakamichi, J.

1986-01-01

264

Status and prospects of computational fluid dynamics for unsteady transonic flow

NASA Technical Reports Server (NTRS)

Applications of computational aerodynamics to aeronautical research, design, and analysis have increased rapidly over the past decade, and these applications offer significant benefits to aeroelasticians. The past developments are traced by means of a number of specific examples, and the trends are projected over the next several years. The crucial factors that limit the present capabilities for unsteady analyses are identified; they include computer speed and memory, algorithm and solution methods, grid generation, turbulence modeling, vortex modeling, data processing, and coupling of the aerodynamic and structural dynamic analyses. The prospects for overcoming these limitations are presented, and many improvements appear to be readily attainable. If so, a complete and reliable numerical simulation of the unsteady, transonic viscous flow around a realistic fighter aircraft configuration could become possible within the next decade. The possibilities of using artificial intelligence concepts to hasten the achievement of this goal are also discussed.

Mccroskey, W. J.; Kutler, P.; Bridgman, J. C.

1985-01-01

265

Uncertainty in Computational Aerodynamics

NASA Technical Reports Server (NTRS)

An approach is presented to treat computational aerodynamics as a process, subject to the fundamental quality assurance principles of process control and process improvement. We consider several aspects affecting uncertainty for the computational aerodynamic process and present a set of stages to determine the level of management required to meet risk assumptions desired by the customer of the predictions.

Luckring, J. M.; Hemsch, M. J.; Morrison, J. H.

2003-01-01

266

Numerical Aerodynamic Simulation

NASA Technical Reports Server (NTRS)

An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.

1989-01-01

267

AIAA 960409 Automatic Aerodynamic

AIAA 96Â0409 Automatic Aerodynamic Optimization on Distributed Memory Architectures Antony JamesonÂ0409 Automatic Aerodynamic Optimization on Distributed Memory Architectures Antony Jameson and Juan J. Alonso. The Euler equations and the resulting adjoint equations necessary to calculate the Frechet derivatives

Jameson, Antony

268

Unsteady Euler analysis of the redistribution of an inlet temperature distortion in a turbine

Temperature migration behavior in rotor flow fields was analyzed using a three-dimensional unsteady Euler code in the effort to explain why rotor airfoil surfaces and passage endwalls experience higher than expected temperatures in engine environments. The time-averaged unsteady solution shows the hotter gas tending to migrate toward the rotor pressure side and the colder gas toward the suction side. Secondary

R. K. Takahashi; R. H. Ni

1990-01-01

269

A numerical method for confined unsteady flows related to fluid-structure interactions

This thesis elaborates three aspects in the field of flow-induced vibrations associated with annular geometries. A method to find the unsteady fluid forces on a cylinder oscillating in annular turbulent flow is developed by considering the superposition of the turbulent fluctuating quantities on potential flow. The theory is compared with experiments. Then, the unsteady fluid forces acting on the vibrating

Francois Belanger

1991-01-01

270

NASA Technical Reports Server (NTRS)

A novel analytical-numerical method for calculating unsteady small disturbance transonic flow over airfoils has been developed. The method uses an extended integral equation technique, based on both the velocity potential and the acceleration potential, to predict unsteady aerodynamic loading on airfoils oscillating in subcritical transonic free stream conditions. The formulation is an extension of the work of Sivaneri and Harris (1980) for steady, non-lifting flows and utilizes the linear theory of Landahl (1961) for decoupling of steady and unsteady components. The analytical-numerical procedure involves several intnegrating schemes and applies to general frequencies of oscillations. The technique is illustrated by computing the transonic flow about parabolic arc airfoils. Specific unsteady results for reduced frequencies based on semi-chord of 0.01, 0.1, 0.3, 0.4 and 0.6 are given. Comparison of results with those obtained by an ADI finite difference scheme is made.

Lamah, C. A.; Harris, W. L.

1983-01-01

271

Aerodynamics of advanced axial-flow turbomachinery

NASA Technical Reports Server (NTRS)

A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.

Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.

1980-01-01

272

Laser Doppler anemometer diagnostics in unsteady flows

NASA Technical Reports Server (NTRS)

The application of the laser Doppler anemometer (LDA) to unsteady flows is discussed with respect to necessary features of the signal processor, properties of the optical system, and the character of the flow under investigation. The discussion of signal processors includes consideration of frequency trackers, counter-type processors, particle properties, data rates, and statistics. Secondly, diffraction limitations for an optical system are viewed with respect to spatial resolution. Finally, the total velocity field is decomposed into its subfields and the feasibility of, criteria for, and possible types of conditional sampling are defined. Several reported LDA experiments using conditional sampling are presented to demonstrate the different techniques that may be used.

Orloff, K. L.

1979-01-01

273

NASA Technical Reports Server (NTRS)

Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed, built, and tested at NASA Dryden Flight Research Center. The results from the full order model and the approximate reduced order model are analyzed and compared.

Pak, Chan-gi; Li, Wesley W.

2009-01-01

274

Flow Fields Over Unsteady Three Dimensional Dunes

NASA Astrophysics Data System (ADS)

The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows, over a range of both spatial and temporal scales. This is primarily through adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and the increase in flow resistance. A series of experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239?m) mobile bed was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a Large Eddy Simulation (LES) model, which provided a three dimensional time dependent prediction of flow over the four static beds. The numerical predicted flow is analyzed through a series of approaches, and included: i) standard Reynolds decomposition to the flow fields; ii) Eulerian coherent structure detection methods based on the invariants of the velocity gradient tensor; iii) Lagrangian coherent structure identification methods based upon direct Lyapunov exponents (DLE). The results show that superimposed bed forms can cause changes in the nature of the classical separated flow region in particularly the number of locations where vortices are shed and the point of flow reattachment, which may be important for sediment entrainment and sediment transport dynamics during bed form adjustment. Finally, the flow predictions enable a reassessment of the drag caused by the superimposed bed forms generated by unsteady flow.

Hardy, R. J.; Reesink, A.; Parsons, D. R.; Ashworth, P. J.; Best, J.

2013-12-01

275

Unsteady spot heating of a drop in a microgravity environment

NASA Technical Reports Server (NTRS)

The unsteady localized spot heating of a liquid drop under zero-g conditions is examined theoretically. This pertains to space experiments to measure thermal properties of materials and the purpose here is to predict the thermal behavior of such systems. Spot heating can be achieved by a laser beam focused on a small region of the drop surface. The present theoretical model deals with situations of weak Marangoni flows, whereby the thermal transport is conduction dominated. The heat flow in the drop is treated as unsteady while the surrounding gaseous region is considered to be quasisteady. The ensuing thermally driven flow is analyzed in the Stokes regime.

Sadhal, Satwindar Singh; Trinh, Eugene H.; Wagner, Paul

1992-01-01

276

of winged insects, which are nature's best answer to the perfect small-scale flying machine. A significant for the unsteadiness of 3D experimental data (Re = 156, based on fruit flies), but their model is still unable and Aerodynamic Performance of Finite-Aspect- Ratio Flapping Wings in Hovering Motion H. Dong1 , M. Harff2

277

NASA Technical Reports Server (NTRS)

Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

Horstman, Raymond H.

1992-01-01

278

Turbine disk cavity aerodynamics and heat transfer

NASA Astrophysics Data System (ADS)

Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

Johnson, B. V.; Daniels, W. A.

1992-07-01

279

Turbine disk cavity aerodynamics and heat transfer

NASA Technical Reports Server (NTRS)

Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

Johnson, B. V.; Daniels, W. A.

1992-01-01

280

Three-dimensional unsteady separation at low Reynolds numbers

NASA Astrophysics Data System (ADS)

A procedure was generated to analyze the boundary layer on airfoils experiencing unsteady flight conditions and to predict the changes in the performance characteristics during off-design. The method predicts the flow in the boundary-layer region near the separation bubble using the incompressible Navier-Stokes equations with boundary conditions from inviscid and laminar boundary-layer solutions. The rate at which the separation bubble develops and decays is of primary interest in this study. Unsteady surface-pressure-coefficient distributions and velocity profiles are presented. The experimental effort involved the study of three-dimensional unsteady separation under low-Reynolds-number conditions. The test geometry consisted of channel with a suction patch on the opposite wall. Contributions from the numerical effort include a novel, robust adaptive-rigid technique for incompressible flow. Additional contributions from the experiments include a database for comparison with theory computations.

Reed, Helen L.

1990-07-01

281

Spatial Characteristics of the Unsteady Differential Pressures on 16 percent F/A-18 Vertical Tails

NASA Technical Reports Server (NTRS)

Buffeting is an aeroelastic phenomenon which plagues high performance aircraft at high angles of attack. For the F/A-18 at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their turbulent wake. The resulting buffeting of the vertical tails is a concern from fatigue and inspection points of view. Previous flight and wind-tunnel investigations to determine the buffet loads on the tail did not provide a complete description of the spatial characteristics of the unsteady differential pressures. Consequently, the unsteady differential pressures were considered to be fully correlated in the analyses of buffet and buffeting. The use of fully correlated pressures in estimating the generalized aerodynamic forces for the analysis of buffeting yielded responses that exceeded those measured in flight and in the wind tunnel. To learn more about the spatial characteristics of the unsteady differential pressures, an available 16%, sting-mounted, F-18 wind-tunnel model was modified and tested in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center as part of the ACROBAT (Actively Controlled Response Of Buffet-Affected Tails) program. Surface pressures were measured at high angles of attack on flexible and rigid tails. Cross-correlation and cross-spectral analyses of the pressure time histories indicate that the unsteady differential pressures are not fully correlated. In fact, the unsteady differential pressure resemble a wave that travels along the tail. At constant angle of attack, the pressure correlation varies with flight speed.

Moses, Robert W.; Ashley, Holt

1998-01-01

282

The acoustics and unsteady wall pressure of a circulation control airfoil

NASA Astrophysics Data System (ADS)

A Circulation Control (CC) airfoil uses a wall jet exiting onto a rounded trailing edge to generate lift via the Coanda effect. The aerodynamics of the CC airfoil have been studied extensively. The acoustics of the airfoil are, however, much less understood. The primary goal of the present work was to study the radiated sound and unsteady surface pressures of a CC airfoil. The focus of this work can be divided up into three main categories: characterizing the unsteady surface pressures, characterizing the radiated sound, and understanding the acoustics from surface pressures. The present work is the first to present the unsteady surface pressures from the trailing edge cylinder of a circulation control airfoil. The auto-spectral density of the unsteady surface pressures at various locations around the trailing edge are presented over a wide range of the jets momentum coefficient. Coherence of pressure and length scales were computed and presented. Single microphone measurements were made at a range of angles for a fixed observer distance in the far field. Spectra are presented for select angles to show the directivity of the airfoil's radiated sound. Predictions of the acoustics were made from unsteady surface pressures via Howe's curvature noise model and a modified Curle's analogy. A summary of the current understanding of the acoustics from a CC airfoil is given along with suggestions for future work.

Silver, Jonathan C.

283

Numerical modeling of wind turbine aerodynamic noise in the time domain.

Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine. PMID:23363200

Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

2013-02-01

284

The effect of aerodynamic asymmetries on turbomachinery flutter

NASA Astrophysics Data System (ADS)

In this paper, the effect of aerodynamic asymmetries on the flutter characteristics of turbomachinery blades is investigated. Specifically, the present method is used to study the effect of leading edge blending in loaded and unloaded rotors. The unsteady aerodynamic response of the blades to self-excited vibrations is modeled using a harmonic balance method, which allows one to model the entire wheel using complex periodic boundary conditions and a computational grid spanning a single sector (symmetry group). This reduces the computational and memory requirements dramatically compared to similar time-accurate analyses. It is shown that alternate blending degrades the stability of a loaded rotor whereas it improves the stability of an unloaded rotor. On the other hand, when blends are spaced five blades apart their effect is less pronounced.

Ekici, Kivanc; Kielb, Robert E.; Hall, Kenneth C.

2013-01-01

285

The predicted effect of aerodynamic detuning on coupled bending-torsion unstalled supersonic flutter

NASA Technical Reports Server (NTRS)

A mathematical model is developed to predict the enhanced coupled bending-torsion unstalled supersonic flutter stability due to alternate circumferential spacing aerodynamic detuning of a turbomachine rotor. The translational and torsional unsteady aerodynamic coefficients are developed in terms of influence coefficients, with the coupled bending-torsion stability analysis developed by considering the coupled equations of motion together with the unsteady aerodynamic loading. The effect of this aerodynamic detuning on coupled bending-torsion unstalled supersonic flutter as well as the verification of the modeling are then demonstrated by considering an unstable 12 bladed rotor, with Verdon's uniformly spaced Cascade B flow geometry as a baseline. However, with the elastic axis and center of gravity at 60 percent of the chord, this type of aerodynamic detuning has a minimal effect on stability. For both uniform and nonuniform circumferentially space rotors, a single degree of freedom torsion mode analysis was shown to be appropriate for values of the bending-torsion natural frequency ratio lower than 0.6 and higher 1.2. When the elastic axis and center of gravity are not coincident, the effect of detuning on cascade stability was found to be very sensitive to the location of the center of gravity with respect to the elastic axis. In addition, it was determined that when the center of gravity was forward of an elastic axis located at midchord, a single degree of freedom torsion model did not accurately predict cascade stability.

Hoyniak, D.; Fleeter, S.

1986-01-01

286

Powered-Lift Aerodynamics and Acoustics. [conferences

NASA Technical Reports Server (NTRS)

Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

1976-01-01

287

Numerical computation of aerodynamic noise radiation by the large eddy simulation

NASA Astrophysics Data System (ADS)

Aerodynamic sound radiated from the low Mach number turbulent wake of a circular cylinder was computed using the large eddy simulation technique and compared with the measured data obtained in a low noise wind tunnel. In this study, a new upwinding FEM has been proposed and used for the simulation to obtain the unsteady flow field around the circular cylinder. The sound pressure was computed based on the Lighthill-Curle equation using the fluctuating surface pressure obtained from the large eddy simulation. The computed sound pressure spectrum shows reasonable agreement with the measured data. The present approach, thus, seems quite promising for predictions of aerodynamic noise radiated in complicated turbulent flow fields.

Kato, Chisachi; Takano, Yasushi; Iida, Akiyishi; Ikegawa, Masahiro

288

Wind Tunnel Measurements and Calculations of Aerodynamic Interactions Between Tiltrotor Aircraft

NASA Technical Reports Server (NTRS)

Wind tunnel measurements and calculations of the aerodynamic interactions between two tiltrotor aircraft in helicopter mode are presented. The measured results include the roll moment and thrust change on the downwind aircraft, as a function of the upwind aircraft position (longitudinal, lateral, and vertical). Magnitudes and locations of the largest interactions are identified. The calculated interactions generally match the measurements, with discrepancies attributed to the unsteadiness of the wake and aerodynamic forces on the airframe. To interpret the interactions in terms of control and power changes on the aircraft, additional calculations are presented for trimmed aircraft with gimballed rotors.

Johnson, Wayne; Yamauchi, Gloria K.; Derby, Michael R.; Wadcock, Alan J.

2002-01-01

289

Application of CFD techniques toward the validation of nonlinear aerodynamic models

NASA Technical Reports Server (NTRS)

Applications of computational fluid dynamics (CFD) methods to determine the regimes of applicability of nonlinear models describing the unsteady aerodynamic responses to aircraft flight motions are described. The potential advantages of computational methods over experimental methods are discussed and the concepts underlying mathematical modeling are reviewed. The economic and conceptual advantages of the modeling procedure over coupled, simultaneous solutions of the gas dynamic equations and the vehicle's kinematic equations of motion are discussed. The modeling approach, when valid, eliminates the need for costly repetitive computation of flow field solutions. For the test cases considered, the aerodynamic modeling approach is shown to be valid.

Schiff, L. B.; Katz, J.

1985-01-01

290

Mechanisms of flow control with the unsteady bleed technique

NASA Technical Reports Server (NTRS)

The unsteady bleed technique (a.k.a. internal acoustic forcing) has been shown to be an effective method for control of separation on low Reynolds number airfoils, blunt-end cylinders aligned axially with the flow, cylinders aligned perpendicular to the flow, and forebody geometries at high angles of attack. In many of these investigations, the mechanism for the control has been attributed to enhancement of the shear layer (Kelvin-Helmholtz) instability by the unsteady component of the forcing. However, this is not the only possible mechanism, nor may it be the dominant mechanism under some conditions. In this work it is demonstrated that at least two other mechanisms for flow control are present, and depending on the location and the amplitude of the forcing, these may have significant impact on the flow behavior. Experiments were conducted on a right-circular cylinder with a single unsteady bleed slot aligned along the axis of the cylinder. The effects of forcing frequency, forcing amplitude, and slot location on the azimuthal pressure distribution were studied. The results suggest that a strong vortical structure forms near the unsteady bleed slot when the slot location is upstream of the boundary layer separation point. The structure is unsteady, since it is created by the unsteady forcing. The 'vortex' generates a sizeable pressure spike (C(sub p) = -3.0) in the time-averaged pressure field immediately downstream of the slot. In addition to the pressure spike, the boundary layer separation location moves farther downstream when the forcing is activated. Delay of the separation is believed to be a result of enhancing the Kelvin-Helmholtz instability. When forcing is applied in a quiescent wind tunnel, a weak low-pressure region forms near the slot that is purely the result of the second-order streaming effect.

Williams, D. R.; Acharya, M.; Bernhardt, J.

1992-01-01

291

Viscous effect on airfoils for unsteady transonic flows

NASA Technical Reports Server (NTRS)

The viscous effect on aerodynamic performance of an arbitrary airfoil executing low frequency maneuvers during transonic flight was investigated. The small disturbance code, LTRAN2, was modified by using a conventional integral method, BLAYER, for the boundary layer and an empirical relation, viscous wedge, for simulating the suddenly thickened boundary layer behind the shock. Before the shock, only the boundary layer displacement thickness was evaluated. After the shock, the empirical wedge thickness was superimposed on the boundary layer thickness along the surface as well as in the wake region. The pressure coefficients were calculated for both steady and unsteady states. The viscous solution takes fewer iterations to obtain the converged steady state solution. Comparisons made with experimental data and the inviscid solution show that the viscous solution agrees better with the experimental data with about the same (or slightly less) amount of computational time.

Lee, S. C.

1982-01-01

292

Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004

Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive need to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.

Leonard, A; Chatelain, P; Heineck, J; Browand, F; Mehta, R; Ortega, J; Salari, K; Storms, B; Brown, J; DeChant, L; Rubel, M; Ross, J; Hammache, M; Pointer, D; Roy, C; Hassan, B; Arcas, D; Hsu, T; Payne, J; Walker, S; Castellucci, P; McCallen, R

2004-04-13

293

NASA Technical Reports Server (NTRS)

The results of an integrated study of structures, aerodynamics, and controls using the STARS program on two advanced airplane configurations are presented. Results for the X-29A include finite element modeling, free vibration analyses, unsteady aerodynamic calculations, flutter/divergence analyses, and an aeroservoelastic controls analysis. Good correlation is shown between STARS results and various other verified results. The tasks performed on the Oblique Wing Research Aircraft include finite element modeling and free vibration analyses.

Dawson, Kenneth S.; Fortin, Paul E.

1987-01-01

294

NASA Technical Reports Server (NTRS)

This paper describes model structures and parameter estimation algorithms suitable for the identification of unsteady aerodynamic models from input-output data. The model structures presented are state space models and include linear time-invariant (LTI) models and linear parameter-varying (LPV) models. They cover a wide range of local and parameter dependent identification problems arising in unsteady aerodynamics and nonlinear flight dynamics. We present a residue algorithm for estimating model parameters from data. The algorithm can incorporate apriori information and is described in detail. The algorithms are evaluated on the F-16XL wind-tunnel test data from NAS Langley Research Center. Results of numerical evaluation are presented. The paper concludes with a discussion major issues and directions for future work.

Prasanth, Ravi K.; Klein, Vladislav; Murphy, Patrick C.; Mehra, Raman K.

2005-01-01

295

Dynamic stall and aerodynamic damping

A dynamic stall model is used to analyze and reproduce open air blade section measurements as well as wind tunnel measurements. The dynamic stall model takes variations in both angle of attack and flow velocity into account. The paper gives a brief description of the dynamic stall model and presents results from analyses of dynamic stall measurements for a variety of experiments with different airfoils in wind tunnel and on operating rotors. The wind tunnel experiments comprises pitching as well as plunging motion of the airfoils. The dynamic stall model is applied for derivation of aerodynamic damping characteristics for cyclic motion of the airfoils in flapwise and edgewise direction combined with pitching. The investigation reveals that the airfoil dynamic stall characteristics depend on the airfoil shape, and the type of motion (pitch, plunge). The aerodynamic damping characteristics, and thus the sensitivity to stall induced vibrations, depend highly on the relative motion of the airfoil in flapwise and edgewise direction, and on a possibly coupled pitch variation, which is determined by the structural characteristics of the blade.

Rasmussen, F.; Petersen, J.T.; Madsen, H.A.

1999-08-01

296

Nonlinear aerodynamic wing design

NASA Technical Reports Server (NTRS)

The applicability of new nonlinear theoretical techniques is demonstrated for supersonic wing design. The new technology was utilized to define outboard panels for an existing advanced tactical fighter model. Mach 1.6 maneuver point design and multi-operating point compromise surfaces were developed and tested. High aerodynamic efficiency was achieved at the design conditions. A corollary result was that only modest supersonic penalties were incurred to meet multiple aerodynamic requirements. The nonlinear potential analysis of a practical configuration arrangement correlated well with experimental data.

Bonner, Ellwood

1985-01-01

297

Aerodynamics of thrust vectoring

NASA Technical Reports Server (NTRS)

Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

Tseng, J. B.; Lan, C. Edward

1989-01-01

298

The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows

NASA Technical Reports Server (NTRS)

This volume contains the papers presented at the Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, held at the California State University, Long Beach, from 13 to 15 January 1992. The symposium, like its immediate predecessors, considers the calculation of flows of relevance to aircraft, ships, and missiles with emphasis on the solution of two-dimensional unsteady and three-dimensional equations.

1992-01-01

299

Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design

NASA Technical Reports Server (NTRS)

This paper summarizes the state of 3D CFD based models of the time average flow field within axial flow multistage turbomachines. Emphasis is placed on models which are compatible with the industrial design environment and those models which offer the potential of providing credible results at both design and off-design operating conditions. The need to develop models which are free of aerodynamic input from semi-empirical design systems is stressed. The accuracy of such models is shown to be dependent upon their ability to account for the unsteady flow environment in multistage turbomachinery. The relevant flow physics associated with some of the unsteady flow processes present in axial flow multistage machinery are presented along with procedures which can be used to account for them in 3D CFD simulations. Sample results are presented for both axial flow compressors and axial flow turbines which help to illustrate the enhanced predictive capabilities afforded by including these procedures in 3D CFD simulations. Finally, suggestions are given for future work on the development of time average flow models.

Adamczyk, John J.

1999-01-01

300

An experimental study of the unsteady vortex structures in the wake of a root-fixed flapping wing

NASA Astrophysics Data System (ADS)

An experimental study was conducted to characterize the evolution of the unsteady vortex structures in the wake of a root-fixed flapping wing with the wing size, stroke amplitude, and flapping frequency within the range of insect characteristics for the development of novel insect-sized nano-air-vehicles (NAVs). The experiments were conducted in a low-speed wing tunnel with a miniaturized piezoelectric wing (i.e., chord length, C = 12.7 mm) flapping at a frequency of 60 Hz (i.e., f = 60 Hz). The non-dimensional parameters of the flapping wing are chord Reynolds number of Re = 1,200, reduced frequency of k = 3.5, and non-dimensional flapping amplitude at wingtip h = A/C = 1.35. The corresponding Strouhal number (Str) is 0.33 , which is well within the optimal range of 0.2 < Str < 0.4 used by flying insects and birds and swimming fishes for locomotion. A digital particle image velocimetry (PIV) system was used to achieve phased-locked and time-averaged flow field measurements to quantify the transient behavior of the wake vortices in relation to the positions of the flapping wing during the upstroke and down stroke flapping cycles. The characteristics of the wake vortex structures in the chordwise cross planes at different wingspan locations were compared quantitatively to elucidate underlying physics for a better understanding of the unsteady aerodynamics of flapping flight and to explore/optimize design paradigms for the development of novel insect-sized, flapping-wing-based NAVs.

Hu, Hui; Clemons, Lucas; Igarashi, Hirofumi

2011-08-01

301

A quasi-three-dimensional inviscid-viscous coupled approached has been developed for unsteady flows around oscillating blades, as described in Part 1. To validate this method, calculations for several steady and unsteady flow cases with strong inviscid-viscous interactions are performed, and the results are compared with the corresponding experiments. Calculated results for unsteady flows around a biconvex cascade and a fan tip section highlight the necessity of including viscous effects in predictions of turbomachinery blade flutter at transonic flow conditions.

He, L.; Denton, J.D. (Cambridge Univ., Cambridge (United Kingdom))

1993-01-01

302

MODELING STRATEGIES FOR UNSTEADY TURBULENT FLOWS IN THE LOWER PLENUM OF THE VHTR

Validation simulations are presented for turbulent flow in a staggered tube bank, geometry similar to that in the lower plenum of a block very high temperature reactor. Steady 2D RANS predictions are compared to unsteady 2D RANS results and experiment. The unsteady calculations account for the fact that nonturbulent fluctuations (due to vortex-shedding) are present in the flow. The unsteady computations are shown to predict the mean variables and the total shear stress quite well. Previous workers have presented results that indicated that 3D simulations were necessary to obtain reasonable results. Best practices are based on requirements for the ASME Journal of Fluids Engineering.

Richard W. Johnson

2006-09-01

303

NASA Technical Reports Server (NTRS)

A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described.

Marshall, F. J.; Deffenbaugh, F. D.

1974-01-01

304

Control of flow separation and mixing by aerodynamic excitation

NASA Technical Reports Server (NTRS)

The recent research progress in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of fundamental nature concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research reported in this paper include influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications of this research include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made here that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

Rice, Edward J.; Abbott, John M.

1990-01-01

305

Control of flow separation and mixing by aerodynamic excitation

NASA Technical Reports Server (NTRS)

The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

Rice, Edward J.; Abbott, John M.

1990-01-01

306

Aerodynamics of Small Vehicles

In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of

Thomas J. Mueller

2003-01-01

307

NASA Astrophysics Data System (ADS)

Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

Katz, Joseph

2006-01-01

308

Inlet Flow Distortion and Unsteady Blade Response in a Transonic Axial-Compressor Rotor

NASA Technical Reports Server (NTRS)

This paper describes the unsteady blade surface pressures on the first-stage rotor blades of a two-stage transonic axial flow compressor experiencing inlet flow distortion. This study was conducted to demonstrate the ability of a full annulus unsteady Reynolds-averaged Navier-Stokes numerical technique to predict unsteady pressures on the rotor blades operating in a distorted inflow. A total pressure distortion produced by a variable mesh screen mounted near the inlet was used to excite the unsteady blade loading on the rotor. On-blade pressure transducers were used to measure the unsteady blade surface pressure. These pressures and the resulting transient load on the rotor blades were compared to the numerical prediction. It is important to develop numerical techniques to predict these transient loads to better understand the response of compressor blades to forcing functions. With this enhanced understanding and ability to predict these transient forces, more robust compressors can be developed. In the study, a high definition of the inlet flow distortion was achieved by rotating the distortion screens. In this manner the inlet flow distortion and the distortion at the first stage stator leading edge were measured at approximately every 0.7 degrees. This full annulus high definition of the inlet flow distortion was used as the inlet boundary condition for the numerical technique. The experimental measurements and numerical analyses are highly complementary in this study. Detailed comparisons between the measurements and the numerical analyses indicate that the current numerical procedure calculates the unsteady aerodynamic pressure on the blade surfaces reasonably well. Further, the agreement of the measured and predicted rotor exit flow distortion at the first stage stator leading edge provides verification of the numerical technique.

Rabe, D. C.; Williams, C.; Hah, C.

1999-01-01

309

On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

NASA Technical Reports Server (NTRS)

The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flowconditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the physics of the separation phenomenon under periodic unsteady wake flow. Several physical mechanisms are discussed.

Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

2003-01-01

310

On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions

NASA Technical Reports Server (NTRS)

The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the physics of the separation phenomenon under periodic unsteady wake flow. Several physical mechanisms are discussed.

Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.

2005-01-01

311

Aerodynamic heated steam generating apparatus

An aerodynamic heated steam generating apparatus is described which consists of: an aerodynamic heat immersion coil steam generator adapted to be located on the leading edge of an airframe of a hypersonic aircraft and being responsive to aerodynamic heating of water by a compression shock airstream to produce steam pressure; an expansion shock air-cooled condensor adapted to be located in the airframe rearward of and operatively coupled to the aerodynamic heat immersion coil steam generator to receive and condense the steam pressure; and an aerodynamic heated steam injector manifold adapted to distribute heated steam into the airstream flowing through an exterior generating channel of an air-breathing, ducted power plant.

Kim, K.

1986-08-12

312

Airfoil Ice-Accretion Aerodynamics Simulation

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

2007-01-01

313

Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

NASA Technical Reports Server (NTRS)

The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

1994-01-01

314

Physics of Forced Unsteady Separation

NASA Technical Reports Server (NTRS)

This report contains the proceedings of a workshop held at NASA Ames Research Center in April 1990. This workshop was jointly organized by NASA, the Air Force Office of Scientific Research (AFOSR), and the Army Research Office (ARO), and was directed toward improved understanding of the physical processes that cause unsteady separation to occur. The proceedings contain the written contributions for the workshop, and include selected viewgraphs used in the various presentations.

Carr, Lawrence W. (editor)

1992-01-01

315

Unsteady axial viscoelastic pipe flows

The main objective of this work is to examine in detail basic unsteady pipe flows and to investigate any new physical phenomena. We take the viscoelastic upper-convected Maxwell fluid as our non-Newtonian model and consider the flow of such a fluid in pipes of uniform circular cross-section in the following three cases: 1.(a) when the pressure gradient varies exponentially with

K. D. Rahaman; H. Ramkissoon

1995-01-01

316

Overview of Current Turbine Aerodynamic Analysis and Testing at MSFC

NASA Technical Reports Server (NTRS)

An overview of the current turbine aerodynamic analysis and testing activities at NASA/Marshall Space Flight Center (MSFC) is presented. The presentation is divided into three areas. The first area is the three-dimensional (3D), unsteady Computational Fluid Dynamics (CFD) analysis of the Fastrac turbine. Results from a coupled nozzle, blade, and exit guide vane analysis and from an uncoupled nozzle and coupled blade and exit guide vane will be presented. Unsteady pressure distributions, frequencies, and exit profiles from each analysis will be compared and contrasted. The second area is the testing and analysis of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine with instrumented first stage blades. The SSME HPFTP turbine was tested in air at the MSFC Turbine Test Equipment (TTE). Pressure transducers were mounted on the first stage blades. Unsteady, 3D CFD analysis was performed for this geometry and flow conditions. A sampling of the results will be shown. The third area is a status of the Turbine Performance Optimization task. The objective of this task is to improve the efficiency of a turbine for potential use on a next generation launch vehicle. This task includes global optimization for the preliminary design, detailed optimization for blade shapes and spacing, and application of advanced CFD analysis. The final design will be tested in the MSFC TTE.

Griffin, Lisa W.; Hudson, Susan T.; Zoladz, Thomas F.

1999-01-01

317

The Benchmark Active Controls Technology Model Aerodynamic Data

NASA Technical Reports Server (NTRS)

The Benchmark Active Controls Technology (BACT) model is a part of the Benchmark Models Program (BMP). The BMP is a NASA Langley Research Center program that includes a series of models which were used to study different aeroelastic phenomena and to validate computational fluid dynamics codes. The primary objective of BACT testing was to obtain steady and unsteady loads, accelerations, and aerodynamic pressures due to control surface activity in order to calibrate unsteady CFD codes and active control design tools. Three wind-tunnel tests in the Transonic Dynamics Tunnel (TDT) have been completed. The first and parts of the second and third tests focused on collecting open-loop data to define the model's aeroservoelastic characteristics, including the flutter boundary across the Mach range. It is this data that is being presented in this paper. An extensive database of over 3000 data sets was obtained. This database includes steady and unsteady control surface effectiveness data, including pressure distributions, control surface hinge moments, and overall model loads due to deflections of a trailing edge control surface and upper and lower surface

Scott, Robert C.; Hoadley, Sherwood T.; Wieseman, Carol D.; Durham, Michael H.

1997-01-01

318

An analysis of blade vortex interaction aerodynamics and acoustics

NASA Technical Reports Server (NTRS)

The impulsive noise associated with helicopter flight due to Blade-Vortex Interaction, sometimes called blade slap is analyzed especially for the case of a close encounter of the blade-tip vortex with a following blade. Three parts of the phenomena are considered: the tip-vortex structure generated by the rotating blade, the unsteady pressure produced on the following blade during the interaction, and the acoustic radiation due to the unsteady pressure field. To simplify the problem, the analysis was confined to the situation where the vortex is aligned parallel to the blade span in which case the maximum acoustic pressure results. Acoustic radiation due to the interaction is analyzed in space-fixed coordinates and in the time domain with the unsteady pressure on the blade surface as the source of chordwise compact, but spanwise non-compact radiation. Maximum acoustic pressure is related to the vortex core size and Reynolds number which are in turn functions of the blade-tip aerodynamic parameters. Finally noise reduction and performance are considered.

Lee, D. J.

1985-01-01

319

Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures

NASA Technical Reports Server (NTRS)

In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.

Khorrami, Mehdi R.; Neuhart, Danny H.

2012-01-01

320

Methodology of Blade Unsteady Pressure Measurement in the NASA Transonic Flutter Cascade

NASA Technical Reports Server (NTRS)

In this report the methodology adopted to measure unsteady pressures on blade surfaces in the NASA Transonic Flutter Cascade under conditions of simulated blade flutter is described. The previous work done in this cascade reported that the oscillating cascade produced waves, which for some interblade phase angles reflected off the wind tunnel walls back into the cascade, interfered with the cascade unsteady aerodynamics, and contaminated the acquired data. To alleviate the problems with data contamination due to the back wall interference, a method of influence coefficients was selected for the future unsteady work in this cascade. In this approach only one blade in the cascade is oscillated at a time. The majority of the report is concerned with the experimental technique used and the experimental data generated in the facility. The report presents a list of all test conditions for the small amplitude of blade oscillations, and shows examples of some of the results achieved. The report does not discuss data analysis procedures like ensemble averaging, frequency analysis, and unsteady blade loading diagrams reconstructed using the influence coefficient method. Finally, the report presents the lessons learned from this phase of the experimental effort, and suggests the improvements and directions of the experimental work for tests to be carried out for large oscillation amplitudes.

Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Jett, T. A.; Senyitko, R. G.

2002-01-01

321

Preliminary results of unsteady blade surface pressure measurements for the SR-3 propeller

NASA Technical Reports Server (NTRS)

Unsteady blade surface pressures were measured on an advanced, highly swept propeller known as SR-3. These measurements were obtained because the unsteady aerodynamics of these highly loaded transonic blades is important to noise generation and aeroelastic response. Specifically, the response to periodic angle-of-attack change was measured for both two- and eight-bladed configurations over a range of flight Mach numbers from 0.4 to 0.85. The periodic angle-of-attack change was obtained by placing the propeller axis at angles up to 4 deg to the flow. Most of the results are presented in terms of the unsteady pressure coefficient variation with Mach number. Both cascade and Mach number effects were largest on the suction surface near the leading edge. The results of a three-dimensional Euler code applied in a quasi-steady fashion were compared to measured data at the reduced frequency of 0.1 and showed relatively poor agreement. Pressure waveforms are shown that suggest shock phenomena may play an important part in the unsteady pressure response at some blade locations.

Heidelberg, L. J.; Clark, B. J.

1986-01-01

322

Compendium of NASA Langley reports on hypersonic aerodynamics

NASA Technical Reports Server (NTRS)

Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems.

Sabo, Frances E.; Cary, Aubrey M.; Lawson, Shirley W.

1987-01-01

323

Nearfield aerodynamics and optical propagation characteristics of a large-scale turret model

NASA Astrophysics Data System (ADS)

Measurements of the unsteady flow field affecting optical propagation quality have been made with both aerodynamic and direct optical instrumentation. Properties affecting degradation of coherent radiation beams propagated from within the turret have been investigated. These properties include both the magnitude and scale sizes of the fluctuating index-of-refraction field present in the turbulent shear layers and separation regions of the turret flow field. Direct optical degradation information was obtained by holographic interferometry and quantified through techniques presented here. Aerodynamic measurements were made with hot-wire anemometry and multiple-port probes. Comparisons between the aerodynamically and optically deduced data are presented. These data can be used directly to estimate trends in expected loss of optical quality of a coherent beam for various flight speeds, altitudes, wavelengths and azimuthal turret angles. More data are now available for estimating the effects of unsteady aerodynamic flow fields on optical propagation quality. Data were obtained for Reynolds numbers near those occurring at full-scale flight conditions over a range of Mach number from 0.55 to 0.75. Investigation results generally agree with those obtained previously on smaller scale models and indicate that severe optical degradation can be present at aft-looking azimuth angles.

Rose, W. C.; Craig, J. E.; Raman, K. R.

1982-02-01

324

New Acoustic and Aerodynamic Phenomena due to Non-Uniform Rotation of Propellers

NASA Astrophysics Data System (ADS)

A study is reported of the influence of non-uniform rotation—which is inherent to piston engine driven propellers—on the aerodynamics and aeroacoustics of multi-blade propellers by numerical simulation. The combination of aerodynamic predictions with a 3-D unsteady free wake panel method and aeroacoustic predictions based on Farassat's Formulation 1A of the Ffowcs Williams and Hawkings equation is used to achieve this goal. The numerical results show that non-uniform rotation has a significant influence on propeller aerodynamics and can lead to an increase in the generated noise. In case of a mismatch between the periodicity of the non-uniformity and the basic blade passage frequency, additional harmonics (“subharmonics”) are generated. For a periodicity coincidence, the effects are masked due to an overlapping of the frequencies. The level of such subharmonics may be high enough to increase the overall A-weighted noise. The azimuthal directivity of the of the propeller noise remains no longer axisymmetric, and changes to a wave-like harmonic variation. The number of undulations per revolution depends on the order of the non-uniformity and is not related to the number of propeller blades. The polar directivity pattern also changes substantially from that known for uniform rotation. A frequency domain analysis of the unsteady pressure distribution shows that the subharmonics perceived at a space-fixed location are not due to an aerodynamic or acoustic interaction but rather the consequence of a motion geometry or Doppler effect.

YIN, J. P.; AHMED, S. R.; DOBRZYNSKI, W.

1999-08-01

325

AERODYNAMICS OF SMALL VEHICLES

? Abstract In this review,we,describe,the aerodynamic,problems,that must,be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number,and aspect ratio (AR) on the design and performance,of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number,of experimental,boundary-layer studies, including the

Thomas J. Mueller; James D. DeLaurier

2003-01-01

326

Effect of an unsteady swirled turbulent flow on the motion of a single solid particle

NASA Astrophysics Data System (ADS)

An unsteady swirled turbulent flow between two rotating flat disks is modeled. The flow is directed along the radius toward the rotation axis. A quasi-steady character of the turbulent flow, caused by oscillations of the radial velocity at the entrance to the gap between the disks with a period close to the time of dynamic relaxation of the particle, is studied with the use of the known two-equation Wilcox's k-? model of turbulence. The influence of the Stokes number and the frequency and amplitude of oscillations of the carrier medium on the motion of single particles in the field of centrifugal and aerodynamic forces is considered.

Shvab, A. V.; Khairullina, V. Yu.

2011-01-01

327

Unsteady three-dimensional simulation of VTOL upwash fountain turbulence

NASA Technical Reports Server (NTRS)

Numerical simulations of a planar turbulent wall jet and a planar VTOL upwash fountain were performed. These are three dimensional simulations which resolve large scale unsteady motions in the flows. The wall jet simulation shows good agreement with experimental data and is presented to verify the simulation methodology. Simulation of the upwash fountain predicts elevated shear stress and a half velocity width spreading rate of 33% which agrees well with experiment. Turbulence mechanisms which contribute to the enhanced spreading rate are examined.

Childs, Robert E.; Nixon, David

1987-01-01

328

Size effects on insect hovering aerodynamics: an integrated computational study.

Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design. PMID:19258688

Liu, H; Aono, H

2009-03-01

329

Evaluation of Turbulence Models for Unsteady Flows of an Oscillating Airfoil

NASA Technical Reports Server (NTRS)

Unsteady flowfields of a two-dimensional oscillating airfoil are calculated using an implicit, finite-difference, Navier Stokes numerical scheme. Five widely used turbulence models are used with the numerical scheme to assess the accuracy and suitability of the models for simulating the retreating blade stall of helicopter rotor in forward flight. Three unsteady flow conditions corresponding to an essentially attached flow, light-stall, and deep-stall cases of an oscillating NACA 0015 wing experiment were chosen as test cases for computations. Results of unsteady airloads hysteresis curves, harmonics of unsteady pressures, and instantaneous flowfield patterns are presented. Some effects of grid density, time-step size, and numerical dissipation on the unsteady solutions relevant to the evaluation of turbulence models are examined. Comparison of unsteady airloads with experimental data show that all models tested are deficient in some sense and no single model predicts airloads consistently and in agreement with experiment for the three flow regimes. The chief findings are that the simple algebraic model based on the renormalization group theory (RNG) offers some improvement over the Baldwin Lomax model in all flow regimes with nearly same computational cost. The one-equation models provide significant improvement over the algebraic and the half-equation models but have their own limitations. The Baldwin-Barth model overpredicts separation and underpredicts reattachment. In contrast, the Spalart-Allmaras model underpredicts separation and overpredicts reattachment.

Srinivasan, G. R.; Ekaterinaris, J. A.; McCroskey, W. J.

1995-01-01

330

NASA Technical Reports Server (NTRS)

The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.

Mccain, W. E.

1982-01-01

331

NASA Technical Reports Server (NTRS)

A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.

Hanson, D. B.

1991-01-01

332

Investigation into the aerodynamics of swashplateless rotors using CFD-CSD analysis

NASA Astrophysics Data System (ADS)

This study obtains a better understanding of the aerodynamics of integrated trailing edge flap (TEF) based swashplateless rotors. Both two dimensional (2D) and three dimensional (3D) analysis/simulations are performed to understand the behavior of TEF airfoils and integrated TEF based swashplateless rotors. The 2D aerodynamics of TEF airfoils is explored in detail. A semi-empirical approach is developed for modeling drag for TEF airfoils in steady flows based on baseline airfoil drag data alone. Extensive 2D CFD simulations are performed for a wide range of flow conditions in order to better understand various aspects of the aerodynamics of TEF airfoils. The trends in the airloads (lift, drag, pitching moment, hinge moment) for TEF airfoils are obtained. Nonlinear phenomena such as flow separation, shocks and unsteady vortex shedding are investigated, and the flow conditions and trends associated with them are studied. The effect of airfoil properties such as thickness and overhang are studied. Various approaches are used to model the effect of gaps at the leading edge of the flap. An approximate "gap averaging" technique is developed, which provides good predictions of steady airloads at almost the same computational cost as a simulation where the gap is not modeled. Direct modeling of the gap is done by using a patched mesh in the gap region. To solve problems (such as poor grid quality/control and poor convergence) that are associated with the patched mesh simulations, an alternate approach using overlapping meshes is used. It is seen that for TEF airfoils, the presence of gaps adversely affects the effectiveness of the flap. The change in airloads is not negligible, especially at the relatively higher flap deflections associated with swashplateless TEF rotors. Finally, uncoupled and coupled computational fluid/structural dynamics (CFD-CSD) simulations of conventional (baseline) and swashplateless TEF rotors is performed in hovering flight. The CFD-CSD code is validated against experiment and good agreement is observed. It is observed that the baseline UH-60 rotor performs better than the swashplateless UH-60 rotor. For an untwisted NACA0012 airfoil based rotor, the performance is similar for the baseline and swashplateless configurations. The effect of gaps on the performance of swashplateless TEF rotors is also investigated. It is seen that the presence of chordwise gaps significantly affects the effectiveness of the TEF to control the rotor. Spanwise gaps also affect the performance of swashplateless rotors but their effect is not as significant.

Jose, Arun Isaac

333

Oscillating cascade aerodynamics at large mean incidence

The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low-aspect-ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 and 10 deg; the Reynolds number was 0.9 {times} 10{sup 6}. For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found, with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

Buffum, D.H. [NASA Lewis Research Center, Cleveland, OH (United States); Capece, V.R.; King, A.J. [Univ. of California, Davis, CA (United States). Dept. of Mechanical and Aeronautical Engineering; El-Aini, Y.M. [Pratt and Whitney, West Palm Beach, FL (United States)

1998-01-01

334

Oscillating cascade aerodynamics at large mean incidence

NASA Technical Reports Server (NTRS)

The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 deg and 10 deg; the Reynolds number was 0.9 x l0(exp 6). For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

Buffum, Daniel H.; King, Aaron J.; El-Aini, Yehia M.; Capece, Vincent R.

1996-01-01

335

NASA Technical Reports Server (NTRS)

The current paper reports on an investigation of steady and unsteady flow effects of circumferential grooves casing treatment in a transonic compressor rotor. Circumferential grooves casing treatment is used mainly to increase stall margin in axial compressors with a relatively small decrease in aerodynamic efficiency. It is widely believed that flow mechanisms of circumferential grooves casing treatment near stall conditions are not yet well understood even though this treatment has been used widely in real engines. Numerical analysis based on steady Reynolds-averaged Navier-Stokes (RANS) has been the primary tool used to understand flow mechanism for circumferential grooves casing treatment. Although steady RANS explains some flow effects of circumferential grooves casing treatment, it does not calculate all the measured changes in the compressor characteristics. Therefore, design optimization of circumferential grooves with steady RANS has not been very successful. As a compressor operates toward the stall condition, the flow field becomes transient. Major sources of self-generated flow unsteadiness are shock oscillation and interaction between the passage shock and the tip leakage vortex. In the present paper, an unsteady Reynolds-averaged Navier-Stokes (URANS) approach is applied to study the effects of circumferential grooves in a transonic compressor. The results from URANS are compared with the results from RANS and measured data. The current investigation shows that there are significant unsteady flow effects on the performance of the circumferential grooves casing treatment. For the currently investigated rotor, the unsteady effects are of the same magnitude as the steady effects in terms of extending the compressor stall margin.

Hah, Chunill

2011-01-01

336

NASA Astrophysics Data System (ADS)

The present paper reports the results of an experimental investigation aimed at comparing aerodynamic performance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally investigated for Reynolds numbers in the range 70000

Berrino, M.; Satta, F.; Simoni, D.; Ubaldi, M.; Zunino, P.; Bertini, F.

2014-02-01

337

Unsteady Full Annulus Simulations of a Transonic Axial Compressor Stage

NASA Technical Reports Server (NTRS)

Two recent research endeavors in turbomachinery at NASA Glenn Research Center have focused on compression system stall inception and compression system aerothermodynamic performance. Physical experiment and computational research are ongoing in support of these research objectives. TURBO, an unsteady, three-dimensional, Navier-Stokes computational fluid dynamics code commissioned and developed by NASA, has been utilized, enhanced, and validated in support of these endeavors. In the research which follows, TURBO is shown to accurately capture compression system flow range-from choke to stall inception-and also to accurately calculate fundamental aerothermodynamic performance parameters. Rigorous full-annulus calculations are performed to validate TURBO s ability to simulate the unstable, unsteady, chaotic stall inception process; as part of these efforts, full-annulus calculations are also performed at a condition approaching choke to further document TURBO s capabilities to compute aerothermodynamic performance data and support a NASA code assessment effort.

Herrick, Gregory P.; Hathaway, Michael D.; Chen, Jen-Ping

2009-01-01

338

Freight Wing Trailer Aerodynamics

Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

Graham, Sean (Primary Investigator); Bigatel, Patrick

2004-10-17

339

NASA Technical Reports Server (NTRS)

A new methodology is developed to simulate unsteady flows about prescribed and aerodynamically determined moving boundary problems. The method couples the fluid dynamics and rigid-body dynamics equations to capture the time-dependent interference between stationary and moving boundaries. The unsteady, compressible, inviscid (Euler) equations are solved on dynamic, unstructured grids by an explicit, finite-volume, upwind method. For efficiency, the grid adaptation is performed within a window around the moving object. The Eulerian equations of the rigid-body dynamics are solved by a Runge-Kutta method in a non-inertial frame of reference. The two-dimensional flow solver is validated by computing the flow past a sinusoidally-pitching airfoil and comparing these results with the experimental data. The overall methodology is used for two two-dimensional examples: the flow past an airfoil which is performing a three-degrees-of-freedom motion in a transonic freestream, and the free-fall of a store after separation from a wing-section. Then the unstructured mesh methodology is extended to three-dimensions to simulate unsteady flow past bodies in relative motion, where the trajectory is determined from the instantaneous aerodynamics. The flow solver and the adaptation scheme in three dimensions are validated by simulating the transonic, unsteady flow around a wing undergoing a forced, periodic, pitching motion, and comparing the results with the experimental data. To validate the trajectory code, the six-degrees-of-freedom motion of a store separating from a wing was computed using the experimentally determined force and moment fields, then comparing with an independently generated trajectory. Finally, the overall methodology was demonstrated by simulating the unsteady flowfield and the trajectory of a store dropped from a wing. The methodology, its computational cost notwithstanding, has proven to be accurate, automated, easy for dynamic gridding, and relatively efficient for the required man-hours.

Singh, Kamakhya Prasad

1995-01-01

340

AIAA 982538 Aerodynamic Shape Optimization

AIAA 98Â2538 Aerodynamic Shape Optimization Techniques Based On Control Theory Antony Jameson. C. Vassberg Boeing Commercial Airplane Group, Long Beach, CA 90846 29th AIAA Fluid Dynamics;AIAA 98Â2538 Aerodynamic Shape Optimization Techniques Based On Control Theory Antony Jameson and Juan

Stanford University

341

Stability limits of unsteady open capillary channel flow

NASA Astrophysics Data System (ADS)

This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.

Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.

342

Ground/Flight Correlation of Aerodynamic Loads with Structural Response

NASA Technical Reports Server (NTRS)

Ground and flight tests provide a basis and methodology for in-flight characterization of the aerodynamic and structural performance through the monitoring of the fluid-structure interaction. The NF-15B flight tests of the Intelligent Flight Control System program provided a unique opportunity to test the correlation of aerodynamic loads with points of flow attaching and detaching from the surface, which are also known as flow bifurcation points, as observed in a previous wind tunnel test performed at the U.S. Air Force Academy (Colorado Springs, Colorado). Moreover, flight tests, along with the subsequent unsteady aerodynamic tests in the NASA Transonic Dynamics Tunnel (TDT), provide a basis using surface flow sensors as means of assessing the aeroelastic performance of flight vehicles. For the flight tests, the NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. This data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in a structural response, which were then compared with the hot-film sensor signals. The hot-film sensor signals near the stagnation region were found to be highly correlated with the root-bending strains. For the TDT tests, a flexible wing section developed under the U.S. Air Force Research Lab SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at two span stations. The TDT tests confirmed the correlation between flow bifurcation points and the wing structural response to tunnel-generated gusts. Furthermore, as the wings structural modes were excited by the gusts, a gradual phase change between the flow bifurcation point and the structural mode occurred during a resonant condition.

Mangalam, Arun S.; Davis, Mark C.

2009-01-01

343

NASA Technical Reports Server (NTRS)

Direct Simulation Monte Carlo and free-molecular analyses were used to provide aerothermodynamic characteristics of the Mars Odyssey spacecraft. The results of these analyses were used to develop an aerodynamic database that was used extensively for the pre-flight planning and in-flight execution for the aerobraking phase of the Mars Odyssey mission. During aerobraking operations, the database was used to reconstruct atmospheric density profiles during each pass. The reconstructed data was used to update the atmospheric model, which was used to determine the strategy for subsequent aerobraking maneuvers. The aerodynamic database was also used together with data obtained from on-board accelerometers to reconstruct the spacecraft attitudes throughout each aerobraking pass. The reconstructed spacecraft attitudes are in good agreement with those determined by independent on-board inertial measurements for all aerobraking passes. The differences in the pitch attitudes are significantly less than the preflight uncertainties of +/-2.9%. The differences in the yaw attitudes are influenced by zonal winds. When latitudinal gradients of density are small, the differences in the yaw attitudes are significantly less than the preflight uncertainties.

Takashima, Naruhisa; Wilmoth, Richard G.

2002-01-01

344

Based on the idea of adjoint method and the dynamic evolution method, a new optimum aerodynamic design technique is presented\\u000a in this paper. It can be applied to the optimum problems with a large number of design variables and is time saving. The key\\u000a of the new method lies in that the optimization process is regarded as an unsteady evolution,

Yingying Gao; Feng He; Mengyu Shen

2011-01-01

345

Evaluation of unsteady pressure fields and forces in rotating airfoils from time-resolved PIV

NASA Astrophysics Data System (ADS)

The instantaneous pressure fields and aerodynamic loads are obtained for rotating airfoils from time-resolved particle image velocimetry (TR-PIV) measurements. These allowed evaluating the contribution from the local acceleration (unsteady acceleration) to the instantaneous forces. Traditionally, this term has been neglected for wind turbines with quasi-steady flows, but results show that it is a dominant term in the wake where high temporal variations in the flow field are present due to vortex shedding. Briefly, time-resolved particle image velocimetry TR-PIV measurements are used to calculate flow velocity fields and corresponding spatial and temporal derivatives. These derivatives are then used in the Poisson equation to solve for the pressure field and later used in the integral momentum equation to solve for the instantaneous forces. The robustness of the measurements is analyzed by calculating the PIV uncertainty and the independence of the calculated forces. The experimental mean aerodynamic forces are compared with theoretical predictions from the blade element momentum theory showing good agreement. The instantaneous pressure field showed dependence with time in the wake due to vortex shedding. The contribution to the instantaneous forces from each term in the integral momentum equation is evaluated. The analysis shows that the larger contributions to the normal force coefficient are from the unsteady and the pressure terms, and the larger contribution to the tangential force coefficient is from the convective term.

Villegas, A.; Diez, F. J.

2014-04-01

346

Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

NASA Astrophysics Data System (ADS)

Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made.

Ernst, Benedikt; Schmitt, Henning; Seume, Jörg R.

2014-12-01

347

This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports. PMID:20488446

Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

2010-08-26

348

Non-equilibrium and unsteady fluid degassing during slow decompression

NASA Astrophysics Data System (ADS)

Decompression experiments were performed on corn syrup-water solutions in order to investigate the effect of viscosity on processes of vesiculation and degassing at low to moderate degrees of volatile supersaturation. Repeat experiments demonstrated similar long term vesiculation behavior at moderate decompression rates despite highly variable initial nucleation styles. Results suggest that magmas may not necessarily achieve chemical equilibrium by vapor exsolution and may require viscosity-dependent critical supersaturations in order to vesiculate. Vesiculation also increased the ambient pressure and decreased supersaturations, resulting in unsteady degassing.

Hammer, Julia E.; Manga, Michael; Cashman, Katharine V.

349

Unsteady thrust measurement techniques for pulse detonation engines

NASA Astrophysics Data System (ADS)

Thrust is a critical performance parameter and its correct determination is necessary to characterize an engine. Many conventional thrust measurement techniques prevail. However, further developments are required for correct measurement of thrust in the case of a pulse detonation engine (PDE), since the entire thrust generation process is intermittent. The significant effect of system dynamics in the form of inertial forces, stress wave propagation and reflections initiated in the structure due to detonations and pulse-to-pulse interaction in a fast operating PDE further complicate the thrust measurement process. These complications call for a further, detailed study of the unsteady thrust characteristics. A general approach was first developed to recover actual thrust from the measured thrust generated by the PDE. The developed approach consisted of two steps. The first step incorporated a deconvolution procedure using a pre-established system transfer function and measured input to reconstruct the output yielding the deconvolved thrust. The second step accounted for inertial forces through an acceleration compensation procedure. These two steps allowed the actual thrust to be determined. A small scale PDE operating at 10 and 20 Hz with varied filling fractions and mixture equivalence ratios was used for the experimental application of the general approach. The analytical study of gas dynamics in the PDE while in operation and the measured pressure histories at the exit of the engine allowed the generated thrust during a cycle to be determined semi-empirically. The thrust values determined semi-empirically were compared against the experimental results. A dynamical model of the PDE was created for the study of the unsteady thrust characteristics using finite element analysis. The results from finite element analysis were compared against semi-empirical and experimental results. In addition, finite element analysis also facilitated to numerically determine the unsteady thrust generated by the PDE at higher operating frequencies of 50 and 100 Hz. The actual thrust estimated experimentally, semi-empirically and numerically were expressed in the form of specific impulse for comparison. The results obtained via semi-empirical method and finite element analysis were found to be in good agreement with each other. However, the results obtained experimentally were slightly lower than the other two. Finally, the results obtained in this research work were also compared against the findings reported in literature. The comparison gave satisfying results. The developed general approach used to recover actual thrust generated by a PDE was also used to recover actual aerodynamic drag experienced by a blunt nose cone model in a nominal Mach 8-9 flow. The limited validation against modified Newtonian theory was provided as the results obtained after applying the developed approach matched the predicted values.

Joshi, Dibesh Dhoj

350

AIAA Applied Aerodynamics Conference, 7th, Seattle, WA, July 31-Aug. 2, 1989, Technical Papers

The present conference discusses the comparative aerodynamic behavior of half-span and full-span delta wings, TRANAIR applications to engine/airframe integration, a zonal approach to V/STOL vehicle aerodynamics, an aerodynamic analysis of segmented aircraft configurations in high-speed flight, unstructured grid generation and FEM flow solvers, surface grid generation for flowfields using B-spline surfaces, the use of chimera in supersonic viscous calculations for the F-15, and hypersonic vehicle forebody design studies. Also discussed are the aerothermodynamics of projectiles at hypersonic speeds, flow visualization of wing-rock motion in delta wings, vortex interaction over delta wings at high alpha, the analysis and design of dual-rotation propellers, unsteady pressure loads from plunging airfoils, the effects of riblets on the wake of an airfoil, inverse airfoil design with Navier-Stokes methods, flight testing for a 155-mm base-burn projectile, experimental results on rotor/fuselage aerodynamic interactions, the high-alpha aerodynamic characteristics of crescent and elliptic wings, and the effects of free vortices on lifting surfaces.

Not Available

1989-01-01

351

Buffeting computation by a numerical method involving viscous-inviscid unsteady interactions

Two dimensional complementary results concerning the NACA 0012 profile are presented. Buffeting phenomena were observed in previous experiments. The results of calculation and experiment are in good agreement, particularly on the prediction of the buffeting frontier in the Mach number-incidence plan. The integral unsteady method was tried to develop the three dimensional viscous solver. Computations to test the three dimensional

P. Girodroux-Lavigne; J. C. Leballeur

1988-01-01

352

Aerodynamics of a single-degree-of-freedom toy ornithopter

NASA Astrophysics Data System (ADS)

The flow field around a flight-worthy toy ornithopter is investigated using PIV diagnostics in combination with load cells to understand the aerodynamics during nominally steady flight and turning. Phase-locked measurements of the wake and inflow are performed using an automated PIV system around the flapping wings of the ornithopter with the ornithopter fixed to a load-cell inside a 1.3m x 1.2m wind tunnel test section. The mildly oscillating free flight of the ornithopter is compared to the wake measurements to understand the causes of the unsteadiness. Further, the modulation of the wake that causes the turning motion of the ornithopter is explained using the wake structure measurements.

Chavez Alarcon, Ramiro; Balakumar, B. J.; Allen, James J.

2009-11-01

353

NASA Technical Reports Server (NTRS)

The rapid increase in available computational power over the last decade has enabled higher resolution flow simulations and more widespread use of unstructured grid methods for complex geometries. While much of this effort has been focused on steady-state calculations in the aerodynamics community, the need to accurately predict off-design conditions, which may involve substantial amounts of flow separation, points to the need to efficiently simulate unsteady flow fields. Accurate unsteady flow simulations can easily require several orders of magnitude more computational effort than a corresponding steady-state simulation. For this reason, techniques for improving the efficiency of unsteady flow simulations are required in order to make such calculations feasible in the foreseeable future. The purpose of this work is to investigate possible reductions in computer time due to the choice of an efficient time-integration scheme from a series of schemes differing in the order of time-accuracy, and by the use of more efficient techniques to solve the nonlinear equations which arise while using implicit time-integration schemes. This investigation is carried out in the context of a two-dimensional unstructured mesh laminar Navier-Stokes solver.

Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.

2002-01-01

354

The investigation of parachute fabric permeability under an unsteady pressure differential

NASA Astrophysics Data System (ADS)

An apparatus for assessing permeability of textiles subjected to time-varying pressure differentials is presented. A Computer Numerically Controlled Piston Permeability Apparatus (CNC-PPA) that can control the volume flow rate through a fabric has been designed and built. This test device has been developed in an effort to improve the understanding and design choices for aerodynamic decelerators. Preliminary results for a low permeability fabric (PIA-C-44378, Type IV) under both steady and unsteady loads are presented. The results from this investigation do indicate a small effect of unsteady pressure differential on the fabric permeability. The fabric permeability is slightly higher than the static permeability when the pressure differential is increasing with respect to time and the opposite is true when the pressure differential is decreasing. This change in permeability is more pronounced as the pressure is higher and the pressure changes more rapidly with respect to time, suggesting dynamic permeability likely affects highly unsteady phenomena such as parachute opening.

Rondeau, Nichole C.

355

Single-shot temperature- and pressure-sensitive paint measurements on an unsteady helicopter blade

NASA Astrophysics Data System (ADS)

Unsteady pressure-sensitive paint (PSP) measurements were acquired on an articulated model helicopter rotor of 0.26 m diameter in edgewise flow to simulate forward flight conditions. The rotor was operated at advance ratios (free stream velocity normalized by hover tip speed) of 0.15 and 0.30 at a cycle-averaged tip chord Reynolds number of 1.1 × 105, with collective and longitudinal cyclic pitch inputs of 10° and 2.5°, respectively. A single-shot data acquisition technique allowed a camera to record the paint luminescence after a single pulse of high-energy laser excitation, yielding sufficient signal-to-noise ratio to avoid image averaging. Platinum tetra(pentafluorophenyl) porphyrin (PtTFPP) in a porous polymer/ceramic binder served as the PSP. To address errors caused by image blurring and temperature sensitivity, a previously reported motion deblurring algorithm was implemented and the temperature correction was made using temperature-sensitive paint measurements on a second rotor blade. Instantaneous, unsteady surface pressure maps at a rotation rate of 82 Hz captured different aerodynamic responses between the two sides of the rotor disk and were compared to the nominally steady hover case. Cycle-to-cycle variations in tip unsteadiness on the retreating blade were also observed, causing oblique pressure features which may be linked to three-dimensional stall.

Disotell, Kevin J.; Peng, Di; Juliano, Thomas J.; Gregory, James W.; Crafton, Jim W.; Komerath, Narayanan M.

2014-02-01

356

Unsteady propeller hydrodynamics by Dirk H. Renick.

One of the main problem affecting modern propulsor design engineers is the ability to quantitatively predict unsteady propeller forces for modern, multi-blade row, ducted propulsors operating in highly contracting flowfields. ...

Renick, Dirk Hampton, 1970-

2001-01-01

357

Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis

NASA Technical Reports Server (NTRS)

The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight.

Quackenbush, Todd R.; Bliss, Donald B.; Wachspress, Daniel A.; Boschitsch, Alexander H.; Chua, Kiat

1990-01-01

358

NASA Technical Reports Server (NTRS)

The principal emphasis of the meeting was to be on the understanding and prediction of separation-induced vortex flows and their effects on vehicle performance, stability, control, and structural design loads. This report shows that a substantial amount of the papers covering this area were received from a wide range of countries, together with an attendance that was even more diverse. In itself, this testifies to the current interest in the subject and to the appropriateness of the Panel's choice of topic and approach. An attempt is made to summarize each paper delivered, and to relate the contributions made in the papers and in the discussions to some of the important aspects of vortex flow aerodynamics. This reveals significant progress and important clarifications, but also brings out remaining weaknesses in predictive capability and gaps in understanding. Where possible, conclusions are drawn and areas of continuing concern are identified.

Smith, J. H. B.; Campbell, J. F.; Young, A. D. (editor)

1992-01-01

359

Numerical simulation of unsteady viscous flows

NASA Technical Reports Server (NTRS)

Most unsteady viscous flows may be grouped into two categories, i.e., forced and self-sustained oscillations. Examples of forced oscillations occur in turbomachinery and in internal combustion engines while self-sustained oscillations prevail in vortex shedding, inlet buzz, and wing flutter. Numerical simulation of these phenomena was achieved due to the advancement of vector processor computers. Recent progress in the simulation of unsteady viscous flows is addressed.

Hankey, Wilbur L.

1987-01-01

360

Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers

NASA Technical Reports Server (NTRS)

This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.

Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

1996-01-01

361

Payload vehicle aerodynamic reentry analysis

NASA Astrophysics Data System (ADS)

An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.

Tong, Donald

362

Survey of lift-fan aerodynamic technology

NASA Technical Reports Server (NTRS)

Representatives of NASA Ames Research Center asked that a summary of technology appropriate for lift-fan powered short takeoff/vertical landing (STOVL) aircraft be prepared so that new programs could more easily benefit from past research efforts. This paper represents one of six prepared for that purpose. The authors have conducted or supervised the conduct of research on lift-fan powered STOVL designs and some of their important components for decades. This paper will first address aerodynamic modeling requirements for experimental programs to assure realistic, trustworthy results. It will next summarize the results or efforts to develop satisfactory specialized STOVL components such as inlets and flow deflectors. It will also discuss problems with operation near the ground, aerodynamics while under lift-fan power, and aerodynamic prediction techniques. Finally, results of studies to reduce lift-fan noise will be presented. The paper will emphasize results from large scale experiments, where available, for reasons that will be brought out in the discussion. Some work with lift-engine powered STOVL aircraft is also applicable to lift-fan technology and will be presented herein. Small-scale data will be used where necessary to fill gaps.

Hickey, David H.; Kirk, Jerry V.

1993-01-01

363

NARX modelling of unsteady separation control

NASA Astrophysics Data System (ADS)

This paper presents the application of Nonlinear Auto-Regressive with eXogenous input (NARX) modelling to model the flow behaviour in response of a periodic forcing. In the first part, the NARX black-box model is presented. The model coefficients are obtained by least-square fitting. The resolution of the associated linear system being ill-conditioned, a Tikhonov regularization is employed. The first application presented is the identification of a NARX model of separation control by a synthetic jet slot over a rounded ramp. It is shown that the pressure at a particular location is representative of the flow state (attached or separated). This quantity will be the output of the model, the input being the forcing signal of the synthetic jet. Then, an identification signal is designed to explore as many flow states as possible with a short signal duration. The next step is dedicated to the selection of the NARX model structure. Input/output correlations, partial output autocorrelations and the Akaike Information Criterion minimization are used. A fit coefficient of 84 % is obtained. Finally, the accuracy of the NARX model, both on the steady and on the unsteady components of the output, is checked by comparison of the results with signals not used in the identification phase. The third part deals with the application of the same methodology to an experiment of separation control by pulsed fluidic vortex generators in a highly curved duct. A fit coefficient of 60 % is obtained in this case.

Dandois, J.; Garnier, E.; Pamart, P.-Y.

2013-02-01

364

Unsteady Flow Simulation of a Controlled Airfoil

NASA Astrophysics Data System (ADS)

An airfoil moving with two degrees of freedom (pitching and plunging) is simulated with a closed-loop flow control system. The simulation of the unsteady airfoil is computed using a Delayed Detached Eddy Simulation (DDES), a hybrid non-zonal RANS-LES turbulence model based on DES. The control system controls the airfoil in two modes, first through direct application of forces and torques, and second, through the use of tangential synthetic jet actuators. The approach was designed for an investigation of flow control via synthetic jet actuators on a pitching and plunging airfoil in A. Glezer's wind tunnel at Georgia Tech. The software definition of the controller used for the wind tunnel facility, which includes a robust servomechanism Linear Quadratic Regulator (LQR) and a neural network based adaptive controller, is coupled to a CFD model, which includes a model for the synthetic jet actuators. The coupled CFD/controller model is used to simulate maneuvers of the airfoil as performed in the wind tunnel, and the coupled model is validated against experiment results. Both the results of the validation, and the characteristics of the controlled flows will be discussed.

Jee, Sol Keun; Lopez, Omar; Muse, Jonathan; Calise, Anthony; Moser, Robert

2008-11-01

365

Large eddy simulation for aerodynamics: status and perspectives.

The present paper provides an up-to-date survey of the use of large eddy simulation (LES) and sequels for engineering applications related to aerodynamics. Most recent landmark achievements are presented. Two categories of problem may be distinguished whether the location of separation is triggered by the geometry or not. In the first case, LES can be considered as a mature technique and recent hybrid Reynolds-averaged Navier-Stokes (RANS)-LES methods do not allow for a significant increase in terms of geometrical complexity and/or Reynolds number with respect to classical LES. When attached boundary layers have a significant impact on the global flow dynamics, the use of hybrid RANS-LES remains the principal strategy to reduce computational cost compared to LES. Another striking observation is that the level of validation is most of the time restricted to time-averaged global quantities, a detailed analysis of the flow unsteadiness being missing. Therefore, a clear need for detailed validation in the near future is identified. To this end, new issues, such as uncertainty and error quantification and modelling, will be of major importance. First results dealing with uncertainty modelling in unsteady turbulent flow simulation are presented. PMID:19531507

Sagaut, Pierre; Deck, Sébastien

2009-07-28

366

Straight-line climbing flight aerodynamics of a fruit bat

NASA Astrophysics Data System (ADS)

From flight data obtained on a fruit bat, Cynopterus brachyotis, a kinematic model for straight-line flapping motion is extracted and analyzed in a computational fluid dynamics (CFD) framework to gain insight into the complexity of bat flight. The intricate functional mechanics and architecture of the bat wings set it apart from other vertebrate flight. The extracted kinematic model is simulated for a range of Reynolds numbers, to observe the effect these phenomena have on the unsteady transient mechanisms of the flow produced by the flapping wings. The Strouhal number calculated from the data is high indicating that the oscillatory motion dominates the flow physics. From the obtained data, the bat exhibits fine control of its mechanics by actively varying wing camber, wing area, torsional rotation of the wing, forward and backward translational sweep of the wing, and wing conformation to dictate the fluid dynamics. As is common in flapping flight, the primary force generation is through the attached unsteady vortices on the wing surface. The bat through varying the wing camber and the wing area modulates this force output. The power requirement for the kinematics is analyzed and correlated with the aerodynamic performance.

Viswanath, K.; Nagendra, K.; Cotter, J.; Frauenthal, M.; Tafti, D. K.

2014-02-01

367

The aim of this paper is to help advance one`s understanding of the complex, three-dimensional, unsteady flow associated with the interaction of a splittered centrifugal impeller and its vaned diffuser. A time-resolved simulation is presented of the Krain stage performed using a time-accurate, three-dimensional, unstructured mesh, solution-adaptive Navier-Stokes solver. The predicted flowfield, compared with experiment where available, displays a complex, unsteady interaction, especially in the neighborhood of the diffuser entry zone, which experiences large periodic flow unsteadiness. Downstream of the throat, although the magnitude of this unsteadiness diminishes rapidly, the flow has a highly distorted three-dimensional character. The loss levels in the diffuser are then investigated to try and determine how time-mean loss levels compare with the levels expected from equivalent steady flow analysis performed by using the circumferentially averaged exit flow from the impeller as inlet to the diffuser. It is concluded that little loss could be attributed directly to unsteady effects but rather that the principal cause of the rather high loss levels observed in the diffuser is the strong spanwise distortion in swirl angle at inlet, which initiates a strong hub/corner stall.

Dawes, W.N. [Whittle Lab., Cambridge (United Kingdom)

1995-04-01

368

An unsteady lifting surface method for single rotation propellers

NASA Technical Reports Server (NTRS)

The mathematical formulation of a lifting surface method for evaluating the steady and unsteady loads induced on single rotation propellers by blade vibration and inflow distortion is described. The scheme is based on 3-D linearized compressible aerodynamics and presumes that all disturbances are simple harmonic in time. This approximation leads to a direct linear integral relation between the normal velocity on the blade (which is determined from the blade geometry and motion) and the distribution of pressure difference across the blade. This linear relation is discretized by breaking the blade up into subareas (panels) on which the pressure difference is treated as approximately constant, and constraining the normal velocity at one (control) point on each panel. The piece-wise constant loads can then be determined by Gaussian elimination. The resulting blade loads can be used in performance, stability and forced response predictions for the rotor. Mathematical and numerical aspects of the method are examined. A selection of results obtained from the method is presented. The appendices include various details of the derivation that were felt to be secondary to the main development in Section 1.

Williams, Marc H.

1990-01-01

369

Unsteady thermocapillary migration of bubbles

NASA Astrophysics Data System (ADS)

Upon the introduction of a gas bubble into a liquid possessing a uniform thermal gradient, an unsteady thermo-capillary flow begins. Ultimately, the bubble attains a constant velocity. This theoretical analysis focuses upon the transient period for a bubble in a microgravity environment and is restricted to situations wherein the flow is sufficiently slow such that inertial terms in the Navier-Stokes equation and convective terms in the energy equation may be safely neglected (i.e., both Reynolds and Marangoni numbers are small). The resulting linear equations were solved analytically in the Laplace domain with the Prandtl number of the liquid as a parameter; inversion was accomplished numerically using a standard IMSL routine. In the asymptotic long-time limit, the theory agrees with the steady-state theory of Young, Goldstein, and Block. The theory predicts that more than 90 percent of the terminal steady velocity is achieved when the smallest dimensionless time, i.e., the one based upon the largest time scale-viscous or thermal-equals unity.

Dill, Loren H.; Balasubramaniam, R.

370

Modeling Unsteady Cavitation and Dynamic Loads in Turbopumps

NASA Technical Reports Server (NTRS)

A computational fluid dynamics (CFD) model that includes representations of effects of unsteady cavitation and associated dynamic loads has been developed to increase the accuracy of simulations of the performances of turbopumps. Although the model was originally intended to serve as a means of analyzing preliminary designs of turbopumps that supply cryogenic propellant liquids to rocket engines, the model could also be applied to turbopumping of other liquids: this can be considered to have been already demonstrated, in that the validation of the model was performed by comparing results of simulations performed by use of the model with results of sub-scale experiments in water. The need for this or a similar model arises as follows: Cavitation instabilities in a turbopump are generated as inlet pressure drops and vapor cavities grow on inducer blades, eventually becoming unsteady. The unsteady vapor cavities lead to rotation cavitation, in which the cavities detach from the blades and become part of a fluid mass that rotates relative to the inducer, thereby generating a fluctuating load. Other instabilities (e.g., surge instabilities) can couple with cavitation instabilities, thereby compounding the deleterious effects of unsteadiness on other components of the fluid-handling system of which the turbopump is a part and thereby, further, adversely affecting the mechanical integrity and safety of the system. Therefore, an ability to predict cavitation- instability-induced dynamic pressure loads on the blades, the shaft, and other pump parts would be valuable in helping to quantify safe margins of inducer operation and in contributing to understanding of design compromises. Prior CFD models do not afford this ability. Heretofore, the primary parameter used in quantifying cavitation performance of a turbopump inducer has been the critical suction specific speed at which head breakdown occurs. This parameter is a mean quantity calculated on the basis of assumed steady-state operation of the inducer; it does not account for dynamic pressure loads associated with unsteady flow caused by instabilities. Because cavitation instabilities occur well before mean breakdown in inducers, engineers have, until now, found it necessary to use conservative factors of safety when analyzing the results of numerical simulations of flows in turbopumps.

Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald; Dash, Sanford M.

2009-01-01

371

Definition of the unsteady vortex flow over a wing/body configuration

NASA Technical Reports Server (NTRS)

A problem of current interest in computational aerodynamics is the prediction of unsteady vortex flows over aircraft at high angles of attack. A six-month experimental effort was conducted at the John H. Harper Wind Tunnel to acquire qualitative and quantitative information on the unsteady vortex flow over a generic wing-body configuration at high angles of attack. A double-delta flat-plate wing with beveled edges was combined with a slender sharp-nosed body-of-revolution fuselage to form the generic configuration. This configuration produces a strong attached leading edge vortex on the wing, as well as sharply-peaked flow velocity spectra above the wing. While it thus produces flows with several well-defined features of current interest, the model was designed for efficiency of representation in computational codes. A moderate number of surface pressure ports and two unsteady pressure sensors were used to study the pressure distribution over the wing and body surface at high angles of attack; the unsteady pressure sensing did not succeed because of inadequate signal-to-noise ratio. A pulsed copper vapor laser sheet was used to visualize the vortex flow over the model, and vortex trajectories, burst locations, mutual induction of vortex systems from the forebody, strake, and wing, were quantified. Laser Doppler velocimetry was used to quantify all 3 components of the time-average velocity in 3 data planes perpendicular to the freestream direction. Statistics of the instantaneous velocity were used to study intermittency and fluctuation intensity. Hot-film anemometry was used to study the fluctuation energy content in the velocity field, and the spectra of these fluctuations. In addition, a successful attempt was made to measure velocity spectra, component by component, using laser velocimetry, and these were compared with spectra measured by hot-film anemometry at several locations.

Liou, S. G.; Debry, B.; Lenakos, J.; Caplin, J.; Komerath, N. M.

1991-01-01

372

Analysis of steady and unsteady turbine cascade flows by a locally implicit hybrid algorithm

For the two-dimensional steady and unsteady turbine cascade flows, the Euler/Navier-Stokes equations with Baldwin-Lomax turbulence model are solved in the Cartesian coordinate system. A locally implicit hybrid algorithm on mixed meshes is employed, where the convection-dominated part in the flow field is studied by a TVD scheme to obtain high-resolution results on the triangular elements, and the second- and fourth-order dissipative model is introduced on the O-type quadrilateral grid in the viscous-dominated region to minimize the numerical dissipation. When the steady subsonic and transonic turbulent flows are investigated, the distributions of isentropic mach number on the blade surface, exit flow angle, and loss coefficient are obtained. Comparing the present results with the experimental data, the accuracy and reliability of the current approach are confirmed. By giving a moving wake-type total pressure profile at the inlet plane in the rotor-relative frame of reference, the unsteady transonic inviscid and turbulent flows calculations are performed to study the interaction of the upstream wake with a moving blade row. The Mach number contours, perturbation component of the unsteady velocity vectors, shear stress, and pressure distributions on the blade surface are presented. The physical phenomena, which include periodic flow separation on the suction side, bowing, chopping and distortion of incoming wake, negative jet, convection of the vortices and wake segments, and vortex shedding at the trailing edge, are observed. It is concluded that the unsteady aerodynamic behavior is strongly dependent on the wake/shock/boundary layer interactions.

Hwang, C.J.; Liu, J.L. (National Cheng Kung Univ., Tainan (Taiwan, Province of China). Inst. of Aeronautics and Astronautics)

1993-10-01

373

NASA Technical Reports Server (NTRS)

High speed linear aerodynamic theories like piston theory and Newtonian impact theory are relatively inexpensive to use for flutter analysis. These theories have limited areas of applicability depending on the configuration and the flow conditions. In addition, these theories lack the ability to capture viscous, shock, and real gas effects. CFD methods can model all of these effects accurately, but the unsteady calculations required for flutter are expensive and often impractical. This paper describes a method for using steady CFD calculations to approximate the generalized aerodynamic forces for a flutter analysis. Example two-and three-dimensional aerodynamic force calculations are provided. In addition, a flutter analysis of a NASP-type wing will be discussed.

Scott, Robert C.; Pototzky, Anthony S.

1993-01-01

374

Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

NASA Technical Reports Server (NTRS)

The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg sweep case and also for small angles of attack at the 67.5 deg sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.

Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.

1985-01-01

375

Transonic aerodynamic and aeroelastic characteristics of a variable sweep wing

NASA Technical Reports Server (NTRS)

The flow over the B-1 wing is studied computationally, including the aeroelastic response of the wing. Computed results are compared with results from wind tunnel and flight tests for both low-sweep and high-sweep cases, at 25.0 deg. and 67.5 deg., respectively, for selected transonic Mach numbers. The aerodynamic and aeroelastic computations are made by using the transonic unsteady code ATRAN3S. Steady aerodynamic computations compare well with wind tunnel results for the 25.0 deg. sweep case and also for small angles of attack at the 67.5 deg. sweep case. The aeroelastic response results show that the wing is stable at the low sweep angle for the calculation at the Mach number at which there is a shock wave. In the higher sweep case, for the higher angle of attack at which oscillations were observed in the flight and wind tunnel tests, the calculations do not show any shock waves. Their absence lends support to the hypothesis that the observed oscillations are due to the presence of leading edge separation vortices and are not due to shock wave motion as was previously proposed.

Goorjian, P. M.; Guruswamy, G. P.; Ide, H.; Miller, G.

1985-01-01

376

Unsteady thin airfoil theory for transonic flows with embedded shocks

NASA Technical Reports Server (NTRS)

Classical unsteady thin airfoil theory fails for low frequencies at the subsonic freestream Mach number, because of the formation of a shock wave that shields the forward region of the airfoil from aft generated disturbances. In the present paper, the classical thin airfoil theory is modified to account for the presence and induced motion of such shocks. The modification consists of taking the steady local Mach number to be a simple step discontinuity, normal to the undisturbed flow, separating two uniform regions. Predicted regions are shown to correlate well both with the experiment and finite difference calculations.

Williams, M. H.

1979-01-01

377

Unsteady incompressible flow analysis using C-type grid with a curved branch cut

NASA Astrophysics Data System (ADS)

For an unsteady viscous flow simulation on a two-dimensional body at high angle of attack, the calculation of unsteady aerodynamic forces acting on the body is influenced not only by the unsteady separated flow near the body but also by the unsteady wake behind the body. To resolve the wake flow behind the trailing edge, an orthogonal C-grid topology with a curved branch cut aligned with the inviscid stagnation streamline is generated using a conformal mapping technique. This permits the desired grid clustering in the wake region and leads to better flow results in that region. The conformal mapping technique also provides analytical Jacobian metrics for the coordinate transformation and an inviscid solution which is useful in initiating the viscous flow of the impulsively started motion. The use of analytical metric coefficients facilitates the direct determination of part of the coefficients in the governing equations without introducing numerical errors. The unsteady two-dimensional incompressible Navier-Stokes equations in generalized orthogonal coordinates are solved using a vorticity-stream function formulation. The analysis also requires coupling of flow circulation in the far field. As a result, the vorticity-stream function formulation introduced in the present study contains the spatially elliptic equation for the disturbance stream function coupled with the temporally parabolic vorticity transport equation. An efficient direct Block-Gaussian Elimination (BGE) technique is used to solve the stream function Poisson problem subject to Neumann and Dirichlet boundary conditions. The vorticity transport equation is solved using the Alternating Direct Implicit (ADI) method. In addition, the Jacobian at the grid points along the curved branch cut is multi-valued and the metric coefficients are found to be discontinuous across the branch cut. Hence, a special finite element interpolation is implemented in the governing equations at those points in order to overcome this discontinuity. To achieve the objective stated above, the unsteady flow over a stationary NACA 0015 airfoil at various angles of attack is selected in the present study.

Fang, Kuan-Chieh

2000-08-01

378

Tactical missile aerodynamics - General topics. Progress in Astronautics and Aeronautics. Vol. 141

The present volume discusses the development history of tactical missile airframes, aerodynamic considerations for autopilot design, a systematic method for tactical missile design, the character and reduction of missile observability by radar, the visualization of high angle-of-attack flow phenomena, and the behavior of low aspect ratio wings at high angles of attack. Also discussed are airbreathing missile inlets, 'waverider' missile configurations, bodies with noncircular cross-sections and bank-to-turn missiles, asymmetric flow separation and vortex shedding on bodies-of-revolution, unsteady missile flows, swept shock-wave/boundary-layer interactions, pylon carriage and separation of stores, and internal stores carriage and separation.

Hemsch, M.J. (Lockheed Engineering and Sciences Co., Hampton, VA (United States))

1992-01-01

379

Saltation transport rate in unsteady wind variations.

Wind flow in the atmospheric boundary layer is usually turbulent. The gusty wind significantly influences the saltation transport which is treated as equilibrium saltation. This study performs one-dimension numerical simulations of unsteady sand saltation to discuss the effects of parameters of periodical wind variations on saltation response and sand transport rate prediction. The results show that unsteady transport rates are larger than steady rates of equivalent mean wind velocity. The ratio of unsteady/steady transport rates increases with the increase of amplitude and frequency. For the average wind velocities much larger than the threshold value, the errors of transport rates predicted by unsteady and steady model are about 10%, while for a wind velocity slightly larger than saltation threshold, the errors will be more than 200%. The sand transport rates are not zero even though the average wind velocity equals (is even smaller than) the threshold value, whereas Q must be zero in the steady model. Finally, an unsteady transport rate prediction formula is proposed which takes mean velocity, fluctuating intensity and period as independent variables. PMID:24853633

Wang, Ping; Zheng, Xiaojing

2014-05-01

380

Full-scale investigation of aerodynamic interactions between a rotor and fuselage

NASA Technical Reports Server (NTRS)

A wind tunnel program has been conducted in the NASA Ames National Full-Scale Aerodynamics Complex to investigate the aerodynamic interactions between a full-scale helicopter main rotor and simple fuselage. This program provides the first complete, quantitative data base detailing the effects of a rotor on a full-scale fuselage. Steady fuselage and rotor loads were obtained as well as steady and unsteady fuselage pressures. Data were acquired over a range of rotor thrusts, advance ratios, and shaft tilts. As expected, results indicate that the largest effects on mean fuselage forces, moments, and surface pressures occur at low speeds and high rotor thrusts. Quantitative comparisons were made to determine the ability of small-scale tests to simulate the effect of the rotor on mean fuselage forces and pressures.

Norman, Thomas R.; Yamauchi, Gloria K.

1991-01-01

381

Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

NASA Technical Reports Server (NTRS)

A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares and mixed estimation methods. At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

Klein, Vladislav; Murphy, Patrick C.

1999-01-01

382

Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion

NASA Technical Reports Server (NTRS)

Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.

Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

1978-01-01

383

Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

NASA Technical Reports Server (NTRS)

A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

Klein, Vladislav; Murphy, Patrick C.

1998-01-01

384

Unsteady penetration of a target by a liquid jet.

It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet-target interface--this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet. PMID:24277818

Uth, Tobias; Deshpande, Vikram S

2013-12-10

385

Unsteady Newton-Busemann flow theory. Part 2: Bodies of revolution

NASA Technical Reports Server (NTRS)

Newtonian flow theory for unsteady flow past oscillating bodies of revolution at very high Mach numbers is completed by adding a centrifugal force correction to the impact pressures. Exact formulas for the unsteady pressure and the stability derivatives are obtained in closed form and are applicable to bodies of revolution that have arbitrary shapes, arbitrary thicknesses, and either sharp or blunt noses. The centrifugal force correction arising from the curved trajectories followed by the fluid particles in unsteady flow cannot be neglected even for the case of a circular cone. With this correction, the present theory is in excellent agreement with experimental results for sharp cones and for cones with small nose bluntness; gives poor agreement with the results of experiments in air for bodies with moderate or large nose bluntness. The pitching motions of slender power-law bodies of revulution are shown to be always dynamically stable according to Newton-Busemann theory.

Hui, W. H.; Tobak, M.

1981-01-01

386

A Modern Compressible Flow Laboratory Experience for Undergraduates

measurements course is then followed consecutively by an aero-structures and an aerodynamics laboratory will have taken an incompressible aerodynamics course. They will be enrolled in the compressible aerodynamics course concurrently with the aerodynamics laboratory. Thus, a compressible laboratory experience

Texas at Arlington, University of

387

Low-Frequency Unsteadiness in DNS of Shock Wave/Turbulent Boundary Layer Interaction

Low-Frequency Unsteadiness in DNS of Shock Wave/Turbulent Boundary Layer Interaction Stephan Priebe , M. Pino MartÂ´in The direct numerical simulation (DNS) of a compression ramp shock wave/ turbulent in the context of a compression ramp DNS against experiments at matching flow conditions.1, 2 The low

MartÃn, Pino

388

Unsteady Computations of a Jet in a Crossflow with Ground Effect

NASA Technical Reports Server (NTRS)

A numerical study of a jet in crossflow with ground effect is conducted using OVERFLOW with dual time-stepping and low Mach number preconditioning. The results of the numerical study are compared to an experiment to show that the numerical methods are capable of capturing the dominant features of the flow field as well as the unsteadiness associated with the ground vortex.

Pandya, Shishir; Murman, Scott; Venkateswaran, Sankaran; Kwak, Dochan (Technical Monitor)

2002-01-01

389

We describe the development of fiber optic sensors to measure heat flux and unsteady temperature in wind tunnel experiments for turbomachinery applications. The sensors are intrinsic Fabry-Perot interferometers fabricated from single-mode optical fiber. The optical path length within the interferometer fiber is sensitive to temperature. We present results from three sensors embedded as calorimeter gauges in a ceramic nozzle guide

Stephen R. Kidd; James S. Barton; Julian D. Jones; Kamaljit S. Chana

1993-01-01

390

Unsteady flow in turbomachinery: An overview

NASA Astrophysics Data System (ADS)

The importance of understanding and modeling the unsteady flow phenomena in turbomachinery is discussed. Historical events in the application and development of gas turbines for aircraft propulsion are traced. Technology advancements over the years are highlighted with focus on the compression system components. Trends in compressor research within the National Advisory Committee for Aeronautics (NACA)/National Aeronautics and Space Administration (NASA) are noted. The impact of technology advancements on the increased occurrences of unsteady flow related problems in advanced engine development programs is discussed. The impact of the new and more demanding requirements being imposed on the propulsion system to meet advanced aircraft mission needs are also noted. Brief discussions on the present day understanding and modeling capability of the unsteady flow phenomena are presented to include discussions on rotating stall, surge, flutter, forced response and noise generation.

391

Postural Changes and Aerodynamic Forces in Alpine Skiing

A wind-tunnel experiment was performed to measure the aerodynamic forces acting on an alpine skier running down a slope at top speed and to clarify their relation to his postural changes. Throe wind velocities (10, 20, 30ms) were chosen. Two male Japanese top alpine skiers served as subjects. The following results wero obtained: (1) measured values of drag ranged from

KAZTJHIKO WATANABE; TATSUYUKI OHTSUKI

1977-01-01

392

Numerical Analysis on Aerodynamic Heating in Hypersonic Shock Interacting Flow

It is still challenging to predict surface heat-transfer rate in hypersonic flow computations. In this paper, we first performed numerical experiments by changing numerical flux functions and meshes for a hypersonic flow around a hemisphere. Results show that AUSM+ flux function by Liou (1996) on a carefully refined mesh can lead to a shock stable solution with an accurate aerodynamic

Keiichi Kitamura; Yoshiaki Nakamura

2008-01-01

393

Aerodynamic aspects on recovery of sounding rocket payload

Aerodynamic experiments for the design of a recovery system for a sounding rocket payload included wind tunnel tests of payload models at high angles of attack over Mach numbers ranging from subsonic to supersonic and airdrop tests of payload models. It was shown that (1) the magnitude of the cross-flow proportionality factor used for predicting the payload normal force coefficient

M. Shirouzu; H. Kubota; Y. Shibato

1980-01-01

394

Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance

NASA Technical Reports Server (NTRS)

Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Data collected enabled differences in overall individual stage and the third stage blade element performance parameters to be compared. The results show conclusively that seal-tooth leakage ran have a large impact on compressor aerodynamic performance while the presence of the shrouded stator cavities alone seemed to have little influence. Overall performance data revealed that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly predict overall performance it is equally important to account for the effects of seal-tooth leakage as it is to include the influence of tip clearance flows. Third stage blade element performance data suggested that the performance degradation observed when leakage was increased was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near hub performance of the stator row in which leakage occurred. Second, the altered stator exit now conditions caused by increased leakage impaired the performance of the next downstream stage by decreasing the work input of the downstream rotor and increasing total pressure loss of the downstream stator. These trends caused downstream stages to progressively perform worse. Other measurements were acquired to determine spatial and temporal flow field variations within the up-and-downstream shrouded stator cavities. Flow within the cavities involved low momentum fluid traveling primarily in the circumferential direction at about 40% of the hub wheel speed. Measurements indicated that the flow within both cavities was much more complex than first envisioned. A vortical flow structure in the meridional plane, similar to a driven cavity, existed within the upstream cavity Furthermore, other spatial and temporal variations in Row properties existed. the most prominent being caused by the upstream potential influence of the downstream blade. This influence caused the fluid within cavities near the leading edges of either stator blades in space or rotor blades in time to be driven radially inward relative to fluid near blade mid-pitch. This influence also produced large unsteady velocity fluctuations in the downstream cavity because of the passing of the downstream rotor blade.

Wellborn, Steven R.; Okiishi, Theodore H.

1996-01-01

395

Aerial locomotion in flies and robots: kinematic control and aerodynamics of oscillating wings.

Flight in flies results from a feedback cascade in which the animal converts mechanical power produced by the flight musculature into aerodynamic forces. A major goal of flight research is to understand the functional significance of the various components in this cascade ranging from the generation of the neural code, the control of muscle mechanical power output, wing kinematics and unsteady aerodynamic mechanisms. Here, I attempted to draw a broad outline on fluid dynamic mechanisms found in flapping insect wings such as leading edge vorticity, rotational circulation and wake capture momentum transfer, as well as on the constraints of flight force control by the neuromuscular system of the fruit fly Drosophila. This system-level perspective on muscle control and aerodynamic mechanisms is thought to be a fundamental bridge in any attempt to link the function and performance of the various flight components with their particular role for wing motion and aerodynamic control in the behaving animal. Eventually, this research might facilitate the development of man-made biomimetic autonomous micro air vehicles using flapping wing motion for propulsion that are currently under construction by engineers. PMID:18089042

Lehmann, Fritz-Olaf

2004-07-01

396

Assessment of CFD Estimation of Aerodynamic Characteristics of Basic Reusable Rocket Configurations

NASA Astrophysics Data System (ADS)

Flow-fields around the basic SSTO-rocket configurations are numerically simulated by the Reynolds-averaged Navier-Stokes (RANS) computations. Simulations of the Apollo-like configuration is first carried out, where the results are compared with NASA experiments and the prediction ability of the RANS simulation is discussed. The angle of attack of the freestream ranges from 0° to 180° and the freestream Mach number ranges from 0.7 to 2.0. Computed aerodynamic coefficients for the Apollo-like configuration agree well with the experiments under a wide range of flow conditions. The flow simulations around the slender Apollo-type configuration are carried out next and the results are compared with the experiments. Computed aerodynamic coefficients also agree well with the experiments. Flow-fields are dominated by the three-dimensional massively separated flow, which should be captured for accurate aerodynamic prediction. Grid refinement effects on the computed aerodynamic coefficients are investigated comprehensively.

Fujimoto, Keiichiro; Fujii, Kozo

397

Experimental investigation of hypersonic aerodynamics

NASA Technical Reports Server (NTRS)

An extensive series of ballistic range tests are currently being conducted at the Ames Research Center. These tests are intended to investigate the hypersonic aerodynamic characteristics of two basic configurations, which are: the blunt-cone Galileo probe which is scheduled to be launched in late 1989 and will enter the atmosphere of Jupiter in 1994, and a generic slender cone configuration to provide experimental aerodynamic data including good flow-field definition which computational aerodynamicists could use to validate their computer codes. Some of the results obtained thus far are presented and work for the near future is discussed.

Heinemann, K.; Intrieri, Peter F.

1987-01-01

398

The Current Status of Unsteady CFD Approaches for Aerodynamic Flow Control

NASA Technical Reports Server (NTRS)

An overview of the current status of time dependent algorithms is presented. Special attention is given to algorithms used to predict fluid actuator flows, as well as other active and passive flow control devices. Capabilities for the next decade are predicted, and principal impediments to the progress of time-dependent algorithms are identified.

Carpenter, Mark H.; Singer, Bart A.; Yamaleev, Nail; Vatsa, Veer N.; Viken, Sally A.; Atkins, Harold L.

2002-01-01

399

Airfoil Optimization Using Practical Aerodynamic Design Requirements

Airfoil Optimization Using Practical Aerodynamic Design Requirements Howard P. Buckley, Beckett Y., Toronto, Ontario, M3H 5T6, Canada Practical aerodynamic design problems must balance the goal the aerodynamic constraints imposed at the off-design operating conditions to be treated explicitly. Both methods

Zingg, David W.

400

Unsteady heat transfer in heat pipes

The purpose was to investigate the unsteady heat transfer associated with a heat pipe during start up operation. Initial studies were conducted with a variety of heat pipe screen wick configurations in order to develop a mathematical expression for the flow velocity of a fluid inducted by the capillary structure of the wick. This mathematical model was solved first numerically

J. E. Beam

1985-01-01

401

UNSTEADY FLOW SIMULATION IN HYDRAULIC MACHINERY

In the field of hydraulic machinery Computational Fluid Dynamics (CFD) is routinely used today in research and development as well as in the daily design phase. Today in industry mostly steady state simulations are applied. In this paper, however, an overview over un- steady simulations are shown for different applications. The presented examples contain problems with self excited unsteadiness, vortex

Albert Ruprecht

402

Movable bed roughness in unsteady oscillatory flow

A model to predict the roughness is unsteady oscillatory flows over movable, noncohesive beds is presented. The roughness over movable beds is shown to be a function of the boundary shear stress rather than a fixed geometrical scale as is the case for fully rough turbulent boundary shear flows over immobile beds. The model partitions the roughness into two distinct

William D. Grant; Ole Secher Madsen

1982-01-01

403

Progress in Unsteady Turbopump Flow Simulations

NASA Technical Reports Server (NTRS)

This viewgraph presentation discusses unsteady flow simulations for a turbopump intended for a reusable launch vehicle (RLV). The simulation process makes use of computational grids and parallel processing. The architecture of the parallel computers used is discussed, as is the scripting of turbopump simulations.

Kiris, Cetin C.; Chan, William; Kwak, Dochan; Williams, Robert

2002-01-01

404

Aerodynamic effects of Nacelle position

NASA Technical Reports Server (NTRS)

An engineer in the PRT test the aerodynamic effects of nacelle position with respect to the wing, May 1930. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 132.

1932-01-01

405

New technology in turbine aerodynamics

NASA Technical Reports Server (NTRS)

A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

Glassman, A. J.; Moffitt, T. P.

1972-01-01

406

Aerodynamic calculation of unmanned aircraft

Purpose – To provide an effective numerical method for analysis and design of aerodynamic characteristics of unmanned aerial vehicles basing on commercial package VSAERO. Design\\/methodology\\/approach – Calculation was made by VSAERO package, which is based on a classical panel method enhanced on boundary layer method. Paper explains how to use efficiently VSAERO package, which utilizes advanced CAD techniques, in modern

Marcin Figat; Tomasz Goetzendorf-Grabowski; Zdobys?aw Goraj

2005-01-01

407

Shuttle reentry aerodynamic heating test

NASA Technical Reports Server (NTRS)

The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.

Pond, J. E.; Mccormick, P. O.; Smith, S. D.

1971-01-01

408

Rotary wing aerodynamically generated noise

NASA Technical Reports Server (NTRS)

The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.

Schmitz, F. J.; Morse, H. A.

1982-01-01

409

Dynamic Soaring: Aerodynamics for Albatrosses

ERIC Educational Resources Information Center

Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio "L/D", albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant "L/D". Analytic solutions to the simplified…

Denny, Mark

2009-01-01

410

The Aerodynamics of Hummingbird Flight

(Abstract) Hummingbirds fly with their wings almost fully extended during their entire wingbeat. This pattern, associated with having proportionally short humeral bones, long distal wing elements, and assumed to be an adaptation for extended hovering flight, has lead to predictions that the aerodynamic mechanisms exploited by hummingbirds during hovering should be similar to those observed in insects. To test these

Douglas R. Warrick; Bret W. Tobalske; Donald R. Powers; Michael H. Dickinson

411

Aerodynamics of the hovering hummingbird

Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either

Douglas R. Warrick; Bret W. Tobalske; Donald R. Powers

2005-01-01

412

Aerodynamic design via control theory

NASA Technical Reports Server (NTRS)

The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

Jameson, Antony

1988-01-01

413

Payload vehicle aerodynamic reentry analysis

An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry

Donald Tong

1991-01-01

414

Aerodynamics of runback ice accretions

NASA Astrophysics Data System (ADS)

An experimental study of the effects of simulated runback ice accretions has been performed in order to describe their aerodynamic performance penalties and investigate their scaling for use in sub-scale aerodynamic testing. Runback ice accretions corresponding to three flight conditions, warm hold, cold hold and descent, were simulated and tested on the NACA 23012 and NACA 3415. The ice shapes were simulated on two levels of fidelity. Medium-fidelity simulations captured the chordwise location, cross-section, height distribution and chordwise extent of the ice accretion. Low-fidelity simulations captured their height and chordwise location. Two scaling methods were also employed. Each simulation was scaled based upon the ratio of the aerodynamic model chord to the full-scale icing model, called geometric scaling. The warm hold simulations were also scaled based upon the ratio of the local, clean-model boundary-layer thickness on the aerodynamic model to that of the icing model, called boundary-layer scaling. This method was employed because the geometrically-scaled simulations were found to be on the order of the boundary-layer thickness as the model approached stall. Following aerodynamic performance testing, fluorescent-oil flow visualization and hot-wire anemometry were used to investigate the flowfield resulting from the low-fidelity warm hold simulations. Results for this work have shown that runback ice accretions can cause significant aerodynamic performance penalties. In general, the NACA 23012 experienced greater aerodynamic performance penalties due to the runback simulations than did the NACA 3415. Low-fidelity simulations of the cold hold case agreed quite well with their medium fidelity counterparts. In the descent case, the level of variation in ice accretion height was too small for there to be a distinction between the low- and medium-fidelity cases. Low-fidelity simulations of the warm hold accretion did not agree well with the medium-fidelity simulation. In fact, the geometrically-scaled simulation was observed to increase the maximum lift and stalling angle-of-attack of the NACA 3415. Flowfield investigations using fluorescent-oil flow visualization and hot-wire anemometry showed that the simulations that were similar in height to the clean-model local boundary-layer thickness acted to stabilize the recovering boundary layer, delaying stall past the stalling angle-of-attack of the clean case.

Whalen, Edward A.

415

Investigation of aerodynamic braking devices for wind turbine applications

This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

Griffin, D.A. [R. Lynette & Associates, Seattle, WA (United States)

1997-04-01

416

Unsteady Interaction between a High-Pressure Turbine and a Counter-Rotating Low-Pressure Turbine

NASA Astrophysics Data System (ADS)

In an effort to strengthen our knowledge, understanding and prediction capabilities of unsteady turbine aerodynamics in multi-stage turbomachinery, an in-depth numerical analysis of a single stage High-Pressure Turbine (HPT) followed by a counter-rotating Low-Pressure Turbine (LPT) is performed via unsteady CFD using a parallel version of the RANS flow solver MSU-Turbo. Results from two numerical simulations are presented. Two HPT rotor design are being compared to each other and to available experimental data. The computational domains consist of the 1^st HPT rotor blade, the 1^st LPT nozzle, and the 1^st counter-rotating LPT rotor. In order to respect the circumferential blade count and the corresponding spatial periodicity, a 1/18^th of annulus is used for each blade row. Particular attention is given to the aerodynamic loss mechanism in the inter-turbine space. The inquiry focuses on the HPT rotor tail shock waves and their interaction with the LPT reflected shock. In addition, the investigation is extended to show how far downstream the interaction loss transfers to LPT components. Finally, an attempt is made to answer the following questions: 1)-Is the interaction loss reflected by time-averaged performance parameters? 2)- Is it carried by periodic waveforms? Or 3)- Is it represented by an increase of turbulence level?

Felten, Frederic; Laskowski, Gregory

2006-11-01

417

NASA Astrophysics Data System (ADS)

The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests.

Ko, Seung-Hee; Bae, Jae-Sung; Rho, Jin-Ho

2014-07-01

418

NASA Technical Reports Server (NTRS)

The primary objective of this study was the development of a time-dependent three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict unsteady compressible transonic flows about ducted and unducted propfan propulsion systems at angle of attack. The computer codes resulting from this study are referred to as Advanced Ducted Propfan Analysis Codes (ADPAC). This report is intended to serve as a computer program user's manual for the ADPAC developed under Task 2 of NASA Contract NAS3-25270, Unsteady Ducted Propfan Analysis. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. A time-accurate implicit residual smoothing operator was utilized for unsteady flow predictions. For unducted propfans, a single H-type grid was used to discretize each blade passage of the complete propeller. For ducted propfans, a coupled system of five grid blocks utilizing an embedded C-grid about the cowl leading edge was used to discretize each blade passage. Grid systems were generated by a combined algebraic/elliptic algorithm developed specifically for ducted propfans. Numerical calculations were compared with experimental data for both ducted and unducted propfan flows. The solution scheme demonstrated efficiency and accuracy comparable with other schemes of this class.

Hall, Edward J.; Delaney, Robert A.; Bettner, James L.

1991-01-01

419

A first-order time-domain Green's function approach to supersonic unsteady flow

NASA Technical Reports Server (NTRS)

A time-domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. The Green's function method is employed in order to convert the potential-flow differential equation into an integral one. This integral equation is then discretized, in space through standard finite-element technique, and in time through finite-difference, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. Consistent with the spatial linear (first-order) finite-element approximations, the potential and co-normalwash are assumed to vary linearly in time. The long range goal of our research is to develop a comprehensive theory for unsteady supersonic potential aerodynamics which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.

Freedman, M. I.; Tseng, K.

1985-01-01

420

Unsteady pressure measurements on a biconvex airfoil in a transonic oscillating cascade

NASA Technical Reports Server (NTRS)

Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfroils were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence and angle of 0 deg and A Mach number of 0.65 in order to obtain results in a shock-free compressible flowfield. Subsequent tests were performed at an incidence angle of 7 deg and Mach number of 0.8 in order to observe the surface pressures with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and -90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semi-chord reduced frequencies up to about 0.5 at a Mach number of 0.8). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.

Shaw, L. M.; Boldman, D. R.; Buggele, A. E.; Buffum, D. H.

1985-01-01