Science.gov

Sample records for upper limb muscle

  1. Characteristic MRI Findings of upper Limb Muscle Involvement in Myotonic Dystrophy Type 1

    PubMed Central

    Sugie, Kazuma; Sugie, Miho; Taoka, Toshio; Tonomura, Yasuyo; Kumazawa, Aya; Izumi, Tesseki; Kichikawa, Kimihiko; Ueno, Satoshi

    2015-01-01

    The objective of our study was to evaluate the relation between muscle MRI findings and upper limb weakness with grip myotonia in patients with myotonic dystrophy type 1 (DM1). Seventeen patients with DM1 were evaluated by manual muscle strength testing and muscle MRI of the upper limbs. Many DM1 patients presenting with decreased grasping power frequently showed high intensity signals in the flexor digitorum profundus (FDP) muscles on T1-weighted imaging. Patients presenting with upper limb weakness frequently also showed high intensity signals in the flexor pollicis longus, abductor pollicis longus, and extensor pollicis muscles. Disturbances of the distal muscles of the upper limbs were predominant in all DM1 patients. Some DM1 patients with a prolonged disease duration showed involvement of not only distal muscles but also proximal muscles in the upper limbs. Muscle involvement of the upper limbs on MRI strongly correlated positively with the disease duration or the numbers of CTG repeats. To our knowledge, this is the first study to provide a detailed description of the distribution and severity of affected muscles of the upper limbs on MRI in patients with DM1. We conclude that muscle MRI findings are very useful for identifying affected muscles and predicting the risk of muscle weakness in the upper limbs of DM1 patients. PMID:25919300

  2. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    NASA Astrophysics Data System (ADS)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  3. Partial weight support differentially affects corticomotor excitability across muscles of the upper limb

    PubMed Central

    Runnalls, Keith D.; Anson, Greg; Wolf, Steven L.; Byblow, Winston D.

    2014-01-01

    Abstract Partial weight support may hold promise as a therapeutic adjuvant during rehabilitation after stroke by providing a permissive environment for reducing the expression of abnormal muscle synergies that cause upper limb impairment. We explored the neurophysiological effects of upper limb weight support in 13 healthy young adults by measuring motor‐evoked potentials (MEPs) from transcranial magnetic stimulation (TMS) of primary motor cortex and electromyography from anterior deltoid (AD), biceps brachii (BB), extensor carpi radialis (ECR), and first dorsal interosseous (FDI). Five levels of weight support, varying from none to full, were provided to the arm using a commercial device (Saebo Mobile Arm Support). For each level of support, stimulus–response (SR) curves were derived from MEPs across a range of TMS intensities. Weight support affected background EMG activity in each of the four muscles examined (P <0.0001 for each muscle). Tonic background activity was primarily reduced in the AD. Weight support had a differential effect on the size of MEPs across muscles. After curve fitting, the SR plateau for ECR increased at the lowest support level (P =0.004). For FDI, the SR plateau increased at the highest support level (P =0.0003). These results indicate that weight support of the proximal upper limb modulates corticomotor excitability across the forearm and hand. The findings support a model of integrated control of the upper limb and may inform the use of weight support in clinical settings. PMID:25501435

  4. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    NASA Astrophysics Data System (ADS)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  5. The effect of arm weight support on upper limb muscle synergies during reaching movements

    PubMed Central

    2014-01-01

    Background Compensating for the effect of gravity by providing arm-weight support (WS) is a technique often utilized in the rehabilitation of patients with neurological conditions such as stroke to facilitate the performance of arm movements during therapy. Although it has been shown that, in healthy subjects as well as in stroke survivors, the use of arm WS during the performance of reaching movements leads to a general reduction, as expected, in the level of activation of upper limb muscles, the effects of different levels of WS on the characteristics of the kinematics of motion and of the activity of upper limb muscles have not been thoroughly investigated before. Methods In this study, we systematically assessed the characteristics of the kinematics of motion and of the activity of 14 upper limb muscles in a group of 9 healthy subjects who performed 3-D arm reaching movements while provided with different levels of arm WS. We studied the hand trajectory and the trunk, shoulder, and elbow joint angular displacement trajectories for different levels of arm WS. Besides, we analyzed the amplitude of the surface electromyographic (EMG) data collected from upper limb muscles and investigated patterns of coordination via the analysis of muscle synergies. Results The characteristics of the kinematics of motion varied across WS conditions but did not show distinct trends with the level of arm WS. The level of activation of upper limb muscles generally decreased, as expected, with the increase in arm WS. The same eight muscle synergies were identified in all WS conditions. Their level of activation depended on the provided level of arm WS. Conclusions The analysis of muscle synergies allowed us to identify a modular organization underlying the generation of arm reaching movements that appears to be invariant to the level of arm WS. The results of this study provide a normative dataset for the assessment of the effects of the level of arm WS on muscle synergies in stroke survivors and other patients who could benefit from upper limb rehabilitation with arm WS. PMID:24594139

  6. Decoding upper limb residual muscle activity in severe chronic stroke

    PubMed Central

    Ramos-Murguialday, Ander; Garca-Cossio, Eliana; Walter, Armin; Cho, Woosang; Broetz, Doris; Bogdan, Martin; Cohen, Leonardo G; Birbaumer, Niels

    2015-01-01

    Objective Stroke is a leading cause of long-term motor disability. Stroke patients with severe hand weakness do not profit from rehabilitative treatments. Recently, brain-controlled robotics and sequential functional electrical stimulation allowed some improvement. However, for such therapies to succeed, it is required to decode patients' intentions for different arm movements. Here, we evaluated whether residual muscle activity could be used to predict movements fromparalyzed joints in severely impaired chronic stroke patients. Methods Muscle activity was recorded with surface-electromyography (EMG) in 41 patients, with severe hand weakness (Fugl-Meyer Assessment [FMA] hand subscores of 2.932.7), in order to decode their intention to perform six different motions of the affected arm, required for voluntary muscle activity and to control neuroprostheses. Decoding of paretic and nonparetic muscle activity was performed using a feed-forward neural network classifier. The contribution of each muscle to the intended movement was determined. Results Decoding of up to six arm movements was accurate (>65%) in more than 97% of nonparetic and 46% of paretic muscles. Interpretation These results demonstrate that some level of neuronal innervation to the paretic muscle remains preserved and can be used to implement neurorehabilitative treatments in 46% of patients with severe paralysis and extensive cortical and/or subcortical lesions. Such decoding may allow these patients for the first time after stroke to control different motions of arm prostheses through muscle-triggered rehabilitative treatments. PMID:25642429

  7. Long-Latency Feedback Coordinates Upper-Limb and Hand Muscles during Object Manipulation Tasks123

    PubMed Central

    Thonnard, Jean-Louis; Scott, Stephen H.

    2016-01-01

    Suppose that someone bumps into your arm at a party while you are holding a glass of wine. Motion of the disturbed arm will engage rapid and goal-directed feedback responses in the upper-limb. Although such responses can rapidly counter the perturbation, it is also clearly desirable not to destabilize your grasp and/or spill the wine. Here we investigated how healthy humans maintain a stable grasp following perturbations by using a paradigm that requires spatial tuning of the motor response dependent on the location of a virtual target. Our results highlight a synchronized expression of target-directed feedback in shoulder and hand muscles occurring at ∼60 ms. Considering that conduction delays are longer for the more distal hand muscles, these results suggest that target-directed responses in hand muscles were initiated before those for the shoulder muscles. These results show that long-latency feedback can coordinate upper limb and hand muscles during object manipulation tasks.

  8. Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle

    PubMed Central

    2014-01-01

    Background Despite growing interest in the relationship between exercise and short-term neural plasticity, the effects of exercise on motor cortical (M1) excitability are not well studied. Acute, lower-limb aerobic exercise may potentially modulate M1 excitability in working muscles, but the effects on muscles not involved in the exercise are unknown. Here we examined the excitability changes in an upper limb muscle representation following a single session of lower body aerobic exercise. Investigating the response to exercise in a non-exercised muscle may help to determine the clinical usefulness of lower-body exercise interventions for upper limb neurorehabilitation. Methods In this study, transcranial magnetic stimulation was used to assess inputoutput curves, short-interval intracortical inhibition (SICI), long-interval intracortical inhibition (LICI) and intracortical facilitation (ICF) in the extensor carpi radialis muscle in twelve healthy individuals following a single session of moderate stationary biking. Additionally, we examined whether the presence of a common polymorphism of the brain-derived neurotrophic factor (BDNF) gene would affect the response of these measures to exercise. Results We observed significant increases in ICF and decreases in SICI following exercise. No changes in LICI were detected, and no differences were observed in inputoutput curves following exercise, or between BDNF groups. Conclusions The current results demonstrate that the modulation of intracortical excitability following aerobic exercise is not limited to those muscles involved in the exercise, and that while exercise does not directly modulate the excitability of motor neurons, it may facilitate the induction of experience-dependent plasticity via a decrease in intracortical inhibition and increase in intracortical facilitation. These findings indicate that exercise may create favourable conditions for adaptive plasticity in M1 and may be an effective adjunct to traditional training or rehabilitation methods. PMID:25031838

  9. Trunk and upper limb muscle activation during flat and topspin forehand drives in young tennis players.

    PubMed

    Rogowski, Isabelle; Rouffet, David; Lambalot, Frederic; Brosseau, Olivier; Hautier, Christophe

    2011-02-01

    This study compared EMG activity of young tennis players' muscles during forehand drives in two groups, GD-those able to raise by more than 150% the vertical velocity of racket-face at impact from flat to topspin forehand drives, and GND, those not able to increase their vertical velocity to the same extent. Upper limb joint angles, racket-face velocities, and average EMGrms values, were studied. At similar joint angles, a fall in horizontal velocity and a rise in racket-face vertical velocity from flat to topspin forehand drives were observed. Shoulder muscle activity rose from flat to topspin forehand drives in GND, but not for drives in GD. Forearm muscle activity reduced from flat to topspin forehand drives in GD, but muscle activation was similar in GND. The results show that radial deviation increased racket-face vertical velocity more at impact from the flat to topspin forehand drives than shoulder abduction. PMID:21451178

  10. Site-specific muscle hyper-reactivity in musicians with occupational upper limb pain.

    PubMed

    Moulton, B; Spence, S H

    1992-07-01

    Fourteen musicians who reported a history of pain in the upper limb associated with the playing of their instruments were compared with a sample of pain-free musicians, matched for age, sex and musical instrument. Four tasks were presented in random order and included neutral, general stressor, personal stressor and pain stressor tasks. Ratings of stressfulness and recordings of skin conductance level confirmed the effectiveness of the experimental manipulations for both subject groups. No differences were found between groups or tasks for frontalis surface electromyograph (EMG) activity. Evidence was found, however, of EMG elevation in flexor and trapezius muscles on the pain side for the pain subjects, in response to the task involving recall of a pain experience. This elevation was not found for the pain-free controls or for other stressor tasks, although some elevation in response to the pain stressor task was found for pain subjects in the trapezius muscles of the non-pain side. The duration of return to baseline of EMG following the pain stressor task was found to be extended in pain subjects for the trapezius, but not for the flexor muscles of the pain side. The findings suggest that site-specific muscle hyper-reactivity may play a role in the development and maintenance of occupational upper limb pain in musicians. PMID:1616472

  11. Upper Limb Strength and Muscle Volume in Healthy Middle-Aged Adults.

    PubMed

    Saul, Katherine R; Vidt, Meghan E; Gold, Garry E; Murray, Wendy M

    2015-12-01

    Our purpose was to characterize shoulder muscle volume and isometric moment, as well as their relationship, for healthy middle- aged adults. Muscle volume and maximum isometric joint moment were assessed for 6 functional muscle groups of the shoulder, elbow, and wrist in 10 middle-aged adults (4660 y, 5M, 5F). Compared with young adults, shoulder abductors composed a smaller percentage of total muscle volume (P = .0009) and there was a reduction in shoulder adductor strength relative to elbow flexors (P = .012). We observed a consistent ordering of moment-generating capacity among functional groups across subjects. Although total muscle volume spanned a 2.3-fold range, muscle volume was distributed among functional groups in a consistent manner across subjects. On average, 72% of the variation in joint moment could be explained by the corresponding functional group muscle volume. These data are useful for improved modeling of upper limb musculoskeletal performance in middle-aged subjects, and may improve computational predictions of function for this group. PMID:26155870

  12. Simulation of Upper Limb Movements

    NASA Astrophysics Data System (ADS)

    Uher?k, Filip; Hu?ko, Branislav

    2011-12-01

    The paper deals with controlling an upper limb prosthesis based on the measurement of myoelectric signals (MES) while drinking. MES signals have been measured on healthy limbs to obtain the same response for the prosthesis. To simulate the drinking motion of a healthy upper limb, the program ADAMS was used, with all degrees of freedom and a hand after trans-radial amputation with an existing hand prosthesis. Modification of the simulation has the exact same logic of control, where the muscle does not have to be strenuous all the time, but it is the impulse of the muscle which drives the motor even though the impulse disappears and passed away.

  13. Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord

    NASA Astrophysics Data System (ADS)

    Sharpe, Abigail N.; Jackson, Andrew

    2014-02-01

    Objective. Electrical stimulation of the spinal cord has potential applications following spinal cord injury for reanimating paralysed limbs and promoting neuroplastic changes that may facilitate motor rehabilitation. Here we systematically compare the efficacy, selectivity and frequency-dependence of different stimulation methods in the cervical enlargement of anaesthetized monkeys. Approach. Stimulating electrodes were positioned at multiple epidural and subdural sites on both dorsal and ventral surfaces, as well as at different depths within the spinal cord. Motor responses were recorded from arm, forearm and hand muscles. Main results. Stimulation efficacy increased from dorsal to ventral stimulation sites, with the exception of ventral epidural electrodes which had the highest recruitment thresholds. Compared to epidural and intraspinal methods, responses to subdural stimulation were more selective but also more similar between adjacent sites. Trains of stimuli delivered to ventral sites elicited consistent responses at all frequencies whereas from dorsal sites we observed a mixture of short-latency facilitation and long-latency suppression. Finally, paired stimuli delivered to dorsal surface and intraspinal sites exhibited symmetric facilitatory interactions at interstimulus intervals between 2-5 ms whereas on the ventral side interactions tended to be suppressive for near-simultaneous stimuli. Significance. We interpret these results in the context of differential activation of afferent and efferent roots and intraspinal circuit elements. In particular, we propose that distinct direct and indirect actions of spinal cord stimulation on motoneurons may be advantageous for different applications, and this should be taken into consideration when designing neuroprostheses for upper-limb function.

  14. The effect of muscle fatigue on position sense in an upper limb multi-joint task.

    PubMed

    Vafadar, Amirhossein K; Côté, Julie N; Archambault, Philippe S

    2012-04-01

    The purpose of this study was to estimate the extent to which muscle fatigue can impact on the position sense in the upper limb. Twelve healthy volunteers were asked to do a reaching task while grasping a wooden block and match the block's position with a corresponding target displayed on a flat screen, without vision. Following that, subjects performed resistive exercises with Thera-band strips until fatigue was induced and then the position sense task was repeated. A significant change in the endpoint position was observed after fatigue, in the up/down direction (p ≤ .001). The variability of endpoint positions in up/down direction was also significantly increased after fatigue (p ≤.03). There was no significant change in endpoint orientation but there was a significant fatigue × orientation effect on endpoint rotational variability. In a follow-up experiment, a group of subjects repeated the same protocol, but with a period of quiet rest between the two position sense tasks. In that group, there were no differences in endpoint position, orientation or variability. Muscle fatigue is an important factor that should be taken into consideration during the treatment of musculoskeletal injuries as well as athletic training. PMID:22357216

  15. Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord

    PubMed Central

    Sharpe, Abigail N; Jackson, Andrew

    2014-01-01

    Objective Electrical stimulation of the spinal cord has potential applications following spinal cord injury for reanimating paralysed limbs and promoting neuroplastic changes that may facilitate motor rehabilitation. Here we systematically compare the efficacy, selectivity and frequency-dependence of different stimulation methods in the cervical enlargement of anaesthetized monkeys. Approach Stimulating electrodes were positioned at multiple epidural and subdural sites on both dorsal and ventral surfaces, as well as at different depths within the spinal cord. Motor responses were recorded from arm, forearm and hand muscles. Main results Stimulation efficacy increased from dorsal to ventral stimulation sites, with the exception of ventral epidural electrodes which had the highest recruitment thresholds. Compared to epidural and intraspinal methods, responses to subdural stimulation were more selective but also more similar between adjacent sites. Trains of stimuli delivered to ventral sites elicited consistent responses at all frequencies whereas from dorsal sites we observed a mixture of short-latency facilitation and long-latency suppression. Finally, paired stimuli delivered to dorsal surface and intraspinal sites exhibited symmetric facilitatory interactions at interstimulus intervals between 25 ms whereas on the ventral side interactions tended to be suppressive for near-simultaneous stimuli. Significance We interpret these results in the context of differential activation of afferent and efferent roots and intraspinal circuit elements. In particular, we propose that distinct direct and indirect actions of spinal cord stimulation on motoneurons may be advantageous for different applications, and this should be taken into consideration when designing neuroprostheses for upper-limb function. PMID:24654267

  16. The effect of added degrees of freedom and handle type on upper limb muscle activity during simulated hand tool use.

    PubMed

    Fischer, Steven L; Wells, Richard P; Dickerson, Clark R

    2009-01-01

    The human upper limb serves a number of functions ranging from coarse movements such as supporting a load when lifting overhead to the fine motor control required when painting a portrait. However, there are limited data available that address upper extremity function and performance when using hand tools in situations where the tool endpoint is not fixed but can move translationally or rotationally. The goal of this study was to examine variation in arm muscle activity when added degrees of freedom (DOF) were introduced through the use of a force application apparatus with two different handle designs (D-handle or screwdriver). Electromyography of seven forearm muscles and five muscles crossing the shoulder joint were measured to determine relative activity from a reference (0 DOF), most stable condition, to combinations of DOF ranging from 1 to 4. Substantial and statistically significant increases in muscle activity resulted from adding DOF. The screwdriver handle increased forearm muscle activity compared to the D-handle, except in the highest DOF condition. These findings have significance in the planning of work and design of tools because of the potential for increased fatigue that accompanies increased DOF at the tool endpoint. Handle type also influenced the magnitude of the muscular activity. PMID:19308817

  17. Changes in postural and trunk muscles responses in patients with chronic nonspecific low back pain during sudden upper limb loading

    PubMed Central

    Akbari, Mahmood; Sarrafzadeh, Javad; Maroufi, Nader; Haghani, Hamid

    2015-01-01

    Background: Alterations in the neuromuscular control of the spine were found in patients with chronic low back pain (CLBP). Sudden loading of the spine is assumed to be the cause of approximately 12% of lower back injuries. However, some aspects of this problem, such as alterations in the sensorymotor control of the spine, remain questionable. This study investigated postural and neuro motor changes in trunk muscles during sudden upper limb loading in patients with CLBP. Methods: Electromyography of the erector spinae (ES) and transverses abdominis/internal oblique (TrA/IO) and external oblique (EOA) muscles were recorded in 20 patients with CLBP and 20 asymptomatic individuals with eyes open (EO) and eyes closed (EC) conditions. Moreover, measurements of the center of pressure (COP) and vertical ground reaction force (GRF) or Fz were recorded using a force plate. Data were analyzed using paired t-test and independent t-test at the significance level of 0.05. Results: In patients with CLBP, decreased electrical activity of the ES muscle was observed under both the EO and EC conditions and that of the TrA/IO muscle was observed under the EO condition (p< 0.05). Other findings included a shorter peak latency of the ES muscle in the EO condition and a greater increase in the peak latency of the ES muscle following the EC condition (p< 0.05). No significant differences were observed in COP and GRF measurements between the groups. Conclusion: Electrical muscle activity may indicate less stiffening or preparatory muscle activity in the trunk muscle of patients with CLBP. Altered latency of the muscle may lead to microtrauma of lumbar structures and CLBP.

  18. Effect of muscular fatigue on fractal upper limb coordination dynamics and muscle synergies.

    PubMed

    Bueno, Diana R; Lizano, J M; Montano, L

    2015-08-01

    Rehabilitation exercises cause fatigue because tasks are repetitive. Therefore, inevitable human motion performance changes occur during the therapy. Although traditionally fatigue is considered an event that occurs in the musculoskeletal level, this paper studies whether fatigue can be regarded as context that influences lower-dimensional motor control organization and coordination at neural level. Non Negative Factorization Matrix (NNFM) and Detrended Fluctuations Analysis (DFA) are the tools used to analyze the changes in the coordination of motor function when someone is affected by fatigue. The study establishes that synergies remain fairly stable with the onset of fatigue, but the fatigue affects the dynamical coordination understood as a cognitive process. These results have been validated with 9 healthy subjects for three representative exercises for upper limb: biceps, triceps and deltoid. PMID:26737679

  19. Prediction of upper limb muscle activity from motor cortical discharge during reaching

    NASA Astrophysics Data System (ADS)

    Pohlmeyer, Eric A.; Solla, Sara A.; Perreault, Eric J.; Miller, Lee E.

    2007-12-01

    Movement representation by the motor cortex (M1) has been a theoretical interest for many years, but in the past several years it has become a more practical question, with the advent of the brain-machine interface. An increasing number of groups have demonstrated the ability to predict a variety of kinematic signals on the basis of M1 recordings and to use these predictions to control the movement of a cursor or robotic limb. We, on the other hand, have undertaken the prediction of myoelectric (EMG) signals recorded from various muscles of the arm and hand during button pressing and prehension movements. We have shown that these signals can be predicted with accuracy that is similar to that of kinematic signals, despite their stochastic nature and greater bandwidth. The predictions were made using a subset of 12 or 16 neural signals selected in the order of each signal's unique, output-related information content. The accuracy of the resultant predictions remained stable through a typical experimental session. Accuracy remained above 80% of its initial level for most muscles even across periods as long as two weeks. We are exploring the use of these predictions as control signals for neuromuscular electrical stimulation in quadriplegic patients.

  20. Prediction of upper limb muscle activity from motor cortical discharge during reaching

    PubMed Central

    Pohlmeyer, Eric A; Solla, Sara A; Perreault, Eric J; Miller, Lee E

    2008-01-01

    Movement representation by the motor cortex (M1) has been a theoretical interest for many years, but in the past several years it has become a more practical question, with the advent of the brainmachine interface. An increasing number of groups have demonstrated the ability to predict a variety of kinematic signals on the basis of M1 recordings and to use these predictions to control the movement of a cursor or robotic limb. We, on the other hand, have undertaken the prediction of myoelectric (EMG) signals recorded from various muscles of the arm and hand during button pressing and prehension movements. We have shown that these signals can be predicted with accuracy that is similar to that of kinematic signals, despite their stochastic nature and greater bandwidth. The predictions were made using a subset of 12 or 16 neural signals selected in the order of each signals unique, output-related information content. The accuracy of the resultant predictions remained stable through a typical experimental session. Accuracy remained above 80% of its initial level for most muscles even across periods as long as two weeks. We are exploring the use of these predictions as control signals for neuromuscular electrical stimulation in quadriplegic patients. PMID:18057504

  1. Relationship of skeletal muscle metaboreceptors in the upper and lower limbs with the respiratory control in patients with heart failure.

    PubMed

    Scott, Adam C; Davies, L Ceri; Coats, Andrew J S; Piepoli, Massimo

    2002-01-01

    Increased activity of muscle metaboreceptors (afferents sensitive to muscle contraction that are responsible for the ventilatory responses to exercise) has been proposed in patients with chronic heart failure (CHF) to constitute a missing link between muscle metabolic abnormalities and exercise overventilation. We looked at this reflex overactivation to determine if it is systemic or limited to a single muscle region in the same human subject. This was done by comparing the metaboreflex response of ventilatory control in the lower and upper limbs in CHF patients and healthy controls. Groups of 15 stable CHF patients (63.7+/-2.7 years) and eight control subjects (69.8+/-1.8 years) performed both leg and arm metaboreflex tests. These metaboreflex tests involved two 5 min episodes of bicycle or handgrip exercise: on one occasion after the exercise the subjects recovered normally, while on the other occasion tourniquet cuffs were inflated around the exercising limb to supra-systolic pressure at the onset of recovery to obtain a regional circulatory occlusion, which isolates and maintains the stimulation of the metaboreflex after exercise. The contribution of the metaboreflex to exercise ventilation was computed as the absolute increment of peak ventilation that was maintained by regional circulatory occlusion. The metaboreceptor contribution to the ventilatory response to both leg exercise (patients, 5.3+/-1.6 litres/min; controls, 0.2+/-0.7 litres/min) and arm exercise (patients, 3.7+/-1.0 litres/min; controls, 0.02+/-0.4 litres/min) was significantly higher in CHF patients (P<0.05). A significant correlation was present between metaboreflex responses to arm and leg exercises (r=0.4, P<0.05). Metaboreflex responses during both types of exercise were inversely correlated with peak oxygen uptake (leg, r=-0.43, P<0.05; arm, r=-0.633, P=0.0009), but only the reflex during arm exercise was correlated with the .V(E) (ventilation)/.V(CO)(2) (CO(2) production) slope (r=0.576, P<0.005). Thus the metaboreflex system is systemically overactive and may potentially contribute to exercise intolerance during both lower- and upper-limb efforts in CHF. This suggests a unique mechanism responsible for overactivation of this system in the skeletal muscle of heart failure patients. PMID:11749657

  2. Study on the description method of upper limb's muscle force levels during simulated in-orbit operations

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Li, DongXu; Liu, ZhiZhen; Liu, Liang

    2013-03-01

    The dexterous upper limb serves as the most important tool for astronauts to implement in-orbit experiments and operations. This study developed a simulated weightlessness experiment and invented new measuring equipment to quantitatively evaluate the muscle ability of the upper limb. Isometric maximum voluntary contractions (MVCs) and surface electromyography (sEMG) signals of right-handed pushing at the three positions were measured for eleven subjects. In order to enhance the comprehensiveness and accuracy of muscle force assessment, the study focused on signal processing techniques. We applied a combination method, which consists of time-, frequency-, and bi-frequency-domain analyses. Time- and frequency-domain analyses estimated the root mean square (RMS) and median frequency (MDF) of sEMG signals, respectively. Higher order spectra (HOS) of bi-frequency domain evaluated the maximum bispectrum amplitude ( B max), Gaussianity level (Sg) and linearity level (S l ) of sEMG signals. Results showed that B max, S l , and RMS values all increased as force increased. MDF and Sg values both declined as force increased. The research demonstrated that the combination method is superior to the conventional time- and frequency-domain analyses. The method not only described sEMG signal amplitude and power spectrum, but also deeper characterized phase coupling information and non-Gaussianity and non-linearity levels of sEMG, compared to two conventional analyses. The finding from the study can aid ergonomist to estimate astronaut muscle performance, so as to optimize in-orbit operation efficacy and minimize musculoskeletal injuries.

  3. Warm-up with weighted bat and adjustment of upper limb muscle activity in bat swinging under movement correction conditions.

    PubMed

    Ohta, Yoichi; Ishii, Yasumitsu; Ikudome, Sachi; Nakamoto, Hiroki

    2014-02-01

    The effects of weighted bat warm-up on adjustment of upper limb muscle activity were investigated during baseball bat swinging under dynamic conditions that require a spatial and temporal adjustment of the swinging to hit a moving target. Seven male college baseball players participated in this study. Using a batting simulator, the task was to swing the standard bat coincident with the arrival timing and position of a moving target after three warm-up swings using a standard or weighted bat. There was no significant effect of weighted bat warm-up on muscle activity before impact associated with temporal or spatial movement corrections. However, lower inhibition of the extensor carpi ulnaris muscle activity was observed in a velocity-changed condition in the weighted bat warm-up, as compared to a standard bat warm-up. It is suggested that weighted bat warm-up decreases the adjustment ability associated with inhibition of muscle activation under movement correction conditions. PMID:24724516

  4. The effects of upper limb posture and a sub-maximal gripping task on corticospinal excitability to muscles of the forearm.

    PubMed

    Forman, Davis A; Baarbé, Julianne; Daligadu, Julian; Murphy, Bernadette; Holmes, Michael W R

    2016-04-01

    Variations in handgrip force influences shoulder muscle activity, and this effect is dependent upon upper limb position. Previous work suggests that neural coupling between proximal and distal muscles with changes in joint position is a possible mechanism but these studies tend to use artificially constrained postures that do not reflect activities of daily living. The purpose of this study was to examine the effects of upper limb posture on corticospinal excitability to the forearm muscles during workplace relevant arm positions. Motor evoked potentials (MEPs) were elicited in four forearm muscles via transcranial magnetic stimulation at six arm positions (45°, 90° and 120° of humeral elevation in both the flexion and abduction planes). MEPs were delivered as stimulus-response curves (SRCs) at rest and at constant intensity during two gripping tasks. Boltzmann plateau levels were smaller for the flexor carpi radialis in flexion at 45° versus 90° (p=0.0008). Extensor carpi radialis had a greater plateau during flexion than abduction (p=0.0042). Corticospinal excitability to the forearm muscles were influenced by upper limb posture during both the resting and gripping conditions. This provides further evidence that upper limb movements are controlled as a whole rather than segmentally and is relevant for workplace design considerations. PMID:26946146

  5. Influence of aging on isometric muscle strength, fat-free mass and electromyographic signal power of the upper and lower limbs in women

    PubMed Central

    Amaral, Josria F.; Alvim, Felipe C.; Castro, Eliane A.; Doimo, Leonice A.; Silva, Marcus V.; Novo, Jos M.

    2014-01-01

    Background Aging is a multifactorial process that leads to changes in the quantity and quality of skeletal muscle and contributes to decreased levels of muscle strength. Objective This study sought to investigate whether the isometric muscle strength, fat-free mass (FFM) and power of the electromyographic (EMG) signal of the upper and lower limbs of women are similarly affected by aging. Method The sample consisted of 63 women, who were subdivided into three groups (young (YO) n=33, 24.73.5 years; middle age (MA) n=15, 58.64.2 years; and older adults (OA). n=15, 72.04.2 years). Isometric strength was recorded simultaneously with the capture of the electrical activity of the flexor muscles of the fingers and the vastus lateralis during handgrip and knee extension tests, respectively. FFM was assessed using dual-energy X-ray absorptiometry. Results The handgrip strength measurements were similar among groups (p=0.523), whereas the FFM of the upper limbs was lower in group OA compared to group YO (p=0.108). The RMSn values of the hand flexors were similar among groups (p=0.754). However, the strength of the knee extensors, the FFM of the lower limbs and the RMSn values of the vastus lateralis were lower in groups MA (p=0.014, p=0.006 and p=0.013, respectively) and OA (p=0.000, p=0.000 and p<0.000, respectively) compared to group YO. Conclusions The results of this study demonstrate that changes in isometric muscle strength in MLG and electromyographic activity of the lower limbs are more pronounced with the aging process of the upper limb. PMID:24676705

  6. Movement-related cortical potentials during muscle fatigue induced by upper limb submaximal isometric contractions.

    PubMed

    Guo, Feng; Wang, Ji-Ya; Sun, Yong-Jun; Yang, A-Li; Zhang, Ri-Hui

    2014-10-01

    The aim of this study was to examine the central neurophysiological mechanisms during fatigue induced by submaximal isometric contractions. A total of 23 individuals participated in the study and were assigned to fatigue and nonfatigue groups. Handgrip force, root mean square (RMS) of surface electromyography (sEMG) signal and movement-related cortical potentials during self-paced submaximal handgrip isometric contractions were assessed for each participant. The experimental data showed significant decreases in both maximal voluntary contraction [-24.3%; F(3,?42)=19.62, P<0.001, ?p=0.48] and RMS [-30.1%; F(3,?42)=19.01, P<0.001, ?p=0.57] during maximal voluntary contractions and a significant increase [F(3,?42)=14.27, P<0.001, ?p=0.50] in the average RMS of sEMG over four blocks in the fatigue group. There was no significant difference in the readiness potential between the fatigue and the nonfatigue groups at early stages, and at late stages, significant differences were observed only at the Fp1 and FC1 sites. Motor potential amplitudes were significantly higher in the fatigue group than in the nonfatigue group irrespective of block or electrode positions. Positive waveforms were observed in the prefrontal cortex in states without muscle fatigue, whereas a negative waveform pattern was observed with muscle fatigue. Significant within-subject correlations were observed between motor potential at the C1 site and RMS of sEMG (r=-0.439, P=0.02, ?p=0.11). Neurophysiological evidence indicates that cortical activity increases in the prefrontal cortex, primary motor cortex and supplementary motor cortex with muscle fatigue. Muscle fatigue appears to have considerable effects on the components of movement-related cortical potentials during movement execution, whereas the readiness potential before movement is sensitive to cognitive demands during prolonged exercise. Our results provide additional evidence for a link between central motor command during movement execution and motor unit recruitment. PMID:25089802

  7. Development of Activity-Related Muscle Fatigue during Robot-Mediated Upper Limb Rehabilitation Training in Persons with Multiple Sclerosis: A Pilot Trial

    PubMed Central

    2015-01-01

    Robot-assisted rehabilitation facilitates high-intensity training of the impaired upper limb in neurological rehabilitation. It has been clinically observed that persons with Multiple Sclerosis (MS) have difficulties in sustaining the training intensity during a session due to the development of activity-related muscle fatigue. An experimental observational pilot study was conducted to examine whether or not the muscle fatigue develops in MS patients during one session of robot-assisted training within a virtual learning environment. Six MS patients with upper limb impairment (motricity index ranging from 50 to 91/100) and six healthy persons completed five training bouts of three minutes each performing lifting tasks, while EMG signals of anterior deltoid and lower trapezius muscles were measured and their subjective perceptions on muscle fatigue were registered. Decreased performance and higher subjective fatigue perception were present in the MS group. Increased mean EMG amplitudes and subjective perception levels on muscle fatigue were observed in both groups. Muscle fatigue development during 15′ training has been demonstrated in the arm of MS patients, which influences the sustainability of training intensity in MS patients. To optimize the training performance, adaptivity based on the detection of MS patient's muscle fatigue could be provided by means of training program adjustment. PMID:26090229

  8. Reflections on the present and future of upper limb prostheses.

    PubMed

    Farina, Dario; Amsüss, Sebastian

    2016-04-01

    Despite progress in research and media attention on active upper limb prostheses, presently the most common commercial upper limb prosthetic devices are not fundamentally different from solutions offered almost one century ago. Limited information transfer for both control and sensory-motor integration and challenges in socket technology have been major obstacles. By analysing the present state-of-the-art and academic achievements, we provide our opinion on the future of upper limb prostheses. We believe that surgical procedures for muscle reinnervation and osseointegration will become increasingly clinically relevant; muscle electrical signals will remain the main clinical means for prosthetic control; and chronic electrode implants, first in muscles (control), then in nerves (sensory feedback), will become viable clinical solutions. After decades of suspended clinically relevant progress, it is foreseeable that a new generation of upper limb prostheses will enter the market in the near future based on such advances, thereby offering substantial clinical benefit for patients. PMID:26924191

  9. Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles

    PubMed Central

    Diogo, R; Wood, B

    2011-01-01

    Apart from molecular data, nearly all the evidence used to study primate relationships comes from hard tissues. Here, we provide details of the first parsimony and Bayesian cladistic analyses of the order Primates based exclusively on muscle data. The most parsimonious tree obtained from the cladistic analysis of 166 characters taken from the head, neck, pectoral and upper limb musculature is fully congruent with the most recent evolutionary molecular tree of Primates. That is, this tree recovers not only the relationships among the major groups of primates, i.e. Strepsirrhini {Tarsiiformes [Platyrrhini (Cercopithecidae, Hominoidea)]}, but it also recovers the relationships within each of these inclusive groups. Of the 301 character state changes occurring in this tree, ca. 30% are non-homoplasic evolutionary transitions; within the 220 changes that are unambiguously optimized in the tree, ca. 15% are reversions. The trees obtained by using characters derived from the muscles of the head and neck are more similar to the most recent evolutionary molecular tree than are the trees obtained by using characters derived from the pectoral and upper limb muscles. It was recently argued that since the Pan/Homo split, chimpanzees accumulated more phenotypic adaptations than humans, but our results indicate that modern humans accumulated more muscle character state changes than chimpanzees, and that both these taxa accumulated more changes than gorillas. This overview of the evolution of the primate head, neck, pectoral and upper limb musculature suggests that the only muscle groups for which modern humans have more muscles than most other extant primates are the muscles of the face, larynx and forearm. PMID:21689100

  10. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.

    PubMed

    Li, Chong; Rusák, Zoltán; Horváth, Imre; Ji, Linhong

    2014-12-01

    Efficacious stroke rehabilitation depends not only on patients' medical treatment but also on their motivation and engagement during rehabilitation exercises. Although traditional rehabilitation exercises are often mundane, technology-assisted upper-limb robotic training can provide engaging and task-oriented training in a natural environment. The factors that influence engagement, however, are not fully understood. This paper therefore studies the relationship between engagement and muscle activities as well as the influencing factors of engagement. To this end, an experiment was conducted using a robotic upper limb rehabilitation system with healthy individuals in three training exercises: (a) a traditional exercise, which is typically used for training the grasping function, (b) a tracking exercise, currently used in robot-assisted stroke patient rehabilitation for fine motor movement, and (c) a video game exercise, which is a proliferating approach of robot-assisted rehabilitation enabling high-level active engagement of stroke patients. These exercises differ not only in the characteristics of the motion that they use but also in their method of triggering engagement. To measure the level of engagement, we used facial expressions, motion analysis of the arm movements, and electromyography. The results show that (a) the video game exercise could engage the participants for a longer period than the other two exercises, (b) the engagement level decreased when the participants became too familiar with the exercises, and (c) analysis of normalized root mean square in electromyographic data indicated that muscle activities were more intense when the participants are engaged. This study shows that several sub-factors on engagement, such as versatility of feedback, cognitive tasks, and competitiveness, may influence engagement more than the others. To maintain a high level of engagement, the rehabilitation system needs to be adaptive, providing different exercises to engage the participants. PMID:25221845

  11. The effects of co-ordinating postures with shoulder and elbow flexion angles on maximum grip strength and upper-limb muscle activity in standing and sitting postures.

    PubMed

    Kong, Yong-Ku

    2014-01-01

    Eighteen co-ordination postures with shoulder flexion angles (0°, 45° and 90°) and elbow flexion angles (0°, 45° and 90°) in standing and sitting positions were evaluated to identify the effects of co-ordination postures on maximum grip strength and muscle activities of the upper limb in this study. Thirty-nine subjects were recruited and their maximum grip strengths were measured. According to the analysis of grip strength, grip strength was shown to be stronger in a standing posture (297.4 N) than in a sitting posture (274.6 N). In addition, grip strength (293.8 N) at 90° shoulder flexion angle was significantly higher than that at 0° and 45° shoulder angles. There was no statistically significant difference in grip strength from the effects of elbow angles in this study. The results of muscle activities for all muscle groups showed a similar trend with the results of grip strength associated with shoulder angles. PMID:25513795

  12. An investigation of fatigue phenomenon in the upper limb muscle due to short duration pulses in an FES system

    NASA Astrophysics Data System (ADS)

    Naeem, Jannatul; Wong Azman, Amelia; Khan, Sheroz; Mohd Mustafah, Yasir

    2013-12-01

    Functional Electrical Stimulation (FES) is a method of artificially stimulating muscles or nerves in order to result in contraction or relaxation of muscles. Many studies have shown that FES system has helped patients to live a better lives especially those who are suffering from physical mobility. Unfortunately, one of the main limitations of an FES system besides of its high cost is largely due to muscle fatigue. Muscle fatigue will affect the training duration which could delay patients' recovery rate. In this paper, we analyzed the occurrence of this fatigue phenomenon in terms of stimulator parameters such as amplitude, frequency, pulse width and pulse shape. The objective of this investigation is to identify other key features of the FES system parameters in order to prolong the training duration among patients. The experiment has been done on a healthy person for the duration of one minute and later the muscles response will be observed. Resultant muscle response is recorded as force using force resistive sensor. The experimental results show muscles will get fatigue at a different rate as the frequency increases. The experiment also shows that the duty cycle is reciprocal to the resultant force.

  13. The effectiveness of stretch-shortening cycling in upper-limb extensor muscles during elite cross-country skiing with the double-poling technique.

    PubMed

    Zoppirolli, Chiara; Holmberg, Hans-Christer; Pellegrini, Barbara; Quaglia, Diego; Bortolan, Lorenzo; Schena, Federico

    2013-12-01

    This investigation was designed to evaluate the effectiveness of stretch-shortening cycling (SSC(EFF)) in upper-limb extensor muscles while cross-country skiing using the double-poling technique (DP). To this end, SSC(EFF) was analyzed in relation to DP velocity and performance. Eleven elite cross-country skiers performed an incremental test to determine maximal DP velocity (V(max)). Thereafter, cycle characteristics, elbow joint kinematics and poling forces were monitored on a treadmill while skiing at two sub-maximal and racing velocity (85% of V(max)). The average EMG activities of the triceps brachii and latissimus dorsi muscles were determined during the flexion and extension sub-phases of the poling cycle (EMG(FLEX), EMG(EXT)), as well as prior to pole plant (EMG(PRE)). SSC(EFF) was defined as the ratio of aEMG(FLEX) to aEMG(EXT). EMG(PRE) and EMG(FLEX) increased with velocity for both muscles (P < 0.01), as did SSC(EFF) (from 0.9 0.3 to 1.3 0.5 for the triceps brachii and from 0.9 0.4 to 1.5 0.5 for the latissimus dorsi) and poling force (from 253 33 to 290 36N; P < 0.05). Furthermore, SSC(EFF) was positively correlated to Vmax, to EMG(PRE) and EMG(FLEX) (P < 0.05). The neuromuscular adaptations made at higher velocities, when more poling force must be applied to the ground, exert a major influence on the DP performance of elite cross-country skiers. PMID:24064180

  14. Evaluation of upper-limb body postures based on the effects of back and shoulder flexion angles on subjective discomfort ratings, heart rates and muscle activities.

    PubMed

    Lim, Cheol-Min; Jung, Myung-Chul; Kong, Yong-Ku

    2011-09-01

    A possible limitation of many ergonomics checklists that evaluate postures is an independent evaluation of each body segment without considering the coordination between body segments and resulting in the under-/over-estimation of body postures. A total of 20 men were selected to evaluate the effects of shoulder and back flexion angles on the upper-limb muscle activities, subjective discomforts and heart rates. Interesting findings were obtained from the coordination between back flexion angles and shoulder flexion angles. At a back flexion angle of 45°, the discomfort and heart rates were the least at a shoulder flexion angle of 45°. The %MVC also showed a similar trend. It could be inferred that the 0° shoulder flexion angle would be a natural posture, when the back flexion angle is 0°, whereas 45° shoulder flexion might be a more natural posture when the back flexion angle is 45°. STATEMENT OF RELEVANCE: This study evaluated the effects of back and shoulder flexion angles on subjective as well as objective measures. The findings of this study considered the coordination between two body flexion angles and could be used to improve the accuracy of existing ergonomics evaluation methods for body postures. PMID:21943119

  15. Upper limb prosthetic use in Slovenia.

    PubMed

    Burger, H; Marincek, C

    1994-04-01

    The article deals with the use of different types of upper limb prostheses in Slovenia. Four hundred and fourteen upper limb amputees were sent a questionnaire on the type of their prosthesis, its use and reasons for non-use, respectively. The replies were subject to statistical analysis. Most of the questioned upper limb amputees (70%) wear a prosthesis only for cosmesis. The use of a prosthesis depends on the level of upper limb amputation, loss of the dominant hand, and time from amputation. Prosthetic success appears to be unrelated to age at the time of amputation and the rehabilitation programme. The most frequent reason for not wearing a prosthesis is heat and consequent sweating of the stump. More than a third of amputees are dissatisfied with their prostheses. PMID:8084746

  16. The Profile of Patients and Current Practice of Treatment of Upper Limb Muscle Spasticity with Botulinum Toxin Type A: An International Survey

    ERIC Educational Resources Information Center

    Bakheit, Abdel Magid

    2010-01-01

    To document the current practice in relation with the treatment of patients with upper limb spasticity with botulinum toxin type A to inform future research in this area. We designed an international, cross-sectional, noninterventional survey of current practice. Nine hundred and seventy-four patients from 122 investigational centres in 31

  17. Benign monomelic amyotrophy with proximal upper limb involvement: case report.

    PubMed

    Neves, Marco Antonio Orsini; Freitas, Marcos R G de; Mello, Mariana Pimentel de; Dumard, Carlos Henrique; Freitas, Gabriel R de; Nascimento, Osvaldo J M

    2007-06-01

    Monomelic amyotrophy (MA) is a rare condition in which neurogenic amyotrophy is restricted to an upper or lower limb. Usually sporadic, it usually has an insidious onset with a mean evolution of 2 to 4 years following first clinical manifestations, which is, in turned, followed by stabilization. We report a case of 20-years-old man who presented slowly progressive amyotrophy associated with proximal paresis of the right upper limb, which was followed by clinical stabilization 4 years later. Eletroneuromyography revealed denervation along with myofasciculations in various muscle groups of the right upper limb. We call attention to this rare location of MA, as well as describe some theories concerning its pathophysiology . PMID:17665029

  18. The anatomy and ontogeny of the head, neck, pectoral, and upper limb muscles of Lemur catta and Propithecus coquereli (primates): discussion on the parallelism between ontogeny and phylogeny and implications for evolutionary and developmental biology.

    PubMed

    Diogo, Rui; Molnar, Julia L; Smith, Timothy D

    2014-08-01

    Most anatomical studies of primates focus on skeletal tissues, but muscular anatomy can provide valuable information about phylogeny, functional specializations, and evolution. Herein, we present the first detailed description of the head, neck, pectoral, and upper limb muscles of the fetal lemuriforms Lemur catta (Lemuridae) and Propithecus coquereli (Indriidae). These two species belong to the suborder Strepsirrhini, which is often presumed to possess some plesiomorphic anatomical features within primates. We compare the muscular anatomy of the fetuses with that of infants and adults and discuss the evolutionary and developmental implications. The fetal anatomy reflects a phylogenetically more plesiomorphic condition in nine of the muscles we studied and a more derived condition in only two, supporting a parallel between ontogeny and phylogeny. The derived exceptions concern muscles with additional insertions in the fetus which are lost in adults of the same species, that is, flexor carpi radialis inserts on metacarpal III and levator claviculae inserts on the clavicle. Interestingly, these two muscles are involved in movements of the pectoral girdle and upper limb, which are mainly important for activities in later stages of life, such as locomotion and prey capture, rather than activities in fetal life. Accordingly, our findings suggest that some exceptions to the "ontogeny parallels phylogeny" rule are probably driven more by ontogenetic constraints than by adaptive plasticity. PMID:24757163

  19. Effect of Upper Limb Deformities on Gross Motor and Upper Limb Functions in Children with Spastic Cerebral Palsy

    ERIC Educational Resources Information Center

    Park, Eun Sook; Sim, Eun Geol; Rha, Dong-wook

    2011-01-01

    The aims of this study were to investigate the nature and extent of upper limb deformities via the use of various classifications, and to analyze the relationship between upper limb deformities and gross motor or upper limb functionality levels. Upper extremity data were collected from 234 children with spastic cerebral palsy (CP) who were

  20. SPORTS INJURIES OF THE UPPER LIMBS

    PubMed Central

    da Silva, Rogerio Teixeira

    2015-01-01

    Sports injuries of the upper limbs are very common in physical activities and therefore, they need to be studied in detail, taking into consideration specific aspects of the types of sports practiced. Special attention should be paid to the dynamics of the shoulder girdle and the entire scapular belt, since the most appropriate treatment for athletes can only be provided in this manner. This can also help to prevent recurrences, which can occur in some cases because athletes always seek to return to their pre-injury level of sports activity. This article will focus primarily on the management of upper-limb tendon injuries, from the physiopathology through to the new methods of injury treatment that are more prevalent in sports practice in Brazil.

  1. Upper limb kinematics after cervical spinal cord injury: a review.

    PubMed

    Mateo, Sébastien; Roby-Brami, Agnès; Reilly, Karen T; Rossetti, Yves; Collet, Christian; Rode, Gilles

    2015-01-01

    Although a number of upper limb kinematic studies have been conducted, no review actually addresses the key-features of open-chain upper limb movements after cervical spinal cord injury (SCI). The aim of this literature review is to provide a clear understanding of motor control and kinematic changes during open-chain upper limb reaching, reach-to-grasp, overhead movements, and fast elbow flexion movements after tetraplegia. Using data from MEDLINE between 1966 and December 2014, we examined temporal and spatial kinematic measures and when available electromyographic recordings. We included fifteen control case and three series case studies with a total of 164 SCI participants and 131 healthy control participants. SCI participants efficiently performed a broad range of tasks with their upper limb and movements were planned and executed with strong kinematic invariants like movement endpoint accuracy and minimal cost. Our review revealed that elbow extension without triceps brachii relies on increased scapulothoracic and glenohumeral movements providing a dynamic coupling between shoulder and elbow. Furthermore, contrary to normal grasping patterns where grasping is prepared during the transport phase, reaching and grasping are performed successively after SCI. The prolonged transport phase ensures correct hand placement while the grasping relies on wrist extension eliciting either whole hand or lateral grip. One of the main kinematic characteristics observed after tetraplegia is motor slowing attested by increased movement time. This could be caused by (i) decreased strength, (ii) triceps brachii paralysis which disrupts normal agonist-antagonist co-contractions, (iii) accuracy preservation at movement endpoint, and/or (iv) grasping relying on tenodesis. Another feature is a reduction of maximal superior reaching during overhead movements which could be caused by i) strength deficit in agonist muscles like pectoralis major, ii) strength deficit in proximal synergic muscles responsible for scapulothoracic and glenohumeral joint stability, iii) strength deficit in distal synergic muscles preventing the maintenance of elbow extension by shoulder elbow dynamic coupling, iv) shoulder joint ankyloses, and/or v) shoulder pain. Further studies on open chain movements are needed to identify the contribution of each of these factors in order to tailor upper limb rehabilitation programs for SCI individuals. PMID:25637224

  2. Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation.

    PubMed

    Resnik, Linda; Meucci, Marissa R; Lieberman-Klinger, Shana; Fantini, Christopher; Kelty, Debra L; Disla, Roxanne; Sasson, Nicole

    2012-04-01

    The number of catastrophic injuries caused by improvised explosive devices in the Afghanistan and Iraq Wars has increased public, legislative, and research attention to upper limb amputation. The Department of Veterans Affairs (VA) has partnered with the Defense Advanced Research Projects Agency and DEKA Integrated Solutions to optimize the function of an advanced prosthetic arm system that will enable greater independence and function. In this special communication, we examine current practices in prosthetic rehabilitation including trends in adoption and use of prosthetic devices, financial considerations, and the role of rehabilitation team members in light of our experiences with a prototype advanced upper limb prosthesis during a VA study to optimize the device. We discuss key challenges in the adoption of advanced prosthetic technology and make recommendations for service provision and use of advanced upper limb prosthetics. Rates of prosthetic rejection are high among upper limb amputees. However, these rates may be reduced with sufficient training by a highly specialized, multidisciplinary team of clinicians, and a focus on patient education and empowerment throughout the rehabilitation process. There are significant challenges emerging that are unique to implementing the use of advanced upper limb prosthetic technology, and a lack of evidence to establish clinical guidelines regarding prosthetic prescription and treatment. Finally, we make recommendations for future research to aid in the identification of best practices and development of policy decisions regarding insurance coverage of prosthetic rehabilitation. PMID:22464092

  3. Effect of limb immobilization on skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, F. W.

    1982-01-01

    Current knowledge and questions remaining concerning the effects of limb immobilization on skeletal muscle is reviewed. The most dramatic of these effects is muscle atrophy, which has been noted in cases of muscles fixed at or below their resting length. Immobilization is also accompanied by a substantial decrease in motoneuronal discharges, which results in the conversion of slow-twitch muscle to muscle with fast-twitch characteristics. Sarcolemma effects include no change or a decrease in resting membrane potential, the appearance of extrajunctional acetylcholine receptors, and no change in acetylcholinesterase activity. Evidence of changes in motoneuron after hyperpolarization characteristics suggests that the muscle inactivity is responsible for neuronal changes, rather than vice versa. The rate of protein loss from atrophying muscles is determined solely by the first-order rate constant for degradation. Various other biochemical and functional changes have been noted, including decreased insulin responsiveness and protein synthesis. The model of limb immobilization may also be useful for related studies of muscle adaptation.

  4. Unusual Cause of Swelling in the Upper Limb: Kimura Disease

    PubMed Central

    Chokkappan, Kabilan; Al-Riyami, Abeer M.; Krishnan, Vijay; Min, Victor L. K.

    2015-01-01

    Kimura disease is a rare chronic inflammatory disease of unknown etiology. The disease typically presents in young Asian males with single or multiple slowly progressing painless subcutaneous lumps in the head and neck region; regional lymphadenopathy is commonly accompanied. The disease is associated with peripheral blood eosinophilia and elevated serum immunoglobulin E levels. This gives an important clinical clue to the diagnosis and implies a possible immune-mediated pathophysiology. Although the disease commonly affects the head and neck region, it may also affect the extremities, axilla, groin, and abdomen. Upper limb involvement in Kimuras disease is rare and few cases have been reported in the literature. We describe the case of a man who presented with a history of progressive upper limb swelling. He was diagnosed with Kimuras disease based on concordant clinical, laboratory, radiological, and histopathological grounds. Although rare in the upper limb, the possibility of Kimuras disease has to be considered in young males presenting with painless swelling in the medial epitrochlear region with compatible imaging appearance, particularly if associated with lymph node enlargement and increased blood eosinophils. Characteristic imaging findings of Kimuras disease of the upper limb include specific location along the neuro-lymphovascular structures, the absence of necrosis or calcification, mutliple flow voids representing vascular structures, a varying amount of edema of subcutaneous fat plane overlying the lesion; displacement of adjacent muscles; and neurovascular structures without signs of direct invasion. Clinicians should be aware of this distinct entity in order to avoid misdiagnosis and to tailor appropriate management. PMID:26421119

  5. Prevalence and Characteristics of Phantom Limb Pain and Residual Limb Pain in the Long Term after Upper Limb Amputation

    ERIC Educational Resources Information Center

    Desmond, Deirdre M.; MacLachlan, Malcolm

    2010-01-01

    This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence

  6. Prevalence and Characteristics of Phantom Limb Pain and Residual Limb Pain in the Long Term after Upper Limb Amputation

    ERIC Educational Resources Information Center

    Desmond, Deirdre M.; MacLachlan, Malcolm

    2010-01-01

    This study aims to describe the prevalence and characteristics of phantom limb pain and residual limb pain after upper limb amputation. One-hundred and forty-one participants (139 males; mean age 74.8 years; mean time since amputation 50.1 years) completed a self-report questionnaire assessing residual and phantom limb pain experience. Prevalence…

  7. Functional outcome following traumatic upper limb amputation and prosthetic limb fitting.

    PubMed

    Pinzur, M S; Angelats, J; Light, T R; Izuierdo, R; Pluth, T

    1994-09-01

    Nineteen consecutive patients underwent traumatic upper limb amputation for nonreconstructible or replantible upper limb injury at a Level I trauma center over a 9-year-period. Eleven amputations were at the transradial level, five were transhumeral, and three were shoulder disarticulation. Eighteen patients underwent prosthetic limb fitting. Fifteen of the 18 initially underwent preparatory prosthetic limb fitting within 30 days following amputation with a body-powered, cable-driven prosthesis. Seventeen of the 18 achieved sufficient proficiency with their prostheses to allow them to return to work. Of these, 15 maintained daily functional prosthetic use of at least 8 hours daily at a followup examination of 12 to 110 months. Use of prosthetic limb following traumatic upper limb amputation carries a high probability for functional rehabilitation if limb fitting and prosthetic training are instituted as soon as the residual limb can tolerate the prosthetic socket as opposed to waiting for the residual limb to "mature". PMID:7806814

  8. Study on upper limb rehabilitation system based on surface EMG.

    PubMed

    Wang, Lan; Li, Hailong; Wang, Zhengyu; Meng, Fandong

    2015-01-01

    During the rehabilitation process, it is essential to accurately judge a patient's recovery in a timely manner. A reasonable and matched training program is significant in the development of rehabilitation system. This paper presents a new upper limb rehabilitation training system, which consists of an upper limb rehabilitation training device, a current detection circuit, a motor speed test circuit, a surface EMG (sEMG) sensor, and a dSPACE HIL simulation platform. The real-time output torque of the servo motor is calculated by using the motor's real-time current and speed, in order to monitor the patient's training situation. The signal of sEMG is collected in real time and is processed with root mean square (RMS) to characterize the degree of muscle activation. Based on this rehabilitation system, maximum voluntary contraction (MVC) experiments, passive training experiments under different speeds, and active training experiments under different damping are studied. The results show that this new system performs real-time and accurate monitoring of a patient's training situation. It can also assess a patient's recovery through muscle activation. To a certain extent, this system provides a platform for research and development of rehabilitation medical engineering. PMID:26406076

  9. Chronic Pain Associated with Upper-Limb Loss

    PubMed Central

    Hanley, Marisol A.; Ehde, Dawn M.; Jensen, Mark; Czerniecki, Joseph; Smith, Douglas G.; Robinson, Lawrence R.

    2011-01-01

    Objective To describe the prevalence, intensity, and functional impact of the following types of pain associated with upper-limb loss: phantom limb, residual limb, back, neck, and nonamputated-limb pain. Design Cross-sectional survey; 104 respondents with upper-limb loss at least 6 months postamputation completed measures of pain intensity, interference, disability, and health-related quality-of-life. Results Nearly all (90%) of the respondents reported pain, with 76% reporting more than one pain type. Phantom-limb pain and residual-limb pain were the most prevalent (79% and 71%, respectively), followed by back (52%), neck (43%), and nonamputated-limb pain (33%). Although nonamputated-limb pain was least prevalent, it was reported to cause the highest levels of interference and pain-related disability days. Self-reported quality-of-life was significantly lower for individuals with each type of pain compared with those without any pain. Age, time since amputation, and cause of amputation were not associated with pain. Conclusions In addition to pain in the phantom and residual limb, back, neck, and nonamputated-limb pain are also common after upper-limb loss. All of these pain types are associated with significant disability and activity interference for some individuals, suggesting that assessment of multiple pain types in persons with upper-limb amputation may be important. PMID:19692791

  10. Upper limb cerebellar motor function in children with spina bifida

    PubMed Central

    Jewell, Derryn; Fletcher, Jack M.; Mahy, Caitlin E. V.; Hetherington, Ross; MacGregor, Daune; Drake, James M.; Salman, Michael S.

    2011-01-01

    Purpose To investigate upper limb cerebellar motor function in children with spina bifida myelomeningocele (SBM) and in typically developing controls. Methods Participants with SBM, who had either upper level spinal lesions (n=23) or lower level spinal lesions (n=65), and controls (n=37) completed four upper limb motor function tasks (posture, rebound, limb dysmetria, and diadochokinesis) under four different physical and cognitive challenge conditions. Functional independence was assessed by parental questionnaire. Results Fewer SBM participants were able to complete the posture task, and they were less likely than controls to obtain a perfect rebound score. Participants with SBM showed impaired performance in either time, accuracy, or both, on the limb dysmetria and diadochokinesis tasks but responded like controls to physical and cognitive challenges. Conclusions Because upper limb motor performance predicted aspects of functional independence, we conclude that upper limb impairments in children with SBM are significant and have direct implications for the level of independent functioning in children with SBM. PMID:19823846

  11. Music related upper limb pain in schoolchildren.

    PubMed Central

    Fry, H J; Rowley, G L

    1989-01-01

    Two British secondary schools (one a specialist music school) were surveyed to assess the prevalence of upper limb pain among specialist music students compared with students in a regular school setting. Female students tended to report pain more often than male students, but for both significantly higher prevalence was found in the music school. Pain in the regular school was most often attributed to writing, whereas in the music school it was associated with the playing of all instruments, but most particularly with cello, clarinet, and flute. Music students reported long hours of practice, but it appeared that the intensity of practice may be more important as a determinant of pain than the total hours spent practising. The results of the study are in substantial agreement with those previously published from Australia and North America. On the balance of probabilities the pain is due to overuse syndrome, which is very common in musicians and well known in writers. PMID:2619360

  12. Upper Limb Ischemic Gangrene as a Complication of Hemodialysis Access

    PubMed Central

    Cawich, Shamir O.; Mohammed, Emil; Mencia, Marlon

    2015-01-01

    Upper limb ischemia is a well-recognized complication of dialysis access creation but progression to gangrene is uncommon. We report a case of upper limb ischemic gangrene and discuss the lessons learned during the management of this case. Clinicians must be vigilant for this complication and they should be reminded that it requires urgent management to prevent tissue loss. PMID:25810944

  13. Sensory feedback for upper limb prostheses.

    PubMed

    Hsiao, Steven S; Fettiplace, Michael; Darbandi, Bejan

    2011-01-01

    In this chapter, we discuss the neurophysiological basis of how to provide sensory feedback to users with an upper limb prosthesis and discuss some of the theoretical issues that need to be considered when directly stimulating neurons in the somatosensory system. We focus on technologies that are currently available and discuss approaches that are most likely to succeed in providing natural perception from the artificial hand to the user. First, we discuss the advantages and disadvantages of providing feedback by stimulating directly the remaining afferents that originally innervated the arm and hand. In particular, we pay close attention to the normal functional roles that the peripheral afferents play in perception. What are the consequences and implications of stimulating these afferents? We then discuss whether it is reasonable to stimulate neurons in the ascending pathways that carry the information from the afferents to the cortex or directly in neurons in the primary somatosensory cortex. We show that for some modalities there are advantages for stimulating in the spinal cord, while for others it is advantageous to stimulate directly in the somatosensory cortex. Finally, we discuss results from a current experiment in which we used electrical stimuli in primary somatosensory cortex to restore the percept of the intensity of a mechanical probe indented into the hand. The results suggest that the simple percept of stimulus intensity can be provided to the animal from a single finger using four electrodes. We propose that significantly more electrodes will be needed to reproduce more complex aspects of tactile perception. PMID:21763519

  14. Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb.

    PubMed

    Quental, Carlos; Folgado, Joo; Ambrsio, Jorge; Monteiro, Jacinto

    2015-01-01

    The inverse dynamics technique applied to musculoskeletal models, and supported by optimisation techniques, is used extensively to estimate muscle and joint reaction forces. However, the solutions of the redundant muscle force sharing problem are sensitive to the detail and modelling assumptions of the models used. This study presents four alternative biomechanical models of the upper limb with different levels of discretisation of muscles by bundles and muscle paths, and their consequences on the estimation of the muscle and joint reaction forces. The muscle force sharing problem is solved for the motions of abduction and anterior flexion, acquired using video imaging, through the minimisation of an objective function describing muscle metabolic energy consumption. While looking for the optimal solution, not only the equations of motion are satisfied but also the stability of the glenohumeral and scapulothoracic joints is preserved. The results show that a lower level of muscle discretisation provides worse estimations regarding the muscle forces. Moreover, the poor discretisation of muscles relevant to the joint in analysis limits the applicability of the biomechanical model. In this study, the biomechanical model of the upper limb describing the infraspinatus by a single bundle could not solve the complete motion of anterior flexion. Despite the small differences in the magnitude of the forces predicted by the biomechanical models with more complex muscular systems, in general, there are no significant variations in the muscular activity of equivalent muscles. PMID:24156405

  15. Glucose uptake and glycogen synthesis in muscles from immobilized limbs

    NASA Technical Reports Server (NTRS)

    Nicholson, W. F.; Watson, P. A.; Booth, F. W.

    1984-01-01

    Defects in glucose metabolism in muscles of immobilized limbs of mice were related to alterations in insulin binding, insulin responsiveness, glucose supply, and insulin activation of glycogen synthase. These were tested by in vitro methodology. A significant lessening in the insulin-induced maximal response of 2-deoxyglucose uptake into the mouse soleus muscle occurred between the 3rd and 8th h of limb immobilization, suggesting a decreased insulin responsiveness. Lack of change in the specific binding of insulin to muscles of 24-h immobilized limbs indicates that a change in insulin receptor number did not play a role in the failure of insulin to stimulate glucose metabolism. Its inability to stimulate glycogen synthesis in muscle from immobilized limbs is due, in part, to a lack of glucose supply to glycogen synthesis and also to the ineffectiveness of insulin to increase the percentage of glycogen synthase in its active form in muscles from 24-h immobilized limbs.

  16. [Tests of hand functionality in upper limb amputation with prosthesis].

    PubMed

    Bazzini, G; Orlandini, D; Moscato, T A; Nicita, D; Panigazzi, M

    2007-01-01

    The need for standardized instruments for clinical measurements has become pressing in the fields of occupational rehabilitation and ergonomics. This is particularly the case for instruments that allow a quantitative evaluation of upper limb function, and especially hand function in patients who have undergone an amputation and then application of an upper limb prosthesis. This study presents a review of the main tests used to evaluate hand function, with a critical analysis of their use in subjects with an upper limb prosthesis. The tests are divided into: tests to evaluate strength, tests to evaluate co-ordination and dexterity, tests of global or overall function, and tests proposed specifically for subjects with an upper limb prosthesis. Of the various tests presented, the authors give their preference to the Bimanual Functional Assessment, Abilhand and/or the ADL Questionnaire, because of the practical usefulness, clinimetric features, simplicity and ease of administration of these tests. PMID:17886763

  17. Upper- and lower-limb muscular fatigue during the 200-m front crawl.

    PubMed

    Figueiredo, Pedro; Rouard, Annie; Vilas-Boas, Joo Paulo; Fernandes, Ricardo J

    2013-07-01

    The aim of this study was to investigate how upper- and lower-limb muscle fatigue evolves in a 200-m front crawl swimming race. Surface electromyography signals were collected from the flexor carpi radialis, biceps brachii, triceps brachii, pectoralis major, upper trapezius, tibialis anterior, biceps femoris, and rectus femoris muscles of 10 international-level swimmers; 4 underwater cameras were used for kinematic analysis. In addition, blood lactate was measured before and after the test using capillary blood samples. Swimming speed and stroke length decreased from the beginning to the end of the effort, whereas stroke frequency increased after an initial decrease to maintain speed. Concomitant with the decrease in speed, blood lactate increased to 11.12 (1.65) mmolL(-1). The changes in stroke parameters were associated with an increase in integrated electromyography (20%-25%) and a decrease in spectral parameters (40%-60%) for all of the upper-limb muscles, indicating the reaching of submaximal fatigue. The fatigue process did not occur regularly during the 8 laps of the 200 m but was specific for each muscle and each subject. Lower-limb muscles did not present signals of fatigue, confirming their lower contribution to swimming propulsion. The test was conducted to individualize the training process to each muscle and each subject. PMID:23980729

  18. Development of an Upper Limb Motorized Assistive-Rehabilitative Robot

    NASA Astrophysics Data System (ADS)

    Amiri, Masoud; Casolo, Federico

    While the number of people requiring help for the activities of daily living are increasing, several studies have been shown the effectiveness of robot training for upper limb functionality recovery. The robotic system described in this paper is an active end-effector based robot which can be used for assisting and rehabilitating of human upper limb. The robot is able to take into account desire of the patient for the support that patient needs to complete the task.

  19. Experimental Study and Characterization of SEMG Signals for Upper Limbs

    NASA Astrophysics Data System (ADS)

    Veer, Karan

    2015-04-01

    Surface electromyogram (SEMG) is used to measure the activity of superficial muscles and is an essential tool to carry out biomechanical assessments required for prosthetic design. Many previous attempts suggest that, electromyogram (EMG) signals have random nature. Here, dual channel evaluation of EMG signals acquired from the amputed subjects using computational techniques for classification of arm motion are presented. After recording data from four predefined upper arm motions, interpretation of signal was done for six statistical features. The signals are classified by the neural network (NN) and then interpretation was done using statistical technique to extract the effectiveness of recorded signals. The network performances are analyzed by considering the number of input features, hidden layer, learning algorithm and mean square error. From the results, it is observed that there exists calculative difference in amplitude gain across different motions and have great potential to classify arm motions. The outcome indicates that NN algorithm performs significantly better than other algorithms with classification accuracy (CA) of 96.40%. Analysis of variance technique presents the results to validate the effectiveness of recorded data to discriminate SEMG signals. Results are of significant thrust in identifying the operations that can be implemented for classifying upper limb movements suitable for prostheses design.

  20. Upper limb functional electrical stimulation devices and their man-machine interfaces.

    PubMed

    Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D

    2015-11-01

    Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required. PMID:26508077

  1. Design and preliminary evaluation of an exoskeleton for upper limb resistance training

    NASA Astrophysics Data System (ADS)

    Wu, Tzong-Ming; Chen, Dar-Zen

    2012-06-01

    Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.

  2. Occupational "cramps" of the upper limb.

    PubMed

    Tubiana, R; Chamagne, P

    1983-01-01

    Problems involving the coordination of movements of the hand analogous to the "writers cramp" have been seen in musicians and other professions. They occur in individuals with muscular imbalance, who assume abnormal body postures affecting not only the involved limb but also the spine and pelvis. These patients also often have a particular psychological make up. Treatment is based on the re-training of their muscular actions and on teaching the patients to avoid assuming abnormal stances or postures. PMID:9336634

  3. Cortical motor activity and reorganization following upper-limb amputation and subsequent targeted reinnervation?

    PubMed Central

    Chen, Albert; Yao, Jun; Kuiken, Todd; Dewald, Julius P.A.

    2013-01-01

    Previous studies have postulated that the amount of brain reorganization following peripheral injuries may be correlated with negative symptoms or consequences. However, it is unknown whether restoring effective limb function may then be associated with further changes in the expression of this reorganization. Recently, targeted reinnervation (TR), a surgical technique that restores a direct neural connection from amputated sensorimotor nerves to new peripheral targets such as muscle, has been successfully applied to upper-limb amputees. It has been shown to be effective in restoring both peripheral motor and sensory functions via the reinnervated nerves as soon as a few months after the surgery. However, it was unclear whether TR could also restore normal cortical motor representations for control of the missing limb. To answer this question, we used high-density electroencephalography (EEG) to localize cortical activity related to cued motor tasks generated by the intact and missing limb. Using a case study of 3 upper-limb amputees, 2 of whom went through pre and post-TR experiments, we present unique quantitative evidence for the re-mapping of motor representations for the missing limb closer to their original locations following TR. This provides evidence that an effective restoration of peripheral function from TR can be linked to the return of more normal cortical expression for the missing limb. Therefore, cortical mapping may be used as a potential guide for monitoring rehabilitation following peripheral injuries. PMID:24273732

  4. SHUEE on the evaluation of upper limb in cerebral palsy

    PubMed Central

    Tedesco, Ana Paula; Nicolini-Panisson, Renata D'Agostini; de Jesus, Aline

    2015-01-01

    OBJECTIVE: To demonstrate the use of the tool for evaluation of spastic upper limb SHUEE (Shriners Hospital Upper Extremity Evaluation) in the evaluation of upper limb in cerebral palsy (CP) and its ability to detect changes after surgical treatment of identified deformities. METHODS: 19 patients with spastic hemiplegic CP had their upper limb evaluated by SHUEE. Five patients underwent surgical treatment of deformities detected and performed the test at one year postoperatively. RESULTS: The mean age was 9.02 years old; 18 patients were classified as level I GMFCS and one patient as level II. At baseline, the mean spontaneous functional analysis was 59.01; dynamic positional analysis was 58.05 and grasp-and-release function, was 91.21. In the postoperative period the scores were, respectively, 65.73, 69.62 and 100, showing an improvement of 3.5% in the spontaneous functional analysis and of 44.8% in dynamic positional analysis. CONCLUSIONS: SHUEE is a tool for evaluation of spastic upper limb in cerebral palsy that helps in the specific diagnosis of deformities, indication of treatment and objective detection of results after surgical treatment. Level of Evidence IV, Case Series. PMID:26327806

  5. [Congenital malformations of the upper limb. General considerations].

    PubMed

    Henriques, M; Ferreira, A C

    1998-12-01

    The authors develop same general considerations about history, embryology, classification and treatment of congenital upper limb anomalies. They review 62 clinical cases of operated patients in Unit Plastic and Reconstructive Surgery of Santa Maria Hospital and show same cases. PMID:10192983

  6. Measuring continuous real-world upper-limb activity.

    PubMed

    Vega-Gonzalez, A; Bain, B J; Granat, M H

    2005-01-01

    The Strathclyde Upper-Limb Activity Monitor (SULAM) was used to assess real-world upper-limb activity. The SULAM consists of an electro-hydraulic activity-sensor which measures the vertical displacement of the wrist in relation to the shoulder. The aims of this study were to obtain a profile of upper-limb activity in two different populations (able-bodied participants and stroke patients) Ten able-bodied volunteers and ten stroke patients-wore the SULAM while performing their everyday activities. The outcome measures were movement time, its distribution in five vertical ranges, bimanual and unimanual movement time. There was a difference in the use of both upper-limbs for both groups, favouring the dominant/unaffected arm. This difference was only in two of the five ranges (chest to shoulder and shoulder to head for able-bodied participants; waist to chest and chest to shoulder for stroke patients). Bimanual movement was greater than unimanual movement for able-bodied participants whereas unimanual movement was greater than bimanual movement for stroke patients. PMID:17280989

  7. The artery blood supply variant of the upper limb

    PubMed Central

    MASLARSKI, IVAN

    2015-01-01

    Variations of arterial patterns in the upper limb have represented the most common subject of vascular anatomy. Different types of artery branching pattern of the upper limb are very important for orthopedists in angiographic and microvascular surgical practice. The brachial artery (BA) is the most important vessel in the normal vascular anatomy of the upper limb. The classical pattern of the palmar hand region distribution shows the superficial palmar arch. Normally this arch is formed by the superficial branch of the ulnar artery and completed on the lateral side by one of these arteries: the superficial palmar branch of the radial artery, the princeps pollicis artery, the superficial palmar branch of the radial artery or the median artery. After the routine dissection of the right upper limb of an adult male cadaver, we found a very rare variant of the superficial arch artery a division in a higher level brachial artery. We found this division at 10.4 cm from the beginning of the brachial artery. This superficial brachial artery became a radial artery and was not involved in the formation of the palm arch. In the forearm region, the artery variant was present with the median artery and the ulnar artery, which form the superficial palm arch. PMID:26733754

  8. Feasibility of a biomechatronic EPP Upper Limb Prosthesis Controller.

    PubMed

    Moutopoulou, Efie; Bertos, Georgios A; Mablekos-Alexiou, Anestis; Papadopoulos, Evangelos G

    2015-08-01

    In this paper, we examine the feasibility of an implantable topology of a Biomechatronic Extended Physiological Proprioception (EPP) Upper Limb Prosthesis Controller. Initial findings support the hypothesis that the topology is safe and feasible. This novel controller topology can maintain the advantages of EPP, but without its inherent disadvantages i.e. of the existence of unaesthetic cables, or mechanical linkages. PMID:26736790

  9. Skeletal muscle responses to lower limb suspension in humans

    NASA Technical Reports Server (NTRS)

    Hather, Bruce M.; Adams, Gregory R.; Tesch, Per A.; Dudley, Gary A.

    1992-01-01

    The morphological responses of human skeletal muscle to unweighting were assessed by analyzing multiple transaxial magnetic resonance (MR) images of both lower limbs and skeletal muscle biopsies of the unweighted lower limb before and after six weeks of unilaterial (left) lower limb suspension (ULLS). Results indicated that, as a results of 6 weeks of unweighting (by the subjects walking on crutches using only one limb), the cross sectional area (CSA) of the thigh muscle of the unweighted left limb decreased 12 percent, while the CSA of the right thigh muscle did not change. The decrease was due to a twofold greater response of the knee extensors than the knee flexors. The pre- and post-ULLS biopsies of the left vastus lateralis showed a 14 percent decrease in average fiber CSA due to unweighting. The number of capillaries surrounding the different fiber types was unchanged after ULLS. Results showed that the adaptive responses of human skeletal muscle to unweighting are qualitatively, but not quantitatively, similar to those of lower mammals and not necessarily dependent on the fiber-type composition.

  10. Prosthetic rehabilitation of the upper limb amputee

    PubMed Central

    OKeeffe, Bernard

    2011-01-01

    The loss of all or part of the arm is a catastrophic event for a patient and a significant challenge to rehabilitation professionals and prosthetic engineers. The large, upper extremity amputee population in India has, historically, been poorly served, with most having no access to support or being provided with ineffective prostheses. In recent years, the arrival of organisations like Otto Bock has made high quality service standards and devices accessible to more amputees. This review attempts to provide surgeons and other medical professionals with an overview of the multidisciplinary, multistage rehabilitation process and the solution options available. With worldwide upper extremity prosthesis rejection rates at significant levels, the review also describes some of the factors which influence the outcome. This is particularly relevant in the Indian context where the service can involve high cost investments. It is the responsibility of all contributing professionals to guide vulnerable patients through the process and try to maximise the benefit that can be obtained within the resources available. PMID:22022035

  11. UPPER LIMB TRACTION DEVICE FOR ANTEROGRADE INTRAMEDULLARY LOCKED NAIL OF HUMERAL SHAFT FRACTURES

    PubMed Central

    Corrêa, Mário Chaves; Gomes, Felipe Antônio; Linhares, Daniel Campos; Gonçalves, Lucas Braga Jacques; Vilela, José Carlos Souza; de Andrade, Ronaldo Percopi

    2015-01-01

    Diaphyseal fractures of the femur and tibia in adults are mostly treated surgically, usually by means of intramedullary locked-nail osteosynthesis. Some comminuted and/or highly deviated shaft fractures may present a veritable technical challenge. Fracture (or orthopedic) tables, which enable vertical, horizontal and rotational instrumental stabilization of the limb, greatly facilitate reduction and implant placement maneuvers and are widely used by orthopedic surgeons. Humeral shaft fractures are mostly treated nonsurgically. However, some cases with indications that are well defined in the literature require surgical treatment. They can be fixed by means of plates or intramedullary nails, using anterograde or retrograde routes. In the humerus, fracture reduction and limb stabilization maneuvers for implantation of intramedullary nails are done manually, usually by two assistants. Because muscle fatigue may occur, this option may be less efficient. The aim of this paper is to present an external upper-limb traction device for use in anterograde intramedullary locked-nail osteosynthesis of humeral shaft fractures that enables vertical, horizontal and rotational stabilization of the upper limb, in a manner similar to the device used for the lower limbs. The device is portable, of simple construction, and can be installed on any operating table equipped with side rails. It was used for surgical treatment of 29 humeral shaft fractures using an anterograde locked intramedullary nail. Our experience was extremely positive. We did not have any complications relating to its use and we believe that it notably facilitated the surgical procedures.

  12. Micro movements of the upper limb in fibromyalgia: The relation to proprioceptive accuracy and visual feedback.

    PubMed

    Bardal, Ellen Marie; Roeleveld, Karin; Ihlen, Espen; Mork, Paul Jarle

    2016-02-01

    The purpose of this study was to explore the role of visual and proprioceptive feedback in upper limb posture control in fibromyalgia (FM) and to assess the coherence between acceleration measurements of upper limb micro movements and surface electromyography (sEMG) of shoulder muscle activity (upper trapezius and deltoid). Twenty-five female FM patients and 25 age- and sex-matched healthy controls (HCs) performed three precision motor tasks: (1) maintain a steady shoulder abduction angle of 45 while receiving visual feedback about upper arm position and supporting external loads (0.5, 1, or 2kg), (2) maintain the same shoulder abduction angle without visual feedback (eyes closed) and no external loading, and (3) a joint position sense test (i.e., assessment of proprioceptive accuracy). Patients had more extensive increase in movement variance than HCs when visual feedback was removed (P<0.03). Proprioceptive accuracy was related to movement variance in HCs (R?0.59, P?0.002), but not in patients (R?0.25, P?0.24). There was no difference between patients and HCs in coherence between sEMG and acceleration data. These results may indicate that FM patients are more dependent on visual feedback and less reliant on proprioceptive information for upper limb posture control compared to HCs. PMID:26790141

  13. Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke.

    PubMed

    Hu, X L; Tong, K Y; Wei, X J; Rong, W; Susanto, E A; Ho, S K

    2013-01-01

    An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training on muscular coordination was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5 times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Improvements were found in the muscle co-ordination between the antagonist muscle pair (flexor digitorum and extensor digitorum) as measured by muscle co-contractions in EMG signals; and also in the reduction of excessive muscle activities in the biceps brachii. Reduced spasticity in the fingers was also observed as measured by the Modified Ashworth Score. PMID:24111082

  14. Objective Assessment of Upper-Limb Mobility for Poststroke Rehabilitation.

    PubMed

    Zhang, Zhe; Fang, Qiang; Gu, Xudong

    2016-04-01

    The assessment of the limb mobility of stroke patients is an essential part of poststroke rehabilitation. Conventionally, the assessment is manually performed by clinicians using chart-based ordinal scales, which can be subjective and inefficient. By introducing quantitative evaluation measures, the sensitivity and efficiency of the assessment process can be significantly improved. In this paper, a novel single-index-based assessment approach for quantitative upper-limb mobility evaluation has been proposed for poststroke rehabilitation. Instead of the traditional human-observation-based measures, the proposed assessment system utilizes the kinematic information automatically collected during a regular rehabilitation training exercise using a wearable inertial measurement unit. By calculating a single index, the system can efficiently generate objective and consistent quantitative results that can reflect the stroke patient's upper-limb mobility. In order to verify and validate the proposed assessment system, experiments have been conducted using 145 motion samples collected from 21 stroke patients (12 males, nine females, mean age 58.7±19.3) and eight healthy participants. The results have suggested that the proposed assessment index can not only differentiate the levels of limb function impairment clearly ( , two-tailed Welch's t-test), but also strongly correlate with the Brunnstrom stages of recovery ( r = 0.86 , ). The assessment index is also proven to have great potential in automatic Brunnstrom stage classification application with an 82.1% classification accuracy, while using a K-nearest-neighbor classifier. PMID:26357394

  15. An Experimental Analysis Of The Kinematics Of The Upper Limb.

    NASA Astrophysics Data System (ADS)

    Hennion, P.-Y.; Mollard, R.; Lornet, P.

    1986-07-01

    The purpose of this work is the knowledge of the upper limb kinematics for various final tasks requiring effort or precision. The aim is to integrate these results in a C.A.D. system for human engineering studies. The description of these movements proceeds from the 3-D trajectories of anatomical landmarks delivered by the VICON system. Such a representation using fixed orthogonal reference system x, y, z, does not lead to a simple analysis of the gesture. So from these data we compute a set of angular parameters which are in closer relation with the real kinematics of the upper limb. We obtain this result by the introduction of pertinent intermediate reference systems, related to each rotation degree of freedom. The result exhibit typical patterns of the temporal evolution of the angular parameters related to the task assigned to the subject. The collected data constitute a computerized catalogue of movements included in ERGODATA system.

  16. [Anatomo-functional aspects and diagnostic algorithm (of the upper limb pathologies secondary to repeated trauma)].

    PubMed

    Bazzini, G

    2001-01-01

    The epidemiology of work-related musculo-skeletal pathologies of the upper limbs has become significantly relevant in the last years, and a sharp increasing trend can be observed. This paper mainly focuses on the chronic inflammatory and degenerative conditions, which are more complex and difficult to accurately diagnose and treat. A synthesis of the diagnostic picture of the different types, involving the joints, muscles and tendons, and peripheral nerves is provided, with mention of the sensitivity and specificity of the main diagnostic tests. The possible entrapments of the radial, median and ulnar nerves are described in detail. Finally, a brief critical review on the principal movements of the upper limbs which are responsible of the onset of such conditions is presented. PMID:11505781

  17. Motor Impairment Evaluation for Upper Limb in Stroke Patients on the Basis of a Microsensor

    ERIC Educational Resources Information Center

    Huang, Shuai; Luo, Chun; Ye, Shiwei; Liu, Fei; Xie, Bin; Wang, Caifeng; Yang, Li; Huang, Zhen; Wu, Jiankang

    2012-01-01

    There has been an urgent need for an effective and efficient upper limb rehabilitation method for poststroke patients. We present a Micro-Sensor-based Upper Limb rehabilitation System for poststroke patients. The wearable motion capture units are attached to upper limb segments embedded in the fabric of garments. The body segment orientation

  18. Motor Impairment Evaluation for Upper Limb in Stroke Patients on the Basis of a Microsensor

    ERIC Educational Resources Information Center

    Huang, Shuai; Luo, Chun; Ye, Shiwei; Liu, Fei; Xie, Bin; Wang, Caifeng; Yang, Li; Huang, Zhen; Wu, Jiankang

    2012-01-01

    There has been an urgent need for an effective and efficient upper limb rehabilitation method for poststroke patients. We present a Micro-Sensor-based Upper Limb rehabilitation System for poststroke patients. The wearable motion capture units are attached to upper limb segments embedded in the fabric of garments. The body segment orientation…

  19. Robotic upper-limb neurorehabilitation in chronic stroke patients.

    PubMed

    Macclellan, Leah R; Bradham, Douglas D; Whitall, Jill; Volpe, Bruce; Wilson, P David; Ohlhoff, Jill; Meister, Christine; Hogan, Neville; Krebs, Hermano I; Bever, Christopher T

    2005-01-01

    This pilot study tested the effectiveness of an intense, short-term upper-limb robotic therapy for improvement in motor outcomes among chronic stroke patients. We enrolled 30 subjects with upper-limb deficits due to stroke of at least 6 mo duration and with a Motor Power Assessment grade of 3 or less. Over 3 wk, 18 sessions of robot-assisted task-specific therapy were delivered with the use of a robotic exercise device that simulates a conventional therapy known as skateboard therapy. Primary outcome measures included reliable, validated impairment and disability measures of upper-limb motor function. Statistically significant improvements were observed for severely impaired participants when we compared baseline and posttreatment outcomes (p < 0.05). These results are important because they indicate that improvement is not limited to those with moderate impairments but is possible among severely impaired chronic stroke patients as well. Moderately and severely impaired patients in our study were able to tolerate a massed-practice therapy paradigm with intensive, frequent, and repetitive treatment. This information is useful in determining the optimal target population, intensity, and duration of robotic therapy and sample size for a planned larger trial. PMID:16680609

  20. Reliability of the Melbourne assessment of unilateral upper limb function.

    PubMed

    Randall, M; Carlin, J B; Chondros, P; Reddihough, D

    2001-11-01

    This study examines the reliability of the Melbourne Assessment of Unilateral Upper Limb Function: a quantitative test of quality of movement in children with neurological impairment. The assessment was administered to 20 children aged from 5 to 16 years (mean age 9 years 10 months, SD 2 years 10 months) who had various types and degrees of cerebral palsy (CP). The performances of the 20 children during assessment were videotaped for subsequent scoring by 15 occupational therapists. Scores were analyzed for internal consistency of test items, inter- and intrarater reliability of scorings of the same videotapes, and test-retest reliability using repeat videotaping. Results revealed very high internal consistency of test items (alpha=0.96), moderate to high agreement both within and between raters for all test items (intraclass correlations of at least 0.7) apart from item 16 (hand to mouth and down), and high interrater reliability (0.95) and intrarater reliability (0.97) for total test scores. Test-retest results revealed moderate to high intrarater reliability for item totals (mean of 0.83 and 0.79) for each rater and high reliability for test totals (0.98 and 0.97). These findings indicate that the Melbourne Assessment of Unilateral Upper Limb Function is a reliable tool for measuring the quality of unilateral upper-limb movement in children with CP. PMID:11730151

  1. Muscle exercise in limb girdle muscular dystrophies: pitfall and advantages.

    PubMed

    Siciliano, Gabriele; Simoncini, Costanza; Giannotti, Stefano; Zampa, Virna; Angelini, Corrado; Ricci, Giulia

    2015-05-01

    Different genetic mutations underlying distinct pathogenic mechanisms have been identified as cause of muscle fibers degeneration and strength loss in limb girdle muscular dystrophies (LGMD). As a consequence, exercise tolerance is affected in patients with LGMD, either as a direct consequence of the loss of muscle fibers or secondary to the sedentary lifestyle due to the motor impairment. It has been debated for many years whether or not muscle exercise is beneficial or harmful for patients with myopathic disorders. In fact, muscular exercise would be considered in helping to hinder the loss of muscle tissue and strength. On the other hand, muscle structural defects in LGMD can result in instability of the sarcolemma, making it more likely to induce muscle damage as a consequence of intense muscle contraction, such as that performed during eccentric training. Several reports have suggested that supervised aerobic exercise training is safe and may be considered effective in improving oxidative capacity and muscle function in patients with LGMD, such as LGMD2I, LGMD2L, LGMD2A. More or less comfortable investigation methods applied to assess muscle function and structure can be useful to detect the beneficial effects of supervised training in LGMD. However, it is important to note that the available trials assessing muscle exercise in patients with LGMD have often involved a small number of patients, with a wide clinical heterogeneity and a different experimental design. Based on these considerations, resistance training can be considered part of the rehabilitation program for patients with a limb-girdle type of muscular dystrophy, but it should be strictly supervised to assess its effects and prevent possible development of muscle damage. PMID:26155063

  2. Advances in upper limb stroke rehabilitation: a technology push.

    PubMed

    Loureiro, Rui C V; Harwin, William S; Nagai, Kiyoshi; Johnson, Michelle

    2011-10-01

    Strokes affect thousands of people worldwide leaving sufferers with severe disabilities affecting their daily activities. In recent years, new rehabilitation techniques have emerged such as constraint-induced therapy, biofeedback therapy and robot-aided therapy. In particular, robotic techniques allow precise recording of movements and application of forces to the affected limb, making it a valuable tool for motor rehabilitation. In addition, robot-aided therapy can utilise visual cues conveyed on a computer screen to convert repetitive movement practice into an engaging task such as a game. Visual cues can also be used to control the information sent to the patient about exercise performance and to potentially address psychosomatic variables influencing therapy. This paper overviews the current state-of-the-art on upper limb robot-mediated therapy with a focal point on the technical requirements of robotic therapy devices leading to the development of upper limb rehabilitation techniques that facilitate reach-to-touch, fine motor control, whole-arm movements and promote rehabilitation beyond hospital stay. The reviewed literature suggest that while there is evidence supporting the use of this technology to reduce functional impairment, besides the technological push, the challenge ahead lies on provision of effective assessment of outcome and modalities that have a stronger impact transferring functional gains into functional independence. PMID:21773806

  3. Long-Duration Muscle Dedifferentiation during Limb Regeneration in Axolotls

    PubMed Central

    Wu, Cheng-Han; Huang, Ting-Yu; Chen, Bo-Sung; Chiou, Ling-Ling; Lee, Hsuan-Shu

    2015-01-01

    Although still debated, limb regeneration in salamanders is thought to depend on the dedifferentiation of remnant tissue occurring early after amputation and generating the progenitor cells that initiate regeneration. This dedifferentiation has been demonstrated previously by showing the fragmentation of muscle fibers into mononucleated cells and by revealing the contribution of mature muscle fibers to the regenerates by using lineage-tracing studies. Here, we provide additional evidence of dedifferentiation by showing that Pax7 (paired-box protein-7) transcripts are expressed at the ends of remnant muscle fibers in axolotls by using in situ hybridization and by demonstrating the presence of Pax7+ muscle-fiber nuclei in the early bud and mid-bud stages by means of immunohistochemical staining. During the course of regeneration, the remnant muscles did not progress; instead, muscle progenitors migrated out from the remnants and proliferated and differentiated in the new tissues at an early stage of differentiation. The regenerating muscles and remnant muscles were largely disconnected, and this left a gap between them until extremely late in the late stage of differentiation, at which point the new and old muscles connected together. Notably, Pax7 transcripts were detected in the regions of muscles that faced these gaps; thus, Pax7 expression might indicate dedifferentiation in the remnant-muscle ends and partial differentiation in the regenerating muscles. The roles of this long-duration dedifferentiation in the remnants remain unknown. However, the results presented here could support the hypothesis that long-duration muscle dedifferentiation facilitates the connection and fusion between the new and old muscles that are both in an immature state; this is because immature Pax7+ myoblasts readily fuse during developmental myogenesis. PMID:25671422

  4. Long-duration muscle dedifferentiation during limb regeneration in axolotls.

    PubMed

    Wu, Cheng-Han; Huang, Ting-Yu; Chen, Bo-Sung; Chiou, Ling-Ling; Lee, Hsuan-Shu

    2015-01-01

    Although still debated, limb regeneration in salamanders is thought to depend on the dedifferentiation of remnant tissue occurring early after amputation and generating the progenitor cells that initiate regeneration. This dedifferentiation has been demonstrated previously by showing the fragmentation of muscle fibers into mononucleated cells and by revealing the contribution of mature muscle fibers to the regenerates by using lineage-tracing studies. Here, we provide additional evidence of dedifferentiation by showing that Pax7 (paired-box protein-7) transcripts are expressed at the ends of remnant muscle fibers in axolotls by using in situ hybridization and by demonstrating the presence of Pax7+ muscle-fiber nuclei in the early bud and mid-bud stages by means of immunohistochemical staining. During the course of regeneration, the remnant muscles did not progress; instead, muscle progenitors migrated out from the remnants and proliferated and differentiated in the new tissues at an early stage of differentiation. The regenerating muscles and remnant muscles were largely disconnected, and this left a gap between them until extremely late in the late stage of differentiation, at which point the new and old muscles connected together. Notably, Pax7 transcripts were detected in the regions of muscles that faced these gaps; thus, Pax7 expression might indicate dedifferentiation in the remnant-muscle ends and partial differentiation in the regenerating muscles. The roles of this long-duration dedifferentiation in the remnants remain unknown. However, the results presented here could support the hypothesis that long-duration muscle dedifferentiation facilitates the connection and fusion between the new and old muscles that are both in an immature state; this is because immature Pax7+ myoblasts readily fuse during developmental myogenesis. PMID:25671422

  5. Mitochondrial Regulation of the Muscle Microenvironment in Critical Limb Ischemia

    PubMed Central

    Ryan, Terence E.; Schmidt, Cameron A.; Green, Tom D.; Brown, David A.; Neufer, P. Darrell; McClung, Joseph M.

    2015-01-01

    Critical limb ischemia (CLI) is the most severe clinical presentation of peripheral arterial disease and manifests as chronic limb pain at rest and/or tissue necrosis. Current clinical interventions are largely ineffective and therapeutic angiogenesis based trials have shown little efficacy, highlighting the dire need for new ideas and novel therapeutic approaches. Despite a decade of research related to skeletal muscle as a determinant of morbidity and mortality outcomes in CLI, very little progress has been made toward an effective therapy aimed directly at the muscle myopathies of this disease. Within the muscle cell, mitochondria are well positioned to modulate the ischemic cellular response, as they are the principal sites of cellular energy production and the major regulators of cellular redox charge and cell death. In this mini review, we update the crucial importance of skeletal muscle to CLI pathology and examine the evolving influence of muscle and endothelial cell mitochondria in the complex ischemic microenvironment. Finally, we discuss the novelty of muscle mitochondria as a therapeutic target for ischemic pathology in the context of the complex co-morbidities often associated with CLI. PMID:26635622

  6. The raccoon as an animal model for upper limb neural prosthetics.

    PubMed

    Walter, J S; Griffith, P; Scarpine, V; Bidnar, M; Dauzvardis, M; Turner, M; McLane, J; Sweeney, J; Robinson, C J

    1996-10-01

    The raccoon was evaluated as an animal model for upper limb neural prosthetics. This animal was selected primarily because the functional use of its forelimb mimics in many ways the usage in humans and because of its optimal size and commercial availability. Eight cadaver and fresh specimen forearms were dissected. Important characteristics of the raccoon forearm were: 1) large muscles in the volar forearm, 2) large digits in the paw that appear more similar to humans than to other species such as cat or dog, 3) persistence of two median nerve cords into the forearm, 4) no separation of individual tendons of flexor digitorum superficialis and flexor digitorum profundus in the carpal tunnel, 5) a small thumb digit with little function and 6) a primary origin of flexor policis longus on the proximal ulna with a secondary origin on the radius. Four animals were anesthetized and responses of the forearm and paw to stimulation of the volar forearm muscles with percutaneous electrodes were evaluated. A pair of stimulating electrodes was placed in each of four muscles or muscle groups. Recording electrodes were placed in two muscles which showed the greatest separation of muscle movements to stimulation. Stimulation currents just above threshold produced discrete motion as well as recordable EMG M-waves. Incremental increases in stimulation current produced an increase in M-wave amplitude up to a maximal stimulating current. Torque recordings for pronation, wrist flexion and finger flexion showed graded and selective responses. These results including anatomical descriptions indicate both the limitations of this animal model and its potential use in the development of upper limb neural prosthetics. We conclude that the raccoon model may be superior to other nonprimate animal models such as the cat because of its extensive forearm and paw movements. PMID:9237790

  7. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    PubMed Central

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C.; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual’s survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts—their topological patterns relative to each other—using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures. PMID:26452269

  8. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy.

    PubMed

    Diogo, Rui; Esteve-Altava, Borja; Smith, Christopher; Boughner, Julia C; Rasskin-Gutman, Diego

    2015-01-01

    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures. PMID:26452269

  9. Effect of STS space suit on astronaut dominant upper limb EVA work performance

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.

    1987-01-01

    The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.

  10. Upper limb stroke rehabilitation: the effectiveness of Stimulation Assistance through Iterative Learning (SAIL).

    PubMed

    Meadmore, Katie L; Cai, Zhonglun; Tong, Daisy; Hughes, Ann-Marie; Freeman, Chris T; Rogers, Eric; Burridge, Jane H

    2011-01-01

    A novel system has been developed which combines robotic therapy with electrical stimulation (ES) for upper limb stroke rehabilitation. This technology, termed SAIL: Stimulation Assistance through Iterative Learning, employs advanced model-based iterative learning control (ILC) algorithms to precisely assist participant's completion of 3D tracking tasks with their impaired arm. Data is reported from a preliminary study with unimpaired participants, and also from a single hemiparetic stroke participant with reduced upper limb function who has used the system in a clinical trial. All participants completed tasks which involved moving their (impaired) arm to follow an image of a slowing moving sphere along a trajectory. The participants' arm was supported by a robot and ES was applied to the triceps brachii and anterior deltoid muscles. During each task, the same tracking trajectory was repeated 6 times and ILC was used to compute the stimulation signals to be applied on the next iteration. Unimpaired participants took part in a single, one hour training session and the stroke participant undertook 18, 1 hour treatment sessions composed of tracking tasks varying in length, orientation and speed. The results reported describe changes in tracking ability and demonstrate feasibility of the SAIL system for upper limb rehabilitation. PMID:22275698

  11. Duodenal atresia with a deletion of midgut associated with left lung, kidney, and upper limb absences and right upper limb malformation.

    PubMed

    Masumoto, Kouji; Arima, Tohru; Nakatsuji, Takanori; Kukita, Joji; Toyoshima, Satoshi

    2003-11-01

    Duodenal atresia with midgut deletion without abdominal wall defects is extremely rare. The authors report a newborn boy with this disease associated with left pulmonary, kidney, and upper limb absences and a contralateral upper limb malformation. At autopsy, agenesis of the arteries to such organs was confirmed. A fetal vascular disruption is presumed to be the main cause of these anomalies. PMID:14614732

  12. Electromyography-based analysis of human upper limbs during 45-day head-down bed-rest

    NASA Astrophysics Data System (ADS)

    Fu, Anshuang; Wang, Chunhui; Qi, Hongzhi; Li, Fan; Wang, Zheng; He, Feng; Zhou, Peng; Chen, Shanguang; Ming, Dong

    2016-03-01

    Muscle deconditioning occurs in response to simulated or actual microgravity. In spaceflight, astronauts become monkey-like for mainly using their upper limbs to control the operating system and to complete corresponding tasks. The changes of upper limbs' athletic ability will directly affect astronauts' working performance. This study investigated the variation trend of surface electromyography (sEMG) during prolonged simulated microgravity. Eight healthy males participating in this study performed strict 45-day head-down bed-rest (HDBR). On the 5th day of pre-HDBR, and the 15th, the 30th and the 45th days of HDBR, the subjects performed maximum pushing task and maximum pulling task, and sEMG was collected from upper limbs synchronously. Each subject's maximum volunteer contractions of both the tasks during these days were compared, showing no significant change. However, changes were detected by sEMG-based analysis. It was found that integrated EMG, root mean square, mean frequency, fuzzy entropy of deltoid, and fuzzy entropy of triceps brachii changed significantly when comparing pre-HDBR with HDBR. The variation trend showed a recovery tendency after significant decline, which is inconsistent with the monotonic variation of lower limbs that was proved by previous research. These findings suggest that EMG changes in upper limbs during prolonged simulated microgravity, but has different variation trend from lower limbs.

  13. Work-related posttraumatic upper limb disorder. A case report.

    PubMed

    Capodaglio, P; Nigrelli, M P; Malaguti, S; Panigazzi, M; Pierobon, A

    1999-01-01

    In this paper we describe a patient with mor-sensory loss in the right forearm and hand, which persisted more than 2 years after work-related crush trauma of the left hand. Radiographic and electromyographic investigations, somatosensory evoked potentials, CT scans of the encephalus as well as the Minnesota Multiphasic Personality Inventory and the Roarschach test have been performed. On the basis of these investigations, we think this represents a case of conversion disorder with somatic features. Included is a brief overview of other psychological illness with physical findings involving the upper limb. PMID:10771717

  14. A solitary fibrous tumor of the upper limb.

    PubMed

    Al-Shanawani, Bisher N; Al-Qattan, Mohammad M; Arafah, Maha M; Al-Motairi, Muhammed I

    2015-02-01

    Solitary fibrous tumors (SFT) of the upper limb are extremely rare, and we report this tumor in the arm of a 30-year-old male. He is presented with a 22 cm painless mass. Complete surgical excision was performed. The histological diagnosis of SFT was based on the presence of ectatic blood vessels and positive staining for CD34 and vimentin. He remains disease-free at the 3-year follow-up interval. The report aims to increase the awareness of the criteria for the histological diagnosis of SFT, as well as the principles of their surgical excision and follow-up.  PMID:25719592

  15. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  16. A survey on robotic devices for upper limb rehabilitation

    PubMed Central

    2014-01-01

    The existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems. PMID:24401110

  17. Dynamic expression of molecules that control limb muscle development including Fhl1 in hind limbs of different gestational age.

    PubMed

    Wang, Li-Li; Peng, Zhao-Hong; Fan, Yang; Li, Lian-Yong; Wu, Di; Zhang, Yi; Miao, Jia-Ning; Bai, Yu-Zuo; Yuan, Zheng-Wei; Wang, Wei-Lin; Sun, Kai-Lai

    2014-09-01

    Muscle abnormality could be a key reason for congenital clubfoot (CCF) deformity, which manifests itself during fetal development. FHL1 down-regulated expression is involved in the formation of skeletal muscle abnormalities in CCF and FHL1 gene mutations contribute to the development of some kinds of myopathies. Therefore, detecting dynamic expression of Fhl1 and other molecules (Hgf, MyoD1, Myogenin, and Myh4) that control limb muscle development in hind limbs of different gestational age will provide a foundation for further research on the molecular mechanism involves in the myopathies or CCF. The dynamic gene expression levels of Fhl1, Hgf, MyoD1, Myogenin, and Myh4 in the lower limbs of E16, E17, E19, and E20 rat embryos were examined by real-time RT-PCR. Immunofluorescence was used to detect formation of specific muscle fibers (fast or slow fibers) in distal E17 hind limbs. The expression levels of Fhl1, Hgf, MyoD1, Myogenin, and Myh4 were varying in hind limbs of different gestational age. Real-time PCR results showed that all the genes that control skeletal muscle development except for Fhl1 exhibited a peak in E17 lower limbs. Immunofluorescence results showed obviously positive fast-myosin in the distal E17 lower limbs and meanwhile slow-myosin had no apparently signals. E17 was a critical time point for terminal skeletal muscle differentiation in the lower limbs of rat embryos. PMID:24475781

  18. Upper-limb power test in rock-climbing.

    PubMed

    Laffaye, G; Collin, J-M; Levernier, G; Padulo, J

    2014-07-01

    The goal of the present study was to validate a new ecological power-test on athletes of different levels and to assess rock climbers' profiles (boulderers vs. route climbers). 34 athletes divided into novice, skilled and elite groups performed the arm-jump board test (AJ). Power, time, velocity, and efficiency index were recorded. Validity was assessed by comparing the distance with the value extracted from the accelerometer (500?Hz) and the reliability of intra- and inter-session scores. Moreover, a principal component analysis (PCA) was used to assess the climbers' profiles. The AJ test was quite valid, showing a low systematic bias of -0.88?cm (-1.25%) and low limits of agreement (< 6%), and reliable ( Intra-class correlation coefficient = 0.98 and CV < 5%), and was able to distinguish between the 3 samples (p < 0.0001). There was a good correlation between relative upper-limb power (r = 0.70; p < 0.01) and the AJ score. Moreover, the PCA revealed an explosive profile for boulderers and either a weak and quick or slow profile for route climbers, revealing a biomechanical signature of the sub-discipline. The AJ test provides excellent absolute and relative reliabilities for climbing, and can effectively distinguish between climbing athletes of different competitive levels. Thus, the AJ may be suitable for field assessment of upper limb strength in climbing practitioners. PMID:24554556

  19. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study

    PubMed Central

    2011-01-01

    Background Few research in multiple sclerosis (MS) has focused on physical rehabilitation of upper limb dysfunction, though the latter strongly influences independent performance of activities of daily living. Upper limb rehabilitation technology could hold promise for complementing traditional MS therapy. Consequently, this pilot study aimed to examine the feasibility of an 8-week mechanical-assisted training program for improving upper limb muscle strength and functional capacity in MS patients with evident paresis. Methods A case series was applied, with provision of a training program (3/week, 30 minutes/session), supplementary on the customary maintaining care, by employing a gravity-supporting exoskeleton apparatus (Armeo Spring). Ten high-level disability MS patients (Expanded Disability Status Scale 7.0-8.5) actively performed task-oriented movements in a virtual real-life-like learning environment with the affected upper limb. Tests were administered before and after training, and at 2-month follow-up. Muscle strength was determined through the Motricity Index and Jamar hand-held dynamometer. Functional capacity was assessed using the TEMPA, Action Research Arm Test (ARAT) and 9-Hole Peg Test (9HPT). Results Muscle strength did not change significantly. Significant gains were particularly found in functional capacity tests. After training completion, TEMPA scores improved (p = 0.02), while a trend towards significance was found for the 9HPT (p = 0.05). At follow-up, the TEMPA as well as ARAT showed greater improvement relative to baseline than after the 8-week intervention period (p = 0.01, p = 0.02 respectively). Conclusions The results of present pilot study suggest that upper limb functionality of high-level disability MS patients can be positively influenced by means of a technology-enhanced physical rehabilitation program. PMID:21261965

  20. The effects of prism glasses and intensive upper limb exercise on hemineglect, upper limb function, and activities of daily living in stroke patients: a case series

    PubMed Central

    Oh, Se-Il; Kim, Jin-Kyung; Park, So-Yeon

    2015-01-01

    [Purpose] This study aimed to examine the effects of visual field with prism glasses, and intensive upper limb functional training on reduction of hemineglect and improvement in upper limb function and activities of daily living in three stroke patients with hemineglect. [Subjects] This study included three stroke patients hospitalized in a sanatorium. [Methods] Intervention treatment involving prism glass use for 12 hours and 30 minutes and paretic side upper limb training was conducted 5 days a week for 15 weeks. Three upper limb training tasks (hitting a balloon, passing through a ring, and reading a newspaper) were performed for 10 minutes each session, for a total of 30 minutes. Line by Section, Motor-Free Visual Perception Test-3 (MVPT-3), Manual Function Test (MFT), Box & Block Test (BBT), and Assessment of Motor and Process Skills (AMPS) were conducted before and after intervention. [Results] Subjects’ hemineglect decreased and upper limb function on the paretic side improved after intervention, which enhanced activities of daily living. [Conclusion] Prism glass use and paretic upper limb functional training effectively ameliorated stroke patients’ hemineglect and improved upper limb function. Future research should focus on prism glasses that provide a wide visual field for use in patients with different conditions. PMID:26834386

  1. The effects of prism glasses and intensive upper limb exercise on hemineglect, upper limb function, and activities of daily living in stroke patients: a case series.

    PubMed

    Oh, Se-Il; Kim, Jin-Kyung; Park, So-Yeon

    2015-12-01

    [Purpose] This study aimed to examine the effects of visual field with prism glasses, and intensive upper limb functional training on reduction of hemineglect and improvement in upper limb function and activities of daily living in three stroke patients with hemineglect. [Subjects] This study included three stroke patients hospitalized in a sanatorium. [Methods] Intervention treatment involving prism glass use for 12 hours and 30 minutes and paretic side upper limb training was conducted 5 days a week for 15 weeks. Three upper limb training tasks (hitting a balloon, passing through a ring, and reading a newspaper) were performed for 10 minutes each session, for a total of 30 minutes. Line by Section, Motor-Free Visual Perception Test-3 (MVPT-3), Manual Function Test (MFT), Box & Block Test (BBT), and Assessment of Motor and Process Skills (AMPS) were conducted before and after intervention. [Results] Subjects' hemineglect decreased and upper limb function on the paretic side improved after intervention, which enhanced activities of daily living. [Conclusion] Prism glass use and paretic upper limb functional training effectively ameliorated stroke patients' hemineglect and improved upper limb function. Future research should focus on prism glasses that provide a wide visual field for use in patients with different conditions. PMID:26834386

  2. Disuse osteoporosis of the upper limb: assessment of thirty patients

    PubMed Central

    Giannotti, Stefano; Bottai, Vanna; Dell’Osso, Giacomo; De Paola, Gaia; Bugelli, Giulia; Pini, Erica; Guido, Giulio

    2013-01-01

    Summary Osteoporosis is a multifactorial skeletal disorder characterized by the decrease of bone mass and the alteration of bone microarchitecture that leads to the increase of fracture risks. Traditionally, osteoporosis has been classified into primary and secondary osteoporosis. Primary osteoporosis refers to osteoporotic conditions which are not related to other chronic illnesses and is usually associated with aging and decreased gonadal function, such as decreased level of estrogen, whereas secondary osteoporosis is the type of osteoporosis caused by other health problems. Disuse is one of the many reasons inducing bone loss and resulting in secondary osteoporosis. The disuse osteoporosis appeared for the first time in the literature in 1974 when Minaire reported some histomorphometric analysis of iliac crest bone biopsies performed after a spinal cord injury. The most common skeleton sites in which disuse osteoporosis can be observed are knees and ankles. There are three clinical situation in which this disease can be observed: neurological or muscular disease that causes a pathological and prolonged immobilization. The most frequent is caused by a spinal cord injury, long term bed rest or space flight that causes the immobilization linked to changes in mechanical environment and experimental immobilizations in healthy subjects. Physical exercise is essential for increasing or maintaining bone mass and strength. In our study we wondered if the disuse of the upper limbs of a certain entity, lasting for a long time, can cause a decrease in BMD quantifiable with a densitometric evaluation of the distal radius and with an evaluation of the humeral cortical index such as to define a real osteoporosis from disuse. We analyzed 30 female patients without secondary osteoporosis older than 60 years: everyone underwent to vit D evaluation, densitometric exams of spine, hip and distal radius, Constant score and femoral and humeral cortical index evaluation. We observed that the distal radius BMD and humeral cortical index were worse in patients with low upper limb functionality than in patients with normal shoulder function. The results of this study suggest that humeral cortical index and radial BMD can be useful methods of upper limb bone density evaluation and that they can be useful to select a correct surgical treatment in orthopaedic and traumatologic diseases. PMID:24133531

  3. Microwave limb sounder. [measuring trace gases in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Gustincic, J. J. (inventor)

    1981-01-01

    Trace gases in the upper atmosphere can be measured by comparing spectral noise content of limb soundings with the spectral noise content of cold space. An offset Cassegrain antenna system and tiltable input mirror alternately look out at the limb and up at cold space at an elevation angle of about 22. The mirror can also be tilted to look at a black body calibration target. Reflection from the mirror is directed into a radiometer whose head functions as a diplexer to combine the input radiation and a local ocillator (klystron) beam. The radiometer head is comprised of a Fabry-Perot resonator consisting of two Fabry-Perot cavities spaced a number of half wavelengths apart. Incoming radiation received on one side is reflected and rotated 90 deg in polarization by the resonator so that it will be reflected by an input grid into a mixer, while the klystron beam received on the other side is also reflected and rotated 90 deg, but not without passing some energy to be reflected by the input grid into the mixer.

  4. Sex determination using upper limb bones in Korean populations

    PubMed Central

    Lee, Je-Hun; Kim, Yi-Suk; Lee, U-Young; Park, Dae-Kyoon; Jeong, Young-Gil; Lee, Nam Seob; Han, Seung Yun; Kim, Kyung-Yong

    2014-01-01

    The purpose of this research is to establish metric standards for the determination of sex from the upper limb bones of Korean. We took a set of eleven measurements on each of 175 right sides of adult skeletons chosen at Korean sample. Classification accuracy dropped only one or two individuals when only vertical head diameter of humerus is used. Variables in relation with maximal length were less accurate than head diameter of humerus. Two variables were selected by the stepwise procedure: maximal length of humerus, vertical head diameter of humerus. The combined accuracy was 87%. This study of modern Korean skeletons underscores the need for population-specific techniques, not only for medicolegal investigations, but also for the study of population affinities and factors affecting bone configurations. PMID:25276479

  5. Muscle phenotypic variability in limb girdle muscular dystrophy 2 G.

    PubMed

    Paim, Julia F; Cotta, Ana; Vargas, Antonio P; Navarro, Monica M; Valicek, Jaquelin; Carvalho, Elmano; da-Cunha, Antonio L; Plentz, Estevo; Braz, Shelida V; Takata, Reinaldo I; Almeida, Camila F; Vainzof, Mariz

    2013-06-01

    Limb girdle muscular dystrophy type 2G (LGMD2G) is caused by mutations in the telethonin gene. Only few families were described presenting this disease, and they are mainly Brazilians. Here, we identified one additional case carrying the same common c.157C > T mutation in the telethonin gene but with an atypical histopathological muscle pattern. In a female patient with a long duration of symptoms (46years), muscle biopsy showed, in addition to telethonin deficiency, the presence of nemaline rods, type 1 fiber predominance, nuclear internalization, lobulated fibers, and mitochondrial paracrystalline inclusions. Her first clinical signs were identified at 8years old, which include tiptoe walking, left lower limb deformity, and frequent falls. Ambulation loss occurred at 41years old, and now, at 54years old, she presented pelvic girdle atrophy, winging scapula, foot deformity with incapacity to perform ankle dorsiflexion, and absent tendon reflexes. The presence of nemaline bodies could be a secondary phenomenon, possibly associated with focal Z-line abnormalities of a long-standing disease. However, these new histopathological findings, characteristic of congenital myopathies, expand muscle phenotypic variability of telethoninopathy. PMID:23479141

  6. Contralesional Hemisphere Control of the Proximal Paretic Upper Limb following Stroke

    PubMed Central

    Bradnam, Lynley V.; Stinear, Cathy M.; Barber, P. Alan

    2012-01-01

    Cathodal transcranial direct current stimulation (c-tDCS) can reduce excitability of neurons in primary motor cortex (M1) and may facilitate motor recovery after stroke. However, little is known about the neurophysiological effects of tDCS on proximal upper limb function. We hypothesized that suppression of contralesional M1 (cM1) excitability would produce neurophysiological effects that depended on the severity of upper limb impairment. Twelve patients with varying upper limb impairment after subcortical stroke were assessed on clinical scales of upper limb spasticity, impairment, and function. Magnetic resonance imaging was used to determine lesion size and fractional anisotropy (FA) within the posterior limbs of the internal capsules indicative of corticospinal tract integrity. Excitability within paretic M1 biceps brachii representation was determined from motor-evoked potentials during selective isometric tasks, after cM1 sham stimulation and after c-tDCS. These neurophysiological data indicate that c-tDCS improved selective proximal upper limb control for mildly impaired patients and worsened it for moderate to severely impaired patients. The direction of the neurophysiological after effects of c-tDCS was strongly related to upper limb spasticity, impairment, function, and FA asymmetry between the posterior limbs of the internal capsules. These results indicate systematic variation of cM1 for proximal upper limb control after stroke and that suppression of cM1 excitability is not a one size fits all approach. PMID:22139791

  7. An upper limb robot model of children limb for cerebral palsy neurorehabilitation.

    PubMed

    Pathak, Yagna; Johnson, Michelle

    2012-01-01

    Robot therapy has emerged in the last few decades as a tool to help patients with neurological injuries relearn motor tasks and improve their quality of life. The main goal of this study was to develop a simple model of the human arm for children affected with cerebral palsy (CP). The Simulink based model presented here shows a comparison for children with and without disabilities (ages 6-15) with normal and reduced range of motion in the upper limb. The model incorporates kinematic and dynamic considerations required for activities of daily living. The simulation was conducted using Matlab/Simulink and will eventually be integrated with a robotic counterpart to develop a physical robot that will provide assistance in activities of daily life (ADLs) to children with CP while also aiming to improve motor recovery. PMID:23366294

  8. Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability

    PubMed Central

    Eckert, Nathanial R.; Poston, Brach; Riley, Zachary A.

    2016-01-01

    The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC) strength. The first excitatory response (E1), first inhibitory response (CSP), and second excitatory response (E2) were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019) and the duration of the CSP inhibition decreased (p = 0.021) in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task. PMID:26981863

  9. Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability.

    PubMed

    Eckert, Nathanial R; Poston, Brach; Riley, Zachary A

    2016-01-01

    The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC) strength. The first excitatory response (E1), first inhibitory response (CSP), and second excitatory response (E2) were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019) and the duration of the CSP inhibition decreased (p = 0.021) in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task. PMID:26981863

  10. Early prediction of long-term upper limb spasticity after stroke

    PubMed Central

    Danielsson, Anna; Alt Murphy, Margit; Persson, Hanna C.; Sunnerhagen, Katharina Stibrant

    2015-01-01

    Objective: To identify predictors and the optimal time point for the early prediction of the presence and severity of spasticity in the upper limb 12 months poststroke. Methods: In total, 117 patients in the Gothenburg area who had experienced a stroke for the first time and with documented arm paresis day 3 poststroke were consecutively included. Assessments were made at admission and at 3 and 10 days, 4 weeks, and 12 months poststroke. Upper limb spasticity in elbow flexion/extension and wrist flexion/extension was assessed with the modified Ashworth Scale (MAS). Any spasticity was regarded as MAS ≥1, and severe spasticity was regarded as MAS ≥2 in any of the muscles. Sensorimotor function, sensation, pain, and joint range of motion in the upper limb were assessed with the Fugl-Meyer assessment scale, and, together with demographic and diagnostic information, were included in both univariate and multivariate logistic regression analysis models. Seventy-six patients were included in the logistic regression analysis. Results: Sensorimotor function was the most important predictor both for any and severe spasticity 12 months poststroke. In addition, spasticity 4 weeks poststroke was a significant predictor for severe spasticity. The best prediction model for any spasticity was observed 10 days poststroke (85% sensitivity, 90% specificity). The best prediction model for severe spasticity was observed 4 weeks poststroke (91% sensitivity, 92% specificity). Conclusions: Reduced sensorimotor function was the most important predictor both for any and severe spasticity, and spasticity could be predicted with high sensitivity and specificity 10 days poststroke. PMID:26276377

  11. An admittance control scheme for a robotic upper- limb stroke rehabilitation system.

    PubMed

    Culmer, P; Jackson, A; Levesley, M C; Savage, J; Richardson, R; Cozens, J A; Bhakta, B B

    2005-01-01

    This paper presents a control scheme for a dual robot upper-limb stroke rehabilitation system. A model of the human arm is outlined and used to formulate an admittance controller operating in human upper-limb joint space. Initial results are provided together with a discrussion of future work. PMID:17281389

  12. EEG controlled neuromuscular electrical stimulation of the upper limb for stroke patients

    NASA Astrophysics Data System (ADS)

    Tan, Hock Guan; Shee, Cheng Yap; Kong, Keng He; Guan, Cuntai; Ang, Wei Tech

    2011-03-01

    This paper describes the Brain Computer Interface (BCI) system and the experiments to allow post-acute (<3 months) stroke patients to use electroencephalogram (EEG) to trigger neuromuscular electrical stimulation (NMES)-assisted extension of the wrist/fingers, which are essential pre-requisites for useful hand function. EEG was recorded while subjects performed motor imagery of their paretic limb, and then analyzed to determine the optimal frequency range within the mu-rhythm, with the greatest attenuation. Aided by visual feedback, subjects then trained to regulate their mu-rhythm EEG to operate the BCI to trigger NMES of the wrist/finger. 6 post-acute stroke patients successfully completed the training, with 4 able to learn to control and use the BCI to initiate NMES. This result is consistent with the reported BCI literacy rate of healthy subjects. Thereafter, without the loss of generality, the controller of the NMES is developed and is based on a model of the upper limb muscle (biceps/triceps) groups to determine the intensity of NMES required to flex or extend the forearm by a specific angle. The muscle model is based on a phenomenological approach, with parameters that are easily measured and conveniently implemented.

  13. Differential diagnosis of a rare case of upper limb pain: Paget-Schroetter syndrome in a doner kebab chef

    PubMed Central

    Aytekin, Ebru; Dogan, Yasemin Pekin; Okur, Sibel Caglar; Burnaz, Ozer; Caglar, Nil Sayiner

    2015-01-01

    [Purpose] Paget-Schroetter syndrome (PSS) is an uncommon deep vein thrombosis of the axillary and subclavian veins which may occur spontaneously, but is usually caused by excessive upper limb activity. PSS is clinically similar to other upper limb musculoskeletal disorders and soft tissue infections, and this may lead to delay in correct diagnosis in its early stages. The aim of our case report is to discuss this rare condition with reference to the available literature. [Subjects and Methods] Here we report the case of a doner kebab chef who complained of swelling and pain in his right arm around the biceps muscle. The initial diagnosis was biceps tendon rupture, for which the patient underwent magnetic resonance imaging (MRI) of the right arm and shoulder. Since the MRI revealed no pathological findings, right upper limb venous Doppler ultrasound analysis was performed. Subacute thrombosis materials were detected in the subclavian, axillary, and brachial veins. [Results] With rapid anticoagulant therapy, the patients symptoms quickly improved. [Conclusion] Early diagnosis and treatment of PSS is critical for preventing potentially fatal complications such as pulmonary embolism. Prophylaxis is important for preventing recurrent thrombosis and for avoiding the development of post-thrombotic syndrome. PSS should be considered a possible cause of painful swelling of the upper limbs, especially in young, active patients who use their arms excessively. PMID:26644704

  14. Differential diagnosis of a rare case of upper limb pain: Paget-Schroetter syndrome in a doner kebab chef.

    PubMed

    Aytekin, Ebru; Dogan, Yasemin Pekin; Okur, Sibel Caglar; Burnaz, Ozer; Caglar, Nil Sayiner

    2015-10-01

    [Purpose] Paget-Schroetter syndrome (PSS) is an uncommon deep vein thrombosis of the axillary and subclavian veins which may occur spontaneously, but is usually caused by excessive upper limb activity. PSS is clinically similar to other upper limb musculoskeletal disorders and soft tissue infections, and this may lead to delay in correct diagnosis in its early stages. The aim of our case report is to discuss this rare condition with reference to the available literature. [Subjects and Methods] Here we report the case of a doner kebab chef who complained of swelling and pain in his right arm around the biceps muscle. The initial diagnosis was biceps tendon rupture, for which the patient underwent magnetic resonance imaging (MRI) of the right arm and shoulder. Since the MRI revealed no pathological findings, right upper limb venous Doppler ultrasound analysis was performed. Subacute thrombosis materials were detected in the subclavian, axillary, and brachial veins. [Results] With rapid anticoagulant therapy, the patient's symptoms quickly improved. [Conclusion] Early diagnosis and treatment of PSS is critical for preventing potentially fatal complications such as pulmonary embolism. Prophylaxis is important for preventing recurrent thrombosis and for avoiding the development of post-thrombotic syndrome. PSS should be considered a possible cause of painful swelling of the upper limbs, especially in young, active patients who use their arms excessively. PMID:26644704

  15. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization

    NASA Technical Reports Server (NTRS)

    Tucker, K. R.; Seider, M. J.; Booth, F. W.

    1981-01-01

    Noting that protein synthesis declines in the gastrocnemius 6 hr after immobilization, the study sought to detect an increase of protein synthesis when the limb was freed, and to examine the effects of exercise on the rate of increase. Rats were used as subjects, with their hind legs in plaster of Paris in plantar flexion to eliminate strain on the gastrocnemius. Periods of immobilization were varied and samples of blood from the muscle were taken to track protein synthesis rates for different groups in immobilization and exercise regimens (running and weightlifting). Synthesis rates declined 3.6% during time in the cast, then increased 6.3%/day after the casts were removed. Both running and weightlifting were found to increase the fractional rate of protein formation in the gastrocnemius muscle when compared with contralateral muscles that were not exercised and were used as controls, suggesting that the mechanism controlling protein synthesis in skeletal muscles is rapidly responsive to changes in muscular contractile activity.

  16. Posture-movement responses to stance perturbations and upper limb fatigue during a repetitive pointing task.

    PubMed

    Fuller, Jason R; Fung, Joyce; Côté, Julie N

    2013-08-01

    Localized muscle fatigue and postural perturbation have separately been shown to alter whole-body movement but little is known about how humans respond when subjected to both factors combined. Here we sought to quantify the kinematics of postural control and repetitive upper limb movement during standing surface perturbations and in the presence of fatigue. Subjects stood on a motion-based platform and repetitively reached between two shoulder-height targets until noticeably fatigued (rating of perceived exertion=8/10). Every minute, subjects experienced a posterior and an anterior platform translation while reaching to the distal target. Outcomes were compared prior to and with fatigue (first vs. final minute data). When fatigued, regardless of the perturbation condition, subjects decreased their shoulder abduction and increased contralateral trunk flexion, a strategy that may relieve the load on the fatiguing upper limb musculature. During perturbations, kinematic adaptations emerged across the trunk and arm to preserve task performance. In contrast to our expectation, the kinematic response to the perturbations did not alter in the presence of fatigue. Kinematic adaptations in response to the perturbation predominantly occurred in the direction of the reach whereas fatigue adaptations occurred orthogonal to the reach. These findings suggest that during repetitive reaching, fatigue and postural perturbation compensations organize so as to minimize interaction with each other and preserve the global task characteristics of endpoint motion. PMID:24054899

  17. Relation between systemic inflammatory markers, peripheral muscle mass, and strength in limb muscles in stable COPD patients

    PubMed Central

    Ferrari, Renata; Caram, Laura MO; Faganello, Marcia M; Sanchez, Fernanda F; Tanni, Suzana E; Godoy, Irma

    2015-01-01

    The aim of this study was to investigate the association between systemic inflammatory mediators and peripheral muscle mass and strength in COPD patients. Fifty-five patients (69% male; age: 649 years) with mild/very severe COPD (defined as forced expiratory volume in the first second [FEV1] =54%23%) were evaluated. We evaluated serum concentrations of IL-8, CRP, and TNF-?. Peripheral muscle mass was evaluated by computerized tomography (CT); midthigh cross-sectional muscle area (MTCSA) and midarm cross-sectional muscle area (MACSA) were obtained. Quadriceps, triceps, and biceps strength were assessed through the determination of the one-repetition maximum. The multiple regression results, adjusted for age, sex, and FEV1%, showed positive significant association between MTCSA and leg extension (0.35 [0.16, 0.55]; P=0.001), between MACSA and triceps pulley (0.45 [0.31, 0.58]; P=0.001), and between MACSA and biceps curl (0.34 [0.22, 0.47]; P=0.001). Plasma TNF-? was negatively associated with leg extension (?3.09 [?5.99, ?0.18]; P=0.04) and triceps pulley (?1.31 [?2.35, ?0.28]; P=0.01), while plasma CRP presented negative association with biceps curl (?0.06 [?0.11, ?0.01]; P=0.02). Our results showed negative association between peripheral muscle mass (evaluated by CT) and muscle strength and that systemic inflammation has a negative influence in the strength of specific groups of muscles in individuals with stable COPD. This is the first study showing association between systemic inflammatory markers and strength in upper limb muscles. PMID:26345641

  18. The formation of muscles in regenerating limbs of the newt after denervation of the blastema.

    PubMed

    Grim, M; Carlson, B M

    1979-12-01

    The purpose of this experiment was to examine the relationship, if any, between nerve fibers and the formation of muscle pattern in the regenerating amphibian limb. During embryogenesis, nerve fibers grow into the limb bud at the time when the common muscle blastemas subdivide into individual muscle primordia, whereas in regeneration nerve fibers are always present. In order to learn whether or not the muscle pattern could be laid down in the absence of nerves we amputated 58 limbs of newts (Notophthalmus viridescens) at the mid humeral level and allowed them to regenerate to the medium-bud or late-bud stage. The limbs were then denervated. The majority of limbs denervated at the medium-bud stage either regressed or failed to regenerate further. Regeneration after denervation failed in 9 of 25 limbs denervated at the late-bud stages. In those limbs that continued to regenerate after denervation, the formation of individual muscle primordia did occur, following the same sequence with respect to the gross stage of regeneration as innervated regenerates. In comparing these results with our previous results on the development of muscular pattern in aneurogenic limbs of the axolotl, we conclude that in neither the embryonic nor the regenerating amphibian limb are nerve fibers directly involved in the subdivision of common muscle blastemas into the primordia of individual muscles. PMID:528874

  19. Ultrasound Guided Low Approach Interscalene Brachial Plexus Block for Upper Limb Surgery

    PubMed Central

    Park, Sun Kyung; Sung, Min Ha; Suh, Hae Jin

    2016-01-01

    Background The interscalene brachial plexus block is widely used for pain control and anesthetic purposes during shoulder arthroscopic surgeries and surgeries of the upper extremities. However, it is known that interscalene brachial plexus block is not appropriate for upper limb surgeries because it does not affect the lower trunk (C8-T1, ulnar nerve) of the brachial plexus. Methods A low approach, ultrasound-guided interscalene brachial plexus block (LISB) was performed on twenty-eight patients undergoing surgery of the upper extremities. The patients were assessed five minutes and fifteen minutes after the block for the degree of block in each nerve and muscle as well as for any complications. Results At five minutes and fifteen minutes after the performance of the block, the degree of the block in the ulnar nerve was found to be 2.8 ± 2.6 and 1.1 ± 1.8, respectively, based on a ten-point scale. Motor block occurred in the median nerve after fifteen minutes in 26 of the 28 patients (92.8%), and in all of the other three nerves in all 28 patients. None of the patients received additional analgesics, and none experienced complications. Conclusions The present study confirmed the achievement of an appropriate sensory and motor block in the upper extremities, including the ulnar nerve, fifteen minutes after LISB, with no complications. PMID:26839666

  20. Upper limb malformations in chromosome 22q11 deletions

    SciTech Connect

    Shalev, S.A.; Dar, H.; Barel, H.; Borochowitz, Z.

    1996-03-29

    We read with interest the report of Cormier-Daire et al. in a recent issue of the journal, describing upper limb malformations in DiGeorge syndrome. We observed a family with this group of rare clinical expression of chromosome 22q11 deletions. The proposita was examined in our clinic when she was 4 years old. She was mildly mentally retarded. Clinical evaluation showed normal growth, long thin nose with squared tip, nasal speech, and abundant scalp hair and no cardiac anomalies. The girl was accompanied by her mother. Facial similarities were noted between the two. The mother reported to be treated with oral calcium due to hypoparathyroidism, diagnosed several years ago. Clinical evaluation showed wide flat face, short stature, mild mental retardation, slight hypertelorism, peculiar nose similar to her daughter`s, and nasal speech. No cardiac anomalies were found. Recently, a brother was born. Clinical examination documented large ventriculo-septal defect, retrognathia, narrow palpebral fissures, and long thin nose with squared tip. 1 ref.

  1. Robotic unilateral and bilateral upper-limb movement training for stroke survivors afflicted by chronic hemiparesis.

    PubMed

    Simkins, Matt; Kim, Hyuchul; Abrams, Gary; Byl, Nancy; Rosen, Jacob

    2013-06-01

    Stroke is the leading cause of long-term neurological disability and the principle reason for seeking rehabilitative services in the US. Learning based rehabilitation training enables independent mobility in the majority of patients post stroke, however, restoration of fine manipulation, motor function and task specific functions of the hemiplegic arm and hand is noted in fewer than 15% of the stroke patients. Brain plasticity is the innate mechanism enabling the recovery of motor skills through neurological reorganization of the brain as a response to limbs' manipulation. The objective of this research was to evaluate the therapeutic efficacy for the upper limbs with a dual arm exoskeleton system (EXO-UL7) using three different modalities: bilateral mirror image with symmetric movements of both arms, unilateral movement of the affected arm and standard care. Five hemiparetic subjects were randomly assigned to each therapy modality. An upper limb exoskeleton was used to provide bilateral and unilateral treatments. Standard care was provided by a licensed physical therapist. Subjects were evaluated before and after the interventions using 13 different clinical measures. Following these treatments all of the subjects demonstrated significant improved of their fine motor control and gross control across all the treatment modalities. Subjects exhibited significant improvements in range of motion of the shoulder, and improved muscle strength for bilateral training and standard care, but not for unilateral training. In conclusion, a synergetic approach in which robotic treatments (unilateral and bilateral depending on the level of the motor control) are supplemented by the standard of care may maximize the outcome of the motor control recover following stroke. PMID:24187321

  2. Upper Limb Portable Motion Analysis System Based on Inertial Technology for Neurorehabilitation Purposes

    PubMed Central

    Prez, Rodrigo; Costa, rsula; Torrent, Marc; Solana, Javier; Opisso, Eloy; Cceres, Csar; Tormos, Josep M.; Medina, Josep; Gmez, Enrique J.

    2010-01-01

    Here an inertial sensor-based monitoring system for measuring and analyzing upper limb movements is presented. The final goal is the integration of this motion-tracking device within a portable rehabilitation system for brain injury patients. A set of four inertial sensors mounted on a special garment worn by the patient provides the quaternions representing the patient upper limbs orientation in space. A kinematic model is built to estimate 3D upper limb motion for accurate therapeutic evaluation. The human upper limb is represented as a kinematic chain of rigid bodies with three joints and six degrees of freedom. Validation of the system has been performed by co-registration of movements with a commercial optoelectronic tracking system. Successful results are shown that exhibit a high correlation among signals provided by both devices and obtained at the Institut Guttmann Neurorehabilitation Hospital. PMID:22163496

  3. Effect of Acute Exercise on Upper-Limb Volume in Breast Cancer Survivors: A Pilot Study

    PubMed Central

    Campbell, Kristin L.; Courneya, Kerry S.; Mackey, John R.

    2009-01-01

    ABSTRACT Purpose: Strenuous upper-extremity activity and/or exercise have traditionally been prescribed for breast cancer survivors with or at risk of developing lymphedema. The purpose of this study was to assess the effect of an acute bout of exercise on upper-limb volume and symptoms in breast cancer survivors, with the intent to provide pilot data to guide a subsequent larger study. Methods: Twenty-three women who regularly participated in dragon-boat racing took part in the study. A single exercise bout was performed at a moderate intensity (rating of perceived exertion: 1314) for 20 continuous minutes on an arm ergometer. The difference between affected and unaffected limb volume was assessed pre- and post-exercise via measurements of limb circumference at five time points. Results: Although limb volume increased following exercise in both limbs, the difference between the limbs remained stable at each measurement point. Only one participant was found to have an increase in arm-volume difference of >100 ml post intervention, and only four participants reported symptoms of tension and/or heaviness in the affected limb. Conclusion: The results suggest that limb volume in breast cancer survivors increases after an acute bout of upper-limb exercise but that, for the majority of women, the response is not different between affected and unaffected limbs. Future research using a larger sample and more sensitive measurement methods are recommended. PMID:20808486

  4. Computationally efficient modeling of proprioceptive signals in the upper limb for prostheses: a simulation study

    PubMed Central

    Williams, Ian; Constandinou, Timothy G.

    2014-01-01

    Accurate models of proprioceptive neural patterns could 1 day play an important role in the creation of an intuitive proprioceptive neural prosthesis for amputees. This paper looks at combining efficient implementations of biomechanical and proprioceptor models in order to generate signals that mimic human muscular proprioceptive patterns for future experimental work in prosthesis feedback. A neuro-musculoskeletal model of the upper limb with 7 degrees of freedom and 17 muscles is presented and generates real time estimates of muscle spindle and Golgi Tendon Organ neural firing patterns. Unlike previous neuro-musculoskeletal models, muscle activation and excitation levels are unknowns in this application and an inverse dynamics tool (static optimization) is integrated to estimate these variables. A proprioceptive prosthesis will need to be portable and this is incompatible with the computationally demanding nature of standard biomechanical and proprioceptor modeling. This paper uses and proposes a number of approximations and optimizations to make real time operation on portable hardware feasible. Finally technical obstacles to mimicking natural feedback for an intuitive proprioceptive prosthesis, as well as issues and limitations with existing models, are identified and discussed. PMID:25009463

  5. A study of the anthropometric correlations between upper limb measurements for personal identification in Sudanese population.

    PubMed

    Ahmed, A A

    2014-12-01

    The presence of multiple isolated commingled fleshed limbs or limb parts generates a significant challenge for forensic investigators in wars, mass disasters, and criminal assaults in the process of identification. Although upper limb measurements have been used to establish individual identity in terms of sex and stature with high success, there is a scarcity of data concerning the correlations within upper limb parts. Hence, this study aims to assess the relationships within upper limb parts and develop regression formulae to reconstruct the parts from one another. The study participants were 376 Sudanese adults (187 males and 189 females). The results of this study indicated significant sexual dimorphism for all variables. The results indicated a significant correlation within the upper limb parts. Linear and multiple regression equations were developed to reconstruct the upper limb parts in the presence of a single or multiple dimension(s) from the identical limb. Multiple regression equations generated better reconstructions than simple equations. These results are significant in forensics and orthopedic reconstructive surgery. PMID:25277498

  6. Post-stroke robotic training of the upper limb in the early rehabilitation phase.

    PubMed

    Masiero, Stefano; Rosati, Giulio; Valarini, Sara; Rossi, Aldo

    2009-01-01

    The successful motor rehabilitation of the upper limb of post-stroke patients requires early, intensive and task-specific therapy. The literature, albeit on the basis of a limited number of randomised controlled trials, shows that the use of robotics in upper limb neurorehabilitation has the potential to increase motor and functional recovery with respect to traditional therapy, especially if applied in the acute and sub-acute phases. This paper presents an overview of the literature on early robotic training of the upper limb after acute stroke. PMID:20412726

  7. Muscle Co-Contraction Modulates Damping and Joint Stability in a Three-Link Biomechanical Limb

    PubMed Central

    Heitmann, Stewart; Ferns, Norm; Breakspear, Michael

    2012-01-01

    Computational models of neuromotor control require forward models of limb movement that can replicate the natural relationships between muscle activation and joint dynamics without the burdens of excessive anatomical detail. We present a model of a three-link biomechanical limb that emphasizes the dynamics of limb movement within a simplified two-dimensional framework. Muscle co-contraction effects were incorporated into the model by flanking each joint with a pair of antagonist muscles that may be activated independently. Muscle co-contraction is known to alter the damping and stiffness of limb joints without altering net joint torque. Idealized muscle actuators were implemented using the Voigt muscle model which incorporates the parallel elasticity of muscle and tendon but omits series elasticity. The natural force-length-velocity relationships of contractile muscle tissue were incorporated into the actuators using ideal mathematical forms. Numerical stability analysis confirmed that co-contraction of these simplified actuators increased damping in the biomechanical limb consistent with observations of human motor control. Dynamic changes in joint stiffness were excluded by the omission of series elasticity. The analysis also revealed the unexpected finding that distinct stable (bistable) equilibrium positions can co-exist under identical levels of muscle co-contraction. We map the conditions under which bistability arises and prove analytically that monostability (equifinality) is guaranteed when the antagonist muscles are identical. Lastly we verify these analytic findings in the full biomechanical limb model. PMID:22275897

  8. Upper limb dynamic responses to impulsive forces for selected assembly workers.

    PubMed

    Sesto, Mary E; Radwin, Robert G; Block, Walter F; Best, Thomas M

    2006-02-01

    This study evaluated the upper limb, dynamic, mechanical response parameters for 14 male assembly workers recruited from selected jobs based on power tool use. It was hypothesized that the type of power tool operation would affect stiffness, effective mass, and damping of the upper extremity; and workers with symptoms and positive physical examination findings would have different mechanical responses than asymptomatic workers without physical examination findings. Participants included operators who regularly used torque reaction power hand tools, such as nutrunners and screwdrivers, and nontorque reaction power hand tools, such as riveters. The mechanical parameters of the upper limb were characterized from the loading response of an apparatus having known dynamic properties while worker grasps an oscillating handle in free vibration. In addition, all workers underwent a physical examination, magnetic resonance imaging, and completed a symptom survey. Workers were categorized as controls or cases based on reported forearm symptoms and physical exam findings. A total of seven workers were categorized as cases and had less average mechanical stiffness (46%, p > 0.01), damping (74%, p > 0.01), and effective mass (59%, p > 0.05) than the seven workers categorized as controls. Magnetic resonance imaging (MRI) findings suggestive of muscle edema were observed for two workers classified as cases and who regularly used torque reaction power tools. No MRI enhancement was observed in the seven subjects who did not regularly use torque reaction power tools. The ergonomic consequences of less stiffness, effective mass, and damping in symptomatic workers may include reduced capacity to react against rapidly building torque reaction forces encountered when operating power hand tools. PMID:16361220

  9. Neuromuscular Activity of Upper and Lower Limbs during two Backstroke Swimming Start Variants.

    PubMed

    De Jesus, Karla; De Jesus, Kelly; Medeiros, Alexandre I A; Gonalves, Pedro; Figueiredo, Pedro; Fernandes, Ricardo J; Vilas-Boas, Joo Paulo

    2015-09-01

    A proficient start is decisive in sprint competitive swimming events and requires swimmers' to exert maximal forces in a short period to complete the task successfully. The aim of this study was to compare the electromyographic (EMG) activity in-between the backstroke start with feet positioned parallel and partially emerged performed with the hands on the highest horizontal and on the vertical handgrip at hands-off, take-off, flight and entry start phases. EMG comparisons between starting variants were supported by upper and lower limb joint angles at starting position and 15 m start time data. Following a four-week start training to familiarize participants with each start variant, 10 male competitive backstroke swimmers performed randomly six 15 m maximal trials, being three of each start variant. Surface EMG of Biceps Brachii, Triceps Brachii, Rectus Femoris, Biceps Femoris, Gastrocnemius Medialis and Tibialis Anterior was recorded and processed using the time integral EMG (iEMG). Eight video cameras (four surface and four underwater) were used to determine backstroke start phases and joint angles at starting position. EMG, joint angles and temporal parameters have not evidenced changes due to the different handgrips. Nevertheless, clear differences were observed in both variants for upper and lower limb muscles activity among starting phases (e.g. Biceps Brachii at take-off vs. flight phase, 15.17% 2.76% and 22.38% 4.25%; 14.24% 7.11% and 25.90% 8.65%, for variant with hands horizontal and vertically positioned, respectively). It was concluded that different handgrips did not affect EMG, kinematics and temporal profile in backstroke start. Despite coaches might plan similar strength training for both start variants, further attention should be given on the selection of proper exercises to maximize the contribution of relevant muscles at different starting phases. Key pointsAn effective swim start component (from the starting signal until the swimmers' vertex reaches the 15 m mark) is decisive in short distance events.In 2008, FINA approved the Omega OSB11 starting block (Swiss Timing Ltd., Switzerland) with two horizontal and one vertical backstroke start handgrip and currently swimmers can adopt different starting variants.The start performance is related to the exertion of maximal force in the shortest time, as other high-velocity movements; thus, the study of the current variants in-between them from a neuromuscular standpoint is indispensable for training support.The use of different handgrips did not affect upper and lower limb electromyographic activity; angular kinematics and overall 15 m backstroke start profile.Independent of the start variant selected, the role played by each upper and lower limb muscles at different starting phases should be considered in specific resistance training program to optimize backstroke start performance. PMID:26336346

  10. Neuromuscular Activity of Upper and Lower Limbs during two Backstroke Swimming Start Variants

    PubMed Central

    De Jesus, Karla; De Jesus, Kelly; Medeiros, Alexandre I. A.; Gonçalves, Pedro; Figueiredo, Pedro; Fernandes, Ricardo J.; Vilas-Boas, João Paulo

    2015-01-01

    A proficient start is decisive in sprint competitive swimming events and requires swimmers’ to exert maximal forces in a short period to complete the task successfully. The aim of this study was to compare the electromyographic (EMG) activity in-between the backstroke start with feet positioned parallel and partially emerged performed with the hands on the highest horizontal and on the vertical handgrip at hands-off, take-off, flight and entry start phases. EMG comparisons between starting variants were supported by upper and lower limb joint angles at starting position and 15 m start time data. Following a four-week start training to familiarize participants with each start variant, 10 male competitive backstroke swimmers performed randomly six 15 m maximal trials, being three of each start variant. Surface EMG of Biceps Brachii, Triceps Brachii, Rectus Femoris, Biceps Femoris, Gastrocnemius Medialis and Tibialis Anterior was recorded and processed using the time integral EMG (iEMG). Eight video cameras (four surface and four underwater) were used to determine backstroke start phases and joint angles at starting position. EMG, joint angles and temporal parameters have not evidenced changes due to the different handgrips. Nevertheless, clear differences were observed in both variants for upper and lower limb muscles activity among starting phases (e.g. Biceps Brachii at take-off vs. flight phase, 15.17% ± 2.76% and 22.38% ± 4.25%; 14.24% ± 7.11% and 25.90% ± 8.65%, for variant with hands horizontal and vertically positioned, respectively). It was concluded that different handgrips did not affect EMG, kinematics and temporal profile in backstroke start. Despite coaches might plan similar strength training for both start variants, further attention should be given on the selection of proper exercises to maximize the contribution of relevant muscles at different starting phases. Key points An effective swim start component (from the starting signal until the swimmers’ vertex reaches the 15 m mark) is decisive in short distance events. In 2008, FINA approved the Omega OSB11 starting block (Swiss Timing Ltd., Switzerland) with two horizontal and one vertical backstroke start handgrip and currently swimmers can adopt different starting variants. The start performance is related to the exertion of maximal force in the shortest time, as other high-velocity movements; thus, the study of the current variants in-between them from a neuromuscular standpoint is indispensable for training support. The use of different handgrips did not affect upper and lower limb electromyographic activity; angular kinematics and overall 15 m backstroke start profile. Independent of the start variant selected, the role played by each upper and lower limb muscles at different starting phases should be considered in specific resistance training program to optimize backstroke start performance. PMID:26336346

  11. Acupuncture in the Treatment of Upper-Limb Lymphedema

    PubMed Central

    Cassileth, Barrie R; Van Zee, Kimberly J; Yeung, K Simon; Coleton, Marci I; Cohen, Sara; Chan, Yi H; Vickers, Andrew J; Sjoberg, Daniel D; Hudis, Clifford A

    2013-01-01

    BACKGROUND Current treatments for lymphedema after breast cancer treatment are expensive and require ongoing intervention. Clinical experience and our preliminary published results suggest that acupuncture is safe and potentially useful. This study evaluates the safety and potential efficacy of acupuncture on upper-limb circumference in women with lymphedema. METHODS Women with a clinical diagnosis of breast cancer−related lymphedema (BCRL) for 0.5-5 years and with affected arm circumference ≥2 cm larger than unaffected arm received acupuncture treatment twice weekly for 4 weeks. Affected and unaffected arm circumferences were measured before and after each acupuncture treatment. Response, defined as ≥30% reduction in circumference difference between affected/unaffected arms, was assessed. Monthly follow-up calls for 6 months thereafter were made to document any complications and self-reported lymphedema status. RESULTS Among 37 enrolled patients, 33 were evaluated; 4 discontinued due to time constraints. Mean reduction in arm circumference difference was 0.90 cm (95% CI, 0.72-1.07; P < .0005). Eleven patients (33%) exhibited a reduction of ≥30% after acupuncture treatment. Seventy-six percent of patients received all treatments; 21% missed 1 treatment, and another patient missed 2 treatments. During the treatment period, 14 of the 33 patients reported minor complaints, including mild local bruising or pain/tingling. There were no serious adverse events and no infections or severe exacerbations after 255 treatment sessions and 6 months of follow-up interviews. CONCLUSIONS Acupuncture for BCRL appears safe and may reduce arm circumference. Although these results await confirmation in a randomized trial, acupuncture can be considered for women with no other options for sustained arm circumference reduction. Cancer 2013;119:2455-2461. © 2013 American Cancer Society. PMID:23576267

  12. A systematic review of prognostic factors for distal upper limb pain

    PubMed Central

    Whibley, Daniel; Martin, Kathryn R; Lovell, Karina; Jones, Gareth T

    2015-01-01

    Background: Musculoskeletal pain in the distal upper limb is relatively common, can be a cause of disability, presents a high cost to society and is clinically important. Previous reviews of prognostic factors have focused on pain in the proximal upper limb, whole upper extremity or isolated regions of the distal upper limb. Aim: To identify factors that predict outcome of distal upper limb pain. Study design: Systematic review Method: Eight bibliographic databases were searched from inception to March 2014. Eligible articles included adults with pain anywhere in the distal upper limb at baseline from randomised controlled trials with a waiting list, expectant policy or usual care group, or observational studies where no treatment or usual care was provided. Data describing the association between a putative prognostic factor and pain or functional outcome at follow-up were required. Quality was assessed using the Quality in Prognostic Studies tool. Results: Seven articles reporting on six studies were identified. Heterogeneity of study populations and outcome measures prevented a meta-analysis so a narrative synthesis of results was undertaken. Three factors (being female, a longer duration of the complaint at initial presentation and having musculoskeletal pain in multiple locations) were significantly associated with poor pain outcome in more than one study. Being female was the only factor significantly associated with poor functional outcome in more than one study. Conclusions: A range of sociodemographic, pain-related, occupational and psychosocial prognostic factors for distal upper limb pain outcomes were investigated in studies included in the review. However, due to the lack of commonality of factors investigated and lack of consistency of results across studies, there is limited evidence for predictors of distal upper limb pain outcomes. Further research is required to identify prognostic factors of distal upper limb pain, particularly modifiable factors that may influence management. PMID:26526466

  13. Upper limb motor function in young adults with spina bifida and hydrocephalus

    PubMed Central

    Salman, M. S.; Jewell, D.; Hetherington, R.; Spiegler, B. J.; MacGregor, D. L.; Drake, J. M.; Humphreys, R. P.; Gentili, F.

    2011-01-01

    Objective The objective of the study was to measure upper limb motor function in young adults with spina bifida meningomyelocele (SBM) and typically developing age peers. Method Participants were 26 young adults with SBM, with a Verbal or Performance IQ score of at least 70 on the Wechsler scales, and 27 age- and gender-matched controls. Four upper limb motor function tasks were performed under four different visual and cognitive challenge conditions. Motor independence was assessed by questionnaire. Results Fewer SBM than control participants obtained perfect posture and rebound scores. The SBM group performed less accurately and was more disrupted by cognitive challenge than controls on limb dysmetria tasks. The SBM group was slower than controls on the diadochokinesis task. Adaptive motor independence was related to one upper limb motor task, arm posture, and upper rather than lower spinal lesions were associated with less motor independence. Conclusions Young adults with SBM have significant limitations in upper limb function and are more disrupted by some challenges while performing upper limb motor tasks. Within the group of young adults with SBM, upper spinal lesions compromise motor independence more than lower spinal lesions. PMID:19672605

  14. Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus)

    PubMed Central

    Smith, N C; Wilson, A M; Jespers, K J; Payne, R C

    2006-01-01

    The functional anatomy of the pelvic limb of the ostrich (Struthio camelus) was investigated in order to assess musculoskeletal specialization related to locomotor performance. The pelvic limbs of ten ostriches were dissected and detailed measurements of all muscle tendon units of the pelvic limb were made, including muscle mass, muscle length, fascicle length, pennation angle, tendon mass and tendon length. From these measurements other muscle properties such as muscle volume, physiological cross-sectional area (PCSA), tendon cross-sectional area, maximum isometric muscle force and tendon stress were derived, using standard relationships and published muscle data. Larger muscles tended to be located more proximally and had longer fascicle lengths and lower pennation angles. This led to an expected proximal to distal reduction in total muscle mass. An exception to this trend was the gastrocnemius muscle, which was found to have the largest volume and PCSA and also had the highest capacity for both force and power production. Generally high-power muscles were located more proximally in the limb, while some small distal muscles (tibialis cranialis and flexor perforatus digiti III), with short fibres, were found to have very high force generation capacities. The greatest proportion of pelvic muscle volume was for the hip extensors, while the highest capacity for force generation was observed in the extensors of the ankle, many of which were also in series with long tendons and thus were functionally suited to elastic energy storage. PMID:17118064

  15. Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes.

    PubMed

    Prez, Rodrigo; Costa, rsula; Torrent, Marc; Solana, Javier; Opisso, Eloy; Cceres, Csar; Tormos, Josep M; Medina, Josep; Gmez, Enrique J

    2010-01-01

    Here an inertial sensor-based monitoring system for measuring and analyzing upper limb movements is presented. The final goal is the integration of this motion-tracking device within a portable rehabilitation system for brain injury patients. A set of four inertial sensors mounted on a special garment worn by the patient provides the quaternions representing the patient upper limb's orientation in space. A kinematic model is built to estimate 3D upper limb motion for accurate therapeutic evaluation. The human upper limb is represented as a kinematic chain of rigid bodies with three joints and six degrees of freedom. Validation of the system has been performed by co-registration of movements with a commercial optoelectronic tracking system. Successful results are shown that exhibit a high correlation among signals provided by both devices and obtained at the Institut Guttmann Neurorehabilitation Hospital. PMID:22163496

  16. Development of anthropomorphic upper limb prostheses with human-like interphalangian and interdigital couplings.

    PubMed

    Da Cunha, F L; Schneebeli, H J; Dynnikov, V I

    2000-03-01

    This article presents a model for the couplings of the movements between the phalanges and fingers in a hand when they execute certain functions. It also shows the importance of knowing these couplings, suggests methods for obtaining them, and discusses how to apply them to the construction of artificial upper limbs, highlighting the important mechanical aspects for achieving such a goal. Thus, it gives support for projects of upper limb prosthesis with anthropomorphic characteristics. PMID:10759639

  17. Respiratory and limb muscle dysfunction in pulmonary arterial hypertension: a role for exercise training?

    PubMed Central

    2015-01-01

    Abstract Respiratory and limb muscle dysfunction is emerging as an important pathophysiological abnormality in pulmonary arterial hypertension (PAH). Muscle abnormalities appear to occur frequently and promote dyspnea, fatigue, and exercise limitation in patients with PAH. Preliminary data suggest that targeted muscle training may be of benefit, although further evidence is required to consolidate these findings into specific recommendations for exercise training in patients with PAH. This article reviews the current evidence on prevalence, risk factors, and implications of respiratory and limb muscle dysfunction in patients with PAH. It also reviews the impact of exercise rehabilitation on morphologic, metabolic, and functional muscle profile and outcomes in PAH. Future research priorities are highlighted. PMID:26401245

  18. Neuronox versus BOTOX in the Treatment of Post-Stroke Upper Limb Spasticity: A Multicenter Randomized Controlled Trial

    PubMed Central

    Seo, Han Gil; Paik, Nam-Jong; Lee, Shi-Uk; Oh, Byung-Mo; Chun, Min Ho; Kwon, Bum Sun; Bang, Moon Suk

    2015-01-01

    Background Botulinum toxin type A is widely used for treating spasticity. Neuronox (Neu-BoNT/A), a newly manufactured botulinum toxin a, has not yet been investigated for its efficacy and safety in the treatment of post-stroke upper limb spasticity. Objective We evaluated the efficacy and safety of Neuronox (Neu-BoNT/A) compared with BOTOX (onabotulinum toxin A) for treating post-stroke upper limb spasticity. Methods In total, 196 stroke patients with moderate to severe upper limb spasticity were randomly assigned to either Neuronox or BOTOX intervention. The wrist flexors were mandatory and elbow, finger, and thumb flexors were optional muscles to be injected. Assessments were performed at baseline and 4, 8, and 12 weeks after the intervention. The primary outcome measure was the change from baseline of the Modified Ashworth Scale (MAS) at the wrist flexors at week 4. Secondary outcome measures included the change of MAS at each visit, response rate, Disability Assessment Scale (DAS), Carer Burden Scale, and Global Assessment of treatment benefit. Results Primary outcome measures were -1.39±0.79 and -1.56±0.81 in the Neuronox and BOTOX groups, respectively. The difference was within the noninferiority margin of 0.45 (95% upper limit=0.40). There were no significant differences between the groups in the secondary outcome and safety measures, except the change of the MAS at the elbow flexors at week 12 (-0.88±0.75 in the Neuronox group, -0.65±0.74 in the BOTOX group; P=0.0429). Both groups showed significant improvements in the MAS, DAS, and Carer Burden Scale at weeks 4, 8, and 12. Conclusion Neuronox showed equivalent efficacy and safety compared with BOTOX for treating post-stroke upper limb spasticity. Trial Registration ClinicalTrials.gov NCT01313767 PMID:26030192

  19. The determination of correlation between stature and upper limb and hand measurements in Iranian adults.

    PubMed

    Mahakizadeh, S; -Ghoroghi, F Moghani; Moshkdanian, Gh; Mokhtari, T; Hassanzadeh, G

    2016-03-01

    Estimation of stature is an important issue, which is significantly considered in forensic anthropology. It will be difficult to predict the identification of an individual when only some parts of dead body are discovered following disasters or criminal events. The aim of this study was to assess the relationship between stature and upper limb and hand length in Iranian adults to generate regression formulae for stature estimation. Three anthropometric measurements; Stature, Upper Limb Length (ULL) and Hand Length (HL) were taken on subjects, comprising 142 male students (18-25 years) using standard measuring instruments. The data were analysed using SPSS 16. Then linear regression models were used to estimate stature. The results indicated a positive correlation between stature and upper limb and hand measurements. The correlation coefficient with upper limb length was r= 0.89 & p =0.0001 and with hand length was r= 0.78 & p =0.0001. In conclusion, we found a strong correlation between stature and upper limb and hand length. The regression analysis also showed that the Upper Limb Length give better prediction of stature compared to Hand length measurements. PMID:26795396

  20. Phantom limb perception interferes with motor imagery after unilateral upper-limb amputation.

    PubMed

    Lyu, Yuanyuan; Guo, Xiaoli; Bekrater-Bodmann, Robin; Flor, Herta; Tong, Shanbao

    2016-01-01

    A potential contributor to impaired motor imagery in amputees is an alteration of the body schema as a result of the presence of a phantom limb. However, the nature of the relationship between motor imagery and phantom experiences remains unknown. In this study, the influence of phantom limb perception on motor imagery was investigated using a hand mental rotation task by means of behavioral and electrophysiological measures. Compared with healthy controls, significantly prolonged response time for both the intact and missing hand were observed specifically in amputees who perceived a phantom limb during the task but not in amputees without phantom limb perception. Event-related desynchronization of EEG in the beta band (beta-ERD) in central and parietal areas showed an angular disparity specifically in amputees with phantom limb perception, with its source localized in the right inferior parietal lobule. The response time as well as the beta-ERD values were significantly positively correlated with phantom vividness. Our results suggest that phantom limb perception during the task is an important interferential factor for motor imagery after amputation and the interference might be related to a change of the body representation resulting from an unnatural posture of the phantom limb. PMID:26879749

  1. Phantom limb perception interferes with motor imagery after unilateral upper-limb amputation

    PubMed Central

    Lyu, Yuanyuan; Guo, Xiaoli; Bekrater-Bodmann, Robin; Flor, Herta; Tong, Shanbao

    2016-01-01

    A potential contributor to impaired motor imagery in amputees is an alteration of the body schema as a result of the presence of a phantom limb. However, the nature of the relationship between motor imagery and phantom experiences remains unknown. In this study, the influence of phantom limb perception on motor imagery was investigated using a hand mental rotation task by means of behavioral and electrophysiological measures. Compared with healthy controls, significantly prolonged response time for both the intact and missing hand were observed specifically in amputees who perceived a phantom limb during the task but not in amputees without phantom limb perception. Event-related desynchronization of EEG in the beta band (beta-ERD) in central and parietal areas showed an angular disparity specifically in amputees with phantom limb perception, with its source localized in the right inferior parietal lobule. The response time as well as the beta-ERD values were significantly positively correlated with phantom vividness. Our results suggest that phantom limb perception during the task is an important interferential factor for motor imagery after amputation and the interference might be related to a change of the body representation resulting from an unnatural posture of the phantom limb. PMID:26879749

  2. Upper Limb Static-Stretching Protocol Decreases Maximal Concentric Jump Performance

    PubMed Central

    Marchetti, Paulo H.; Silva, Fernando H. D. de Oliveira; Soares, Enrico G.; Serpa, Érica P.; Nardi, Priscyla S. M.; Vilela, Guanis de B.; Behm, David G.

    2014-01-01

    The purpose of the present study was to evaluate the acute effects of an upper limb static-stretching (SS) protocol on the maximal concentric jump performance. We recruited 25 young healthy, male, resistance trained individuals (stretched group, n = 15 and control group, n = 10) in this study. The randomized between group experimental protocol consisted of a three trials of maximal concentric jump task, before and after a SS of the upper limb. Vertical ground reaction forces (vGRF) and surface electromyography (sEMG) of both gastrocnemius lateralis (GL) and vastus lateralis (VL) were acquired. An extensive SS was employed consisting of ten stretches of 30 seconds, with 15 seconds of rest, and 70-90% of the point of discomfort (POD). ANOVA (2x2) (group x condition) was used for shoulder joint range of motion (ROM), vGRF and sEMG. A significant interaction for passive ROM of the shoulder joint revealed significant increases between pre- and post-SS protocol (p < 0.001). A significant interaction demonstrated decreased peak force and an increased peak propulsion duration between pre- and post-stretching only for stretch group (p = 0.021, and p = 0.024, respectively. There was a significant main effect between groups (stretch and control) for peak force for control group (p = 0.045). Regarding sEMG variables, there were no significant differences between groups (control versus stretched) or condition (pre-stretching versus post-stretching) for the peak amplitude of RMS and IEMG for both muscles (VL and GL). In conclusion, an acute extensive SS can increase the shoulder ROM, and negatively affect both the propulsion duration and peak force of the maximal concentric jump, without providing significant changes in muscle activation. Key points The jump performance can be affected negatively by an intense extensive static-stretching protocol. An intense acute extensive SS protocol can affect positively the shoulder ROM. The intense acute extensive SS protocol does not change the level of muscle activation for vastus lateralis and gastrocnemius lateralis. PMID:25435789

  3. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.

    PubMed

    Abe, Takashi; Loenneke, Jeremy P; Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Bemben, Michael G

    2012-07-01

    Although evidence for high-intensity resistance training-induced muscle hypertrophy has accumulated over the last several decades, the basic concept of the training can be traced back to ancient Greece: Milo of Croton lifted a bull-calf daily until it was fully grown, which would be known today as progressive overload. Now, in the 21st century, different types of training are being tested and studied, such as low-intensity exercise combined with arterial as well as venous blood flow restriction (BFR) to/from the working muscles. Because BFR training requires the use of a cuff that is placed at the proximal ends of the arms and/or legs, the BFR is only applicable to limb muscles. Consequently, most previous BFR training studies have focused on the physiological adaptations of BFR limb muscles. Muscle adaptations in non-BFR muscles of the hip and trunk are lesser known. Recent studies that have reported both limb and trunk muscle adaptations following BFR exercise training suggest that low-intensity (20-30% of 1RM) resistance training combined with BFR elicits muscle hypertrophy in both BFR limb and non-BFR muscles. However, the combination of leg muscle BFR with walk training elicits muscle hypertrophy only in the BFR leg muscles. In contrast to resistance exercise with BFR, the exercise intensity may be too low during BFR walk training to cause muscle hypertrophy in the non-BFR gluteus maximus and other trunk muscles. Other mechanisms including hypoxia, local and systemic growth factors and muscle cell swelling may also potentially affect the hypertrophic response of non-BFR muscles to BFR resistance exercise. PMID:22681600

  4. An Upper-Limb Power-Assist Exoskeleton Using Proportional Myoelectric Control

    PubMed Central

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-01-01

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury. PMID:24727501

  5. An upper-limb power-assist exoskeleton using proportional myoelectric control.

    PubMed

    Tang, Zhichuan; Zhang, Kejun; Sun, Shouqian; Gao, Zenggui; Zhang, Lekai; Yang, Zhongliang

    2014-01-01

    We developed an upper-limb power-assist exoskeleton actuated by pneumatic muscles. The exoskeleton included two metal links: a nylon joint, four size-adjustable carbon fiber bracers, a potentiometer and two pneumatic muscles. The proportional myoelectric control method was proposed to control the exoskeleton according to the user's motion intention in real time. With the feature extraction procedure and the classification (back-propagation neural network), an electromyogram (EMG)-angle model was constructed to be used for pattern recognition. Six healthy subjects performed elbow flexion-extension movements under four experimental conditions: (1) holding a 1-kg load, wearing the exoskeleton, but with no actuation and for different periods (2-s, 4-s and 8-s periods); (2) holding a 1-kg load, without wearing the exoskeleton, for a fixed period; (3) holding a 1-kg load, wearing the exoskeleton, but with no actuation, for a fixed period; (4) holding a 1-kg load, wearing the exoskeleton under proportional myoelectric control, for a fixed period. The EMG signals of the biceps brachii, the brachioradialis, the triceps brachii and the anconeus and the angle of the elbow were collected. The control scheme's reliability and power-assist effectiveness were evaluated in the experiments. The results indicated that the exoskeleton could be controlled by the user's motion intention in real time and that it was useful for augmenting arm performance with neurological signal control, which could be applied to assist in elbow rehabilitation after neurological injury. PMID:24727501

  6. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.

    PubMed

    Hu, X L; Tong, K Y; Wei, X J; Rong, W; Susanto, E A; Ho, S K

    2013-10-01

    Loss of hand function and finger dexterity are main disabilities in the upper limb after stroke. An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Significant motor improvements were observed in the Fugl-Meyer hand/wrist and shoulder/elbow scores (p<0.05), and also in the Action Research Arm Test and Wolf Motor Function Test (p<0.05). Significant reduction in spasticity of the fingers as was measured by the Modified Ashworth Score (p<0.05). The training improved the muscle co-ordination between the antagonist muscle pair (flexor digitorum (FD) and extensor digitorum (ED)), associated with a significant reduction in the ED EMG level (p<0.05) and a significant decrease of ED and FD co-contraction during the training (p<0.05); the excessive muscle activities in the biceps brachii were also reduced significantly after the training (p<0.05). PMID:23932795

  7. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    SciTech Connect

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative soleus is also important for normal locomotion, we further performed a fatigue trial in the soleus and found that the decrease in relative force was greater and more rapid in solei from C-26 mice compared to controls. These data demonstrate that severe cancer cachexia causes profound muscle weakness that is not entirely explained by the muscle atrophy. In addition, cancer cachexia decreases the fatigue resistance of the soleus muscle, a postural muscle typically resistant to fatigue. Thus, specifically targeting contractile dysfunction represents an additional means to counter muscle weakness in cancer cachexia, in addition to targeting the prevention of muscle atrophy.

  8. Subsistence activities and the sexual division of labor in the European Upper Paleolithic and Mesolithic: evidence from upper limb enthesopathies.

    PubMed

    Villotte, Sébastien; Churchill, Steven E; Dutour, Olivier J; Henry-Gambier, Dominique

    2010-07-01

    Studies of cultural artifacts and faunal remains from European Upper Paleolithic and Mesolithic sites indicate a shift in hunter gatherer subsistence strategies, involving an intensification and diversification of resource exploitation relative to earlier foragers during the Tardiglacial and Postglacial periods. This trend has been recognized as well through the analysis of non-pathological skeletal adaptations of the upper limbs of European Upper Paleolithic human fossils. These paleoanthropological studies of adaptive bone modeling also raise the question of female use of throwing-based weapon technology in the Upper Paleolithic. Here, we studied another type of osteological marker of activity, enthesopathies, of the upper limb remains of 37 European Upper Paleolithic and Mesolithic human fossils, with the goal of testing two hypotheses: 1) that activity levels were heightened at the end of Upper Paleolithic and into the Mesolithic relative to earlier foragers of the Gravettian, and 2) that there was an absence of a marked sexual division of labor in European hunter-gatherers during this time span. Our results are consistent with the first hypothesis; upper limb enthesopathies are significantly less frequent in the Gravettian group, but raise doubts about the second hypothesis. Four males exhibit lesions that can be confidently associated with throwing activities, while no females exhibit such lesions. PMID:20602985

  9. Prediction of prognosis of ALS: Importance of active denervation findings of the cervical-upper limb area and trunk area

    PubMed Central

    Sato, Yoko; Nakatani, Eiji; Watanabe, Yasuhiro; Fukushima, Masanori; Nakashima, Kenji; Kannagi, Mari; Kanatani, Yasuhiro; Mizushima, Hiroshi

    2015-01-01

    Summary Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by serious muscle atrophy and weakness. The purpose of this study was to find prognostic factors in patients with mild ALS using application forms for the Specified Disease Treatment Research Program in Japan. We classified ALS as mild, moderate and severe. The subjects consisted of 363 patients with mild ALS who underwent needle electromyography at registration and were followed for more than one year. Time to progression to severe ALS and time to deterioration of activities of daily living such as speech dysfunction, upper limb dysfunction, and walking disability were used as outcomes. Cox proportional hazards model analysis was performed to identify prognostic factors. Of the patients with initially mild ALS, 38.3% (139/363) had progressed severe ALS at the last follow-up. In multivariate analysis of time to progression to severe ALS, bulbar onset (hazard ratio [95% confidence interval]: 1.68 [1.13–2.49], p = 0.010), tongue atrophy (1.69 [1.14–2.51], p = 0.009), dyspnea (1.57 [1.02–2.41], p = 0.042) and active denervation findings (ADFs) of the cervical-upper limb area (1.81 [1.25–2.63], p = 0.002) emerged as prognostic factors. Furthermore ADFs in the trunk area were prognostic factors for upper limb dysfunction and walking disability (1.72 [1.05–2.81], p = 0.031, and 1.97 [1.09–3.59], p = 0.026). In conclusion ADFs of the cervical-upper limb area and trunk area were prognostic factors in ALS patients. PMID:26668778

  10. Thermographic Patterns of the Upper and Lower Limbs: Baseline Data

    PubMed Central

    Cassar, Kevin; Camilleri, Kenneth P.; De Raffaele, Clifford; Mizzi, Stephen; Cristina, Stefania

    2015-01-01

    Objectives. To collect normative baseline data and identify any significant differences between hand and foot thermographic distribution patterns in a healthy adult population. Design. A single-centre, randomized, prospective study. Methods. Thermographic data was acquired using a FLIR camera for the data acquisition of both plantar and dorsal aspects of the feet, volar aspects of the hands, and anterior aspects of the lower limbs under controlled climate conditions. Results. There is general symmetry in skin temperature between the same regions in contralateral limbs, in terms of both magnitude and pattern. There was also minimal intersubject temperature variation with a consistent temperature pattern in toes and fingers. The thumb is the warmest digit with the temperature falling gradually between the 2nd and the 5th fingers. The big toe and the 5th toe are the warmest digits with the 2nd to the 4th toes being cooler. Conclusion. Measurement of skin temperature of the limbs using a thermal camera is feasible and reproducible. Temperature patterns in fingers and toes are consistent with similar temperatures in contralateral limbs in healthy subjects. This study provides the basis for further research to assess the clinical usefulness of thermography in the diagnosis of vascular insufficiency. PMID:25648145

  11. Gait and upper limb variability in Parkinson's disease patients with and without freezing of gait.

    PubMed

    Barbe, Michael T; Amarell, Martin; Snijders, Anke H; Florin, Esther; Quatuor, Eva-Lotte; Schnau, Eckhard; Fink, Gereon R; Bloem, Bastiaan R; Timmermann, Lars

    2014-02-01

    Patients with Parkinson's disease (PD) and freezing of gait (FOG) (freezers) demonstrate high gait variability. The objective of this study was to determine whether freezers display a higher variability of upper limb movements and elucidate if these changes correlate with gait. We were the first group to compare directly objectively measured gait and upper limb movement variability of freezers between freezing episodes. Patients with objectively verified FOG (n=11) and PD patients without FOG (non-freezers) (n=11) in a non-randomized medication condition (OFF/ON) were analyzed. Uncued antiphasic finger tapping and forearm diadochokinetic movements were analyzed via three-dimensional ultrasound kinematic measurements. Gait variability of straight gait was assessed using ground reaction forces. Freezers had shorter stride length (p=0.004) and higher stride length variability (p=0.005) in the medication OFF condition. Movement variability was not different during finger tapping or diadochokinesia between the groups. There was a trend towards more freezing of the upper limb during finger tapping for the freezers (p=0.07). Variability in stride length generation and stride timing was not associated with variability of upper limb movement in freezers. Our findings demonstrate that: (1) freezers have a higher spatial gait variability between freezing episodes; (2) freezing-like episodes of the upper limb occur in PD patients, and tend to be more pronounced among freezers than non-freezers for finger tapping; (3) spatial and temporal upper extremity variability is equally affected in freezers and non-freezers in an uncued task. Upper limb freezing is not correlated to lower limb freezing, implicating a different pathophysiology. PMID:24305993

  12. First Neuromuscular Contact Correlates with Onset of Primary Myogenesis in Rat and Mouse Limb Muscles

    PubMed Central

    Duxson, Marilyn J.; Deries, Marianne

    2015-01-01

    Skeletal muscle development has been the focus of intensive study for many decades. Recent advances in genetic manipulation of the mouse have increased our understanding of the cell signalling involved in the development of muscle progenitors which give rise to adult skeletal muscles and their stem cell populations. However, the influence of a vital tissue type the peripheral nervehas largely been ignored since its earliest descriptions. Here we carefully describe the timing in which myogenic progenitors expressing Pax3 and Pax7 (the earliest markers of myogenic cells) enter the limb buds of rat and mouse embryos, as well as the spatiotemporal relationship between these progenitors and the ingrowing peripheral nerve. We show that progenitors expressing Pax3 enter the limb bud one full day ahead of the first neurites and that Pax7-expressing progenitors (associated with secondary myogenesis in the limb) are first seen in the limb bud at the time of nerve entry and in close proximity to the nerve. The initial entry of the nerve also coincides with the first expression of myosin heavy chain showing that the first contact between nerves and myogenic cells correlates with the onset of myogenic differentiation. Furthermore, as the nerve grows into the limb, Pax3 expression is progressively replaced by Pax7 expression in myogenic progenitors. These findings indicate that the ingrowing nerve enters the limb presumptive muscle masses earlier than what was generally described and raises the possibility that nerve may influence the differentiation of muscle progenitors in rodent limbs. PMID:26207754

  13. Principles of Tendon Reconstruction Following Complex Trauma of the Upper Limb

    PubMed Central

    Chattopadhyay, Arhana; McGoldrick, Rory; Umansky, Elise; Chang, James

    2015-01-01

    Reconstruction of tendons following complex trauma to the upper limb presents unique clinical and research challenges. In this article, the authors review the principles guiding preoperative assessment, surgical reconstruction, and postoperative rehabilitation and management of the upper extremity. Tissue engineering approaches to address tissue shortages for tendon reconstruction are also discussed. PMID:25685101

  14. Ultrasound assessment on selected peripheral nerve pathologies. Part I: Entrapment neuropathies of the upper limb excluding carpal tunnel syndrome

    PubMed Central

    Sudo?-Szopi?ska, Iwona

    2012-01-01

    Ultrasound (US) is one of the methods for imaging entrapment neuropathies, post-traumatic changes to nerves, nerve tumors and postoperative complications to nerves. This type of examination is becoming more and more popular, not only for economic reasons, but also due to its value in making accurate diagnosis. It provides a very precise assessment of peripheral nerve trunk pathology both in terms of morphology and localization. During examination there are several options available to the specialist: the making of a dynamic assessment, observation of pain radiation through the application of precise palpation and the comparison of resultant images with the contra lateral limb. Entrapment neuropathies of the upper limb are discussed in this study, with the omission of median nerve neuropathy at the level of the carpal canal, as extensive literature on this subject exists. The following pathologies are presented: pronator teres muscle syndrome, anterior interosseus nerve neuropathy, ulnar nerve groove syndrome and cubital tunnel syndrome, Guyon's canal syndrome, radial nerve neuropathy, posterior interosseous nerve neuropathy, Wartenberg's disease, suprascapular nerve neuropathy and thoracic outlet syndrome. Peripheral nerve examination technique has been presented in previous articles presenting information about peripheral nerve anatomy [Journal of Ultrasonography 2012; 12 (49): 120163 Normal and sonographic anatomy of selected peripheral nerves. Part I: Sonohistology and general principles of examination, following the example of the median nerve; Part II: Peripheral nerves of the upper limb; Part III: Peripheral nerves of the lower limb]. In this article potential compression sites of particular nerves are discussed, taking into account pathomechanisms of damage, including predisposing anatomical variants (accessory muscles). The parameters of ultrasound assessment have been established echogenicity and echostructure, thickness (edema and related increase in the cross sectional area of the nerve trunk), vascularization and the reciprocal relationship with adjacent tissue. PMID:26674101

  15. Muscle Is a Target for Preservation in a Rat Limb Replantation Model

    PubMed Central

    Iijima, Yuki; Teratani, Takumi; Hoshino, Yuichi; Kobayashi, Eiji

    2013-01-01

    Background: Ischemia exceeding 6 hours makes clinical limb replantation difficult and places the patient at risk of functional deficit or limb loss. We investigated the preservation of muscle function and morphology with solutions in rat hindlimb in vivo and in vitro. Methods: Quadriceps femoris muscles from luciferase transgenic rats were preserved for 24 hours at 4C in extracellular-type trehalose containing Kyoto (ETK), University of Wisconsin (UW), or lactated Ringers (LR) solution (control). Muscle luminescence was measured with a bioimaging system. Amputated limbs of Lewis rats preserved with ETK, UW, or LR for 6 or 24 hours at 4C were transplanted orthotopically. At week 8, terminal latency and amplitude were measured in the tibialis anterior muscle. The muscles were also analyzed histologically. Results: Isolated muscles preserved in ETK or UW had significantly higher luminescence than did muscles immersed in LR (P < 0.05). In the 6-hour-preserved limb transplantation model, although the 3 groups had almost the same terminal latency, electrical amplitude was significantly lower in the LR group. Histologically, muscles preserved with LR showed the most atrophic changes. In the 24-hour-preserved model, the survival rate of the LR group was 37.5% in contrast to 80% in the ETK and UW groups. Electrical signals were not detected in the LR group owing to severe muscle atrophy and fibrosis. The ETK and UW groups showed good muscle function electrophysiologically. Conclusions: Preservation solutions can protect muscle function and morphology in ischemiareperfusion limbs and improve recipient survival rates after transplantation of long-term-preserved limbs. PMID:25289265

  16. Changes in growth-related kinases in head, neck and limb muscles with age

    PubMed Central

    Rahnert, Jill A.; Luo, Qingwei; Balog, Edward M.; Sokoloff, Alan J.; Burkholder, Thomas J.

    2010-01-01

    Sarcopenia coincides with declines in several systemic processes that signal through the MAP kinase and Akt-mTOR-p70S6k cascades typically associated with muscle growth. Effects of aging on these pathways have primarily been examined in limb muscles, which experience substantial activity and neural changes in addition to systemic hormonal and metabolic changes. Head and neck muscles are reported to undergo reduced sarcopenia and disuse with age relative to limb muscles, suggesting muscle activity may contribute to maintaining mass with age. However many head and neck muscles derive from embryonic branchial arches, rather than the somites from which limb muscles originate, suggesting that developmental origin may be important. This study compares the expression and phosphorylation of MAP kinase and mTOR networks in head, neck, tongue, and limb muscles from 8- and 26-month old F344 rats to test the hypothesis that physical activity and developmental origin contribute to preservation of muscle mass with age. Phosphorylation of p38 was exaggerated in aged branchial arch muscles. Phosphorylation of ERK and p70S6k T421/S424 declined with age only in the biceps brachii. Expression of p70S6k declined in all head and neck, tongue and limb muscles although no change in phosphorylation of p70S6k on T389 could be resolved. A systemic change that results in a loss of p70S6k protein expression may reduce the capacity to respond to acute hypertrophic stimuli, while the exaggerated p38 signaling in branchial arch muscles may reflect more active muscle remodeling. PMID:21095226

  17. Upper limb posture estimation in robotic and virtual reality-based rehabilitation.

    PubMed

    Corts, Camilo; Ardanza, Aitor; Molina-Rueda, F; Cuesta-Gmez, A; Unzueta, Luis; Epelde, Gorka; Ruiz, Oscar E; De Mauro, Alessandro; Florez, Julian

    2014-01-01

    New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698

  18. Upper Limb Posture Estimation in Robotic and Virtual Reality-Based Rehabilitation

    PubMed Central

    Cortés, Camilo; Ardanza, Aitor; Molina-Rueda, F.; Cuesta-Gómez, A.; Ruiz, Oscar E.

    2014-01-01

    New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation. PMID:25110698

  19. A Systematic Review of Bilateral Upper Limb Training Devices for Poststroke Rehabilitation

    PubMed Central

    van Delden, A. (Lex) E. Q.; Peper, C. (Lieke) E.; Kwakkel, Gert; Beek, Peter J.

    2012-01-01

    Introduction. In stroke rehabilitation, bilateral upper limb training is gaining ground. As a result, a growing number of mechanical and robotic bilateral upper limb training devices have been proposed. Objective. To provide an overview and qualitative evaluation of the clinical applicability of bilateral upper limb training devices. Methods. Potentially relevant literature was searched in the PubMed, Web of Science, and Google Scholar databases from 1990 onwards. Devices were categorized as mechanical or robotic (according to the PubMed MeSH term of robotics). Results. In total, 6 mechanical and 14 robotic bilateral upper limb training devices were evaluated in terms of mechanical and electromechanical characteristics, supported movement patterns, targeted part and active involvement of the upper limb, training protocols, outcomes of clinical trials, and commercial availability. Conclusion. Initial clinical results are not yet of such caliber that the devices in question and the concepts on which they are based are firmly established. However, the clinical outcomes do not rule out the possibility that the concept of bilateral training and the accompanied devices may provide a useful extension of currently available forms of therapy. To actually demonstrate their (surplus) value, more research with adequate experimental, dose-matched designs, and sufficient statistical power are required. PMID:23251833

  20. The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies

    PubMed Central

    Isaias, Ioannis U.; Volkmann, Jens; Marzegan, Alberto; Marotta, Giorgio; Cavallari, Paolo; Pezzoli, Gianni

    2012-01-01

    To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation (at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. PMID:23236504

  1. Estimation of stature from the upper limb measurements of Sudanese adults.

    PubMed

    Ahmed, Altayeb Abdalla

    2013-05-10

    The estimation of stature using different parts of the body is crucial for formulating a biological profile during the process of personal identification, especially when mutilated and amputated limbs or body parts are found. Hand anthropometry has been reported in the literature including limited range of populations to be promising for stature prediction, but few studies have attempted to link upper limb anthropometry to stature. No previous research on this topic has been reported for modern Sudanese adults. Therefore, the aim of this study was to assess the relationship between the upper limb dimensions and stature in Sudanese adults and to develop regression formulae to estimate stature from these dimensions. The stature, upper arm length, ulnar length, wrist breadth, hand length, and hand breadth of 200 right-handed subjects, comprising 100 males and 100 females (aged 25-30 years), were measured. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then sex-specific simple and multiple linear regression models were used to estimate stature. The results indicated significant sexual dimorphism for all measurements. There was a positive correlation between upper limb measurements and stature (p<0.01), which was highest for ulnar length. The accuracy of stature prediction ranged from ±3.54 to 5.85 cm. The use of multiple regression equations gave better results than simple regression equations. This study provides new forensic standards for stature estimation from the upper limb measurements of Sudanese adults. PMID:23528834

  2. Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl.

    PubMed

    Nacu, Eugen; Glausch, Mareen; Le, Huy Quang; Damanik, Febriyani Fiain Rochel; Schuez, Maritta; Knapp, Dunja; Khattak, Shahryar; Richter, Tobias; Tanaka, Elly M

    2013-02-01

    During salamander limb regeneration, only the structures distal to the amputation plane are regenerated, a property known as the rule of distal transformation. Multiple cell types are involved in limb regeneration; therefore, determining which cell types participate in distal transformation is important for understanding how the proximo-distal outcome of regeneration is achieved. We show that connective tissue-derived blastema cells obey the rule of distal transformation. They also have nuclear MEIS, which can act as an upper arm identity regulator, only upon upper arm amputation. By contrast, myogenic cells do not obey the rule of distal transformation and display nuclear MEIS upon amputation at any proximo-distal level. These results indicate that connective tissue cells, but not myogenic cells, are involved in establishing the proximo-distal outcome of regeneration and are likely to guide muscle patterning. Moreover, we show that, similarly to limb development, muscle patterning in regeneration is influenced by β-catenin signalling. PMID:23293283

  3. Activation of upper airway muscles during breathing and swallowing

    PubMed Central

    Ludlow, Christy L.

    2013-01-01

    The upper airway is a complex muscular tube that is used by the respiratory and digestive systems. The upper airway is invested with several small and anatomically peculiar muscles. The muscle fiber orientations and their nervous innervation are both extremely complex, and how the activity of the muscles is initiated and adjusted during complex behaviors is poorly understood. The bulk of the evidence suggests that the entire assembly of tongue and laryngeal muscles operate together but differently during breathing and swallowing, like a ballet rather than a solo performance. Here we review the functional anatomy of the tongue and laryngeal muscles, and their neural innervation. We also consider how muscular activity is altered as respiratory drive changes, and briefly address upper airway muscle control during swallowing. PMID:24092695

  4. Chiropractic management of work-related upper limb disorder complicated by intraosseous ganglion cysts: a case report

    PubMed Central

    Crafts, Glenn J.; Snow, Gregory J.; Ngoc, Kim Hong

    2011-01-01

    Objective Work-related upper limb disorder (WRULD) encompasses a broad array of occupational upper limb injuries, the most common being carpal tunnel syndrome (CTS). Carpal tunnel syndrome occasionally presents with concomitant ganglion cysts. The purpose of this case report is to describe the chiropractic management of a patient with bilateral WRULD complicated by ganglion cysts. Clinical Features The patient was diagnosed previously with bilateral CTS and presented with common CTS symptoms that were nonresponsive to several previous courses of care. Magnetic resonance imaging revealed bilateral ganglion cysts, and electrodiagnostic studies found left CTS and bilateral radial neuralgia. Right limb findings appeared more consistent with nonspecific arm pain. Intervention and Outcome Chiropractic manipulative therapy, soft-tissue approaches, and physiotherapy modalities were applied to the arms and wrists over a 3-month period. Home care included exercises using elastic tubing and a gyroscopic handheld device. Chiropractic manipulative therapy and other conservative approaches resulted in subjective improvements of decreased hand paresthesias and muscle weakness and objective improvements in range of motion and neurologic deficits. Although the patient's symptoms and function improved, she remained with a level of permanent impairment. Conclusion This case demonstrates successful chiropractic management of a patient with WRULD complicated by ganglion cysts. Further larger-scale studies are recommended to determine if chiropractic management demonstrates positive outcomes for this condition. PMID:22014905

  5. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts.

    PubMed

    Tanaka, Hibiki Vincent; Ng, Nathaniel Chuen Yin; Yang Yu, Zhan; Casco-Robles, Martin Miguel; Maruo, Fumiaki; Tsonis, Panagiotis A; Chiba, Chikafumi

    2016-01-01

    The newt, a urodele amphibian, is able to repeatedly regenerate its limbs throughout its lifespan, whereas other amphibians deteriorate or lose their ability to regenerate limbs after metamorphosis. It remains to be determined whether such an exceptional ability of the newt is either attributed to a strategy, which controls regeneration in larvae, or on a novel one invented by the newt after metamorphosis. Here we report that the newt switches the cellular mechanism for limb regeneration from a stem/progenitor-based mechanism (larval mode) to a dedifferentiation-based one (adult mode) as it transits beyond metamorphosis. We demonstrate that larval newts use stem/progenitor cells such as satellite cells for new muscle in a regenerated limb, whereas metamorphosed newts recruit muscle fibre cells in the stump for the same purpose. We conclude that the newt has evolved novel strategies to secure its regenerative ability of the limbs after metamorphosis. PMID:27026263

  6. Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury

    PubMed Central

    Nishimura, Yukio; Perlmutter, Steve I.; Fetz, Eberhard E.

    2013-01-01

    Functional loss of limb control in individuals with spinal cord injury or stroke can be caused by interruption of corticospinal pathways, although the neural circuits located above and below the lesion remain functional. An artificial neural connection that bridges the lost pathway and connects cortical to spinal circuits has potential to ameliorate the functional loss. We investigated the effects of introducing novel artificial neural connections in a paretic monkey that had a unilateral spinal cord lesion at the C2 level. The first application bridged the impaired spinal lesion. This allowed the monkey to drive the spinal stimulation through volitionally controlled power of high-gamma activity in either the premotor or motor cortex, and thereby to acquire a force-matching target. The second application created an artificial recurrent connection from a paretic agonist muscle to a spinal site, allowing muscle-controlled spinal stimulation to boost on-going activity in the muscle. These results suggest that artificial neural connections can compensate for interrupted descending pathways and promote volitional control of upper limb movement after damage of descending pathways such as spinal cord injury or stroke. PMID:23596396

  7. Facts about Upper and Lower Limb Reduction Defects

    MedlinePLUS

    ... Down Syndrome Data and Statistics Growth Charts Encephalocele Gastroschisis Hypospadias Microcephaly Omphalocele Spina Bifida Upper and Lower ... Down Syndrome Eye Defects Fetal Alcohol Syndrome Disorders Gastroschisis Heart Defects Coarctation of the Aorta Hypoplastic left ...

  8. Management of the upper-limb-deficient child with a powered prosthetic device.

    PubMed

    Glynn, M K; Galway, H R; Hunter, G; Sauter, W F

    1986-08-01

    A long-term survey of a large number of children fitted with an electrically powered upper-limb prosthesis seems not to have been reported in the literature. Children with upper-limb deficiencies (congenital or traumatic) were fitted with an electrically powered upper-limb prosthesis in Ontario during the 18-year period of 1965-1983. Seventy-eight patients responded to a questionnaire or were interviewed by telephone. The dropout rate in children with a below-elbow amputation was similar to that reported in below-elbow child amputees wearing a conventional body-powered prosthesis (10% vs. 13%). The acceptance rate in children with above-elbow amputations was higher in those wearing an electrically powered prosthesis than in those using the conventional prosthesis, testifying for improved prosthetic function in the former group. PMID:3731596

  9. Risk factors for upper limb disorders. Implications for prevention and treatment.

    PubMed

    Viikari-Juntura, E

    1998-06-01

    Epidemiologic studies have revealed several associations between physical work load factors and some common upper limb disorders. In the treatment of a case of work related upper limb disorder, modifications of work that are feasible to be implemented in the field should be done as a first priority. Some case studies suggest notable effects of ergonomic measures on the occurrence of upper limb disorders. Economic analyses of individual workplace have indicated that the investments usually have a short payback period. In work related carpal tunnel syndrome, the physical demands of the job, especially the force demands of gripping, should be considered before deciding on surgery, because gripping force may return slowly after surgery, and may be compromised by the surgical procedure itself. PMID:9646745

  10. Application of the rubber hand illusion paradigm: comparison between upper and lower limbs.

    PubMed

    Flögel, Mareike; Kalveram, Karl Theodor; Christ, Oliver; Vogt, Joachim

    2016-03-01

    The "rubber hand illusion (RHI)" is a perceptual illusion, which allows the integration of artificial limbs into the body representation of a person by means of combined visual and tactile stimulation. The illusion has been frequently replicated but always concerning the upper limbs. The present study verified an analog illusion that can be called the "rubber foot illusion" (RFI). In a conjoint experiment using both a rubber hand and a rubber foot, brushstrokes were applied to the respective real and rubber limb placed alongside the real one. However, only the artificial limb's handling was visible. The brushstrokes were given either synchronously, with a delay of ±0.5 s, or without tactile stimulation of the real limb. Questionnaire data and the proprioceptive drift towards the rubber limb (determined by calling on the subjects to show where they locate their unseen limb) defined the illusion strength. Results revealed that the illusion was induced in both limbs with comparable strength, but only in the synchronous condition. PMID:25656162

  11. Limb congestion enhances the synchronization of sympathetic outflow with muscle contraction

    NASA Technical Reports Server (NTRS)

    Mostoufi-Moab, S.; Herr, M. D.; Silber, D. H.; Gray, K. S.; Leuenberger, U. A.; Sinoway, L. I.

    2000-01-01

    In this report, we examined if the synchronization of muscle sympathetic nerve activity (MSNA) with muscle contraction is enhanced by limb congestion. To explore this relationship, we applied signal-averaging techniques to the MSNA signal obtained during short bouts of forearm contraction (2-s contraction/3-s rest cycle) at 40% maximal voluntary contraction for 5 min. We performed this analysis before and after forearm venous congestion; an intervention that augments the autonomic response to sustained static muscle contractions via a local effect on muscle afferents. There was an increased percentage of the MSNA noted during second 2 of the 5-s contraction/rest cycles. The percentage of total MSNA seen during this particular second increased from minute 1 to 5 of contraction and was increased further by limb congestion (control minute 1 = 25.6 +/- 2.0%, minute 5 = 32.8 +/- 2.2%; limb congestion minute 1 = 29.3 +/- 2.1%, minute 5 = 37.8 +/- 3.9%; exercise main effect <0.005; limb congestion main effect P = 0.054). These changes in the distribution of signal-averaged MSNA were seen despite the fact that the mean number of sympathetic discharges did not increase over baseline. We conclude that synchronization of contraction and MSNA is seen during short repetitive bouts of handgrip. The sensitizing effect of contraction time and limb congestion are apparently due to feedback from muscle afferents within the exercising muscle.

  12. Effective Management of Upper Limb Parkinsonian Tremor by IncobotulinumtoxinA Injections Using Sensor-based Biomechanical Patterns

    PubMed Central

    Rahimi, Fariborz; Samotus, Olivia; Lee, Jack; Jog, Mandar

    2015-01-01

    Background Focal treatment of Parkinsons disease tremor by botulinum toxin type A incobotulinumtoxinA (BoNT-A) injections has been inadequately investigated and at best provides modest relief with significant muscle weakness. Complexity of multi-joint tremulous movements results in non-individualized dosing regimens. This 38-week open-label study used kinematic technology to guide muscle selection and improve efficacy of incobotulinumtoxinA (BoNT-A) injections for Parkinsons disease tremor. Methods Participants (n=28) attended study visits at weeks 0, 6, 16, 22, 32, and 38, and were injected with BoNT-A at weeks 0, 16, and 32. During each visit, clinical tremor scales, the Unified Parkinsons Disease Rating Scale (UPDRS) and the FahnTolosaMarin (FTM), and kinematic assessments were conducted. Participants performed rest and postural scripted tasks with motion sensors placed over the wrist, elbow, and shoulder joints where tremor was quantified by angular root mean square (RMS) amplitude in multiple degrees of freedom at each joint. Injection parameters were determined using the clinicians interpretation of which muscles would contribute to the upper limb tremor biomechanics analyzed kinematically. Results Kinematic measures of tremor amplitude allowed detailed segmentation of tremor into directional components at each arm joint permitting a statistically significant decrease in mean UPDRS item 20 (rest tremor) at week 16 (p=0.006) and at week 32 (p=0.014), and in FTM tremor severity scores at week 6 (p=0.024). Ten participants perceived mild muscle weakness following the third treatment, which did not interfere with performing activities of daily living. Discussion Kinematics is a simple method for standardizing assessments and treatment of upper limb Parkinsons disease tremor, thereby personalizing tremor therapy and optimizing the effect of BoNT-A injections for Parkinsons disease tremor. PMID:26566459

  13. Application of ultrasound imaging of upper lip orbicularis oris muscle

    PubMed Central

    Zhang, Wen-Hao; Chen, Yuan-Yuan; Liu, Jun-Jie; Liao, Xin-Hong; Du, Yang-Chun; Gao, Yong

    2015-01-01

    In this study, we aim to understand the morphology and structure of upper lip orbicularis oris muscle, and to provide clinical evidence for evaluating the effect of repair operation in cleft lip. Subjects included 106 healthy people and 36 postoperative patients of unilateral cleft lip. The upper lip orbicularis oris muscle was scanned using ultrasound in natural closure and pout states. Our results showed that the hierarchical structure of upper lip tissue was demonstrated clearly in ultrasonic images. After reconstruction of unilateral cleft lip, the left and right philtrum columns were still obviously asymmetric, their radian displayed clearly and showed better continuity. In the place of cleft lip side equivalent to philtrum columns, orbicularis oris muscle showed discontinuity and unclear hierarchical structure, which was replaced by hyperechoic scar tissue. The superficial layer would become thicker when pouting. In reconstructed unilateral cleft lip, the superficial layer was thinner than that of healthy controls. In normal upper lip orbicularis oris muscle, the superficial layer thickness was no less than 2.89 mm in philtrum dimple and no less than 3.92 mm in philtrum column, and the deep layer thickness was no less the 1.12 mm. Otherwise, the layer thickness less than above reference values may be considered as diagnostic criteria for dysplasia of upper lip orbicularis oris muscle. In conclusions, ultrasound imaging is able to clearly show the hierarchical structure of upper lip orbicularis oris muscle, and will be beneficial in guiding the upper lip repair and reconstruction surgery. PMID:26064229

  14. Upper limb musculoskeletal complaints among technicians working in a diagnostic tuberculosis laboratory: two case reports.

    PubMed

    Wong, Joyce Y P; Chin, David; Fung, Henry; Li, Ann; Wong, Marcus M S; Kwok, Henry K H

    2014-01-01

    Upper limb musculoskeletal complaints are common among certain health professionals. We report two cases, both involving technicians working in a diagnostic tuberculosis laboratory in Hong Kong. A work process evaluation suggest that the need to repeatedly open and close small bottles, as well as to work for prolonged periods of time in confined areas, could be related to the workers' clinical presentation. The cases are also compatible with the diagnosis of repetitive strain injury (RSI) of the upper limb, but this term is not commonly used nowadays because of various definitional issues. A review of the various diagnostic issues in RSI is presented. PMID:24346264

  15. Assessment of neuromuscular activation of the upper limbs in children with spastic hemiparetic cerebral palsy during a dynamical task.

    PubMed

    Feltham, Max G; Ledebt, Annick; Deconinck, Frederik J A; Savelsbergh, Geert J P

    2010-06-01

    This study compared the intensity, co-activity and frequency content of the electromyography (EMG) signals recorded bilaterally from six muscles of the upper limbs in children with spastic hemiparetic cerebral palsy (SHCP) and typically developing (TD) children during a bilateral movement. It was found that children with SHCP executed the bimanual circular movement with higher intensities of mean neuromuscular activity in both arms compared to TD children. Furthermore, the movement was performed with longer phases of concentric and eccentric activity in children with SHCP, indicating more co-activation, especially in the more impaired arm. The EMG signals yielded a higher mean power frequency in all the muscles of the more impaired arm and the wrist and elbow flexors of the less impaired arm, which was interpreted as a relatively higher contribution of type II muscle fibres compared to TD children. These observations suggest that in children with SHCP bimanual coordination requires higher neuromuscular activation in the muscles of both arms. Furthermore, SHCP also seems to involve structural changes to the muscle properties, which differ between arms. PMID:19666231

  16. Development of a sheep hind-limb muscle preparation for metabolic studies.

    PubMed

    Teleni, E; Annison, E F

    1986-01-01

    A sheep hind-limb preparation used for the study of muscle metabolism by arteriovenous (AV) difference procedures was validated by identifying the muscles which contribute to venous drainage at different positions along the lateral saphenous vein. Dissection of the hind limbs of six mature sheep (three wethers and three ewes) showed that venous blood from the plantar group (M. gastrocnemius, M. soleus, M. plantaris, M. flexo digitorum profundus), and from M. semitendinosus, M. biceps femoris, M. gracilis, M. pectineus and M. adductor muscles entered the lateral saphenous vein but the position of the tip of the blood sampling catheter was found to be critical. In order to sample venous blood from all of the muscles listed above, and to minimize the contribution of blood from non-muscular tissues, blood samples must be taken 25-26 cm from the junction of the cranial and caudal branches of the lateral saphenous vein (for average size sheep of body length about 108 cm and height at withers about 73 cm). The estimation of sheep hind-limb muscle mass is a necessary concomitant of AV difference studies, and a combined tritiated water and dye-dilution procedure has been used to measure both muscle mass and blood flow. The muscle mass estimated in vivo by this technique was closely similar to the true muscle mass obtained by dissection, the range of values of the difference between true and calculated muscle mass expressed as percentage of the true mass being 0.5-16%. It is concluded that these techniques are sufficiently accurate for use in the quantitation of exchange of metabolites across the hind-limb muscle preparation. Patterns of amino acid uptake and release by muscle need to be related to the amino acid profile of the tissue, and the amino acid content of a representative muscle, M. biceps femoris, was determined, and the results compared with published data. PMID:3548680

  17. Sensory cortical re-mapping following upper-limb amputation and subsequent targeted reinnervation: A case report

    PubMed Central

    Yao, Jun; Chen, Albert; Kuiken, Todd; Carmona, Carolina; Dewald, Julius

    2015-01-01

    This case study demonstrates the change of sensory cortical representations of the residual parts of the arm in an individual who underwent a trans-humeral amputation and subsequent targeted reinnervation (TR). As a relatively new surgical technique, TR restores a direct neural connection from amputated sensorimotor nerves to specific target muscles. This method has been successfully applied to upper-limb and lower-limb amputees, and has shown effectiveness in regaining control signals via the newly re-innervated muscles. Correspondingly, recent study results have shown that motor representations for the missing limb move closer to their original locations following TR. Besides regaining motor control signals, TR also restores the sensation in the re-innervated skin areas. We therefore hypothesize that TR causes analogous cortical sensory remapping that may return closer to their original locations. In order to test this hypothesis, cortical activity in response to sensory-level electrical stimulation in different parts of the arm was studied longitudinally in one amputated individual before and up to 2years after TR. Our results showed that 1) before TR, the cortical response to sensory electrical stimulation in the residual limb showed a diffuse bilateral pattern without a clear focus in either the time or spatial domain; and 2) 2years after TR, the sensory map of the reinnervated median nerve reorganized, showing predominant activity over the contralateral S1 hand area as well as moderate activity over the ipsilateral S1. Therefore, this work provides new evidence for long-term sensory cortical plasticity in the human brain after TR. PMID:26106558

  18. Sensory cortical re-mapping following upper-limb amputation and subsequent targeted reinnervation: A case report.

    PubMed

    Yao, Jun; Chen, Albert; Kuiken, Todd; Carmona, Carolina; Dewald, Julius

    2015-01-01

    This case study demonstrates the change of sensory cortical representations of the residual parts of the arm in an individual who underwent a trans-humeral amputation and subsequent targeted reinnervation (TR). As a relatively new surgical technique, TR restores a direct neural connection from amputated sensorimotor nerves to specific target muscles. This method has been successfully applied to upper-limb and lower-limb amputees, and has shown effectiveness in regaining control signals via the newly re-innervated muscles. Correspondingly, recent study results have shown that motor representations for the missing limb move closer to their original locations following TR. Besides regaining motor control signals, TR also restores the sensation in the re-innervated skin areas. We therefore hypothesize that TR causes analogous cortical sensory remapping that may return closer to their original locations. In order to test this hypothesis, cortical activity in response to sensory-level electrical stimulation in different parts of the arm was studied longitudinally in one amputated individual before and up to 2 years after TR. Our results showed that 1) before TR, the cortical response to sensory electrical stimulation in the residual limb showed a diffuse bilateral pattern without a clear focus in either the time or spatial domain; and 2) 2 years after TR, the sensory map of the reinnervated median nerve reorganized, showing predominant activity over the contralateral S1 hand area as well as moderate activity over the ipsilateral S1. Therefore, this work provides new evidence for long-term sensory cortical plasticity in the human brain after TR. PMID:26106558

  19. Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations

    ERIC Educational Resources Information Center

    Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto

    2011-01-01

    The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…

  20. Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations

    ERIC Educational Resources Information Center

    Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto

    2011-01-01

    The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak

  1. Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb

    PubMed Central

    Ache, Jan M.

    2012-01-01

    Limb movements can be driven by muscle contractions, external forces, or intrinsic passive forces. For lightweight limbs like those of insects or small vertebrates, passive forces can be large enough to overcome the effects of gravity and may even generate limb movements in the absence of active muscle contractions. Understanding the sources and actions of such forces is therefore important in understanding motor control. We describe passive properties of the femur-tibia joint of the locust hind leg. The resting angle is determined primarily by passive properties of the relatively large extensor tibiae muscle and is influenced by the history of activation of the fast extensor tibiae motor neuron. The resting angle is therefore better described as a history-dependent resting state. We selectively stimulated different flexor tibiae motor neurons to generate a range of isometric contractions of the flexor tibiae muscle and then stimulated the fast extensor tibiae motor neuron to elicit active tibial extensions. Residual forces in the flexor muscle have only a small effect on subsequent active extensions, but the effect is larger for distal than for proximal flexor motor neurons and varies with the strength of flexor activation. We conclude that passive properties of a lightweight limb make substantial and complex contributions to the resting state of the limb that must be taken into account in the patterning of neuronal control signals driving its active movements. Low variability in the effects of the passive forces may permit the nervous system to accurately predict their contributions to behavior. PMID:22357791

  2. The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study

    PubMed Central

    2014-01-01

    Background Functional electrical stimulation (FES) during repetitive practice of everyday tasks can facilitate recovery of upper limb function following stroke. Reduction in impairment is strongly associated with how closely FES assists performance, with advanced iterative learning control (ILC) technology providing precise upper-limb assistance. The aim of this study is to investigate the feasibility of extending ILC technology to control FES of three muscle groups in the upper limb to facilitate functional motor recovery post-stroke. Methods Five stroke participants with established hemiplegia undertook eighteen intervention sessions, each of one hour duration. During each session FES was applied to the anterior deltoid, triceps, and wrist/finger extensors to assist performance of functional tasks with real-objects, including closing a drawer and pressing a light switch. Advanced model-based ILC controllers used kinematic data from previous attempts at each task to update the FES applied to each muscle on the subsequent trial. This produced stimulation profiles that facilitated accurate completion of each task while encouraging voluntary effort by the participant. Kinematic data were collected using a Microsoft Kinect, and mechanical arm support was provided by a SaeboMAS. Participants completed Fugl-Meyer and Action Research Arm Test clinical assessments pre- and post-intervention, as well as FES-unassisted tasks during each intervention session. Results Fugl-Meyer and Action Research Arm Test scores both significantly improved from pre- to post-intervention by 4.4 points. Improvements were also found in FES-unassisted performance, and the amount of arm support required to successfully perform the tasks was reduced. Conclusions This feasibility study indicates that technology comprising low-cost hardware fused with advanced FES controllers accurately assists upper limb movement and may reduce upper limb impairments following stroke. PMID:24981060

  3. Calibration of the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Jarnot, R. F.; Cofield, R. E.; Waters, J. W.; Flower, D. A.; Peckham, G. E.

    1996-01-01

    The Microwave Limb Sounder (MLS) is a three-radiometer, passive, limb emission instrument onboard the Upper Atmosphere Research Satellite (UARS). Radiometric, spectral and field-of-view calibrations of the MLS instrument are described in this paper. In-orbit noise performance, gain stability, spectral baseline and dynamic range are described, as well as use of in-flight data for validation and refinement of prelaunch calibrations. Estimated systematic scaling uncertainties (3 sigma) on calibrated limb radiances from prelaunch calibrations are 2.6% in bands 1 through 3, 3.4% in band 4, and 6% in band 5. The observed systematic errors in band 6 are about 15%, consistent with prelaunch calibration uncertainties. Random uncertainties on individual limb radiance measurements are very close to the levels predicted from measured radiometer noise temperature, with negligible contribution from noise and drifts on the regular in-flight gain calibration measurements.

  4. Phantom hand and wrist movements in upper limb amputees are slow but naturally controlled movements.

    PubMed

    De Graaf, J B; Jarrass, N; Nicol, C; Touillet, A; Coyle, T; Maynard, L; Martinet, N; Paysant, J

    2016-01-15

    After limb amputation, patients often wake up with a vivid perception of the presence of the missing limb, called "phantom limb". Phantom limbs have mostly been studied with respect to pain sensation. But patients can experience many other phantom sensations, including voluntary movements. The goal of the present study was to quantify phantom movement kinematics and relate these to intact limb kinematics and to the time elapsed since amputation. Six upper arm and two forearm amputees with various delays since amputation (6months to 32years) performed phantom finger, hand and wrist movements at self-chosen comfortable velocities. The kinematics of the phantom movements was indirectly obtained via the intact limb that synchronously mimicked the phantom limb movements, using a Cyberglove for measuring finger movements and an inertial measurement unit for wrist movements. Results show that the execution of phantom movements is perceived as "natural" but effortful. The types of phantom movements that can be performed are variable between the patients but they could all perform thumb flexion/extension and global hand opening/closure. Finger extension movements appeared to be 24% faster than finger flexion movements. Neither the number of types of phantom movements that can be executed nor the kinematic characteristics were related to the elapsed time since amputation, highlighting the persistence of post-amputation neural adaptation. We hypothesize that the perceived slowness of phantom movements is related to altered proprioceptive feedback that cannot be recalibrated by lack of visual feedback during phantom movement execution. PMID:26556065

  5. Entrapment Neuropathies in the Upper and Lower Limbs: Anatomy and MRI Features

    PubMed Central

    Dong, Qian; Jacobson, Jon A.; Jamadar, David A.; Gandikota, Girish; Brandon, Catherine; Morag, Yoav; Fessell, David P.; Kim, Sung-Moon

    2012-01-01

    Peripheral nerve entrapment occurs at specific anatomic locations. Familiarity with the anatomy and the magnetic resonance imaging (MRI) features of nerve entrapment syndromes is important for accurate diagnosis and early treatment of entrapment neuropathies. The purpose of this paper is to illustrate the normal anatomy of peripheral nerves in the upper and lower limbs and to review the MRI features of common disorders affecting the peripheral nerves, both compressive/entrapment and noncompressive, involving the suprascapular nerve, the axillary nerve, the radial nerve, the ulnar nerve, and the median verve in the upper limb and the sciatic nerve, the common peroneal nerve, the tibial nerve, and the interdigital nerves in the lower limb. PMID:23125929

  6. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    NASA Technical Reports Server (NTRS)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  7. Myosin expression and specialization among the earliest muscle fibers of the developing avian limb.

    PubMed

    Crow, M T; Stockdale, F E

    1986-01-01

    Monoclonal antibodies specific to the light- and heavy-chain subunits of chicken skeletal muscle myosin have been used to identify fast and slow myosin-containing fibers in the thigh muscles of embryonic and adult chickens and to determine when in development diversification of muscle fiber types first occurs. Primary generation fibers which expressed different MLC and MHC types were evident within the dorsal and ventral premuscle masses and in the first muscles to form in the limb. These early embryonic muscle fiber types became distributed among and within the individual muscles of the thigh in a characteristic spatial pattern which served as a "blueprint" for guiding future muscle development and predicting the future fiber composition of the muscle. Despite the continuous addition of muscle fibers to the limb throughout development, the pattern remained unchanged. Neither the time of appearance, initial specialization, nor characteristic distribution of these primary fiber types within the limb was altered during the early embryonic period by chronic neuromuscular paralysis induced by D-tubocurarine. In contrast, muscles at later stages of embryonic development were markedly affected by such treatments and underwent atrophy and loss of differential staining characteristics. These results demonstrate that diversification of fibers in terms of myosin content is one of the earliest events in the formation of these muscles and suggest that the development of avian muscles be divided into two phases: an embryonic phase during which fibers of differing myosin content appear independently of innervation to become distributed in a specific topographic pattern within each muscle as it forms, followed by a fetal phase during which innervation becomes essential for maintaining this pattern and modulating the myosin content of its fibers. PMID:3943663

  8. THE EFFECT OF DOUBLE VERSUS SINGLE OSCILLATING EXERCISE DEVICES ON TRUNK AND LIMB MUSCLE ACTIVATION

    PubMed Central

    Arora, Shruti; Button, Duane C.; Basset, Fabien A.

    2013-01-01

    Purpose/Background: Proper strengthening of the core and upper extremities is important for muscular health, performance, and rehabilitation. Exercise devices have been developed that attempt to disrupt the center of gravity in order to activate the trunk stabilizing muscles. The objective of this study was to analyze the trunk and shoulder girdle muscle activation with double and single oscillating exercise devices (DOD and SOD respectively) in various planes. Methods: Twelve male subjects performed three interventions using both devices under randomized conditions: single-handed vertical orientation of DOD and SOD to produce 1) medio-lateral oscillation in the frontal plane 2) dorso-ventral oscillation in the sagittal plane and 3) single-handed horizontal orientation for superior and inferior oscillation in the transverse plane. Electromyographic (EMG) activity during the interventions of the anterior deltoid, triceps brachii, biceps brachii, forearm flexors as well as lower abdominal and back stabilizer muscles was collected, and were normalized to maximal voluntary contractions. A two way repeated measures ANOVA (2x3) was conducted to assess the influence of the devices and movement planes on muscle activation. Results: The DOD provided 35.9%, 40.8%, and 52.3% greater anterior deltoid, transverse abdominus (TA)/internal oblique (IO) and lumbo-sacral erector spinae (LSES) activation than did the SOD respectively. Effect size calculations revealed that these differences were of moderate to large magnitude (0.86, 0.48, and 0.61 respectively). There were no significant differences in muscular activation achieved between devices for the triceps brachii, biceps brachii and forearm flexor muscles. Exercise in the transverse plane resulted in 30.5%, 29.5%, and 19.5% greater activation than the sagittal and 21.8%, 17.2%, and 26.3% greater activation than the frontal plane for the anterior deltoid, TA/IO and LSES respectively. Conclusions: A DOD demonstrated greater muscular activity for trunk and shoulder muscle activation but does not provide an advantage for limb activation. Overall, oscillating the devices in the transverse plane provided greater muscular activation of the anterior deltoid, TA/IO and LSES than use of the devices during frontal or sagittal plane movements. Level of evidence: 2c: Outcomes research. PMID:24175124

  9. The 6 Minute Walk Test and Performance of Upper Limb in Ambulant Duchenne Muscular Dystrophy Boys

    PubMed Central

    Pane, Marika; Mazzone, Elena Stacy; Sivo, Serena; Fanelli, Lavinia; De Sanctis, Roberto; DAmico, Adele; Messina, Sonia; Battini, Roberta; Bianco, Flaviana; Scutifero, Marianna; Petillo, Roberta; Frosini, Silvia; Scalise, Roberta; Vita, Gian Luca; Bruno, Claudio; Pedemonte, Marina; Mongini, Tiziana; Pegoraro, Elena; Brustia, Francesca; Gardani, Alice; Berardinelli, Angela; Lanzillotta, Valentina; Viggiano, Emanuela; Cavallaro, Filippo; Sframeli, Maria; Bello, Luca; Barp, Andrea; Busato, Fabio; Bonfiglio, Serena; Rolle, Enrica; Colia, Giulia; Bonetti, Annamaria; Palermo, Concetta; Graziano, Alessandra; DAngelo, Grazia; Pini, Antonella; Corlatti, Alice; Gorni, Ksenija; Baranello, Giovanni; Antonaci, Laura; Bertini, Enrico; Politano, Luisa; Mercuri, Eugenio

    2014-01-01

    The Performance of Upper Limb (PUL) test was specifically developed for the assessment of upper limbs in Duchenne muscular dystrophy (DMD). The first published data have shown that early signs of involvement can also be found in ambulant DMD boys. The aim of this longitudinal Italian multicentric study was to evaluate the correlation between the 6 Minute Walk Test (6MWT) and the PUL in ambulant DMD boys. Both 6MWT and PUL were administered to 164 ambulant DMD boys of age between 5.0 and 16.17 years (mean 8.82). The 6 minute walk distance (6MWD) ranged between 118 and 557 (mean: 376.38, SD: 90.59). The PUL total scores ranged between 52 and 74 (mean: 70.74, SD: 4.66). The correlation between the two measures was 0.499. The scores on the PUL largely reflect the overall impairment observed on the 6MWT but the correlation was not linear. The use of the PUL appeared to be less relevant in the very strong patients with 6MWD above 400 meters, who, with few exceptions had near full scores. In patients with lower 6MWD the severity of upper limb involvement was more variable and could not always be predicted by the 6MWD value or by the use of steroids. Our results confirm that upper limb involvement can already be found in DMD boys even in the ambulant phase. PMID:25642376

  10. Predictive classification of self-paced upper-limb analytical movements with EEG.

    PubMed

    Ibáñez, Jaime; Serrano, J I; del Castillo, M D; Minguez, J; Pons, J L

    2015-11-01

    The extent to which the electroencephalographic activity allows the characterization of movements with the upper limb is an open question. This paper describes the design and validation of a classifier of upper-limb analytical movements based on electroencephalographic activity extracted from intervals preceding self-initiated movement tasks. Features selected for the classification are subject specific and associated with the movement tasks. Further tests are performed to reject the hypothesis that other information different from the task-related cortical activity is being used by the classifiers. Six healthy subjects were measured performing self-initiated upper-limb analytical movements. A Bayesian classifier was used to classify among seven different kinds of movements. Features considered covered the alpha and beta bands. A genetic algorithm was used to optimally select a subset of features for the classification. An average accuracy of 62.9 ± 7.5% was reached, which was above the baseline level observed with the proposed methodology (30.2 ± 4.3%). The study shows how the electroencephalography carries information about the type of analytical movement performed with the upper limb and how it can be decoded before the movement begins. In neurorehabilitation environments, this information could be used for monitoring and assisting purposes. PMID:25980505

  11. Robot-Mediated Upper Limb Physiotherapy: Review and Recommendations for Future Clinical Trials

    ERIC Educational Resources Information Center

    Peter, Orsolya; Fazekas, Gabor; Zsiga, Katalin; Denes, Zoltan

    2011-01-01

    Robot-mediated physiotherapy provides a new possibility for improving the outcome of rehabilitation of patients who are recovering from stroke. This study is a review of robot-supported upper limb physiotherapy focusing on the shoulder, elbow, and wrist. A literature search was carried out in PubMed, OVID, and EBSCO for clinical trials with robots…

  12. Robot-Mediated Upper Limb Physiotherapy: Review and Recommendations for Future Clinical Trials

    ERIC Educational Resources Information Center

    Peter, Orsolya; Fazekas, Gabor; Zsiga, Katalin; Denes, Zoltan

    2011-01-01

    Robot-mediated physiotherapy provides a new possibility for improving the outcome of rehabilitation of patients who are recovering from stroke. This study is a review of robot-supported upper limb physiotherapy focusing on the shoulder, elbow, and wrist. A literature search was carried out in PubMed, OVID, and EBSCO for clinical trials with robots

  13. A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs

    PubMed Central

    Gil-Agudo, Ángel; de los Reyes-Guzmán, Ana; Dimbwadyo-Terrer, Iris; Peñasco-Martín, Benito; Bernal-Sahún, Alberto; López-Monteagudo, Patricia; del Ama-Espinosa, Antonio; Pons, José Luis

    2013-01-01

    Upper limb function impairment is one of the most common sequelae of central nervous system injury, especially in stroke patients and when spinal cord injury produces tetraplegia. Conventional assessment methods cannot provide objective evaluation of patient performance and the tiveness of therapies. The most common assessment tools are based on rating scales, which are inefficient when measuring small changes and can yield subjective bias. In this study, we designed an inertial sensor-based monitoring system composed of five sensors to measure and analyze the complex movements of the upper limbs, which are common in activities of daily living. We developed a kinematic model with nine degrees of freedom to analyze upper limb and head movements in three dimensions. This system was then validated using a commercial optoelectronic system. These findings suggest that an inertial sensor-based motion tracking system can be used in patients who have upper limb impairment through data integration with a virtual reality-based neuroretation system. PMID:25206474

  14. The Corticospinal Tract: A Biomarker to Categorize Upper Limb Functional Potential in Unilateral Cerebral Palsy

    PubMed Central

    Jaspers, Ellen; Byblow, Winston D.; Feys, Hilde; Wenderoth, Nicole

    2016-01-01

    Children with unilateral cerebral palsy (CP) typically present with largely divergent upper limb sensorimotor deficits and individual differences in response to upper limb rehabilitation. This review summarizes how early brain damage can cause dramatic deviations from the normal anatomy of sensory and motor tracts, resulting in unique “wiring patterns” of the sensorimotor system in CP. Based on the existing literature, we suggest that corticospinal tract (CST) anatomy and integrity constrains sensorimotor function of the upper limb and potentially also the response to treatment. However, it is not possible to infer CST (re)organization from clinical presentation alone and conventional biomarkers, such as time of insult, location, and lesion extent seem to have limited clinical utility. Here, we propose a theoretical framework based on a detailed examination of the motor system using behavioral, neurophysiological, and magnetic resonance imaging measures, akin to those used to predict potential for upper limb recovery of adults after stroke. This theoretical framework might prove useful because it provides testable hypotheses for future research with the goal to develop and validate a clinical assessment flowchart to categorize children with unilateral CP. PMID:26779464

  15. Sirenomelia with upper limb malformation: a case report and review of the literature.

    PubMed

    Su, D; Yao, Q

    2015-01-01

    Sirenomelia sequence is a rare lethal pattern of congenital anomalies characterized by fusion of the legs and a variable combination of visceral abnormalities. Some cases accompanied with rare malformations have been reported. In this article, the authors report a case of sirenomelia with upper limb malformations and a review of the literature. PMID:26411229

  16. A novel motion tracking system for evaluation of functional rehabilitation of the upper limbs.

    PubMed

    Gil-Agudo, Angel; de Los Reyes-Guzmn, Ana; Dimbwadyo-Terrer, Iris; Peasco-Martn, Benito; Bernal-Sahn, Alberto; Lpez-Monteagudo, Patricia; Del Ama-Espinosa, Antonio; Pons, Jos Luis

    2013-07-01

    Upper limb function impairment is one of the most common sequelae of central nervous system injury, especially in stroke patients and when spinal cord injury produces tetraplegia. Conventional assessment methods cannot provide objective evaluation of patient performance and the tiveness of therapies. The most common assessment tools are based on rating scales, which are inefficient when measuring small changes and can yield subjective bias. In this study, we designed an inertial sensor-based monitoring system composed of five sensors to measure and analyze the complex movements of the upper limbs, which are common in activities of daily living. We developed a kinematic model with nine degrees of freedom to analyze upper limb and head movements in three dimensions. This system was then validated using a commercial optoelectronic system. These findings suggest that an inertial sensor-based motion tracking system can be used in patients who have upper limb impairment through data integration with a virtual reality-based neuroretation system. PMID:25206474

  17. Estimation of sex from the upper limb measurements of Sudanese adults.

    PubMed

    Ahmed, Altayeb Abdalla

    2013-11-01

    Sex estimation is the first biological attribute needed for personal identification from mutilated and amputated limbs or body parts in medical-legal autopsies. Populations have different sizes and proportions that affect the anthropometric assessment of sex. Relatively few published works assess the accuracy of sex estimation from soft tissue measurements of upper limb parts, except for the hand and its components, but these studies involve a limited range of global populations. The current study aimed to assess the degree of sexual dimorphism in upper limb measurements and the accuracy of using these measurements for sex estimation in a contemporary adult Sudanese population. The upper arm length, ulnar length, wrist breadth, hand length, and hand breadth of 240 right-handed Sudanese subjects (120 males and 120 females) aged between 25 and 30 years were measured by international anthropometric standards. Demarking points, sexual dimorphism indices and discriminant functions were developed from 200 subjects (100 males and 100 females) who composed the study group. All variables were sexually dimorphic. The ulnar length, wrist breadth and hand breadth significantly contributed to sex estimation. Forearm dimensions showed a higher accuracy for sex estimation than hand dimensions. Cross-validated sex classification accuracy ranged between 78.5% and 89.5%. The reliability of these standards was assessed in a test sample of 20 males and 20 females, and the results showed accuracy between 77.5% and 90%. This study provides new forensic standards for sex estimation from upper limb measurements of Sudanese adults. PMID:24237816

  18. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    PubMed Central

    Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette

    2016-01-01

    Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well. PMID:26843992

  19. Intra-arterial Autologous Bone Marrow Cell Transplantation in a Patient with Upper-extremity Critical Limb Ischemia

    SciTech Connect

    Madaric, Juraj; Klepanec, Andrej; Mistrik, Martin; Altaner, Cestmir; Vulev, Ivan

    2013-04-15

    Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.

  20. Proposed equation between flexor carpi radialis H-reflex latency and upper limb length

    PubMed Central

    Khosrawi, Saeid; Taheri, Parisa; Hashemi, Seyed Hasan

    2015-01-01

    Background: H-reflex is a valuable electrophysiological technique for assessing nerve conduction through entire length of afferent and efferent pathways, especially nerve roots and proximal segments of peripheral nerves. The aim of this study was to investigate the relation between normal values of flexor carpi radialis (FCR) H-reflex latency, upper limb length and age in normal subjects, and to determine whether there is any regression equation between them. Methods: By considering the criteria of inclusion and exclusion, 120 upper limbs of 69 normal volunteers (68 hands of 39 men and 52 hands of 30 women) with the mean age of 39.8 11.2 years participated in this study. FCR H-reflex was obtained by standard electrodiagnostic techniques, and its onset latency was recorded. Upper limb length and arm length were measured in defined position. The degree of association between these variables was determined with Pearson correlation and linear regression was used for obtaining the proposed relations. Results: Mean FCR H-reflex latency was found to be 15.88 1.27 ms. There was a direct linear correlation between FCR H-reflex latency and upper limb length (r = 0.647) and also arm length (r = 0.574), but there was no significant correlation between age and FCR H-reflex latency (P = 0.260). Finally, based on our findings, we tried to formulate these relations by statistical methods. Conclusion: We found that upper limb length and arm length are good predictive values for estimation of normal FCR H-reflex latency but age, in the range of 20-60 years old, has no correlation with its latency. This estimation could have practical indications in pathologic conditions. PMID:25874056

  1. Modeling the Step-like Response in the Upper Limbs of Hemiplegic Subjects for Evaluation of Spasticity

    NASA Astrophysics Data System (ADS)

    Uchiyama, Takanori; Uchida, Ryusei

    The purpose of this study is to develop a new modeling technique for quantitative evaluation of spasticity in the upper limbs of hemiplegic patients. Each subject lay on a bed, and his forearm was supported with a jig to measure the elbow joint angle. The subject was instructed to relax and not to resist the step-like load which was applied to extend the elbow joint. The elbow joint angle and electromyogram (EMG) of the biceps muscle, triceps muscle and brachioradialis muscle were measured. First, the step-like response was approximated with a proposed mathematical model based on musculoskeletal and physiological characteristics by the least square method. The proposed model involved an elastic component depending on both muscle activities and elbow joint angle. The responses were approximated well with the proposed model. Next, the torque generated by the elastic component was estimated. The normalized elastic torque was approximated with a dumped sinusoid by the least square method. The reciprocal of the time constant and the natural frequency of the normalized elastic torque were calculated and they varied depending on the grades of the modified Ashworth scale of the subjects. It was suggested that the proposed modeling technique would provide a good quantitative index of spasticity as shown in the relationship between the reciprocal of the time constant and the natural frequency.

  2. Timing Training in Three Children with Diplegic Cerebral Palsy: Short- and Long-Term Effects on Upper-Limb Movement Organization and Functioning

    PubMed Central

    Johansson, Anna-Maria; Domellf, Erik; Rnnqvist, Louise

    2014-01-01

    Despite the great need of interventions to maintain and improve motor functions in children with diplegic cerebral palsy (DCP), scientific evaluations of existing training methods are rare. This study aimed to explore individual effects of synchronized metronome training (SMT) on motor timing, spatio-temporal movement organization, and subjective experiences of changes in upper-limb functions in three children with DCP. All children participated in an individualized 4-week/12 session SMT training regime. Measurements before training (Pre), after training (Post1), and at 6?months post completed training (Post2) were made by the applied SMT training equipment, optoelectronic registrations of goal-directed upper-limb movements, and a questionnaire assessing subjective experiences of changes in upper-limb functions and usability. In general, the training regime was shown to have little effect on motor timing. However, some positive changes in spatio-temporal movement organization were found. Two children also reported substantial long-lasting positive changes in subjective experiences of hand/arm functionality in terms of increased movement control and reduced muscle tone. For these children, parallel kinematic findings also indicated smoother and faster movement trajectories that remained at Post2. Although highly individualized, the shown improvements in upper-limb kinematics and subjective experiences of improved functionality of the hands/arms for two of the cases warrant further explorations of SMT outcomes in children with DCP. PMID:24744747

  3. Age Effects on Upper Limb Kinematics Assessed by the REAplan Robot in Healthy School-Aged Children.

    PubMed

    Gilliaux, Maxime; Dierckx, Floriane; Vanden Berghe, Lola; Lejeune, Thierry M; Sapin, Julien; Dehez, Bruno; Stoquart, Gatan; Detrembleur, Christine

    2015-05-01

    The use of kinematics is recommended to quantitatively evaluate upper limb movements. The aims of this study were to determine the age effects on upper limb kinematics and establish norms in healthy children. Ninety-three healthy children, aged 3-12years, participated in this study. Twenty-eight kinematic indices were computed from four tasks. Each task was performed with the REAplan, a distal effector robotic device that allows upper limb displacements in the horizontal plane. Twenty-four of the 28 indices showed an improvement during childhood. Indeed, older children showed better upper limb movements. This study was the first to use a robotic device to show the age effects on upper limb kinematics and establish norms in healthy children. PMID:25413362

  4. Reconstruction of blast injuries of the hand and upper limb.

    PubMed

    Bakhach, Joseph; Abu-Sitta, Ghassan; Dibo, Saad

    2013-03-01

    Over recent years, hand surgeons in the Middle East and Arabic region have particularly had to deal with an increasing number of war blast injuries to the upper extremity, in the acute, subacute and chronic phases. Many have been referred from War Zone countries such as Iraq and, more recently, Syria, where the resources to treat such complex injuries are scarce. The present article is a comprehensive review of the basic principles of management of blast injuries based on the available literature merged with the authors' personal experience of these injuries. The state of the art in treatment of blast injuries to the hand, from ammunition physics and wound ballistics to radiological investigation and, ultimately, the principles of surgical management are discussed. PMID:23357578

  5. Upper Limb Biomechanics During the Volleyball Serve and Spike

    PubMed Central

    Reeser, Jonathan C.; Fleisig, Glenn S.; Bolt, Becky; Ruan, Mianfang

    2010-01-01

    Background: The shoulder is the third-most commonly injured body part in volleyball, with the majority of shoulder problems resulting from chronic overuse. Hypothesis: Significant kinetic differences exist among specific types of volleyball serves and spikes. Study Design: Controlled laboratory study. Methods: Fourteen healthy female collegiate volleyball players performed 5 successful trials of 4 skills: 2 directional spikes, an off-speed roll shot, and the float serve. Volunteers who were competent in jump serves (n, 5) performed 5 trials of that skill. A 240-Hz 3-dimensional automatic digitizing system captured each trial. Multivariate analysis of variance and post hoc paired t tests were used to compare kinetic parameters for the shoulder and elbow across all the skills (except the jump serve). A similar statistical analysis was performed for upper extremity kinematics. Results: Forces, torques, and angular velocities at the shoulder and elbow were lowest for the roll shot and second-lowest for the float serve. No differences were detected between the cross-body and straight-ahead spikes. Although there was an insufficient number of participants to statistically analyze the jump serve, the data for it appear similar to those of the cross-body and straight-ahead spikes. Shoulder abduction at the instant of ball contact was approximately 130° for all skills, which is substantially greater than that previously reported for female athletes performing tennis serves or baseball pitches. Conclusion: Because shoulder kinetics were greatest during spiking, the volleyball player with symptoms of shoulder overuse may wish to reduce the number of repetitions performed during practice. Limiting the number of jump serves may also reduce the athlete’s risk of overuse-related shoulder dysfunction. Clinical Relevance: Volleyball-specific overhead skills, such as the spike and serve, produce considerable upper extremity force and torque, which may contribute to the risk of shoulder injury. PMID:23015961

  6. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial

    PubMed Central

    Dimbwadyo-Terrer, I.; Gil-Agudo, A.; Segura-Fragoso, A.; de los Reyes-Guzmán, A.; Trincado-Alonso, F.; Piazza, S.; Polonio-López, B.

    2016-01-01

    The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra® virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η2 = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35. PMID:26885511

  7. Biomedical research on the International Space Station postural and manipulation problems of the human upper limb in weightlessness

    NASA Astrophysics Data System (ADS)

    Neri, Gianluca; Zolesi, Valfredo

    2000-01-01

    Accumulated evidence, based on information gathered on space flight missions and ground based models involving both humans and animals, clearly suggests that exposure to states of microgravity conditions for varying duration induces certain physiological changes; they involve cardiovascular deconditioning, balance disorders, bone weakening, muscle hypertrophy, disturbed sleep patterns and depressed immune responses. The effects of the microgravity on the astronauts' movement and attitude have been studied during different space missions, increasing the knowledge of the human physiology in weightlessness. The purpose of the research addressed in the present paper is to understand and to assess the performances of the upper limb, especially during grasp. Objects of the research are the physiological changes related to the long-term duration spaceflight environment. Specifically, the changes concerning the upper limb are investigated, with particular regard to the performances of the hand in zero-g environments. This research presents also effects on the Earth, improving the studies on a number of pathological states, on the health care and the rehabilitation. In this perspective, a set of experiments are proposed, aimed at the evaluation of the effects of the zero-g environments on neurophysiology of grasping movements, fatigue assessment, precision grip. .

  8. Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial.

    PubMed

    Dimbwadyo-Terrer, I; Gil-Agudo, A; Segura-Fragoso, A; de Los Reyes-Guzmn, A; Trincado-Alonso, F; Piazza, S; Polonio-Lpez, B

    2016-01-01

    The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients' satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra() virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial ? (2) = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35. PMID:26885511

  9. A Neuroanatomical Framework for Upper Limb Synergies after Stroke

    PubMed Central

    McMorland, Angus J. C.; Runnalls, Keith D.; Byblow, Winston D.

    2015-01-01

    Muscle synergies describe common patterns of co- or reciprocal activation that occur during movement. After stroke, these synergies change, often in stereotypical ways. The mechanism underlying this change reflects damage to key motor pathways as a result of the stroke lesion, and the subsequent reorganization along the neuroaxis, which may be further detrimental or restorative to motor function. The time course of abnormal synergy formation seems to lag spontaneous recovery that occurs in the initial weeks after stroke. In healthy individuals, motor cortical activity, descending via the corticospinal tract (CST) is the predominant driver of voluntary behavior. When the CST is damaged after stroke, other descending pathways may be up-regulated to compensate. The contribution of these pathways may emerge as new synergies take shape at the chronic stage after stroke, as a result of plasticity along the neuroaxis. The location of the stroke lesion and properties of the secondary descending pathways and their regulation are then critical for shaping the synergies in the remaining motor behavior. A consideration of the integrity of remaining descending motor pathways may aid in the design of new rehabilitation therapies. PMID:25762917

  10. A novel upper limb rehabilitation system with self-driven virtual arm illusion.

    PubMed

    Aung, Yee Mon; Al-Jumaily, Adel; Anam, Khairul

    2014-01-01

    This paper proposes a novel upper extremity rehabilitation system with virtual arm illusion. It aims for fast recovery from lost functions of the upper limb as a result of stroke to provide a novel rehabilitation system for paralyzed patients. The system is integrated with a number of technologies that include Augmented Reality (AR) technology to develop game like exercise, computer vision technology to create the illusion scene, 3D modeling and model simulation, and signal processing to detect user intention via EMG signal. The effectiveness of the developed system has evaluated via usability study and questionnaires which is represented by graphical and analytical methods. The evaluation provides with positive results and this indicates the developed system has potential as an effective rehabilitation system for upper limb impairment. PMID:25570773

  11. Major ozonated autohemotherapy promotes the recovery of upper limb motor function in patients with acute cerebral infarction?

    PubMed Central

    Wu, Xiaona; Li, Zhensheng; Liu, Xiaoyan; Peng, Haiyan; Huang, Yongjun; Luo, Gaoquan; Peng, Kairun

    2013-01-01

    Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs. In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarction, and assessed outcomes according to the U.S. National Institutes of Health Stroke Score, Modified Rankin Scale, and transcranial magnetic stimulation motor-evoked potential. Compared with the control group, the clinical total effective rate and the cortical potential rise rate of the upper limbs were significantly higher, the central motor conduction time of upper limb was significantly shorter, and the upper limb motor-evoked potential amplitude was significantly increased, in the ozone group. In the ozone group, the National Institutes of Health Stroke Score was positively correlated with the central motor conduction time and the motor-evoked potential amplitude of the upper limb. Central motor conduction time and motor-evoked potential amplitude of the upper limb may be effective indicators of motor-evoked potentials to assess upper limb motor function in cerebral infarct patients. Furthermore, major ozonated autohemotherapy may promote motor function recovery of the upper limb in patients with acute cerebral infarction. PMID:25206688

  12. Salutary Effects of Cepharanthine against Skeletal Muscle and Kidney Injuries following Limb Ischemia/Reperfusion

    PubMed Central

    Kao, Ming-Chang; Chung, Chih-Yang; Chang, Ya-Ying; Lin, Chih-Kung; Sheu, Joen-Rong; Huang, Chun-Jen

    2015-01-01

    Limb ischemia/reperfusion (I/R) causes oxidation and inflammation and subsequently induces muscle and kidney injuries. Cepharanthine, a natural plant alkaloid, possesses anti-inflammatory and antioxidative properties. We elucidated the salutary effects of cepharanthine against muscle and kidney injuries following limb I/R. Adult male rats were randomized to receive I/R or I/R plus cepharanthine. I/R was achieved by applying tourniquet high around each thigh for 3 hours followed by reperfusion for 24 hours. Cepharanthine (10 mg/kg, intraperitoneal) was injected immediately before reperfusion. After euthanization, degrees of tissue injury, inflammation, and oxidation were examined. Our data revealed that the I/R group had significant increases in injury biomarker concentrations of muscle (creatine kinase and lactate dehydrogenase) and kidney (creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1). Histological assays revealed moderate muscle and kidney injury characteristics in the I/R group. The I/R group also had significant increases in concentrations of inflammatory molecules (interleukin-6, macrophage inflammatory protein-2, and prostaglandin E2) and reactive nitrogen species (nitric oxide) as well as lipid peroxidation (malondialdehyde). Of note, these effects of limb I/R could be mitigated by cepharanthine. These data confirmed that cepharanthine attenuated muscle and kidney injuries induced by limb I/R. The mechanisms may involve its anti-inflammatory and antioxidative capacities. PMID:26587045

  13. Normative Data for an Instrumental Assessment of the Upper-Limb Functionality

    PubMed Central

    Caimmi, Marco; Guanziroli, Eleonora; Malosio, Matteo; Pedrocchi, Nicola; Vicentini, Federico; Molinari Tosatti, Lorenzo; Molteni, Franco

    2015-01-01

    Upper-limb movement analysis is important to monitor objectively rehabilitation interventions, contributing to improving the overall treatments outcomes. Simple, fast, easy-to-use, and applicable methods are required to allow routinely functional evaluation of patients with different pathologies and clinical conditions. This paper describes the Reaching and Hand-to-Mouth Evaluation Method, a fast procedure to assess the upper-limb motor control and functional ability, providing a set of normative data from 42 healthy subjects of different ages, evaluated for both the dominant and the nondominant limb motor performance. Sixteen of them were reevaluated after two weeks to perform test-retest reliability analysis. Data were clustered into three subgroups of different ages to test the method sensitivity to motor control differences. Experimental data show notable test-retest reliability in all tasks. Data from older and younger subjects show significant differences in the measures related to the ability for coordination thus showing the high sensitivity of the method to motor control differences. The presented method, provided with control data from healthy subjects, appears to be a suitable and reliable tool for the upper-limb functional assessment in the clinical environment. PMID:26539500

  14. Pax3 modulates expression of the c-Met receptor during limb muscle development.

    PubMed Central

    Epstein, J A; Shapiro, D N; Cheng, J; Lam, P Y; Maas, R L

    1996-01-01

    Pax3 is a transcription factor whose expression has been used as a marker of myogenic precursor cells arising in the lateral somite destined to migrate to and populate the limb musculature. Accruing evidence indicates that the embryologic origins of axial and appendicular muscles are distinct, and limb muscle abnormalities in both mice and humans harboring Pax3 mutations support this distinction. The mechanisms by which Pax3 affects limb muscle development are unknown. The tyrosine kinase receptor for hepatocyte growth factor/scatter factor encoded by the c-met protooncogene is also expressed in limb muscle progenitors and, like Pax-3, is required in the mouse for limb muscle development. Here, we show that c-met expression is markedly reduced in the lateral dermomyotome of Splotch embryos lacking Pax3. We show that Pax3 can stimulate c-met expression in cultured cells, and we identify a potential Pax3 binding site in the human c-MET promoter that may contribute to direct transcriptional regulation. In addition, we have found that several cell lines derived from patients with rhabdomyosarcomas caused by a t(2;13) chromosomal translocation activating PAX3 express c-MET, whereas those rhabdomyosarcoma cell lines examined without the translocation do not. These results are consistent with a model in which Pax3 modulates c-met expression in the lateral dermomyotome, a function that is required for the appropriate migration of these myogenic precursors to the limb where the ligand for c-met (hepatocyte growth factor/scatter factor) is expressed at high levels. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8633043

  15. Magnitude of forward trunk flexion influences upper limb muscular efforts and dynamic postural stability requirements during sitting pivot transfers in individuals with spinal cord injury.

    PubMed

    Desroches, Guillaume; Gagnon, Dany; Nadeau, Sylvie; Popovic, Milos

    2013-12-01

    The purpose of this study was to investigate the effects of imposing different degrees of forward trunk flexion during sitting pivot transfers on electromyographic activity at the leading and trailing upper limb muscles and on dynamic stability requirements. Thirty-two individuals with a spinal cord injury performed three types of sitting pivot transfers: natural technique, exaggerated forward trunk flexion and upright trunk position. Ground reaction forces, trunk kinematics, and bilateral electromyographic activity of eight upper limb muscles were recorded. Electromyographic data were analyzed using the area under the curve of the muscular utilization ratio. Dynamic stability requirements of sitting pivot transfers were assess using a dynamic equilibrium model. Compared to the natural strategy, significantly greater muscle activities were found for the forward trunk flexion condition at the anterior deltoid and both heads of the pectorialis major, whereas the upright trunk strategy yielded greater muscle activity at the latissimus dorsii and the triceps. The forward flexed condition was found to be more dynamically stable, with a lower stabilizing force, increased area of base of support and greater distance traveled. Thus, transferring with a more forward trunk inclination, even though it increases work of few muscles, may be a beneficial trade-off because increased dynamic stability of this technique and versatility in terms of potential distance of the transfer. PMID:24094473

  16. Bioelectrical activity of limb muscles during cold shivering of stimulation of the vestibular apparatus

    NASA Technical Reports Server (NTRS)

    Kuzmina, G. I.

    1980-01-01

    The effects of caloric and electric stimulation of the vestibular receptors on the EMG activity of limb muslces in anesthetized cats during cold induced shivering involved flexor muscles alone. Both types of stimulation suppressed bioelectrical activity more effectively in the ipsilateral muscles. The suppression of shivering activity seems to be due to the increased inhibitory effect of descending labyrinth pathways on the function of flexor motoneurons.

  17. The Muscle Machine and Upper Body Strength.

    ERIC Educational Resources Information Center

    English, Agnes

    1989-01-01

    This article describes successful efforts by physical education teachers at Elberton Elementary School (GA) to construct an affordable pull-up board that could be used to help improve students' arm and upper body strength. An explanation is given of how to use the machine, and the benefits to students are briefly discussed. (IAH)

  18. Electromyographic analysis of lower limb muscles during the golf swing performed with three different clubs.

    PubMed

    Marta, Sérgio; Silva, Luís; Vaz, João Rocha; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-04-01

    The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70-76% and 68-73% EMGMAX, respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club. PMID:26197882

  19. Reliable protocol for shear wave elastography of lower limb muscles at rest and during passive stretching.

    PubMed

    Dubois, Guillaume; Kheireddine, Walid; Vergari, Claudio; Bonneau, Dominique; Thoreux, Patricia; Rouch, Philippe; Tanter, Mickael; Gennisson, Jean-Luc; Skalli, Wafa

    2015-09-01

    Development of shear wave elastography gave access to non-invasive muscle stiffness assessment invivo. The aim of the present study was to define a measurement protocol to be used in clinical routine for quantifying the shear modulus of lower limb muscles. Four positions were defined to evaluate shear modulus in 10 healthy subjects: parallel to the fibers, in the anterior and posterior aspects of the lower limb, at rest and during passive stretching. Reliability was first evaluated on two muscles by three operators; these measurements were repeated six times. Then, measurement reliability was compared in 11 muscles by two operators; these measurements were repeated three times. Reproducibility of shear modulus was 0.48 kPa and repeatability was 0.41 kPa, with all muscles pooled. Position did not significantly influence reliability. Shear wave elastography appeared to be an appropriate and reliable tool to evaluate the shear modulus of lower limb muscles with the proposed protocol. PMID:26129731

  20. Ultrasound guided distal peripheral nerve block of the upper limb: A technical review

    PubMed Central

    Sehmbi, Herman; Madjdpour, Caveh; Shah, Ushma Jitendra; Chin, Ki Jinn

    2015-01-01

    Upper extremity surgery is commonly performed under regional anesthesia. The advent of ultrasonography has made performing upper extremity nerve blocks relatively easy with a high degree of reliability. The proximal approaches to brachial plexus block such as supraclavicular plexus block, infraclavicular plexus block, or the axillary block are favored for the most surgical procedures of distal upper extremity. Ultrasound guidance has however made distal nerve blocks of the upper limb a technically feasible, safe and efficacious option. In recent years, there has thus been a resurgence of distal peripheral nerve blocks to facilitate hand and wrist surgery. In this article, we review the technical aspects of performing the distal blocks of the upper extremity and highlight some of the clinical aspects of their usage. PMID:26330706

  1. Impact of movement training on upper limb motor strategies in persons with shoulder impingement syndrome

    PubMed Central

    Roy, Jean-Sbastien; Moffet, Hlne; McFadyen, Bradford J; Lirette, Richard

    2009-01-01

    Background Movement deficits, such as changes in the magnitude of scapulohumeral and scapulathoracic muscle activations or perturbations in the kinematics of the glenohumeral, sternoclavicular and scapulothoracic joints, have been observed in people with shoulder impingement syndrome. Movement training has been suggested as a mean to contribute to the improvement of the motor performance in persons with musculoskeletal impairments. However, the impact of movement training on the movement deficits of persons with shoulder impingement syndrome is still unknown. The aim of this study was to evaluate the short-term effects of supervised movement training with feedback on the motor strategies of persons with shoulder impingement syndrome. Methods Thirty-three subjects with shoulder impingement were recruited. They were involved in two visits, one day apart. During the first visit, supervised movement training with feedback was performed. The upper limb motor strategies were evaluated before, during, immediately after and 24 hours after movement training. They were characterized during reaching movements in the frontal plane by EMG activity of seven shoulder muscles and total excursion and final position of the wrist, elbow, shoulder, clavicle and trunk. Movement training consisted of reaching movements performed under the supervision of a physiotherapist who gave feedback aimed at restoring shoulder movements. One-way repeated measures ANOVAs were run to analyze the effect of movement training. Results During, immediately after and 24 hours after movement training with feedback, the EMG activity was significantly decreased compared to the baseline level. For the kinematics, total joint excursion of the trunk and final joint position of the trunk, shoulder and clavicle were significantly improved during and immediately after training compared to baseline. Twenty-four hours after supervised movement training, the kinematics of trunk, shoulder and clavicle were back to the baseline level. Conclusion Movement training with feedback brought changes in motor strategies and improved temporarily some aspects of the kinematics. However, one training session was not enough to bring permanent improvement in the kinematic patterns. These results demonstrate the potential of movement training in the rehabilitation of movement deficits associated with shoulder impingement syndrome. PMID:19445724

  2. Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement.

    PubMed

    Guo, Shuxiang; Pang, Muye; Gao, Baofeng; Hirata, Hideyuki; Ishihara, Hidenori

    2015-01-01

    The surface electromyography (sEMG) technique is proposed for muscle activation detection and intuitive control of prostheses or robot arms. Motion recognition is widely used to map sEMG signals to the target motions. One of the main factors preventing the implementation of this kind of method for real-time applications is the unsatisfactory motion recognition rate and time consumption. The purpose of this paper is to compare eight combinations of four feature extraction methods (Root Mean Square (RMS), Detrended Fluctuation Analysis (DFA), Weight Peaks (WP), and Muscular Model (MM)) and two classifiers (Neural Networks (NN) and Support Vector Machine (SVM)), for the task of mapping sEMG signals to eight upper-limb motions, to find out the relation between these methods and propose a proper combination to solve this issue. Seven subjects participated in the experiment and six muscles of the upper-limb were selected to record sEMG signals. The experimental results showed that NN classifier obtained the highest recognition accuracy rate (88.7%) during the training process while SVM performed better in real-time experiments (85.9%). For time consumption, SVM took less time than NN during the training process but needed more time for real-time computation. Among the four feature extraction methods, WP had the highest recognition rate for the training process (97.7%) while MM performed the best during real-time tests (94.3%). The combination of MM and NN is recommended for strict real-time applications while a combination of MM and SVM will be more suitable when time consumption is not a key requirement. PMID:25894941

  3. Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement

    PubMed Central

    Guo, Shuxiang; Pang, Muye; Gao, Baofeng; Hirata, Hideyuki; Ishihara, Hidenori

    2015-01-01

    The surface electromyography (sEMG) technique is proposed for muscle activation detection and intuitive control of prostheses or robot arms. Motion recognition is widely used to map sEMG signals to the target motions. One of the main factors preventing the implementation of this kind of method for real-time applications is the unsatisfactory motion recognition rate and time consumption. The purpose of this paper is to compare eight combinations of four feature extraction methods (Root Mean Square (RMS), Detrended Fluctuation Analysis (DFA), Weight Peaks (WP), and Muscular Model (MM)) and two classifiers (Neural Networks (NN) and Support Vector Machine (SVM)), for the task of mapping sEMG signals to eight upper-limb motions, to find out the relation between these methods and propose a proper combination to solve this issue. Seven subjects participated in the experiment and six muscles of the upper-limb were selected to record sEMG signals. The experimental results showed that NN classifier obtained the highest recognition accuracy rate (88.7%) during the training process while SVM performed better in real-time experiments (85.9%). For time consumption, SVM took less time than NN during the training process but needed more time for real-time computation. Among the four feature extraction methods, WP had the highest recognition rate for the training process (97.7%) while MM performed the best during real-time tests (94.3%). The combination of MM and NN is recommended for strict real-time applications while a combination of MM and SVM will be more suitable when time consumption is not a key requirement. PMID:25894941

  4. Epaxial and limb muscle activity during swimming and terrestrial stepping in the adult newt, Pleurodeles waltl.

    PubMed

    Delvolv, I; Bem, T; Cabelguen, J M

    1997-08-01

    We have investigated the patterns of activation of epaxial musculature during both swimming and overground stepping in an adult newt (Pleurodeles waltl) with the use of electromyographic (EMG) recordings from different sites of the myomeric muscle dorsalis trunci along the body axis. The locomotor patterns of some limb muscles have also been investigated. During swimming, the epaxial myomeres are rhythmically active, with a strict alternation between opposite myomeres located at the same longitudinal site. The pattern of intersegmental coordination consists of three successively initiated waves of EMG activity passing posteriorly along the anterior trunk, the midtrunk, and the posterior trunk, respectively. Swimming is also characterized by a tonic activation of forelimb (dorsalis scapulae and extensor ulnae) and hindlimb (puboischiotibialis and puboischiofemoralis internus) muscles and a rhythmic activation of muscles (latissimus dorsi and caudofemoralis) acting both on limb and body axis. The latter matched the activation pattern of epaxial myomeres at the similar vertebral level. During overground stepping, the midtrunk myomeres express single synchronous bursts whereas the myomeres of the anterior trunk and those of the posterior trunk display a double bursting pattern in the form of two waves of EMG activity propagating in opposite directions. During overground stepping, the limb muscles and muscles acting on both limb and body axis were found to be rhythmically active and usually displayed a double bursting pattern. The main conclusion of this investigation is that the patterns of intersegmental coordination during both swimming and overground stepping in the adult newt are related to the presence of limbs and that they can be considered as hybrid lampreylike patterns. Thus it is hypothesized that, in newt, a chain of coupled segmental oscillatory networks, similar to that which constitutes the central pattern generator (CPG) for swimming in the lamprey, can account for both trunk motor patterns if it is influenced by limb CPGs in a way depending on the locomotor mode. During swimming, the segmental networks located close to the girdles receive extra tonic excitation coming from the limb CPGs, whereas during stepping, the axial CPGs are entrained to some extent by the limb oscillators. PMID:9307101

  5. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults.

    PubMed

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (aged 21.871.13?years, body mass index 24.15 0.50?kg/m(2)) were recruited. All subjects performed an exercise program on a Wii balance board for 8 weeks (30?min/session, twice a week for 8 weeks). A NeuroCom Balance Master and a hand-held dynamometer were used to measure balance performance and lower limb muscle strength. [Results] According to the comparison of pre- and post-intervention measurements, the Wii balance board exercise program significantly improved the limit of stability parameters. There was also a significant increase in strength of four lower-limb muscle groups: the hip flexor, knee flexor, ankle dorsiflexor and ankle plantarflexor. [Conclusion] These findings suggest that a Wii balance board exercise program can be used to improve the balance and lower limb muscle strength of overweight young adults. PMID:25642034

  6. [The individual muscles of the shoulder limb of Pudu pudu (Molina 1782)].

    PubMed

    Wissdorf, H; Butendieck, E

    1988-01-01

    The present study gives a topographic description of the muscles of the thoracic limb of Pudu pudu (Molina 1782). This description is intended as basis for surgery, but is also to be rated as a morphological study. The results are therefore discussed together with findings in Dama dama, Capreolus capreolus, Ovis aries, Capra hircus, and also with findings in cattle and pigs. PMID:3224788

  7. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults

    PubMed Central

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (aged 21.871.13?years, body mass index 24.15 0.50?kg/m2) were recruited. All subjects performed an exercise program on a Wii balance board for 8 weeks (30?min/session, twice a week for 8 weeks). A NeuroCom Balance Master and a hand-held dynamometer were used to measure balance performance and lower limb muscle strength. [Results] According to the comparison of pre- and post-intervention measurements, the Wii balance board exercise program significantly improved the limit of stability parameters. There was also a significant increase in strength of four lower-limb muscle groups: the hip flexor, knee flexor, ankle dorsiflexor and ankle plantarflexor. [Conclusion] These findings suggest that a Wii balance board exercise program can be used to improve the balance and lower limb muscle strength of overweight young adults. PMID:25642034

  8. Selective impairment of sensorimotor representations following short-term upper-limb immobilization.

    PubMed

    Meugnot, Aurore; Agbangla, Nounagnon Frutueux; Toussaint, Lucette

    2016-09-01

    In the present experiment, we examined whether short-term upper-limb immobilization would selectively affect the representation of the immobilized limb (using a hand laterality task) or whether the effect of immobilization would extend to another body part (using a foot laterality task). A rigid splint placed on the participants' left hand was used for immobilization. A control group did not undergo the immobilization procedure. We compared the participants' performances on the hand and foot laterality tasks before (T1) and after (T2) a 48-hour delay, corresponding to the immobilization period. For controls, response time analysis indicated a benefit of task repetition for the recognition of both hand and foot images. For the immobilized group, a slowdown of performance appeared in T2 for hand images, but not for foot images. The reduced benefit of task repetition following left-hand immobilization appeared for both the immobilized and non-immobilized hand images. These findings revealed that the general cognitive representation of upper-limb movements is affected by the decrease in input/output signal processing due to the left-hand immobilization, while the cognitive representation of lower-limb movements is not. PMID:26642973

  9. Three-dimensional dynamical measurement of upper limb support during paraplegic walking.

    PubMed

    Hu, Y; Ming, D; Wang, Y Z; Wong, Y W; Wan, B K; Luk, K D K; Leong, J C Y

    2004-01-01

    Functional electrical stimulation (FES) has been employed in paraplegic rehabilitation to resume their walking ability. However, there is less quantitative assessment method of FES walking efficiency and rehabilitation progress. This paper presents a new dynamical measurement of upper limb support force during paraplegic walking, which can be used to calculate the 3-D handle reaction vector (HRV). HRV may provide an assessment of FES-assisted efficiency. With a series of tests, the measurement accuracy, nonlinearity, and crosstalk of the designed system are testified. The force measurement error is found below 1.01%, while nonlinearity and crosstalk are less than 2.90%, and 3.19%, respectively. This means that the implemented walker system is reliable for the measurement of HRV during FES-assisted walking. A clinical trial is performed with a paraplegic subject. With the monitoring of FES-assisted walking, the downward component of HRV is found to decrease, implying the decreasing force generated from lower limb. The decrease slope in downward load curve can indirectly indicate the FES efficiency change during walking. The experiment and clinical trial results show that a 3-D dynamical measurement system is successfully accomplished to indirectly assess FES efficiency of lower limbs using quantitated forces applied by the upper limbs of paraplegic patients. PMID:17271422

  10. Comparison of laterality index of upper and lower limb movement using brain activated fMRI

    NASA Astrophysics Data System (ADS)

    Harirchian, Mohammad Hossein; Oghabian, Mohammad Ali; Rezvanizadeh, Alireza; Bolandzadeh, Niousha

    2008-03-01

    Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions such as motor functions. This asymmetry maybe altered in some clinical conditions such as Multiple Sclerosis (MS). The aim of this study was to delineate the laterality differences for upper and lower limbs in healthy subjects to compare this pattern with subjects suffering from MS in advance. Hence 9 Male healthy subjects underwent fMRI assessment, while they were asked to move their limbs in a predetermined pattern. The results showed that hands movement activates the brain with a significant lateralization in pre-motor cortex in comparison with lower limb. Also, dominant hands activate brain more lateralized than the non-dominant hand. In addition, Left basal ganglia were observed to be activated regardless of the hand used, While, These patterns of Brain activation was not detected in lower limbs. We hypothesize that this difference might be attributed to this point that hand is usually responsible for precise and fine voluntary movements, whereas lower limb joints are mainly responsible for locomotion, a function integrating voluntary and automatic bilateral movements.

  11. Development of rehabilitation training support system for occupational therapy of upper limb motor function

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Hirose, Akinori; Uno, Takashi; Uchid, Masaki; Ukai, Hiroyuki; Matsui, Nobuyuki

    2007-12-01

    In this paper we propose a new rehabilitation training support system for upper limbs. The proposed system enables therapists to quantitatively evaluate the therapeutic effect of upper limb motor function during training, to easily change the load of resistance of training and to easily develop a new training program suitable for the subjects. For this purpose we develop control algorithms of training programs in the 3D force display robot. The 3D force display robot has parallel link mechanism with three motors. The control algorithm simulating sanding training is developed for the 3D force display robot. Moreover the teaching/training function algorithm is developed. It enables the therapists to easily make training trajectory suitable for subject's condition. The effectiveness of the developed control algorithms is verified by experiments.

  12. Proprioceptive Rehabilitation of Upper Limb Dysfunction in Movement Disorders: A Clinical Perspective

    PubMed Central

    Abbruzzese, Giovanni; Trompetto, Carlo; Mori, Laura; Pelosin, Elisa

    2014-01-01

    Movement disorders (MDs) are frequently associated with sensory abnormalities. In particular, proprioceptive deficits have been largely documented in both hypokinetic (Parkinsons disease) and hyperkinetic conditions (dystonia), suggesting a possible role in their pathophysiology. Proprioceptive feedback is a fundamental component of sensorimotor integration allowing effective planning and execution of voluntary movements. Rehabilitation has become an essential element in the management of patients with MDs, and there is a strong rationale to include proprioceptive training in rehabilitation protocols focused on mobility problems of the upper limbs. Proprioceptive training is aimed at improving the integration of proprioceptive signals using task-intrinsic or augmented feedback. This perspective article reviews the available evidence on the effects of proprioceptive stimulation in improving upper limb mobility in patients with MDs and highlights the emerging innovative approaches targeted to maximizing the benefits of exercise by means of enhanced proprioception. PMID:25505402

  13. Study of the different types of actuators and mechanisms for upper limb prostheses.

    PubMed

    Cura, Vanderlei O Del; Cunha, Fransérgio L; Aguiar, Manoel L; Cliquet, Alberto

    2003-06-01

    Research in the area of actuators and mechanisms has shown steadily growing technological advances in externally activated upper limb prostheses. From among the actuators, advances include the use of piezoelectric materials, special metal alloys, polymers, and new motor applications, while the advances in mechanisms include mechanical designs based on the anatomy of the human hand and improvements in the way these components are combined. These efforts are aimed at meeting the need for anthropomorphic and functional prosthetic devices that enable patients to carry out basic daily tasks more easily and reduce the rejection rate of prostheses. This article technically discusses the several types of actuators and mechanisms, listing their main characteristics, applications, and advantages and disadvantages, and the current state of research in the area of rehabilitation of upper limb functions through the use of active prostheses. Comparisons of these devices are made with regard to the main criteria of construction and operation required to achieve optimal prosthetic performance. PMID:12780505

  14. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  15. Unilateral Variations in Upper Limb Arterial System: A Case Report with Literature Review

    PubMed Central

    Roy, Tanushree; Roy, Hironmoy; Ghosal (Sen), Tanwi; Begum, Shabana

    2014-01-01

    In a female cadaver unilateral variations were found in upper limb arterial system - as (1) high-up origin of ulnar artery at arm, (2) persistent prominent arteria nervii mediana or median artery, (3) common interosseous artery branching out of brachial artery. Literature review revealed these coexistent anomalies as the consequence of aberrant finalization of the path chosen by axis arterial network in embryonic life. PMID:24596751

  16. Neural decoding of unilateral upper limb movements using single trial MEG signals.

    PubMed

    Sugata, Hisato; Goto, Tetsu; Hirata, Masayuki; Yanagisawa, Takufumi; Shayne, Morris; Matsushita, Kojiro; Yoshimine, Toshiki; Yorifuji, Shiro

    2012-08-15

    A brain machine interface (BMI) provides the possibility of controlling such external devices as prosthetic arms for patients with severe motor dysfunction using their own brain signals. However, there have been few studies investigating the decoding accuracy for multiclasses of useful unilateral upper limb movements using non-invasive measurements. We investigated the decoding accuracy for classifying three types of unilateral upper limb movements using single-trial magnetoencephalography (MEG) signals. Neuromagnetic activities were recorded in 9 healthy subjects performing 3 types of right upper limb movements: hand grasping, pinching, and elbow flexion. A support vector machine was used to classify the single-trial MEG signals. The movement types were predicted with an average accuracy of 66 10% (chance level: 33.3%) using neuromagnetic activity during a 400-ms interval (-200 ms to 200 ms from movement onsets). To explore the time-dependency of the decoding accuracy, we also examined the time course of decoding accuracy in 50-ms sliding windows from -500 ms to 500 ms. Decoding accuracies significantly increased and peaked once before (50.1 4.9%) and twice after (58.5 7.5% and 64.4 7.6%) movement onsets in all subjects. Significant variability in the decoding features in the first peak was evident in the channels over the parietal area and in the second and third peaks in the channels over the sensorimotor area. Our results indicate that the three types of unilateral upper limb movement can be inferred with high accuracy by detecting differences in movement-related brain activity in the parietal and sensorimotor areas. PMID:22683716

  17. Development and testing of new upper-limb prosthetic devices: research designs for usability testing.

    PubMed

    Resnik, Linda

    2011-01-01

    The purposes of this article are to describe usability testing and introduce designs and methods of usability testing research as it relates to upper-limb prosthetics. This article defines usability, describes usability research, discusses research approaches to and designs for usability testing, and highlights a variety of methodological considerations, including sampling, sample size requirements, and usability metrics. Usability testing is compared with other types of study designs used in prosthetic research. PMID:21938656

  18. A Case of Upper Limb Compartment Syndrome following Snake Envenomation Measure Twice, Cut Once

    PubMed Central

    Thomas, DK; Budhoo, EJ; Mencia, MM; Ali, TF; Santana, D

    2014-01-01

    We report a case of a 16-year old male patient who sustained a poisonous bite from a mapepire balsain snake on the dorsum of his left hand. The subject presented within one hour of envenomation and subsequently developed clinical features of acute compartment syndrome in the involved upper limb. Early diagnosis and emergency fasciotomy effectively treated his condition. Aggressive physiotherapy coupled with this ensured best functional outcome. PMID:25429488

  19. A Case of Upper Limb Compartment Syndrome following Snake Envenomation: Measure Twice, Cut Once.

    PubMed

    Thomas, D K; Budhoo, E J; Mencia, M M; Ali, T F; Santana, D

    2014-08-01

    We report a case of a 16-year old male patient who sustained a poisonous bite from a mapepire balsain snake on the dorsum of his left hand. The subject presented within one hour of envenomation and subsequently developed clinical features of acute compartment syndrome in the involved upper limb. Early diagnosis and emergency fasciotomy effectively treated his condition. Aggressive physiotherapy coupled with this ensured best functional outcome. PMID:25429488

  20. Characteristics of human knee muscle coordination during isometric contractions in a standing posture: the effect of limb task.

    PubMed

    MacLeod, Toran D; Manal, Kurt; Silbernagel, Karin Grävare; Snyder-Mackler, Lynn; Buchanan, Thomas S

    2013-12-01

    Different functional roles for the hands have been demonstrated, however leg control is not as well understood. The purpose of the present study was to evaluate bilateral knee neuromuscular control to determine if the limb receiving greater attention would have more well-tuned control compared to an unattended limb. Surface electrodes were placed on seven muscles of each limb, before standing on two force platforms. Visual feedback was given of the forces and moments of the "focus limb," but not the "unattended limb." Static isometric forces were matched with their focus limb, requiring their unattended limb to push in the opposite direction, using a combination of forward-backward-medial-lateral shear forces while muscle activity was collected bilaterally. There was a significant main effect for limb task (p = 0.02), with the medial hamstrings being more specific (p = 0.001) while performing the unattended limb and the lateral hamstring being more well-tuned (p = 0.007) while performing the focus limb task. The focus limb's medial and lateral gastrocnemius were principally active in the forwards direction, but only the unattended limb's lateral gastrocnemius was active in the backwards direction. Findings suggest unique neuromuscular control strategies are used for the legs depending on limb task. PMID:23790392

  1. Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse.

    PubMed

    Ferry, Arnaud; Parlakian, Ara; Joanne, Pierre; Fraysse, Bodvael; Mgrditchian, Takouhie; Roy, Pauline; Furling, Denis; Butler-Browne, Gillian; Agbulut, Onnik

    2015-07-01

    There is fear that mechanical overloading (OVL; ie, high-force contractions) accelerates Duchenne muscular dystrophy. Herein, we determined whether short-term OVL combined with wheel running, short-term OVL combined with irradiation, and long-term OVL are detrimental for hind limb mdx mouse muscle, a murine model of Duchene muscular dystrophy exhibiting milder dystrophic features. OVL was induced by the surgical ablation of the synergic muscles of the plantaris muscle, a fast muscle susceptible to contraction-induced muscle damage in mdx mice. We found that short-term OVL combined with wheel and long-term OVL did not worsen the deficit in specific maximal force (ie, absolute maximal force normalized to muscle size) and histological markers of muscle damage (percentage of regenerating fibers and fibrosis) in mdx mice. Moreover, long-term OVL did not increase the alteration in calcium homeostasis and did not deplete muscle cell progenitors expressing Pax 7 in mdx mice. Irradiation before short-term OVL, which is believed to inhibit muscle regeneration, was not more detrimental to mdx than control mice. Interestingly, short-term OVL combined with wheel and long-term OVL markedly improved the susceptibility to contraction-induced damage, increased absolute maximal force, induced hypertrophy, and promoted a slower, more oxidative phenotype. Together, these findings indicate that OVL is beneficial to mdx muscle, and muscle regeneration does not mask the potentially detrimental effect of OVL. PMID:26009153

  2. Comparative Study of Upper Limb Load Assessment and Occurrence of Musculoskeletal Disorders at Repetitive Task Workstations

    PubMed Central

    ROMAN-LIU, Danuta; BUGAJSKA, Joanna; TOKARSKI, Tomasz

    2014-01-01

    This study explored the relationship between subjectively assessed complaints of pain in the arm, forearm and hand, and musculoskeletal load caused by repetitive tasks. Workers (n=942) were divided into 22 subgroups, according to the type of their workstations. They answered questions on perceived musculoskeletal pain of upper limbs. Basic and aggregate indices from a questionnaire on the prevalence, intensity and frequency of pain were compared with an upper limb load indicator (repetitive task index, RTI) calculated with the recently developed Upper Limb Risk Assessment (ULRA). There was relatively strong correlation of RTI and general intensity and frequency of pain in the arm, and general intensity and frequency of pain in the arm and forearm or prevalence of pain in the arm. Frequency and intensity of pain in the arm were weakly correlated. An aggregate indicator of evaluation of MSDs, which was calculated on the basis of the prevalence, intensity and frequency of pain, was to a higher degree associated with the musculoskeletal load of a task than basic evaluative parameters. Thus, such an aggregate indicator can be an alternative in comparing subjectively assessed MSDs with task-related musculoskeletal load and in establishing limit levels for that load. PMID:24975106

  3. A Framework to Automate Assessment of Upper-Limb Motor Function Impairment: A Feasibility Study

    PubMed Central

    Otten, Paul; Kim, Jonghyun; Son, Sang Hyuk

    2015-01-01

    Standard upper-limb motor function impairment assessments, such as the Fugl-Meyer Assessment (FMA), are a critical aspect of rehabilitation after neurological disorders. These assessments typically take a long time (about 30 min for the FMA) for a clinician to perform on a patient, which is a severe burden in a clinical environment. In this paper, we propose a framework for automating upper-limb motor assessments that uses low-cost sensors to collect movement data. The sensor data is then processed through a machine learning algorithm to determine a score for a patient’s upper-limb functionality. To demonstrate the feasibility of the proposed approach, we implemented a system based on the proposed framework that can automate most of the FMA. Our experiment shows that the system provides similar FMA scores to clinician scores, and reduces the time spent evaluating each patient by 82%. Moreover, the proposed framework can be used to implement customized tests or tests specified in other existing standard assessment methods. PMID:26287206

  4. A Framework to Automate Assessment of Upper-Limb Motor Function Impairment: A Feasibility Study.

    PubMed

    Otten, Paul; Kim, Jonghyun; Son, Sang Hyuk

    2015-01-01

    Standard upper-limb motor function impairment assessments, such as the Fugl-Meyer Assessment (FMA), are a critical aspect of rehabilitation after neurological disorders. These assessments typically take a long time (about 30 min for the FMA) for a clinician to perform on a patient, which is a severe burden in a clinical environment. In this paper, we propose a framework for automating upper-limb motor assessments that uses low-cost sensors to collect movement data. The sensor data is then processed through a machine learning algorithm to determine a score for a patient's upper-limb functionality. To demonstrate the feasibility of the proposed approach, we implemented a system based on the proposed framework that can automate most of the FMA. Our experiment shows that the system provides similar FMA scores to clinician scores, and reduces the time spent evaluating each patient by 82%. Moreover, the proposed framework can be used to implement customized tests or tests specified in other existing standard assessment methods. PMID:26287206

  5. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors.

    PubMed

    Bai, Lu; Pepper, Matthew G; Yan, Yong; Spurgeon, Sarah K; Sakel, Mohamed; Phillips, Malcolm

    2015-03-01

    Two inertial sensor systems were developed for 3-D tracking of upper limb movement. One utilizes four sensors and a kinematic model to track the positions of all four upper limb segments/joints and the other uses one sensor and a dead reckoning algorithm to track a single upper limb segment/joint. Initial evaluation indicates that the system using the kinematic model is able to track orientation to 1 degree and position to within 0.1 cm over a distance of 10 cm. The dead reckoning system combined with the "zero velocity update" correction can reduce errors introduced through double integration of errors in the estimate in offsets of the acceleration from several meters to 0.8% of the total movement distance. Preliminary evaluation of the systems has been carried out on ten healthy volunteers and the kinematic system has also been evaluated on one patient undergoing neurorehabilitation over a period of ten weeks. The initial evaluation of the two systems also shows that they can monitor dynamic information of joint rotation and position and assess rehabilitation process in an objective way, providing additional clinical insight into the rehabilitation process. PMID:25420266

  6. The Importance of Technical Devices in the Self-care of Upper Limbs Amputees.

    PubMed

    Mszros, Gabriella; Vn, Ildik

    2015-01-01

    The National Institute of Medical Rehabilitation (NIMR) is engaged in the rehabilitation of posttraumatic patients, including also attending traumatic cases with amputated upper limbs. The lack of upper limbs is a great obstacle in essential functioning for the injured, and that is why we give high priority to planning, constructing and individually adopting appliances for aiding everyday life. Special literature gives distinguished attention to operative techniques and the possibilities of prosthetic devices, but no professional articles present any special devices needed for discharging everyday vital functions. The purpose of this lecture is to present the results of our follow-up examination aimed at upper limbs amputees reeducated since 1994 at the NIMR (9 patients). Case studies conclude that the prosthetic care plays a surprisingly small part in the self-sufficiency of the injured. Claims to individual appliances are already more considerable but these cannot be obtained in normal commerce because of unprofitable production in view of users so few in number. PMID:26294571

  7. Sexual dimorphism in directional asymmetry of the upper limb bones among Khoe-San skeletons.

    PubMed

    Waidhofer, M; Kirchengast, S

    2015-12-01

    Right side-biased directional asymmetries in upper limb bones are described for non-human primates, modern humans and also for historical populations. According to numerous studies the degree of bilateral asymmetries varies by sex, possibly due to sex-typical labor division. The present study focused on sexual dimorphism in bilateral asymmetries of the upper limb bones among a historical Khoe-San skeletal sample, the Pch Collection housed at the Department of Anthropology at the University of Vienna. Forty metric dimensions of humeri, ulnae, radii and clavicles of 83 adult Khoe-San individuals were measured. Directional and absolute asymmetries of each measurement were calculated. With the exception of maximal clavicle length, a significant right-biased asymmetry could be documented for both sexes. Regarding sex differences, it could be shown that a markedly greater percentage of right side dominant asymmetry of humerus length and upper limb length was found among females, while male skeletons exhibited a significantly greater percentage of absolute asymmetry in breadth and circumference dimensions, indicating a greater asymmetry in traits of robustness. These sex differences can be interpreted as a result of sex-typical labor division in this traditional historical population. PMID:26342439

  8. Epidural electrocorticography of phantom hand movement following long-term upper-limb amputation

    PubMed Central

    Gharabaghi, Alireza; Naros, Georgios; Walter, Armin; Roth, Alexander; Bogdan, Martin; Rosenstiel, Wolfgang; Mehring, Carsten; Birbaumer, Niels

    2014-01-01

    Introduction: Prostheses for upper-limb amputees are currently controlled by either myoelectric or peripheral neural signals. Performance and dexterity of these devices is still limited, particularly when it comes to controlling hand function. Movement-related brain activity might serve as a complementary bio-signal for motor control of hand prosthesis. Methods: We introduced a methodology to implant a cortical interface without direct exposure of the brain surface in an upper-limb amputee. This bi-directional interface enabled us to explore the cortical physiology following long-term transhumeral amputation. In addition, we investigated neurofeedback of electrocorticographic brain activity related to the patients motor imagery to open his missing hand, i.e., phantom hand movement, for real-time control of a virtual hand prosthesis. Results: Both event-related brain activity and cortical stimulation revealed mutually overlapping cortical representations of the phantom hand. Phantom hand movements could be robustly classified and the patient required only three training sessions to gain reliable control of the virtual hand prosthesis in an online closed-loop paradigm that discriminated between hand opening and rest. Conclusion: Epidural implants may constitute a powerful and safe alternative communication pathway between the brain and external devices for upper-limb amputees, thereby facilitating the integrated use of different signal sources for more intuitive and specific control of multi-functional devices in clinical use. PMID:24834047

  9. Action observation for upper limb function after stroke: evidence-based review of randomized controlled trials

    PubMed Central

    Kim, KyeongMi

    2015-01-01

    [Purpose] The purpose of this study was to suggest evidenced information about action observation to improve upper limb function after stroke. [Methods] A systematic review of randomized controlled trials involving adults aged 18?years or over and including descriptions of action observation for improving upper limb function was undertaken. Electronic databases were searched, including MEDLINE, CINAHL, and PEDro (the Physiotherapy Evidence Database), for articles published between 2000 to 2014. Following completion of the searches, two reviewers independently assessed the trials and extracted data using a data extraction form. The same two reviewers independently documented the methodological quality of the trials by using the PEDro scale. [Results] Five randomized controlled trials were ultimately included in this review, and four of them (80%) reported statistically significant effects for motor recovery of upper limb using action observation intervention in between groups. [Conclusion] This review of the literature presents evidence attesting to the benefits conferred on stroke patints resulting from participation in an action observation intervention. The body of literature in this field is growing steadily. Further work needs to be done to evaluate the evidence for different conditions after stroke and different duration of intervention. PMID:26644700

  10. Comparative study of upper limb load assessment and occurrence of musculoskeletal disorders at repetitive task workstations.

    PubMed

    Roman-Liu, Danuta; Bugajska, Joanna; Tokarski, Tomasz

    2014-01-01

    This study explored the relationship between subjectively assessed complaints of pain in the arm, forearm and hand, and musculoskeletal load caused by repetitive tasks. Workers (n=942) were divided into 22 subgroups, according to the type of their workstations. They answered questions on perceived musculoskeletal pain of upper limbs. Basic and aggregate indices from a questionnaire on the prevalence, intensity and frequency of pain were compared with an upper limb load indicator (repetitive task index, RTI) calculated with the recently developed Upper Limb Risk Assessment (ULRA). There was relatively strong correlation of RTI and general intensity and frequency of pain in the arm, and general intensity and frequency of pain in the arm and forearm or prevalence of pain in the arm. Frequency and intensity of pain in the arm were weakly correlated. An aggregate indicator of evaluation of MSDs, which was calculated on the basis of the prevalence, intensity and frequency of pain, was to a higher degree associated with the musculoskeletal load of a task than basic evaluative parameters. Thus, such an aggregate indicator can be an alternative in comparing subjectively assessed MSDs with task-related musculoskeletal load and in establishing limit levels for that load. PMID:24975106

  11. Prevalence of shoulder and upper-limb disorders among workers in the fish-processing industry.

    PubMed

    Chiang, H C; Ko, Y C; Chen, S S; Yu, H S; Wu, T N; Chang, P Y

    1993-04-01

    A cross-sectional study was conducted among fish-processing workers to evaluate the prevalence of shoulder and upper-limb discomforts and to assess the associated ergonomic risk factors. A prestructured interview, a medical check-up, and job analyses were performed to determine musculoskeletal disorders among 207 workers in eight factories. The results showed shoulder girdle pain (30.9%), epicondylitis (14.5%), and carpal tunnel syndrome (15.0%) as the three most common soft-tissue disorders. The odds ratio of shoulder girdle pain was 1.6 (95% CI 1.1-2.5) among the workers who performed tasks with repetitive movement of their upper limbs, while it was 1.8 (95% CI 1.2-2.5) for the workers who sustained forceful movement of their upper limbs during work. Women taking oral contraceptives had a 2.0 times higher odds ratio for carpal tunnel syndrome than did other women. It would appear that untrained or unskilled workers were prone to suffer from musculoskeletal disorders. PMID:8316780

  12. P-31 Magnetic Resonance Spectroscopy (MRS) of limb muscles during bedrest with exercise countermeasures

    NASA Technical Reports Server (NTRS)

    Berry, P.; Berry, I.; Arnaud, S.; Moseley, M.

    1987-01-01

    Nineteen volunteers in bed with head down tilt (-6 deg) for 1 month and doing or not exercise training while in bed (lido or ergometer) had their limb muscle studied by magnetic resonance spectroscopy. A protocol of repetitive exercise in the magnet was set and a wooden probe designed to support the limb and to allow exercise. Spectra were recorded continuously during the protocol. In each spectrum, inorganic phosphate, phosphocreatin, adenosin triphosphate, and pH were measured. All the subjects were studied before, after bedrest, and 6 weeks later. After 1 month, the lido group show no changes in the spectra of their leg muscles while the group doing no exercise or ergometer do. For the arms, a loss of muscle function is only seen in the group doing no exercise.

  13. Efficacy and safety of NABOTA in post-stroke upper limb spasticity: a phase 3 multicenter, double-blinded, randomized controlled trial.

    PubMed

    Nam, Hyung Seok; Park, Yoon Ghil; Paik, Nam-Jong; Oh, Byung-Mo; Chun, Min Ho; Yang, Hea-Eun; Kim, Dae Hyun; Yi, Youbin; Seo, Han Gil; Kim, Kwang Dong; Chang, Min Cheol; Ryu, Jae Hak; Lee, Shi-Uk

    2015-10-15

    Botulinum toxin A is widely used in the clinics to reduce spasticity and improve upper limb function for post-stroke patients. Efficacy and safety of a new botulinum toxin type A, NABOTA (DWP450) in post-stroke upper limb spasticity was evaluated in comparison with Botox (onabotulinum toxin A). A total of 197 patients with post-stroke upper limb spasticity were included in this study and randomly assigned to NABOTA group (n=99) or Botox group (n=98). Wrist flexors with modified Ashworth Scale (MAS) grade 2 or greater, and elbow flexors, thumb flexors and finger flexors with MAS 1 or greater were injected with either drug. The primary outcome was the change of wrist flexor MAS between baseline and 4weeks post-injection. MAS of each injected muscle, Disability Assessment Scale (DAS), and Caregiver Burden Scale were also assessed at baseline and 4, 8, and 12weeks after the injection. Global Assessment Scale (GAS) was evaluated on the last visit at 12weeks. The change of MAS for wrist flexor between baseline and 4weeks post-injection was -1.440.72 in the NABOTA group and -1.460.77 in the Botox group. The difference of change between both groups was 0.0129 (95% confidence interval -0.2062-0.2319), within the non-inferiority margin of 0.45. Both groups showed significant improvements regarding MAS of all injected muscles, DAS, and Caregiver Burden Scale at all follow-up periods. There were no significant differences in all secondary outcome measures between the two groups. NABOTA demonstrated non-inferior efficacy and safety for improving upper limb spasticity in stroke patients compared to Botox. PMID:26233808

  14. Postoperative Massive Pulmonary Embolism Due to Superficial Vein Thrombosis of the Upper Limb.

    PubMed

    Cascella, Marco; Viscardi, Daniela; Bifulco, Francesca; Cuomo, Arturo

    2016-04-01

    It is well known that deep vein thrombosis of the upper extremities is linked to high morbidity/mortality, resulting in 12-20% of all documented pulmonary embolism; however, there are few data about thromboembolism originating from a vein and/or a branch of a superficial vein of the upper extremities. Pulmonary embolism secondary to upper limb superficial vein thrombosis (not combined with upper extremities deep vein thrombosis) is a very rare clinical manifestation with few cases reported in the literature. We report a rare case of thrombophlebitis in departure from a superficial branch of the cephalic vein of the right arm, complicated by cardiac arrest secondary to a massive pulmonary embolism in a patient who underwent major surgery for ovarian cancer. We discuss on the numerous thrombotic risk factors, triggering a cascade of reactions and resulting in a potential fatal clinical manifestation. PMID:26985256

  15. Postoperative Massive Pulmonary Embolism Due to Superficial Vein Thrombosis of the Upper Limb

    PubMed Central

    Cascella, Marco; Viscardi, Daniela; Bifulco, Francesca; Cuomo, Arturo

    2016-01-01

    It is well known that deep vein thrombosis of the upper extremities is linked to high morbidity/mortality, resulting in 12-20% of all documented pulmonary embolism; however, there are few data about thromboembolism originating from a vein and/or a branch of a superficial vein of the upper extremities. Pulmonary embolism secondary to upper limb superficial vein thrombosis (not combined with upper extremities deep vein thrombosis) is a very rare clinical manifestation with few cases reported in the literature. We report a rare case of thrombophlebitis in departure from a superficial branch of the cephalic vein of the right arm, complicated by cardiac arrest secondary to a massive pulmonary embolism in a patient who underwent major surgery for ovarian cancer. We discuss on the numerous thrombotic risk factors, triggering a cascade of reactions and resulting in a potential fatal clinical manifestation. PMID:26985256

  16. Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees.

    PubMed

    Jiang, Ning; Rehbaum, Hubertus; Vujaklija, Ivan; Graimann, Bernhard; Farina, Dario

    2014-05-01

    We propose an approach for online simultaneous and proportional myoelectric control of two degrees-of-freedom (DoF) of the wrist, using surface electromyographic signals. The method is based on the nonnegative matrix factorization (NMF) of the wrist muscle activation to extract low-dimensional control signals translated by the user into kinematic variables. This procedure does not need a training set of signals for which the kinematics is known (labeled dataset) and is thus unsupervised (although it requires an initial calibration without labeled signals). The estimated control signals using NMF are used to directly control two DoFs of wrist. The method was tested on seven subjects with upper limb deficiency and on seven able-bodied subjects. The subjects performed online control of a virtual object with two DoFs to achieve goal-oriented tasks. The performance of the two subject groups, measured as the task completion rate, task completion time, and execution efficiency, was not statistically different. The approach was compared, and demonstrated to be superior to the online control by the industrial state-of-the-art approach. These results show that this new approach, which has several advantages over the previous myoelectric prosthetic control systems, has the potential of providing intuitive and dexterous control of artificial limbs for amputees. PMID:23996582

  17. Effects of immobilization on rat hind limb muscles under non-weight-bearing conditions

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Fagan, Julie M.; Satarug, Soisungwan; Cook, Paul H.; Tischler, Marc E.

    1988-01-01

    The effect of stretched and unstretched immobilization of a hind limb on the concentration and the metabolism of proteins in the hind-limb muscles of rats was investigated. The animals were divided into three groups: (1) weight-bearing controls, (2) tail-cast-suspended, and (3) suspended, with one hind limb immobilized with the ankle in dorsiflexion (30-40 deg angle) and the other freely moving. It was found that unloading the hind limbs for 6 days by tail cast suspension caused soleus to atrophy and reduced growth of the gastrocnemius and plantaris muscles; unloading resulted in a higher degradation rate and lower synthesis rate in both in vitro and in vivo. Chronic stretch of the unloaded soleus not only prevented its atrophy but led to significant hypertrophy, relative to weight-bearing controls, with increases in both the sarcoplasmic and myofibrillar protein fractions. Immobilizing one ankle in dorsiflexion prevented the inhibition of growth in the plantaris and gastrocnemius muscles due to unloading.

  18. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke

    PubMed Central

    Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Abo, Masahiro

    2016-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. Objectives To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Methods Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Results Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. Conclusions The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery. PMID:27007747

  19. Necrotising soft-tissue infections of the upper limb: risk factors for amputation and death.

    PubMed

    Uehara, K; Yasunaga, H; Morizaki, Y; Horiguchi, H; Fushimi, K; Tanaka, S

    2014-11-01

    Necrotising soft-tissue infections (NSTIs) of the upper limb are uncommon, but potentially life-threatening. We used a national database to investigate the risk factors for amputation of the limb and death. We extracted data from the Japanese Diagnosis Procedure Combination database on 116 patients (79 men and 37 women) who had a NSTI of the upper extremity between 2007 and 2010. The overall in-hospital mortality was 15.5%. Univariate analysis of in-hospital mortality showed that the significant variables were age (p = 0.015), liver dysfunction (p = 0.005), renal dysfunction (P < 0.001), altered consciousness (p = 0.049), and sepsis (p = 0.021). Logistic regression analysis showed that the factors associated with death in hospital were age over 70 years (Odds Ratio (OR) 6.6; 95% confidence interval (CI) 1.5 to 28.2; p = 0.011) and renal dysfunction (OR 15.4; 95% CI 3.8 to 62.8; p < 0.001). Univariate analysis of limb amputation showed that the significant variables were diabetes (p = 0.017) mellitus and sepsis (p = 0.001). Multivariable logistic regression analysis showed that the factors related to limb amputation were sepsis (OR 1.8; 95% CI 1.5 to 24.0; p = 0.013) and diabetes mellitus (OR 1.6; 95% CI 1.1 to 21.1; p = 0.038). For NSTIs of the upper extremity, advanced age and renal dysfunction are both associated with a higher rate of in-hospital mortality. Sepsis and diabetes mellitus are both associated with a higher rate of amputation. PMID:25371469

  20. An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Maltais, François; Decramer, Marc; Casaburi, Richard; Barreiro, Esther; Burelle, Yan; Debigaré, Richard; Dekhuijzen, P. N. Richard; Franssen, Frits; Gayan-Ramirez, Ghislaine; Gea, Joaquim; Gosker, Harry R.; Gosselink, Rik; Hayot, Maurice; Hussain, Sabah N. A.; Janssens, Wim; Polkey, Micheal I.; Roca, Josep; Saey, Didier; Schols, Annemie M. W. J.; Spruit, Martijn A.; Steiner, Michael; Taivassalo, Tanja; Troosters, Thierry; Vogiatzis, Ioannis; Wagner, Peter D.

    2014-01-01

    Background: Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. Purpose: The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. Methods: An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. Results: We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. Conclusions: Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed. PMID:24787074

  1. The role of the biarticular hamstrings and gastrocnemius muscles in closed chain lower limb extension.

    PubMed

    Cleather, Daniel J; Southgate, Dominic F L; Bull, Anthony M J

    2015-01-21

    The role of the biarticular muscles is a topic that has received considerable attention however their function is not well understood. In this paper, we argue that an analysis that is based upon considering the effect of the biarticular muscles on the segments that they span (rather than their effect on joint rotations) can be illuminating. We demonstrate that this understanding is predicated on a consideration of the relative sizes of the moment arms of a biarticular muscle about the two joints that it crosses. The weight of the previous literature suggests that the moment arms of both the biarticular hamstrings and gastrocnemius are smaller at the knee than at the hip or ankle, (respectively). This in turn leads to the conclusion that both biarticular hamstrings and gastrocnemius are extensors of the lower limb. We show that the existence of these biarticular structures lends a degree of flexibility to the motor control strategies available for lower limb extension. In particular, the role of the gastrocnemius and biarticular hamstrings in permitting a large involvement of the quadriceps musculature in closed chain lower limb extension may be more important than is typically portrayed. Finally, the analysis presented in this paper demonstrates the importance of considering the effects of muscles on the body as a whole, not just on the joints they span. PMID:25451963

  2. Use of Evans blue dye to compare limb muscles in exercised young and old mdx mice.

    PubMed

    Wooddell, Christine I; Zhang, Guofeng; Griffin, Jacob B; Hegge, Julia O; Huss, Thierry; Wolff, Jon A

    2010-04-01

    Evans blue dye (EBD) is used to mark damaged and permeable muscle fibers in mouse models of muscular dystrophy and as an endpoint in therapeutic trials. We counted EBD-positive muscle fibers and extracted EBD from muscles sampled throughout the hindlimbs in young adult and old mdx mice to determine if the natural variability in morphology would allow measurement of a functional improvement in one limb compared to the contralateral limb. Following one bout of rotarod or treadmill exercise that greatly increased serum creatine kinase levels, the number of EBD(+) muscle fibers in 12-19-month-old mdx mice increased 3-fold, EBD in the muscles increased, and, importantly, contralateral pairs of muscles contained similar amounts of EBD. In contrast, the intra- and interlimb amounts of EBD in 2-7-month-old mdx mice were much too variable. A therapeutic effect can more readily be measured in old mdx mice. These results will be useful in the design of therapy protocols using the mdx mouse. PMID:19813196

  3. Relationships between Lower Limb Muscle Strength and Locomotor Capacity in Children and Adolescents with Cerebral Palsy Who Walk Independently

    ERIC Educational Resources Information Center

    Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.

    2012-01-01

    This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip

  4. Relationships between Lower Limb Muscle Strength and Locomotor Capacity in Children and Adolescents with Cerebral Palsy Who Walk Independently

    ERIC Educational Resources Information Center

    Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.

    2012-01-01

    This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip…

  5. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.

    PubMed

    Carey, Stephanie L; Lura, Derek J; Highsmith, M Jason

    2015-01-01

    The choice of a myoelectric or body-powered upper-limb prosthesis can be determined using factors including control, function, feedback, cosmesis, and rejection. Although body-powered and myoelectric control strategies offer unique functions, many prosthesis users must choose one. A systematic review was conducted to determine differences between myoelectric and body-powered prostheses to inform evidence-based clinical practice regarding prescription of these devices and training of users. A search of 9 databases identified 462 unique publications. Ultimately, 31 of them were included and 11 empirical evidence statements were developed. Conflicting evidence has been found in terms of the relative functional performance of body-powered and myoelectric prostheses. Body-powered prostheses have been shown to have advantages in durability, training time, frequency of adjustment, maintenance, and feedback; however, they could still benefit from improvements of control. Myoelectric prostheses have been shown to improve cosmesis and phantom-limb pain and are more accepted for light=intensity work. Currently, evidence is insufficient to conclude that either system provides a significant general advantage. Prosthetic selection should be based on a patient's individual needs and include personal preferences, prosthetic experience, and functional needs. This work demonstrates that there is a lack of empirical evidence regarding functional differences in upper-limb prostheses. PMID:26230500

  6. Muscle moment arms of the gibbon hind limb: implications for hylobatid locomotion

    PubMed Central

    Channon, Anthony J; Crompton, Robin H; Gnther, Michael M; Vereecke, Evie E

    2010-01-01

    Muscles facilitate skeletal movement via the production of a torque or moment about a joint. The magnitude of the moment produced depends on both the force of muscular contraction and the size of the moment arm used to rotate the joint. Hence, larger muscle moment arms generate larger joint torques and forces at the point of application. The moment arms of a number of gibbon hind limb muscles were measured on four cadaveric specimens (one Hylobates lar, one H. moloch and two H. syndactylus). The tendon travel technique was used, utilizing an electro-goniometer and a linear voltage displacement transducer. The data were analysed using a technique based on a differentiated cubic spline and normalized to remove the effect of body size. The data demonstrated a functional differentiation between voluminous muscles with short fascicles having small muscle moment arms and muscles with longer fascicles and comparatively smaller physiological cross-sectional area having longer muscle moment arms. The functional implications of these particular configurations were simulated using a simple geometric fascicle strain model that predicts that the rectus femoris and gastrocnemius muscles are more likely to act primarily at their distal joints (knee and ankle, respectively) because they have short fascicles. The data also show that the main hip and knee extensors maintain a very small moment arm throughout the range of joint angles seen in the locomotion of gibbons, which (coupled to voluminous, short-fascicled muscles) might help facilitate rapid joint rotation during powerful movements. PMID:20447251

  7. Dynamics of goat distal hind limb muscletendon function in response to locomotor grade

    PubMed Central

    McGuigan, M. Polly; Yoo, Edwin; Lee, David V.; Biewener, Andrew A.

    2009-01-01

    Summary The functional roles of the lateral gastrocnemius (LG), medial gastrocnemius (MG) and superficial digital flexor (SDF) muscletendon units (MTUs) in domestic goats (N=6) were studied as a function of locomotor grade, testing the hypothesis that changes in distal limb muscle work would reflect changes in mechanical work requirements while goats walked or trotted on the level, 15 deg. decline and 15 deg. incline. As steep terrain-adapted animals, changes in muscle work output are expected to be particularly important for goats. In vivo muscletendon forces, fascicle length changes and muscle activation were recorded via tendon force buckles, sonomicrometry and electromyography to evaluate the work performance and elastic energy recovery of the three distal MTUs. These recordings confirmed that fascicle strain and force within goat distal hind limb muscles are adjusted in response to changes in mechanical work demand associated with locomotor grade. In general, muscle work was modulated most consistently by changes in fascicle strain, with increased net shortening (P<0.001) observed as goats switched from decline to level to incline locomotion. Peak muscle stresses increased as goats increased speed from a walk to a trot within each grade condition (P<0.05), and also increased significantly with grade (P<0.05 to P<0.01). Due to the increase in net fascicle shortening and muscle force, net muscle work per cycle also increased significantly (P<0.05 to P<0.005) as goats switched from decline to level to incline conditions (LG work: 20 mJ to 56 mJ to 209 mJ; MG work: 7 mJ to 34 mJ to 179 mJ; SDF work: 42 mJ to 14 mJ to 71 mJ, at a 2.5 ms1 trot). Although muscle work was modulated in response to changes in grade, the amount of work produced by these three distal pennate muscles was small (being <3%) in comparison with the change in mechanical energy required of the limb as a whole. Elastic energy recovery in the SDF and gastrocnemius (GA) tendons was substantial across all three grades, with the SDF tendon recovering 2.4 times more energy, on average, than the GA tendon. In parallel with the increase in muscletendon force, tendon energy recovery also increased as goats increased speed and changed gait, reaching the highest levels when goats trotted on an incline at 2.5 ms1 (GA: 173 mJ; SDF: 316 mJ). In general, tendon elastic energy exceeded net muscle work across all grade and gait conditions. These results demonstrate, for the first time in a quadruped, similar findings to those observed in ankle extensor muscles in humans, wallabies, turkeys and guinea fowl, suggesting that distal muscletendon architecture more generally favors a design for economic force production and tendon elastic energy recovery, with the majority of limb work during incline or decline running performed by larger proximal muscles. PMID:19525436

  8. Viscoelastic model for redundancy resolution of the human arm via the swivel angle: applications for upper limb exoskeleton control.

    PubMed

    Kim, Hyunchul; Roldan, Jay Ryan; Li, Zhi; Rosen, Jacob

    2012-01-01

    One of the key research efforts associated with a redundant seven degree of freedom (7-DOF) upper limb exoskeleton robot that is mechanically coupled to the human body is to develop high and low level control algorithms that enable the system to become a natural extension of the human body. Improving the synergistic relationship between the exoskeleton and the operator is manifested in part by decreasing the force exchange between the two entities. Such a reduction is accomplished in part by developing criteria for resolving the human arm redundancy. The redundancy may be represented by a swivel angle which is defined as the angular rotation of the elbow around an axis that passes through the shoulder and wrist joints. The proposed criteria for defining the swivel angle takes into account the dynamics of the human arm along with a viscoelastic muscle-like model with variable damping. The swivel angle is estimated using the pseudo-inverse of the Jacobian with a secondary objective function that estimates the desired joint angles during human arm movement. The result is then fed to the muscle model to create a more realistic human motion. The estimated swivel angle is then compared with the actual swivel angle measured experimentally by a motion capture system. Results indicate that the average error between the estimated and measured swivel joint angle is 4.4 degrees (in the range [3.7-6] degrees), which are lower than the kinematically based redundant resolution criterion. PMID:23367411

  9. Central Sensitization and Perceived Indoor Climate among Workers with Chronic Upper-Limb Pain: Cross-Sectional Study

    PubMed Central

    Sundstrup, Emil; Jakobsen, Markus D.; Brandt, Mikkel; Jay, Kenneth; Persson, Roger; Andersen, Lars L.

    2015-01-01

    Monitoring of indoor climate is an essential part of occupational health and safety. While questionnaires are commonly used for surveillance, not all workers may perceive an identical indoor climate similarly. The aim of this study was to evaluate perceived indoor climate among workers with chronic pain compared with pain-free colleagues and to determine the influence of central sensitization on this perception. Eighty-two male slaughterhouse workers, 49 with upper-limb chronic pain and 33 pain-free controls, replied to a questionnaire with 13 items of indoor climate complaints. Pressure pain threshold (PPT) was measured in muscles of the arm, shoulder, and lower leg. Cross-sectional associations were determined using general linear models controlled for age, smoking, and job position. The number of indoor climate complaints was twice as high among workers with chronic pain compared with pain-free controls (1.8 [95% CI: 1.32.3] versus 0.9 [0.41.5], resp.). PPT of the nonpainful leg muscle was negatively associated with the number of complaints. Workers with chronic pain reported more indoor climate complaints than pain-free controls despite similar actual indoor climate. Previous studies that did not account for musculoskeletal pain in questionnaire assessment of indoor climate may be biased. Central sensitization likely explains the present findings. PMID:26425368

  10. Effect of instability training equipment on lower limb kinematics and muscle activity.

    PubMed

    Pfusterschmied, J; Lindinger, S; Buchecker, M; Stggl, T; Wagner, H; Mller, E

    2013-03-01

    To improve the effectiveness of training or therapy, it is important to know the benefits for each type of instability training equipment. The aim of this study was to show differences in lower limb kinematics and muscle activation during single leg standing on a slackline (SL) compared to a multi-functional rocker board (MD) and an air cushion (AC). In 14 subjects, mean angular velocity of the hip, knee and ankle, as well as the muscle activity (iEMG) from six lower limb muscles were recorded during 12 s of single leg standing task. Ankle in-/eversion and knee ab-/adduction angular velocity were highest for SL followed by MD and AC (all p < 0.05), as well as in the hip flex-/extension angular velocity with higher values for SL compared with AC (p < 0.01). Regarding iEMG, the rectus femoris muscle showed higher values for SL compared with MD (p < 0.05) and AC (p < 0.01). iEMG of biceps femoris muscle demonstrated higher values for MD compared to AC (p < 0.05), but with no difference to SL. Balancing on a SL is a more challenging exercise for the postural control system compared to MD and AC, and affects the knee and hip joint motion in particular. PMID:23404457

  11. An analysis on muscle tone of lower limb muscles on flexible flat foot.

    PubMed

    Um, Gi-Mai; Wang, Joong-San; Park, Si-Eun

    2015-10-01

    [Purpose] The aim of this study was to examine differences in the muscle tone and stiffness of leg muscles according to types of flexible flat foot. [Subjects and Methods] For 30 subjects 10 in a normal foot group (NFG), 10 in group with both flexible flat feet (BFFG), and 10 in a group with flexible flat feet on one side (OFFG), myotonometry was used to measure the muscle tone and stiffness of the tibialis anterior muscle (TA), the rectus femoris muscle (RF), the medial gastrocnemius (MG), and the long head of the biceps femoris muscle (BF) of both lower extremities. [Results] In the measurement results, only the stiffness of TA and MG of the NFG and the BFFG showed significant differences. The muscle tone and stiffness were highest in the BFFG, followed by the OFFG and NFG, although the difference was insignificant. In the case of the OFFG, there was no significant difference in muscle tone and stiffness compared to that in the NGF and the BFFG. Furthermore, in the NFG, the non-dominant leg showed greater muscle tone and stiffness than the dominant leg, although the difference was insignificant. [Conclusion] During the relax condition, the flexible flat foot generally showed a greater muscle tone and stiffness of both lower extremities compared to the normal foot. The stiffness was particularly higher in the TA and MG muscles. Therefore, the muscle tone and stiffness of the lower extremity muscles must be considered in the treatment of flat foot. PMID:26644650

  12. An analysis on muscle tone of lower limb muscles on flexible flat foot

    PubMed Central

    Um, Gi-Mai; Wang, Joong-San; Park, Si-Eun

    2015-01-01

    [Purpose] The aim of this study was to examine differences in the muscle tone and stiffness of leg muscles according to types of flexible flat foot. [Subjects and Methods] For 30 subjects 10 in a normal foot group (NFG), 10 in group with both flexible flat feet (BFFG), and 10 in a group with flexible flat feet on one side (OFFG), myotonometry was used to measure the muscle tone and stiffness of the tibialis anterior muscle (TA), the rectus femoris muscle (RF), the medial gastrocnemius (MG), and the long head of the biceps femoris muscle (BF) of both lower extremities. [Results] In the measurement results, only the stiffness of TA and MG of the NFG and the BFFG showed significant differences. The muscle tone and stiffness were highest in the BFFG, followed by the OFFG and NFG, although the difference was insignificant. In the case of the OFFG, there was no significant difference in muscle tone and stiffness compared to that in the NGF and the BFFG. Furthermore, in the NFG, the non-dominant leg showed greater muscle tone and stiffness than the dominant leg, although the difference was insignificant. [Conclusion] During the relax condition, the flexible flat foot generally showed a greater muscle tone and stiffness of both lower extremities compared to the normal foot. The stiffness was particularly higher in the TA and MG muscles. Therefore, the muscle tone and stiffness of the lower extremity muscles must be considered in the treatment of flat foot. PMID:26644650

  13. bioLights: light emitting wear for visualizing lower-limb muscle activity.

    PubMed

    Igarashi, Naoto; Suzuki, Kenji; Kawamoto, Hiroaki; Sankai, Yoshiyuki

    2010-01-01

    Analysis of muscle activity by electrophysiological techniques is commonly used to analyze biomechanics. Although the simultaneous and intuitive understanding of both muscle activity and body motion is important in various fields, it is difficult to realize. This paper proposes a novel technique for visualizing physiological signals related to muscle activity by means of surface electromyography. We developed a wearable light-emitting interface that indicates lower-limb muscle activity or muscular tension on the surface of the body in real time by displaying the shape of the activated muscle. The developed interface allows users to perceive muscle activity in an intuitive manner by relating the level of the muscle activity to the brightness level of the glowing interface placed on the corresponding muscle. In order to verify the advantage of the proposed method, a cognitive experiment was conducted to evaluate the system performance. We also conducted an evaluation experiment using the developed interface in conjunction with an exoskeleton robot, in order to investigate the possible applications of the developed interface in the field of neurorehabilitation. PMID:21096701

  14. Methods for Dynamic Characterization of the Major Muscles Activating the Lower Limb Joints in Cycling Motion

    PubMed Central

    Roth, Navit; Wiener, Avi

    2014-01-01

    The functional activation, through electrical stimulation, of the lower limb consisting of several deficient muscles requires well-patterned and coordinated activation of these muscles. This study presents a method for characterizing the parameters of the major muscle groups controlling the ankle and knee joints in cycling motion, the latter having particular significance in the rehabilitation of locomotion. To lower mechanical indeterminacy in the joints the system is reduced by grouping the muscles acting in synergism. The joint torques were calculated by inverse dynamics methods from cycling motion data, including kinematics and foot/pedal reaction loads (forces, moments). The mechanical indeterminacy was resolved by applying optimization criteria and the individual muscle torques were parceled-out from the joint torques. System identification of the individual muscles, part of which being bi-articular, in this non-isometric condition was performed from the relationship between the evaluated force and the measured EMG of each the muscles, using both first and second order linear transfer functions. Feasibility of the presented method was demonstrated through the computation of the coefficients of the muscles involved and validating the results on the experimental data obtained from one subject. PMID:26913135

  15. Correlation between upper limb function and oral health impact in stroke survivors

    PubMed Central

    da Silva, Fernanda C.; da Silva, Daniela F. T.; Mesquita-Ferrari, Raquel A.; Fernandes, Kristianne P. S.; Bussadori, Sandra K.

    2015-01-01

    [Purpose] The aim of the present study was to evaluate the relationship between upper limb impairment and oral health impact in individuals with hemiparesis stemming from a stroke. [Subjects and Methods] The study subjects were conducted with a sample of 27 stroke survivors with complete or partial hemiparesis with brachial or crural predominance. The 14-item short version of the Oral Health Impact Profile was used to evaluate perceptions of oral health. The Brazilian version of the Stroke Specific Quality of Life Scale was used to evaluate perceptions regarding quality of life. [Results] A statistically significant association was found between the upper extremity function subscale of the SSQOL-Brazil and the impact of oral health evaluated using the OHIP-14, with a strong correlation found for the physical pain subscale, moderate correlations with the functional limitation, psychological discomfort, physical disability, social disability and social handicap subscales as well as a weak correlation with the psychological disability subscale. Analyzing the OHIP-14 scores with regard to the impact of oral health on quality of life, the most frequent classification was weak impact, with small rates of moderate and strong impact. [Conclusion] Compromised upper limb function and self-perceived poor oral health, whether due to cultural resignation or functional disability, exert a negative impact on the quality of life of individuals with hemiparesis stemming from a stroke. PMID:26310352

  16. A comparison between handgrip strength, upper limb fat free mass by segmental bioelectrical impedance analysis (SBIA) and anthropometric measurements in young males

    NASA Astrophysics Data System (ADS)

    Gonzalez-Correa, C. H.; Caicedo-Eraso, J. C.; Varon-Serna, D. R.

    2013-04-01

    The mechanical function and size of a muscle may be closely linked. Handgrip strength (HGS) has been used as a predictor of functional performing. Anthropometric measurements have been made to estimate arm muscle area (AMA) and physical muscle mass volume of upper limb (ULMMV). Electrical volume estimation is possible by segmental BIA measurements of fat free mass (SBIA-FFM), mainly muscle-mass. Relationship among these variables is not well established. We aimed to determine if physical and electrical muscle mass estimations relate to each other and to what extent HGS is to be related to its size measured by both methods in normal or overweight young males. Regression analysis was used to determine association between these variables. Subjects showed a decreased HGS (65.5%), FFM, (85.5%) and AMA (74.5%). It was found an acceptable association between SBIA-FFM and AMA (r2 = 0.60) and poorer between physical and electrical volume (r2 = 0.55). However, a paired Student t-test and Bland and Altman plot showed that physical and electrical models were not interchangeable (pt<0.0001). HGS showed a very weak association with anthropometric (r2 = 0.07) and electrical (r2 = 0.192) ULMMV showing that muscle mass quantity does not mean muscle strength. Other factors influencing HGS like physical training or nutrition require more research.

  17. Preaxial polydactyly of the upper limb viewed as a spectrum of severity of embryonic events.

    PubMed

    Al-Qattan, Mohammad M

    2013-07-01

    Preaxial polydactyly (PPD) is a common congenital abnormality and its classification varies among geneticists and hand surgeons. For example, the triphalangeal thumb, preaxial polysyndactyly, and the mirror hand deformity are considered as forms of PPD only in the genetics literature. Preaxial polydactyly is an error in the anteroposterior axis of the development of the upper limb. In this paper, the development of this axis is detailed and all molecular events that are known to lead to PPD are reviewed. Finally, based on the review, PPD is viewed as a spectrum of severity of embryonic events. PMID:23364674

  18. Upper limb compartment syndrome after an adder bite: a case report.

    PubMed

    Hamdi, Mohamed Faouzi; Baccari, Sayed; Daghfous, Mehdi; Tarhouni, Lamjed

    2010-04-01

    Compartment syndrome after an adder bite is extremely rare, whose effects are only secondary to the cytotoxic and hemorrhagic effects of venom. Here we reported a case of compartment syndrome in the upper limb following an adder bite in the thenar eminence. Elevated compartment pressure was documented and immediate surgical fasciotomy was practiced. The patient achieved complete recovery with a good functional result. We discussed the controversies on fasciotomy and non-invasive measures in such a situation, and recommended intracompartmental pressure monitoring during the management of compartment syndrome following adder bites. PMID:20356449

  19. Experimental development of a sensory control system for an upper limb myoelectric prosthesis with cosmetic covering.

    PubMed

    Tura, A; Lamberti, C; Davalli, A; Sacchetti, R

    1998-01-01

    A sensory control system based on the force-sensing resistor (FSR) for an upper limb prosthesis has been designed for application to a commercial prosthetic hand of proven reliability. In particular, FSR sensors have been used to control the strength of the grip on objects. Moreover, the problem of the object possibly slipping from the grip has been addressed by a system based on an optical sensor for detecting movement. Tests on different everyday objects have shown the feasibility of the above approach, given the constraints of the limited dimensions of the prosthesis and the presence of a cosmetic glove. PMID:9505249

  20. Severe upper limb injuries in four passengers of a 'People Carrier'; the contribution of design faults.

    PubMed

    Teanby, D N; Perks, A G; Watson, S B; Thorlby, A

    1995-05-01

    Four passengers of a 'People Carrier' in a single vehicle motor accident sustained severe left upper limb trauma, when the vehicle rolled onto the near side. These injuries were directly attributable to the large glass interface between patient and road. The glass windows shattered on contact, providing no protection and in effect created a secondary injury mechanism. We advocate both the use of laminated side windows and mandatory testing of 'roll-over' characteristics for these 'People Carriers' to reduce the incidence of such injuries. PMID:7649628

  1. A Kinect-based upper limb rehabilitation system to assist people with cerebral palsy.

    PubMed

    Chang, Yao-Jen; Han, Wen-Ying; Tsai, Yu-Chi

    2013-11-01

    This study assessed the possibility of rehabilitating two adolescents with cerebral palsy (CP) using a Kinect-based system in a public school setting. The system provided 3 degrees of freedom for prescribing a rehabilitation program to achieve customized treatment. This study was carried out according to an ABAB reversal replication design in which A represented the baseline and B represented intervention phases. Data showed that the two participants significantly increased their motivation for upper limb rehabilitation, thus improving exercise performance during the intervention phases. Practical and developmental implications of the findings are discussed. PMID:24012594

  2. Quasi-3DOF Active / Passive Hybrid Rehabilitation System for Upper Limbs: "Hybrid-PLEMO"

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takehito; Furusho, Junji; Jin, Ying; Fukushima, Kazuki; Akai, Hiroki

    Many kinds of actuator-based (active type) haptic device have developed and utilized as rehabilitation robots. These systems have great advantages for rehabilitative activities, for example assistive forces and so on. However, from the view point of safety, we have room to consider utilizing brake-based (passive type) haptic devices as rehabilitation-tools. The effects and roles of active / passive force feedback for rehabilitative trainings have not been clarified yet. In this study, we have developed an active / passive switchable rehabilitation system for upper limbs (Hybrid-PLEMO) to address these questions. In this paper, we describe the force-feedback mechanism of the Hybrid-PLEMO.

  3. Horner's syndrome and weakness of upper limb after epidural anaesthesia for caesarean section

    PubMed Central

    Jadon, Ashok

    2014-01-01

    Horner's syndrome is not rare during labour epidural analgesia or in pregnant patients receiving epidural anaesthesia for caesarean section as thought previously. It occurs due to blockade of sympathetic fibres supplying the eye and face area. Most of the times it is a benign and self-limiting condition; however, it may become a serious systemic manifestation. We present a case where patient had weakness of upper-limb and Horner's syndrome of same side with visual disturbances. These symptoms were transient and resolved spontaneously without any treatment. PMID:25197119

  4. Horner's syndrome and weakness of upper limb after epidural anaesthesia for caesarean section.

    PubMed

    Jadon, Ashok

    2014-07-01

    Horner's syndrome is not rare during labour epidural analgesia or in pregnant patients receiving epidural anaesthesia for caesarean section as thought previously. It occurs due to blockade of sympathetic fibres supplying the eye and face area. Most of the times it is a benign and self-limiting condition; however, it may become a serious systemic manifestation. We present a case where patient had weakness of upper-limb and Horner's syndrome of same side with visual disturbances. These symptoms were transient and resolved spontaneously without any treatment. PMID:25197119

  5. Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.

    PubMed

    Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernndez-Franco, Jorge

    2014-05-01

    Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status. PMID:24760913

  6. Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest

    PubMed Central

    Schultz, Aimee E.; Kuiken, Todd A.

    2009-01-01

    Targeted reinnervation is a new neural-machine interface that has been developed to help improve the function of new-generation prosthetic limbs. Targeted reinnervation is a surgical procedure that takes the nerves that once innervated a severed limb and redirects them to proximal muscle and skin sites. The sensory afferents of the redirected nerves reinnervate the skin overlying the transfer site. This creates a sensory expression of the missing limb in the amputee's reinnervated skin. When these individuals are touched on this reinnervated skin they feel as though they are being touched on their missing limb. Targeted reinnervation takes nerves that once served the hand, a skin region of high functional importance, and redirects them to less functionally relevant skin areas adjacent to the amputation site. In an effort to better understand the sensory capacity of the reinnervated target skin following this procedure, we examined grating orientation thresholds and point localization thresholds on two amputees who had undergone the targeted reinnervation surgery. Grating orientation thresholds and point localization thresholds were also measured on the contralateral normal skin of the targeted reinnervation amputees and on analogous sites in able-bodied controls. Grating orientation thresholds for the reinnervated skin of the targeted reinnervation amputees were found to be similar to normal ranges for both the amputees’ contralateral skin and also for the control population. Point localization thresholds for these amputees were found to be lower for their reinnervated skin than for their contralateral skin. Reinnervated point localization thresholds values were also lower in comparison to homologous chest sites on the control population. Mechanisms appear to be in place to maximize re-established touch input in targeted reinnervation amputees. It seems that sound sensory function is provided to the denervated skin of the residual limb when connected to afferent pathways once serving highly functionally relevant regions of the brain. This suggests that tactile interface devices could be used to give a physiologically appropriate sense of touch to a prosthetic limb, which would likely help with better functional utilization of the prosthetic device and possibly help to more effectively integrate the device with the user's self-image. PMID:19369486

  7. Feasibility of Video Clip Analysis on Effect of Botulinum Toxin-A Injection for Post-Stroke Upper Limb Spasticity

    PubMed Central

    Kim, Woo-Jin; Kumthornthip, Witsanu; Oh, Byung Mo; Yang, Eun Joo; Paik, Nam-Jong

    2013-01-01

    Existing functional evaluation tools do not accurately reveal the improved function following botulinum toxin A (BTX-A) injection for post-stroke upper limb spasticity. With the aim of developing an alternate method of measuring functional improvement following BTX-A injection, this study tested the feasibility, validity and reliability of video clip analysis performed by the clinicians. Seventy-nine patients administered BTX-A due to post-stroke upper limb spasticity, were retrospectively evaluated using video clip analysis. Pre- and post-injection video clips recorded at 1-month intervals were randomly allocated and sent to three blinded physician evaluators who were asked to choose the one that seemed more improved in terms of hand motion and associated upper limb reaction during gait. The three physicians chose the post-injection video clip as depicting improved hand motion (82.3%, 79.7%, and 72.2%) and associated upper limb reaction during gait (73.4%, 70.9%, and 70.9%). Kappa and intraclass correlation coefficient as a measure of interrater reliability among the three physicians was 0.86 and 0.79 for the hand, and 0.92 and 0.92 for associated upper limb reaction during gait, respectively. The percent overall agreement of the physicians was 78.1% and 71.7% for hand function and associated upper limb reaction, respectively. Retrospective pre- and post-BTX-A injection video clip analyses is a clinically feasible alternative method to evaluate the improvement following BTX-A injection for post-stroke upper limb spasticity, especially in busy clinical practice setting. PMID:23666198

  8. Upper limb amputees can be induced to experience a rubber hand as their own

    PubMed Central

    Rosén, Birgitta; Stockselius, Anita; Ragnö, Christina; Köhler, Peter; Lundborg, Göran

    2008-01-01

    We describe how upper limb amputees can be made to experience a rubber hand as part of their own body. This was accomplished by applying synchronous touches to the stump, which was out of view, and to the index finger of a rubber hand, placed in full view (26 cm medial to the stump). This elicited an illusion of sensing touch on the artificial hand, rather than on the stump and a feeling of ownership of the rubber hand developed. This effect was supported by quantitative subjective reports in the form of questionnaires, behavioural data in the form of misreaching in a pointing task when asked to localize the position of the touch, and physiological evidence obtained by skin conductance responses when threatening the hand prosthesis. Our findings outline a simple method for transferring tactile sensations from the stump to a prosthetic limb by tricking the brain, thereby making an important contribution to the field of neuroprosthetics where a major goal is to develop artificial limbs that feel like a real parts of the body. PMID:19074189

  9. Treatment of secondary lymphedema of the upper limb with CYCLO 3 FORT.

    PubMed

    Cluzan, R V; Alliot, F; Ghabboun, S; Pascot, M

    1996-03-01

    Fifty seven patients with secondary lymphedema of the upper limb after previous treatment for breast cancer were treated for 3 months with an extract of Ruscus + Hesperidin Methyl Chalcone (CYCLO 3 FORT) or placebo according to a double-blind protocol in the context of a controlled clinical trial. All patients also underwent manual lymphatic drainage twice a week for at least one month. With CYCLO 3 FORT, the reduction in volume of arm edema, the main assessment criteria, was 12.9% after 3 months of treatment as compared with a placebo (p=0.009). Decreased edema tended to be more marked in the forearm compared with the upper arm where excess fat deposition seemed to dominate over excess fluid accumulation. CYCLO 3 FORT was well tolerated with minimal adverse reaction. PMID:8721977

  10. Normal and sonographic anatomy of selected peripheral nerves. Part II: Peripheral nerves of the upper limb.

    PubMed

    Kowalska, Berta; Sudo?-Szopi?ska, Iwona

    2012-06-01

    The ultrasonographic examination is frequently used for imaging peripheral nerves. It serves to supplement the physical examination, electromyography, and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive, well-tolerated by patients, and relatively inexpensive. Part I of this article series described in detail the characteristic USG picture of peripheral nerves and the proper examination technique, following the example of the median nerve. This nerve is among the most often examined peripheral nerves of the upper limb. This part presents describes the normal anatomy and ultrasound picture of the remaining large nerve branches in the upper extremity and neck - the spinal accessory nerve, the brachial plexus, the suprascapular, axillary, musculocutaneous, radial and ulnar nerves. Their normal anatomy and ultrasonographic appearance have been described, including the division into individual branches. For each of them, specific reference points have been presented, to facilitate the location of the set trunk and its further monitoring. Sites for the application of the ultrasonographic probe at each reference point have been indicated. In the case of the ulnar nerve, the dynamic component of the examination was emphasized. The text is illustrated with images of probe positioning, diagrams of the normal course of the nerves as well as a series of ultrasonographic pictures of normal nerves of the upper limb. This article aims to serve as a guide in the ultrasound examination of the peripheral nerves of the upper extremity. It should be remembered that a thorough knowledge of the area's topographic anatomy is required for this type of examination. PMID:26674017

  11. Normal and sonographic anatomy of selected peripheral nerves. Part II: Peripheral nerves of the upper limb

    PubMed Central

    Sudo?-Szopi?ska, Iwona

    2012-01-01

    The ultrasonographic examination is frequently used for imaging peripheral nerves. It serves to supplement the physical examination, electromyography, and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive, well-tolerated by patients, and relatively inexpensive. Part I of this article series described in detail the characteristic USG picture of peripheral nerves and the proper examination technique, following the example of the median nerve. This nerve is among the most often examined peripheral nerves of the upper limb. This part presents describes the normal anatomy and ultrasound picture of the remaining large nerve branches in the upper extremity and neck the spinal accessory nerve, the brachial plexus, the suprascapular, axillary, musculocutaneous, radial and ulnar nerves. Their normal anatomy and ultrasonographic appearance have been described, including the division into individual branches. For each of them, specific reference points have been presented, to facilitate the location of the set trunk and its further monitoring. Sites for the application of the ultrasonographic probe at each reference point have been indicated. In the case of the ulnar nerve, the dynamic component of the examination was emphasized. The text is illustrated with images of probe positioning, diagrams of the normal course of the nerves as well as a series of ultrasonographic pictures of normal nerves of the upper limb. This article aims to serve as a guide in the ultrasound examination of the peripheral nerves of the upper extremity. It should be remembered that a thorough knowledge of the area's topographic anatomy is required for this type of examination. PMID:26674017

  12. A Serious Game for Upper Limb Stroke Rehabilitation Using Biofeedback and Mirror-Neurons Based Training.

    PubMed

    Cargnin, Diego João; Cordeiro d'Ornellas, Marcos; Cervi Prado, Ana Lúcia

    2015-01-01

    Upper limb stroke rehabilitation requires early, intensive and repetitive practice to be effective. Consequently, it is often difficult to keep patients committed to their rehabilitation regimen. In addition to direct measures of rehabilitation achievable through targeted assessments, other factors can indirectly lead to rehabilitation. Current levels of integration between commodity graphics software, hardware, and body-tracking devices have provided a reliable tool to build what are referred to as serious games, focusing on the rehabilitation paradigm. More specifically, serious games can captivate and engage players for a specific purpose such as developing new knowledge or skills. This paper discusses a serious game application with a focus on upper limb rehabilitation in patients with hemiplegia or hemiparesis. The game makes use of biofeedback and mirror-neurons to enhance the patient's engagement. Results from the application of a quantitative self-report instrument to assess in-game engagement suggest that the serious game is a viable instructional approach rather than an entertaining novelty and, furthermore, demonstrates the future potential for dual action therapy-focused games. PMID:26262069

  13. Are determinants for new and persistent upper limb pain different? An analysis based on anatomical sites

    PubMed Central

    Vargas-Prada, Sergio; Serra, Consol; Coggon, David; Martínez, José Miguel; Ntani, Georgia; Delclos, George; Palmer, Keith T.; Benavides, Fernando G.

    2015-01-01

    BACKGROUND Only few longitudinal studies have explored separately predictors of pain incidence and persistence. OBJECTIVE To investigate whether biological, lifestyle, occupational and psychological risk factors for the development of new episodes of upper limb pain (ULP) differ from those for its persistence. METHODS 1105 Spanish nurses and office workers were asked at baseline about biological, lifestyle, occupational and psychological risk factors and pain in the past month at six anatomical sites in the upper limb (left and right shoulder, elbow and wrist/hand). At follow up, 12 months later, pain in the past month was again ascertained. Analysis was based on anatomical sites clustered by person. Associations were assessed by multilevel logistic regression models. RESULTS 971 participants (87.9%) completed follow-up. Job dissatisfaction and older age carried higher risk of new ULP. Somatising tendency (OR 2.2, 95%CI 1.6-3.1) was the strongest predictor of new ULP, with a risk estimate which differed significantly from that for the same exposure and persistence of ULP. Having adverse beliefs about the work-relatedness of ULP carried a significantly reduced risk for persistence of ULP. CONCLUSION Our study provides only limited evidence that risk factors predicting new ULP differ from those predicting its persistence. PMID:26409386

  14. Anatomical variations of the ulnar and median nerves in the upper limb.

    PubMed

    Artico, M; De Santis, S; Cavallotti, D; Cavallotti, C

    2000-01-01

    The aim of our study was the evaluation of the anatomy of ulnar and median nerves in the upper limb in order to ameliorate knowledge on the clinical anatomy of these nerves. In fact, further information on this topic may be useful owing to its possible clinical relevance when planning surgical anatomy and reconstructive surgery in tumor affected and injured patients. The relationships between ulnar and median nerve and neighbouring anatomical structures have been examined, together with the course and ramification of the ulnar and median nerves in six fresh cadavers. Moreover, we have performed a review of the literature. Four specific aspects were evaluated during dissection: 1) division modality of the ulnar nerve at the wrist; 2) anatomical details of the medial humeral epicondyle; 3) anatomical relationships between median nerve and retinaculum flexorum; 4) median-ulnar nerves anastomosis. Our results show that: the medial humeral epicondyle shows specific anatomical details in relation to the ulnar nerve; the relationships between the median nerve and the transverse carpal ligament may be characterized by one or two nerve trunks (two cases of bifid median nerve in our experience); median-ulnar nerve anastomosis may be also found at various levels. Comparing our results with those of the available literature we can conclude that anatomical variations of ulnar and median nerve in the upper limb are not an infrequent finding and their clinical, diagnostic and surgical relevance should be considered. PMID:11103856

  15. [Coordination patterns assessed by a continuous measure of joints coupling during upper limb repetitive movements].

    PubMed

    Draicchio, F; Silvetti, A; Ranavolo, A; Iavicoli, S

    2008-01-01

    We analyzed the coordination patterns between elbow, shoulder and trunk in a motor task consisting of reaching out, picking up a cylinder, and transporting it back by using the Dynamical Systems Theory and calculating the continuous relative phase (CRP), a continuous measure of the coupling between two interacting joints. We used an optoelectronic motion analysis system consisting of eight infra-red ray cameras to detect the movements of nine skin-mounted markers. We calculated the root square of the adjusted coefficient of determination, the coefficient of multiple correlation (CMC), in order to investigate the repeatability of the joints coordination. The data confirm that the CNS establishes both synergic (i.e. coupling between shoulder and trunk on the frontal plane) and hierarchical (i.e. coupling between elbow-shoulder-trunk on the horizontal plane) relationships among the available degrees of freedom to overcome the complexity due to motor redundancy. The present study describes a method to investigate the organization of the kinematic degrees of freedom during upper limb multi-joint motor tasks that can be useful to assess upper limb repetitive movements. PMID:19288802

  16. A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton.

    PubMed

    Blank, Amy; O'Malley, Marcia K; Francisco, Gerard E; Contreras-Vidal, Jose L

    2013-01-01

    In this paper, we summarize a novel approach to robotic rehabilitation that capitalizes on the benefits of patient intent and real-time assessment of impairment. Specifically, an upper-limb, physical human-robot interface (the MAHI EXO-II robotic exoskeleton) is augmented with a non-invasive brain-machine interface (BMI) to include the patient in the control loop, thereby making the therapy 'active' and engaging patients across a broad spectrum of impairment severity in the rehabilitation tasks. Robotic measures of motor impairment are derived from real-time sensor data from the MAHI EXO-II and the BMI. These measures can be validated through correlation with widely used clinical measures and used to drive patient-specific therapy sessions adapted to the capabilities of the individual, with the MAHI EXO-II providing assistance or challenging the participant as appropriate to maximize rehabilitation outcomes. This approach to robotic rehabilitation takes a step towards the seamless integration of BMIs and intelligent exoskeletons to create systems that can monitor and interface with brain activity and movement. Such systems will enable more focused study of various issues in development of devices and rehabilitation strategies, including interpretation of measurement data from a variety of sources, exploration of hypotheses regarding large scale brain function during robotic rehabilitation, and optimization of device design and training programs for restoring upper limb function after stroke. PMID:24887296

  17. Impact of tactile function on upper limb motor function in children with Developmental Coordination Disorder.

    PubMed

    Cox, Lauren E; Harris, Elizabeth C; Auld, Megan L; Johnston, Leanne M

    2015-01-01

    This study investigated the presence of, and relationship between tactile dysfunction and upper limb motor function in children with Developmental Coordination Disorder (DCD) compared to typical developing (TD) children. Participants were 36 children aged 6-12 years. Presence of DCD (n=20) or TD (n=16) was confirmed using the Movement Assessment Battery for Children, second edition. All children participated in a comprehensive assessment of tactile registration (Semmes Weinstein Monofilaments); tactile spatial perception (Single Point Localisation (SPL) and two-point discrimination (2PD)); haptic perception (Stereognosis); speed of simple everyday manual tasks (Jebsen-Taylor Test of Hand Function (JTTHF)); and handwriting speed and accuracy (Evaluation Tool of Children's Handwriting (ETCH)). Compared to TD children, children with DCD demonstrated poorer localisation of touch in the non-dominant hand (p=0.04), slower speed of alphabet writing (p<0.05) and less legible handwriting (p<0.01), but no difference in speed of simple everyday manual tasks (JTTHF: p>0.05). Regression analysis showed that spatial tactile perception (SPL) predicted handwriting legibility (ETCH: r=0.11) and speed of functional tasks (JTTHF: r=0.33). These results suggest that tactile function, specifically single point localisation, should be a primary tactile assessment employed to determine reasons for upper limb motor difficulties experienced by children with DCD. PMID:26299639

  18. Chondroitinase gene therapy improves upper limb function following cervical contusion injury

    PubMed Central

    James, Nicholas D.; Shea, Jessie; Muir, Elizabeth M.; Verhaagen, Joost; Schneider, Bernard L.; Bradbury, Elizabeth J.

    2015-01-01

    Chondroitin sulphate proteoglycans (CSPGs) are known to be important contributors to the intensely inhibitory environment that prevents tissue repair and regeneration following spinal cord injury. The bacterial enzyme chondroitinase ABC (ChABC) degrades these inhibitory molecules and has repeatedly been shown to promote functional recovery in a number of spinal cord injury models. However, when used to treat more traumatic and clinically relevant spinal contusion injuries, findings with the ChABC enzyme have been inconsistent. We recently demonstrated that delivery of mammalian-compatible ChABC via gene therapy led to sustained and widespread digestion of CSPGs, resulting in significant functional repair of a moderate thoracic contusion injury in adult rats. Here we demonstrate that chondroitinase gene therapy significantly enhances upper limb function following cervical contusion injury, with improved forelimb ladder performance and grip strength as well as increased spinal conduction through the injury site and reduced lesion pathology. This is an important addition to our previous findings as improving upper limb function is a top priority for spinal injured patients. Additionally great importance is placed on replication in the spinal cord injury field. That chondroitinase gene therapy has now been shown to be efficacious in contusion models at either thoracic or cervical level is an important step in the further development of this promising therapeutic strategy towards the clinic. PMID:26044197

  19. A novel system for automatic classification of upper limb motor function after stroke: an exploratory study.

    PubMed

    Tedim Cruz, Vítor; Bento, Virgílio Ferro; Ribeiro, David Dieteren; Araújo, Isabel; Branco, Catarina Aguiar; Coutinho, Paula

    2014-12-01

    In the early post-stroke phase, when clinicians attempt to evaluate interventions and accurately measure motor performance, reliable tools are needed. Therefore, the development of a system capable of independent, repeated and automatic assessment of motor function is of increased importance. This manuscript explores the potential of a newly designed device for automatic assessment of motor impairment after stroke. A portable motion capture system was developed to acquire three-dimensional kinematics data of upper limb movements. These were then computed through an automatic decision tree classifier, with features inferred from the Functional Ability Score (FAS) of the Wolf Motor Function Test (WMFT). Five stroke patients were tested on both sides across five selected tasks. The system was compared against a trained clinician, operating simultaneously and blinded. Regarding performance time, the mean difference (system vs clinician) was 0.17s (sd=0.14s). For FAS evaluation, there was agreement in 4 out of 5 patients in the two tasks evaluated. The prototype tested was able to automatically classify upper limb movement, according to a widely used functional motor scale (WMFT) in a relevant clinical setting. These results represent an important step towards a system capable of precise and independent motor evaluation after stroke. The portability and low-cost design will contribute for its usability in ambulatory clinical settings and research trials. PMID:25280582

  20. A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton

    PubMed Central

    Blank, Amy; OMalley, Marcia K.; Francisco, Gerard E.; Contreras-Vidal, Jose L.

    2014-01-01

    In this paper, we summarize a novel approach to robotic rehabilitation that capitalizes on the benefits of patient intent and real-time assessment of impairment. Specifically, an upper-limb, physical human-robot interface (the MAHI EXO-II robotic exoskeleton) is augmented with a non-invasive brain-machine interface (BMI) to include the patient in the control loop, thereby making the therapy active and engaging patients across a broad spectrum of impairment severity in the rehabilitation tasks. Robotic measures of motor impairment are derived from real-time sensor data from the MAHI EXO-II and the BMI. These measures can be validated through correlation with widely used clinical measures and used to drive patient-specific therapy sessions adapted to the capabilities of the individual, with the MAHI EXO-II providing assistance or challenging the participant as appropriate to maximize rehabilitation outcomes. This approach to robotic rehabilitation takes a step towards the seamless integration of BMIs and intelligent exoskeletons to create systems that can monitor and interface with brain activity and movement. Such systems will enable more focused study of various issues in development of devices and rehabilitation strategies, including interpretation of measurement data from a variety of sources, exploration of hypotheses regarding large scale brain function during robotic rehabilitation, and optimization of device design and training programs for restoring upper limb function after stroke. PMID:24887296

  1. Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation

    PubMed Central

    Tognetti, Alessandro; Lorussi, Federico; Bartalesi, Raphael; Quaglini, Silvana; Tesconi, Mario; Zupone, Giuseppe; De Rossi, Danilo

    2005-01-01

    Background Monitoring body kinematics has fundamental relevance in several biological and technical disciplines. In particular the possibility to exactly know the posture may furnish a main aid in rehabilitation topics. In the present work an innovative and unobtrusive garment able to detect the posture and the movement of the upper limb has been introduced, with particular care to its application in post stroke rehabilitation field by describing the integration of the prototype in a healthcare service. Methods This paper deals with the design, the development and implementation of a sensing garment, from the characterization of innovative comfortable and diffuse sensors we used to the methodologies employed to gather information on the posture and movement which derive from the entire garments. Several new algorithms devoted to the signal acquisition, the treatment and posture and gesture reconstruction are introduced and tested. Results Data obtained by means of the sensing garment are analyzed and compared with the ones recorded using a traditional movement tracking system. Conclusion The main results treated in this work are summarized and remarked. The system was compared with a commercial movement tracking system (a set of electrogoniometers) and it performed the same accuracy in detecting upper limb postures and movements. PMID:15743530

  2. Spaceflight and hind limb unloading induce similar changes in electrical impedance characteristics of mouse gastrocnemius muscle

    PubMed Central

    Sung, M.; Li, J.; Spieker, A.J.; Spatz, J.; Ellman, R.; Ferguson, V.L.; Bateman, T.A.; Rosen, G.D.; Bouxsein, M.; Rutkove, S.B.

    2014-01-01

    Objective To assess the potential of electrical impedance myography (EIM) to serve as a marker of muscle fiber atrophy and secondarily as an indicator of bone deterioration by assessing the effects of spaceflight or hind limb unloading. Methods In the first experiment, 6 mice were flown aboard the space shuttle (STS-135) for 13 days and 8 earthbound mice served as controls. In the second experiment, 14 mice underwent hind limb unloading (HLU) for 13 days; 13 additional mice served as controls. EIM measurements were made on ex vivo gastrocnemius muscle. Quantitative microscopy and areal bone mineral density (aBMD) measurements of the hindlimb were also performed. Results Reductions in the multifrequency phase-slope parameter were observed for both the space flight and HLU cohorts compared to their respective controls. For ground control and spaceflight groups, the values were 24.7±1.3°/MHz and 14.1±1.6°/MHz, respectively (p=0.0013); for control and HLU groups, the values were 23.9±1.6°/MHz and 19.0±1.0°/MHz, respectively (p=0.014). This parameter also correlated with muscle fiber size (ρ=0.65, p=0.011) for spaceflight and hind limb aBMD (ρ=0.65, p=0.0063) for both groups. Conclusions These data support the concept that EIM may serve as a useful tool for assessment of muscle disuse secondary to immobilization or microgravity. PMID:24292610

  3. Limb and back muscle activity adaptations to tripedal locomotion in dogs.

    PubMed

    Fuchs, Aniela; Anders, Alexandra; Nolte, Ingo; Schilling, Nadja

    2015-10-01

    Alterations in muscle recruitment are key to the functional plasticity of the mammalian locomotor system. One particularly challenging situation quadrupeds may face is when the functionality of a limb is reduced or lost. To better understand how mammals manage in such situations and which muscular adaptations they exhibit when locomoting on three legs, we recorded the activity patterns of two limb and one back extensor muscle in nine dogs using surface electromyography. We compared the timing and the level of recruitment before and after the loss of a hindlimb was simulated. Both the intensity and the timing of the activity changed significantly in the m. vastus lateralis of the remaining hindlimb, consistent with this limb bearing a greater proportion of the body weight as well as with previously reported kinematic changes. In accordance with the greater body weight supported by the forelimbs, the m. triceps brachii showed first and foremost an increased level of excitation. The very asymmetrical changes in the timing and the level of activity in the m. longissimus dorsi reflects the highly asymmetrical functional requirements imposed on the trunk and the pelvis when one hindlimb is no longer involved in the production of locomotor work while the other hindlimb partially compensates the loss. Integration of our electromyographical findings with kinetic and kinematic results illustrates that dogs exhibited a well-coordinated response to the functional requirements of tripedalism and underlines the importance of moment-to-moment modulation in muscular recruitment for the functional plasticity of the mammalian locomotor system. PMID:26200094

  4. Kinetics of the upper limb during table tennis topspin forehands in advanced and intermediate players.

    PubMed

    Iino, Yoichi; Kojima, Takeji

    2011-11-01

    The purpose of this study was to determine the significance of mechanical energy generation and transfer in the upper limb in generating the racket speed during table tennis topspin forehands. Nine advanced and eight intermediate table tennis players performed the forehand stroke at maximum effort against light and heavy backspin balls. Five high-speed video cameras operating at 200 fps were used to record the motions of the upper body of the players. The joint forces and torques of the racket arm were determined with inverse dynamics, and the amount of mechanical energy generated and transferred in the arm was determined. The shoulder internal rotation torque exerted by advanced players was significantly larger than that exerted by the intermediate players. Owing to a larger shoulder internal rotation torque, the advanced players transferred mechanical energy from the trunk of the body to the upper arm at a higher rate than the intermediate players could. Regression of the racket speed at ball impact on the energy transfer to the upper arm suggests that increase in the energy transfer may be an important factor for enabling intermediate players to generate a higher racket speed at impact in topspin forehands. PMID:22303787

  5. Upper limb joint motion of two different user groups during manual wheelchair propulsion

    NASA Astrophysics Data System (ADS)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Lee, Jinbok; Kim, Youngho

    2013-02-01

    Manual wheelchair users have a high risk of injury to the upper extremities. Recent studies have focused on kinematic and kinetic analyses of manual wheelchair propulsion in order to understand the physical demands on wheelchair users. The purpose of this study was to investigate upper limb joint motion by using a motion capture system and a dynamometer with two different groups of wheelchair users propelling their wheelchairs at different speeds under different load conditions. The variations in the contact time, release time, and linear velocity of the experienced group were all larger than they were in the novice group. The propulsion angles of the experienced users were larger than those of the novices under all conditions. The variances in the propulsion force (both radial and tangential) of the experienced users were larger than those of the novices. The shoulder joint moment had the largest variance with the conditions, followed by the wrist joint moment and the elbow joint moment. The variance of the maximum shoulder joint moment was over four times the variance of the maximum wrist joint moment and eight times the maximum elbow joint moment. The maximum joint moments increased significantly as the speed and load increased in both groups. Quick and significant manipulation ability based on environmental changes is considered an important factor in efficient propulsion. This efficiency was confirmed from the propulsion power results. Sophisticated strategies for efficient manual wheelchair propulsion could be understood by observation of the physical responses of each upper limb joint to changes in load and speed. We expect that the findings of this study will be utilized for designing a rehabilitation program to reduce injuries.

  6. Lower limb conduit artery endothelial responses to acute upper limb exercise in spinal cord injured and able-bodied men

    PubMed Central

    Totosy de Zepetnek, Julia O; Au, Jason S; Ditor, David S; MacDonald, Maureen J

    2015-01-01

    Vascular improvements in the nonactive regions during exercise are likely primarily mediated by increased shear rate (SR). Individuals with spinal cord injury (SCI) experience sublesional vascular deconditioning and could potentially benefit from upper body exercise-induced increases in lower body SR. The present study utilized a single bout of incremental arm-crank exercise to generate exercise-induced SR changes in the superficial femoral artery in an effort to evaluate the acute postexercise impact on superficial femoral artery endothelial function via flow-mediated dilation (FMD), and determine regulatory factors in the nonactive legs of individuals with and without SCI. Eight individuals with SCI and eight age, sex, and waist-circumference-matched able-bodied (AB) controls participated. Nine minutes of incremental arm-crank exercise increased superficial femoral artery anterograde SR (P = 0.02 and P < 0.01), retrograde SR (P < 0.01 and P < 0.01), and oscillatory shear index (OSI) (P < 0.001 and P < 0.001) in both SCI and AB, respectively. However, these SR alterations resulted in acute postexercise increases in FMD in the AB group only (SCI 6.0 ± 1.2% to 6.3 ± 2.7%, P = 0.74; AB 7.5 ± 1.4% to 11.2 ± 1.4%, P = 0.03). While arm exercise has many cardiovascular benefits and results in changes in SR patterns in the nonactive legs, these changes are not sufficient to induce acute changes in FMD among individuals with SCI, and therefore are less likely to stimulate exercise training-associated improvements in nonactive limb endothelial function. Understanding the role of SR patterns on FMD brings us closer to designing effective strategies to combat impaired vascular function in both healthy and clinical populations. PMID:25847920

  7. Limb position sense, proprioceptive drift and muscle thixotropy at the human elbow joint

    PubMed Central

    Tsay, A; Savage, G; Allen, T J; Proske, U

    2014-01-01

    These experiments on the human forearm are based on the hypothesis that drift in the perceived position of a limb over time can be explained by receptor adaptation. Limb position sense was measured in 39 blindfolded subjects using a forearm-matching task. A property of muscle, its thixotropy, a contraction history-dependent passive stiffness, was exploited to place muscle receptors of elbow muscles in a defined state. After the arm had been held flexed and elbow flexors contracted, we observed time-dependent changes in the perceived position of the reference arm by an average of 2.8° in the direction of elbow flexion over 30 s (Experiment 1). The direction of the drift reversed after the arm had been extended and elbow extensors contracted, with a mean shift of 3.5° over 30 s in the direction of elbow extension (Experiment 2). The time-dependent changes could be abolished by conditioning elbow flexors and extensors in the reference arm at the test angle, although this led to large position errors during matching (±10°), depending on how the indicator arm had been conditioned (Experiments 3 and 4). When slack was introduced in the elbow muscles of both arms, by shortening muscles after the conditioning contraction, matching errors became small and there was no drift in position sense (Experiments 5 and 6). These experiments argue for a receptor-based mechanism for proprioceptive drift and suggest that to align the two forearms, the brain monitors the difference between the afferent signals from the two arms. PMID:24665096

  8. Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations.

    PubMed

    Kutlu, M; Freeman, C T; Hallewell, E; Hughes, A-M; Laila, D S

    2016-04-01

    Functional electrical stimulation (FES) has shown effectiveness in restoring upper-limb movement post-stroke when applied to assist participants' voluntary intention during repeated, motivating tasks. Recent clinical trials have used advanced controllers that precisely adjust FES to assist functional reach and grasp tasks with FES applied to three muscle groups, showing significant reduction in impairment. The system reported in this paper advances the state-of-the-art by: (1) integrating an FES electrode array on the forearm to assist complex hand and wrist gestures; (2) utilising non-contact depth cameras to accurately record the arm, hand and wrist position in 3D; and (3) employing an interactive touch table to present motivating virtual reality (VR) tasks. The system also uses iterative learning control (ILC), a model-based control strategy which adjusts the applied FES based on the tracking error recorded on previous task attempts. Feasibility of the system has been evaluated in experimental trials with 2 unimpaired participants and clinical trials with 4 hemiparetic, chronic stroke participants. The stroke participants attended 17, 1 hour training sessions in which they performed functional tasks, such as button pressing using the touch table and closing a drawer. Stroke participant results show that the joint angle error norm reduced by an average of 50.3% over 6 attempts at each task when assisted by FES. PMID:26947097

  9. Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    PubMed Central

    2009-01-01

    Background About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete. Methods/Design Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG). Discussion ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions. The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments. Trial Registration The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, http://www.trialregister.nl, number NTR1665). PMID:19895679

  10. Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis.

    PubMed

    Bonzano, Laura; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Dessypris, Adriano; Feraco, Paola; Lopes De Carvalho, Maria L; Battaglia, Mario A; Mancardi, Giovanni L; Bove, Marco

    2014-04-15

    Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects. This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis. Thirty patients (18 females and 12 males; age=43.3 8.7 years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers. Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove. In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi. The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p=0.002). Further, in the treatment group white matter integrity in the corpus callosum and corticospinal tracts was preserved while a microstructural integrity worsening was found in the control group (fractional anisotropy of the corpus callosum and corticospinal tracts: p=0.033 and p=0.022; radial diffusivity of the corpus callosum and corticospinal tracts: p=0.004 and p=0.008). Conversely, a significant increase of radial diffusivity was observed in the superior longitudinal fasciculi in both groups (p=0.02), indicating lack of treatment effects on this structure, showing damage progression likely due to a demyelination process. All these findings indicate the importance of administering, when possible, a rehabilitation treatment consisting of voluntary movements. We also demonstrated that the beneficial effects of a rehabilitation treatment are task-dependent and selective in their target; this becomes crucial towards the implementation of tailored rehabilitative approaches. PMID:24370819

  11. Creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players

    PubMed Central

    2014-01-01

    Background Studies involving chronic creatine supplementation in elite soccer players are scarce. Therefore, the aim of this study was to examine the effects of creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players (n?=?14 males) during pre-season training. Findings This was a randomized, double-blind, placebo-controlled parallel-group study. Brazilian professional elite soccer players participated in this study. During the pre-season (7weeks), all the subjects underwent a standardized physical and specific soccer training. Prior to and after either creatine monohydrate or placebo supplementation, the lower-limb muscle power was measured by countermovement jump performance. The Jumping performance was compared between groups at baseline (p?=?0.99). After the intervention, jumping performance was lower in the placebo group (percent change?=?- 0.7%; ES?=?- 0.3) than in the creatine group (percent change?=?+ 2.4%; ES?=?+ 0.1), but it did not reach statistical significance (p?=?0.23 for time x group interaction). Fishers exact test revealed that the proportion of subjects that experienced a reduction in jumping performance was significantly greater in the placebo group than in the creatine group (5 and 1, respectively; p?=?0.05) after the training. The magnitude-based inferences demonstrated that placebo resulted in a possible negative effect (50%) in jumping performance, whereas creatine supplementation led to a very likely trivial effect (96%) in jumping performance in the creatine group. Conclusions Creatine monohydrate supplementation prevented the decrement in lower-limb muscle power in elite soccer players during a pre-season progressive training. PMID:24991195

  12. Local perforator flaps in soft tissue reconstruction of the upper limb.

    PubMed

    Innocenti, M; Baldrighi, C; Delcroix, L; Adani, R

    2009-12-01

    The quality of reconstruction of soft tissue defects in the upper extremity, resulting either from traumatic injury or tumor excision, has relevant implications both from functional and aesthetic standpoints. Various local and free flaps with more or less consistent donor-site morbidity have been described in the past. The recent introduction of the perforator-based flap concept, has led to an evolution in upper extremity reconstruction, optimizing results at the recipient site whilst minimizing damage to the donor site and, performing this in the simplest way possible. In this study between 2001 and 2008, 31 patients having post-traumatic or post-tumor excision soft tissue defects of the upper limb, were treated using local perforator flaps raised according to two different modalities: "pedicled fasciocutaneous" and "transposition fasciocutaneous/cutaneous". Complete and stable coverage of the soft tissue losses was obtained in all cases with an inconspicuous, only aesthetic, donor-site defect. Superficial or partial necrosis of the tip of the flap, due to venous congestion, was observed in 2 cases of "pedicled fasciocutaneous flap". An additional surgical procedure was required in only one of these cases. In our series all 9 patients who had a transposition flap, underwent routinely a preoperative echo color Doppler investigation to identify the main perforators. In only one case did the Doppler investigation fail to accurately locate the perforator. Local perforator flaps allow the coverage of medium size defects in the upper extremity, can be raised with a relatively simple surgical technique, have a high success rate and good aesthetic results without functional impairment. In the light of this they can be considered among the surgical choices to resurface complex soft tissue defects of the upper extremity. Preoperative identification of the perforators in case of "transposition flaps" greatly facilitates the operation. In our experience echo color Doppler investigations provided reliable results. PMID:20024864

  13. Classification of Posture in Poststroke Upper Limb Spasticity: A Potential Decision Tool for Botulinum Toxin A Treatment?

    ERIC Educational Resources Information Center

    Hefter, Harald; Jost, Wolfgang H.; Reissig, Andrea; Zakine, Benjamin; Bakheit, Abdel Magid; Wissel, Jorg

    2012-01-01

    A significant percentage of patients suffering from a stroke involving motor-relevant central nervous system regions will develop a spastic movement disorder. Hyperactivity of different muscle combinations forces the limbs affected into abnormal postures or movement patterns. As muscular hyperactivity can effectively and safely be treated with

  14. Classification of Posture in Poststroke Upper Limb Spasticity: A Potential Decision Tool for Botulinum Toxin A Treatment?

    ERIC Educational Resources Information Center

    Hefter, Harald; Jost, Wolfgang H.; Reissig, Andrea; Zakine, Benjamin; Bakheit, Abdel Magid; Wissel, Jorg

    2012-01-01

    A significant percentage of patients suffering from a stroke involving motor-relevant central nervous system regions will develop a spastic movement disorder. Hyperactivity of different muscle combinations forces the limbs affected into abnormal postures or movement patterns. As muscular hyperactivity can effectively and safely be treated with…

  15. Range of Motion Requirements for Upper-Limb Activities of Daily Living

    PubMed Central

    Walters, Lisa Smurr; Cowley, Jeffrey; Wilken, Jason M.; Resnik, Linda

    2016-01-01

    OBJECTIVE. We quantified the range of motion (ROM) required for eight upper-extremity activities of daily living (ADLs) in healthy participants. METHOD. Fifteen right-handed participants completed several bimanual and unilateral basic ADLs while joint kinematics were monitored using a motion capture system. Peak motions of the pelvis, trunk, shoulder, elbow, and wrist were quantified for each task. RESULTS. To complete all activities tested, participants needed a minimum ROM of ?65/0/105 for humeral plane angle (horizontal abductionadduction), 0108 for humeral elevation, ?55/0/79 for humeral rotation, 0121 for elbow flexion, ?53/0/13 for forearm rotation, ?40/0/38 for wrist flexionextension, and ?28/0/38 for wrist ulnarradial deviation. Peak trunk ROM was 23 lean, 32 axial rotation, and 59 flexionextension. CONCLUSION. Full upper-limb kinematics were calculated for several ADLs. This methodology can be used in future studies as a basis for developing normative databases of upper-extremity motions and evaluating pathology in populations. PMID:26709433

  16. Musculoskeletal stress markers in Natufian hunter-gatherers and Neolithic farmers in the Levant: the upper limb.

    PubMed

    Eshed, Vered; Gopher, Avi; Galili, Ehud; Hershkovitz, Israel

    2004-04-01

    This paper attempts to quantify the changes in activity patterns of early farming populations in the Levant through the musculoskeletal stress markers (MSM) of the upper limb as seen in skeletal remains. The transition to an agricultural way of life resulted in higher loads on the upper limb in Neolithic populations compared to the Natufian hunter-gatherer populations that preceded them. The MSM pattern for males and females indicates a gender-based division of labor both in the Natufian and the Neolithic. It may also suggest that people in the Neolithic period were engaged in different (new) activities and occupations compared to the Natufian. PMID:15022359

  17. A Wrist and Finger Force Sensor Module for Use During Movements of the Upper Limb in Chronic Hemiparetic Stroke

    PubMed Central

    Miller, Laura C.; Ruiz-Torres, Ricardo; Stienen, Arno H. A.

    2010-01-01

    Previous studies using robotic devices that focus on the wrist/fingers following stroke provide an incomplete picture of movement dysfunction because they do not consider the abnormal joint torque coupling that occurs during progressive shoulder abduction loading in the paretic upper limb. This letter introduces a device designed to measure isometric flexion/extension forces generated by the fingers, wrist, and thumb during robot-mediated 3-D dynamic movements of the upper limb. Validation data collected from eight participants with chronic hemiparetic stroke are presented in this paper. PMID:19567336

  18. Reflex effects from high threshold neck muscle afferents on hind limb extensor gamma motoneurones in the cat.

    PubMed

    Ellaway, P H; Murthy, K S

    1984-01-01

    The supra-segmental control of hind limb gamma motoneurones from neck muscle receptors has been studied in decerebrated and in spinal cats. Stretch of individual dorsal neck muscles was not an adequate stimulus for evoking long spinal reflexes to gamma motoneurones of gastrocnemius-soleus (GS) muscles unless the stretch was maximal or excessive. Pressure applied to the neck muscles, or intramuscular injections of KCl solution (0.1 ml, 5%), did affect the discharge of GS gamma motoneurones. Excitation was more evident than inhibition. We conclude that the long spinal reflex effects originate from high threshold mechanoreceptors, or nociceptors, rather than muscle spindles. PMID:6723842

  19. Technological platform for biomechanical analysis of static and dynamic tests of upper and lower limbs.

    PubMed

    Alvarado, Rodrigo; Chairez, Isaac; Garcia, Alejandro; Luviano-Jurez, Alberto; Rivera, Adriana; Rodriguez, Alfredo; Gonzalez, Neftali

    2010-01-01

    One of the most important elements for the rehabilitation process regards to the correct evaluation of the biomechanical and the electrophysiological responses. This evaluation must be done during the therapy. In general, the improvements achieved by the treatment are slightly and difficult to be distinguished. This is a difficult task when the changes in the signals obtained by the bio-amplifiers (EMG, electro-goniometry, etc) are evaluated by a wired system because the patient cannot interact with its environment freely. The present work tackles the design, construction and implementation of a platform to carry out biomechanical analysis for upper and lower limbs. The included variables in the biomechanical system are the angular position, linear acceleration, electromyography signals and force executed by the limbs. The designed scheme considers the wireless monitoring of relevant signals; such variables allow us to analyze the effectiveness achieved by the therapy. Processing and data exhibition are carry out in a personal computer. Two application examples regarding the biomechanical wrist evaluation and the EMG correlation are presented. Nonlinear algorithms to analyze the information obtained in the system are used to evaluate the biomechanical responses produced in different patients. PMID:21095678

  20. Design and analysis of an underactuated anthropomorphic finger for upper limb prosthetics.

    PubMed

    Omarkulov, Nurdos; Telegenov, Kuat; Zeinullin, Maralbek; Begalinova, Ainur; Shintemirov, Almas

    2015-08-01

    This paper presents the design of a linkage based finger mechanism ensuring extended range of anthropomorphic gripping motions. The finger design is done using a path-point generation method based on geometrical dimensions and motion of a typical index human finger. Following the design description, and its kinematics analysis, the experimental evaluation of the finger gripping performance is presented using the finger 3D printed prototype. The finger underactuation is achieved by utilizing mechanical linkage system, consisting of two crossed four-bar linkage mechanisms. It is shown that the proposed finger design can be used to design a five-fingered anthropomorphic hand and has the potential for upper limb prostheses development. PMID:26736795

  1. Successful Revascularization of Near Total Amputation of the Upper Limb at the Sultan Qaboos Hospital, Salalah

    PubMed Central

    Nanda, Vipul; Alsafy, Taif; Jacob, Joe; Mohan, Lalit

    2009-01-01

    Severe crush injuries to the upper limb may require a formal amputation with devastating consequences to the patient. We report a patient with a near total amputation at the level of mid-forearm who underwent revascularization and salvage of his hand. The operative details of this case are described. It is the first time that such a patient has been treated successfully by plastic surgeons and orthopedic surgeons at the Sultan Qaboos Hospital, Salalah. Awareness of the possibility of salvage should be spread among health care personnel as well as the need for immediate attention by a multispeciality team. Literature related to the operative technique, contraindications and long term results is reviewed. PMID:22303510

  2. Development of Quasi-3DOF upper limb rehabilitation system using ER brake: PLEMO-P1

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Fukushima, K.; Furusho, J.; Ozawa, T.

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. However, almost all the devices are active-type (motor-driven) haptic devices and they basically require high-cost safety system compared to passive-type (brake-based) devices. In this study, we developed a new practical haptic device 'PLEMO-P1'; this system adopted ER brakes as its force generators. In this paper, the mechanism of PLEMO-P1 and its software for a reaching rehabilitation are described.

  3. Modeling and design of a tendon actuated soft robotic exoskeleton for hemiparetic upper limb rehabilitation.

    PubMed

    Nycz, Christopher J; Delph, Michael A; Fischer, Gregory S

    2015-08-01

    Robotic technology has recently been explored as a means to rehabilitate and assist individuals suffering from hemiparesis of their upper limbs. Robotic approaches allow for targeted rehabilitation routines which are more personalized and adaptable while providing quantitative measurements of patient outcomes. Development of these technologies into inherently safe and portable devices has the potential to extend the therapy outside of the clinical setting and into the patient's home with benefits to the cost and accessibility of care. To this end, a soft, cable actuated robotic glove and sleeve was designed, modeled, and constructed to provide assistance of finger and elbow movements in a way that mimics the biological function of the tendons. The resulting design increases safety through greater compliance as well as greater tolerance for misalignment with the user's skeletal frame over traditional rigid exoskeletons. Overall this design provides a platform to expand and study the concepts around soft robotic rehabilitation. PMID:26737143

  4. Perceived discomfort functions based on joint moment for various joint motion directions of the upper limb.

    PubMed

    Chihara, Takanori; Izumi, Taiki; Seo, Akihiko

    2014-03-01

    The aim of the present study was to formulate the relationship between the perceived discomfort and the joint moment ratio for twelve joint motion directions of the upper limb by considering the between-subject variability, and to investigate the effect of joint motion direction. Three approximation models (i.e., linear, exponential, and logistic function models) were compared in terms of the accuracy of predicting the perceived discomfort, and the logistic function was selected because its average error was lowest. The concept of L-R fuzzy number was used to consider the individual variability of perceived discomfort, and a simplified distribution of perceived discomfort was represented. Cluster analysis showed that the twelve discomfort functions formed two clusters: one for elbow flexion and a second for the remaining joint motions. The data show that elbow flexion is more sensitive than other joint motions to increases in the joint moment ratio. PMID:23684117

  5. [Evidence based prevention and upper limb work-related musculoskeletal disorders].

    PubMed

    Bonfiglioli, R; Farioli, A; Mattioli, S; Violante, F S

    2008-01-01

    To evaluate interventions for primary prevention of Upper limb Work-related Musculoskeletal Disorders (UWMSD) we conducted a literature search from the biomedical database Medline and the Cochrane Collaboration Occupational Health Field. A total of 41 studies were selected: the majority investigated the effect of interventions among office workers, few involved industrial workplaces. Studies were characterized by a wide range of interventions (engineering, administrative, ergonomic training) and methodological heterogeneity (in the study design and outcome measures). Only four studies examine interventions for the prevention of specific outcomes (Carpal Tunnel Syndrome and Hand Arm Vibration Syndrome). At present, the multidimensional approach of interventions and the poor outcome definitions hamper the isolation of the potentially effective component of the intervention. Future intervention studies should be based on well defined risk assessment and outcome measures, rigorous and long-term study design. Only strong levels of evidence could be the base of policy recommendations. PMID:19288786

  6. Robotic upper limb rehabilitation after acute stroke by NeReBot: evaluation of treatment costs.

    PubMed

    Stefano, Masiero; Patrizia, Poli; Mario, Armani; Ferlini, Gregorio; Rizzello, Roberto; Rosati, Giulio

    2014-01-01

    Stroke is the first cause of disability. Several robotic devices have been developed for stroke rehabilitation. Robot therapy by NeReBot is demonstrated to be an effective tool for the treatment of poststroke paretic upper limbs, able to improve the activities of daily living of stroke survivors when used both as additional treatment and in partial substitution of conventional rehabilitation therapy in the acute and subacute phases poststroke. This study presents the evaluation of the costs related to delivering such therapy, in comparison with conventional rehabilitation treatment. By comparing several NeReBot treatment protocols, made of different combinations of robotic and nonrobotic exercises, we show that robotic technology can be a valuable and economically sustainable aid in the management of poststroke patient rehabilitation. PMID:24967345

  7. Tracing the pathways of the upper limb of the North Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Burkholder, Kristin C.; Lozier, M. Susan

    2014-06-01

    The warm sea surface temperatures (SSTs) of the eastern subpolar gyre (ESG) in the North Atlantic have been widely linked to the climate and climate variability of Great Britain and northwestern Europe. The source of the ESG waters, and its heat, has long been identified as surface subtropical waters that flow into the subpolar gyre as part of the upper limb of the Meridional Overturning Circulation. Recent studies, however, have cast doubt on that identification. Here we use synthetic floats launched in a high-resolution ocean general circulation model to identify the supply waters to the ESG and to determine the influence of those pathways on SSTs in that climatically important region. The synthetic floats reveal two pathways: a dominant subsurface subtropical to subpolar pathway and a less traveled surface pathway carrying recirculated waters eastward from the western subpolar gyre. The former pathway supplies anomalously warm water to the region; the latter pathway supplies anomalously cool water.

  8. The application of shape memory actuators in anthropomorphic upper limb prostheses.

    PubMed

    dos Santos, Christian Mariani Lucas; da Cunha, Fransergio Leite; Dynnikov, Vladimir Ivanovitch

    2003-05-01

    In recent years, single crystal Cu-Al-Ni alloys with shape memory behavior (SMB) became generally commercialized. They achieved the level of extended application, including upper limb human prosthesis with anthropomorphic characteristics. An actuator based in single crystal Cu-Al-Ni alloy was tested as a prototype for prosthetic actuators. Their thermal cycle times remarkably define the actuator dynamics and the idea of preheating to reduce its response time was tested. To elaborate the heating conditions, the chemical composition of martensitic and austenitic single crystals, Cu-Al-Ni alloy samples were examined. The dynamic response of a martensitic actuator made with SMB and the power consumed with preheating was analyzed. It demonstrates that the presence of more elements in alloys may be fundamental to displace the heating diagram and to reduce the power consumed. PMID:12752212

  9. Hematuria following Botox treatment for upper limb spasticity: a case report

    PubMed Central

    Lo, Tony CT; Yeung, Stephen T; Lee, Sujin; Chang, Eric Y

    2015-01-01

    Hematuria is a documented side effect of botulinum toxin injection and has only been reported when it is used for overactive bladder. Here we report a rare case of hematuria following onabotulinumtoxin A (Botox) injection for upper limb spasticity in a 29-year-old male with a history of traumatic brain injury and hemophilia. Hematuria resolved without further complication after self-injection of factor VIII as recommended by his hematologist. Botulinum toxin binds peripheral cholinergic nerve endings to prevent acetylcholine and norepinephrine exocytosis. Studies have shown that both of these compounds are involved in antifibrinolytic activation, suggesting botulinum toxin may play a role in the coagulation cascade by preventing formation of fibrin. This is further supported by resolution of hematuria in our patient after self-injection of factor VIII. As such, botulinum toxin injection may result in mild spontaneous hemorrhage in patients with underlying hematological deficiencies. Further studies are needed to elucidate its effects in coagulation. PMID:26396542

  10. Activity-related sexual dimorphism in Alaskan foragers from Point Hope: Evidences from the upper limb.

    PubMed

    Ibez-Gimeno, Pere; Galts, Ignasi; Jordana, Xavier; Manyosa, Joan; Malgosa, Assumpci

    2015-01-01

    Ipiutak (100BCE-500CE) and Tigara (1200?-?1700CE) are two populations from Point Hope, Alaska. As commonly observed in forager communities, it may be expected males and females to have been involved in markedly different daily activities. Nevertheless, activity-related sexual dimorphism in these populations has been scarcely studied. Using humeral diaphyseal cross-sectional properties and forearm rotational efficiency, which are activity-dependent characteristics, we aim to assess differences between sexes and discuss what activities could have triggered them. Our results suggest that in Ipiutak males and females did not differ meaningfully in their cross-sectional properties. Conversely, in Tigara males had a greater rigidity of the entire humeral diaphysis than females, which suggests the existence of greater relative activity levels and more physically demanding tasks, possibly related to hunting activities. Concerning the differences between sexes in the forearm rotational efficiency, in Tigara females rotational efficiency in elbow flexion is maximal in a more supinated position than in males, which leads to an improvement of efficiency in those stages related to manipulation, and so improves the manipulative capacities of the upper limb. These differences in efficiency are caused by a more proximally oriented humeral medial epicondyle in females, which is thus confirmed to be a good feature to assess differences in labor. Therefore females in Tigara probably performed in a daily basis household activities, such as hide processing and other manipulative labors. In Ipiutak, the analysis of forearm rotational efficiency did not reveal differences between sexes. Overall, the results suggest that division of labor in Ipiutak was not as marked as in Tigara, where upper limb skeletal structure supports the idea that both sexes were involved in different daily activities. Nevertheless, the generalized lack of results in Ipiutak could be due to the small sample size, and thus interpretations should be considered with caution. PMID:26482552

  11. Early influence of auditory stimuli on upper-limb movements in young human infants: an overview

    PubMed Central

    Ferronato, Priscilla A. M.; Domellöf, Erik; Rönnqvist, Louise

    2014-01-01

    Given that the auditory system is rather well developed at the end of the third trimester of pregnancy, it is likely that couplings between acoustics and motor activity can be integrated as early as at the beginning of postnatal life. The aim of the present mini-review was to summarize and discuss studies on early auditory-motor integration, focusing particularly on upper-limb movements (one of the most crucial means to interact with the environment) in association with auditory stimuli, to develop further understanding of their significance with regard to early infant development. Many studies have investigated the relationship between various infant behaviors (e.g., sucking, visual fixation, head turning) and auditory stimuli, and established that human infants can be observed displaying couplings between action and environmental sensory stimulation already from just after birth, clearly indicating a propensity for intentional behavior. Surprisingly few studies, however, have investigated the associations between upper-limb movements and different auditory stimuli in newborns and young infants, infants born at risk for developmental disorders/delays in particular. Findings from studies of early auditory-motor interaction support that the developing integration of sensory and motor systems is a fundamental part of the process guiding the development of goal-directed action in infancy, of great importance for continued motor, perceptual, and cognitive development. At-risk infants (e.g., those born preterm) may display increasing central auditory processing disorders, negatively affecting early sensory-motor integration, and resulting in long-term consequences on gesturing, language development, and social communication. Consequently, there is a need for more studies on such implications. PMID:25278927

  12. Consumer concerns and the functional value of prostheses to upper limb amputees.

    PubMed

    Kejlaa, G H

    1993-12-01

    This paper reports a study of 66 upper limb amputees in County Funen, Denmark who were visited in their homes by the author. The purpose of the study was to evaluate the consumer concerns about their prostheses and to see if these were related to cessation of prosthetic use. It was also intended to estimate functional levels of both prosthetic users and non-users. The number of amputees investigated corresponds to the annual number of persons becoming upper limb amputees in Denmark. There were 3 prosthetic systems in use, two active systems and one passive system. At review there was a group of 18 amputees which did not use a prosthesis at all. It appeared that active and partially active users are younger persons with a relatively short time-lapse since amputation. Passive users are older persons with a long time-lapse since amputation. Only 4 out of 18 prosthetic non-users stopped prosthetic use as a consequence of prosthetic problems or discomfort. Active prostheses had the highest number of consumer problems. Most problems were concerned with the socket, and for the body powered prostheses also with the suspension and control system. It was shown that an awareness of the amputee's working conditions is important at the fitting stage, especially the daily working situation. As a consequence strictly individual fitting is needed with attention being given to the manner in which the individual will use the prosthesis. This investigation clearly shows that active fitting is a worthy effort. In daily living the active users have a superior performance over the passive and non-users. It was observed that amputees despite many years of training still have problems with activities of daily living, particularly in relation to independent functions. PMID:8134275

  13. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke.

    PubMed

    Frisoli, Antonio; Procopio, Caterina; Chisari, Carmelo; Creatini, Ilaria; Bonfiglio, Luca; Bergamasco, Massimo; Rossi, Bruno; Carboncini, Maria Chiara

    2012-01-01

    This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients' group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0-66 points), Modified Ashworth scale (MA, 0-60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of elbow and shoulder joints. PMID:22681653

  14. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    PubMed Central

    2012-01-01

    This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points), Modified Ashworth scale (MA, 0–60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of elbow and shoulder joints. PMID:22681653

  15. The contribution of upper limb and total body movement to adolescents' energy expenditure whilst playing Nintendo Wii.

    PubMed

    Graves, Lee E F; Ridgers, Nicola D; Stratton, Gareth

    2008-11-01

    Little research documents the contribution of upper limb and total body movement to energy expenditure (EE) during active video gaming. To address this, EE, heart rate (HR), and, upper limb and total body movement were assessed in 11- to 17-year-old adolescents whilst playing three active (Nintendo Wii) and one sedentary (XBOX 360) video games. Non-dominant upper limb activity, EE and HR were significantly greater during Wii Sports boxing [mean 267.2 (SD 115.8) J kg(-1) min(-1); 136.7 (24.5) beats min(-1)] than tennis or bowling (P < or = 0.044). For all active games hip activity best predicted EE (R (2) > or = 0.53), with two-measure models of HR and single-site activity data, and multi-site activity data, similarly explaining the variance in EE (R (2) > or = 0.64). The physiological cost of upper-body orientated active video games increased when movement of both upper limbs was encouraged. Improvements in EE explanatory power provide support for multi-site activity monitoring during unique, non-ambulatory activities. PMID:18607619

  16. Course review: the 4th Bob Huffstadt upper and lower limb flap dissection course.

    PubMed

    Dunne, Jonathan A

    2014-12-01

    The Bob Huffstadt course is a 2-day upper and lower limb flap dissection course held in Groningen, the Netherlands. The course is in English, with an international faculty of senior consultants from the Netherlands, Belgium, and United Kingdom. Faculty to participant ratio is 2:1, with 2 participants at each dissection table. The course is aimed at trainees in plastic surgery of all levels, and a comprehensive DVD is provided before the course, which demonstrates dissection of 35 flaps, ensuring those with little experience to have an understanding before dissection.This course offered a comprehensive overview with plenty of practical application. The course can greatly develop operative and theoretical knowledge, while also demonstrating a commitment for those wishing to pursue a career in plastic surgery. Longer courses are available; however, the 2-day course can already provide an excellent introduction for junior trainees. There are few flap courses in the United Kingdom and senior trainees may have difficulty acquiring a place as they book up well in advance. With reductions in operating time, trainees may welcome further experience and development of techniques in the dissection room.Most of both days were spent in the dissection room, raising flaps and receiving teaching from the faculty. Dissections included Foucher, Moberg, Becker, radial forearm, anterolateral thigh, and fibula flaps. Dissection specimens were fresh-frozen preparation, and 9 upper limb flaps were raised on the first day and 5 lower limb flaps on the second day. The faculty provided live demonstrations of perforator dissection, use of the hand-held Doppler, and tips and tricks. The last 2 hours of each day were spent with 2 lectures, including topics from the history of flaps and developments to challenging cases and reconstructive options.The course fee was 1000 euros, including a 5-course dinner, lunch on both days, and a drinks reception on the final evening. I would recommend this course unreservedly to trainees new to flaps, or those with greater experience. The course was supportive, friendly, and provided an excellent basis to develop reconstructive skills. There is a world-class faculty who can improve the knowledge and techniques of any trainee in attendance. PMID:24135639

  17. [Voluntary control of lengthened and intact limbs muscles tension under different force load ranges].

    PubMed

    Shein, A P; Krivoruchko, G A

    2012-01-01

    The data are presented which supporting the hypothesis of the presence of isometric force load zone, within which the subjects tested organize the voluntary muscle tension controlling with maximal accuracy and minimal specific power expenses, estimated indirectly, by the ratio of the surface electromyogram (EMG) area (integral of EMG) to force moment impulse. The asymmetries of the integral values of visual-and-motor tracking have been analyzed as well using isometric control organs in 23 patients at the age of 15-35 years (6 - males and 17 - females) in different periods after surgical elimination of lower limb length discrepancies. Poorly marked zone of minimization of integral discrete visual-and-motor tracking estimates, manifesting itself within 25-35% of the maximal force of the muscle group tested (foot dorsal flexors) has been noted in tested healthy subjects (26 normal males at the age of 19-39 years) and orthopedic patients (intact limb). The zone of "optimal' loads is marked more clearly on patients' lengthening side with the tendency towards its shift to the area of weaker forces. PMID:22679795

  18. Activity of lower limb muscles during treadmill running at different velocities

    PubMed Central

    Tsuji, Keiichi; Ishida, Hiroyasu; Oba, Kaori; Ueki, Tsutomu; Fujihashi, Yuichiro

    2015-01-01

    [Purpose] The present study aimed to determine changes in muscle activity while moving on a treadmill at various speeds. [Subjects] The activities of the left vastus lateralis, vastus medialis, hip adductors, lateral head of gastrocnemius, medial head gastrocnemius, soleus, and tibialis anterior of 10 healthy male university students were analyzed. [Methods] University students walked, jogged, and ran for 10 minutes each in random order, and then myogenic potentials were measured 10 minutes later for 30 seconds. The flexion angle of the lower limb upon initial contact, mid stance, and toe off were measured. [Results] The average walking, jogging, and running speeds were 3.6 0.4, 6.7 0.6, and 10.4 1.3?km/h, respectively. The average electromyographic activities of the vastus medial, tibialis anterior, medial head of gastrocnemius, and lateral head of gastrocnemius significantly differed. All muscles were more active during jogging and running than walking. Only the soleus was more active during running than walking, and the activities of the hip adductors and vastus lateralis did not significantly differ. [Conclusion] Velocity is faster and the angles of the lower limbs and ground reaction force (GRF) are larger during running than walking. The vastus medialis and soleus worked more easily according to the angle of the knee joint, whereas the tibialis anterior worked more easily at faster velocities and the medial and lateral heads of the gastrocnemius worked more easily with an increased GRF. PMID:25729166

  19. Is there a competition for oxygen availability between respiratory and limb muscles?

    PubMed

    de Bisschop, C; Beloka, S; Groepenhoff, H; van der Plas, M N; Overbeek, M J; Naeije, R; Guenard, H

    2014-06-01

    If a competition between the oxygen demands of limb and respiratory muscles happens, hypoxia may favor redistribution of blood flow from peripheral to respiratory muscles during heavy exercise. This hypothesis was tested in eighteen lowlanders and 27 highlanders at 4350m altitude. During an incremental exercise, the regional tissue oxygen saturation (rSO2) and tissue hemoglobin concentration ([Hbt]) of the intercostal muscles and vastus medialis were monitored simultaneously by NIRS. The intercostal and vastus medialis rSO2 values were lower at altitude than at sea level (-10%, p<0.001) and decreased similarly during incremental exercise (p<0.001) while [Hbt] values increased. At maximal exercise, the intercostal rSO2 was lower than the vastus medialis rSO2 in lowlanders (-7%, p<0.001). In highlanders the time patterns were similar but intercostal rSO2 was less decreased at exercise (p<0.05). Maximal exercise performed in hypoxia did not alter the kinetics of rSO2 and [Hbt] in peripheral muscles. These findings do not favor the hypothesis of blood flow redistribution. PMID:24582718

  20. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training

    PubMed Central

    Curado, Marco Rocha; Cossio, Eliana Garcia; Broetz, Doris; Agostini, Manuel; Cho, Woosang; Brasil, Fabricio Lima; Yilmaz, Oezge; Liberati, Giulia; Lepski, Guilherme

    2015-01-01

    Background Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies. Methods Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity. Results Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001). Conclusions Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice. PMID:26495971

  1. Effect of recovery mode following hind-limb suspension on soleus muscle composition in the rat

    NASA Technical Reports Server (NTRS)

    McNulty, A. L.; Otto, A. J.; Kasper, C. E.; Thomas, D. P.

    1992-01-01

    The purpose of this study was to compare the effects of two different recovery modes from hind-limb suspension-induced hypodynamia on whole body and muscle (soleus) growth as well as soleus composition and size changes of different fiber types within this same muscle. Following 28 days of tail-suspension, rats were returned to their cages and sedentarily recovered (HS), or were exercised by running on a treadmill 5 days/wk, at progressively increasing workloads (HR) for one month. Sedentary and running control groups of animals (CS, CR) were also evaluated for comparative purposes. The exercise program, which was identical for CR and HR groups, had no effect on body wt., soleus wt., soleus muscle composition or fiber size in CR rats. Atrophied soleus muscle and reduced soleus wt./body wt. ratio (both 60% of control) had returned to control values by day 7 of recovery in both suspended groups despite the fact that whole body wt. gain was significantly reduced (p less than 0.05) in HR as compared to HS rats. Atrophied soleus Type I fiber mean cross-sectional area in both HR and HS groups demonstrated similar and significant (p less than 0.01) increases during recovery. Increases in Type IIa and IIc fiber area during this same period were significant only in the HR group. While the percentage area of muscle composed of Type I fibers increased in both hypodynamic groups during recovery, the reduction in area percentage of muscle made up of Type IIa fibers was again only significant in the HR group.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. Budget impact analysis of botulinum toxin A therapy for upper limb spasticity in the United Kingdom

    PubMed Central

    Abogunrin, Seye; Hortobagyi, Linda; Remak, Edit; Dinet, Jerome; Gabriel, Sylvie; Bakheit, Abdel Magid O

    2015-01-01

    Background Botulinum toxin A (BoNT-A) is an effective treatment for patients with upper limb spasticity (ULS), which is a debilitating feature of upper motor neuron lesions. BoNT-A preparations available in the UK are associated with different costs. Methods We developed a budget impact model to assess the effect of changing market shares of different BoNT-A formulations abobotulinumtoxinA, onabotulinumtoxinA, and incobotulinumtoxinA and best supportive care, from the UK payer perspective, over a 5-year time horizon. Epidemiological and resource use data were derived from published literature and clinical expert opinion. One-way sensitivity analyses were performed to determine parameters most influential on budget impact. Results Base-case assumptions showed that an increased uptake of abobotulinumtoxinA resulted in a 5-year savings of 6,283,829. Treatment with BoNT-A costs less than best supportive care per patient per year, although treating a patient with onabotulinumtoxinA (20,861) and incobotulinumtoxinA (20,717) cost more per patient annually than with abobotulinumtoxinA (19,800). Sensitivity analyses showed that the most influential parameters on budget were percentage of cerebral palsy and stroke patients developing ULS, and the prevalence of stroke. Conclusion Study findings suggest that increased use of abobotulinumtoxinA for ULS in the UK could potentially reduce total ULS cost for the health system and society. PMID:25878510

  3. Redundancy resolution of the human arm and an upper limb exoskeleton.

    PubMed

    Kim, Hyunchul; Miller, Levi Makaio; Byl, Nancy; Abrams, Gary M; Rosen, Jacob

    2012-06-01

    The human arm has 7 degrees of freedom (DOF) while only 6 DOF are required to position the wrist and orient the palm. Thus, the inverse kinematics of an human arm has a nonunique solution. Resolving this redundancy becomes critical as the human interacts with a wearable robot and the inverse kinematics solution of these two coupled systems must be identical to guarantee an seamless integration. The redundancy of the arm can be formulated by defining the swivel angle, the rotation angle of the plane defined by the upper and lower arm around a virtual axis that connects the shoulder and wrist joints. Analyzing reaching tasks recorded with a motion capture system indicates that the swivel angle is selected such that when the elbow joint is flexed, the palm points to the head. Based on these experimental results, a new criterion is formed to resolve the human arm redundancy. This criterion was implemented into the control algorithm of an upper limb 7-DOF wearable robot. Experimental results indicate that by using the proposed redundancy resolution criterion, the error between the predicted and the actual swivel angle adopted by the motor control system is less then 5. PMID:22510944

  4. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles.

    PubMed

    Levin, Mindy F; Weiss, Patrice L; Keshner, Emily A

    2015-03-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality-based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback-based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522

  5. Sports Adaptations for Unilateral and Bilateral Upper-Limb Amputees: Archery/Badminton/Baseball/Softball/Bowling/Golf/Table Tennis.

    ERIC Educational Resources Information Center

    Cowart, Jim

    1979-01-01

    The booklet discusses sports adaptations for unilateral and bilateral upper limb amputees. Designs for adapted equipment are illustrated and information on adaptations are described for archery (including an archery release aid and a stationary bow holder); badminton (serving tray); baseball/softball (adaptations for catching, throwing, and…

  6. Three-Dimensional Upper Limb Movement Characteristics in Children with Hemiplegic Cerebral Palsy and Typically Developing Children

    ERIC Educational Resources Information Center

    Jaspers, Ellen; Desloovere, Kaat; Bruyninckx, Herman; Klingels, Katrijn; Molenaers, Guy; Aertbelien, Erwin; Van Gestel, Leen; Feys, Hilde

    2011-01-01

    The aim of this study was to measure which three-dimensional spatiotemporal and kinematic parameters differentiate upper limb movement characteristics in children with hemiplegic cerebral palsy (HCP) from those in typically developing children (TDC), during various clinically relevant tasks. We used a standardized protocol containing three reach

  7. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles

    PubMed Central

    Weiss, Patrice L.; Keshner, Emily A.

    2015-01-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522

  8. Electroencephalographic Changes of Brain Oscillatory Activity After Upper Limb Somatic Sensation Training in a Patient With Somatosensory Deficit After Stroke.

    PubMed

    Gandolfi, Marialuisa; Formaggio, Emanuela; Geroin, Christian; Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Waldner, Andreas; Manganotti, Paolo; Smania, Nicola

    2015-10-01

    The development of an innovative functional assessment procedure based on the combination of electroencephalography (EEG) and robot-assisted upper limb devices may provide new insights into the dynamics of cortical reorganization promoted by rehabilitation. The aim of this study was to evaluate changes in event-related synchronization/desynchronization (ERS/ERD) in alpha and beta bands in a patient with pure sensory stroke who underwent a specific rehabilitation program for somatic sensation recovery. A 49-year-old, right-handed woman (time since stroke, 12 months) with severe upper limb somatic sensation deficits was tested using validated clinical scales and a standardized video-EEG system combined with the Bi-Manu-Track robot-assisted arm trainer protocol. The patient underwent a 3-month home-based rehabilitation program for promoting upper limb recovery (1 hour a day for 5 days a week). She was tested before treatment, at 1-month, and at 3-month during treatment. Results showed progressive recovery of upper limb function over time. These effects were associated with specific changes in the modulation of alpha and beta event-related synchronization/desynchronization. This unique study provides new perspectives for the assessment of functional deficits and changes in cortical activity promoted by rehabilitation in poststroke patients. PMID:25185438

  9. Amplitude Manipulation Evokes Upper Limb Freezing during Handwriting in Patients with Parkinson’s Disease with Freezing of Gait

    PubMed Central

    Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Vercruysse, Sarah; Broeder, Sanne; Strouwen, Carolien; Swinnen, Stephan P.; Nieuwboer, Alice

    2015-01-01

    Background Recent studies show that besides freezing of gait (FOG), many people with Parkinson’s disease (PD) also suffer from freezing in the upper limbs (FOUL). Up to now, it is unclear which task constraints provoke and explain upper limb freezing. Objective To investigate whether upper limb freezing and other kinematic abnormalities during writing are provoked by (i) gradual changes in amplitude or by (ii) sustained amplitude generation in patients with and without freezing of gait. Methods Thirty-four patients with PD, including 17 with and 17 without FOG, performed a writing task on a touch-sensitive writing tablet requiring writing at constant small and large size as well as writing at gradually increasing and decreasing size. Patients of both groups were matched for disease severity, tested while ‘on’ medication and compared to healthy age-matched controls. Results Fifty upper limb freezing episodes were detected in 10 patients, including 8 with and 2 without FOG. The majority of the episodes occurred when participants had to write at small or gradually decreasing size. The occurrence of FOUL and the number of FOUL episodes per patient significantly correlated with the occurrence and severity of FOG. Patients with FOUL also showed a significantly smaller amplitude in the writing parts outside the freezing episodes. Conclusions Corroborating findings of gait research, the current study supports a core problem in amplitude control underlying FOUL, both in maintaining as well as in flexibly adapting the cycle size. PMID:26580556

  10. Three-Dimensional Upper Limb Movement Characteristics in Children with Hemiplegic Cerebral Palsy and Typically Developing Children

    ERIC Educational Resources Information Center

    Jaspers, Ellen; Desloovere, Kaat; Bruyninckx, Herman; Klingels, Katrijn; Molenaers, Guy; Aertbelien, Erwin; Van Gestel, Leen; Feys, Hilde

    2011-01-01

    The aim of this study was to measure which three-dimensional spatiotemporal and kinematic parameters differentiate upper limb movement characteristics in children with hemiplegic cerebral palsy (HCP) from those in typically developing children (TDC), during various clinically relevant tasks. We used a standardized protocol containing three reach…

  11. Determining Specificity of Motor Imagery Training for Upper Limb Improvement in Chronic Stroke Patients: A Training Protocol and Pilot Results

    ERIC Educational Resources Information Center

    Craje, Celine

    2010-01-01

    Motor imagery (MI) refers to the mental rehearsal of a movement without actual motor output. MI training has positive effects on upper limb recovery after stroke. However, until now it is unclear whether this effect is specific to the trained task or a more general motor skill improvement. This study was set up to advance our insights into the

  12. Effects of unilateral strength training and detraining on bone mineral mass and estimated mechanical characteristics of the upper limb bones in young women.

    PubMed

    Heinonen, A; Sievnen, H; Kannus, P; Oja, P; Vuori, I

    1996-04-01

    The aims of this study were to examine the effects of 12 months unilateral high-resistance strength training and 8-month detraining on bone mineral content (BMC), density (BMD) and estimated mechanical characteristics of upper limb bones, and also to estimate consequent loading induced strains on forearm bone shafts. Thirteen female physiotherapy students (mean 23.8 +/- 5.0 yrs, 166 +/- 7 cm, 64.4 +/- 7 cm, 64.4 +/- 13.3 kg) trained their left upper limbs with dumbbells on average 2.8 times per week for 12 months, followed by eight months detraining. Nineteen students served as controls (mean 25.7 +/- 5.2 yrs, 165 +/- 4 cm, 62.1 +/- 7.0 kg). BMC, BMD, and bone width and estimated cortical wall thickness (CWT) were measured at five different sites in both upper extremities (proximal humerus, humeral shaft, radial shaft, ulnar shaft, and distal forearm) using dual energy x-ray absorptiometry (DXA) scanner. In addition, cross-sectional moment of inertia (CSMI) was estimated from DXA data. The maximal isometric strength of the upper extremities was measured with an arm flexion-extension dynamometer. The training increased significantly the flexion strength by 14% (p = 0.001). During the detraining period, all measured strength values in the training group decreased in both limbs with respect to values after training. Despite the clear effect on muscular strength, no significant intergroup differences were observed in BMC, BMD, bone width, CWT, or CSMI values at any measured site after the training or detraining period. The estimated loading-induced strains remained within customary loading, and the change in strain level was only 15%. In conclusion, this study indicated that using high-resistance strength training may not provide an effective osteogenic stimulus for bone formation and geometric changes in upper limb bones of young, healthy, adult women. The interaction of bones and muscles may play an important and relatively unrecognized role in the development of bone strength, suggesting that the entire biomechanical environment should be carefully considered when evaluating the osteogenic efficiency of physical loading. PMID:8992880

  13. Dynamic analysis of the upper limb during activities of daily living: comparison of methodologies.

    PubMed

    Masjedi, Milad; Duffell, Lynsey D

    2013-12-01

    Often researchers use kinematics and kinetics to evaluate the effect of limb pathology. The net forces and moments that cause motion depend on kinematics, body segment parameters and the external loads applied. This study aimed to evaluate the discrepancies caused by different methods and assumptions of kinetic analysis. Dynamic analysis was performed on 12 subjects with no known pathology while performing 12 activities of daily living. The recursive Newton-Euler method, along with two robotic models containing 7 and 14 degrees of freedom representing the upper limb, was used to calculate the net forces and moments across the shoulder. The data were calculated using different body segment parameter values from the literature and, in order to concentrate on the effects of kinematics only, these results were presented as both a percentage of the body weight and a novel technique using constant body segment parameter. The greatest net forces and moments on the glenohumeral joint were observed for lifting a 2-kg shopping bag task (forces: 60 8 N and moments: 18 2 N m) and the lowest was observed for drinking (forces: 40 8 N and moments: 6 1 N m). Overall, the results from different techniques (recursive Newton-Euler vs robotic 14 degrees of freedom) were similar, while the 7-DoF model showed less agreement. The use of different body segment parameter values resulted in a maximum increase of 25% in the glenohumeral moment. Following normalisation of the body segment parameter, dynamic parameters were found to have less variation. In order to focus on the effect of variation in movement in dynamic study, it is therefore necessary to normalise the body segment parameter. PMID:24006042

  14. Skiing across the Greenland icecap: divergent effects on limb muscle adaptations and substrate oxidation.

    PubMed

    Helge, Jrn W; Lundby, Carsten; Christensen, Dirk L; Langfort, Jozef; Messonnier, Laurent; Zacho, Morten; Andersen, Jesper L; Saltin, Bengt

    2003-03-01

    This study investigates the adaptive response of the lower limb muscles and substrate oxidation during submaximal arm or leg exercise after a crossing of the Greenland icecap on cross-country skies. Before and after the 42-day expedition, four male subjects performed cycle ergometer and arm-cranking exercise on two separate days. On each occasion, the subjects exercised at two submaximal loads (arm exercise, 45 W and 100 W; leg exercise, 100 W and 200 W). In addition, peak oxygen uptake ((VO(2max))) was determined for both leg and arm exercise. Before and after the crossing, a muscle biopsy was obtained from the vastus lateralis and the triceps brachii muscles prior to exercise (N=3). After the crossing, body mass decreased by 5.7+/-0.5 kg (in four of four subjects), whereas (VO(2max)) was unchanged in the arm (3.1+/-0.2 l min(-1)) and leg (4.0+/-0.1 l min(-1)). Before the crossing, respiratory exchange ratio (RER) values were 0.84+/-0.02 and 0.96+/-0.02 during submaximal arm exercise and 0.82+/-0.02 and 0.91+/-0.01 during submaximal leg exercise at the low and high workloads, respectively. After the crossing, RER was lower (in three of four subjects) during arm exercise (0.74+/-0.02 and 0.81+/-0.01) but was higher (in three of four subjects) during leg exercise (0.92+/-0.02 and 0.96+/-0.01) at the low and high workloads, respectively. Citrate synthase and beta-hydroxy-acyl-CoA-dehydrogenase activity was decreased by approximately 29% in vastus lateralis muscle and was unchanged in triceps brachii muscle. Fat oxidation during submaximal arm exercise was enhanced without a concomitant increase in the oxidative capacity of the triceps brachii muscle after the crossing. This contrasted with decreased fat oxidation during leg exercise, which occurred parallel to a decreased oxidative capacity in vastus lateralis muscle. Although the number of subjects is limited, these results imply that the adaptation pattern after long-term, prolonged, low-intensity, whole body exercise may vary dramatically among muscles. PMID:12582149

  15. Prosthetic management of children in The Netherlands with upper limb deficiencies.

    PubMed

    Kuyper, M A; Breedijk, M; Mulders, A H; Post, M W; Prevo, A J

    2001-12-01

    The aim of the study was to assess which children with congenital and acquired upper limb deficiencies were fitted with prostheses, what types of prostheses were prescribed as first, second and third prostheses, at what age prostheses were first prescribed and how long the children wore their prostheses. The design was a retrospective chart review at De Hoogstraat Rehabilitation Centre, Utrecht (The Netherlands). Medical files of all patients with congenital or acquired upper limb deficiencies who visited the outpatient clinic between 1972 and 1996 were reviewed, collecting data on patient characteristics, prosthesis prescription and use of prostheses. The group included 224 children, of whom 206 (92%) had congenital deficiencies. Of all children with unilateral congenital deficiencies, 54% had been fitted with prostheses, against 3% of all children with bilateral congenital deficiencies and 67% of all children with acquired deficiencies. In the congenital group, it was children with transverse defects of one-third or two-thirds of the forearm who had most frequently had prostheses fitted (85% of the children). Most of the children with unilateral congenital deficiencies had received passive prostheses as their first prostheses (80 of the 90 prescribed prostheses); children with acquired defects usually had active prostheses (8 of the 12 prescribed prostheses). Body-powered prostheses were most commonly prescribed as the second type of prosthesis. In the group of 119 children who had been seen before the age of 4 years and had been followed for at least three years, 63 had been fitted with one or more prostheses at a mean age of 2.6 (SD 2.5) years. Of the 46 children with congenital defects, 30 had been fitted with prostheses, and at the age of 12, two-thirds of them still used their prostheses (63%, 19/30). "De Hoogstraat" rehabilitation centre uses a restrained prosthesis prescription policy, depending on the type of deficiency and the expected functional benefits. Data on prosthesis use are encouraging, although a follow-up study is required to determine the functional outcome for prosthesis users and non-users. PMID:11860097

  16. Function and position determine relative proportions of different fiber types in limb muscles of the lizard Tropidurus psammonastes.

    PubMed

    Pereira, Anieli G; Abdala, Virginia; Kohlsdorf, Tiana

    2015-02-01

    Skeletal muscles can be classified as flexors or extensors according to their function, and as dorsal or ventral according to their position. The latter classification evokes their embryological origin from muscle masses initially divided during limb development, and muscles sharing a given position do not necessarily perform the same function. Here, we compare the relative proportions of different fiber types among six limb muscles in the lizard Tropidurus psammonastes. Individual fibers were classified as slow oxidative (SO), fast glycolytic (FG) or fast oxidative-glycolytic (FOG) based on mitochondrial content; muscles were classified according to position and function. Mixed linear models considering one or both effects were compared using likelihood ratio tests. Variation in the proportion of FG and FOG fibers is mainly explained by function (flexor muscles have on average lower proportions of FG and higher proportions of FOG fibers), while variation in SO fibers is better explained by position (they are less abundant in ventral muscles than in those developed from a dorsal muscle mass). Our results clarify the roles of position and function in determining the relative proportions of the various muscle fibers and provide evidence that these factors may differentially affect distinct fiber types. PMID:25456976

  17. Condensation of Plasmid DNA Enhances Mitochondrial Association in Skeletal Muscle Following Hydrodynamic Limb Vein Injection

    PubMed Central

    Yasuzaki, Yukari; Yamada, Yuma; Fukuda, Yutaka; Harashima, Hideyoshi

    2014-01-01

    Mitochondrial gene therapy and diagnosis have the potential to provide substantial medical benefits. However, the utility of this approach has not yet been realized because the technology available for mitochondrial gene delivery continues to be a bottleneck. We previously reported on mitochondrial gene delivery in skeletal muscle using hydrodynamic limb vein (HLV) injection. HLV injection, a useful method for nuclear transgene expression, involves the rapid injection of a large volume of naked plasmid DNA (pDNA). Moreover, the use of a condensed form of pDNA enhances the nuclear transgene expression by the HLV injection. The purpose of this study was to compare naked pDNA and condensed pDNA for mitochondrial association in skeletal muscle, when used in conjunction with HLV injection. PCR analysis showed that the use of condensed pDNA rather than naked pDNA resulted in a more effective mitochondrial association with pDNA, suggesting that the physicochemical state of pDNA plays a key role. Moreover, no mitochondrial toxicities in skeletal muscle following the HLV injection of condensed pDNA were confirmed, as evidenced by cytochrome c oxidase activity and mitochondrial membrane potential. These findings have the potential to contribute to the development for in vivo mitochondrial gene delivery system. PMID:25195732

  18. Unilateral upper-limb loss: satisfaction and prosthetic-device use in veterans and servicemembers from Vietnam and OIF/OEF conflicts.

    PubMed

    McFarland, Lynne V; Hubbard Winkler, Sandra L; Heinemann, Allen W; Jones, Melissa; Esquenazi, Alberto

    2010-01-01

    Prosthetic use and satisfaction in wounded servicemembers and veterans with unilateral upper-limb loss has not been thoroughly explored. Through a national survey, we enrolled 47 participants from the Vietnam conflict and 50 from Operation Iraqi Freedom/Operation Enduring Freedom (OIF/OEF) with combat-associated major unilateral upper-limb loss. Upper-limb prosthetic devices were used by 70% of the Vietnam group and 76% of the OIF/OEF group. Mechanical/body-powered upper-limb devices were favored by the Vietnam group, while a combination of myoelectric/hybrid and mechanical/body-powered devices were favored by the OIF/OEF group. Upper-limb devices were completely abandoned in 30% of the Vietnam and 22% of the OIF/OEF groups. Abandonment was more frequent for transhumeral and more proximal levels (42% of Vietnam and 40% of OIF/OEF) than more distal limb-loss levels. Upper-limb prostheses were rejected because of dissatisfaction with the device by significantly fewer (23%) members of the Vietnam group than the OIF/OEF group (45%) (p < 0.001). Most common reasons for rejection included pain, poor comfort, and lack of functionality. A significant paradigm shift has been noted in the OIF/OEF group, who use a greater number and diversity of upper-limb prostheses than the Vietnam group. PMID:20803400

  19. Three-dimensional kinematic analysis of upper and lower limb motion during gait of post-stroke patients

    PubMed Central

    Carmo, A.A.; Kleiner, A.F.R.; Lobo da Costa, P.H.; Barros, R.M.L.

    2012-01-01

    The aim of this study was to analyze the alterations of arm and leg movements of patients during stroke gait. Joint angles of upper and lower limbs and spatiotemporal variables were evaluated in two groups: hemiparetic group (HG, 14 hemiparetic men, 53 10 years) and control group (CG, 7 able-bodied men, 50 4 years). The statistical analysis was based on the following comparisons (P ? 0.05): 1) right versus left sides of CG; 2) affected (AF) versus unaffected (UF) sides of HG; 3) CG versus both the affected and unaffected sides of HG, and 4) an intracycle comparison of the kinematic continuous angular variables between HG and CG. This study showed that the affected upper limb motion in stroke gait was characterized by a decreased range of motion of the glenohumeral (HG: 6.3 4.5, CG: 20.1 8.2) and elbow joints (AF: 8.4 4.4, UF: 15.6 7.6) on the sagittal plane and elbow joint flexion throughout the cycle (AF: 68.2 0.4, CG: 46.8 2.7). The glenohumeral joint presented a higher abduction angle (AF: 14.2 1.6, CG: 11.5 4.0) and a lower external rotation throughout the cycle (AF: 4.6 1.2, CG: 22.0 3.0). The lower limbs showed typical alterations of the stroke gait patterns. Thus, the changes in upper and lower limb motion of stroke gait were identified. The description of upper limb motion in stroke gait is new and complements gait analysis. PMID:22473324

  20. Three-dimensional kinematic analysis of upper and lower limb motion during gait of post-stroke patients.

    PubMed

    Carmo, A A; Kleiner, A F R; Costa, P H Lobo da; Barros, R M L

    2012-06-01

    The aim of this study was to analyze the alterations of arm and leg movements of patients during stroke gait. Joint angles of upper and lower limbs and spatiotemporal variables were evaluated in two groups: hemiparetic group (HG, 14 hemiparetic men, 53 10 years) and control group (CG, 7 able-bodied men, 50 4 years). The statistical analysis was based on the following comparisons (P ? 0.05): 1) right versus left sides of CG; 2) affected (AF) versus unaffected (UF) sides of HG; 3) CG versus both the affected and unaffected sides of HG, and 4) an intracycle comparison of the kinematic continuous angular variables between HG and CG. This study showed that the affected upper limb motion in stroke gait was characterized by a decreased range of motion of the glenohumeral (HG: 6.3 4.5, CG: 20.1 8.2) and elbow joints (AF: 8.4 4.4, UF: 15.6 7.6) on the sagittal plane and elbow joint flexion throughout the cycle (AF: 68.2 0.4, CG: 46.8 2.7). The glenohumeral joint presented a higher abduction angle (AF: 14.2 1.6, CG: 11.5 4.0) and a lower external rotation throughout the cycle (AF: 4.6 1.2, CG: 22.0 3.0). The lower limbs showed typical alterations of the stroke gait patterns. Thus, the changes in upper and lower limb motion of stroke gait were identified. The description of upper limb motion in stroke gait is new and complements gait analysis. PMID:22473324

  1. Physiological properties of tandem muscle spindles in neck and hind-limb muscles.

    PubMed

    Price, R F; Dutia, M B

    1989-01-01

    Although tandem muscle spindle complexes are found in small but significant numbers in most muscles, experimental investigation of their properties has been problematic because of the difficulty of distinguishing their afferents from those of "normal" single spindles. Of particular interest are the afferents from b2c capsules of tandem spindles, which unlike normal spindles contain only a static b2 nuclear bag fibre and some nuclear chain fibres. The absence of a dynamic b1 nuclear bag fibre from b2c spindles has engendered much speculation as to their response properties and their possible role in motor control. We have recently developed a method for the identification of afferents from b2c spindles in electrophysiological experiments, using infusion or topical application of succinylcholine (SCh). SCh causes the contraction of the dynamic b1 and static b2 nuclear bag intrafusal fibres, and paralyses the nuclear chain fibres. Afferents from b2c spindles are characterized by a strong "biasing" of their discharge rate to about 100 impulses per second (i.p.s.) when activated by SCh (reflecting the contraction of the static b2 fibre), while primary afferents from normal b1b2c spindles show a large increase in dynamic sensitivity as well as "biasing" (reflecting the contraction of both dynamic b1 and static b2 bag fibres). Histological examination of tenuissimus spindles activated by SCh has confirmed this relationship between the pattern of activation by SCh and the number of intrafusal nuclear bag fibres in the spindle. In this paper we review the value of SCh as a means of testing spindle afferents for functional inputs from sensory terminals on the nuclear bag fibres, and discuss the properties of b2c afferents from tandem spindles in the context of their possible function. PMID:2699377

  2. Upper-limb kinematic reconstruction during stroke robot-aided therapy.

    PubMed

    Papaleo, E; Zollo, L; Garcia-Aracil, N; Badesa, F J; Morales, R; Mazzoleni, S; Sterzi, S; Guglielmelli, E

    2015-09-01

    The paper proposes a novel method for an accurate and unobtrusive reconstruction of the upper-limb kinematics of stroke patients during robot-aided rehabilitation tasks with end-effector machines. The method is based on a robust analytic procedure for inverse kinematics that simply uses, in addition to hand pose data provided by the robot, upper arm acceleration measurements for computing a constraint on elbow position; it is exploited for task space augmentation. The proposed method can enable in-depth comprehension of planning strategy of stroke patients in the joint space and, consequently, allow developing therapies tailored for their residual motor capabilities. The experimental validation has a twofold purpose: (1) a comparative analysis with an optoelectronic motion capturing system is used to assess the method capability to reconstruct joint motion; (2) the application of the method to healthy and stroke subjects during circle-drawing tasks with InMotion2 robot is used to evaluate its efficacy in discriminating stroke from healthy behavior. The experimental results have shown that arm angles are reconstructed with a RMSE of 8.3 10(-3) rad. Moreover, the comparison between healthy and stroke subjects has revealed different features in the joint space in terms of mean values and standard deviations, which also allow assessing inter- and intra-subject variability. The findings of this study contribute to the investigation of motor performance in the joint space and Cartesian space of stroke patients undergoing robot-aided therapy, thus allowing: (1) evaluating the outcomes of the therapeutic approach, (2) re-planning the robotic treatment based on patient needs, and (3) understanding pathology-related motor strategies. PMID:25861746

  3. Autobiographical Memory and Psychological Distress in a Sample of Upper-Limb Amputees

    PubMed Central

    Luchetti, Martina; Montebarocci, Ornella; Rossi, Nicolino; Cutti, Andrea G.; Sutin, Angelina R.

    2014-01-01

    Amputation is a traumatic and life-changing event that can take years to adjust to. The present study (a) examines psychological adjustment in a specific trauma-exposed sample, (b) compares the phenomenology (e.g., vividness) of amputation-related memories to more recent memories, and (c) tests whether memory phenomenology is associated with psychological distress. A total of 24 upper-limb amputees recalled two autobiographical memories–an amputation-related memory and a recent memory–and rated the phenomenological qualities of each memory, including Vividness, Coherence, Emotional Intensity, Visual Perspective, and Distancing. Participants also completed self-rated measures of psychological distress and personality. The sample was generally well adjusted; participants showed no relevant symptoms of anxiety and depression, and personality scores were similar to the general population. There were no significant differences in phenomenology between the two types of memories recalled. Even though amputation-related memories were, on average, almost 20 years older than the recent memories, they retained their intense phenomenology. Despite the intensity of the memory, none of the phenomenological dimensions were associated with psychological distress. It is worth to further define which dimensions of phenomenology characterize memories of traumatic events, and their association with individuals' psychological reactions. PMID:24924483

  4. Two-dimensional myoelectric control of a robotic arm for upper limb amputees

    NASA Astrophysics Data System (ADS)

    Lpez Celani, Natalia M.; Soria, Carlos M.; Orosco, Eugenio C.; di Sciascio, Fernando A.; Valentinuzzi, Max E.

    2007-11-01

    Rehabilitation engineering and medicine have become integral and significant parts of health care services, particularly and unfortunately in the last three or four decades, because of wars, terrorism and large number of car accidents. Amputees show a high rate of rejection to wear prosthetic devices, often because of lack of an adequate period of adaptation. A robotic arm may appear as a good preliminary stage. To test the hypothesis, myoelectric signals from two upper limb amputees and from four normal volunteers were fed, via adequate electronic conditioning and using MATLAB, to an industrial robotic arm. Proportional strength control was used for two degrees of freedom (x-y plane) by means of eight signal features of control (four traditional statistics plus energy, integral of the absolute value, Willison's amplitude, waveform length and envelope) for comparison purposes, and selecting the best of them as final reference. Patients easily accepted the system and learned in short time how to operate it. Results were encouraging so that valuable training, before prosthesis is implanted, appears as good feedback; besides, these patients can be hired as specialized operators in semi-automatized industry.

  5. Analysis of occupational stress in a high fashion clothing factory with upper limb biomechanical overload.

    TOXLINE Toxicology Bibliographic Information

    Forcella L; Bonfiglioli R; Cutilli P; Siciliano E; Di Donato A; Di Nicola M; Antonucci A; Di Giampaolo L; Boscolo P; Violante FS

    2012-07-01

    PURPOSE: To study job stress and upper limb biomechanical overload due to repetitive and forceful manual activities in a factory producing high fashion clothing.METHODS: A total of 518 workers (433 women and 85 men) were investigated to determine anxiety, occupational stress (using the Italian version of the Karasek Job Content Questionnaire) and perception of symptoms (using the Italian version of the Somatization scale of Symptom Checklist SCL-90). Biomechanical overload was analyzed using the OCRA Check list.RESULTS: Biomechanical assessment did not reveal high-risk jobs, except for cutting. Although the perception of anxiety and job insecurity was within the normal range, all the workers showed a high level of job strain (correlated with the perception of symptoms) due to very low decision latitude.CONCLUSION: Occupational stress resulted partially in line with biomechanical risk factors; however, the perception of low decision latitude seems to play a major role in determining job strain. Interactions between physical and psychological factors cannot be demonstrated. Anyway, simultaneous long-term monitoring of occupational stress features and biomechanical overload could guide workplace interventions aimed at reducing the risk of adverse health effects.

  6. Usability testing of gaming and social media applications for stroke and cerebral palsy upper limb rehabilitation.

    PubMed

    Valds, Bulmaro A; Hilderman, Courtney G E; Hung, Chai-Ting; Shirzad, Navid; Van der Loos, H F Machiel

    2014-01-01

    As part of the FEATHERS (Functional Engagement in Assisted Therapy Through Exercise Robotics) project, two motion tracking and one social networking applications were developed for upper limb rehabilitation of stroke survivors and teenagers with cerebral palsy. The project aims to improve the engagement of clients during therapy by using video games and a social media platform. The applications allow users to control a cursor on a personal computer through bimanual motions, and to interact with their peers and therapists through the social media. The tracking applications use either a Microsoft Kinect or a PlayStation Eye camera, and the social media application was developed on Facebook. This paper presents a usability testing of these applications that was conducted with therapists from two rehabilitation clinics. The "Cognitive Walkthrough" and "Think Aloud" methods were used. The objectives of the study were to investigate the ease of use and potential issues or improvements of the applications, as well as the factors that facilitate and impede the adoption of technology in current rehabilitation programs. PMID:25570770

  7. Time pressure and attention allocation effect on upper limb motion steadiness.

    PubMed

    Liu, Sicong; Eklund, Robert C; Tenenbaum, Gershon

    2015-01-01

    Following ironic process theory (IPT), the authors aimed at investigating how attentional allocation affects participants' upper limb motion steadiness under low and high levels of mental load. A secondary purpose was to examine the validity of skin conductance level in measuring perception of pressure. The study consisted of 1 within-participant factor (i.e., phase: baseline, test) and 4 between-participant factors (i.e., gender: male, female; mental load: fake time constraints, no time constraints; attention: positive, suppressive; order: baseline → → → test, test → → baseline). Eighty college students (40 men and 40 women, Mage = 20.20 years, SD(age) = 1.52 years) participated in the study. Gender-stratified random assignment was employed in a 2 × 2 × 2 × 2 × 2 mixed experimental design. The findings generally support IPT but its predictions on motor performance under mental load may not be entirely accurate. Unlike men, women's performance was not susceptible to manipulations of mental load and attention allocation. The validity of skin conductance readings as an index of pressure perception was called into question. PMID:25425341

  8. Primary Cutaneous Diffuse Large B-Cell Lymphoma of the Upper Limb: A Fascinating Entity

    PubMed Central

    Gopal, Manoj Madakshira; Malik, Ajay

    2013-01-01

    Primary cutaneous lymphomas are defined as lymphoid neoplasms that present themselves clinically on the skin and do not have extra-cutaneous disease, when the diagnosis is made or even after 6 months of the diagnosis. Primary cutaneous lymphomas of B-cells are less frequent than lymphomas of T-cells. Primary B-cell lymphomas have a better prognosis than secondary B-cell lymphomas. Primary B-cell cutaneous lymphomas are classified into five types according to the World Health Organization and European Organization for Research and Treatment of Cancer classification. The primary diffuse large B-cell cutaneous lymphoma leg type corresponds to approximately 5-10% of the B-cell cutaneous lymphomas. It is predominantly seen in elderly people and has a female preponderance. Skin lesions can be single, multiple, and even grouped. A 5-year survival rate ranges from 36 to 100% of the cases. The expression of Bcl-2, presence of multiple lesions, and involvement of both the upper limbs lead to a worse prognosis. Very few cases have been described in the literature. PMID:24082181

  9. Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Jin, Y.; Fukushima, K.; Akai, H.; Furusho, J.

    2009-02-01

    In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named "Hybrid-PLEMO" in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.

  10. Contributions of upper limb rotations to racket velocity in table tennis backhands against topspin and backspin.

    PubMed

    Iino, Yoichi; Mori, Teruaki; Kojima, Takeji

    2008-02-01

    The purpose of this study was to assess the contributions of racket arm joint rotations to the racket tip velocity at ball impact in table tennis topspin backhands against topspin and backspin using the method of Sprigings et al. (1994). Two cine cameras were used to determine three-dimensional motions of the racket arm and racket, and the contributions of the rotations for 11 male advanced table tennis players. The racket upward velocity at impact was significantly higher in the backhand against backspin than against topspin, while the forward velocity was not significantly different between the two types of backhands. The negative contribution of elbow extension to the upward velocity was significantly less against backspin than against topspin. The contribution of wrist dorsiflexion to the upward velocity was significantly greater against backspin than against topspin. The magnitudes of the angular velocities of elbow extension and wrist dorsiflexion at impact were both similar between the two types of backhands. Our results suggest that the differences in contributions of elbow extension and wrist dorsiflexion to the upward velocity were associated with the difference in upper limb configuration rather than in magnitudes of their angular velocities. PMID:17934947

  11. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators

    PubMed Central

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-01-01

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply. PMID:26151204

  12. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.

    PubMed

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-01-01

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply. PMID:26151204

  13. Simplifying the upper limb peripheral motor screen: Proposing the "K" sign.

    PubMed

    Kurmis, A P; Kurmis, T P

    2016-01-01

    The well-recognized erosion of pathoanatomic correlations in basic medical training, combined with the increasing everyday pressures of time-efficacy in patient examination, continue to place strain on junior clinicians. Over the years, many refinements to tried-and-true basic physical examination techniques have been described, allowing improvement in diagnostic yield. A multitude of "screening" techniques are available for physical assessment; however, such approaches are often nonstandardized and inconsistently taught and applied in the clinical realm. Great interexaminer inconsistency in the documentation of many forms of screening techniques also substantively undermines their respective clinical value. The current work presents a novel refinement/combination of previously described examination approaches for the assessment of peripheral upper limb (UL) motor function - the "K" sign. Having been successfully applied in both the acute and ambulatory clinical settings for several years, we feel that the technique has a useful role as a rapid and specific screening technique that is easily taught, learnt, and applied. Arguably, its employment serves to improve time efficacy in the screening examination, and may even improve diagnostic yield through its reliable reproducibility and provision of direct bilateral comparison. Its inherent simplicity also lends itself well to high levels of uptake (and retention) by medical students and junior clinicians alike. On top of presenting the simple screening test itself, we offer a simple means of subsequent notation for the patient's case note record, again in the hope of standardization and endurance of clinical value beyond the time of patient examination. PMID:26732195

  14. Prevalence of work-related upper limbs symptoms (WRULS) among office workers.

    PubMed

    Zairina Abdul Rahman; Abdul Sallam Atiya

    2009-07-01

    An analytical cross-sectional study was carried out to determine the prevalence of work-related upper limbs symptoms (WRULS) among office workers and factors associated with it. A self-administered questionnaire was used to collect the information. A total of 463 (87.7%) office workers from selected government agencies participated in this study. The mean age of the respondents was 34.1 years (range = 18-55 years). Majority (91.6%) were Malay and female (72.8%), and 58.1% were from clerical group. Mean duration of work was 8.7 years. This study found that prevalence of WRULS was 33.0% (95% CI [confidence interval] = 28.8%, 37.3%). Computer users at work had 2.0 (95% CI = 1.1, 3.4) higher odds ratio of developing WRULS and those who used it for 5 hours and more per day had 7.5 (95% CI = 2.3, 24.2) higher odds ratio of developing WRULS. Hand-intensive hobbies and higher education were also found to be associated with WRULS. PMID:19546127

  15. Characteristics of upper limb muscular strength in male wheelchair tennis players

    PubMed Central

    Moon, Hyo-Bin; Park, Seung-Jae; Kim, Al-Chan; Jang, Jee-Hun

    2013-01-01

    The purpose of this study was to identify the characteristics of muscular strength in upper limb and to present the preliminary information for development of sports injury prevention program and exercise rehabilitation program in wheelchair tennis players. Participants were 12 male wheelchair tennis players. Muscular strength was measured in shoulder and elbow joints with isokinetic dynamometer. Ipsilateral (IR) and bilateral (BR) balance ratio were calculated with isokinetic strength at 60°/sec. As a result, extension strength (ES) was significantly higher than flexion strength (FS) (P< 0.001), and IR in both sides and BR in ES were maintained within normal range whereas BR in FS was lower than normal range in shoulder joint. In elbow joint FS was significantly higher than ES (P< 0.05), and IR and BR were lower than normal range. Consequently, the different tendency in IR between shoulder and elbow joints and lower IR and BR in elbow joints could be the characteristics in male wheelchair tennis players. It is suggested that flexor strengthening program in nondominant shoulder joint, extensor strengthening program in both elbow joint, and flexor strengthening program in non-dominant elbow joint should be introduced for male wheelchair tennis players. PMID:24278887

  16. Customized device for pediatric upper limb rehabilitation in obstetric brachial palsy.

    PubMed

    López, Natalia M; de Diego, Nicolás; Hernández, Rafael; Pérez, Elisa; Ensinck, Gustavo; Valentinuzzi, Max E

    2014-03-01

    A 12-yr-old child, with a history of gestational Erb-Duchenne palsy and, later, musculoskeletal injuries in the left arm caused by a car accident, inspired the design of a customized exoskeleton-like device. Such piece, intended for rehabilitation, has one degree of freedom because the exercise routine involves elbow flexion-extension, which was indicated for the damaged muscular group. The device has two functioning modes, passive and assisted, in which the patient can trigger the movement by a biceps contraction, thus promoting the active role of the user in the rehabilitation process. The results were evaluated in terms of qualitative measures of the biceps and the triceps performed by the medical staff and by a questionnaire related to functional activities of the upper limb. A significant improvement in the arm movement and elbow angle was observed after 3 mos of assisted therapy, complementary to conventional exercises. In conclusion, a simple and low-cost device was designed and tested to complement the rehabilitation process of a pediatric patient with physical impairment. PMID:24561320

  17. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations

    PubMed Central

    Bouvier, Brice; Duprey, Sonia; Claudon, Laurent; Dumas, Raphaël; Savescu, Adriana

    2015-01-01

    Magneto-Inertial Measurement Unit sensors (MIMU) display high potential for the quantitative evaluation of upper limb kinematics, as they allow monitoring ambulatory measurements. The sensor-to-segment calibration step, consisting of establishing the relation between MIMU sensors and human segments, plays an important role in the global accuracy of joint angles. The aim of this study was to compare sensor-to-segment calibrations for the MIMU-based estimation of wrist, elbow, and shoulder joint angles, by examining trueness (“close to the reference”) and precision (reproducibility) validity criteria. Ten subjects performed five sessions with three different operators. Three classes of calibrations were studied: segment axes equal to technical MIMU axes (TECH), segment axes generated during a static pose (STATIC), and those generated during functional movements (FUNCT). The calibrations were compared during the maximal uniaxial movements of each joint, plus an extra multi-joint movement. Generally, joint angles presented good trueness and very good precision in the range 5°–10°. Only small discrepancy between calibrations was highlighted, with the exception of a few cases. The very good overall accuracy (trueness and precision) of MIMU-based joint angle data seems to be more dependent on the level of rigor of the experimental procedure (operator training) than on the choice of calibration itself. PMID:26263993

  18. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations.

    PubMed

    Bouvier, Brice; Duprey, Sonia; Claudon, Laurent; Dumas, Raphal; Savescu, Adriana

    2015-01-01

    Magneto-Inertial Measurement Unit sensors (MIMU) display high potential for the quantitative evaluation of upper limb kinematics, as they allow monitoring ambulatory measurements. The sensor-to-segment calibration step, consisting of establishing the relation between MIMU sensors and human segments, plays an important role in the global accuracy of joint angles. The aim of this study was to compare sensor-to-segment calibrations for the MIMU-based estimation of wrist, elbow, and shoulder joint angles, by examining trueness ("close to the reference") and precision (reproducibility) validity criteria. Ten subjects performed five sessions with three different operators. Three classes of calibrations were studied: segment axes equal to technical MIMU axes (TECH), segment axes generated during a static pose (STATIC), and those generated during functional movements (FUNCT). The calibrations were compared during the maximal uniaxial movements of each joint, plus an extra multi-joint movement. Generally, joint angles presented good trueness and very good precision in the range 5-10. Only small discrepancy between calibrations was highlighted, with the exception of a few cases. The very good overall accuracy (trueness and precision) of MIMU-based joint angle data seems to be more dependent on the level of rigor of the experimental procedure (operator training) than on the choice of calibration itself. PMID:26263993

  19. The Effects of Aging on Visuomotor Coordination and Proprioceptive Function in the Upper Limb

    PubMed Central

    Lee, Na Kyung; Kwon, Yong Hyun; Son, Sung Min; Nam, Seok Hyun; Kim, Jin Sang

    2013-01-01

    [Purpose] Sensorimotor processing, including motor performance, is altered during the process of normal aging. Previous studies have investigated tasks requiring complex visuomotor coordination and active joint reposition tests. Therefore, the purpose of this study was to investigate age-related changes in upper limb tasks, such as visuomotor coordination and proprioceptive acuity. [Subjects and Methods] We recruited 20 healthy elderly subjects and 20 healthy young subjects. We evaluated a tracking task for visuomotor function and a joint reposition test for integrity of proprioceptive sense in both hands of the elderly subjects, and compared the results with those of the healthy young subjects. [Results] The accuracy index scores for the tracking task were significantly lower in both the dominant and non-dominant hands of the elderly subjects than those of the young group. In addition, the reposition error score in the joint reposition test was significantly higher in the elderly group than in the young group. [Conclusion] Sensorimotor functions of both the dominant and non-dominant hands showed a decline in the elderly group. This finding suggests that sensorimotor function deteriorates with advancing age. PMID:24259817

  20. Outcome of the upper limb in cervical spinal cord injury: Profiles of recovery and insights for clinical studies

    PubMed Central

    Kalsi-Ryan, Sukhvinder; Beaton, Dorcas; Curt, Armin; Popovic, Milos R.; Verrier, Mary C.; Fehlings, Michael G.

    2014-01-01

    Background Improved appreciation of recovery profiles of sensory and motor function as well as complex motor functions (prehension) after cervical spinal cord injury (SCI) will be essential to inform clinical studies to consider primary and secondary outcome measures for interventions and the optimization of dosing and timing of therapies in acute and chronic SCI. Objectives (1) To define the sensory, motor, and prehension recovery profiles of the upper limb and hand in acute cervical SCI and (2) to confirm the impact of AIS severity and conversion on upper limb sensorimotor recovery. Methods An observational longitudinal cohort study consisting of serial testing of 53 patients with acute cervical SCI was conducted. International Standards of Neurological Classification of Spinal Cord Injury, Graded Redefined Assessment of Strength Sensibility and Prehension (GRASSP), Capabilities of Upper Extremity (CUE-Q) Questionnaire, and Spinal Cord Independence Measure III (SCIM-III) were administered at 010 days, 1, 3, 6, and 12 months. Analysis Change over time was plotted using mean and standard deviation of the total and subgroups of the sample. Results Individuals with traumatic tetraplegia show distinct patterns of recovery. Factors that distinguish homogeneous subgroups of the sample are: severity of injury (level of injury, completeness) at baseline and conversion from a complete to an incomplete injury. Conclusions In cervical SCI, clinical recovery can be assessed using standardized measures that distinguish levels of activity and impairment. Specific recovery profiles of the upper limb over the 1-year timecourse provide new insights and opportunity for combined analysis of recovery profiles for different clinical assessment tools of upper limb function which are meaningful to inform the design of study protocols. PMID:25229734

  1. Outcome of the upper limb in cervical spinal cord injury: Profiles of recovery and insights for clinical studies.

    PubMed

    Kalsi-Ryan, Sukhvinder; Beaton, Dorcas; Curt, Armin; Popovic, Milos R; Verrier, Mary C; Fehlings, Michael G

    2014-09-01

    Background Improved appreciation of recovery profiles of sensory and motor function as well as complex motor functions (prehension) after cervical spinal cord injury (SCI) will be essential to inform clinical studies to consider primary and secondary outcome measures for interventions and the optimization of dosing and timing of therapies in acute and chronic SCI. Objectives (1) To define the sensory, motor, and prehension recovery profiles of the upper limb and hand in acute cervical SCI and (2) to confirm the impact of AIS severity and conversion on upper limb sensorimotor recovery. Methods An observational longitudinal cohort study consisting of serial testing of 53 patients with acute cervical SCI was conducted. International Standards of Neurological Classification of Spinal Cord Injury, Graded Redefined Assessment of Strength Sensibility and Prehension (GRASSP), Capabilities of Upper Extremity (CUE-Q) Questionnaire, and Spinal Cord Independence Measure III (SCIM-III) were administered at 0-10 days, 1, 3, 6, and 12 months. Analysis Change over time was plotted using mean and standard deviation of the total and subgroups of the sample. Results Individuals with traumatic tetraplegia show distinct patterns of recovery. Factors that distinguish homogeneous subgroups of the sample are: severity of injury (level of injury, completeness) at baseline and conversion from a complete to an incomplete injury. Conclusions In cervical SCI, clinical recovery can be assessed using standardized measures that distinguish levels of activity and impairment. Specific recovery profiles of the upper limb over the 1-year timecourse provide new insights and opportunity for combined analysis of recovery profiles for different clinical assessment tools of upper limb function which are meaningful to inform the design of study protocols. PMID:25229734

  2. Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion.

    PubMed

    Robertson, Benjamin D; Sawicki, Gregory S

    2015-10-27

    In terrestrial locomotion, there is a missing link between observed spring-like limb mechanics and the physiological systems driving their emergence. Previous modeling and experimental studies of bouncing gait (e.g., walking, running, hopping) identified muscle-tendon interactions that cycle large amounts of energy in series tendon as a source of elastic limb behavior. The neural, biomechanical, and environmental origins of these tuned mechanics, however, have remained elusive. To examine the dynamic interplay between these factors, we developed an experimental platform comprised of a feedback-controlled servo-motor coupled to a biological muscle-tendon. Our novel motor controller mimicked in vivo inertial/gravitational loading experienced by muscles during terrestrial locomotion, and rhythmic patterns of muscle activation were applied via stimulation of intact nerve. This approach was based on classical workloop studies, but avoided predetermined patterns of muscle strain and activation-constraints not imposed during real-world locomotion. Our unconstrained approach to position control allowed observation of emergent muscle-tendon mechanics resulting from dynamic interaction of neural control, active muscle, and system material/inertial properties. This study demonstrated that, despite the complex nonlinear nature of musculotendon systems, cyclic muscle contractions at the passive natural frequency of the underlying biomechanical system yielded maximal forces and fractions of mechanical work recovered from previously stored elastic energy in series-compliant tissues. By matching movement frequency to the natural frequency of the passive biomechanical system (i.e., resonance tuning), muscle-tendon interactions resulting in spring-like behavior emerged naturally, without closed-loop neural control. This conceptual framework may explain the basis for elastic limb behavior during terrestrial locomotion. PMID:26460038

  3. Patient with giant upper limb melanoma presenting to a UK plastic surgery unit: differentials and experience of management.

    PubMed

    Honeyman, Calum Sinclair; Wilson, Paul

    2016-01-01

    A 57-year-old woman was referred to our regional sarcoma unit following a 2-year history of a progressively enlarging mass on her right forearm. At 14712?cm, this mass turned out to be one of the largest upper limb cutaneous malignant melanomas ever described, and, to the best of our knowledge, the first documented in the UK. Remarkably, despite having a T4 malignant tumour with a Breslow thickness of 70?mm, this patient is still alive over 4?years later with no locoregional or distant metastatic spread. We present our experience in the management of this giant malignant melanoma of the upper limb and consider important differentials. PMID:26838295

  4. Delivering evidence-based upper limb rehabilitation for children with cerebral palsy: barriers and enablers identified by three pediatric teams.

    PubMed

    Sakzewski, Leanne; Ziviani, Jenny; Boyd, Roslyn N

    2014-11-01

    This study aimed to identify barriers and enablers experienced by occupational therapists to delivering evidence-based upper limb intervention for children with unilateral cerebral palsy. Semistructured interviews informed by the Theoretical Domains Framework were conducted with nine occupational therapists from three teams to ascertain barriers and enablers to implementing five evidence criteria. A key barrier was lack of knowledge of current evidence for upper limb therapies for children with unilateral cerebral palsy. Therapists were confident in delivering goal-directed bimanual occupational therapy, but less knowledgeable and skilled, and hence confident in providing constraint therapy. Strategies to increase dose of therapy were identified as greater use of home programs and group-based interventions; however, therapists indicated the need for further education and skill development in these areas. In order to increase the uptake of research evidence into practice, findings from this study will be used to inform context-specific, individually targeted implementation strategies. PMID:24303800

  5. On the use of information theory for detecting upper limb motor dysfunction: An application to Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. Elias; Menegaldo, L. L.; Lucarelli, P.; Andrade, B. L. B.; Büchler, P.

    2011-11-01

    Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunctions. Several potential early diagnostic markers of PD have been proposed. Since they have not been validated in presymptomatic PD, the diagnosis and monitoring of the disease is based on subjective clinical assessment of cognitive and motor symptoms. In this study, we investigated interjoint coordination synergies in the upper limb of healthy and parkinsonian subjects during the performance of unconstrained linear-periodic movements in a horizontal plane using the mutual information (MI). We found that the MI is a sensitive metric in detecting upper limb motor dysfunction, thus suggesting that this method might be applicable to quantitatively evaluating the effects of the antiparkinsonian medication and to monitor the disease progression.

  6. Kinematical analysis of the trunk, upper limbs and fingers during minimal access surgery when using an armrest.

    PubMed

    Jafri, Mansoor; Brown, Stuart; Arnold, Graham; Abboud, Rami; Wang, Weijie

    2015-11-01

    This study investigated whether using an armrest could reduce the movements of the trunk, upper limb and hand of surgeons during simulated minimal access surgery. Sixteen surgeons carried out two trials of simulated laparoscopic surgery, one using an armrest and the other without. Reflective markers were attached on the trunk, upper limbs, fingers, minimal access camera (MAC) and scissors, allowing a motion capture system to record the movements. The error ratios during operation, subjective opinions and operative durations were collected. The results showed that total displacements at the trunk and shoulders were reduced by at least 25% when using an armrest compared with not using one; error ratios were reduced by 7%; velocity and acceleration in the trunk, shoulder and MAC were reduced. After simulated operations, 78% of the participants preferred using the armrest. The study indicates that an armrest could improve surgical outcomes by reducing trunk movements. PMID:25952275

  7. Test-retest reliabilities of hand-held dynamometer for lower-limb muscle strength in intellectual disabilities.

    PubMed

    Wuang, Yee-Pay; Chang, Jyh-Jong; Wang, Min-Hung; Lin, Hsiu-Ching

    2013-08-01

    The primary purpose of this study was to investigate the test-retest reliabilities of hand-held dynamometer (HDD) for measuring lower-limb muscle strength in intellectual disabilities (ID). The other purposes were to: (1) compare the lower-limb muscle strength between children with and without ID; (2) probe the relationship between the muscle forces and agility performance in ID; and (3) explore the factors associated with muscle strength in ID. Sixty-one participants (30 boys and 31 girls; mean age=14.1 3.3 year) were assessed by the HDD using a "make" test. The comparative group consisted of 63 typically developing children (33 boys and 30 girls; mean age=14.9 2.1 year). The ID group demonstrated lower muscle groups than in typically developing group. Except for the ankle plantarflexors (ICC=0.69, SEM=0.72), test-retest analysis showed good intrarater reliability with ICC ranging from 0.81 to 0.96, and intrarater SEM values ranged from 0.40 to 0.57. The HDD has the potential to be a reliable tool for strength measurement in ID. Muscle strength was positively related to agility performance. Regression analysis indicated that height, weight, BMI, and activity level were significant predictors of muscle strength in ID. PMID:23692893

  8. Safety, Feasibility, and Efficacy of Vagus Nerve Stimulation Paired With Upper-Limb Rehabilitation After Ischemic Stroke

    PubMed Central

    Pierce, David; Dixit, Anand; Kimberley, Teresa J.; Robertson, Michele; Tarver, Brent; Hilmi, Omar; McLean, John; Forbes, Kirsten; Kilgard, Michael P.; Rennaker, Robert L.; Cramer, Steven C.; Walters, Matthew; Engineer, Navzer

    2016-01-01

    Background and Purpose— Recent animal studies demonstrate that vagus nerve stimulation (VNS) paired with movement induces movement-specific plasticity in motor cortex and improves forelimb function after stroke. We conducted a randomized controlled clinical pilot study of VNS paired with rehabilitation on upper-limb function after ischemic stroke. Methods— Twenty-one participants with ischemic stroke >6 months before and moderate to severe upper-limb impairment were randomized to VNS plus rehabilitation or rehabilitation alone. Rehabilitation consisted of three 2-hour sessions per week for 6 weeks, each involving >400 movement trials. In the VNS group, movements were paired with 0.5-second VNS. The primary objective was to assess safety and feasibility. Secondary end points included change in upper-limb measures (including the Fugl–Meyer Assessment-Upper Extremity). Results— Nine participants were randomized to VNS plus rehabilitation and 11 to rehabilitation alone. There were no serious adverse device effects. One patient had transient vocal cord palsy and dysphagia after implantation. Five had minor adverse device effects including nausea and taste disturbance on the evening of therapy. In the intention-to-treat analysis, the change in Fugl–Meyer Assessment-Upper Extremity scores was not significantly different (between-group difference, 5.7 points; 95% confidence interval, −0.4 to 11.8). In the per-protocol analysis, there was a significant difference in change in Fugl–Meyer Assessment-Upper Extremity score (between-group difference, 6.5 points; 95% confidence interval, 0.4 to 12.6). Conclusions— This study suggests that VNS paired with rehabilitation is feasible and has not raised safety concerns. Additional studies of VNS in adults with chronic stroke will now be performed. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT01669161. PMID:26645257

  9. Upper limb amputation due to a brachial arterial embolism associated with a superior mesenteric arterial embolism: a case report

    PubMed Central

    2012-01-01

    Background Acute mesenteric ischemia due to an embolism of the superior mesenteric artery is associated with a high mortality rate. Over 20 percent of acute mesenteric embolism cases consist of multiple emboli, and the long-term prognosis depends on the incidence of subsequent embolic events at other sites. The incidence of emboli in the upper extremity associated with a superior mesenteric arterial embolism has rarely been described. The signs and symptoms of ischemic change in the upper limb can be masked by other circumstances, such as postoperative conditions or complications. In these cases, a late presentation or delayed diagnosis and treatment can result in limb loss. Case presentation We present a rare case of a 67-year-old Japanese woman with atrial fibrillation who developed an embolic occlusion of the brachial artery associated with a superior mesenteric arterial embolism. She developed gangrene in her right hand, which had progressed to the point that amputation was necessary by the time the gastrointestinal surgeon had consulted the Department of Orthopedic Surgery. The brachial arterial embolism diagnosis was delayed by the severe abdominal symptoms and shock conditions that followed the emergency enterectomy, resulting in amputation of the upper limb despite anticoagulation therapy. In this case, multiple infarctions of the spleen were also observed, indicating a shower embolism. Conclusions When treating a superior mesenteric arterial embolism in a patient with atrial fibrillation, the possibility of recurrent or multiple arterial thromboembolic events should be considered, even after the procedure is completed. PMID:22828325

  10. Prosthetic use in adult upper limb amputees: a comparison of the body powered and electrically powered prostheses.

    PubMed

    Millstein, S G; Heger, H; Hunter, G A

    1986-04-01

    Three hundred and fourteen adult upper limb amputees were reviewed retrospectively at the Ontario Workers' Compensation Board. A questionnaire was used to evaluate the use of body and electrically powered prostheses. Follow-up ranged from 1 to 49 years with a mean of 15 years. Results indicated that complete or useful acceptance of an electrically powered prosthesis was reported by 69 of 83 amputees (83%); 199 of 291 amputees (68%) used the cable operated hook, 57 of 291 (20%) used the cable operated hand and 40 of 83 (48%) used the cosmetic prosthesis. The majority of amputees used more than one prosthesis for their functional needs and should be fitted with more than one type of prosthesis. Acceptance of an upper limb prosthesis by 89% (196/220) of below-elbow, 76% (56/74) of above-elbow and 60% (12/20) of high level amputees indicates that for most upper limb amputees, their prostheses are well used and essential to their personal and employment activities. PMID:3725563

  11. Review of Therapeutic Interventions for the Upper Limb Classified by Manual Ability in Children with Cerebral Palsy.

    PubMed

    Shierk, Angela; Lake, Amy; Haas, Tara

    2016-02-01

    The aim of this literature review was to assemble an inventory of intervention strategies utilized for children diagnosed with cerebral palsy (CP) based on the Manual Ability Classification System (MACS). The purpose of the inventory is to guide physicians and therapists in intervention selection aimed at improving upper limb function in children with CP. The following databases were searched: CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane Database of Systematic Reviews, ERIC (Educational Research Information Center), Google Scholar, OTSeeker (Occupational Therapy Systematic Evaluation of Evidence), OVID (Ovid Technologies, Inc.), and PubMed. Inclusion criteria were whether the study (1) identified MACS levels of participants, and (2) addressed the effectiveness of intervention on upper limb function. Overall, 74 articles met the inclusion criteria. The summarized data identified 10 categories of intervention. The majority of participants across studies were MACS level II. The most frequently cited interventions were constraint-induced movement therapy (CIMT), bimanual training, and virtual reality and computer-based training. Multiple interventions demonstrated effectiveness for upper limb improvement at each MACS level. However, there is a need for additional research for interventions appropriate for MACS levels IV and V. To fully develop an intervention inventory based on manual ability, future studies need to report MACS levels of participants, particularly for splinting and therapy interventions used in combination with surgery. PMID:26869859

  12. Upper limb aerobic training improves aerobic fitness and all-out performance of America's Cup grinders.

    PubMed

    Adami, Paolo Emilio; Delussu, Anna Sofia; Rodio, Angelo; Squeo, Maria Rosaria; Corsi, Loretta; Quattrini, Filippo Maria; Fattorini, Luigi; Bernardi, Marco

    2015-01-01

    This research on "America's Cup" grinders investigated the effects of a specific eight-week long-arm cranking ergometer (ACE) training on upper body (UB) aerobic fitness (ventilatory threshold - Tvent, respiratory compensation point- RCP, -oxygen uptake peak - VO?peak) and high intensity working capacity. The training consisted of sessions carried out for 20-30 mins, three times per week, at an intensity between the UB-Tvent and UB-RCP, and replaced part of a typical lower limb aerobic training whilst maintaining the usual weekly schedule of callisthenics, resistance training and sailing. Seven sailors, including four grinders and three mastmen (age 30 5.5 years, height 1.9 0.04 m, body mass 102 3.6 kg), were evaluated through both an ACE cardiopulmonary maximal exercise test (CPET) and an ACE all-out up to exhaustion exercise test, before and after the ACE training. UB aerobic fitness improved significantly: UB-VO?peak increased from 4.29 0.442 to 4.52 0.522 lmin(-1) (6.4 3.66%), VO? at UB-Tvent from 2.42 0.282 to 2.97 0.328 lmin(-1) (22.8 5.09%) and VO? at UB-RCP from 3.25 0.402 to 3.75 0.352 lmin(-1) (16.1 10.83%). Peak power at the ACE CPET increased from 351 27.5 to 387 33.5 W (10.5 6.93%). The all-out test total mechanical work increased from 28.9 2.35 to 40.1 3.76 kJ (72.1 4.67%). In conclusion, a high intensity aerobic ACE training can be effective in improving grinding performance by increasing UB aerobic fitness and all-out working capacity. PMID:25357134

  13. Selected questions on biomechanical exposures for surveillance of upper-limb work-related musculoskeletal disorders

    PubMed Central

    Descatha, Alexis; Roquelaure, Yves; Evanoff, Bradley; Niedhammer, Isabelle; Chastang, Jean François; Mariot, Camille; Ha, Catherine; Imbernon, Ellen; Goldberg, Marcel; Leclerc, Annette

    2007-01-01

    Objective Questionnaires for assessment of biomechanical exposure are frequently used in surveillance programs, though few studies have evaluated which key questions are needed. We sought to reduce the number of variables on a surveillance questionnaire by identifying which variables best summarized biomechanical exposure in a survey of the French working population. Methods We used data from the 2002–2003 French experimental network of Upper-limb work-related musculoskeletal disorders (UWMSD), performed on 2685 subjects in which 37 variables assessing biomechanical exposures were available (divided into four ordinal categories, according to the task frequency or duration). Principal Component Analysis (PCA) with orthogonal rotation was performed on these variables. Variables closely associated with factors issued from PCA were retained, except those highly correlated to another variable (rho>0.70). In order to study the relevance of the final list of variables, correlations between a score based on retained variables (PCA score) and the exposure score suggested by the SALTSA group were calculated. The associations between the PCA score and the prevalence of UWMSD were also studied. In a final step, we added back to the list a few variables not retained by PCA, because of their established recognition as risk factors. Results According to the results of the PCA, seven interpretable factors were identified: posture exposures, repetitiveness, handling of heavy loads, distal biomechanical exposures, computer use, forklift operator specific task, and recovery time. Twenty variables strongly correlated with the factors obtained from PCA were retained. The PCA score was strongly correlated both with the SALTSA score and with UWMSD prevalence (p<0.0001). In the final step, six variables were reintegrated. Conclusion Twenty-six variables out of 37 were efficiently selected according to their ability to summarize major biomechanical constraints in a working population, with an approach combining statistical analyses and existing knowledge. PMID:17476519

  14. Characterising Upper Limb Movements in Huntington's Disease and the Impact of Restricted Visual Cues

    PubMed Central

    Despard, Jessica; Ternes, Anne-Marie; Dimech-Betancourt, Bleydy; Poudel, Govinda; Churchyard, Andrew; Georgiou-Karistianis, Nellie

    2015-01-01

    Background Voluntary motor deficits are a common feature in Huntington's disease (HD), characterised by movement slowing and performance inaccuracies. This deficit may be exacerbated when visual cues are restricted. Objective To characterize the upper limb motor profile in HD with various levels of difficulty, with and without visual targets. Methods Nine premanifest HD (pre-HD), nine early symptomatic HD (symp-HD) and nine matched controls completed a motor task incorporating Fitts' law, a model of human movement enabling the quantification of movement timing, via the manipulation of task difficulty (i.e., target size, and distance between targets). The task required participants to make reciprocal movements under cued and blind conditions. Dwell times (time stationary between movements), speed, accuracy and variability of movements were compared between groups. Results Symp-HD showed significantly prolonged and less consistent movement times, compared with controls and pre-HD. Furthermore, movement planning and online control were significantly impaired in symp-HD, compared with controls and pre-HD, evidenced by prolonged dwell times and deceleration times. Speed and accuracy were comparable across groups, suggesting that group differences observed in movement time, variability, dwell time and deceleration time were evident over and above simple performance measures. The presence of cues resulted in greater movement time variability in symp-HD, compared with pre-HD and controls, suggesting that the deficit in movement consistency manifested only in response to targeted movements. Conclusions Collectively, these findings provide evidence of a deficiency in both motor planning, particularly in relation to movement timing and online control, which became exacerbated as a function of task difficulty during symp-HD stages. These variables may provide a more sensitive measure of motor dysfunction than speed and/or accuracy alone in symp-HD. PMID:26248012

  15. When does action comprehension need motor involvement? Evidence from upper limb aplasia.

    PubMed

    Vannuscorps, Gilles; Andres, Michael; Pillon, Agnesa

    2013-01-01

    Motor theories of action comprehension claim that comprehending the meaning of an action performed by a conspecific relies on the perceiver's own motor representation of the same action. According to this view, whether an action belongs to the motor repertoire of the perceiver should impact the ease by which this action is comprehended. We tested this prediction by assessing the ability of an individual (D.C.) born without upper limbs to comprehend actions involving hands (e.g., throwing) or other body parts (e.g., jumping). The tests used a range of different visual stimuli differing in the kind of information provided. The results showed that D.C. was as accurate and fast as control participants in comprehending natural video and photographic presentations of both manual and nonmanual actions, as well as pantomimes. However, he was selectively impaired at identifying point-light animations of manual actions. This impairment was not due to a difficulty in processing kinematic information per se. D.C. was indeed as accurate as control participants in two additional tests requiring a fine-grained analysis of an actor's arm or whole-body movements. These results challenge motor theories of action comprehension by showing that the visual analysis of body shape and motion provides sufficient input for comprehending observed actions. However, when body shape information is sparsely available, motor involvement becomes critical to interpret observed actions. We suggest that, with natural human movement stimuli, motor representations contribute to action comprehension each time visual information is incomplete or ambiguous. PMID:24215324

  16. Brain Function and Upper Limb Outcome in Stroke: A Cross-Sectional fMRI Study

    PubMed Central

    Buma, Floor E.; Raemaekers, Mathijs; Kwakkel, Gert; Ramsey, Nick F.

    2015-01-01

    Objective The nature of changes in brain activation related to good recovery of arm function after stroke is still unclear. While the notion that this is a reflection of neuronal plasticity has gained much support, confounding by compensatory strategies cannot be ruled out. We address this issue by comparing brain activity in recovered patients 6 months after stroke with healthy controls. Methods We included 20 patients with upper limb paresis due to ischemic stroke and 15 controls. We measured brain activation during a finger flexion-extension task with functional MRI, and the relationship between brain activation and hand function. Patients exhibited various levels of recovery, but all were able to perform the task. Results Comparison between patients and controls with voxel-wise whole-brain analysis failed to reveal significant differences in brain activation. Equally, a region of interest analysis constrained to the motor network to optimize statistical power, failed to yield any differences. Finally, no significant relationship between brain activation and hand function was found in patients. Patients and controls performed scanner task equally well. Conclusion Brain activation and behavioral performance during finger flexion-extensions in (moderately) well recovered patients seems normal. The absence of significant differences in brain activity even in patients with a residual impairment may suggest that infarcts do not necessarily induce reorganization of motor function. While brain activity could be abnormal with higher task demands, this may also introduce performance confounds. It is thus still uncertain to what extent capacity for true neuronal repair after stroke exists. PMID:26440276

  17. Test-retest reliability of robotic assessment measures for the evaluation of upper limb recovery.

    PubMed

    Colombo, Roberto; Cusmano, Ivana; Sterpi, Irma; Mazzone, Alessandra; Delconte, Carmen; Pisano, Fabrizio

    2014-09-01

    Rehabilitation robots have built-in technology and sensors that allow accurate measurement of movement kinematics and kinetics, which can be used to derive measures related to upper limb performance and highlight changes in motor behavior due to rehabilitation. This study aimed to assess the test-retest reliability of some robot-measured parameters by analyzing their intra-session and inter-session (day-by-day) variability. The study was carried out in two groups: 31 patients after stroke and 15 healthy subjects. Both groups practiced two different motor tasks consisting of point-to-point reaching movements in the shape of two geometrical figures that were selected for the assessment of global and directional (eight directions of the workspace) test-retest reliability. The reliability of six parameters measuring movement velocity, accuracy, efficiency and smoothness was assessed intra-session and inter-session by the ICC, SEM, and CV. Healthy subjects exhibited very high ICC values (> 0.85) and low SEM for all parameters. Patients had high ICC values and low SEM but their global reliability was generally lower compared to healthy subjects. In addition, their inter-session reliability showed very high ICC values (> 0.91) and low SEM for all parameters. Direction analysis showed that in some parameters the reliability was generally high but not homogeneous in all directions. In addition, some directions showed systematic error. This study demonstrates that robot-measured parameters are reliable and can be considered ideal candidates for use in combination with impairment and functional clinical scales to evaluate motor improvement during robot-assisted neurorehabilitation. PMID:24760936

  18. Therapists’ Perceptions of Social Media and Video Game Technologies in Upper Limb Rehabilitation

    PubMed Central

    Shirzad, Navid; Lohse, Keith R; Virji-Babul, Naznin; Hoens, Alison M; Holsti, Liisa; Li, Linda C; Miller, Kimberly J; Lam, Melanie Y; Van der Loos, HF Machiel

    2015-01-01

    Background The application of technologies, such as video gaming and social media for rehabilitation, is garnering interest in the medical field. However, little research has examined clinicians’ perspectives regarding technology adoption by their clients. Objective The objective of our study was to explore therapists’ perceptions of how young people and adults with hemiplegia use gaming and social media technologies in daily life and in rehabilitation, and to identify barriers to using these technologies in rehabilitation. Methods We conducted two focus groups comprised of ten occupational therapists/physiotherapists who provide neurorehabilitation to individuals with hemiplegia secondary to stroke or cerebral palsy. Data was analyzed using inductive thematic analysis. The diffusion of innovations theory provided a framework to interpret emerging themes. Results Therapists were using technology in a limited capacity. They identified barriers to using social media and gaming technology with their clients, including a lack of age appropriateness, privacy issues with social media, limited transfer of training, and a lack of accessibility of current systems. Therapists also questioned their role in the context of technology-based interventions. The opportunity for social interaction was perceived as a major benefit of integrated gaming and social media. Conclusions This study reveals the complexities associated with adopting new technologies in clinical practice, including the need to consider both client and clinician factors. Despite reporting several challenges with applying gaming and social media technology with clinical populations, therapists identified opportunities for increased social interactions and were willing to help shape the development of an upper limb training system that could more readily meet the needs of clients with hemiplegia. By considering the needs of both therapists and clients, technology developers may increase the likelihood that clinicians will adopt innovative technologies. PMID:25759148

  19. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients

    PubMed Central

    2014-01-01

    Background and purpose There is little evidence available on the use of robot-assisted therapy in subacute stroke patients. A randomized controlled trial was carried out to evaluate the short-time efficacy of intensive robot-assisted therapy compared to usual physical therapy performed in the early phase after stroke onset. Methods Fifty-three subacute stroke patients at their first-ever stroke were enrolled 30??7days after the acute event and randomized into two groups, both exposed to standard therapy. Additional 30 sessions of robot-assisted therapy were provided to the Experimental Group. Additional 30 sessions of usual therapy were provided to the Control Group. The following impairment evaluations were performed at the beginning (T0), after 15 sessions (T1), and at the end of the treatment (T2): Fugl-Meyer Assessment Scale (FM), Modified Ashworth Scale-Shoulder (MAS-S), Modified Ashworth Scale-Elbow (MAS-E), Total Passive Range of Motion-Shoulder/Elbow (pROM), and Motricity Index (MI). Results Evidence of significant improvements in MAS-S (p?=?0.004), MAS-E (p?=?0.018) and pROM (p?upper limb rehabilitation treatment can contribute to increasing motor recovery in subacute stroke patients. Focusing on the early phase of stroke recovery has a high potential impact in clinical practice. PMID:24946799

  20. Real-World Affected Upper Limb Activity in Chronic Stroke: An Examination of Potential Modifying Factors

    PubMed Central

    Bailey, Ryan R.; Birkenmeier, Rebecca L.; Lang, Catherine E.

    2015-01-01

    BACKGROUND Despite improvement in motor function after intervention, adults with chronic stroke experience disability in everyday activity. Factors other than motor function may influence affected upper limb (UL) activity. OBJECTIVE To characterize affected UL activity and examine potential modifying factors of affected UL activity in community-dwelling adults with chronic stroke. METHODS Forty-six adults with chronic stroke wore accelerometers on both ULs for 25 hours and provided information about potential modifying factors (time spent in sedentary activity, cognitive impairment, depressive symptomatology, number of comorbidities, motor dysfunction of the affected UL, age, activities of daily living (ADL) status, and living arrangement). Accelerometry was used to quantify duration of affected and unaffected UL activity. The ratio of affected-to-unaffected UL activity was also calculated. Associations within and between accelerometry-derived variables and potential modifying factors were examined. RESULTS Mean hours of affected and unaffected UL activity were 5.0 2.2 and 7.6 2.1 hours, respectively. The ratio of affected-to-unaffected UL activity was 0.64 0.19, and hours of affected and unaffected UL activity were strongly correlated (r=0.78). Increased severity of motor dysfunction and dependence in ADLs were associated with decreased affected UL activity. No other factors were associated with affected UL activity. CONCLUSIONS Severity of motor dysfunction and ADL status should be taken into consideration when setting goals for UL activity in people with chronic stroke. Given the strong, positive correlation between affected and unaffected UL activity, encouragement to increase activity of the unaffected UL may increase affected UL activity. PMID:25776118

  1. Upper limb kinematic differences between breathing and non-breathing conditions in front crawl sprint swimming.

    PubMed

    McCabe, Carla B; Sanders, Ross H; Psycharakis, Stelios G

    2015-11-26

    The purpose of this study was to determine whether the breathing action in front crawl (FC) sprint swimming affects the ipsilateral upper limb kinematics relative to a non-breathing stroke cycle (SC). Ten male competitive swimmers performed two 25m FC sprints: one breathing to their preferred side (Br) and one not breathing (NBr). Both swim trials were performed through a 6.75m(3) calibrated space and recorded by six gen-locked JVC KY32 CCD cameras. A paired t-test was used to assess statistical differences between the trials, with a confidence level of p<0.05 accepted as significant. Swimmers were slower (3%) when breathing. Within the entry phase, swimmers had a slower COM horizontal velocity (3.3%), less shoulder flexion (8%), abduction (33%) and roll (4%) when breathing. The pull phase was longer in duration (14%) swimmers had a shallower hand path (11%), less shoulder abduction (11%), a slower hand vertical acceleration (30%) and slower centre of mass (COM) horizontal velocity (3%) when breathing. In the push phase, swimmers had a smaller elbow range of motion (ROM) (38%), faster backwards hand speed (25%) and faster hand vertical acceleration (33%) when breathing. Swimmers rolled their shoulders more (12%) in the recovery phase when breathing. This study confirms that swim performance is compromised by the inclusion of taking a breath in sprint FC swimming. It was proposed that swimmers aim to orient their ipsilateral shoulder into a stronger position by stretching and rolling the shoulders more in the entry phase whilst preparing to take a breath. Swimmers should focus on lengthening the push phase by extending the elbow more and not accelerating the hand too quickly upwards when preparing to inhale. PMID:26456423

  2. Postoperative Development of Bone Mineral Density and Muscle Strength in the Lower Limb After Cemented and Uncemented Total Hip Replacement

    PubMed Central

    Lindner, Tobias; Krüger, Christine; Kasch, Cornelius; Finze, Susanne; Steens, Wolfram; Mittelmeier, Wolfram; Skripitz, Ralf

    2014-01-01

    Background : Numerous studies have shown reduction of periprosthetic bone mineral density (BMD) after hip replacement. The effect on the whole limb, however, is still unexplored. This study’s objective was to analyse the postoperative development of BMD and muscle strength of the limb after total hip replacement (THR) and to determine links between these parameters. Methods : 55 patients, who underwent THR, were included. Depending on therapeutic indication, either an uncemented stem (Group A, n=30) or a cemented stem (Group B, n=25) has been implanted. In the limbs, the measurement of BMD using DEXA and the maximum isometric muscle strength, detected by a leg press, were undertaken preoperatively and after 3, 6 and 12 months. Results : A total of 12 patients (Group A: n = 6, Group B: n = 6) were excluded due to reasons which were not relevant to the study. So, the results refer to the data of 43 patients. In Group A (uncemented, n = 24), a significant decrease of BMD on the operated extremity was seen after 3, 6 and 12 months compared with preoperative values. Isometric muscle strength on the affected extremity increased significantly after 6 and 12 months. In Group B (cemented, n = 19), with a lower baseline compared to group A, an increase in BMD of the affected limb was seen postoperatively. This rise was significant after 12 months. With regard to the isometric muscle strength, a significant increase could be observed in this group after 6 and 12 months. Conclusion : Analogous to postoperative reduction of periprosthetic bone density, a decrease of the entire limb BMD on the operated leg occurred after implantation of uncemented hip stems. In contrast, an increase in BMD was recorded for cemented stems. Regardless of the type of anchoring, a substantial increase in muscular strength could be observed postoperatively in both groups. PMID:25246993

  3. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation.

    PubMed

    Sale, Patrizio; Infarinato, Francesco; Del Percio, Claudio; Lizio, Roberta; Babiloni, Claudio; Foti, Calogero; Franceschini, Marco

    2015-12-01

    Stroke is the leading cause of permanent disability in developed countries; its effects may include sensory, motor, and cognitive impairment as well as a reduced ability to perform self-care and participate in social and community activities. A number of studies have shown that the use of robotic systems in upper limb motor rehabilitation programs provides safe and intensive treatment to patients with motor impairments because of a neurological injury. Furthermore, robot-aided therapy was shown to be well accepted and tolerated by all patients; however, it is not known whether a specific robot-aided rehabilitation can induce beneficial cortical plasticity in stroke patients. Here, we present a procedure to study neural underpinning of robot-aided upper limb rehabilitation in stroke patients. Neurophysiological recordings use the following: (a) 10-20 system electroencephalographic (EEG) electrode montage; (b) bipolar vertical and horizontal electrooculographies; and (c) bipolar electromyography from the operating upper limb. Behavior monitoring includes the following: (a) clinical data and (b) kinematic and dynamic of the operant upper limb movements. Experimental conditions include the following: (a) resting state eyes closed and eyes open, and (b) robotic rehabilitation task (maximum 80?s each block to reach 4-min EEG data; interblock pause of 1?min). The data collection is performed before and after a program of 30 daily rehabilitation sessions. EEG markers include the following: (a) EEG power density in the eyes-closed condition; (b) reactivity of EEG power density to eyes opening; and (c) reactivity of EEG power density to robotic rehabilitation task. The above procedure was tested on a subacute patient (29 poststroke days) and on a chronic patient (21 poststroke months). After the rehabilitation program, we observed (a) improved clinical condition; (b) improved performance during the robotic task; (c) reduced delta rhythms (1-4?Hz) and increased alpha rhythms (8-12?Hz) during the resting state eyes-closed condition; (d) increased alpha desynchronization to eyes opening; and (e) decreased alpha desynchronization during the robotic rehabilitation task. We conclude that the present procedure is suitable for evaluation of the neural underpinning of robot-aided upper limb rehabilitation. PMID:26317486

  4. Impact of decline-board squat exercises and knee joint angles on the muscle activity of the lower limbs

    PubMed Central

    Lee, Daehee; Lee, Sangyong; Park, Jungseo

    2015-01-01

    [Purpose] This study aims to investigate how squat exercises on a decline board and how the knee joint angles affect the muscle activity of the lower limbs. [Subjects] The subjects were 26 normal adults. [Methods] A Tumble Forms wedge device was used as the decline board, and the knee joint angles were measured with a goniometer. To examine the muscle activity of the biceps femoris, rectus femoris, gastrocnemius lateralis, and tibialis anterior of the lower limbs, a comparison analysis with electromyography was conducted. [Results] The muscle activity of the biceps femoris, rectus femoris, gastrocnemius lateralis, and tibialis anterior increased with increased knee joint angles, both for squat exercises on the decline board and on a flat floor. When the knee joint angle was 45, 60, and 90, the muscle activity of the rectus femoris was significantly higher and that of the tibialis anterior was significantly lower during squat exercises on the decline board than on the flat floor. When the knee joint angle was 90, the muscle activity of the gastrocnemius lateralis was significantly lower. [Conclusion] Squat exercises on a decline board are an effective intervention to increase the muscle activity of the rectus femoris with increased knee joint angles. PMID:26357447

  5. High-density surface EMG maps from upper-arm and forearm muscles

    PubMed Central

    2012-01-01

    Background sEMG signal has been widely used in different applications in kinesiology and rehabilitation as well as in the control of human-machine interfaces. In general, the signals are recorded with bipolar electrodes located in different muscles. However, such configuration may disregard some aspects of the spatial distribution of the potentials like location of innervation zones and the manifestation of inhomogineties in the control of the muscular fibers. On the other hand, the spatial distribution of motor unit action potentials has recently been assessed with activation maps obtained from High Density EMG signals (HD-EMG), these lasts recorded with arrays of closely spaced electrodes. The main objective of this work is to analyze patterns in the activation maps, associating them with four movement directions at the elbow joint and with different strengths of those tasks. Although the activation pattern can be assessed with bipolar electrodes, HD-EMG maps could enable the extraction of features that depend on the spatial distribution of the potentials and on the load-sharing between muscles, in order to have a better differentiation between tasks and effort levels. Methods An experimental protocol consisting of isometric contractions at three levels of effort during flexion, extension, supination and pronation at the elbow joint was designed and HD-EMG signals were recorded with 2D electrode arrays on different upper-limb muscles. Techniques for the identification and interpolation of artifacts are explained, as well as a method for the segmentation of the activation areas. In addition, variables related to the intensity and spatial distribution of the maps were obtained, as well as variables associated to signal power of traditional single bipolar recordings. Finally, statistical tests were applied in order to assess differences between information extracted from single bipolar signals or from HD-EMG maps and to analyze differences due to type of task and effort level. Results Significant differences were observed between EMG signal power obtained from single bipolar configuration and HD-EMG and better results regarding the identification of tasks and effort levels were obtained with the latter. Additionally, average maps for a population of 12 subjects were obtained and differences in the co-activation pattern of muscles were found not only from variables related to the intensity of the maps but also to their spatial distribution. Conclusions Intensity and spatial distribution of HD-EMG maps could be useful in applications where the identification of movement intention and its strength is needed, for example in robotic-aided therapies or for devices like powered- prostheses or orthoses. Finally, additional data transformations or other features are necessary in order to improve the performance of tasks identification. PMID:23216679

  6. The role of ventral and preventral organs as attachment sites for segmental limb muscles in Onychophora

    PubMed Central

    2013-01-01

    Background The so-called ventral organs are amongst the most enigmatic structures in Onychophora (velvet worms). They were described as segmental, ectodermal thickenings in the onychophoran embryo, but the same term has also been applied to mid-ventral, cuticular structures in adults, although the relationship between the embryonic and adult ventral organs is controversial. In the embryo, these structures have been regarded as anlagen of segmental ganglia, but recent studies suggest that they are not associated with neural development. Hence, their function remains obscure. Moreover, their relationship to the anteriorly located preventral organs, described from several onychophoran species, is also unclear. To clarify these issues, we studied the anatomy and development of the ventral and preventral organs in several species of Onychophora. Results Our anatomical data, based on histology, and light, confocal and scanning electron microscopy in five species of Peripatidae and three species of Peripatopsidae, revealed that the ventral and preventral organs are present in all species studied. These structures are covered externally with cuticle that forms an internal, longitudinal, apodeme-like ridge. Moreover, phalloidin-rhodamine labelling for f-actin revealed that the anterior and posterior limb depressor muscles in each trunk and the slime papilla segment attach to the preventral and ventral organs, respectively. During embryonic development, the ventral and preventral organs arise as large segmental, paired ectodermal thickenings that decrease in size and are subdivided into the smaller, anterior anlagen of the preventral organs and the larger, posterior anlagen of the ventral organs, both of which persist as paired, medially-fused structures in adults. Our expression data of the genes Delta and Notch from embryos of Euperipatoides rowelli revealed that these genes are expressed in two, paired domains in each body segment, corresponding in number, position and size with the anlagen of the ventral and preventral organs. Conclusions Our findings suggest that the ventral and preventral organs are a common feature of onychophorans that serve as attachment sites for segmental limb depressor muscles. The origin of these structures can be traced back in the embryo as latero-ventral segmental, ectodermal thickenings, previously suggested to be associated with the development of the nervous system. PMID:24308783

  7. Comparative architectural properties of limb muscles in Crocodylidae and Alligatoridae and their relevance to divergent use of asymmetrical gaits in extant Crocodylia.

    PubMed

    Allen, Vivian; Molnar, Julia; Parker, William; Pollard, Andrea; Nolan, Grant; Hutchinson, John R

    2014-12-01

    Crocodiles and their kin (Crocodylidae) use asymmetrical (bounding and galloping) gaits when moving rapidly. Despite being morphologically and ecologically similar, it seems alligators and their kin (Alligatoridae) do not. To investigate a possible anatomical basis for this apparent major difference in locomotor capabilities, we measured relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of muscles of the pectoral and pelvic limbs of 40 individuals from six representative species of Crocodylidae and Alligatoridae. We found that, relative to body mass, Crocodylidae have significantly longer muscle fascicles (increased working range), particularly in the pectoral limb, and generally smaller muscle physiological cross-sectional areas (decreased force-exerting capability) than Alligatoridae. We therefore hypothesise that the ability of some crocodylians to use asymmetrical gaits may be limited more by the ability to make large, rapid limb motions (especially in the pectoral limb) than the ability to exert large limb forces. Furthermore, analysis of scaling patterns in muscle properties shows that limb anatomy in the two clades becomes more divergent during ontogeny. Limb muscle masses, fascicle lengths and physiological cross-sectional areas scale with significantly larger coefficients in Crocodylidae than Alligatoridae. This combination of factors suggests that inter-clade disparity in maximal limb power is highest in adult animals. Therefore, despite their apparent morphological similarities, both mean values and scaling patterns suggest that considerable diversity exists in the locomotor apparatus of extant Crocodylia. PMID:25418112

  8. Electromyographic responses of erector spinae and lower limb's muscles to dynamic postural perturbations in patients with adolescent idiopathic scoliosis.

    PubMed

    Farahpour, Nader; Ghasemi, Safoura; Allard, Paul; Saba, Mohammad Sadegh

    2014-10-01

    The aim of this study was to evaluate electromyographic (EMG) responses of erector spinae (ES) and lower limbs' muscles to dynamic forward postural perturbation (FPP) and backward postural perturbation (BPP) in patients with adolescent idiopathic scoliosis (AIS) and in a healthy control group. Ten right thoracic AIS patients (Cobb=21.64.4) and 10 control adolescents were studied. Using bipolar surface electrodes, EMG activities of ES muscle at T10 (EST10) and L3 (ESL3) levels, biceps femoris (BF), gastrocnemius lateralis (G) and rectus femoris (RF) muscles in the right and the left sides during FPP and BPP were evaluated. Muscle responses were measured over a 1s time window after the onset of perturbation. In FPP test, the EMG responses of right EST10, ESL3 and BF muscles in the scoliosis group were respectively about 1.40 (p=0.035), 1.43 (p=0.07) and 1.45 (p=0.01) times greater than those in control group. Also, in BPP test, at right ESL3 muscle of the scoliosis group the EMG activity was 1.64 times higher than that in the control group (p=0.01). The scoliosis group during FPP displayed asymmetrical muscle responses in EST10 and BF muscles. This asymmetrical muscle activity in response to FPP is hypothesized to be a possible compensatory strategy rather than an inherent characteristic of scoliosis. PMID:25008019

  9. Side-to-side comparisons of bone mineral density in upper and lower limbs of collegiate athletes.

    PubMed

    McClanahan, Barbara S; Harmon-Clayton, Karen; Ward, Kenneth D; Klesges, Robert C; Vukadinovich, Christopher M; Cantler, Edwin D

    2002-11-01

    This cross-sectional study investigated the effects of participation in various sports on side-to-side (contralateral) differences in bone mineral density (BMD) of the upper and lower limbs. The BMD of the arms and legs was measured using dual energy X-ray absorptiometry. The subjects were 184 collegiate athletes, both men and women, who participated in NCAA Division I-A baseball, basketball, football, golf, soccer, tennis, cross-country, indoor/outdoor track, and volleyball. Results revealed greater BMD of the right arms compared with the left arms for all teams, with the most pronounced differences observed in men's and women's tennis and men's baseball. Differences in the lower limbs were less common. No significant differences in lower limb BMD were found in the women. In men, differences in lower limb BMD were found in the football and tennis teams, with the nondominant leg having greater bone mass. Recognition of contralateral differences in bone density may be of particular interest to strength and conditioning professionals as they consider the need to include bilateral and unilateral training programs in an effort to maximize performance and minimize stress-related injuries. PMID:12423190

  10. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke.

    PubMed

    Bao, Xiao; Mao, Yurong; Lin, Qiang; Qiu, Yunhai; Chen, Shaozhen; Li, Le; Cates, Ryan S; Zhou, Shufeng; Huang, Dongfeng

    2013-11-01

    The Kinect-based virtual reality system for the Xbox 360 enables users to control and interact with the game console without the need to touch a game controller, and provides rehabilitation training for stroke patients with lower limb dysfunctions. However, the underlying mechanism remains unclear. In this study, 18 healthy subjects and five patients after subacute stroke were included. The five patients were scanned using functional MRI prior to training, 3 weeks after training and at a 12-week follow-up, and then compared with healthy subjects. The Fugl-Meyer Assessment and Wolf Motor Function Test scores of the hemiplegic upper limbs of stroke patients were significantly increased 3 weeks after training and at the 12-week follow-up. Functional MRI results showed that contralateral primary sensorimotor cortex was activated after Kinect-based virtual reality training in the stroke patients compared with the healthy subjects. Contralateral primary sensorimotor cortex, the bilateral supplementary motor area and the ipsilateral cerebellum were also activated during hand-clenching in all 18 healthy subjects. Our findings indicate that Kinect-based virtual reality training could promote the recovery of upper limb motor function in subacute stroke patients, and brain reorganization by Kinect-based virtual reality training may be linked to the contralateral sensorimotor cortex. PMID:25206611

  11. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.

    PubMed

    Amsuess, Sebastian; Goebel, Peter; Graimann, Bernhard; Farina, Dario

    2015-09-01

    Functional replacement of upper limbs by means of dexterous prosthetic devices remains a technological challenge. While the mechanical design of prosthetic hands has advanced rapidly, the human-machine interfacing and the control strategies needed for the activation of multiple degrees of freedom are not reliable enough for restoring hand function successfully. Machine learning methods capable of inferring the user intent from EMG signals generated by the activation of the remnant muscles are regarded as a promising solution to this problem. However, the lack of robustness of the current methods impedes their routine clinical application. In this study, we propose a novel algorithm for controlling multiple degrees of freedom sequentially, inherently proportionally and with high robustness, allowing a good level of prosthetic hand function. The control algorithm is based on the spatial linear combinations of amplitude-related EMG signal features. The weighting coefficients in this combination are derived from the optimization criterion of the common spatial patterns filters which allow for maximal discriminability between movements. An important component of the study is the validation of the method which was performed on both able-bodied and amputee subjects who used physical prostheses with customized sockets and performed three standardized functional tests mimicking daily-life activities of varying difficulty. Moreover, the new method was compared in the same conditions with one clinical/industrial and one academic state-of-the-art method. The novel algorithm outperformed significantly the state-of-the-art techniques in both subject groups for tests that required the activation of more than one degree of freedom. Because of the evaluation in real time control on both able-bodied subjects and final users (amputees) wearing physical prostheses, the results obtained allow for the direct extrapolation of the benefits of the proposed method for the end users. In conclusion, the method proposed and validated in real-life use scenarios, allows the practical usability of multifunctional hand prostheses in an intuitive way, with significant advantages with respect to previous systems. PMID:25296406

  12. Epidemiology of Congenital Upper Limb Anomalies in a Midwest United States Population: An Assessment Using the OMT Classification

    PubMed Central

    Goldfarb, Charles A.; Wall, Lindley B.; Bohn, Deborah C.; Moen, Patrick; Van Heest, Ann E.

    2014-01-01

    Purpose To examine the relative presentation frequency of children with upper limb congenital anomalies at 3 Midwestern referral centers using the Oberg, Manske, and Tonkin (OMT) classification and to assess the utility of this new classification system. Methods 641 individuals with 653 congenital upper extremity anomalies were identified at 3 hospitals in 2 large metropolitan areas during a 1-year interval. Patients were identified prospectively and the specific upper extremity anomaly and any associated syndromes were confirmed using medical records and radiographs. We applied the OMT classification that categorizes anomalies using a dysmorphology outline as malformations, dysplasias, deformations, and syndromes, and assessed its utility and ease of use. Results There were 480 extremities (74%) with a limb malformation including 184 involving the entire limb. Arthrogryposis was the most common of these (53 extremities). Anomalies affecting only the hand plate accounted for 62% (296) of the malformations. Of these, radial polydactyly (15%) was the most common specific anomaly, followed by symbrachydactyly (13%) and cleft hand (11%). Dysplasias were noted in 86 extremities; 55 of these were multiple hereditary exostoses. There were 87 extremities with deformations and 58 of these were trigger digits. A total of 98 children had a syndrome or association. Constriction ring sequence was most common. The OMT was straightforward to use and most anomalies could be easily assigned. There were a few conditions, such as Madelung deformity and symbrachydactyly, that would benefit from clarification on how to best classify them. Conclusions Malformations were the most common congenital anomalies in the 653 upper extremities evaluated over a 1-year period at 3 institutions. We were able to classify all individuals using the OMT classification system. PMID:25534840

  13. Upper limb performance and the structuring of joint movement in teenagers with cerebral palsy: the reciprocal role of task demands and action capabilities.

    PubMed

    Figueiredo, Priscilla Rezende Pereira; Silva, Paula Lanna; Avelar, Bruna Silva; da Fonseca, Srgio Teixeira; Bootsma, Reinoud J; Mancini, Marisa Cotta

    2015-04-01

    Individuals with unilateral cerebral palsy (CP) demonstrate reduced performance in upper limb tasks compared to typically developing (TD) peers. We examined whether task conditions modify differences between teenagers with and without CP during a reciprocal aiming task. Twenty teenagers (nine CP and 11 TD) moved a pointer between two targets as fast as possible without missing a target. Task conditions were manipulated by changing the targets' size, by modifying the inertial properties of the pointer and by varying the upper limb used to perform the task (preferred/non-affected and non-preferred/affected upper limbs). While compared to TD peers, CP teenagers exhibited lower performance (longer movement times). Such differences were attenuated when the task was performed with the preferred upper limb and when accuracy requirements were less stringent. CP teenagers were not differentially affected by the pointer inertia manipulation. Task conditions not only affected performance but also joint kinematics. CP teenagers revealed less movement at the elbow and more movement at the shoulder when performing the task with their less skilled upper limb. However, both CP and TD teenagers demonstrated a larger contribution of trunk movement when facing more challenging task conditions. The overall pattern of results indicated that the joint kinematics employed by individuals with unilateral CP constituted adaptive responses to task requirements. Thus, the explanation of the effects of unilateral CP on upper limb behavior needs to go beyond a context-indifferent manifestation of the brain injury to include the interaction between task demands and action capabilities. PMID:25579662

  14. Upper extremity muscle activation during drinking from a glass in subjects with chronic stroke

    PubMed Central

    Lee, Jung Ah; Hwang, Pil Woo; Kim, Eun Joo

    2015-01-01

    [Purpose] The purpose of this study was to compare the muscle activities of upper extremities during a drinking task between the stroke-affected and less-affected sides. [Subjects] Eight stroke patients (8 men; age 45.3?years; stroke duration 21.9 months) participated in this study. [Methods] Electromyography (EMG) was used to measure nine muscle activities of the upper extremity. The drinking task was divided into 5 phases. [Results] Analysis of the EMG data showed that the percentage of maximum voluntary isometric contraction (%MVIC) across all phases of drinking differed between the affected and less-affected sides. Participants used relatively higher levels of %MVIC in the anterior deltoid, flexor muscles, brachioradialis, and infraspinatus on the stoke-affected side. [Conclusion] The difference in muscle activation across all phases of the drinking movement allowed us to determine how upper extremity muscle activation may influence drinking performance on the stroke-affected and less-affected sides. PMID:25931712

  15. The effects of progressive functional training on lower limb muscle architecture and motor function in children with spastic cerebral palsy.

    PubMed

    Lee, MiHye; Ko, YoungJun; Shin, Mary Myong Sook; Lee, Wanhee

    2015-05-01

    [Purpose] To investigate the effects of progressive functional training on lower limb muscle architecture and motor function of children with spastic cerebral palsy (CP). [Subjects] The subjects of this study were 26 children with spastic CP. [Methods] Thirteen subjects in the experimental group performed general neurodevelopmental treatment (NDT) and additional progressive functional trainings and 13 subjects in the control group performed only general NDT 3 times a week for 6 weeks. Ultrasonography, gross motor function measurement (GMFM) and the mobility questionnaire (MobQue) were evaluated. [Results] After the intervention, the muscle thickness of the quadriceps femoris (QF), cross-sectional area of the rectus femoris (RF), pennation angle of the gastrocnemius (GCM) and the MobQue score of the experimental group were significantly greater than those of the control group. The muscle thickness of QF correlated with the cross-sectional area (CSA) of RF and the pennation angle of GCM, and GMFM score correlated with the pennation angle of GCM. [Conclusion] Progressive functional training can increase muscle thickness, CSA, and the pennation angle of the lower limb muscles, and improve the mobility of spastic CP children making it useful as a practical adjunct to rehabilitation therapy. PMID:26157267

  16. The effects of progressive functional training on lower limb muscle architecture and motor function in children with spastic cerebral palsy

    PubMed Central

    Lee, MiHye; Ko, YoungJun; Shin, Mary Myong Sook; Lee, Wanhee

    2015-01-01

    [Purpose] To investigate the effects of progressive functional training on lower limb muscle architecture and motor function of children with spastic cerebral palsy (CP). [Subjects] The subjects of this study were 26 children with spastic CP. [Methods] Thirteen subjects in the experimental group performed general neurodevelopmental treatment (NDT) and additional progressive functional trainings and 13 subjects in the control group performed only general NDT 3 times a week for 6 weeks. Ultrasonography, gross motor function measurement (GMFM) and the mobility questionnaire (MobQue) were evaluated. [Results] After the intervention, the muscle thickness of the quadriceps femoris (QF), cross-sectional area of the rectus femoris (RF), pennation angle of the gastrocnemius (GCM) and the MobQue score of the experimental group were significantly greater than those of the control group. The muscle thickness of QF correlated with the cross-sectional area (CSA) of RF and the pennation angle of GCM, and GMFM score correlated with the pennation angle of GCM. [Conclusion] Progressive functional training can increase muscle thickness, CSA, and the pennation angle of the lower limb muscles, and improve the mobility of spastic CP children making it useful as a practical adjunct to rehabilitation therapy. PMID:26157267

  17. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests

    PubMed Central

    Roldán-Jiménez, Cristina; Bennett, Paul; Cuesta-Vargas, Antonio I.

    2015-01-01

    Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects. PMID:26506612

  18. Corticospinal excitability modulation in resting digit muscles during cyclical movement of the digits of the ipsilateral limb

    PubMed Central

    Muraoka, Tetsuro; Sakamoto, Masanori; Mizuguchi, Nobuaki; Nakagawa, Kento; Kanosue, Kazuyuki

    2015-01-01

    We investigated how corticospinal excitability of the resting digit muscles was modulated by the digit movement in the ipsilateral limb. Subjects performed cyclical extension-flexion movements of either the right toes or fingers. To determine whether corticospinal excitability of the resting digit muscles was modulated on the basis of movement direction or action coupling between ipsilateral digits, the right forearm was maintained in either the pronated or supinated position. During the movement, the motor evoked potential (MEP) elicited by transcranial magnetic stimulation (TMS) was measured from either the resting right finger extensor and flexor, or toe extensor and flexor. For both finger and toe muscles, independent of forearm position, MEP amplitude of the flexor was greater during ipsilateral digit flexion as compared to extension, and MEP amplitude of the extensor was greater during ipsilateral digit extension as compared to flexion. An exception was that MEP amplitude of the toe flexor with the supinated forearm did not differ between during finger extension and flexion. These findings suggest that digit movement modulates corticospinal excitability of the digits of the ipsilateral limb such that the same action is preferred. Our results provide evidence for a better understanding of neural interactions between ipsilateral limbs, and may thus contribute to neurorehabilitation after a stroke or incomplete spinal cord injury. PMID:26582985

  19. A novel mission concept for upper air water vapour observations: active limb sounding with a constellation of retroreflectors

    NASA Astrophysics Data System (ADS)

    Clifford, D.; Hoffmann, A.; Weitnauer, C.; Topham, R.; Romano, P.; Lohrey, S.; Kox, S.; Krings, T.; Krejci, D.; Kern, K.; Huesing, J.; Esen, B.; Deconinck, F.; Carton, J. G.; Aulinas, J.

    2011-12-01

    The topic for the Alpbach summer school 2010 was "Missions for Understanding Climate Change''. Early career scientists and engineers from many countries formed working groups to devise new space missions to tackle this challenging subject. Following the summer school, one mission concept was chosen for further development at a subsequent workshop in Obergurgl, which is described in this paper. At the core of the mission chosen for further study was a novel active limb-sounding instrument, used as part of a multi-instrument measurement approach to observing upper air water vapour. The concept combines a LiDAR in nadir-viewing mode with a LiDAR in limb sounding by occultation geometry, designed to operate as a multiple discrete wavelength, very long path system for intergrated path differential absorption measurements. This is achieved using a monostatic transmitter-receiver spacecraft flown in formation with multiple spaceborne retroreflectors. Looking through the limb of the atmosphere, this system will sample the upper troposphere-lower stratosphere and above at high vertical resolution, with a long integration path allowing detection of the low concentrations of water vapour at this height. A secondary payload of a medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. Active limb sounding has not yet been attempted in space, and this novel concept presents significant challenges, including the performance of the lasers in space, the tracking and locking procedure between the main spacecraft and the retroreflectors, and the design of the telescopes to achieve a high enough signal-to-noise ratio for the high precision measurements. These issues are addressed in this preliminary feasibility study, which shows promising results.

  20. Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation

    NASA Astrophysics Data System (ADS)

    Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.

    1997-05-01

    We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.

  1. High intensity physical exercise and pain in the neck and upper limb among slaughterhouse workers: cross-sectional study.

    PubMed

    Sundstrup, Emil; Jakobsen, Markus D; Jay, Kenneth; Brandt, Mikkel; Andersen, Lars L

    2014-01-01

    Slaughterhouse work involves a high degree of repetitive and forceful upper limb movements and thus implies an elevated risk of work-related musculoskeletal disorders. High intensity strength training effectively rehabilitates musculoskeletal disorders among sedentary employees, but less is known about the effect among workers with repetitive and forceful work demands. Before performing randomized controlled trials it may be beneficial to assess the cross-sectional connection between exercise and musculoskeletal pain. We investigated the association between high intensity physical exercise and pain among 595 slaughterhouse workers in Denmark, Europe. Using logistic regression analyses, odds ratios for pain and work disability as a function of physical exercise, gender, age, BMI, smoking, and job position were estimated. The prevalence of pain in the neck, shoulder, elbow, and hand/wrist was 48%, 60%, 40%, and 52%, respectively. The odds for experiencing neck pain were significantly lower among slaughterhouse workers performing physical exercise (OR = 0.70, CI: 0.49-0.997), whereas the odds for pain in the shoulders, elbow, or hand/wrist were not associated with exercise. The present study can be used as general reference of pain in the neck and upper extremity among slaughterhouse workers. Future studies should investigate the effect of high intensity physical exercise on neck and upper limb pain in slaughterhouse workers. PMID:24527440

  2. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    PubMed

    Rogowski, Isabelle; Creveaux, Thomas; Chze, Laurence; Mac, Pierre; Dumas, Raphal

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871

  3. High Intensity Physical Exercise and Pain in the Neck and Upper Limb among Slaughterhouse Workers: Cross-Sectional Study

    PubMed Central

    Sundstrup, Emil; Jakobsen, Markus D.; Jay, Kenneth; Brandt, Mikkel; Andersen, Lars L.

    2014-01-01

    Slaughterhouse work involves a high degree of repetitive and forceful upper limb movements and thus implies an elevated risk of work-related musculoskeletal disorders. High intensity strength training effectively rehabilitates musculoskeletal disorders among sedentary employees, but less is known about the effect among workers with repetitive and forceful work demands. Before performing randomized controlled trials it may be beneficial to assess the cross-sectional connection between exercise and musculoskeletal pain. We investigated the association between high intensity physical exercise and pain among 595 slaughterhouse workers in Denmark, Europe. Using logistic regression analyses, odds ratios for pain and work disability as a function of physical exercise, gender, age, BMI, smoking, and job position were estimated. The prevalence of pain in the neck, shoulder, elbow, and hand/wrist was 48%, 60%, 40%, and 52%, respectively. The odds for experiencing neck pain were significantly lower among slaughterhouse workers performing physical exercise (OR = 0.70, CI: 0.490.997), whereas the odds for pain in the shoulders, elbow, or hand/wrist were not associated with exercise. The present study can be used as general reference of pain in the neck and upper extremity among slaughterhouse workers. Future studies should investigate the effect of high intensity physical exercise on neck and upper limb pain in slaughterhouse workers. PMID:24527440

  4. Effects of the Racket Polar Moment of Inertia on Dominant Upper Limb Joint Moments during Tennis Serve

    PubMed Central

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871

  5. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study

    PubMed Central

    Perraton, Luke G.; Bower, Kelly J.; Adair, Brooke; Pua, Yong-Hao; Williams, Gavin P.; McGaw, Rebekah

    2015-01-01

    Introduction Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power. Methods 30 healthy young adults (age: 23±5yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change. Results Comparison of RFD methods revealed that a peak 200ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31–0.79). Conclusions Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability and validity of these variables in clinical populations. PMID:26509265

  6. Improving proprioceptive deficits after stroke through robot-assisted training of the upper limb: a pilot case report study.

    PubMed

    Colombo, R; Sterpi, I; Mazzone, A; Delconte, C; Pisano, F

    2016-04-01

    The purpose of this study was to determine whether a conventional robot-assisted therapy of the upper limb was able to improve proprioception and motor recovery of an individual after stroke who exhibited proprioceptive deficits. After robotic sensorimotor training, significant changes were observed in kinematic performance variables. Two quantitative parameters evaluating position sense improved after training. Range of motion during shoulder and wrist flexion improved, but only wrist flexion remained improved at 3-month follow-up. These preliminary results suggest that intensive robot-aided rehabilitation may play an important role in the recovery of sensory function. However, further studies are required to confirm these data. PMID:26565132

  7. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study

    PubMed Central

    2012-01-01

    Background The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. Methods A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. Results The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. Conclusions This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brains ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training. PMID:22828181

  8. [Arteriovenous malformation of the left upper limb in stage II of Schbinger: A case report in Madagascar].

    PubMed

    Raherinantenaina, F; Rajaonanahary, T M A; Randriamandrato, T A V; Rakotomena, S D; Rajaonarivony, T; Rakoto Ratsimba, H N

    2015-09-01

    Arteriovenous malformations are the most unpredictable and dangerous congenital malformations. They consist of multiple arteriovenous shunts with high flow and can progress to heart failure. They are rarely localized in the upper limb and pose therapeutic problems. We report a new case in a 27-year old woman, admitted for pulsatile pain in the left elbow. The diagnosis was made by clinical examination and ultrasonography. The surgical treatment without embolization and sclerotherapy, consisted of a large resection of the nidus without postoperative complication. PMID:24035259

  9. Dissociating effect of upper limb non-use and overuse on space and body representations.

    PubMed

    Bassolino, Michela; Finisguerra, Alessandra; Canzoneri, Elisa; Serino, Andrea; Pozzo, Thierry

    2015-04-01

    Accurate and updated representations of the space where the body acts, i.e. the peripersonal space (PPS), and the location and dimension of body parts (body representation, BR) are essential to perform actions. Because both PPS and BR are involved in motor execution and display the same plastic proprieties after the use of a tool to reach far objects, it has been suggested that they overlap in a unique representation of the body in a space devoted to action. Here we determined whether manipulating actions in space, without modifying body metrics, i.e. through immobilization, induces a dissociation of the plastic properties of PPS and BR. In 39 healthy subjects we evaluated PPS and BR for the non-used right limb and the overused left limb before and after 10 h of right arm immobilization. We observed that non-use reduces PPS representation around the immobilized arm, without affecting the metric representation (i.e. perceived length) of that limb. In contrast, overuse modulates the metric representation of the free arm, leaving PPS unchanged around that limb. These results suggest that the plasticity in PPS and BR depends on different mechanisms; while PPS representation is shaped as a function of the dimension of the acting space, metric characteristics of BR are forged on a complex interplay between visual and sensorimotor information related to the body. This behavioral dissociation between PPS and BR defines a new scenario for the role of action in shaping space and body representations. PMID:25462198

  10. Limb girdle muscular dystrophy type 2G with myopathic-neurogenic motor unit potentials and a novel muscle image pattern

    PubMed Central

    2014-01-01

    Background Limb girdle muscular dystrophy type 2G (LGMD2G) is a subtype of autosomal recessive muscular dystrophy caused by mutations in the telethonin gene. There are few LGMD2G patients worldwide reported, and this is the first description associated with early tibialis anterior sparing on muscle image and myopathic-neurogenic motor unit potentials. Case presentation Here we report a 31years old caucasian male patient with progressive gait disturbance, and severe lower limb proximal weakness since the age of 20years, associated with subtle facial muscle weakness. Computed tomography demonstrated soleus, medial gastrocnemius, and diffuse thigh muscles involvement with tibialis anterior sparing. Electromyography disclosed both neurogenic and myopathic motor unit potentials. Muscle biopsy demonstrated large groups of atrophic and hypertrophic fibers, frequent fibers with intracytoplasmic rimmed vacuoles full of autophagic membrane and sarcoplasmic debris, and a total deficiency of telethonin. Molecular investigation identified the common homozygous c.157C?>?T in the TCAP gene. Conclusion This report expands the phenotypic variability of telethoninopathy/ LGMD2G, including: 1) mixed neurogenic and myopathic motor unit potentials, 2) facial weakness, and 3) tibialis anterior sparing. Appropriate diagnosis in these cases is important for genetic counseling and prognosis. PMID:25298746

  11. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans

    PubMed Central

    Mortensen, Stefan P; Dawson, Ellen A; Yoshiga, Chie C; Dalsgaard, Mads K; Damsgaard, Rasmus; Secher, Niels H; González-Alonso, José

    2005-01-01

    Reductions in systemic and locomotor limb muscle blood flow and O2 delivery limit aerobic capacity in humans. To examine whether O2 delivery limits both aerobic power and capacity, we first measured systemic haemodynamics, O2 transport and O2 uptake during incremental and constant (372 ± 11 W; 85% of peak power; mean ± s.e.m.) cycling exercise to exhaustion (n = 8) and then measured systemic and leg haemodynamics and during incremental cycling and knee-extensor exercise in male subjects (n = 10). During incremental cycling, cardiac output and systemic O2 delivery increased linearly to 80% of peak power (r2 = 0.998, P < 0.001) and then plateaued in parallel to a decline in stroke volume (SV) and an increase in central venous and mean arterial pressures (P < 0.05). In contrast, heart rate and increased linearly until exhaustion (r2 = 0.993; P < 0.001) accompanying a rise in systemic O2 extraction to 84 ± 2%. In the exercising legs, blood flow and O2 delivery levelled off at 73–88% of peak power, blunting leg per unit of work despite increasing O2 extraction. When blood flow increased linearly during one-legged knee-extensor exercise, per unit of work was unaltered on fatigue. During constant cycling, , SV, systemic O2 delivery and reached maximal values within ∼5 min, but dropped before exhaustion (P < 0.05) despite increasing or stable central venous and mean arterial pressures. In both types of maximal cycling, the impaired systemic O2 delivery was due to the decline or plateau in because arterial O2 content continued to increase. These results indicate that an inability of the circulatory system to sustain a linear increase in O2 delivery to the locomotor muscles restrains aerobic power. The similar impairment in SV and O2 delivery during incremental and constant load cycling provides evidence for a central limitation to aerobic power and capacity in humans. PMID:15860533

  12. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans.

    PubMed

    Mortensen, Stefan P; Dawson, Ellen A; Yoshiga, Chie C; Dalsgaard, Mads K; Damsgaard, Rasmus; Secher, Niels H; Gonzlez-Alonso, Jos

    2005-07-01

    Reductions in systemic and locomotor limb muscle blood flow and O2 delivery limit aerobic capacity in humans. To examine whether O2 delivery limits both aerobic power and capacity, we first measured systemic haemodynamics, O2 transport and O2 uptake during incremental and constant (372 +/- 11 W; 85% of peak power; mean +/- S.E.M.) cycling exercise to exhaustion (n = 8) and then measured systemic and leg haemodynamics and during incremental cycling and knee-extensor exercise in male subjects (n = 10). During incremental cycling, cardiac output and systemic O2 delivery increased linearly to 80% of peak power (r2 = 0.998, P < 0.001) and then plateaued in parallel to a decline in stroke volume (SV) and an increase in central venous and mean arterial pressures (P < 0.05). In contrast, heart rate and increased linearly until exhaustion (r2 = 0.993; P < 0.001) accompanying a rise in systemic O2 extraction to 84 +/- 2%. In the exercising legs, blood flow and O2 delivery levelled off at 73-88% of peak power, blunting leg per unit of work despite increasing O2 extraction. When blood flow increased linearly during one-legged knee-extensor exercise, per unit of work was unaltered on fatigue. During constant cycling, , SV, systemic O2 delivery and reached maximal values within approximately 5 min, but dropped before exhaustion (P < 0.05) despite increasing or stable central venous and mean arterial pressures. In both types of maximal cycling, the impaired systemic O2 delivery was due to the decline or plateau in because arterial O2 content continued to increase. These results indicate that an inability of the circulatory system to sustain a linear increase in O2 delivery to the locomotor muscles restrains aerobic power. The similar impairment in SV and O2 delivery during incremental and constant load cycling provides evidence for a central limitation to aerobic power and capacity in humans. PMID:15860533

  13. Lingual Muscle Activity Across Sleep–Wake States in Rats with Surgically Altered Upper Airway

    PubMed Central

    Rukhadze, Irma; Kalter, Julie; Stettner, Georg M.; Kubin, Leszek

    2014-01-01

    Obstructive sleep apnea (OSA) patients have increased upper airway muscle activity, including such lingual muscles as the genioglossus (GG), geniohyoid (GH), and hyoglossus (HG). This adaptation partially protects their upper airway against obstructions. Rodents are used to study the central neural control of sleep and breathing but they do not naturally exhibit OSA. We investigated whether, in chronically instrumented, behaving rats, disconnecting the GH and HG muscles from the hyoid (H) apparatus would result in a compensatory increase of other upper airway muscle activity (electromyogram, EMG) and/or other signs of upper airway instability. We first determined that, in intact rats, lingual (GG and intrinsic) muscles maintained stable activity levels when quantified based on 2 h-long recordings conducted on days 6 through 22 after instrumentation. We then studied five rats in which the tendons connecting the GH and HG muscles to the H apparatus were experimentally severed. When quantified across all recording days, lingual EMG during slow-wave sleep (SWS) was modestly but significantly increased in rats with surgically altered upper airway [8.6 ± 0.7% (SE) vs. 6.1 ± 0.7% of the mean during wakefulness; p = 0.012]. Respiratory modulation of lingual EMG occurred mainly during SWS and was similarly infrequent in both groups, and the incidence of sighs and central apneas also was similar. Thus, a weakened action of selected lingual muscles did not produce sleep-disordered breathing but resulted in a relatively elevated activity in other lingual muscles during SWS. These results encourage more extensive surgical manipulations with the aim to obtain a rodent model with collapsible upper airway. PMID:24803913

  14. Electrical activity and relative length changes of dog limb muscles as a function of speed and gait.

    PubMed

    Goslow, G E; Seeherman, H J; Taylor, C R; McCutchin, M N; Heglund, N C

    1981-10-01

    Electrical activity and length changes of 11 muscles of the fore- and hind- limbs of dogs walking, running, and galloping on a treadmill, were measured as a function of forward speed and gait. Our purpose was to find out whether the activity patterns of the major limb muscles were consistent with the two mechanisms proposed for storage and recovery of energy within a stride: a 'pendulum-like' mechanism during a walk, and a 'spring-like' mechanism during a run. In the stance phase of the walking dog, we found that the supraspinatus, long head of the triceps brachii, biceps brachii, vastus lateralis, and gastrocnemius underwent only minor length changes during a relatively long portion of their activity, Thus, a major part of their activity during the walk seems consistent with a role in stabilization of the joints as the dog 'pole-vaulted' over its limbs (and thereby conserved energy). In the stance phase of trotting and/or galloping dogs, we found that the supraspinatus, lateral head of the triceps, vastus lateralis, and gastrocnemius were active while being stretched prior to shortening (as would be required for elastic storage of energy), and that this type of activity increased with increasing speed. We also found muscular activity in the select limb flexors that was consistent with storage of kinetic energy at the end of the swing phase and recovery during the propulsive stroke. This activity pattern was apparent in the latissimus dorsi during a walk and trot, and in the biceps femoris during a trot and gallop. We conclude that, during locomotion, a significant fraction of the electrical activity of a number of limbs muscles occurs while they undergo little or no length change or are being stretched prior to shortening and that these types of activities occur in a manner that would enable the operation of pendulum-like and spring-like mechanisms for conserving energy within a stride. Therefore these forms of muscular activity, in addition to the more familiar activity associated with muscle shortening, should be considered to be important during locomotion. PMID:7310312

  15. The neural correlates of upper limb motor blocks in Parkinson's disease and their relation to freezing of gait.

    PubMed

    Vercruysse, S; Spildooren, J; Heremans, E; Wenderoth, N; Swinnen, S P; Vandenberghe, W; Nieuwboer, A

    2014-12-01

    Due to basal ganglia dysfunction, bimanual motor performance in Parkinson patients reportedly relies on compensatory brain activation in premotor-parietal-cerebellar circuitries. A subgroup of Parkinson's disease (PD) patients with freezing of gait (FOG) may exhibit greater bimanual impairments up to the point that motor blocks occur. This study investigated the neural mechanisms of upper limb motor blocks and explored their relation with FOG. Brain activation was measured using functional magnetic resonance imaging during bilateral finger movements in 16 PD with FOG, 16 without FOG (PD + FOG and PD - FOG), and 16 controls. During successful movement, PD + FOG showed decreased activation in right dorsolateral prefrontal cortex (PFC), left dorsal premotor cortex (PMd), as well as left M1 and bilaterally increased activation in dorsal putamen, pallidum, as well as subthalamic nucleus compared with PD - FOG and controls. On the contrary, upper limb motor blocks were associated with increased activation in right M1, PMd, supplementary motor area, and left PFC compared with successful movement, whereas bilateral pallidum and putamen activity was decreased. Complex striatofrontal activation changes may be involved in the difficulties of PD + FOG to perform bimanual movements, or sequential movements in general. These novel results suggest that, whatever the exact underlying cause, PD + FOG seem to have reached a saturation point of normal neural compensation and respond belatedly to actual movement breakdown. PMID:23861319

  16. A delayed diagnosis that altered the professional orientation of an athlete with upper limb chronic arterial embolization

    PubMed Central

    Ioannou, Christos V.; Kafetzakis, Alexandros; Kounnos, Christos; Koukoumtzis, Dimitris; Tavlas, Emmanuel; Kostas, Theodoros

    2012-01-01

    Summary Background Vascular disorders of the upper extremity in young and physically active patients present a complex and challenging problem for the treating physician. Initial presentation may often be subtle and the consequences of misdiagnosis, delayed diagnosis or mistreatment can be severe. Case Report In this report, we discuss a case of a young woman with chronic upper limb ischemia due to an arterial thoracic outlet syndrome in whom even though symptoms persisted over a number of years during which she frequently sought medical consultation, remained undiagnosed until finally presenting with limb-threatening ischemia. Furthermore, due to this delay, the patient was forced to withdraw from her professional carrier in athletics. Conclusions A thoughtful and through approach combining the history, physical findings, and use of appropriate diagnostic aids will provide the physician and patient with the greatest opportunity for a satisfactory outcome. Furthermore, a delay in definitive treatment may not only cause health deterioration, but may also incur social, economic and occupational consequences. PMID:22207121

  17. Human upper-limb force capacities evaluation with robotic models for ergonomic applications: effect of elbow flexion.

    PubMed

    Hernandez, Vincent; Rezzoug, Nasser; Jacquier-Bret, Julien; Gorce, Philippe

    2016-03-01

    The aim of this study was to apply models derived from the robotics field to evaluate the human upper-limb force generation capacity. Four models were compared: the force ellipsoid (FE) and force polytope (FP) based on unit joint torques and the scaled FE (SFE) and scaled FP (SFP) based on maximum isometric joint torques. The four models were assessed from four upper-limb postures with varying elbow flexion (40°, 60°, 80° and 100°) measured by an optoelectronic system and their corresponding isometric joint torques. Ten subjects were recruited. Three specific ellipsoids and polytopes parameters were compared: isotropy, principal force orientation and volume. Isotropy showed that the ellipsoids and polytopes were elongated. The angle between the two ellipsoids main axis and the two polytopes remained low but increased with the elbow flexion. The FE and FP volumes increased and those of SFE and SFP decreased with the elbow flexion. The interest and limits of such models are discussed in the framework of ergonomics and rehabilitation. PMID:26214374

  18. Relationships between lower limb muscle strength and locomotor capacity in children and adolescents with cerebral palsy who walk independently.

    PubMed

    Ferland, Chantale; Lepage, Cline; Moffet, Hlne; Maltais, Dsire B

    2012-08-01

    This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip flexor and abductor, knee flexor and extensor, and ankle dorsiflexor muscles was measured using hand-held dynamometry. Ankle plantar flexor concentric muscle strength was assessed as the maximal number of unilateral heel rises. Locomotor capacity was evaluated by the 6-min walk test (6MWT), 10-meter Shuttle Run Test (10mSRT), and Timed Up and Down Stairs Test (TUDS). With control for age, sex, and height, hip flexor and ankle plantar flexor strength explained 47.8% of the variance in the 6MWT and 32.9% of variance in the TUDS and hip abductor isometric strength explained 43.5% of the variance in the 10mSRT. Avenues for future research include randomized controlled trials that specifically target hip flexor muscles, as this has not previously been done, and determining factors other than strength that are likely related to locomotor capacity of children and adolescents with CP. PMID:22114847

  19. A dynamic recurrent neural network for multiple muscles electromyographic mapping to elevation angles of the lower limb in human locomotion.

    PubMed

    Cheron, G; Leurs, F; Bengoetxea, A; Draye, J P; Destre, M; Dan, B

    2003-10-30

    This paper describes the use of a dynamic recurrent neural network (DRNN) for simulating lower limb coordination in human locomotion. The method is based on mapping between the electromyographic signals (EMG) from six muscles and the elevation angles of the three main lower limb segments (thigh, shank and foot). The DRNN is a fully connected network of 35 hidden units taking into account the temporal relationships history between EMG and lower limb kinematics. Each EMG signal is sent to all 35 units, which converge to three outputs. Each output neurone provides the kinematics of one lower limb segment. The training is supervised, involving learning rule adaptations of synaptic weights and time constant of each unit. Kinematics of the locomotor movements were recorded and analysed using the opto-electronic ELITE system. Comparative analysis of the learning performance with different types of output (position, velocity and acceleration) showed that for common gait mapping velocity data should be used as output, as it is the best compromise between asymptotic error curve, rapid convergence and avoidance of bifurcation. Reproducibility of the identification process and biological plausibility were high, indicating that the DRNN may be used for understanding functional relationships between multiple EMG and locomotion. The DRNN might also be of benefit for prosthetic control. PMID:14511813

  20. Limb segment vibration modulates spinal reflex excitability and muscle mRNA expression after spinal cord injury

    PubMed Central

    Chang, Shuo-Hsiu; Tseng, Shih-Chiao; McHenry, Colleen L.; Littmann, Andrew E.; Suneja, Manish; Shields, Richard K.

    2012-01-01

    Objective We investigated the effect of various doses of vertical oscillation (vibration) on soleus H-reflex amplitude and post-activation depression in individuals with and without SCI. We also explored the acute effect of short-term limb vibration on skeletal muscle mRNA expression of genes associated with spinal plasticity. Methods Six healthy adults and five chronic complete SCI subjects received vibratory stimulation of their tibia over three different gravitational accelerations (0.3g, 0.6g, and 1.2g) at a fixed frequency (30 Hz). Soleus H-reflexes were measured before, during, and after vibration. Two additional chronic complete SCI subjects had soleus muscle biopsies 3 h following a single bout of vibration. Results H-reflex amplitude was depressed over 83% in both groups during vibration. This vibratory-induced inhibition lasted over 2 min in the control group, but not in the SCI group. Post-activation depression was modulated during the long-lasting vibratory inhibition. A single bout of mechanical oscillation altered mRNA expression from selected genes associated with synaptic plasticity. Conclusions Vibration of the lower leg inhibits the H-reflex amplitude, influences post-activation depression, and alters skeletal muscle mRNA expression of genes associated with synaptic plasticity. Significance Limb segment vibration may offer a long term method to reduce spinal reflex excitability after SCI. PMID:21963319

  1. Neck proprioceptors contribute to the modulation of muscle sympathetic nerve activity to the lower limbs of humans.

    PubMed

    Bolton, P S; Hammam, E; Macefield, V G

    2014-07-01

    Several different strategies have now been used to demonstrate that the vestibular system can modulate muscle sympathetic nerve activity (MSNA) in humans and thereby contribute to the regulation of blood pressure during changes in posture. However, it remains to be determined how the brain differentiates between head-only movements that do not require changes in vasomotor tone in the lower limbs from body movements that do require vasomotor changes. We tested the hypothesis that neck movements modulate MSNA in the lower limbs of humans. MSNA was recorded in 10 supine young adult subjects, at rest, during sinusoidal stretching of neck muscles (100 cycles, 35° peak to peak at 0.37 ± 0.02 Hz) and during a ramp-and-hold (17.5° for 54 ± 9 s) static neck muscle stretch, while their heads were held fixed in space. Cross-correlation analysis revealed cyclical modulation of MSNA during sinusoidal neck muscle stretch (modulation index 45.4 ± 5.3 %), which was significantly less than the cardiac modulation of MSNA at rest (78.7 ± 4.2 %). Interestingly, cardiac modulation decreased significantly during sinusoidal neck displacement (63.0 ± 9.3 %). By contrast, there was no significant difference in MSNA activity during static ramp-and-hold displacements of the neck to the right or left compared with that with the head and neck aligned. These data suggest that dynamic, but not static, neck movements can modulate MSNA, presumably via projections of muscle spindle afferents to the vestibular nuclei, and may thus contribute to the regulation of blood pressure during orthostatic challenges. PMID:24691758

  2. Upper Extremity Muscle Activation during Recovery of Reaching in Subjects with Post-stroke Hemiparesis

    PubMed Central

    Wagner, Joanne M.; Dromerick, Alexander W.; Sahrmann, Shirley A.; Lang, Catherine E.

    2007-01-01

    Objective To investigate upper extremity muscle activation and recovery during the first few months after stroke. Methods Subjects with hemiparesis following stroke were studied performing a reaching task at an acute time point (mean = 9 days post-stroke) and then again at a subacute time point (mean = 109 days post-stroke). We recorded kinematics and electromyographic activity of 6 upper extremity muscles. Results At the acute time point, the hemiparetic group had delayed muscle onsets, lower modulation ratios, and higher relative levels of muscle activation (%MVIC) during reaching than controls. From the acute to the subacute time points, improvements were noted in all three variables. By the subacute phase, muscle onsets were similar to controls, while modulation ratios remained lower than controls and %MVIC showed a trend toward being greater in the hemiparetic group. Changes in muscle activation were differentially related to changes in reaching performance. Conclusions Our data show that improvements in muscle timing and decreases in the relative level of volitional activation may underlie improved reaching performance in the early months after stroke. Significance Given that stroke is one of the leading causes of persistent physical disability, it is important to understand how the ability to activate muscles changes during the early phases of recovery after injury. PMID:17097340

  3. Kinematic Analysis of the Upper Limb Motor Strategies in Stroke Patients as a Tool towards Advanced Neurorehabilitation Strategies: A Preliminary Study

    PubMed Central

    Simbolotti, Chiara

    2014-01-01

    Advanced rehabilitation strategies of the upper limb in stroke patients focus on the recovery of the most important daily activities. In this study we analyzed quantitatively and qualitatively the motor strategies employed by stroke patients when reaching and drinking from a glass. We enrolled 6 hemiparetic poststroke patients and 6 healthy subjects. Motion analysis of the task proposed (reaching for the glass, bringing it to the mouth, and putting it back on the table) with the affected limb was performed. Clinical assessment using the Fugl-Meyer Assessment for Upper Extremity was also included. During the reaching for the glass the patients showed a reduced arm elongation and trunk axial rotation due to motor deficit. For this reason, as observed, they carried out compensatory strategies which included trunk forward displacement and head movements. These preliminary data should be considered to address rehabilitation treatment. Moreover, the kinematic analysis protocol developed might represent an outcome measure of upper limb rehabilitation processes. PMID:24868536

  4. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.

    PubMed

    Tsekleves, Emmanuel; Paraskevopoulos, Ioannis Theoklitos; Warland, Alyson; Kilbride, Cherry

    2014-11-13

    Abstract Purpose: This paper proposes a novel system (using the Nintendo Wii remote) that offers customised, non-immersive, virtual reality-based, upper-limb stroke rehabilitation and reports on promising preliminary findings with stroke survivors. Method: The system novelty lies in the high accuracy of the full kinematic tracking of the upper limb movement in real-time, offering strong personal connection between the stroke survivor and a virtual character when executing therapist prescribed adjustable exercises/games. It allows the therapist to monitor patient performance and to individually calibrate the system in terms of range of movement, speed and duration. Results: The system was tested for acceptability with three stroke survivors with differing levels of disability. Participants reported an overwhelming connection with the system and avatar. A two-week, single case study with a long-term stroke survivor showed positive changes in all four outcome measures employed, with the participant reporting better wrist control and greater functional use. Activities, which were deemed too challenging or too easy were associated with lower scores of enjoyment/motivation, highlighting the need for activities to be individually calibrated. Conclusions: Given the preliminary findings, it would be beneficial to extend the case study in terms of duration and participants and to conduct an acceptability and feasibility study with community dwelling survivors. Implications for Rehabilitation Low-cost, off-the-shelf game sensors, such as the Nintendo Wii remote, are acceptable by stroke survivors as an add-on to upper limb stroke rehabilitation but have to be bespoked to provide high-fidelity and real-time kinematic tracking of the arm movement. Providing therapists with real-time and remote monitoring of the quality of the movement and not just the amount of practice, is imperative and most critical for getting a better understanding of each patient and administering the right amount and type of exercise. The ability to translate therapeutic arm movement into individually calibrated exercises and games, allows accommodation of the wide range of movement difficulties seen after stroke and the ability to adjust these activities (in terms of speed, range of movement and duration) will aid motivation and adherence - key issues in rehabilitation. With increasing pressures on resources and the move to more community-based rehabilitation, the proposed system has the potential for promoting the intensity of practice necessary for recovery in both community and acute settings. PMID:25391221

  5. [The application of the concise exposure index to repetitive movement tasks of the upper limbs in various production settings: preliminary experience and validation].

    PubMed

    Colombini, D; Occhipinti, E

    1996-01-01

    A summary of eight investigations is presented, which were carried out using standardised methods, for the purpose of quantifying exposure to tasks involving repetitive movements of the upper limbs, as well as quantifying the prevalence of Work Related Musculo Skeletal Disorders of the upper limbs in groups of exposed workers. A total of 462 exposed workers were examined, and the study also took into account the data pertaining to a matched control group comprising 749 workers not exposed to any specific occupational risk. Regarding the quantification of exposure to increased risk, use was made of a Concise Index (OCRA), proposed by the Authors in a previous publication. The data resulting from the eight investigations were used for the study of measurements and models of association among the exposure variables (mainly represented by the OCRA index), as well as the effect variables represented by the prevalence of the various WMSDs of the upper limbs taken both individually and jointly. Significant associations were reported between the OCRA index and an effect indicator represented by the prevalence of all the WSMDs of the upper limbs, calculated on the number of upper limbs at risk. When a logarithmic conversion of the relative exposure (OCRA) and injury indices was carried out, a simple linear regression model resulted which seems to provide a satisfactory predictive performance of the risk of WMSDs of the upper limbs, based on the exposure index. The study confirmed the efficacy of various other models designed to predict effects based on multiple linear regression functions, in which the independent variables are represented by both the OCRA exposure index and by parameters relative to the breakdown by sex and age of the groups of exposed workers. PMID:9148127

  6. Development of Device to Evoke Stretch Reflexes by Use of Electromagnetic Force for the Rehabilitation of the Hemiplegic Upper Limb after Stroke

    NASA Astrophysics Data System (ADS)

    Hayashi, Ryota; Ishimine, Tomoyasu; Kawahira, Kazumi; Yu, Yong; Tsujio, Showzow

    In this research, we focus on the method of rehabilitation with stretch reflexes for the hemiplegic upper limb in stroke patients. We propose a new device which utilizes electromagnetic force to evoke stretch reflexes. The device can exert an assisting force safely, because the electromagnetic force is non contact force. In this paper, we develop a support system applying the proposed device for the functional recovery training of the hemiplegic upper limb. The results obtained from several clinical tests with and without our support system are compared. Then we discuss the validity of our support system.

  7. Lateral asymmetry as a function of motor practice type of complex upper- and lower-limb movement in young children.

    PubMed

    Marinsek, Miha

    2016-05-01

    The influence of different motor practice types on lateral asymmetry of performance was investigated in 40 preschool children. Lateral preference was measured prior the experiment. For the purpose of present study dribbling a ball with a hand and foot was used to assess lateral asymmetry of performance before and after three different motor practice types. Motor practice with the non-dominant, dominant, and both (contralateral) limbs took place in the indoor facility 4 times/week for 6 weeks. Each session lasted 30-40 min. Our results showed that unilateral practice of dribbling is more beneficial for diminishing lateral asymmetry of performance in comparison to bilateral practice. Moreover, participants who practiced with their dominant limb diminished lateral asymmetry of performance the most and made the largest overall improvement. We did not find important differences between acquisitions of dribbling with upper- and lower-extremity. In this sense, the results support the notion of lateral asymmetry of performance to be task-specific. PMID:26754104

  8. A New Calibration Methodology for Thorax and Upper Limbs Motion Capture in Children Using Magneto and Inertial Sensors

    PubMed Central

    Ricci, Luca; Formica, Domenico; Sparaci, Laura; Lasorsa, Francesca Romana; Taffoni, Fabrizio; Tamilia, Eleonora; Guglielmelli, Eugenio

    2014-01-01

    Recent advances in wearable sensor technologies for motion capture have produced devices, mainly based on magneto and inertial measurement units (M-IMU), that are now suitable for out-of-the-lab use with children. In fact, the reduced size, weight and the wireless connectivity meet the requirement of minimum obtrusivity and give scientists the possibility to analyze children's motion in daily life contexts. Typical use of magneto and inertial measurement units (M-IMU) motion capture systems is based on attaching a sensing unit to each body segment of interest. The correct use of this setup requires a specific calibration methodology that allows mapping measurements from the sensors' frames of reference into useful kinematic information in the human limbs' frames of reference. The present work addresses this specific issue, presenting a calibration protocol to capture the kinematics of the upper limbs and thorax in typically developing (TD) children. The proposed method allows the construction, on each body segment, of a meaningful system of coordinates that are representative of real physiological motions and that are referred to as functional frames (FFs). We will also present a novel cost function for the LevenbergMarquardt algorithm, to retrieve the rotation matrices between each sensor frame (SF) and the corresponding FF. Reported results on a group of 40 children suggest that the method is repeatable and reliable, opening the way to the extensive use of this technology for out-of-the-lab motion capture in children. PMID:24412901

  9. A new calibration methodology for thorax and upper limbs motion capture in children using magneto and inertial sensors.

    PubMed

    Ricci, Luca; Formica, Domenico; Sparaci, Laura; Lasorsa, Francesca Romana; Taffoni, Fabrizio; Tamilia, Eleonora; Guglielmelli, Eugenio

    2014-01-01

    Recent advances in wearable sensor technologies for motion capture have produced devices, mainly based on magneto and inertial measurement units (M-IMU), that are now suitable for out-of-the-lab use with children. In fact, the reduced size, weight and the wireless connectivity meet the requirement of minimum obtrusivity and give scientists the possibility to analyze children's motion in daily life contexts. Typical use of magneto and inertial measurement units (M-IMU) motion capture systems is based on attaching a sensing unit to each body segment of interest. The correct use of this setup requires a specific calibration methodology that allows mapping measurements from the sensors' frames of reference into useful kinematic information in the human limbs' frames of reference. The present work addresses this specific issue, presenting a calibration protocol to capture the kinematics of the upper limbs and thorax in typically developing (TD) children. The proposed method allows the construction, on each body segment, of a meaningful system of coordinates that are representative of real physiological motions and that are referred to as functional frames (FFs). We will also present a novel cost function for the Levenberg-Marquardt algorithm, to retrieve the rotation matrices between each sensor frame (SF) and the corresponding FF. Reported results on a group of 40 children suggest that the method is repeatable and reliable, opening the way to the extensive use of this technology for out-of-the-lab motion capture in children. PMID:24412901

  10. Current evaluation of hydraulics to replace the cable force transmission system for body-powered upper-limb prostheses.

    PubMed

    LeBlanc, M

    1990-01-01

    Present body-powered upper-limb prostheses use a cable control system employing World War II aircraft technology to transmit force from the body to the prosthesis for operation. The cable and associated hardware are located outside the prosthesis. Because individuals with arm amputations want prostheses that are natural looking with a smooth, soft outer surface, a design and development project was undertaken to replace the cable system with hydraulics located inside the prosthesis. Three different hydraulic transmission systems were built for evaluation, and other possibilities were explored. Results indicate that a hydraulic force transmission system remains an unmet challenge as a practical replacement for the cable system. The author was unable to develop a hydraulic system that meets the necessary dynamic requirements and is acceptable in size and appearance. PMID:10149042

  11. Determining specificity of motor imagery training for upper limb improvement in chronic stroke patients: a training protocol and pilot results.

    PubMed

    Craje, Celine; van der Graaf, Chantal; Lem, Frits C; Geurts, Alexander C H; Steenbergen, Bert

    2010-12-01

    Motor imagery (MI) refers to the mental rehearsal of a movement without actual motor output. MI training has positive effects on upper limb recovery after stroke.However, until now it is unclear whether this effect is specific to the trained task or a more general motors kill improvement. This study was set up to advance our insights into the efficacy of MI training and the specificity of its effects. We investigated whether MI training affected the trained hand exclusively, or both hands. Four stroke participants received a 15-min MI training four times a week for 3 weeks. Hand function was measured before and after the training using three measurement of increasing complexity. Hand function improved after MI training, thus confirming the earlier studies. Second, we found specific effects of the MI training for two of the three measurements. These results suggest that MI specificity is dependent on the complexity of the hand function task. PMID:20505516

  12. A decision-theoretic approach in the design of an adaptive upper-limb stroke rehabilitation robot.

    PubMed

    Huq, Rajibul; Kan, Patricia; Goetschalckx, Robby; Hbert, Debbie; Hoey, Jesse; Mihailidis, Alex

    2011-01-01

    This paper presents an automated system for a rehabilitation robotic device that guides stroke patients through an upper-limb reaching task. The system uses a partially observable Markov decision process (POMDP) as its primary engine for decision-making. The POMDP allows the system to automatically modify exercise parameters to account for the specific needs and abilities of different individuals, and to use these parameters to take appropriate decisions about stroke rehabilitation exercises. The performance of the system was evaluated through various simulations and by comparing the decisions made by the system with those of a human therapist for a single patient. In general, the simulations showed promising results and the therapist thought the system decisions were believable. PMID:22275621

  13. Stress-Shielding Effect of Nitinol Swan-Like Memory Compressive Connector on Fracture Healing of Upper Limb

    NASA Astrophysics Data System (ADS)

    Fu, Q. G.; Liu, X. W.; Xu, S. G.; Li, M.; Zhang, C. C.

    2009-08-01

    In this article, the stress-shielding effect of a Nitinol swan-like memory compressive connector (SMC) is evaluated. Patients with fracture healing of an upper limb after SMC internal fixation or stainless steel plate fixation were randomly selected and observed comparatively. With the informed consent of the SMC group, minimal cortical bone under the swan-body and swan-neck was harvested; and in the steel plate fixation group, minimal cortical bone under the steel plate and opposite side to the steel plate was also harvested for observation. Main outcome measurements were taken such as osteocyte morphology, Harversian canal histological observation under light microscope; radiographic observation of fracture healing, and computed tomography quantitative scanning of cortical bone. As a conclusion, SMC has a lesser stress-shielding effect to fixed bone than steel plate. Finally, the mechanism of the lesser stress-shielding effect of SMC is discussed.

  14. Temporal disruption of upper-limb anticipatory postural adjustments in cerebellar ataxic patients.

    PubMed

    Bruttini, Carlo; Esposti, Roberto; Bolzoni, Francesco; Vanotti, Alessandra; Mariotti, Caterina; Cavallari, Paolo

    2015-01-01

    Voluntary movements induce postural perturbations, which are counteracted by anticipatory postural adjustments (APAs) that preserve body equilibrium. Little is known about the neural structures generating APAs, but several studies suggested a role of sensory-motor areas, basal ganglia, supplementary motor area and thalamus. However, the role of the cerebellum still remains an open question. The aim of this present paper is to shed further light on the role of cerebellum in APAs organization. Thus, APAs that stabilize the arm when the index finger is briskly flexed were recorded in 13 ataxic subjects (seven sporadic cases, four dominant ataxia type III and two autosomal recessive), presenting a slowly progressive cerebellar syndrome with four-limb dysmetria, and compared with those obtained in 13 healthy subjects. The pattern of postural activity was similar in the two groups [excitation in triceps and inhibition in biceps and anterior deltoid (AD)], but apparent modifications in timing were observed in all ataxic subjects in which, on average, triceps brachii excitation lagged the onset of the prime mover flexor digitorum superficialis by about 27 ms and biceps and AD inhibition were almost synchronous to it. Instead, in normal subjects, triceps onset was synchronous to the prime mover and biceps and AD anticipated it by about 40 ms. The observed disruption of the intra-limb APA organization confirms that the cerebellum is involved in APA control and, considering cerebellar subjects as a model of dysmetria, also supports the view that a proper APA chain may play a crucial role in refining movement metria. PMID:25245658

  15. Analysis of the forearm rotational efficiency in extant hominoids: new insights into the functional implications of upper limb skeletal structure.

    PubMed

    Ibez-Gimeno, Pere; Galts, Ignasi; Manyosa, Joan; Malgosa, Assumpci; Jordana, Xavier

    2014-11-01

    The greatly diversified locomotor behaviors in the Hominoidea impose different mechanical requirements in the upper limb of each species. As forearm rotation has a major role in locomotion, the skeletal structures involved in this movement may display differences among taxa that reflect functional adaptations. To test this, we use a biomechanical model that quantifies the rotatory capacity of pronator teres (rotational efficiency) from skeletal measurements. Using a large sample of hominoids, we aim to identify the morphological adaptations that confer differences in the mechanics of forearm motion and to assess the functional advantage of these adaptations. Forearm positions along the pronation-supination range where rotational efficiency is maximal depend on the orientation of the humeral medial epicondyle and differ among taxa. Our results indicate that these are related to locomotor mode. Knuckle-walkers exhibit a medial epicondyle more posteriorly directed, which, in elbow angles close to extension, causes rotational efficiency to be maximal in pronated positions of the forearm. Species with a significant amount of arboreal locomotion, such as vertical climbing, i.e., Pongo spp., Pan troglodytes and Gorilla gorilla, display more proximally oriented epicondyles, which, in elbow flexion, leads to maximum rotational efficiencies in supinated positions of the forearm. Hylobatidae, with the less posteriorly and proximally oriented epicondyle, show their maximum rotational efficiencies closer to the forearm neutral position throughout most of the flexion-extension range, which may be linked to brachiation in this taxon. In humans, the epicondylar orientation and thus the positions of the maximum rotational efficiencies fall between arboreal and terrestrial hominoids. This may be related to the enhanced manipulative skills of the upper limb. In conclusion, the current analysis indicates that the orientation of the humeral medial epicondyle is linked to the locomotor habits of extant hominoids and therefore can be used for locomotor inferences in fossil taxa. PMID:25277440

  16. Diagnosing soft tissue rheumatic disorders of the upper limb in epidemiological studies of vibration-exposed populations

    PubMed Central

    Palmer, Keith T

    2013-01-01

    Objectives To investigate approaches adopted to diagnose soft tissue rheumatic disorders of the upper limb (ULDs) in vibration-exposed populations and in other settings, and to compare their methodological qualities. Methods Systematic searches were made of the Medline, Embase, and CINAHL electronic bibliographic databases, and of various supplementary sources (textbooks, reviews, conference and workshop proceedings, personal files). For vibration-exposed populations, qualifying papers were scored in terms of the provenance of their measuring instruments (adequacy of documentation, standardisation, reliability, criterion-related and content validity). Similar criteria were applied to general proposals for whole diagnostic schemes, and evidence was collated on the test-retest reliability of symptom histories and clinical signs. Results In total, 23 relevant reports were identified concerning vibration-exposed populations - 21 involving symptoms and 9 involving examination/diagnosis. Most of the instruments employed scored poorly in terms of methodological quality. The search also identified, from the wider literature, more than a dozen schemes directed at classifying ULDs, and 18 studies of test-retest reliability of symptoms and physical signs in the upper limb. Findings support the use of the standardised Nordic questionnaire for symptom inquiry and suggest that a range of physical signs can be elicited with reasonable between-observer agreement. Four classification schemes rated well in terms of content validity. One of these had excellent documentation, and one had been tested for repeatability, agreement with an external reference standard, and utility in distinguishing groups that differed in disability, prognosis and associated risk factors. Conclusions Hitherto, most studies of ULDs in vibration-exposed populations have used custom-specified diagnostic methods, poorly documented, and non-stringent in terms of standardisation and supporting evidence of reliability and/or validity. The broader literature contains several question sets and procedures that improve upon this, and offer scope in vibration-exposed populations to diagnose ULDs more systematically. PMID:17909839

  17. The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study.

    PubMed

    Ferri, Stefania; Rizzolatti, Giacomo; Orban, Guy A

    2015-10-01

    The present fMRI study examined whether upper-limb action classes differing in their motor goal are encoded by different PPC sectors. Action observation was used as a proxy for action execution. Subjects viewed actors performing object-related (e.g., grasping), skin-displacing (e.g., rubbing the skin), and interpersonal upper limb actions (e.g., pushing someone). Observation of the three action classes activated a three-level network including occipito-temporal, parietal, and premotor cortex. The parietal region common to observing all three action classes was located dorsally to the left intraparietal sulcus (DIPSM/DIPSA border). Regions specific for observing an action class were obtained by combining the interaction between observing action classes and stimulus types with exclusive masking for observing the other classes, while for regions considered preferentially active for a class the interaction was exclusively masked with the regions common to all observed actions. Left putative human anterior intraparietal was specific for observing manipulative actions, and left parietal operculum including putative human SII region, specific for observing skin-displacing actions. Control experiments demonstrated that this latter activation depended on seeing the skin being moved and not simply on seeing touch. Psychophysiological interactions showed that the two specific parietal regions had similar connectivities. Finally, observing interpersonal actions preferentially activated a dorsal sector of left DIPSA, possibly the homologue of ventral intraparietal coding the impingement of the target person's body into the peripersonal space of the actor. These results support the importance of segregation according to the action class as principle of posterior parietal cortex organization for action observation and by implication for action execution. PMID:26129732

  18. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review.

    PubMed

    Basteris, Angelo; Nijenhuis, Sharon M; Stienen, Arno H A; Buurke, Jaap H; Prange, Gerdienke B; Amirabdollahian, Farshid

    2014-01-01

    Robot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of robotic devices have become commercially available. There is clear evidence that robotic interventions improve upper limb motor scores and strength, but these improvements are often not transferred to performance of activities of daily living. We wish to better understand why. Our systematic review of 74 papers focuses on the targeted stage of recovery, the part of the limb trained, the different modalities used, and the effectiveness of each. The review shows that most of the studies so far focus on training of the proximal arm for chronic stroke patients. About the training modalities, studies typically refer to active, active-assisted and passive interaction. Robot-therapy in active assisted mode was associated with consistent improvements in arm function. More specifically, the use of HRI features stressing active contribution by the patient, such as EMG-modulated forces or a pushing force in combination with spring-damper guidance, may be beneficial.Our work also highlights that current literature frequently lacks information regarding the mechanism about the physical human-robot interaction (HRI). It is often unclear how the different modalities are implemented by different research groups (using different robots and platforms). In order to have a better and more reliable evidence of usefulness for these technologies, it is recommended that the HRI is better described and documented so that work of various teams can be considered in the same group and categories, allowing to infer for more suitable approaches. We propose a framework for categorisation of HRI modalities and features that will allow comparing their therapeutic benefits. PMID:25012864

  19. Exploring the bases for a mixed reality stroke rehabilitation system, Part II: Design of Interactive Feedback for upper limb rehabilitation

    PubMed Central

    2011-01-01

    Background Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. Results The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. Conclusions The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time. PMID:21899779

  20. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.

    PubMed

    Kim, Hyunchul; Miller, Levi Makaio; Fedulow, Irina; Simkins, Matt; Abrams, Gary M; Byl, Nancy; Rosen, Jacob

    2013-03-01

    Robot-assisted stroke rehabilitation has become popular as one approach to helping patients recover function post-stroke. Robotic rehabilitation requires four important elements to match the robot to the patient: realistic biomechanical robotic elements, an assistive control scheme enabled through the human-robot interface, a task oriented rehabilitation program based on the principles of plasticity, and objective assessment tools to monitor change. This paper reports on a randomized clinical trial utilizing a complete robot-assisted rehabilitation system for the recovery of upper limb function in patients post-stroke. In this study, a seven degree-of-freedom (DOF) upper limb exoskeleton robot (UL-EXO7) is applied in a rehabilitation clinical trial for patients stable post-stroke (greater than six months). Patients had a Fugl-Meyer Score between 16-39, were mentally alert (> 19 on the VA Mini Mental Status Exam) and were between 27 and 70 years of age. Patients were randomly assigned to three groups: bilateral robotic training, unilateral robotic training, and usual care. This study is concerned with the changes in kinematics in the two robotic groups. Both patient groups played eight therapeutic video games over 12 sessions (90 min, two times a week). In each session, patients intensively played the different combination of video games that directly interacted with UL-EXO7 under the supervision of research assistant. At each session, all of the joint angle data was recorded for the evaluation of therapeutic effects. A new assessment metric is reported along with conventional metrics. The experimental result shows that both groups of patients showed consistent improvement with respect to the proposed and conventional metrics. PMID:22855233

  1. An investigation of somatosensory profiles in work related upper limb disorders: a case-control observational study protocol

    PubMed Central

    2010-01-01

    Background Work related upper limb disorders constitute 45% of all occupational diseases and are a significant public health problem. A subgroup, non specific arm pain (NSAP), remains elusive in terms of understanding its pathophysiological mechanisms with its diagnosis based on the absence of specific clinical findings. One commonly proposed theory is that a neural tissue disorder is the primary dysfunction in NSAP and findings from previous studies lend some support to this theory. However, it is not clear if changes identified are simply a consequence of ongoing pain rather than due to specific neural changes. The presence of neuropathic pain has been investigated in several other musculoskeletal conditions but currently, there is no specific diagnostic tool or gold standard which permits an unequivocal diagnosis of neuropathic pain. The purpose of this study is to further describe the somatosensory profiles in patients with NSAP and to compare these profiles to a group of patients with MRI confirmed cervical radiculopathy who have been previously classified as having neuropathic pain. Methods/Design Three groups of participants will be investigated: Groups 1 and 2 will be office workers with either NSAP or cervical radiculopathy and Group 3 will be a control group of non office workers without upper limb pain. Participants will undergo a clinical assessment, pain questionnaires (LANSS, Short Form McGill, DASH and TSK) and quantitative sensory testing comprising thermal detection and pain thresholds, vibration thresholds and pressure pain thresholds. Discussion The spectrum of clinically suspected neuropathic pain ranges from more obvious conditions such as trigeminal neuralgia to those with vague signs of nerve disorder such as NSAP. A thorough description of the somatosensory profiles of NSAP patients and a comparison with a more defined group of patients with evidence of neuropathic pain will help in the understanding of underlying neurophysiology in NSAP and may influence future classification and intervention studies relating to this condition. PMID:20113518

  2. Combining Robotic Training and Non-Invasive Brain Stimulation in Severe Upper Limb-Impaired Chronic Stroke Patients

    PubMed Central

    Di Lazzaro, Vincenzo; Capone, Fioravante; Di Pino, Giovanni; Pellegrino, Giovanni; Florio, Lucia; Zollo, Loredana; Simonetti, Davide; Ranieri, Federico; Brunelli, Nicoletta; Corbetto, Marzia; Miccinilli, Sandra; Bravi, Marco; Milighetti, Stefano; Guglielmelli, Eugenio; Sterzi, Silvia

    2016-01-01

    Previous studies suggested that both robot-assisted rehabilitation and non-invasive brain stimulation can produce a slight improvement in severe chronic stroke patients. It is still unknown whether their combination can produce synergistic and more consistent improvements. Safety and efficacy of this combination has been assessed within a proof-of-principle, double-blinded, semi-randomized, sham-controlled trial. Inhibitory continuous Theta Burst Stimulation (cTBS) was delivered on the affected hemisphere, in order to improve the response to the following robot-assisted therapy via a homeostatic increase of learning capacity. Twenty severe upper limb-impaired chronic stroke patients were randomized to robot-assisted therapy associated with real or sham cTBS, delivered for 10 working days. Eight real and nine sham patients completed the study. Change in Fugl-Meyer was chosen as primary outcome, while changes in several quantitative indicators of motor performance extracted by the robot as secondary outcomes. The treatment was well-tolerated by the patients and there were no adverse events. All patients achieved a small, but significant, Fugl-Meyer improvement (about 5%). The difference between the real and the sham cTBS groups was not significant. Among several secondary end points, only the Success Rate (percentage of targets reached by the patient) improved more in the real than in the sham cTBS group. This study shows that a short intensive robot-assisted rehabilitation produces a slight improvement in severe upper-limb impaired, even years after the stroke. The association with homeostatic metaplasticity-promoting non-invasive brain stimulation does not augment the clinical gain in patients with severe stroke. PMID:27013950