Science.gov

Sample records for upregulated cellular genes

  1. Kaposi’s Sarcoma-Associated Herpesvirus Interleukin-6 Modulates Endothelial Cell Movement by Upregulating Cellular Genes Involved in Migration

    PubMed Central

    Giffin, Louise; West, John A.

    2015-01-01

    ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi’s sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6’s impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. PMID:26646010

  2. Cellular Expression Patterns of Genes Upregulated in Murine and Human Colonic Neoplasms1

    E-print Network

    Dove, William

    -associated marker uniquely essential for tumor growth? Deficiency for the tumor-associated glycoprotein clusterin does not affect the multiplicity or growth rate of intestinal tumors in Min mice. Thus, clusterin colorectal cancer; gene expression; Min mouse; intestinal tumor; clusterin INTRODUCTION Colorectal cancer

  3. Up-Regulation of leucocytes Genes Implicated in Telomere Dysfunction and Cellular Senescence Correlates with Depression and Anxiety Severity Scores

    PubMed Central

    Teyssier, Jean-Raymond; Chauvet-Gelinier, Jean-Christophe; Ragot, Sylviane; Bonin, Bernard

    2012-01-01

    Background Major depressive disorder (MDD) is frequently associated with chronic medical illness responsible of increased disability and mortality. Inflammation and oxidative stress are considered to be the major mediators of the allostatic load, and has been shown to correlate with telomere erosion in the leucocytes of MDD patients, leading to the model of accelerated aging. However, the significance of telomere length as an exclusive biomarker of aging has been questioned on both methodological and biological grounds. Furthermore, telomeres significantly shorten only in patients with long lasting MDD. Sensitive and dynamic functional biomarkers of aging would be clinically useful to evaluate the somatic impact of MDD. Methodology To address this issue we have measured in the blood leucocytes of MDD patients (N?=?17) and controls (N?=?16) the expression of two genes identified as robust biomarkers of human aging and telomere dysfunction: p16INK4a and STMN1. We have also quantified the transcripts of genes involved in the repair of oxidative DNA damage at telomeres (OGG1), telomere regulation and elongation (TERT), and in the response to biopsychological stress (FOS and DUSP1). Results The OGG1, p16INK4a, and STMN1 gene were significantly up-regulated (25 to 100%) in the leucocytes of MDD patients. Expression of p16INK4a and STMN1 was directly correlated with anxiety scores in the depression group, and that of p16INK4a, STMN and TERT with the depression and anxiety scores in the combined sample (MDD plus controls). Furthermore, we identified a unique correlative pattern of gene expression in the leucocytes of MDD subjects. Conclusions Expression of p16INK4 and STMN1 is a promising biomarker for future epidemiological assessment of the somatic impact of depressive and anxious symptoms, at both clinical and subclinical level in both depressive patients and general population. PMID:23185405

  4. Genes Upregulated in Human Fetal by Infection or Labor

    E-print Network

    Bryant-Greenwood, Gillian D.

    hybridization method in a homogeneous cell line*' before using it on a complex tissue such as the fetalGenes Upregulated in Human Fetal by Infection or Labor Membranes LILY S. TASHIMA, PhD, LYNNAE K hybridization can detect genes in fetal membranes that are upregulated by infection, preterm premature rupture

  5. Upregulation of the gene encoding a cytoplasmic dynein intermediate chain in senescent human cells.

    PubMed

    Horikawa, I; Parker, E S; Solomon, G G; Barrett, J C

    2001-01-01

    Normal human somatic cells, unlike cancer cells, stop dividing after a limited number of cell divisions through the process termed cellular senescence or replicative senescence, which functions as a tumor-suppressive mechanism and may be related to organismal aging. By means of the cDNA subtractive hybridization, we identified eight genes upregulated during normal chromosome 3-induced cellular senescence in a human renal cell carcinoma cell line. Among them is the DNCI1 gene encoding an intermediate chain 1 of the cytoplasmic dynein, a microtubule motor that plays a role in chromosome movement and organelle transport. The DNCI1 mRNA was also upregulated during in vitro aging of primary human fibroblasts. In contrast, other components of cytoplasmic dynein showed no significant change in mRNA expression during cellular aging. Cell growth arrest by serum starvation, contact inhibition, or gamma-irradiation did not induce the DNCI1 mRNA, suggesting its specific role in cellular senescence. The DNCI1 gene is on the long arm of chromosome 7 where tumor suppressor genes and a senescence-inducing gene for a group of immortal cell lines (complementation group D) are mapped. This is the first report that links a component of molecular motor complex to cellular senescence, providing a new insight into molecular mechanisms of cellular senescence. PMID:11500918

  6. Upregulating endogenous genes by an RNA-programmable artificial transactivator.

    PubMed

    Fimiani, Cristina; Goina, Elisa; Mallamaci, Antonello

    2015-09-18

    To promote expression of endogenous genes ad libitum, we developed a novel, programmable transcription factor prototype. Kept together via an MS2 coat protein/RNA interface, it includes a fixed, polypeptidic transactivating domain and a variable RNA domain that recognizes the desired gene. Thanks to this device, we specifically upregulated five genes, in cell lines and primary cultures of murine pallial precursors. Gene upregulation was small, however sufficient to robustly inhibit neuronal differentiation. The transactivator interacted with target gene chromatin via its RNA cofactor. Its activity was restricted to cells in which the target gene is normally transcribed. Our device might be useful for specific applications. However for this purpose, it will require an improvement of its transactivation power as well as a better characterization of its target specificity and mechanism of action. PMID:26152305

  7. Upregulating endogenous genes by an RNA-programmable artificial transactivator

    PubMed Central

    Fimiani, Cristina; Goina, Elisa; Mallamaci, Antonello

    2015-01-01

    To promote expression of endogenous genes ad libitum, we developed a novel, programmable transcription factor prototype. Kept together via an MS2 coat protein/RNA interface, it includes a fixed, polypeptidic transactivating domain and a variable RNA domain that recognizes the desired gene. Thanks to this device, we specifically upregulated five genes, in cell lines and primary cultures of murine pallial precursors. Gene upregulation was small, however sufficient to robustly inhibit neuronal differentiation. The transactivator interacted with target gene chromatin via its RNA cofactor. Its activity was restricted to cells in which the target gene is normally transcribed. Our device might be useful for specific applications. However for this purpose, it will require an improvement of its transactivation power as well as a better characterization of its target specificity and mechanism of action. PMID:26152305

  8. Acoustic trauma triggers upregulation of serotonin receptor genes

    PubMed Central

    Smith, Adam R.; Kwon, Jae Hyun; Navarro, Marco; Hurley, Laura M.

    2014-01-01

    Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 hours. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1B compared to other genes.. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes. PMID:24997228

  9. Sin3B expression is required for cellular senescence and is upregulated upon oncogenic stress

    PubMed Central

    Grandinetti, Kathryn B.; Jelinic, Petar; DiMauro, Teresa; Pellegrino, Jessica; Rodriguez, Ruben Fernandez; Finnerty, Patricia M.; Ruoff, Rachel; Bardeesy, Nabeel; Logan, Susan K.; David, Gregory

    2009-01-01

    Serial passage of primary mammalian cells or strong mitogenic signals induces a permanent exit from the cell cycle called senescence. A characteristic of senescent cells is the heterochromatinization of loci encoding pro-proliferative genes leading to their transcriptional silencing. Senescence is thought to represent a defense mechanism against uncontrolled proliferation and cancer. Consequently, genetic alterations that allow senescence bypass are associated with susceptibility to oncogenic transformation. We demonstrate that fibroblasts genetically inactivated for the chromatin associated Sin3B protein are refractory to replicative and oncogene-induced senescence. Conversely, overexpression of Sin3B triggers senescence and the formation of senescence associated heterochromatic foci. While Sin3B is strongly up-regulated upon oncogenic stress, decrease in expression of Sin3B is associated with tumor progression in vivo, suggesting that expression of Sin3B may represent a barrier against transformation. Together, these results underscore the contribution of senescence in tumor suppression and suggest that expression of chromatin modifiers is modulated at specific stages of cellular transformation. Consequently, these findings suggest that modulation of Sin3B-associated activities may represent new therapeutic opportunities for treatment of cancers. PMID:19654306

  10. Ethanol Upregulates NMDA Receptor Subunit Gene Expression in Human Embryonic Stem Cell-Derived Cortical Neurons

    PubMed Central

    Gelernter, Joel; Park, In-Hyun; Zhang, Huiping

    2015-01-01

    Chronic alcohol consumption may result in sustained gene expression alterations in the brain, leading to alcohol abuse or dependence. Because of ethical concerns of using live human brain cells in research, this hypothesis cannot be tested directly in live human brains. In the present study, we used human embryonic stem cell (hESC)-derived cortical neurons as in vitro cellular models to investigate alcohol-induced expression changes of genes involved in alcohol metabolism (ALDH2), anti-apoptosis (BCL2 and CCND2), neurotransmission (NMDA receptor subunit genes: GRIN1, GRIN2A, GRIN2B, and GRIN2D), calcium channel activity (ITPR2), or transcriptional repression (JARID2). hESCs were differentiated into cortical neurons, which were characterized by immunostaining using antibodies against cortical neuron-specific biomarkers. Ethanol-induced gene expression changes were determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). After a 7-day ethanol (50 mM) exposure followed by a 24-hour ethanol withdrawal treatment, five of the above nine genes (including all four NMDA receptor subunit genes) were highly upregulated (GRIN1: 1.93-fold, P = 0.003; GRIN2A: 1.40-fold, P = 0.003; GRIN2B: 1.75-fold, P = 0.002; GRIN2D: 1.86-fold, P = 0.048; BCL2: 1.34-fold, P = 0.031), and the results of GRIN1, GRIN2A, and GRIN2B survived multiple comparison correction. Our findings suggest that alcohol responsive genes, particularly NMDA receptor genes, play an important role in regulating neuronal function and mediating chronic alcohol consumption-induced neuroadaptations. PMID:26266540

  11. New Method for Detecting Cellular Transforming Genes

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Cooper, C. S.; Oskarsson, M. K.; Eader, L. A.; Vande Woude, G. F.

    1982-12-01

    Tumor induction in athymic nude mice can be used to detect dominant transforming genes in cellular DNA. Mouse NIH 3T3 cells freshly transfected with either cloned Moloney sarcoma proviral DNA or cellular DNA's derived from virally transformed cells induced tumors when injected into athymic nu/nu mice. Tumors were also induced by cells transfected with DNA from two tumor-derived and one chemically transformed human cell lines. The mouse tumors induced by human cell line DNA's contained human DNA sequences, and DNA derived from these tumors was capable of inducing both tumors and foci on subsequent transfection. Tumor induction in nude mice represents a useful new method for the detection and selection of cells transformed by cellular oncogenes.

  12. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    PubMed

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. PMID:25336585

  13. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs

    PubMed Central

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-01-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4+ T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1–encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. PMID:25336585

  14. Gene Profiling of Cottontail Rabbit Papillomavirus-Induced Carcinomas Identifies Upregulated Genes Directly Involved in Stroma Invasion as Shown by Small Interfering RNA-Mediated Gene Silencing

    PubMed Central

    Huber, Evamaria; Vlasny, Daniela; Jeckel, Sonja; Stubenrauch, Frank; Iftner, Thomas

    2004-01-01

    To investigate changes in cellular gene expression associated with malignant progression, we identified differentially expressed genes in a cottontail rabbit papillomavirus (CRPV) squamous carcinoma model employing New Zealand White rabbits. The technique of suppression subtractive cDNA hybridization was applied to pairs of mRNA isolates from CRPV-induced benign papillomas and carcinomas, with each pair derived from the same individual rabbit. The differential expression of 23 subtracted cDNAs was further confirmed by quantitative reverse transcription-PCR (RT-PCR) with additional biopsies. Eight papilloma-carcinoma pairs examined showed a constant upregulation of the transcripts for the multifunctional adaptor protein 14-3-3 ? and the Y-box binding transcription factor YB-1, whereas transcripts for m-type calpain 2 and NB thymosin ?, which are involved in cell motility and tissue invasion, as well as casein kinase 1 ?, chaperonin, and annexin I, were found to be upregulated in the majority of the cases. RNA-RNA in situ hybridization and laser capture microdissection in combination with quantitative RT-PCR analysis verified the deregulated expression of the transcripts in the tumor cells. In contrast, CRPV E7 transcript levels remained rather constant indicating no requirement for a further upregulation of E7 expression following tumor induction. Small interfering RNA-mediated interference with expression of genes encoding YB-1, m-type calpain 2, or NB thymosin ? in a CRPV-positive cell line established from New Zealand White rabbit keratinocytes resulted in decreased cell invasion in matrigel chamber assays. PMID:15220421

  15. Designer gene networks: Towards fundamental cellular control

    NASA Astrophysics Data System (ADS)

    Hasty, Jeff; Isaacs, Farren; Dolnik, Milos; McMillen, David; Collins, J. J.

    2001-03-01

    The engineered control of cellular function through the design of synthetic genetic networks is becoming plausible. Here we show how a naturally occurring network can be used as a parts list for artificial network design, and how model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics. We first review the relevant work on synthetic gene networks, highlighting the important experimental findings with regard to genetic switches and oscillators. We then present the derivation of a deterministic model describing the temporal evolution of the concentration of protein in a single-gene network. Bistability in the steady-state protein concentration arises naturally as a consequence of autoregulatory feedback, and we focus on the hysteretic properties of the protein concentration as a function of the degradation rate. We then formulate the effect of an external noise source which interacts with the protein degradation rate. We demonstrate the utility of such a formulation by constructing a protein switch, whereby external noise pulses are used to switch the protein concentration between two values. Following the lead of earlier work, we show how the addition of a second network component can be used to construct a relaxation oscillator, whereby the system is driven around the hysteresis loop. We highlight the frequency dependence on the tunable parameter values, and discuss design plausibility. We emphasize how the model equations can be used to develop design criteria for robust oscillations, and illustrate this point with parameter plots illuminating the oscillatory regions for given parameter values. We then turn to the utilization of an intrinsic cellular process as a means of controlling the oscillations. We consider a network design which exhibits self-sustained oscillations, and discuss the driving of the oscillator in the context of synchronization. Then, as a second design, we consider a synthetic network with parameter values near, but outside, the oscillatory boundary. In this case, we show how resonance can lead to the induction of oscillations and amplification of a cellular signal. Finally, we construct a toggle switch from positive regulatory elements, and compare the switching properties for this network with those of a network constructed using negative regulation. Our results demonstrate the utility of model analysis in the construction of synthetic gene regulatory networks.

  16. Chromosome positional effects of gene expressions after cellular senescence.

    PubMed

    Chen, Hung-Lin; Lu, Ching-You; Hsu, Yi-Hsin; Lin, Jing-Jer

    2004-01-16

    Normal human fibroblasts stop dividing after a limited number of cell divisions termed cellular senescence. Telomere shortening has been shown to be the main factor that causes cellular senescence, however, the molecular mechanism of how telomere shortening causes cellular senescence is unclear. Here we analyze the relationship between gene expressions and their chromosomal locations during cellular senescence. It appears that the expression of genes located in chromosome 4 is preferentially altered after senescence. Moreover, we identify four chromosomal loci in which gene expressions are affected by senescence. Finally, we show that there is no preferential alteration of telomere-proximal genes during cellular senescence, implying that cellular senescence is not caused by derepression of telomere-proximal genes. PMID:14697230

  17. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes.

    PubMed

    Roman, Corina; Fuior, Elena V; Trusca, Violeta G; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V

    2015-12-01

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor ? (TR?) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TR? and retinoid X receptor ? (RXR?), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TR?/RXR? binding site on ME.2, we performed DNA pull down assays and found that TR?/RXR? complex bound to the region 341-488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5'- and 3'-deletion mutants of ME.2 were used. These data support the existence of a biologically active TR? binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TR?/RXR? heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. PMID:26519880

  18. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex

    PubMed Central

    2010-01-01

    Background Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera) provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera). Results Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation. Conclusions It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype. PMID:20433737

  19. Downregulation of lysyl oxidase and upregulation of cellular thiols in rat fetal lung fibroblasts treated with cigarette smoke condensate.

    PubMed

    Chen, Li-Jun; Zhao, Yinzhi; Gao, Song; Chou, Iih-Nan; Toselli, Paul; Stone, Phillip; Li, Wande

    2005-02-01

    Lysyl oxidase (LO), a copper-dependent enzyme, plays a critical role in the formation and repair of the extracellular matrix (ECM) by catalyzing the crosslinking of elastin and collagen. To better understand mechanisms of cigarette smoke (CS)-induced emphysema, we examined changes in LO and its substrates, i.e., elastin and collagen type I, the major components of cellular thiols, i.e., metallothionein (MT) and glutathione (GSH), and gamma-glutamylcysteine synthetase (gamma-GCS), a key enzyme for GSH biosynthesis, in cigarette smoke condensate (CSC)-treated rat fetal lung fibroblasts (RFL6). Exposure of RFL6 cells to CSC decreased levels of LO catalytic activity, mRNA, and protein, i.e., the 46 kDa preproenzyme, the 50 kDa proenzyme and the 32 kDa mature enzyme in a dose-dependent manner. In addition, CSC also inhibited the expression of collagen type I and elastin, substrates of LO and important components of the lung ECM. Meanwhile, cellular thiols including MT and GSH as well as gamma-GCS were markedly upregulated in CSC-treated cells. To evaluate modulation of LO expression by cellular thiols, we further examined the effect of increased levels of GSH on LO expression at protein and catalytic levels. Interestingly, exposure of cells to glutathione monoethyl ester, a GSH delivery system, effectively elevated cellular GSH levels and induced a dose-dependent decrease in levels of the protein species and catalytic activity of LO. These results suggest that upregulation by CSC of cellular thiols may play an important role in the downregulation of LO and subsequently destabilization of the lung ECM in CS-induced emphysema. PMID:15509664

  20. INVESTIGATION Integration of New Genes into Cellular Networks,

    E-print Network

    Zhang, Jianzhi

    , most likely due to the higher probability of gene loss among young genes and accumulation of neutralINVESTIGATION Integration of New Genes into Cellular Networks, and Their Structural Maturation genes can originate de novo from noncoding DNA, and several biological traits including expression

  1. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages

    PubMed Central

    Sotoodehnejadnematalahi, Fattah; Staples, Karl J.; Chrysanthou, Elvina; Pearson, Helen; Ziegler-Heitbrock, Loems; Burke, Bernard

    2015-01-01

    Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM), and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold) by long term hypoxia (5 days) than by 1 day of hypoxia (48 fold). We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K), LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression. PMID:26057378

  2. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation

    SciTech Connect

    Almeida, Luciana O.; Garcia, Cristiana B.; Matos-Silva, Flavia A.; Curti, Carlos; Leopoldino, Andréia M.

    2014-02-28

    Highlights: • hnRNPK is a new target of SET. • SET regulates hnRNPK. • SET and hnRNPK accumulation promotes tumorigenesis. • SET accumulation is a potential model to study genes regulated by SET-hnRNPK. - Abstract: SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  3. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ...of Investigational Cellular and Gene Therapy Products; Availability AGENCY...of Investigational Cellular and Gene Therapy Products'' dated November 2013...Office of Cellular, Tissue and Gene Therapies (OCTGT). The product areas...

  4. 77 FR 71194 - Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ...of Investigational Cellular and Gene Therapy Products; Availability AGENCY...of Investigational Cellular and Gene Therapy Products,'' dated November 2012...Office of Cellular, Tissue, and Gene Therapies (OCTGT). The product areas...

  5. 75 FR 65640 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ...FDA-2010-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of...Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function...Office of Cellular, Tissue and Gene Therapies, Center for Biologics...

  6. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ...FDA-2012-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Amendment...meeting of the Cellular, Tissue and Gene Therapies Advisory Committee. This meeting...meeting of the Cellular, Tissue and Gene Therapies Advisory Committee would be...

  7. 77 FR 63840 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ...FDA-2012-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of...Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function...Office of Cellular, Tissue and Gene Therapies, Center for Biologics...

  8. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ...Potency Tests for Cellular and Gene Therapy Products; Availability AGENCY...Potency Tests for Cellular and Gene Therapy Products'' dated January 2011...provides manufacturers of cellular and gene therapy (CGT) products with...

  9. 76 FR 81513 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ...FDA-2011-N-0002] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of...Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function...Office of Cellular, Tissue and Gene Therapies, Center for Biologics...

  10. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...FDA-2013-N-0001] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of...Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function...Office of Cellular, Tissue, and Gene Therapies, Center for Biologics...

  11. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ...FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of...Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function...committee will discuss cellular and gene therapy products for the treatment...

  12. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ...FDA-2013-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of...Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function...Office of Cellular, Tissue and Gene Therapies, Center for Biologics...

  13. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Investigational Cellular and Gene Therapy Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION... entitled ``Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy... and Gene Therapies (OCTGT). The product areas covered by this guidance are cellular therapy,...

  14. Molecular cloning and functional analysis of a novel oncogene, cancer-upregulated gene 2 (CUG2)

    SciTech Connect

    Lee, Soojin . E-mail: leesoojin@cnu.ac.kr; Gang, Jingu; Jeon, Sun Bok; Jung, Jinyoung; Song, Si Young; Koh, Sang Seok . E-mail: sskoh@kribb.re.kr

    2007-08-31

    We examined genome-wide differences in gene expression between tumor biopsies and normal tissues in order to identify differentially regulated genes in tumors. Cancer-upregulated gene 2 (CUG2) was identified as an expressed sequence tag (EST) that exhibits significant differential expression in multiple human cancer types. CUG2 showed weak sequence homology with the down-regulator of transcription 1 (DR1) gene, a human transcription repressor. We found that EGFP-CUG2 fusion proteins were predominantly localized in the nucleus, suggesting their putative role in gene regulation. In addition, CUG2-overexpressing mouse fibroblast cells exhibited distinct cancer-specific phenotypes in vitro and developed into tumors in nude mice. Taken together, these findings suggest that CUG2 is a novel tumor-associated gene that is commonly activated in various human cancers and exhibits high transforming activities; it possibly belongs to a transcription regulator family that is involved in tumor biogenesis.

  15. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    SciTech Connect

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir; Noritake, Hidenao; Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 ; Kimura, Wataru; Wu, Yi-Xin; Kobayashi, Yoshimasa; Uezato, Tadayoshi; Miura, Naoyuki

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.

  16. Cellular and Molecular Factors in Flexor Tendon Repair and Adhesions: A Histological and Gene Expression Analysis

    PubMed Central

    Juneja, Subhash C.; Schwarz, Edward M.; O’Keefe, Regis J.; Awad, Hani A.

    2013-01-01

    Flexor tendon healing is mediated by cell proliferation, migration, and ECM synthesis that contribute to the formation of scar tissue and adhesion. The biological mechanisms of flexor tendon adhesion formation has been linked to TGF-?. To elucidate the cellular and molecular events in this pathology, we implanted live FDL grafts from the reporter mouse Rosa26LacZ/+ in WT recipients, and used histological ?-galactosidase (?-gal) staining to evaluate the intrinsic versus extrinsic cellular origins of scar, and RT-PCR to measure gene expression of TGF-? and its receptors, extracellular matrix (ECM) proteins, and MMPs and their regulators. Over the course of healing, graft cellularity and ?-gal activity progressively increased, and ?-gal-positive cells migrated out of the Rosa26LacZ/+ graft. In addition, there was evidence of influx of host cells (?-gal-negative) into the gliding space and the graft, suggesting that both graft and host cells contribute to adhesions. Interestingly, we observed a biphasic pattern in which Tgfb1 expression was highest in the early phases of healing and gradually decreased thereafter, whereas Tgfb3 increased and remained upregulated later. The expression of TGF-? receptors was also upregulated throughout the healing phases. In addition, type III collagen and fibronectin were upregulated during the proliferative phase of healing, confirming that murine flexor tendon heals by scar tissue. Furthermore, gene expression of MMPs showed a differential pattern in which inflammatory MMPs were highest early and matrix MMPs increased over time. These findings offer important insights into the complex cellular and molecular factors during flexor tendon healing. PMID:23586515

  17. Epigenetic silencing of multiple interferon pathway genes after cellular immortalization.

    PubMed

    Kulaeva, Olga I; Draghici, Sorin; Tang, Lin; Kraniak, Janice M; Land, Susan J; Tainsky, Michael A

    2003-06-26

    Abrogating cellular senescence is a necessary step in the formation of a cancer cell. Promoter hypermethylation is an epigenetic mechanism of gene regulation known to silence gene expression in carcinogenesis. Treatment of spontaneously immortal Li-Fraumeni fibroblasts with 5-aza-2'-deoxycytidine (5AZA-dC), an inhibitor of DNA methyltransferase (DNMT), induces a senescence-like state. We used microarrays containing 12 558 genes to determine the gene expression profile associated with cellular immortalization and also regulated by 5AZA-dC. Remarkably, among 85 genes with methylation-dependent downregulation (silencing) after immortalization, 39 (46%) are known to be regulated during interferon signaling, a known growth-suppressive pathway. This work indicates that gene silencing may be associated with an early event in carcinogenesis, cellular immortalization. PMID:12821946

  18. Auxins Upregulate Expression of the Indole-3-Pyruvate Decarboxylase Gene in Azospirillum brasilense

    PubMed Central

    Vande Broek, Ann; Lambrecht, Mark; Eggermont, Kristel; Vanderleyden, Jos

    1999-01-01

    Transcription of the Azospirillum brasilense ipdC gene, encoding an indole-3-pyruvate decarboxylase involved in the biosynthesis of indole-3-acetic acid (IAA), is induced by IAA as determined by ipdC-gusA expression studies and Northern analysis. Besides IAA, exogenously added synthetic auxins such as 1-naphthaleneacetic acid, 2,4-dichlorophenoxypropionic acid, and p-chlorophenoxyacetic acid were also found to upregulate ipdC expression. No upregulation was observed with tryptophan, acetic acid, or propionic acid or with the IAA conjugates IAA ethyl ester and IAA-l-phenylalanine, indicating structural specificity is required for ipdC induction. This is the first report describing the induction of a bacterial gene by auxin. PMID:9973364

  19. The Longitudinal Transcriptomic Response of the Substantia Nigra to Intrastriatal 6-Hydroxydopamine Reveals Significant Upregulation of Regeneration-Associated Genes

    PubMed Central

    Cole-Strauss, Allyson; Grabinski, Tessa; Mattingly, Zachary R.; Winn, Mary E.; Steece-Collier, Kathy; Sortwell, Caryl E.; Manfredsson, Fredric P.; Lipton, Jack W.

    2015-01-01

    We hypothesized that the study of gene expression at 1, 2, 4, 6 and 16 weeks in the substantia nigra (SN) after intrastriatal 6-OHDA in the Sprague-Dawley rat (rattus norvegicus) would identify cellular responses during the degenerative process that could be axoprotective. Specifically, we hypothesized that genes expressed within the SN that followed a profile of being highly upregulated early after the lesion (during active axonal degeneration) and then progressively declined to baseline over 16 weeks as DA neurons died are indicative of potential protective responses to the striatal 6-OHDA insult. Utilizing a ?-means cluster analysis strategy, we demonstrated that one such cluster followed this hypothesized expression pattern over time, and that this cluster contained several interrelated transcripts that are classified as regeneration-associated genes (RAGs) including Atf3, Sprr1a, Ecel1, Gadd45a, Gpnmb, Sox11, Mmp19, Srgap1, Rab15,Lifr, Trib3, Tgfb1, and Sema3c. All exemplar transcripts tested from this cluster (Sprr1a, Ecel1, Gadd45a, Atf3 and Sox11) were validated by qPCR and a smaller subset (Sprr1a, Gadd45a and Sox11) were shown to be exclusively localized to SN DA neurons using a dual label approach with RNAScope in situ hybridization and immunohistochemistry. Upregulation of RAGs is typically associated with the response to axonal injury in the peripheral nerves and was not previously reported as part of the axodegenerative process for DA neurons of the SN. Interestingly, as part of this cluster, other transcripts were identified based on their expression pattern but without a RAG provenance in the literature. These "RAG-like" transcripts need further characterization to determine if they possess similar functions to or interact with known RAG transcripts. Ultimately, it is hoped that some of the newly identified axodegeneration-reactive transcripts could be exploited as axoprotective therapies in PD and other neurodegenerative diseases. PMID:25992874

  20. Alteration in gene expression profile and oncogenicity of esophageal squamous cell carcinoma by RIZ1 upregulation

    PubMed Central

    Dong, Shang-Wen; Li, Dong; Xu, Cong; Sun, Pei; Wang, Yuan-Guo; Zhang, Peng

    2013-01-01

    AIM: To investigate the effect of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) upregulation in gene expression profile and oncogenicity of human esophageal squamous cell carcinoma (ESCC) cell line TE13. METHODS: TE13 cells were transfected with pcDNA3.1(+)/RIZ1 and pcDNA3.1(+). Changes in gene expression profile were screened and the microarray results were confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Nude mice were inoculated with TE13 cells to establish ESCC xenografts. After two weeks, the inoculated mice were randomly divided into three groups. Tumors were injected with normal saline, transfection reagent pcDNA3.1(+) and transfection reagent pcDNA3.1(+)/RIZ1, respectively. Tumor development was quantified, and changes in gene expression of RIZ1 transfected tumors were detected by RT-PCR and Western blotting. RESULTS: DNA microarray data showed that RIZ1 transfection induced widespread changes in gene expression profile of cell line TE13, with 960 genes upregulated and 1163 downregulated. Treatment of tumor xenografts with RIZ1 recombinant plasmid significantly inhibited tumor growth, decreased tumor size, and increased expression of RIZ1 mRNA compared to control groups. The changes in gene expression profile were also observed in vivo after RIZ1 transfection. Most of the differentially expressed genes were associated with cell development, supervision of viral replication, lymphocyte costimulatory and immune system development in esophageal cells. RIZ1 gene may be involved in multiple cancer pathways, such as cytokine receptor interaction and transforming growth factor beta signaling. CONCLUSION: The development and progression of esophageal cancer are related to the inactivation of RIZ1. Virus infection may also be an important factor. PMID:24115813

  1. Cellular Targeting for Cochlear Gene Therapy

    PubMed Central

    Ryan, Allen F.; Mullen, Lina M.; Doherty, Joni K.

    2015-01-01

    Gene therapy has considerable potential for the treatment of disorders of the inner ear. Many forms of inherited hearing loss have now been linked to specific locations in the genome, and for many of these the genes and specific mutations involved have been identified. This information provides the basis for therapy based on genetic approaches. However, a major obstacle to gene therapy is the targeting of therapy to the cells and the times that are required. The inner ear is a very complex organ, involving dozens of cell types that must function in a coordinated manner to result in the formation of the ear, and in hearing. Mutations that result in hearing loss can affect virtually any of these cells. Moreover, the genes involved are active during particular times, some for only brief periods of time. In order to be effective, gene therapy must be delivered to the appropriate cells, and at the appropriate times. In many cases, it must also be restricted to these cells and times. This requires methods with which to target gene therapy in space and time. Cell-specific gene promoters offer the opportunity to direct gene therapy to a desired cell type. Moreover, conditional promoters allow gene expression to be turned off and on at desired times. Theoretically, these technologies offer a mechanism by which to deliver gene therapy to any cell, at any given time. This chapter will examine the potential for such targeting to deliver gene therapy to the inner ear in a precisely controlled manner. PMID:19494575

  2. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    SciTech Connect

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  3. Upregulation of Gene Expression in Reward-Modulatory Striatal Opioid Systems by Sleep Loss

    PubMed Central

    Baldo, Brian A; Hanlon, Erin C; Obermeyer, William; Bremer, Quentin; Paletz, Elliott; Benca, Ruth M

    2013-01-01

    Epidemiological studies have shown a link between sleep loss and the obesity ‘epidemic,' and several observations indicate that sleep curtailment engenders positive energy balance via increased palatable-food ‘snacking.' These effects suggest alterations in reward-modulatory brain systems. We explored the effects of 10 days of sleep deprivation in rats on the expression of striatal opioid peptide (OP) genes that subserve food motivation and hedonic reward, and compared effects with those seen in hypothalamic energy balance-regulatory systems. Sleep-deprived (Sleep-Dep) rats were compared with yoked forced-locomotion apparatus controls (App-Controls), food-restricted rats (Food-Restrict), and unmanipulated controls (Home-Cage). Detection of mRNA levels with in situ hybridization revealed a subregion-specific upregulation of striatal preproenkephalin and prodynorhin gene expression in the Sleep-Dep group relative to all other groups. Neuropeptide Y (NPY) gene expression in the hippocampal dentate gyrus and throughout neocortex was also robustly upregulated selectively in the Sleep-Dep group. In contrast, parallel gene expression changes were observed in the Sleep-Dep and Food-Restrict groups in hypothalamic energy-sensing systems (arcuate nucleus NPY was upregulated, and cocaine- and amphetamine-regulated transcript was downregulated), in alignment with leptin suppression in both groups. Together, these results reveal a novel set of sleep deprivation-induced transcriptional changes in reward-modulatory peptide systems, which are dissociable from the energy-balance perturbations of sleep loss or the potentially stressful effects of the forced-locomotion procedure. The recruitment of telencephalic food-reward systems may provide a feeding drive highly resistant to feedback control, which could engender obesity through the enhancement of palatable feeding. PMID:23864029

  4. Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection.

    PubMed

    Villarreal-Calderon, Rodolfo; Reed, William; Palacios-Moreno, Juan; Keefe, Sheyla; Herritt, Lou; Brooks, Diane; Torres-Jardón, Ricardo; Calderón-Garcidueñas, Lilian

    2012-05-01

    Air pollution is a serious environmental problem. Elderly subjects show increased cardiac morbidity and mortality associated with air pollution exposure. Mexico City (MC) residents are chronically exposed to high concentrations of fine particulate matter (PM(2.5)) and PM-associated lipopolysaccharides (PM-LPS). To test the hypothesis that chronic exposure to urban pollution produces myocardial inflammation, female Balb-c mice age 4 weeks were exposed for 16 months to two distinctly different polluted areas within MC: southwest (SW) and northwest (NW). SW mice were given either no treatment or chocolate 2g/9.5 mg polyphenols/3 times per week. Results were compared to mice kept in clean air. Key inflammatory mediator genes: cyclooxygenase-2 (COX-2), interleukin-1? (IL-1?), interleukin-6 (IL-6), and tumor necrosis factor-? (TNF-?), and the LPS receptor CD14 (cluster of differentiation antigen 14) were measured by real-time polymerase chain reaction. Also explored were target NF?B (nuclear factor ?B), oxidative stress and antioxidant defense genes. TNF-?, IL-6, and COX-2 were significantly increased in both NW and SWMC mice (p=0.0001). CD14 was up-regulated in SW mice in keeping with the high exposures to particulate matter associated endotoxin. Chocolate administration resulted in a significant down-regulation of TNF-? (p<0.0001), IL-6 (p=0.01), and IL-1? (p=0.02). The up-regulation of antioxidant enzymes and the down-regulation of potent oxidases, toll-like receptors, and pro-apoptotic signaling genes completed the protective profile. Exposure to air pollution produces up-regulation of inflammatory myocardial genes and endotoxin plays a key role in the inflammatory response. Regular consumption of dark chocolate may reduce myocardial inflammation and have cardioprotective properties in the setting of air pollution exposures. PMID:20932730

  5. Upregulation of gene expression in reward-modulatory striatal opioid systems by sleep loss.

    PubMed

    Baldo, Brian A; Hanlon, Erin C; Obermeyer, William; Bremer, Quentin; Paletz, Elliott; Benca, Ruth M

    2013-12-01

    Epidemiological studies have shown a link between sleep loss and the obesity 'epidemic,' and several observations indicate that sleep curtailment engenders positive energy balance via increased palatable-food 'snacking.' These effects suggest alterations in reward-modulatory brain systems. We explored the effects of 10 days of sleep deprivation in rats on the expression of striatal opioid peptide (OP) genes that subserve food motivation and hedonic reward, and compared effects with those seen in hypothalamic energy balance-regulatory systems. Sleep-deprived (Sleep-Dep) rats were compared with yoked forced-locomotion apparatus controls (App-Controls), food-restricted rats (Food-Restrict), and unmanipulated controls (Home-Cage). Detection of mRNA levels with in situ hybridization revealed a subregion-specific upregulation of striatal preproenkephalin and prodynorhin gene expression in the Sleep-Dep group relative to all other groups. Neuropeptide Y (NPY) gene expression in the hippocampal dentate gyrus and throughout neocortex was also robustly upregulated selectively in the Sleep-Dep group. In contrast, parallel gene expression changes were observed in the Sleep-Dep and Food-Restrict groups in hypothalamic energy-sensing systems (arcuate nucleus NPY was upregulated, and cocaine- and amphetamine-regulated transcript was downregulated), in alignment with leptin suppression in both groups. Together, these results reveal a novel set of sleep deprivation-induced transcriptional changes in reward-modulatory peptide systems, which are dissociable from the energy-balance perturbations of sleep loss or the potentially stressful effects of the forced-locomotion procedure. The recruitment of telencephalic food-reward systems may provide a feeding drive highly resistant to feedback control, which could engender obesity through the enhancement of palatable feeding. PMID:23864029

  6. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    NASA Technical Reports Server (NTRS)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  7. Identification of genes upregulated by pinewood nematode inoculation in Japanese red pine.

    PubMed

    Shin, Hanna; Lee, Hyoshin; Woo, Kwan-Soo; Noh, Eun-Woon; Koo, Yeong-Bon; Lee, Kyung-Joon

    2009-03-01

    Pine wilt disease caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, has destroyed huge areas of pine forest in East Asia, including Japan, China and Korea. No protection against PWN has been developed, and the responses of pine trees at the molecular level are unrecorded. We isolated and analyzed upregulated or newly induced genes from PWN-inoculated Japanese red pine (Pinus densiflora Sieb. et Zucc.) by using an annealing control primer system and suppression subtractive hybridization. Significant changes occurred in the transcript abundance of genes with functions related to defense, secondary metabolism and transcription, as the disease progressed. Other gene transcripts encoding pathogenesis-related proteins, pinosylvin synthases and metallothioneins were also more abundant in PWN-inoculated trees than in non-inoculated trees. Our report provides fundamental information on the molecular mechanisms controlling the biochemical and physiological responses of Japanese red pine trees to PWN invasion. PMID:19203959

  8. Ciona intestinalis interleukin 17-like genes expression is upregulated by LPS challenge.

    PubMed

    Vizzini, Aiti; Di Falco, Felicia; Parrinello, Daniela; Sanfratello, Maria Antonietta; Mazzarella, Claudia; Parrinello, Nicolò; Cammarata, Matteo

    2015-01-01

    In humans, IL-17 is a proinflammatory cytokine that plays a key role in the clearance of extracellular bacteria promoting cell infiltration and production of several cytokines and chemokines. Here, we report on three Ciona intestinalis IL-17 homologues (CiIL17-1, CiIL17-2, CiIL17-3). The gene organization, phylogenetic tree and modeling supported the close relationship with the mammalian IL-17A and IL-17F suggesting that the C. intestinalis IL-17 genes share a common ancestor in the chordate lineages. Real time PCR analysis showed a prompt expression induced by LPS inoculation suggesting that they are involved in the first phase of inflammatory response. In situ hybridization assays disclosed that the genes transcription was upregulated in the pharynx, the main organ of the ascidian immune system, and expressed by hemocytes (granulocytes and univacuolar refractile granulocyte) inside the pharynx vessels. PMID:25305501

  9. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ?60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses. PMID:23630255

  10. Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis

    PubMed Central

    Lamore, Sarah D.

    2014-01-01

    Zinc ion homeostasis plays an important role in human cutaneous biology where it is involved in epidermal differentiation and barrier function, inflammatory and antimicrobial regulation, and wound healing. Zinc-based compounds designed for topical delivery therefore represent an important class of cutaneous therapeutics. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in over-the-counter topical antimicrobials, and has also been examined as an investigational therapeutic targeting psoriasis and UVB-induced epidermal hyperplasia. Recently, we have demonstrated that cultured primary human skin keratinocytes display an exquisite sensitivity to nanomolar ZnPT concentrations causing induction of heat shock response gene expression and poly(ADP-ribose) polymerase (PARP)-dependent cell death (Cell Stress Chaperones 15:309–322, 2010). Here we demonstrate that ZnPT causes rapid accumulation of intracellular zinc in primary keratinocytes as observed by quantitative fluorescence microscopy and inductively coupled plasma mass spectrometry (ICP-MS), and that PARP activation, energy crisis, and genomic impairment are all antagonized by zinc chelation. In epidermal reconstructs (EpiDerm™) exposed to topical ZnPT (0.1–2% in Vanicream™), ICP-MS demonstrated rapid zinc accumulation, and expression array analysis demonstrated upregulation of stress response genes encoding metallothionein-2A (MT2A), heat shock proteins (HSPA6, HSPA1A, HSPB5, HSPA1L, DNAJA1, HSPH1, HSPD1, HSPE1), antioxidants (SOD2, GSTM3, HMOX1), and the cell cycle inhibitor p21 (CDKN1A). IHC analysis of ZnPT-treated EpiDerm™ confirmed upregulation of Hsp70 and TUNEL-positivity. Taken together our data demonstrate that ZnPT impairs zinc ion homeostasis and upregulates stress response gene expression in primary keratinocytes and reconstructed human epidermis, activities that may underlie therapeutic and toxicological effects of this topical drug. PMID:21424779

  11. Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis.

    PubMed

    Lamore, Sarah D; Wondrak, Georg T

    2011-10-01

    Zinc ion homeostasis plays an important role in human cutaneous biology where it is involved in epidermal differentiation and barrier function, inflammatory and antimicrobial regulation, and wound healing. Zinc-based compounds designed for topical delivery therefore represent an important class of cutaneous therapeutics. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in over-the-counter topical antimicrobials, and has also been examined as an investigational therapeutic targeting psoriasis and UVB-induced epidermal hyperplasia. Recently, we have demonstrated that cultured primary human skin keratinocytes display an exquisite sensitivity to nanomolar ZnPT concentrations causing induction of heat shock response gene expression and poly(ADP-ribose) polymerase (PARP)-dependent cell death (Cell Stress Chaperones 15:309-322, 2010). Here we demonstrate that ZnPT causes rapid accumulation of intracellular zinc in primary keratinocytes as observed by quantitative fluorescence microscopy and inductively coupled plasma mass spectrometry (ICP-MS), and that PARP activation, energy crisis, and genomic impairment are all antagonized by zinc chelation. In epidermal reconstructs (EpiDerm™) exposed to topical ZnPT (0.1-2% in Vanicream™), ICP-MS demonstrated rapid zinc accumulation, and expression array analysis demonstrated upregulation of stress response genes encoding metallothionein-2A (MT2A), heat shock proteins (HSPA6, HSPA1A, HSPB5, HSPA1L, DNAJA1, HSPH1, HSPD1, HSPE1), antioxidants (SOD2, GSTM3, HMOX1), and the cell cycle inhibitor p21 (CDKN1A). IHC analysis of ZnPT-treated EpiDerm™ confirmed upregulation of Hsp70 and TUNEL-positivity. Taken together our data demonstrate that ZnPT impairs zinc ion homeostasis and upregulates stress response gene expression in primary keratinocytes and reconstructed human epidermis, activities that may underlie therapeutic and toxicological effects of this topical drug. PMID:21424779

  12. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum)

    PubMed Central

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-01

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification. PMID:25607733

  13. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ...FDA-2010-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of...Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function...Retroviral and Lentiviral Vector Based Gene Therapy Products. FDA intends to...

  14. Molecular cloning and functional characterization of a mouse gene upregulated by lipopolysaccharide treatment reveals alternative splicing

    SciTech Connect

    Du, Kejun; Chen, Yaoming; Dai, Zongming; Bi, Yuan; Cai, Tongjian; Hou, Lichao; Chai, Yubo; Song, Qinghe; Chen, Sumin; Luo, Wenjing; Chen, Jingyuan

    2010-01-01

    Treatment of mouse cells with lipopolysaccharide (LPS) potently initiates an inflammatory response, but the underlying mechanisms are unclear. We therefore sought to characterize cDNA sequences of a new mouse LPS-responsive gene, and to evaluate the effects of MLrg. Full-length cDNAs were obtained from LPS-treated NIH3T3 cells. We report that the MLrg gene produces two alternative splice products (GenBank Accession Nos. (DQ316984) and (DQ320011)), respectively, encoding MLrgW and MLrgS polypeptides. Both proteins contain zinc finger and leucine zipper domains and are thus potential regulators of transcription. Expression of MLrgW and MLrgS were robustly upregulated following LPS treatment, and the proteins were localized predominantly in the nuclear membrane and cytoplasm. In stable transfectants over-expressing MLrgW the proportion of cells in G1 phase was significantly reduced, while in cells over-expressing MLrgS the proportion of cells in G2 was significantly increased; both proteins are thus potential regulators of cell cycle progression. Upregulation of MLrgW and MLrgS may be an important component of the LPS inflammatory pathway and of the host response to infection with GNB.

  15. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration

    PubMed Central

    Zaytseva, Yekaterina Y.; Harris, Jennifer W.; Mitov, Mihail I.; Kim, Ji Tae; Butterfield, D. Allan; Lee, Eun Y.; Weiss, Heidi L.; Gao, Tianyan; Evers, B. Mark

    2015-01-01

    Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC. PMID:25970773

  16. Genes Up-Regulated in Tolerant Cavendish Banana Roots in Response to Fusarium oxysporum f. sp. cubense Infection1

    E-print Network

    Genes Up-Regulated in Tolerant Cavendish Banana Roots in Response to Fusarium oxysporum f. sp-associated genes, PAE, PR-1, PR-3, phenolic compounds Abstract Fusarium wilt of banana, caused by Fusarium Fusarium wilt of banana, caused by the soil-borne pathogen Fusarium oxysporum f. sp. cubense (Foc

  17. The alternative oxidase (AOX) gene in Vibrio fischeri is controlled by NsrR and upregulated in response to

    E-print Network

    McFall-Ngai, Margaret

    The alternative oxidase (AOX) gene in Vibrio fischeri is controlled by NsrR and upregulated Vibrio fischeri, we explore the regulation of aox expression and AOX function. Using quantitative PCR-encoding gene in Vibrio fischeri ES114, a bioluminescent marine bacterium that forms a symbiotic relationship

  18. Depletion of the xynB2 gene upregulates ?-xylosidase expression in C. crescentus.

    PubMed

    Corrêa, Juliana Moço; Mingori, Moara Rodrigues; Gandra, Rinaldo Ferreira; Loth, Eduardo Alexandre; Seixas, Flávio Augusto Vicente; Simão, Rita de Cássia Garcia

    2014-01-01

    Caulobacter crescentus is able to express several enzymes involved in the utilization of lignocellulosic biomasses. Five genes, xynB1-5, that encode ?-xylosidases are present in the genome of this bacterium. In this study, the xynB2 gene, which encodes ?-xylosidase II (CCNA_02442), was cloned under the control of the PxylX promoter to generate the O-xynB2 strain, which overexpresses the enzyme in the presence of xylose. In addition, a null mutant strain, ?-xynB2, was created by two homologous recombination events where the chromosomal xynB2 gene was replaced by a copy that was disrupted by the spectinomycin-resistant cassette. We demonstrated that C. crescentus cells lacking ?-xylosidase II upregulates the xynB genes inducing ?-xylosidase activity. Transcriptional analysis revealed that xynB1 (RT-PCR analysis) and xynB2 (lacZ transcription fusion) gene expression was induced in the ?-xynB2 cells, and high ?-xylosidase activity was observed in the presence of different agro-industrial residues in the null mutant strain, a characteristic that can be explored and applied in biotechnological processes. In contrast, overexpression of the xynB2 gene caused downregulation of the expression and activity of the ?-xylosidase. For example, the ?-xylosidase activity that was obtained in the presence of sugarcane bagasse was 7-fold and 16-fold higher than the activity measured in the C. crescentus parental and O-xynB2 cells, respectively. Our results suggest that ?-xylosidase II may have a role in controlling the expression of the xynB1 and xynB2 genes in C. crescentus. PMID:24142353

  19. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-?B-dependent pathway

    SciTech Connect

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan; Chen, Tzu-Hsiu; Hsu, Shih-Lan; Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-?B protein expression and NF-?B-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-?B pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-? and IL-1?, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of I?B kinase activity and I?B phosphorylation, and reduction of I?B protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-?B-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-?B. Furthermore, pharmacological inhibition of NF-?B activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/I?B/NF-?B signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-?B signaling axis in human hepatocyte-derived HepG2 cell line.

  20. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling

    PubMed Central

    2014-01-01

    Background Salt stress usually causes crop growth inhibition and yield decrease. Epigenetic regulation is involved in plant responses to environmental stimuli. The epigenetic regulation of the cell wall related genes associated with the salt-induced cellular response is still little known. This study aimed to analyze cell morphological alterations in maize roots as a consequence of excess salinity in relation to the transcriptional and epigenetic regulation of the cell wall related protein genes. Results In this study, maize seedling roots got shorter and displayed swelling after exposure to 200 mM NaCl for 48 h and 96 h. Cytological observation showed that the growth inhibition of maize roots was due to the reduction in meristematic zone cell division activity and elongation zone cell production. The enlargement of the stele tissue and cortex cells contributed to root swelling in the elongation zone. The cell wall is thought to be the major control point for cell enlargement. Cell wall related proteins include xyloglucan endotransglucosylase (XET), expansins (EXP), and the plasma membrane proton pump (MHA). RT-PCR results displayed an up-regulation of cell wall related ZmEXPA1, ZmEXPA3, ZmEXPA5, ZmEXPB1, ZmEXPB2 and ZmXET1 genes and the down-regulation of cell wall related ZmEXPB4 and ZmMHA genes as the duration of exposure was increased. Histone acetylation is regulated by HATs, which are often correlated with gene activation. The expression of histone acetyltransferase genes ZmHATB and ZmGCN5 was increased after 200 mM NaCl treatment, accompanied by an increase in the global acetylation levels of histones H3K9 and H4K5. ChIP experiment showed that the up-regulation of the ZmEXPB2 and ZmXET1 genes was associated with the elevated H3K9 acetylation levels on the promoter regions and coding regions of these two genes. Conclusions These data suggested that the up-regulation of some cell wall related genes mediated cell enlargement to possibly mitigate the salinity-induced ionic toxicity, and different genes had specific function in response to salt stress. Histone modification as a mediator may contribute to rapid regulation of cell wall related gene expression, which reduces the damage of excess salinity to plants. PMID:24758373

  1. Gamma-tocotrienol modulation of senescence-associated gene expression prevents cellular aging in human diploid fibroblasts

    PubMed Central

    Makpol, Suzana; Zainuddin, Azalina; Chua, Kien Hui; Yusof, Yasmin Anum Mohd; Ngah, Wan Zurinah Wan

    2012-01-01

    OBJECTIVE: Human diploid fibroblasts undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular aging. The beneficial effects of vitamin E in aging have been established, but studies to determine the mechanisms of these effects are ongoing. This study determined the molecular mechanism of ?-tocotrienol, a vitamin E homolog, in the prevention of cellular aging in human diploid fibroblasts using the expression of senescence-associated genes. METHODS: Primary cultures of young, pre-senescent, and senescent fibroblast cells were incubated with ?-tocotrienol for 24 h. The expression levels of ELN, COL1A1, MMP1, CCND1, RB1, and IL6 genes were determined using the quantitative real-time polymerase chain reaction. Cell cycle profiles were determined using a FACSCalibur Flow Cytometer. RESULTS: The cell cycle was arrested in the G0/G1 phase, and the percentage of cells in S phase decreased with senescence. CCND1, RB1, MMP1, and IL6 were upregulated in senescent fibroblasts. A similar upregulation was not observed in young cells. Incubation with ?-tocotrienol decreased CCND1 and RB1 expression in senescent fibroblasts, decreased cell populations in the G0/G1 phase and increased cell populations in the G2/M phase. ?-Tocotrienol treatment also upregulated ELN and COL1A1 and downregulated MMP1 and IL6 expression in young and senescent fibroblasts. CONCLUSION: ?-Tocotrienol prevented cellular aging in human diploid fibroblasts, which was indicated by the modulation of the cell cycle profile and senescence-associated gene expression. PMID:22358238

  2. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    NASA Technical Reports Server (NTRS)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; Oarada, Motoko; Kishi, Kyoichi; Nikawa, Takeshi

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  3. Upregulation of human heme oxygenase gene expression by Ets-family proteins.

    PubMed

    Deramaudt, B M; Remy, P; Abraham, N G

    1999-03-01

    Overexpression of human heme oxygenase-1 has been shown to have the potential to promote EC proliferation and angiogenesis. Since Ets-family proteins have been shown to play an important role in angiogenesis, we investigated the presence of ETS binding sites (EBS), GGAA/T, and ETS protein contributing to human HO-1 gene expression. Several chloramphenicol acetyltransferase constructs were examined in order to analyze the effect of ETS family proteins on the transduction of HO-1 in Xenopus oocytes and in microvessel endothelial cells. Heme oxygenase promoter activity was up-regulated by FLI-1ERGETS-1 protein(s). Chloramphenicol acetyltransferase (CAT) assays demonstrated that the promoter region (-1500 to +19) contains positive and negative control elements and that all three members of the ETS protein family were responsible for the up-regulation of HHO-1. Electrophoretic mobility shift assays (EMSA), performed with nuclear extracts from endothelial cells overexpressing HHO-1 gene, and specific HHO-1 oligonucleotides probes containing putative EBS resulted in a specific and marked bandshift. Synergistic binding was observed in EMSA between AP-1 on the one hand, FLI-1, ERG, and ETS-1 protein on the other. Moreover, 5'-deletion analysis demonstrated the existence of a negative control element of HHO-1 expression located between positions -1500 and -120 on the HHO-1 promoter. The presence of regulatory sequences for transcription factors such as ETS-1, FLI-1, or ERG, whose activity is associated with cell proliferation, endothelial cell differentiation, and matrix metalloproteinase transduction, may be an indication of the important role that HO-1 may play in coronary collateral circulation, tumor growth, angiogenesis, and hemoglobin-induced endothelial cell injuries. PMID:10022513

  4. Haplodeficiency of Klotho Gene Causes Arterial Stiffening via Upregulation of Scleraxis Expression and Induction of Autophagy.

    PubMed

    Chen, Kai; Zhou, Xiaoli; Sun, Zhongjie

    2015-11-01

    The prevalence of arterial stiffness increases with age, whereas the level of the aging-suppressor protein klotho decreases with age. The objective of this study is to assess whether haplodeficiency of klotho gene causes arterial stiffness and to investigate the underlying mechanism. Pulse wave velocity, a direct measure of arterial stiffness, was increased significantly in klotho heterozygous (klotho(+/-)) mice versus their age-matched wild-type (WT) littermates, suggesting that haplodeficiency of klotho causes arterial stiffening. Notably, plasma aldosterone levels were elevated significantly in klotho(+/-) mice. Treatment with eplerenone (6 mg/kg per day IP), an aldosterone receptor blocker, abolished klotho deficiency-induced arterial stiffening in klotho(+/-) mice. Klotho deficiency was associated with increased collagen and decreased elastin contents in the media of aortas. In addition, arterial matrix metalloproteinase-2, matrix metalloproteinase-9, and transforming growth factor-?1 expression and myofibroblast differentiation were increased in klotho(+/-) mice. These klotho deficiency-related changes can be blocked by eplerenone. Protein expression of scleraxis, a transcription factor for collagen synthesis, and LC3-II/LC3-I, an index of autophagy, were upregulated in aortas of klotho(+/-) mice, which can be abolished by eplerenone. In cultured mouse aortic smooth muscle cells, aldosterone increased collagen-1 expression that can be completely eliminated by small interfering RNA knockdown of scleraxis. Interestingly, aldosterone decreased elastin levels in smooth muscle cells, which can be abolished by small interfering RNA knockdown of Beclin-1, an autophagy-related gene. In conclusion, this study demonstrated for the first time that klotho deficiency-induced arterial stiffening may involve aldosterone-mediated upregulation of scleraxis and induction of autophagy, which led to increased collagen-1 expression and decreased elastin levels, respectively. PMID:26324504

  5. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ...No. FDA-2013-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food...public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the...

  6. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ...No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food...public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the...

  7. 77 FR 73472 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ...No. FDA-2012-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food...public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the...

  8. 76 FR 18768 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ...No. FDA-2011-N-0002] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food...public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of the...

  9. 76 FR 49774 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ...No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food...public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the...

  10. Altered Patterns of Cellular Gene Expression in Dermal Microvascular Endothelial Cells Infected with Kaposi's Sarcoma-Associated Herpesvirus

    PubMed Central

    Poole, Lynn J.; Yu, Yanxing; Kim, Peter S.; Zheng, Qi-Zhi; Pevsner, Jonathan; Hayward, Gary S.

    2002-01-01

    Kaposi's sarcoma (KS)-associated herpesvirus (KSHV; also called human herpesvirus 8) is believed to be the etiologic agent of Kaposi's sarcoma, multicentric Castleman's disease, and AIDS-associated primary effusion lymphoma. KSHV infection of human dermal microvascular endothelial cells (DMVEC) in culture results in the conversion of cobblestone-shaped cells to spindle-shaped cells, a characteristic morphological feature of cells in KS lesions. All spindle-shaped cells in KSHV-infected DMVEC cultures express the latency-associated nuclear protein LANA1, and a subfraction of these cells undergo spontaneous lytic cycle induction that can be enhanced by tetradecanoyl phorbol acetate (TPA) treatment. To study the cellular response to infection by KSHV, we used two different gene array screening systems to examine the expression profile of either 2,350 or 9,180 human genes in infected compared to uninfected DMVEC cultures in both the presence and absence of TPA. In both cases, between 1.4 and 2.5% of the genes tested were found to be significantly upregulated or downregulated. Further analysis by both standard and real-time reverse transcription-PCR procedures directly confirmed these results for 14 of the most highly upregulated and 13 of the most highly downregulated genes out of a total of 37 that were selected for testing. These included strong upregulation of interferon-responsive genes such as interferon response factor 7 (IRF7) and myxovirus resistance protein R1, plus upregulation of exodus 2 ?-chemokine, RDC1 ?-chemokine receptor, and transforming growth factor ?3, together with strong downregulation of cell adhesion factors ?4-integrin and fibronectin plus downregulation of bone morphogenesis protein 4, matrix metalloproteinase 2, endothelial plasminogen activator inhibitor 1, connective tissue growth factor, and interleukin-8. Significant dysregulation of several other cytokine-related genes or receptors, as well as endothelial cell and macrophage markers, and various other genes associated with angiogenesis or transformation was also detected. Western immunoblot and immunohistochemical analyses confirmed that the cellular IRF7 protein levels were strongly upregulated during the early lytic cycle both in KSHV-infected DMVEC and in the body cavity-based lymphoma BCBL1 PEL cell line. PMID:11884566

  11. Bacterial Cellular Engineering by Genome Editing and Gene Silencing

    PubMed Central

    Nakashima, Nobutaka; Miyazaki, Kentaro

    2014-01-01

    Genome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption), knock-in (insertion), and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes. This is performed by expressing antisense RNAs to knock down (silence) target mRNAs in vivo. This review describes the features and recent advances on methods used in genomic engineering and silencing technologies that are advantageously used for bacterial cellular engineering. PMID:24552876

  12. 75 FR 65640 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee; Notice of... portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue and Gene... Tumor Vaccines and Biotechnology Branch, Office of Cellular, Tissue and Gene Therapies, Center...

  13. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... SERVICES Food and Drug Administration Guidance for Industry: Potency Tests for Cellular and Gene Therapy...: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene therapy (CGT) products with recommendations for developing tests to...

  14. 77 FR 71194 - Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... Investigational Cellular and Gene Therapy Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION...). The product areas covered by this guidance are cellular therapy, gene therapy, therapeutic vaccination... Investigational Cellular and Gene Therapy Products,'' dated November 2012. The draft guidance document...

  15. Increasing cancer-specific gene expression by targeting overexpressed ?5?1 integrin and upregulated transcriptional activity of NF-?B.

    PubMed

    Adil, Maroof M; Levine, Rachel M; Kokkoli, Efrosini

    2014-03-01

    We developed a modular multifunctional nonviral gene delivery system by targeting the overexpressed cancer surface receptor ?5?1 integrin and the upregulated transcriptional activity of the cancer resistance mediating transcription factor NF-?B, thereby introducing a new form of transcriptional targeting. NF-?B regulated therapy can improve specificity of gene expression in cancer tissue and also may offset NF-?B mediated cancer resistance. We delivered a luciferase gene under the control of an NF-?B responsive element (pNF-?B-Luc) encapsulated in a PR_b peptide functionalized stealth liposome that specifically targets the ?5?1 integrin and achieved increased gene expression in DLD-1 colorectal cancer cells compared to BJ-fibroblast healthy cells in vitro. The multitargeted system was also able to differentiate between cancer cells and healthy cells better than either of the individually targeted systems. In addition, we constructed a novel cancer therapeutic plasmid by cloning a highly potent diphtheria toxin fragment A (DTA) expressing gene under the control of an NF-?B responsive element (pNF-?B-DTA). A dose-dependent reduction of cellular protein expression and increased cytotoxicity in cancer cells was seen when transfected with PR_b functionalized stealth liposomes encapsulating the condensed pNF-?B-DTA plasmid. Our therapeutic delivery system specifically eradicated close to 70% of a variety of cancer cells while minimally affecting healthy cells in vitro. Furthermore, the modular nature of the nonviral design allows targeting novel pairs of extracellular receptors and upregulated transcription factors for applications beyond cancer gene therapy. PMID:24483950

  16. Gene Essentiality Is a Quantitative Property Linked to Cellular Evolvability.

    PubMed

    Liu, Gaowen; Yong, Mei Yun Jacy; Yurieva, Marina; Srinivasan, Kandhadayar Gopalan; Liu, Jaron; Lim, John Soon Yew; Poidinger, Michael; Wright, Graham Daniel; Zolezzi, Francesca; Choi, Hyungwon; Pavelka, Norman; Rancati, Giulia

    2015-12-01

    Gene essentiality is typically determined by assessing the viability of the corresponding mutant cells, but this definition fails to account for the ability of cells to adaptively evolve to genetic perturbations. Here, we performed a stringent screen to assess the degree to which Saccharomyces cerevisiae cells can survive the deletion of ?1,000 individual "essential" genes and found that ?9% of these genetic perturbations could in fact be overcome by adaptive evolution. Our analyses uncovered a genome-wide gradient of gene essentiality, with certain essential cellular functions being more "evolvable" than others. Ploidy changes were prevalent among the evolved mutant strains, and aneuploidy of a specific chromosome was adaptive for a class of evolvable nucleoporin mutants. These data justify a quantitative redefinition of gene essentiality that incorporates both viability and evolvability of the corresponding mutant cells and will enable selection of therapeutic targets associated with lower risk of emergence of drug resistance. PMID:26627736

  17. Sampling-Dependent Up-regulation of Gene Expression in Sequential Samples of Human Airway Epithelial Cells

    PubMed Central

    Heguy, Adriana; Harvey, Ben-Gary; O’Connor, Timothy P; Hackett, Neil R; Crystal, Ronald G

    2003-01-01

    As part of a study of in vivo gene expression levels in the human airway epithelium in response to chronic cigarette smoking, we have identified a number of genes whose expression levels are altered in a time-dependent fashion resulting from the procedure used to sample epithelial cells. Fiberoptic bronchoscopy and airway epithelium brushing were used to obtain independent samples from a single individual, 1st from the right lung, followed by sampling of the left lung. We observed that a specific subset of early response genes encoding proteins involved in transcription, signal transduction, cell cycle/growth, and apoptosis were significantly up-regulated in the left lung samples (the 2nd region to be sampled) compared with the right lung samples (the 1st region to be sampled). This response was due to the temporal nature of the sampling procedure and not to inherent gene expression differences between airway epithelium of the right and left lungs. When the order of sampling was reversed, with the left airway epithelium sampled 1st, the same subset of genes were up-regulated in the samples obtained from the right airway epithelium. The time-dependent up-regulation of these genes was likely in response to the stress of the procedure and/or the anesthesia used. Sampling-dependent uncertainty of gene expression is likely a general phenomenon relevant to the procedures used for obtaining biological samples, particularly in humans where the sampling procedures are dependent on ensuring comfort and safety. PMID:15208741

  18. Gene Up-Regulation in Heart during Mammalian Hibernation Andreas Fahlman, Janet M. Storey, and Kenneth B. Storey

    E-print Network

    Fahlman, Andreas

    Gene Up-Regulation in Heart during Mammalian Hibernation Andreas Fahlman, Janet M. Storey By Drive, Ottawa, Ontario, Canada K1S 5B6 A cDNA library prepared from heart of hibernating golden-regulated during hibernation. Two differentially expressed clones were found after three rounds of screening

  19. Altered gene expression in melanocytes exposed to 4-tertiary butyl phenol (4-TBP): upregulation of the A2b adenosine receptor 1.

    PubMed

    Le Poole, I C; Yang, F; Brown, T L; Cornelius, J; Babcock, G F; Das, P K; Boissy, R E

    1999-11-01

    Exposure to phenolic agents contributes to the development of occupational vitiligo. Proposed as a causative factor for leukoderma in vivo, the para-substituted phenol 4-tertiary butyl phenol was chosen to investigate early cellular events responsible for selective disappearance of melanocytes from the epidermis of individuals sensitive to such agents. To this end, differential display of melanocyte mRNA isolated from three separate cultures was performed following a 12 h exposure of cells to 250 microM 4-tertiary butyl phenol or to vehicle alone. Fragments of cDNA representing differentially expressed messages were cloned and subsequently confirmed by reverse dot blotting. Alignment analysis revealed that the L30 ribosomal protein was upregulated by the treatment, potentially reflecting altered levels of protein synthesis in response to stress. In addition, a gene sequence upregulated following exposure to 4-tertiary butyl phenol was identified as the A2b receptor (a P1 receptor for adenosine). Differential expression of this gene was confirmed in an RNase protection assay. By reverse transcription-polymerase chain reaction, the gene was shown to be expressed in keratinocytes and fibroblasts as well. Flow cytometry confirmed differential expression in melanocytes and fibroblasts, but not in keratinocytes. Interestingly, it has been reported that P1 purinoceptor stimulation can induce apoptosis. This is in concordance with results reported elsewhere demonstrating induction of apoptosis by 4-tertiary butyl phenol in human melanocytes, as well as with morphologic changes observed in this study in cells exposed to 250 microM 4-tertiary butyl phenol for 72 h. In conclusion, differential display is useful to establish melanocyte components involved in the cellular response to phenolic agents. PMID:10571726

  20. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes.

    PubMed

    Vaid, Neha; Pandey, Prashant; Srivastava, Vineet Kumar; Tuteja, Narendra

    2015-05-01

    Lectin receptor-like kinases (LecRLKs) are members of RLK family composed of lectin-like extracellular recognition domain, transmembrane domain and cytoplasmic kinase domain. LecRLKs are plasma membrane proteins believed to be involved in signal transduction. However, most of the members of the protein family even in plants have not been functionally well characterized. Herein, we show that Pisum sativum LecRLK (PsLecRLK) localized in plasma membrane systems and/or other regions of the cell and its transcript upregulated under salinity stress. Overexpression of PsLecRLK in transgenic tobacco plants confers salinity stress tolerance by alleviating both the ionic as well the osmotic component of salinity stress. The transgenic plants show better tissue compartmentalization of Na(+) and higher ROS scavenging activity which probably results in lower membrane damage, improved growth and yield maintenance even under salinity stress. Also, expression of several genes involved in cellular homeostasis is perturbed by PsLecRLK overexpression. Alleviation of osmotic and ionic components of salinity stress along with reduced oxidative damage and upregulation of stress-responsive genes in transgenic plants under salinity stress conditions could be possible mechanism facilitating enhanced stress tolerance. This study presents PsLecRLK as a promising candidate for crop improvement and also opens up new avenue to investigate its signalling pathway. PMID:25863480

  1. The effect of risedronate on osteogenic lineage is mediated by cyclooxygenase-2 gene upregulation

    PubMed Central

    2010-01-01

    Introduction The purpose of this study was to evaluate the effects of risedronate (Ris) in the modulation of bone formation in rats with glucocorticoid (GC)-induced osteoporosis by histomorphometric, immunohistochemical and gene expression analyses. Methods We analyzed structure, turnover and microarchitecture, cyclooxygenase 2 (COX-2) levels and osteocyte apoptosis in 40 female rats divided as follows: 1) vehicle of methylprednisolone (vGC) + vehicle of risedronate (vRis); 2) Ris 5 ?g/Kg + vGC; 3) methylprednisolone (GC) 7 mg/Kg + vRis; 4) GC 7 mg/Kg +Ris 5 ?g/Kg. In addition, we evaluated cell proliferation and expression of COX-2 and bone alkaline phosphatase (b-ALP) genes in bone marrow cells and MLO-y4 osteocytes treated with Ris alone or in co-treatment with the selective COX-2 inhibitor NS-398 or with dexametasone. Results Ris reduced apoptosis induced by GC of osteocytes (41% vs 86%, P < 0.0001) and increased COX-2 expression with respect to controls (Immuno-Hystochemical Score (IHS): 8.75 vs 1.00, P < 0.0001). These positive effects of Ris in bone formation were confirmed by in vitro data as the viability and expression of b-ALP gene in bone marrow cells resulted increased in a dose dependent manner. Conclusions These findings suggest a positive effect of Ris in bone formation and support the hypothesis that the up-regulation of COX-2 could be an additional mechanism of anabolic effect of Ris. PMID:20738860

  2. Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells

    PubMed Central

    Finka, Andrija; Mattoo, Rayees U. H.

    2010-01-01

    Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases. Electronic supplementary material The online version of this article (doi:10.1007/s12192-010-0216-8) contains supplementary material, which is available to authorized users. PMID:20694844

  3. Carbon nanoparticle induced cytotoxicity in human mesenchymal stem cells through upregulation of TNF3, NFKBIA and BCL2L1 genes.

    PubMed

    Periasamy, Vaiyapuri S; Athinarayanan, Jegan; Alfawaz, Mohammed A; Alshatwi, Ali A

    2016-02-01

    Carbon based nanomaterials, including carbon nanotubes, graphene, nanodiamond and carbon nanoparticles, have emerged as potential candidates for a wide variety of applications because of their unusual electrical, mechanical, thermal and optical properties. However, our understanding of how increased usage of carbon based nanomaterials could lead to harmful effects in humans and other biological systems is inadequate. Our present investigation is focused on the cellular toxicity of carbon nanoparticles (CNPs) on human mesenchymal stem cells (hMSCs). Following exposure to CNPs, cell viability, nuclear morphological changes, apoptosis and cell cycle progression were monitored. Furthermore, the expression of genes involved in both cell death (e.g., P53, TNF3, CDKN1A, TNFRSF1A, TNFSF10, NFKBIA, BCL2L1) and cell cycle regulation (e.g., PCNA, EGR1, E2F1, CCNG1, CCND1, CCNC, CYCD3) were assessed using qPCR. Our results indicated that CNPs reduce cell viability and cause chromatin condensation and DNA fragmentation. Cell cycle analysis indicated that CNPs affect the cell cycle progression. However, the gene expression measurements confirmed that CNPs significantly upregulated the P53, TNF3, CDKNIA, and NFKBIA genes and downregulated the EGR1 gene in hMSCs. Our findings suggest that CNPs reduce cell viability by disrupting the expression of cell death genes in human mesenchymal stem cell (hMSC). The results of this investigation revealed that CNPs exhibited moderate toxicity on hMSCs. PMID:26364217

  4. Mammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolism

    PubMed Central

    Moyer, Adam L.; Wagner, Kathryn R.

    2015-01-01

    Background The transforming growth factor ? (TGF-?) signaling pathways modulate skeletal muscle growth, regeneration, and cellular metabolism. Several recent gene expression studies have shown that inhibition of myostatin and TGF-?1 signaling consistently leads to a significant reduction in expression of Mss51, also named Zmynd17. The function of mammalian Mss51 is unknown although a putative homolog in yeast is a mitochondrial translational activator. Objective The objective of this work was to characterize mammalian Mss51. Methods Quantitative RT-PCR and immunoblot of subcellular fractionation were used to determine expression patterns and localization of Mss51. The CRISPR/Cas9 system was used to reduce expression of Mss51 in C2C12 myoblasts and the function of Mss51 was evaluated in assays of proliferation, differentiation and cellular metabolism. Results Mss51 was predominantly expressed in skeletal muscle and in those muscles dominated by fast-twitch fibers. In vitro, its expression was upregulated upon differentiation of C2C12 myoblasts into myotubes. Expression of Mss51 was modulated in response to altered TGF-? family signaling. In human muscle, Mss51 localized to the mitochondria. Its genetic disruption resulted in increased levels of cellular ATP, ?-oxidation, glycolysis, and oxidative phosphorylation. Conclusions Mss51 is a novel, skeletal muscle-specific gene and a key target of myostatin and TGF-?1 signaling. Unlike myostatin, TGF-?1 and IGF-1, Mss51 does not regulate myoblast proliferation or differentiation. Rather, Mss51 appears to be one of the effectors of these growth factors on metabolic processes including fatty acid oxidation, glycolysis and oxidative phosphorylation. PMID:26634192

  5. Eurycoma longifolia upregulates osteoprotegerin gene expression in androgen- deficient osteoporosis rat model

    PubMed Central

    2012-01-01

    Background Eurycoma longifolia (EL) has been shown recently to protect against bone calcium loss in orchidectomised rats, the model for androgen-deficient osteoporosis. The mechanism behind this is unclear but it may be related to its ability to elevate testosterone levels or it may directly affect bone remodeling. The aim of this study is to determine the mechanism involved by investigating the effects of EL extract on serum testosterone levels, bone biomarkers, biomechanical strength and gene expression of Receptor Activator of Nuclear Factor kappa-B ligand (RANKL), Osteoprotegerin (OPG) and Macrophage-Colony Stimulating Factor (MCSF) in orchidectomised rats. Methods Thirty-two male Sprague–Dawley rats were divided into: Sham-operated group (SHAM); orchidectomised-control group (ORX); orchidectomised and given 15?mg/kg EL extract (ORX + EL) and orchidectomised and given 8?mg/kg testosterone (ORX + T). The rats were treated for 6?weeks. The serum levels of testosterone, osteocalcin and C-terminal telopeptide of type I collagen (CTX) were measured using the ELISA technique. The femoral bones were subjected to biomechanical testing. The tibial bone gene expressions of RANKL, OPG and MCSF were measured using the branch DNA technique. Results The post-treatment level of testosterone was found to be significantly reduced by orchiectomy (p < 0.05). Both ORX + EL and ORX + T groups have significantly higher post-treatment testosterone levels compared to their pre-treatment levels (p < 0.05). The bone resorption marker (CTx) was elevated after orchiectomy but was suppressed after treatment in the ORX + EL and ORX + T groups (p < 0.05). There was no significant finding for the femoral biomechanical parameters. The tibial OPG gene expression in the ORX group was significantly lower compared to the SHAM and ORX + EL groups (p < 0.05). Conclusion Supplementation with EL extract elevated the testosterone levels, reduced the bone resorption marker and upregulated OPG gene expression of the orchidectomised rats. These actions may be responsible for the protective effects of EL extract against bone resorption due to androgen deficiency. PMID:22967165

  6. Maackiain is a novel antiallergic compound that suppresses transcriptional upregulation of the histamine H1 receptor and interleukin-4 genes

    PubMed Central

    Mizuguchi, Hiroyuki; Nariai, Yuki; Kato, Shuhei; Nakano, Tomohiro; Kanayama, Tomoyo; Kashiwada, Yoshiki; Nemoto, Hisao; Kawazoe, Kazuyoshi; Takaishi, Yoshihisa; Kitamura, Yoshiaki; Takeda, Noriaki; Fukui, Hiroyuki

    2015-01-01

    Kujin contains antiallergic compounds that inhibit upregulation of histamine H1 receptor (H1R) and interleukin (IL)-4 gene expression. However, the underlying mechanism remains unknown. We sought to identify a Kujin-derived antiallergic compound and investigate its mechanism of action. The H1R and IL-4 mRNA levels were determined by real-time quantitative RT-PCR. To investigate the effects of maackiain in vivo, toluene-2,4-diisocyanate (TDI)-sensitized rats were used as a nasal hypersensitivity animal model. We identified (?)-maackiain as the responsible component. Synthetic maackiain showed stereoselectivity for the suppression of IL-4 gene expression but not for H1R gene expression, suggesting distinct target proteins for transcriptional signaling. (?)-Maackiain inhibited of PKC? translocation to the Golgi and phosphorylation of Tyr311 on PKC?, which led to the suppression of H1R gene transcription. However, (?)-maackiain did not show any antioxidant activity or inhibition of PKC? enzymatic activity per se. Pretreatment with maackiain alleviated nasal symptoms and suppressed TDI-induced upregulations of H1R and IL-4 gene expressions in TDI-sensitized rats. These data suggest that (?)-maackiain is a novel antiallergic compound that alleviates nasal symptoms in TDI-sensitized allergy model rats through the inhibition of H1R and IL-4 gene expression. The molecular mechanism underlying its suppressive effect for H1R gene expression is mediated by the inhibition of PKC? activation. PMID:26516579

  7. MANGANESE UPREGULATES CELLULAR PRION PROTEINS AND INHIBITS THE RATE OF PROTEINASE-K DEPENDENT LIMITED PROTEOLYSIS IN NEURONAL CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The key event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent cations such as copper to th...

  8. N-acetylcysteine inhibits the upregulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically

    PubMed Central

    Caro, Andres A.; Bell, Matthew; Ejiofor, Shannon; Zurcher, Grant; Petersen, Dennis R.; Ronis, Martin J. J.

    2014-01-01

    Background Chronic ethanol administration to experimental animals induces hepatic oxidative stress and upregulates mitochondrial biogenesis. The mechanisms by which chronic ethanol upregulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative stress is a factor that triggers mitochondrial biogenesis after chronic ethanol feeding. If our hypothesis is correct, co-administration of antioxidants should prevent upregulation of mitochondrial biogenesis genes. Methods Rats were fed an ethanol-containing diet intragastrically by total enteral nutrition for 150 days, in the absence or presence of the antioxidant N-acetylcysteine (NAC) at 1.7 g/kg/day; control rats were administered isocaloric diets where carbohydrates substituted for ethanol calories. Results Ethanol administration significantly increased hepatic oxidative stress, evidenced as decreased liver total glutathione and GSH/GSSG ratio. These effects were inhibited by co-administration of ethanol and NAC. Chronic ethanol increased the expression of mitochondrial biogenesis genes including peroxisome proliferator activated receptor gamma-coactivator-1 alpha and mitochondrial transcription factor A, and mitochondrial DNA; co-administration of ethanol and NAC prevented these effects. Chronic ethanol administration was associated with decreased mitochondrial mass, inactivation and depletion of mitochondrial complex I and complex IV, and increased hepatic mitochondrial oxidative damage, effects that were not prevented by NAC. Conclusions These results suggest that oxidative stress caused by chronic ethanol triggered the upregulation of mitochondrial biogenesis genes in rat liver, because an antioxidant such as NAC prevented both effects. Because NAC did not prevent liver mitochondrial oxidative damage, extra-mitochondrial effects of reactive oxygen species may regulate mitochondrial biogenesis. In spite of the induction of hepatic mitochondrial biogenesis genes by chronic ethanol, mitochondrial mass and function decreased probably in association with mitochondrial oxidative damage. These results also predict that the effectiveness of NAC as an antioxidant therapy for chronic alcoholism will be limited by its limited antioxidant effects in mitochondria, and its inhibitory effect on mitochondrial biogenesis. PMID:25581647

  9. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... Gene Therapy Products. FDA intends to make background material available to the public no later than 2... SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee; Notice of... to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee....

  10. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... and gene therapy products. CBER is planning to publish guidance on this topic during calendar year... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory...

  11. 76 FR 81513 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of... ] portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue, and Gene... Gene Therapies, Center for Biologics Evaluation and Research, FDA. FDA intends to make...

  12. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... gene therapy products for the treatment of retinal disorders. Topics to be considered include the... SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee; Notice of... to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee....

  13. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... early-phase clinical trials of cellular and gene therapy products. CBER published guidance on this topic.../Guidances/CellularandGeneTherapy/default.htm ). FDA intends to make background material available to the... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory...

  14. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    PubMed Central

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  15. Upregulation of TLR1, TLR2, TLR4, and IRAK-2 Expression During ML-1 Cell Differentiation to Macrophages: Role in the Potentiation of Cellular Responses to LPS and LTA.

    PubMed

    Traore, Kassim; Zirkin, Barry; Thimmulappa, Rajesh K; Biswal, Shyam; Trush, Michael A

    2012-01-01

    12-O-tetradecanoylphorbol 13-acetate (TPA) induces the differentiation of human myeloid ML-1 cells to macrophages. In the current study, the expression, responsiveness, and regulation of toll-like receptors (TLRs) in TPA-induced ML-1-derived macrophages were investigated. We have found that TPA-induced differentiation of ML-1 cells was accompanied by the upregulation of TLR1, TLR2, TLR4, and CD14 expression at both the mRNA and protein levels. Interestingly, TLR1 and TLR4 protein expression on ML-1 cells could be blocked by pretreatment with U0126, suggesting the role of an Erk1/2-induced differentiation signal in this process. In addition, the expression of IRAK-2, a key member of the TLR/IRAK-2/NF-?B-dependent signaling cascade was also induced in response to TPA. Accordingly, we demonstrated an increased cellular release of inflammatory cytokines (TNF-? and various interleukins) upon stimulation with LPS and LTA ligands for TLR4 and TLR2, respectively. Furthermore, using luminol-dependent chemiluminescence, addition of LPS and LTA induces a sustained DPI-inhibitable generation of reactive oxygen species (ROS) by the differentiated ML-1 cells. Together, these data suggest that the increase in the responsiveness of TPA-treated ML-1 cells to LPS and LTA occurs in response to the upregulation of their respective receptors as well as an induction of the IRAK-2 gene expression. PMID:22685674

  16. Survivin enhances telomerase activity via up-regulation of specificity protein 1- and c-Myc-mediated human telomerase reverse transcriptase gene transcription

    SciTech Connect

    Endoh, Teruo; Tsuji, Naoki; Asanuma, Koichi; Yagihashi, Atsuhito; Watanabe, Naoki . E-mail: watanabn@sapmed.ac.jp

    2005-05-01

    Suppression of apoptosis is thought to contribute to carcinogenesis. Survivin, a member of the inhibitor-of-apoptosis family, blocks apoptotic signaling activated by various cellular stresses. Since elevated expression of survivin observed in human cancers of varied origin was associated with poor patient survival, survivin has attracted growing attention as a potential target for cancer treatment. Immortalization of cells also is required for carcinogenesis; telomere length maintenance by telomerase is required for cancer cells to proliferate indefinitely. Yet how cancer cells activate telomerase remains unclear. We therefore examined possible interrelationships between survivin expression and telomerase activity. Correlation between survivin and human telomerase reverse transcriptase (hTERT) expression was observed in colon cancer tissues, and overexpression of survivin enhanced telomerase activity by up-regulation of hTERT expression in LS180 human colon cancer cells. DNA-binding activities of specificity protein 1 (Sp1) and c-Myc to the hTERT core promoter were increased in survivin gene transfectant cells. Phosphorylation of Sp1 and c-Myc at serine and threonine residues was enhanced by survivin, while total amounts of these proteins were unchanged. Further, 'knockdown' of survivin by a small inhibitory RNA decreased Sp1 and c-Myc phosphorylation. Thus survivin participates not only in inhibition of apoptosis, but also in prolonging cellular lifespan.

  17. Rapid acclimation of juvenile corals to CO2 -mediated acidification by upregulation of heat shock protein and Bcl-2 genes.

    PubMed

    Moya, A; Huisman, L; Forêt, S; Gattuso, J-P; Hayward, D C; Ball, E E; Miller, D J

    2015-01-01

    Corals play a key role in ocean ecosystems and carbonate balance, but their molecular response to ocean acidification remains unclear. The only previous whole-transcriptome study (Moya et al. Molecular Ecology, 2012; 21, 2440) documented extensive disruption of gene expression, particularly of genes encoding skeletal organic matrix proteins, in juvenile corals (Acropora millepora) after short-term (3 d) exposure to elevated pCO2 . In this study, whole-transcriptome analysis was used to compare the effects of such 'acute' (3 d) exposure to elevated pCO2 with a longer ('prolonged'; 9 d) period of exposure beginning immediately post-fertilization. Far fewer genes were differentially expressed under the 9-d treatment, and although the transcriptome data implied wholesale disruption of metabolism and calcification genes in the acute treatment experiment, expression of most genes was at control levels after prolonged treatment. There was little overlap between the genes responding to the acute and prolonged treatments, but heat shock proteins (HSPs) and heat shock factors (HSFs) were over-represented amongst the genes responding to both treatments. Amongst these was an HSP70 gene previously shown to be involved in acclimation to thermal stress in a field population of another acroporid coral. The most obvious feature of the molecular response in the 9-d treatment experiment was the upregulation of five distinct Bcl-2 family members, the majority predicted to be anti-apoptotic. This suggests that an important component of the longer term response to elevated CO2 is suppression of apoptosis. It therefore appears that juvenile A. millepora have the capacity to rapidly acclimate to elevated pCO2 , a process mediated by upregulation of specific HSPs and a suite of Bcl-2 family members. PMID:25444080

  18. The Effect of Gravity Fields on Cellular Gene Expression

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1999-01-01

    Early theoretical analysis predicted that microgravity effects on the isolated cell would be minuscule at the subcellular level; however, these speculations have not proven true in the real world. Astronauts experience a significant bone and muscle loss in as little as 2 weeks of spaceflight and changes are seen at the cellular level soon after exposure to microgravity. Changes in biological systems may be primarily due to the lack of gravity and the resulting loss of mechanical stress on tissues and cells. Recent ground and flight studies examining the effects of gravity or mechanical stress on cells demonstrate marked changes in gene expression when relatively small changes in mechanical forces or gravity fields were made. Several immediate early genes (IEG) like c-fos and c-myc are induced by mechanical stimulation within minutes. In contrast, several investigators report that the absence of mechanical forces during space flight result in decreased sera response element (SRE) activity and attenuation of expression of IEGs such as c-fos, c-jun and cox-2 mRNAs. Clearly, these early changes in gene expression may have long term consequences on mechanically sensitive cells. In our early studies on STS-56, we reported four major changes in the osteoblast; 1) prostaglandin synthesis in flight, 2) changes in cellular morphology, 3) altered actin cytoskeleton and 4) reduced osteoblast growth after four days exposure to microgravity. Initially, it was believed that changes in fibronectin (FN) RNA, FN protein synthesis or subsequent FN matrix formation might account for the changes in cytoskeleton and/ or reduction of growth. However our recent studies on Biorack (STS-76, STS-81 and STS-84), using ground and in-flight 1-G controls, demonstrated that fibronectin synthesis and matrix formation were normal in microgravity. In addition, in our most recent Biorack paper, our laboratory has documented that relative protein synthesis and mRNA synthesis are not changed after 24 hours exposure to microgravity. We did, however, find significant changes in osteoblast gene expression of IEGs, c-fos and cox-2 in microgravity exposure as compared to ground and in-flight 1-G controls. Subsequent ground studies suggest that the molecular mechanism underlying these changes may involve prostaglandin c-AMP receptors (EPs) and/or subsequent alteration of intracellular signaling in the absence of gravity.

  19. 77 FR 73472 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice...

  20. Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two actin genes cloned from Culex pipiens L. are upregulated during adult diapause. Though actins 1 and 2 were expressed throughout diapause, both genes were most highly expressed early in diapause. These changes in gene expression were accompanied by a conspicuous redistribution of polymerized acti...

  1. 76 FR 18768 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... From the Federal Register Online via the Government Printing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of... the meeting will be closed to the public. Name of Committee: Cellular, Tissue, and Gene...

  2. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Administration (FDA) is announcing an amendment to the notice of a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee. This meeting was announced in the Federal Register of October 17, 2012 (77 FR... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory...

  3. 76 FR 49774 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... From the Federal Register Online via the Government Printing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee; Notice of... to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee....

  4. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... From the Federal Register Online via the Government Printing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee; Notice of... to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee....

  5. Predicting Cellular Growth from Gene Expression Edoardo M. Airoldi1,2.

    E-print Network

    Wolfe, Patrick J.

    Predicting Cellular Growth from Gene Expression Signatures Edoardo M. Airoldi1,2. , Curtis Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any

  6. Heteroconium chaetospira Induces Resistance to Clubroot via Upregulation of Host Genes Involved in Jasmonic Acid, Ethylene, and Auxin Biosynthesis

    PubMed Central

    Lahlali, Rachid; McGregor, Linda; Song, Tao; Gossen, Bruce D.; Narisawa, Kazuhiko; Peng, Gary

    2014-01-01

    An endophytic fungus, Heteroconium chaetospira isolate BC2HB1 (Hc), suppressed clubroot (Plasmodiophora brassicae -Pb) on canola in growth-cabinet trials. Confocal microscopy demonstrated that Hc penetrated canola roots and colonized cortical tissues. Based on qPCR analysis, the amount of Hc DNA found in canola roots at 14 days after treatment was negatively correlated (r?=?0.92, P<0.001) with the severity of clubroot at 5 weeks after treatment at a low (2×105 spores pot?1) but not high (2×105 spores pot?1) dose of pathogen inoculum. Transcript levels of nine B. napus (Bn) genes in roots treated with Hc plus Pb, Pb alone and a nontreated control were analyzed using qPCR supplemented with biochemical analysis for the activity of phenylalanine ammonia lyases (PAL). These genes encode enzymes involved in several biosynthetic pathways related potentially to plant defence. Hc plus Pb increased the activity of PAL but not that of the other two genes (BnCCR and BnOPCL) involved also in phenylpropanoid biosynthesis, relative to Pb inoculation alone. In contrast, expression of several genes involved in the jasmonic acid (BnOPR2), ethylene (BnACO), auxin (BnAAO1), and PR-2 protein (BnPR-2) biosynthesis were upregulated by 63, 48, 3, and 3 fold, respectively, by Hc plus Pb over Pb alone. This indicates that these genes may be involved in inducing resistance in canola by Hc against clubroot. The upregulation of BnAAO1 appears to be related to both pathogenesis of clubroot and induced defence mechanisms in canola roots. This is the first report on regulation of specific host genes involved in induced plant resistance by a non-mycorrhizal endophyte. PMID:24714177

  7. Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis.

    PubMed

    Lahlali, Rachid; McGregor, Linda; Song, Tao; Gossen, Bruce D; Narisawa, Kazuhiko; Peng, Gary

    2014-01-01

    An endophytic fungus, Heteroconium chaetospira isolate BC2HB1 (Hc), suppressed clubroot (Plasmodiophora brassicae -Pb) on canola in growth-cabinet trials. Confocal microscopy demonstrated that Hc penetrated canola roots and colonized cortical tissues. Based on qPCR analysis, the amount of Hc DNA found in canola roots at 14 days after treatment was negatively correlated (r?=?0.92, P<0.001) with the severity of clubroot at 5 weeks after treatment at a low (2×10(5) spores pot(-1)) but not high (2×10(5) spores pot(-1)) dose of pathogen inoculum. Transcript levels of nine B. napus (Bn) genes in roots treated with Hc plus Pb, Pb alone and a nontreated control were analyzed using qPCR supplemented with biochemical analysis for the activity of phenylalanine ammonia lyases (PAL). These genes encode enzymes involved in several biosynthetic pathways related potentially to plant defence. Hc plus Pb increased the activity of PAL but not that of the other two genes (BnCCR and BnOPCL) involved also in phenylpropanoid biosynthesis, relative to Pb inoculation alone. In contrast, expression of several genes involved in the jasmonic acid (BnOPR2), ethylene (BnACO), auxin (BnAAO1), and PR-2 protein (BnPR-2) biosynthesis were upregulated by 63, 48, 3, and 3 fold, respectively, by Hc plus Pb over Pb alone. This indicates that these genes may be involved in inducing resistance in canola by Hc against clubroot. The upregulation of BnAAO1 appears to be related to both pathogenesis of clubroot and induced defence mechanisms in canola roots. This is the first report on regulation of specific host genes involved in induced plant resistance by a non-mycorrhizal endophyte. PMID:24714177

  8. Gamma tocotrienol, a potent radioprotector, preferentially upregulates expression of anti-apoptotic genes to promote intestinal cell survival.

    PubMed

    Suman, Shubhankar; Datta, Kamal; Chakraborty, Kushal; Kulkarni, Shilpa S; Doiron, Kathryn; Fornace, Albert J; Sree Kumar, K; Hauer-Jensen, Martin; Ghosh, Sanchita P

    2013-10-01

    Gamma tocotrienol (GT3) has been reported as a potent ameliorator of radiation-induced gastrointestinal (GI) toxicity when administered prophylactically. This study aimed to evaluate the role of GT3 mediated pro- and anti-apoptotic gene regulation in protecting mice from radiation-induced GI damage. Male 10- to 12-weeks-old CD2F1 mice were administered with a single dose of 200 mg/kg of GT3 or equal volume of vehicle (5% Tween-80) 24 h before exposure to 11 Gy of whole-body ?-radiation. Mouse jejunum was surgically removed 4 and 24h after radiation exposure, and was used for PCR array, histology, immunohistochemistry, and immunoblot analysis. Results were compared among vehicle pre-treated no radiation, vehicle pre-treated irradiated, and GT3 pre-treated irradiated groups. GT3 pretreated irradiated groups, both 4h and 24h after radiation, showed greater upregulation of anti-apoptotic gene expression than vehicle pretreated irradiated groups. TUNEL staining and intestinal crypt analysis showed protection of jejunum after GT3 pre-treatment and immunoblot results were supportive of PCR data. Our study demonstrated that GT3-mediated protection of intestinal cells from a GI-toxic dose of radiation occurred via upregulation of antiapoptotic and downregulation of pro-apoptotic factors, both at the transcript as well as at the protein levels. PMID:23941772

  9. Trypanosoma cruzi: cloning and characterization of two genes whose expression is up-regulated in metacyclic trypomastigotes.

    PubMed

    Yamada-Ogatta, Sueli Fumie; Motta, Maria Cristina; Toma, Helena Keiko; Monteiro-Goes, Viviane; Avila, Andrea Rodrigues; Muniz, Bruno Dallagiovana; Nakamura, Celso; Fragoso, Stenio Perdigão; Goldenberg, Samuel; Krieger, Marco Aurelio

    2004-04-01

    The differentiation of epimastigotes into metacyclic trypomastigotes (metacyclogenesis) involves the transformation of a replicative non-infective form of Trypanosoma cruzi into a non-replicative infective stage. The study of genes with stage-specific expression may provide insight into the mechanisms involved in the regulation of gene expression in this parasite. We cloned and characterized two genes whose expression is up-regulated in metacyclic trypomastigote, those encoding metacyclin-II (Met-II) and metacyclin-III (Met-III). Nucleotide sequence analysis identified no sequence similarity with sequences available from genetic databases. The deduced amino acid sequences of the genes indicated that Met-III encodes a basic polypeptide whereas Met-II encodes an acidic polypeptide. Northern and Western blot analyses showed that Met-II and Met-III were expressed by metacyclic trypomastigotes, but not by epimastigotes. Antisera directed against the recombinant Met-II and Met-III proteins recognized two polypeptides on Western blots: a 16-kDa and a 24-kDa polypeptide. Immunocytochemistry analysis using electron microscopy showed that metacyclin-II is localized mainly at the kinetoplast whereas metacyclin-III is localized at the nucleus of the parasite. Southern blot analysis, using genomic DNA and T. cruzi chromosomes separated by pulsed-field gel electrophoresis, indicated that these genes were present as single copies on different chromosomes of T. cruzi Dm28c. PMID:15177143

  10. 77 FR 63840 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee..., Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... in open session to hear updates of research programs in the Gene Transfer and Immunogenicity...

  11. A Model of Gene Expression and Regulation in an Artificial Cellular Organism

    E-print Network

    Fernandez, Thomas

    A Model of Gene Expression and Regulation in an Artificial Cellular Organism Paul J. Kennedy, Level 7, 1 York Street, Sydney NSW 2000 Australia Gene expression and regulation may be viewed as a parallel parsing algorithm--translation from a genomic language to a phenotype. We describe a model of gene

  12. Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome

    E-print Network

    MacDonald, Andrew

    -linked gene MECP2. How the loss of MeCP2 function leads to RTT is currently unknown. Mice lacking the Mecp2 heightened anxiety, that resemble RTT. The MECP2 gene encodes a methyl-CpG-binding protein that can act in Mecp2-null mice. MeCP2 is bound to the Fkbp5 and Sgk genes in brain and may function as a modulator

  13. Upregulation and CpG island hypomethylation of the TRF2 gene in human gastric cancer.

    PubMed

    Dong, Wenjie; Wang, Lifu; Chen, Xiaobing; Sun, Pinghu; Wu, Yunlin

    2010-04-01

    The telomere-binding protein TRF2 regulates both telomere protection and telomere length. The fact that TRF2 is up-regulated in some tumors indicates that TRF2 plays a role in cancer. However, the role of TRF2 in gastric cancer has not been fully understood. The aim of this study is to evaluate the expression pattern of TRF2 in gastric cancer and examine the potential mechanism of TRF2 regulation. Our study revealed that the expression of TRF2 analyzed by immunohistochemistry was significantly higher in gastric cancers compared to noncancerous tissues. Moreover, TRF2 methylation was detected in six of 30 (20%) primary gastric cancers and 18 of 30 (60%) paired normal tissues, and the downregulation of TRF2 was strongly correlated with the methylation status (P < 0.001). Our results suggest that hypomethylation might contribute to the upregulation of TRF2 in gastric cancers and this overexpression may play a role in the pathogenesis of gastric cancers. PMID:19399616

  14. Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression

    PubMed Central

    Vink, Elizabeth I.; Zheng, Yueting; Yeasmin, Rukhsana; Stamminger, Thomas; Krug, Laurie T.; Hearing, Patrick

    2015-01-01

    The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation. PMID:25984715

  15. Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression.

    PubMed

    Vink, Elizabeth I; Zheng, Yueting; Yeasmin, Rukhsana; Stamminger, Thomas; Krug, Laurie T; Hearing, Patrick

    2015-05-01

    The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation. PMID:25984715

  16. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Cellular, Tissue and...

  17. Herpes simplex virus-1 up-regulates IL-15 gene expression in monocytic cells through the activation of protein tyrosine kinase and PKC zeta/lambda signaling pathways.

    PubMed

    Ahmad, Rasheed; Ennaciri, Jamila; Cordeiro, Paulo; El Bassam, Souad; Menezes, José

    2007-03-16

    IL-15 plays a seminal role in innate immunity through enhancing the cytotoxic function as well as cytokine production by NK and T cells. We have previously shown that exposure of PBMC as well as monocytic cells to different viruses results in immediate up-regulation of IL-15 gene expression and subsequent NK cell activation as an innate immune response of those cells to these viruses. However, no signaling pathway involved in this up-regulation has been identified. Here we show for the first time that HSV-1-induced up-regulation of IL-15 gene expression is independent of viral infectivity/replication. IL-15 gene is up-regulated by HSV-1 in human monocytes, but not in CD3+ T cells. HSV-1 induces the phosphorylation of protein tyrosine kinases (PTKs) and protein kinase C (PKC) for inducing IL-15 expression in monocytic cells. Inhibitors for PTKs reduced HSV-1-induced PTK activity, DNA binding activity of NF-kB as well as IL-15 gene expression. In contrast, an inhibitor for membrane-bound tyrosine kinases had no effect on these events. Experiments using PKC inhibitors revealed that phosphorylation of PKC zeta/lambda (PKC zeta/lambda), DNA binding activity of NF-kB and HSV-1-induced up-regulation of IL-15 were all decreased. Furthermore, we found that HSV-1-induced IL-15 up-regulation was also dependent on PTKs regulation of PKC phosphorylation. Thus, we conclude that IL-15 up-regulation in HSV-1-treated monocytic cells is dependent on the activity of both PTKs and PKC zeta/lambda. PMID:17239392

  18. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression

    PubMed Central

    Ehrlich, Melanie; Lacey, Michelle

    2013-01-01

    Differentiation-related DNA methylation is receiving increasing attention, partly owing to new, whole-genome analyses. These revealed that cell type-specific differential methylation in gene bodies is more frequent than in promoters. We review new insights into the functionality of DNA methylation during differentiation, with emphasis on the methylomes of myoblasts, myotubes and skeletal muscle versus non-muscle samples. Biostatistical analyses of data from reduced representation bisulfite sequencing are discussed. Lastly, a model is presented for how promoter and intragenic DNA hypermethylation affect gene expression, including increasing the efficiency of polycomb silencing at some promoters, downmodulating other promoters rather than silencing them, counteracting enhancers with heterologous specificity, altering chromatin conformation by inhibiting the binding of CTCF, modulating mRNA transcript levels by inhibiting overlapping promoters of noncoding RNA genes or by regulating the use of alternative mRNA promoters, modulating transcription termination, regulating alternative splicing and acting as barriers to the spread of activating chromatin. PMID:24059801

  19. VCAM-1 is a TGF-?1 inducible gene upregulated in idiopathic pulmonary fibrosis.

    PubMed

    Agassandian, Marianna; Tedrow, John R; Sembrat, John; Kass, Daniel J; Zhang, Yingze; Goncharova, Elena A; Kaminski, Naftali; Mallampalli, Rama K; Vuga, Louis J

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lethal interstitial lung disease of unknown etiology. We previously reported that high plasma levels of vascular cell adhesion molecule 1 (VCAM-1) predict mortality in IPF subjects. Here we investigated the cellular origin and potential role of VCAM-1 in regulating primary lung fibroblast behavior. VCAM-1 mRNA was significantly increased in lungs of subjects with IPF compared to lungs from control subjects (p=0.001), and it negatively correlated with two markers of lung function, forced vital capacity (FVC) and pulmonary diffusion capacity for carbon monoxide (DLCO). VCAM-1 protein levels were highly expressed in IPF subjects where it was detected in fibrotic foci and blood vessels of IPF lung. Treatment of human lung fibroblasts with TGF-?1 significantly increased steady-state VCAM1 mRNA and protein levels without affecting VCAM1 mRNA stability. Further, cellular depletion of VCAM-1 inhibited fibroblast cell proliferation and reduced G2/M and S phases of the cell cycle suggestive of cell cycle arrest. These effects on cell cycle progression triggered by VCAM1 depletion were associated with reductions in levels of phosphorylated extracellular regulated kinase 1/2 and cyclin D1. Thus, these observations suggest that VCAM-1 is a TGF-?1 responsive mediator that partakes in fibroblast proliferation in subjects with IPF. PMID:26386411

  20. Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression

    SciTech Connect

    Olszewski, Pawel K.; Fredriksson, Robert; Eriksson, Jenny D.; Mitra, Anaya; Radomska, Katarzyna J.; Gosnell, Blake A.; Solvang, Maria N.; Levine, Allen S.; Department of Food Science and Nutrition, Saint Paul, MN 55108 ; Schioeth, Helgi B.

    2011-05-13

    Highlights: {yields} The majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto. {yields} The level of colocalization is similar in the male and female brain. {yields} Fto overexpression in hypothalamic neurons increases oxytocin mRNA levels by 50%. {yields} Oxytocin does not affect Fto expression through negative feedback mechanisms. -- Abstract: Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.

  1. Prion Infection of Mouse Brain Reveals Multiple New Upregulated Genes Involved in Neuroinflammation or Signal Transduction

    PubMed Central

    Striebel, James F.; Race, Brent; Phillips, Katie; Chesebro, Bruce

    2014-01-01

    ABSTRACT Gliosis is often a preclinical pathological finding in neurodegenerative diseases, including prion diseases, but the mechanisms facilitating gliosis and neuronal damage in these diseases are not understood. To expand our knowledge of the neuroinflammatory response in prion diseases, we assessed the expression of key genes and proteins involved in the inflammatory response and signal transduction in mouse brain at various times after scrapie infection. In brains of scrapie-infected mice at pre- and postclinical stages, we identified 15 previously unreported differentially expressed genes related to inflammation or activation of the STAT signal transduction pathway. Levels for the majority of differentially expressed genes increased with time postinfection. In quantitative immunoblotting experiments of STAT proteins, STAT1?, phosphorylated-STAT1? (pSTAT1?), and pSTAT3 were increased between 94 and 131 days postinfection (p.i.) in brains of mice infected with strain 22L. Furthermore, a select group of STAT-associated genes was increased preclinically during scrapie infection, suggesting early activation of the STAT signal transduction pathway. Comparison of inflammatory markers between mice infected with scrapie strains 22L and RML indicated that the inflammatory responses and gene expression profiles in the brains were strikingly similar, even though these scrapie strains infect different brain regions. The endogenous interleukin-1 receptor antagonist (IL-1Ra), an inflammatory marker, was newly identified as increasing preclinically in our model and therefore might influence scrapie pathogenesis in vivo. However, in IL-1Ra-deficient or overexpressor transgenic mice inoculated with scrapie, neither loss nor overexpression of IL-1Ra demonstrated any observable effect on gliosis, protease-resistant prion protein (PrPres) formation, disease tempo, pathology, or expression of the inflammatory genes analyzed. IMPORTANCE Prion infection leads to PrPres deposition, gliosis, and neuroinflammation in the central nervous system before signs of clinical illness. Using a scrapie mouse model of prion disease to assess various time points postinoculation, we identified 15 unreported genes that were increased in the brains of scrapie-infected mice and were associated with inflammation and/or JAK-STAT activation. Comparison of mice infected with two scrapie strains (22L and RML), which have dissimilar neuropathologies, indicated that the inflammatory responses and gene expression profiles in the brains were similar. Genes that increased prior to clinical signs might be involved in controlling scrapie infection or in facilitating damage to host tissues. We tested the possible role of the endogenous IL-1Ra, which was increased at 70 days p.i. In scrapie-infected mice deficient in or overexpressing IL-1Ra, there was no observable effect on gliosis, PrPres formation, disease tempo, pathology, or expression of inflammatory genes analyzed. PMID:25505076

  2. Epigenomics of Neural Cells: REST-Induced Down- and Upregulation of Gene Expression in a Two-Clone PC12 Cell Model

    PubMed Central

    Garcia-Manteiga, Jose M.; Bonfiglio, Silvia; Malosio, Maria Luisa; Lazarevic, Dejan; Stupka, Elia; Cittaro, Davide; Meldolesi, Jacopo

    2015-01-01

    Cell epigenomics depends on the marks released by transcription factors operating via the assembly of complexes that induce focal changes of DNA and histone structure. Among these factors is REST, a repressor that, via its strong decrease, governs both neuronal and neural cell differentiation and specificity. REST operation on thousands of possible genes can occur directly or via indirect mechanisms including repression of other factors. In previous studies of gene down- and upregulation, processes had been only partially investigated in neural cells. PC12 are well-known neural cells sharing properties with neurons. In the widely used PC12 populations, low-REST cells coexist with few, spontaneous high-REST PC12 cells. High- and low-REST PC12 clones were employed to investigate the role and the mechanisms of the repressor action. Among 15,500 expressed genes we identified 1,770 target and nontarget, REST-dependent genes. Functionally, these genes were found to operate in many pathways, from synaptic function to extracellular matrix. Mechanistically, downregulated genes were predominantly repressed directly by REST; upregulated genes were mostly governed indirectly. Among other factors, Polycomb complexes cooperated with REST for downregulation, and Smad3 and Myod1 participated in upregulation. In conclusion, we have highlighted that PC12 clones are a useful model to investigate REST, opening opportunities to development of epigenomic investigation. PMID:26413508

  3. Integrated Cellular and Gene Interaction Model for Cell Migration in Embryonic Development

    E-print Network

    Song, Joe

    Integrated Cellular and Gene Interaction Model for Cell Migration in Embryonic Development Hien of biological phenomena, including animal coats [12], human brain development [1], and gene regulatory, cells have their own operations, including mitosis, migration, communication with other cells, and death

  4. GENES FOR TUMOR MARKERS ARE CLUSTERED WITH CELLULAR PROTO-ONCOGENES ON HUMAN CHROMOSOMES

    EPA Science Inventory

    The relative mapping positions of genes for polypeptides expressed abnormally in tumors (tumor markers) and cellular proto-oncogenes were analyzed and a remarkable degree of co-mapping of tumor marker genes with oncogenes in the human karyotype were found. It is proposed that abe...

  5. Zinc-induced upregulation of metallothionein (MT)-2A is predicted by gene expression of zinc transporters in healthy adults.

    PubMed

    Chu, Anna; Foster, Meika; Ward, Sarah; Zaman, Kamrul; Hancock, Dale; Petocz, Peter; Samman, Samir

    2015-11-01

    The usefulness of zinc transporter and metallothionein (MT) gene expressions to detect changes in zinc intake remains unclear. This pilot study aimed to determine the effects of zinc supplementation on zinc transporter and MT gene expressions in humans. Healthy adults (n = 39) were randomised to zinc treatment (ZT), receiving 22 mg Zn/day (n = 19), or no treatment (NT) (n = 20). Blood samples were collected on Days 0, 2, 7, 14, and 21. Plasma zinc and serum C-reactive protein concentrations were analysed. Gene expression of zinc transporters and MT in peripheral blood mononuclear cells was analysed using real-time PCR. Using repeated-measures ANOVA, MT-2A gene expression and fold change were found to be higher in the ZT group (P = 0.025 and P = 0.016, respectively) compared to the NT group, specifically at Day 2 (40 ± 18 % increase from baseline, P = 0.011), despite no significant increase in plasma zinc concentration. In a multiple regression model exploring the changes in gene expressions between Days 0 and 21, the change in MT-2A gene expression was correlated with changes in all zinc transporter expressions (r (2) = 0.54, P = 0.029); the change in ZIP1 expression emerged as a univariate predictor (P = 0.003). Dietary zinc intake was predictive of zinc transporter and MT expressions (P = 0.030). Physical activity level was positively correlated with baseline ZIP7 expression (r = 0.36, P = 0.029). The present study shows that MT-2A expression is related to changing expression of zinc transporter genes, specifically ZIP1, in response to zinc supplementation. The current report adds to our understanding of MT in the coordinated nature of cellular zinc homeostasis. PMID:26446034

  6. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds

    PubMed Central

    2014-01-01

    Background Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event—the dietary inclusion of creosote bush (Larrea tridentata)—that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). Results By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. Conclusions The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the toxins in creosote and the evolution of diet switching in woodrats. On a larger level, this work advances our understanding of the mechanisms used by mammalian herbivores to process toxic diets and illustrates the importance of the selective relationship of PSCs in shaping herbivore diversity. PMID:25123454

  7. An SCD gene from the Mollusca and its upregulation in carotenoid-enriched scallops.

    PubMed

    Li, Xue; Ning, Xianhui; Dou, Jinzhuang; Yu, Qian; Wang, Shuyue; Zhang, Lingling; Wang, Shi; Hu, Xiaoli; Bao, Zhenmin

    2015-06-10

    Carotenoids are a diverse group of red, orange, and yellow pigments that act as vitamin A precursors and antioxidants. Animals can only obtain carotenoids through their diets. Amongst the carotenoids identified in nature, over one third are of marine origin, but current research on carotenoid absorption in marine species is limited. Bivalves possess an adductor muscle, which is normally white in scallops. However, a new variety of Yesso scallop (Patinopecten yessoensis), the 'Haida golden scallop', can be distinguished by its adductor muscle's orange colour, which is caused by carotenoid accumulation. Studying the genes related to carotenoid accumulation in this scallop could benefit our understanding of the mechanisms underlying carotenoid absorption in marine organisms, and it could further improve scallop breeding for carotenoid content. Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in the production of monounsaturated fatty acids, which enhance carotenoid absorption. Here, the full-length cDNA and genomic DNA sequences of the SCD gene from the Yesso scallop (PySCD) were obtained. The PySCD gene consisted of four exons and three introns, and it contained a 990-bp open reading frame encoding 329 amino acids. It was ubiquitously expressed in adult tissues, embryos and larvae of both white Yesso scallops and 'Haida golden' scallops. Although the expression pattern of PySCD in both types of scallops was similar, significantly more PySCD transcripts were detected in the 'Haida golden' scallops than in the white scallops. Elevated PySCD expression was found in tissues including the adductor muscle, digestive gland, and gonad, as well as in veliger larvae. This study represents the first characterisation of an SCD gene from the Mollusca. Our data imply that PySCD functions in multiple biological processes, and it might be involved in carotenoid accumulation. PMID:25816753

  8. Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation.

    PubMed Central

    Majano, P L; García-Monzón, C; López-Cabrera, M; Lara-Pezzi, E; Fernández-Ruiz, E; García-Iglesias, C; Borque, M J; Moreno-Otero, R

    1998-01-01

    Increased nitric oxide (NO) production may contribute to the pathological changes featuring in some inflammatory diseases, but the role of NO in chronic viral hepatitis is still unknown. We compared the inducible NO synthase (NOS2) expression in the liver of patients with chronic viral hepatitis with that of both nonviral liver disease and histologically normal liver. NOS2 expression was assessed by immunohistochemical and in situ hybridization studies of liver biopsy sections. An intense hepatocellular NOS2 reactivity was detected in chronic viral hepatitis, whereas it was weakly or not observed in nonviral liver disease or normal liver, respectively. In addition, we determined whether the hepatitis B virus (HBV) might regulate the synthesis of this enzyme. NOS2 mRNA and protein levels as well as enzyme activity were assessed in cytokine-stimulated HBV-transfected and untransfected hepatoma cells. Transfection with either HBV genome or HBV X gene resulted in induction of NOS2 mRNA expression, and the maximal induction of this transcript and NO production was observed in cytokine-stimulated HBV-transfected cells. These results indicate that hepatotropic viral infections are able to upregulate the NOS2 gene expression in human hepatocytes, suggesting that NO may mediate important pathogenic events in the course of chronic viral hepatitis. PMID:9525976

  9. Acquisition of docetaxel resistance in breast cancer cells reveals upregulation of ABCB1 expression as a key mediator of resistance accompanied by discrete upregulation of other specific genes and pathways.

    PubMed

    Hansen, Stine Ninel; Westergaard, David; Thomsen, Mathilde Borg Houlberg; Vistesen, Mette; Do, Khoa Nguyen; Fogh, Louise; Belling, Kirstine C; Wang, Jun; Yang, Huanming; Gupta, Ramneek; Ditzel, Henrik J; Moreira, José; Brünner, Nils; Stenvang, Jan; Schrohl, Anne-Sofie

    2015-06-01

    The microtubule-targeting taxanes are important in breast cancer therapy, but no predictive biomarkers have yet been identified with sufficient scientific evidence to allow clinical routine use. The purposes of the present study were to develop a cell-culture-based discovery platform for docetaxel resistance and thereby identify key molecular mechanisms and predictive molecular characteristics to docetaxel resistance. Two docetaxel-resistant cell lines, MCF7RES and MDARES, were generated from their respective parental cell lines MCF-7 and MDA-MB-231 by stepwise selection in docetaxel dose increments over 15 months. The cell lines were characterized regarding sensitivity to docetaxel and other chemotherapeutics and subjected to transcriptome-wide mRNA microarray profiling. MCF7RES and MDARES exhibited a biphasic growth inhibition pattern at increasing docetaxel concentrations. Gene expression analysis singled out ABCB1, which encodes permeability glycoprotein (Pgp), as the top upregulated gene in both MCF7RES and MDARES. Functional validation revealed Pgp as a key resistance mediator at low docetaxel concentrations (first-phase response), whereas additional resistance mechanisms appeared to be prominent at higher docetaxel concentrations (second-phase response). Additional resistance mechanisms were indicated by gene expression profiling, including genes in the interferon-inducible protein family in MCF7RES and cancer testis antigen family in MDARES. Also, upregulated expression of various ABC transporters, ECM-associated proteins, and lysosomal proteins was identified in both resistant cell lines. Finally, MCF7RES and MDARES presented with cross-resistance to epirubicin, but only MDARES showed cross-resistance to oxaliplatin. In conclusion, Pgp was identified as a key mediator of resistance to low docetaxel concentrations with other resistance mechanisms prominent at higher docetaxel concentrations. Supporting Pgp upregulation as one major mechanism of taxane resistance and cell-line-specific alterations as another, both MCF7RES and MDARES were cross-resistant to epirubicin (Pgp substrate), but only MDARES was cross-resistant to oxaliplatin (non-Pgp substrate). PMID:25596703

  10. Co-evolutionary networks of genes and cellular processes across fungal species

    PubMed Central

    Tuller, Tamir; Kupiec, Martin; Ruppin, Eytan

    2009-01-01

    Background The introduction of measures such as evolutionary rate and propensity for gene loss have significantly advanced our knowledge of the evolutionary history and selection forces acting upon individual genes and cellular processes. Results We present two new measures, the 'relative evolutionary rate pattern' (rERP), which records the relative evolutionary rates of conserved genes across the different branches of a species' phylogenetic tree, and the 'copy number pattern' (CNP), which quantifies the rate of gene loss of less conserved genes. Together, these measures yield a high-resolution study of the co-evolution of genes in 9 fungal species, spanning 3,540 sets of orthologs. We find that the evolutionary tempo of conserved genes varies in different evolutionary periods. The co-evolution of genes' Gene Ontology categories exhibits a significant correlation with their functional distance in the Gene Ontology hierarchy, but not with their location on chromosomes, showing that cellular functions are a more important driving force in gene co-evolution than their chromosomal proximity. Two fundamental patterns of co-evolution of conserved genes, cooperative and reciprocal, are identified; only genes co-evolving cooperatively functionally back each other up. The co-evolution of conserved and less conserved genes exhibits both commonalities and differences; DNA metabolism is positively correlated with nuclear traffic, transcription processes and vacuolar biology in both analyses. Conclusions Overall, this study charts the first global network view of gene co-evolution in fungi. The future application of the approach presented here to other phylogenetic trees holds much promise in characterizing the forces that shape cellular co-evolution. PMID:19416514

  11. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell

    SciTech Connect

    Chiou, S.-H. . E-mail: shchiou@vghtpe.gov.tw; Chen, S.-J. . E-mail: sjchen@vghtpe.gov.tw; Peng, C-H.; Chang, Y.-L.; Ku, H.-H.; Hsu, W.-M.; Ho, Larry L.-T.; Lee, C.-H.

    2006-05-05

    Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 {mu}M fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1{beta}, IL-6, and TNF-{alpha} in the culture medium of LPS-treated NSCs (p < 0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression.

  12. Transcript Profile of Cellular Senescence-related Genes in Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Matthaei, Mario; Zhu, Angela Y.; Kallay, Laura; Eberhart, Charles G.; Cursiefen, Claus; Jun, Albert S.

    2014-01-01

    Fuchs endothelial corneal dystrophy (FECD) is a genetically heterogeneous disease. Hypothesizing that cellular senescence may be relevant in FECD pathogenesis, genetically undifferentiated late-onset FECD endothelial samples were analyzed to identify common changes of specific senescence-related transcripts. Total RNA was extracted from 21 FECD endothelial samples retrieved from patients undergoing lamellar keratoplasty due to clinically diagnosed end-stage FECD and from 12 endothelial samples retrieved from normal autopsy eyes. Taqman low density array (TLDA) cards were used to analyze differential expression of 89 cellular senescence-related transcripts. Result validation was performed using individual real-time PCR assays. TLDA-analysis demonstrated differential expression of 31 transcripts (fold-change >1.5; p<0.05). Thereof, 27 showed significant up-regulation and 4 significant down-regulation. Markedly elevated mRNA-levels of the constitutively active and reactive oxygen species-generating enzyme NOX4 were found in all evaluable FECD samples. In addition, increased expression of CDKN2A and its transcriptional activators ETS1 and ARHGAP18 (SENEX) along with decreased expression of CDKN2A inhibitor ID1 were detected in FECD samples. Consistent over-expression of NOX4 in FECD endothelial samples suggests a role as pathogenic factor and as a potential new treatment target in FECD. Transcriptional up-regulation of the CDKN2A-pathway provides further evidence for increased cellular senescence in FECD endothelium. PMID:25311168

  13. Trojan horse at cellular level for tumor gene therapies.

    PubMed

    Collet, Guillaume; Grillon, Catherine; Nadim, Mahdi; Kieda, Claudine

    2013-08-10

    Among innovative strategies developed for cancer treatments, gene therapies stand of great interest despite their well-known limitations in targeting, delivery, toxicity or stability. The success of any given gene-therapy is highly dependent on the carrier efficiency. New approaches are often revisiting the mythic trojan horse concept to carry therapeutic nucleic acid, i.e. DNAs, RNAs or small interfering RNAs, to pathologic tumor site. Recent investigations are focusing on engineering carrying modalities to overtake the above limitations bringing new promise to cancer patients. This review describes recent advances and perspectives for gene therapies devoted to tumor treatment, taking advantage of available knowledge in biotechnology and medicine. PMID:23542073

  14. Control of late cornified envelope genes relevant to psoriasis risk: upregulation by 1,25-dihydroxyvitamin D3 and plant-derived delphinidin.

    PubMed

    Hoss, Elika; Austin, Heather R; Batie, Shane F; Jurutka, Peter W; Haussler, Mark R; Whitfield, G Kerr

    2013-12-01

    Psoriasis is a chronic inflammatory skin disease featuring abnormal keratinocyte proliferation and differentiation. A genetic risk factor for psoriasis (PSORS4) is a deletion of LCE3B and LCE3C genes encoding structural proteins in terminally differentiated keratinocytes. Because analogs of 1,25-dihydroxyvitamin D3 (1,25D) are used in psoriasis treatment, we hypothesized that 1,25D acts via the vitamin D receptor (VDR) to upregulate expression of LCE 3A/3D/3E genes, potentially mitigating the absence of LCE3B/LCE3C gene products. Results in a human keratinocyte line, HaCaT, suggested that 1,25D, low affinity VDR ligands docosahexaenoic acid and curcumin, along with a novel candidate ligand, delphinidin, induce LCE transcripts as monitored by qPCR. Further experiments in primary human keratinocytes preincubated with 1.2 mM calcium indicated that 1,25D and 10 ?M delphinidin upregulate all five LCE3 genes (LCE3A-E). Competition binding assays employing radiolabeled 1,25D revealed that delphinidin binds VDR weakly (IC50 ? 1 mM). However, 20 ?M delphinidin was capable of upregulating a luciferase reporter gene in a VDRE-dependent manner in a transfected keratinocyte cell line (KERTr). These results are consistent with a scenario in which delphinidin is metabolized to an active compound that then stimulates LCE3 transcription in a VDR/VDRE-dependent manner. We propose that upregulation of LCE genes may be part of the therapeutic effect of 1,25D to ameliorate psoriasis by providing sufficient LCE proteins, especially in individuals missing the LCE3B and 3C genes. Results with delphinidin further suggest that this compound or its metabolite(s) might offer an alternative to 1,25D in psoriasis therapy. PMID:23839497

  15. Myocardial Gene Transfer: Routes and Devices for Regulation of Transgene Expression by Modulation of Cellular Permeability

    PubMed Central

    Katz, Michael G.; Bridges, Charles R.

    2013-01-01

    Abstract Heart diseases are major causes of morbidity and mortality in Western society. Gene therapy approaches are becoming promising therapeutic modalities to improve underlying molecular processes affecting failing cardiomyocytes. Numerous cardiac clinical gene therapy trials have yet to demonstrate strong positive results and advantages over current pharmacotherapy. The success of gene therapy depends largely on the creation of a reliable and efficient delivery method. The establishment of such a system is determined by its ability to overcome the existing biological barriers, including cellular uptake and intracellular trafficking as well as modulation of cellular permeability. In this article, we describe a variety of physical and mechanical methods, based on the transient disruption of the cell membrane, which are applied in nonviral gene transfer. In addition, we focus on the use of different physiological techniques and devices and pharmacological agents to enhance endothelial permeability. Development of these methods will undoubtedly help solve major problems facing gene therapy. PMID:23427834

  16. High-mobility group box-1 gene, a potent proinflammatory mediators, is upregulated in more degenerated human discs in vivo and its receptor upregulated by TNF-? exposure in vitro.

    PubMed

    Gruber, Helen E; Hoelscher, Gretchen L; Bethea, Synthia; Ingram, Jane; Cox, Michael; Hanley, Edward N

    2015-06-01

    Mechanisms which control and enhance proinflammatory cytokine expression during human disc degeneration are still poorly understood. The high-mobility group box-1 gene (HMGB1) produces a protein which can itself act as a cytokine, or can function as a potent proinflammatory mediator. Little is known about expression of HMGB1 in the human disc. Since proinflammatory cytokines increase significantly during human disc degeneration, in this work we hypothesized that HMGB1 may show upregulation with advancing stages of degeneration, and upregulation in cells exposed to TNF-?. Immunohistochemistry was performed to confirm the presence of HMGB1 in the human disc, and human annulus cells were cultured and challenged with 10(3)pM TNF-? for 14days in 3D culture. Cells with positive HMGB1 immunolocalization were abundant in the outer annulus. Molecular analysis of cultured cells showed an 8-fold significant increase in HMGB1 expression in more degenerated Thompson grade V discs compared to healthier grade I/II discs (p=0.033). Human disc tissue was assessed in molecular studies. Herniated specimens showed a 6.3-fold significantly greater expression level than that seen in control specimens (p=0.001). In culture experiments, expression of the receptor to HMGB1, toll-like receptor 2, showed a 24-fold upregulation in vitro in cells exposed to TNF-? vs. controls (p=0.0003). PMID:25746662

  17. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling.

    PubMed

    Fridman, A L; Tainsky, M A

    2008-10-01

    Bypassing cellular senescence and becoming immortal is a prerequisite step in the tumorigenic transformation of a cell. It has long been known that loss of a key tumor suppressor gene, such as p53, is necessary, but not sufficient, for spontaneous cellular immortalization. Therefore, there must be additional mutations and/or epigenetic alterations required for immortalization to occur. Early work on these processes included somatic cell genetic studies to estimate the number of senescence genes, and microcell-mediated transfer of chromosomes into immortalized cells to identify putative senescence-inducing genetic loci. These principal studies laid the foundation for the field of senescence/immortalization, but were labor intensive and the results were somewhat limited. The advent of gene expression profiling and bioinformatics analysis greatly facilitated the identification of genes and pathways that regulate cellular senescence/immortalization. In this review, we present the findings of several gene expression profiling studies and supporting functional data, where available. We identified universal genes regulating senescence/immortalization and found that the key regulator genes represented six pathways: the cell cycle pRB/p53, cytoskeletal, interferon-related, insulin growth factor-related, MAP kinase and oxidative stress pathway. The identification of the genes and pathways regulating senescence/immortalization could provide novel molecular targets for the treatment and/or prevention of cancer. PMID:18711403

  18. Buyang Huanwu decoction up-regulates Notch1 gene expression in injured spinal cord

    PubMed Central

    Guo, Zhan-peng; Huang, Mi-na; Liu, An-qi; Yuan, Ya-jiang; Zhao, Jian-bo; Mei, Xi-fan

    2015-01-01

    Expression of genes in the Notch signaling pathway is altered in the injured spinal cord, which indicates that Notch participates in repair after spinal cord injury. Buyang Huanwu decoction, a traditional Chinese herbal preparation, can promote the growth of nerve cells and nerve fibers; however, it is unclear whether Buyang Huanwu decoction affects the Notch signaling pathway in injured spinal cord. In this study, a rat model was established by injuring the T10 spinal cord. At 2 days after injury, rats were intragastrically administered 2 mL of 0.8 g/mL Buyang Huanwu decoction daily until sacrifice. Real-time reverse transcription polymerase chain reaction analysis demonstrated that at 7, 14 and 28 days after injury, the expression of Notch1 was increased in the Buyang Huanwu decoction group compared with controls. These findings confirm that Buyang Huanwu decoction can promote the expression of Notch1 in rats with incomplete spinal cord injury, and may indicate a mechanism to promote the repair of spinal cord injury. PMID:26487863

  19. Thyroid Hormone Upregulates Hypothalamic kiss2 Gene in the Male Nile Tilapia, Oreochromis niloticus

    PubMed Central

    Ogawa, Satoshi; Ng, Kai We; Xue, Xiaoyu; Ramadasan, Priveena Nair; Sivalingam, Mageswary; Li, Shuisheng; Levavi-Sivan, Berta; Lin, Haoran; Liu, Xiaochun; Parhar, Ishwar S.

    2013-01-01

    Kisspeptin has recently been recognized as a critical regulator of reproductive function in vertebrates. During the sexual development, kisspeptin neurons receive sex steroids feedback to trigger gonadotropin-releasing hormone (GnRH) neurons. In teleosts, a positive correlation has been found between the thyroid status and the reproductive status. However, the role of thyroid hormone in the regulation of kisspeptin system remains unknown. We cloned and characterized a gene encoding kisspeptin (kiss2) in a cichlid fish, the Nile tilapia (Oreochromis niloticus). Expression of kiss2 mRNA in the brain was analyzed by in situ hybridization. The effect of thyroid hormone (triiodothyronine, T3) and hypothyroidism with methimazole (MMI) on kiss2 and the three GnRH types (gnrh1, gnrh2, and gnrh3) mRNA expression was analyzed by real-time PCR. Expression of thyroid hormone receptor mRNAs were analyzed in laser-captured kisspeptin and GnRH neurons by RT-PCR. The kiss2 mRNA expressing cells were seen in the nucleus of the lateral recess in the hypothalamus. Intraperitoneal administration of T3 (5??g/g body weight) to sexually mature male tilapia significantly increased kiss2 and gnrh1 mRNA levels at 24?h post injection (P?

  20. Cellular Oncology 26 (2004) 167 167 Genes, chromosomes and cancer

    E-print Network

    Duesberg, Peter

    2004-01-01

    are frequently aneuploid, the main focus of scientific research regarding the genetic ba- sis of cancer shifted to the emerging of molecular cloning and hence the identification of oncogenes and tumor suppressor genes. However of prevailing genomic or chromosomal instability. The observation that aneuploidy as an indicator of genetic

  1. Dietary fucoxanthin increases metabolic rate and upregulated mRNA expressions of the PGC-1alpha network, mitochondrial biogenesis and fusion genes in white adipose tissues of mice.

    PubMed

    Wu, Meng-Ting; Chou, Hong-Nong; Huang, Ching-jang

    2014-02-01

    The mechanism for how fucoxanthin (FX) suppressed adipose accumulation is unclear. We aim to investigate the effects of FX on metabolic rate and expressions of genes related to thermogenesis, mitochondria biogenesis and homeostasis. Using a 2 × 2 factorial design, four groups of mice were respectively fed a high sucrose (50% sucrose) or a high-fat diet (23% butter + 7% soybean oil) supplemented with or without 0.2% FX. FX significantly increased oxygen consumption and carbon dioxide production and reduced white adipose tissue (WAT) mass. The mRNA expressions of peroxisome proliferator-activated receptor (PPAR) ? coactivator-1? (PGC-1?), cell death-inducing DFFA-like effecter a (CIDEA), PPAR?, PPAR?, estrogen-related receptor ? (ERR?), ?3-adrenergic receptor (?3-AR) and deiodinase 2 (Dio2) were significantly upregulated in inguinal WAT (iWAT) and epididymal WAT (eWAT) by FX. Mitochondrial biogenic genes, nuclear respiratory factor 1 (NRF1) and NRF2, were increased in eWAT by FX. Noticeably, FX upregulated genes of mitochondrial fusion, mitofusin 1 (Mfn1), Mfn2 and optic atrophy 1 (OPA1), but not mitochondrial fission, Fission 1, in both iWAT and eWAT. In conclusion, dietary FX enhanced the metabolic rate and lowered adipose mass irrespective of the diet. These were associated with upregulated genes of the PGC-1? network and mitochondrial fusion in eWAT and iWAT. PMID:24534841

  2. Dietary Fucoxanthin Increases Metabolic Rate and Upregulated mRNA Expressions of the PGC-1alpha Network, Mitochondrial Biogenesis and Fusion Genes in White Adipose Tissues of Mice

    PubMed Central

    Wu, Meng-Ting; Chou, Hong-Nong; Huang, Ching-jang

    2014-01-01

    The mechanism for how fucoxanthin (FX) suppressed adipose accumulation is unclear. We aim to investigate the effects of FX on metabolic rate and expressions of genes related to thermogenesis, mitochondria biogenesis and homeostasis. Using a 2 × 2 factorial design, four groups of mice were respectively fed a high sucrose (50% sucrose) or a high-fat diet (23% butter + 7% soybean oil) supplemented with or without 0.2% FX. FX significantly increased oxygen consumption and carbon dioxide production and reduced white adipose tissue (WAT) mass. The mRNA expressions of peroxisome proliferator-activated receptor (PPAR) ? coactivator-1? (PGC-1?), cell death-inducing DFFA-like effecter a (CIDEA), PPAR?, PPAR?, estrogen-related receptor ? (ERR?), ?3-adrenergic receptor (?3-AR) and deiodinase 2 (Dio2) were significantly upregulated in inguinal WAT (iWAT) and epididymal WAT (eWAT) by FX. Mitochondrial biogenic genes, nuclear respiratory factor 1 (NRF1) and NRF2, were increased in eWAT by FX. Noticeably, FX upregulated genes of mitochondrial fusion, mitofusin 1 (Mfn1), Mfn2 and optic atrophy 1 (OPA1), but not mitochondrial fission, Fission 1, in both iWAT and eWAT. In conclusion, dietary FX enhanced the metabolic rate and lowered adipose mass irrespective of the diet. These were associated with upregulated genes of the PGC-1? network and mitochondrial fusion in eWAT and iWAT. PMID:24534841

  3. Human p38{delta} MAP kinase mediates UV irradiation induced up-regulation of the gene expression of chemokine BRAK/CXCL14

    SciTech Connect

    Ozawa, Shigeyuki; Department of Biochemistry and Molecular Biology; Department of Oral and Maxillofacial Surgery, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka 238-8580 ; Ito, Shin; Kato, Yasumasa; Department of Biochemistry and Molecular Biology ; Kubota, Eiro; Department of Oral and Maxillofacial Surgery, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka 238-8580 ; Hata, Ryu-Ichiro; Department of Biochemistry and Molecular Biology

    2010-06-11

    The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38{alpha}, {beta}, {gamma} and {delta}. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38{alpha} and {beta}, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38{gamma} and/or {delta} was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38{delta} attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38{delta} with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38{delta} isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38{alpha} and/or {beta} isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.

  4. Epigenetic regulations in the IFN? signalling pathway: IFN?-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.

    PubMed

    Vlková, Veronika; Št?pánek, Ivan; Hrušková, Veronika; Šenigl, Filip; Mayerová, Veronika; Šrámek, Martin; Šímová, Jana; Bieblová, Jana; Indrová, Marie; Hejhal, Tomáš; Dérian, Nicolas; Klatzmann, David; Six, Adrien; Reiniš, Milan

    2014-08-30

    Downregulation of MHC class I expression on tumour cells, a common mechanism by which tumour cells can escape from specific immune responses, can be associated with coordinated silencing of antigen-presenting machinery genes. The expression of these genes can be restored by IFN?. In this study we documented association of DNA demethylation of selected antigen-presenting machinery genes located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN? treatment with MHC class I upregulation on tumour cells in several MHC class I-deficient murine tumour cell lines (TC-1/A9, TRAMP-C2, MK16 and MC15). Our data also documented higher methylation levels in these genes in TC-1/A9 cells, as compared to their parental MHC class I-positive TC-1 cells. IFN?-mediated DNA demethylation was relatively fast in comparison with demethylation induced by DNA methyltransferase inhibitor 5-azacytidine, and associated with increased histone H3 acetylation in the promoter regions of APM genes. Comparative transcriptome analysis in distinct MHC class I-deficient cell lines upon their treatment with either IFN? or epigenetic agents revealed that a set of genes, significantly enriched for the antigen presentation pathway, was regulated in the same manner. Our data demonstrate that IFN? acts as an epigenetic modifier when upregulating the expression of antigen-presenting machinery genes. PMID:25071011

  5. Epigenetic regulations in the IFN? signalling pathway: IFN?-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes

    PubMed Central

    Vlková, Veronika; Št?pánek, Ivan; Hrušková, Veronika; Šenigl, Filip; Mayerová, Veronika; Šrámek, Martin; Šímová, Jana; Bieblová, Jana; Indrová, Marie; Hejhal, Tomáš; Dérian, Nicolas; Klatzmann, David; Six, Adrien; Reiniš, Milan

    2014-01-01

    Downregulation of MHC class I expression on tumour cells, a common mechanism by which tumour cells can escape from specific immune responses, can be associated with coordinated silencing of antigen-presenting machinery genes. The expression of these genes can be restored by IFN?. In this study we documented association of DNA demethylation of selected antigen-presenting machinery genes located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFN? treatment with MHC class I upregulation on tumour cells in several MHC class I-deficient murine tumour cell lines (TC-1/A9, TRAMP-C2, MK16 and MC15). Our data also documented higher methylation levels in these genes in TC-1/A9 cells, as compared to their parental MHC class I-positive TC-1 cells. IFN?-mediated DNA demethylation was relatively fast in comparison with demethylation induced by DNA methyltransferase inhibitor 5-azacytidine, and associated with increased histone H3 acetylation in the promoter regions of APM genes. Comparative transcriptome analysis in distinct MHC class I-deficient cell lines upon their treatment with either IFN? or epigenetic agents revealed that a set of genes, significantly enriched for the antigen presentation pathway, was regulated in the same manner. Our data demonstrate that IFN? acts as an epigenetic modifier when upregulating the expression of antigen-presenting machinery genes. PMID:25071011

  6. CEP290 gene transfer rescues Leber Congenital Amaurosis cellular phenotype

    PubMed Central

    Burnight, E.R.; Wiley, L.A.; Drack, A.V.; Braun, T.A.; Anfinson, K.R.; Kaalberg, E.E.; Halder, J.A.; Affatigato, L.M.; Mullins, R.F.; Stone, E.M.; Tucker, B.A.

    2014-01-01

    Mutations in CEP290 are the most common cause of Leber congenital amaurosis (LCA), a severe inherited retinal degenerative disease for which there is currently no cure. Autosomal recessive CEP290-associated LCA is a good candidate for gene-replacement therapy, and cells derived from affected individuals give researchers the ability to study human disease and therapeutic gene correction in vitro. Here we report the development of lentiviral vectors carrying full-length CEP290 for the purpose of correcting the CEP290 disease-specific phenotype in human cells. A lentiviral vector containing CMV-driven human full-length CEP290 was constructed. Following transduction of patient-specific, iPSC-derived, photoreceptor precursor cells, rt-PCR analysis and western blotting revealed vector-derived expression. Because CEP290 is important in ciliogenesis, the ability of fibroblast cultures from CEP290-associated LCA patients to form cilia was investigated. In cultures derived from these patients, fewer cells formed cilia compared to unaffected controls. Cilia that were formed were shorter in patient derived cells than in cells from unaffected individuals. Importantly, lentiviral delivery of CEP290 rescued the ciliogenesis defect. The successful construction and viral transfer of full-length CEP290 brings us closer to the goal of providing gene- and cell- based therapies for patients affected with this common form of LCA. PMID:24807808

  7. Manganese Upregulates Cellular Prion Protein and Contributes to Altered Stabilization and Proteolysis: Relevance to Role of Metals in Pathogenesis of Prion Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion diseases are fatal neurodegenerative diseases resulting from misfolding of normal cellular prion (PrP**C) into an abnormal form of scrapie prion (PrP**Sc). The cellular mechanisms underlying the misfolding of PrP**C are not well understood. Since cellular prion proteins harbor divalent metal b...

  8. Computational evaluation of cellular metabolic costs successfully predicts genes whose expression is deleterious

    PubMed Central

    Wagner, Allon; Zarecki, Raphy; Reshef, Leah; Gochev, Camelia; Sorek, Rotem; Gophna, Uri; Ruppin, Eytan

    2013-01-01

    Gene suppression and overexpression are both fundamental tools in linking genotype to phenotype in model organisms. Computational methods have proven invaluable in studying and predicting the deleterious effects of gene deletions, and yet parallel computational methods for overexpression are still lacking. Here, we present Expression-Dependent Gene Effects (EDGE), an in silico method that can predict the deleterious effects resulting from overexpression of either native or foreign metabolic genes. We first test and validate EDGE’s predictive power in bacteria through a combination of small-scale growth experiments that we performed and analysis of extant large-scale datasets. Second, a broad cross-species analysis, ranging from microorganisms to multiple plant and human tissues, shows that genes that EDGE predicts to be deleterious when overexpressed are indeed typically down-regulated. This reflects a universal selection force keeping the expression of potentially deleterious genes in check. Third, EDGE-based analysis shows that cancer genetic reprogramming specifically suppresses genes whose overexpression impedes proliferation. The magnitude of this suppression is large enough to enable an almost perfect distinction between normal and cancerous tissues based solely on EDGE results. We expect EDGE to advance our understanding of human pathologies associated with up-regulation of particular transcripts and to facilitate the utilization of gene overexpression in metabolic engineering. PMID:24198337

  9. An efficient method for in vitro gene delivery via regulation of cellular endocytosis pathway

    PubMed Central

    Luo, Jing; Li, Caixia; Chen, Jianlin; Wang, Gang; Gao, Rong; Gu, Zhongwei

    2015-01-01

    Transfection efficiency was the primary goal for in vitro gene delivery mediated by nonviral gene carriers. Here, we report a modified gene transfection method that could greatly increase the efficiency of, and accelerate the process mediated by, 25 kDa branched polyethyleneimine and Lipofectamine™ 2000 in a broad range of cell strains, including tumor, normal, primary, and embryonic stem cells. In this method, the combination of transfection procedure with optimized complexation volume had a determinant effect on gene delivery result. The superiorities of the method were found to be related to the change of cellular endocytosis pathway and decrease of particle size. The efficient and simple method established in this study can be widely used for in vitro gene delivery into cultured cells. We think it may also be applicable for many more nonviral gene delivery materials than polyethyleneimine and liposome. PMID:25767387

  10. IL-4 Up-Regulates MiR-21 and the MiRNAs Hosted in the CLCN5 Gene in Chronic Lymphocytic Leukemia

    PubMed Central

    Sebastián-Ruiz, Silvia; García-Serna, Azahara-María; Gómez-Espuch, Joaquín; Moraleda, José-María; Minguela, Alfredo; García-Alonso, Ana-María; Parrado, Antonio

    2015-01-01

    Interleukin 4 (IL-4) induces B-cell differentiation and survival of chronic lymphocytic leukemia (CLL) cells. MicroRNAs (miRNAs) regulate mRNA and protein expression, and several miRNAs, deregulated in CLL, might play roles as oncogenes or tumor suppressors. We have studied the miRNA profile of CLL, and its response to IL-4, by oligonucleotide microarrays, resulting in the detection of a set of 129 mature miRNAs consistently expressed in CLL, which included 41 differentially expressed compared to normal B cells (NBC), and 6 significantly underexpressed in ZAP-70 positive patients. IL-4 stimulation brought about up-regulation of the 5p and 3p mature variants of the miR-21 gene, which maps immediately downstream to the VMP1 gene, and of the mature forms generated from the miR-362 (3p and 5p), miR-500a (3p), miR-502 (3p), and miR-532 (3p and 5p) genes, which map within the third intron of the CLCN5 gene. Both genes are in turn regulated by IL-4, suggesting that these miRNAs were regulated by IL-4 as passengers from their carrier genes. Their levels of up-regulation by IL-4 significantly correlated with cytoprotection. MiR-21 has been reported to be leukemogenic, associated to bad prognosis in CLL, and the miRNA more frequently overexpressed in human cancer. Up-regulation by IL-4 of miR-21 and the miRNAs hosted in the CLCN5 locus may contribute to evasion of apoptosis of CLL cells. These findings indicate that the IL-4 pathway and the miRNAs induced by IL-4 are promising targets for the development of novel therapies in CLL. PMID:25909590

  11. 125I seed irradiation induces up-regulation of the genes associated with apoptosis and cell cycle arrest and inhibits growth of gastric cancer xenografts

    PubMed Central

    2012-01-01

    Background Iodine 125 (125I) seed irradiation can be used as an important supplementary treatment for unresectable advanced gastric cancer. Here, we aim to comprehensively elucidate the biological effects induced by 125I seed irradiation in human gastric cancer xenograft model by using global expression and DNA methylation analyses. Methods The 48 mice bearing NCI-N87 gastric cancer xenografts were randomly separated into 2 groups: sham seeds (O mCi) were implanted into the control group (n?=?24); 125?l seeds (0.9?mCi) were implanted into the treatment group (n?=?24). The mitotic index and apoptotic index were evaluated by quantitative morphometric analysis of the expression of proliferating cell nuclear antigen (PCNA) and in situ terminal transferase-mediated fluorescein deoxy- UTP nick end labeling (TUNEL), respectively. Global gene expression changes induced by 125I seed irradiation were analyzed by using Nimblegen Human gene expression array. DNA methylation profile in the tumors from control group was investigated with methylated DNA immunoprecipitation (MeDIP) and Nimblegen CpG promoter microarrays. The changes in the methylation status of selected genes were further investigated by using MeDIP-PCR. Results 125I seed irradiation suppresses the growth of gastric cancer xenografts in nude mice. PCNA staining and tissue TUNEL assays showed that both inhibition of cell proliferation and induction of apoptosis contribute to the 125I-induced tumor suppression in nude mouse model. Gene expression profiles revealed that the expression levels of several hundred genes, many of which are associated with apoptosis or cell cycle arrest, including BMF, MAPK8, BNIP3, RFWD3, CDKN2B and WNT9A, were upregulated following 125I seed irradiation. Furthermore, the up-regulation of some of these genes, such as BNIP3 and WNT9A, was found to be associated with irradiation-induced DNA demethylation. Conclusions This study revealed that 125I seed irradiation could significantly induce the up-regulation of apoptosis- and cell cycle-related genes in human gastric cancer xenografts. And some of the up-regulation might be attributed to 125I-irradiation induced demethylation in gene promoter regions. Collectively, these findings provided evidence for the efficacy of this modality for the treatment of gastric cancer. PMID:22827957

  12. Genes Upregulated in Winter Wheat (Triticum aestivum L.) during Mild Freezing and Subsequent Thawing Suggest Sequential Activation of Multiple Response Mechanisms

    PubMed Central

    Skinner, Daniel Z.

    2015-01-01

    Exposing fully cold-acclimated wheat plants to a mild freeze-thaw cycle of ?3°C for 24h followed by +3°C for 24 or 48h results in dramatically improved tolerance of subsequent exposure to sub-freezing temperatures. Gene enrichment analysis of crown tissue from plants collected before or after the ?3°C freeze or after thawing at +3°C for 24 or 48h revealed that many biological processes and molecular functions were activated during the freeze-thaw cycle in an increasing cascade of responses such that over 150 processes or functions were significantly enhanced by the end of the 48 h, post-freeze thaw. Nearly 2,000 individual genes were upregulated more than 2-fold over the 72 h course of freezing and thawing, but more than 70% of these genes were upregulated during only one of the time periods examined, suggesting a series of genes and gene functions were involved in activation of the processes that led to enhanced freezing tolerance. This series of functions appeared to include extensive cell signaling, activation of stress response mechanisms and the phenylpropanoid biosynthetic pathway, extensive modification of secondary metabolites, and physical restructuring of cell membranes. By identifying plant lines that are especially able to activate these multiple mechanisms it may be possible to develop lines with enhanced winterhardiness. PMID:26173115

  13. Upregulation of expression of the reticulocyte homology gene 4 in the Plasmodium falciparum clone Dd2 is associated with a switch in the erythrocyte invasion pathway.

    PubMed

    Gaur, Deepak; Furuya, Tetsuya; Mu, Jianbing; Jiang, Lu-bin; Su, Xin-zhuan; Miller, Louis H

    2006-02-01

    The Plasmodium falciparum clone, Dd2, that requires sialic acid for invasion can switch to a sialic acid independent pathway, Dd2(NM). To elucidate the molecular basis of the switch in invasion phenotype of Dd2 to Dd2(NM), we performed expression profiling of the parasites using an oligonucleotide microarray and real-time RT-PCR. We found that four genes were upregulated in Dd2(NM) by microarray analysis, only two of which could be confirmed by real time RT-PCR. One gene, PfRH4, is a member of the reticulocyte homology family and the other, PEBL, is a pseudogene of the Duffy binding-like family. The two genes are contiguous but transcribed in opposite directions. The DNA sequence of these ORFs, their 5'-intergenic region and a 1.1kb region 3' to each ORF are identical between Dd2 and Dd2(NM), suggesting that their transcription upregulation relates to transactivating factors. The transcription upregulation of PfRH4 was reflected at the protein level as PfRH4 protein expression was detected in Dd2(NM) and not in Dd2. Other sialic acid independent and dependent clones of P. falciparum showed variable transcript levels of PfRH4 and PEBL, unrelated to their dependence on sialic acid for invasion, suggesting that different P. falciparum clones use different receptors for sialic acid independent invasion. As Dd2(NM) is a selected subclone of Dd2, the marked upregulation of PfRH4 expression in Dd2(NM) suggests its role in erythrocyte invasion through the sialic acid independent pathway of Dd2(NM). PMID:16289357

  14. Overexpression of the pituitary tumor transforming gene upregulates metastasis in malignant neoplasms of the human salivary glands

    PubMed Central

    LIU, JIA; WANG, YUGUANG; HE, HONG; JIN, WULONG; ZHENG, RONG

    2015-01-01

    Salivary gland malignant neoplasms (SGMNs) represent a group of malignant solid tumors with heterogeneity in their cellular make-up, which causes difficulty with regard to the immunohistochemical confirmation of their cytological features. In the present study, overexpression of the pituitary tumor transforming gene (PTTG) was evaluated in human mucoepidermoid carcinoma specimens with a submaxillary salivary gland origin by immunohistochemical analysis, western blot analysis and reverse transcription quantitative polymerase chain reaction. In addition, a SGMN cell line was constructed, namely A-253 PTTG (+), which overexpressed PTTG. Subsequently, the regulatory role of PTTG in the proliferation and migration of A-253 cells was investigated. The immunohistochemical results demonstrated that there was a higher rate of PTTG-positive cells in the SGMN tissues when compared with the control submaxillary salivary gland tissues. Furthermore, PTTG expression at a mRNA and protein level was significantly higher in the SGMN specimens when compared with the control specimens. In addition, the rates of proliferation and migration of the A-253 PTTG (+) cells were significantly higher compared with the A-253 PTTG (-) cells. Therefore, PTTG was demonstrated to play an important role in SGMN cell proliferation and migration, and may subsequently be a notable marker for SGMN diagnosis and a potential target for anticancer therapy.

  15. Stress Fracture Healing: Fatigue Loading of the Rat Ulna Induces Upregulation in Expression of Osteogenic and Angiogenic Genes that Mimic the Intramembranous Portion of Fracture Repair

    PubMed Central

    Wohl, Gregory R.; Towler, Dwight A.; Silva, Matthew J.

    2009-01-01

    Woven bone is formed in response to fatigue-induced stress fractures and is associated with increased local angiogenesis. The molecular mechanisms that regulate this woven bone formation are unknown. Our objective was to measure the temporal and spatial expression of osteo- and angiogenic genes in woven bone formation in response to increasing levels of fatigue-induced damage. We used the rat forelimb compression model to produce four discrete levels of fatigue damage in the right ulna of 115 male Fischer rats. Rats were killed at 0 (1 hr), 1, 3 and 7 days after loading. Using qRT-PCR, we quantified gene expression associated with osteogenesis (BMP2, Msx2, Runx2, Osx, BSP, Osc), cell proliferation (Hist4), and angiogenesis (VEGF, PECAM-1) from the central half of the ulna. The spatial distribution of BMP2, BSP and PCNA was assessed by immunohistochemistry or in situ hybridization in transverse histological sections 1, 4, and 7 mm distal to the ulnar mid-diaphysis. One hour after loading, BMP2 was significantly upregulated in neurovascular structures in the medial ulnar periosteum. Expression of angiogenic markers (VEGF, PECAM-1) increased significantly between Day 0 and 1 and, as with BMP2 expression, remained upregulated through Day 7. While Osx and BSP were upregulated on Day 1, the other osteogenic genes (Msx2, Runx2, Osx, BSP and Osc) were induced on Day 3 in association with the initiation of periosteal woven bone formation and continued through Day 7. The magnitude of osteogenic gene expression, particularly matrix genes (BSP, Osc) was significantly proportional the level of fatigue damage. The woven bone response to fatigue injury is remarkably similar to the “intramembranous” portion of fracture repair — rapid formation of periosteal woven bone characterized by early BMP2 expression, cell proliferation, and upregulation of osteogenic genes. We speculate that woven bone repair of fatigue damage may be an abbreviated fracture response without the requirement for endochondral repair. We conclude that bone fatigue repair is a process similar to intramembranous fracture repair characterized by increases in the expression of genes associated with angiogenesis, cell proliferation and osteoblastogenesis, and that the response from the local vasculature precedes the osteogenic response to fatigue loading. PMID:18950737

  16. REST-Governed Gene Expression Profiling in a Neuronal Cell Model Reveals Novel Direct and Indirect Processes of Repression and Up-Regulation

    PubMed Central

    Garcia-Manteiga, Jose M.; Bonfiglio, Silvia; Folladori, Lucrezia; Malosio, Maria L.; Lazarevic, Dejan; Stupka, Elia; Cittaro, Davide; Meldolesi, Jacopo

    2015-01-01

    The role of REST changes in neurons, including the rapid decrease of its level during differentiation and its fluctuations during many mature functions and diseases, is well established. However, identification of many thousand possible REST-target genes, mostly based on indirect criteria, and demonstration of their operative dependence on the repressor have been established for only a relatively small fraction. In the present study, starting from our recently published work, we have expanded the identification of REST-dependent genes, investigated in two clones of the PC12 line, a recognized neuronal cell model, spontaneously expressing different levels of REST: very low as in neurons and much higher as in most non-neural cells. The molecular, structural and functional differences of the two PC12 clones were shown to depend largely on their different REST level and the ensuing variable expression of some dependent genes. Comprehensive RNA-Seq analyses of the 13,700 genes expressed, validated by parallel RT-PCR and western analyses of mRNAs and encoded proteins, identified in the high-REST clone two groups of almost 900 repressed and up-regulated genes. Repression is often due to direct binding of REST to target genes; up-regulation to indirect mechanism(s) mostly mediated by REST repression of repressive transcription factors. Most, but not all, genes governing neurosecretion, excitability, and receptor channel signaling were repressed in the high REST clone. The genes governing expression of non-channel receptors (G protein-coupled and others), although variably affected, were often up-regulated together with the genes of intracellular kinases, small G proteins, cytoskeleton, cell adhesion, and extracellular matrix proteins. Expression of REST-dependent genes governing functions other than those mentioned so far were also identified. The results obtained by the parallel investigation of the two PC12 clones revealed the complexity of the REST molecular and functional role, deciphering new aspects of its participation in neuronal functions. The new findings could be relevant for further investigation and interpretation of physiological processes typical of neurons. Moreover, they could be employed as tools in the study of neuronal diseases recently shown to depend on REST for their development. PMID:26617488

  17. A gene deletion that up-regulates viral gene expression yields an attenuated RSV vaccine with improved antibody responses in children.

    PubMed

    Karron, Ruth A; Luongo, Cindy; Thumar, Bhagvanji; Loehr, Karen M; Englund, Janet A; Collins, Peter L; Buchholz, Ursula J

    2015-11-01

    Respiratory syncytial virus (RSV) is the leading viral cause of severe pediatric respiratory illness, and a safe and effective vaccine for use in infancy and early childhood is needed. We previously showed that deletion of the coding sequence for the viral M2-2 protein (?M2-2) down-regulated viral RNA replication and up-regulated gene transcription and antigen synthesis, raising the possibility of development of an attenuated vaccine with enhanced immunogenicity. RSV MEDI ?M2-2 was therefore evaluated as a live intranasal vaccine in adults, RSV-seropositive children, and RSV-seronegative children. When results in RSV-seronegative children were compared to those achieved with the previous leading live attenuated RSV candidate vaccine, vaccine virus shedding was significantly more restricted, yet the postvaccination RSV-neutralizing serum antibody achieved [geometric mean titer (GMT) = 1:97] was significantly greater. Surveillance during the subsequent RSV season showed that several seronegative RSV MEDI ?M2-2 recipients had substantial antibody rises without reported illness, suggesting that the vaccine was protective yet primed for anamnestic responses to RSV. Rational design appears to have yielded a candidate RSV vaccine that is intrinsically superior at eliciting protective antibody in RSV-naïve children and highlights an approach for the development of live attenuated RSV vaccines. PMID:26537255

  18. Dietary fermentable fiber upregulated immune related genes expression, increased innate immune response and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas hydrophila.

    PubMed

    Yarahmadi, Peyman; Kolangi Miandare, Hamed; Farahmand, Hamid; Mirvaghefi, Alireza; Hoseinifar, Seyed Hossein

    2014-12-01

    This trial was carried out to investigate the effects of dietary administration of Vitacel(®), a commercial fermentable fiber, on immune related genes (Lysozyme, TNF? and HSP70) expression, innate immune response and resistance of rainbow trout against Aeromonas hydrophila. 120 healthy rainbow trout (81.65 ± 1.49 g) were distributed in six fiberglass tanks assigned to two treatments. The treatments were feeding rainbow trout with diets supplemented with 0 (control) or 10 g kg(-1) Vitacel(®) for 45 days. The results revealed that administration of fermentable fiber significantly (P < 0.05) upregulated lysozyme and TNF? gene expression. HSP70 gene expression was significantly lower in Vitacel(®) fed fish at the end of trial (P < 0.05). Furthermore dietary administrations of Vitacel(®) remarkably elevated rainbow trout innate immune parameters include serum lysozyme, ACH50, bactericidal activity and agglutination antibody titer (P < 0.05). Administration of 10 g kg(-1) Vitacel(®) significantly increased rainbow trout resistance against A. hydrophila (P < 0.05). The results of present study revealed that dietary Vitacel(®) can upregulates immune related genes expression and elevates innate immune response and disease resistance of rainbow trout. PMID:25218276

  19. Identification of genes up-regulated by retinoic-acid-induced differentiation of the human neuronal precursor cell line NTERA-2 cl.D1.

    PubMed

    Leypoldt, F; Lewerenz, J; Methner, A

    2001-02-01

    The human teratocarcinoma cell line NTERA-2 cl.D1 (NT2 cells) can be induced with retinoic acid and cell aggregation to yield postmitotic neurones. This seems to model the in vivo situation, as high concentrations of retinoic acid, retinoic acid binding proteins, and receptors have been detected in the embryonic CNS and the developing spinal cord suggesting a role for retinoic acid in neurogenesis. Suppression subtractive hybridization was used to detect genes up-regulated by this paradigm of neuronal differentiation. Microfibril-associated glycoprotein 2 was found to be drastically up-regulated and has not been implicated in neuronal differentiation before. Suppression subtractive hybridization also identified DYRK4, a homologue of the Drosophila gene minibrain. Minibrain mutations result in specific defects in the development of the fly central nervous system. In adult rats, DYRK4 is only expressed in testis, but our results suggest an additional role for DYRK4 in neuronal differentiation. We have shown that suppression subtractive hybridization in conjunction with an efficient screening procedure is a valuable tool to produce a repertoire of differentially expressed genes and propose a new physiological role for several identified genes and expressed sequence tags. PMID:11158252

  20. The Latency-Associated UL138 Gene Product of Human Cytomegalovirus Sensitizes Cells to Tumor Necrosis Factor Alpha (TNF-?) Signaling by Upregulating TNF-? Receptor 1 Cell Surface Expression ?

    PubMed Central

    Montag, Christina; Wagner, Jutta Annabella; Gruska, Iris; Vetter, Barbara; Wiebusch, Lüder; Hagemeier, Christian

    2011-01-01

    Many viruses antagonize tumor necrosis factor alpha (TNF-?) signaling in order to counteract its antiviral properties. One way viruses achieve this goal is to reduce TNF-? receptor 1 (TNFR1) on the surface of infected cells. Such a mechanism is also employed by human cytomegalovirus (HCMV), as recently reported by others and us. On the other hand, TNF-? has also been shown to foster reactivation of HCMV from latency. By characterizing a new variant of HCMV AD169, we show here that TNFR1 downregulation by HCMV only becomes apparent upon infection of cells with HCMV strains lacking the so-called ULb? region. This region contains genes involved in regulating viral immune escape, cell tropism, or latency and is typically lost from laboratory strains but present in low-passage strains and clinical isolates. We further show that although ULb?-positive viruses also contain the TNFR1-antagonizing function, this activity is masked by a dominant TNFR1 upregulation mediated by the ULb? gene product UL138. Isolated expression of UL138 in the absence of viral infection upregulates TNFR1 surface expression and can rescue both TNFR1 reexpression and TNF-? responsiveness of cells infected with an HCMV mutant lacking the UL138-containing transcription unit. Given that the UL138 gene product is one of the few genes recognized to be expressed during HCMV latency and the known positive effects of TNF-? on viral reactivation, we suggest that via upregulating TNFR1 surface expression UL138 may sensitize latently infected cells to TNF-?-mediated reactivation of HCMV. PMID:21880774

  1. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    SciTech Connect

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R. . E-mail: nerurkar@pbrc.hawaii.edu

    2006-02-20

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.

  2. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes

    SciTech Connect

    Wang, Jie; Yan, Cheng-Hui; Li, Yang; Xu, Kai; Tian, Xiao-Xiang; Peng, Cheng-Fei; Tao, Jie; Sun, Ming-Yu; Han, Ya-Ling

    2013-05-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. The cellular repressor of E1A-stimulated genes (CREG) has been shown to play an important role in phenotypic modulation of VSMCs. However, the mechanism regulating CREG upstream signaling remains unclear. MicroRNAs (miRNAs) have recently been found to play a critical role in cell differentiation via target-gene regulation. This study aimed to identify a miRNA that binds directly to CREG, and may thus be involved in CREG-mediated VSMC phenotypic modulation. Computational analysis indicated that miR-31 bound to the CREG mRNA 3? untranslated region (3?-UTR). miR-31 was upregulated in quiescent differentiated VSMCs and downregulated in proliferative cells stimulated by platelet-derived growth factor and serum starvation, demonstrating a negative relationship with the VSMC differentiation marker genes, smooth muscle ?-actin, calponin and CREG. Using gain-of-function and loss-of-function approaches, CREG and VSMC differentiation marker gene expression levels were shown to be suppressed by a miR-31 mimic, but increased by a miR-31 inhibitor at both protein and mRNA levels. Notably, miR-31 overexpression or inhibition affected luciferase expression driven by the CREG 3?-UTR containing the miR-31 binding site. Furthermore, miR-31-mediated VSMC phenotypic modulation was inhibited in CREG-knockdown human VSMCs. We also determined miR-31 levels in the serum of patients with coronary artery disease (CAD), with or without in stent restenosis and in healthy controls. miR-31 levels were higher in the serum of CAD patients with restenosis compared to CAD patients without restenosis and in healthy controls. In summary, these data demonstrate that miR-31 not only directly binds to its target gene CREG and modulates the VSMC phenotype through this interaction, but also can be an important biomarker in diseases involving VSMC phenotypic modulation. These novel findings may have extensive implications for the diagnosis and therapy of a variety of proliferative vascular diseases. - Highlights: ? MiR-31 modulates CREG expression by binding directly to the human CREG mRNA 3?-UTR. ? MiR-31 mediates the human VSMC phenotypic modulation by regulating the expression of human CREG. ? Serum miR-31 may act as an important biomarker in diseases involving in stent restenosis after PCI.

  3. Quality controls in cellular immunotherapies: rapid assessment of clinical grade dendritic cells by gene expression profiling.

    PubMed

    Castiello, Luciano; Sabatino, Marianna; Zhao, Yingdong; Tumaini, Barbara; Ren, Jiaqiang; Ping, Jin; Wang, Ena; Wood, Lauren V; Marincola, Francesco M; Puri, Raj K; Stroncek, David F

    2013-02-01

    Cell-based immunotherapies are among the most promising approaches for developing effective and targeted immune response. However, their clinical usefulness and the evaluation of their efficacy rely heavily on complex quality control assessment. Therefore, rapid systematic methods are urgently needed for the in-depth characterization of relevant factors affecting newly developed cell product consistency and the identification of reliable markers for quality control. Using dendritic cells (DCs) as a model, we present a strategy to comprehensively characterize manufactured cellular products in order to define factors affecting their variability, quality and function. After generating clinical grade human monocyte-derived mature DCs (mDCs), we tested by gene expression profiling the degrees of product consistency related to the manufacturing process and variability due to intra- and interdonor factors, and how each factor affects single gene variation. Then, by calculating for each gene an index of variation we selected candidate markers for identity testing, and defined a set of genes that may be useful comparability and potency markers. Subsequently, we confirmed the observed gene index of variation in a larger clinical data set. In conclusion, using high-throughput technology we developed a method for the characterization of cellular therapies and the discovery of novel candidate quality assurance markers. PMID:23147403

  4. Gene-specific DNA repair of pyrimidine dimers does not decline during cellular aging in vitro.

    PubMed

    Christiansen, M; Stevnsner, T; Bohr, V A; Clark, B F; Rattan, S I

    2000-04-10

    A large number of studies have demonstrated that various kinds of DNA damage accumulate during aging and one of the causes for this could be a decrease in DNA repair capacity. However, the level of total genomic repair has not been strongly correlated with aging. DNA repair of certain kinds of damage is known to be closely connected to the transcription process; thus, we chose to investigate the level of gene-specific repair of UV-induced damage using in vitro aging of human diploid skin fibroblasts and trabecular osteoblasts as model systems for aging. We find that the total genomic repair is not significantly affected during cellular aging of cultures of both human skin fibroblasts and trabecular osteoblasts. Gene-specific repair was analyzed during cellular aging in the dihydrofolate reductase housekeeping gene, the p53 tumor suppressor gene, and the inactive region X(754). There was no clear difference in the capacity of young and old cells to repair UV-induced pyrimidine dimers in any of the analyzed genes. Thus, in vitro senescent cells can sustain the ability to repair externally induced damage. PMID:10739678

  5. Signatures of gene expression noise in cellular systems Julia Rausenberger a,b,*, Christian Fleck b,c

    E-print Network

    Timmer, Jens

    Review Signatures of gene expression noise in cellular systems Julia Rausenberger a,b,*, Christian t i c l e i n f o Article history: Available online 11 June 2009 Keywords: Gene expression noise Stochastic modeling Transcription factor Population distribution a b s t r a c t Noise in gene expression

  6. Whole-Genome Transcription Profiling Reveals Genes Up-Regulated by Growth on Fucose in the Human Gut Bacterium “Roseburia inulinivorans”†

    PubMed Central

    Scott, Karen P.; Martin, Jennifer C.; Campbell, Gillian; Mayer, Claus-Dieter; Flint, Harry J.

    2006-01-01

    “Roseburia inulinivorans” is an anaerobic polysaccharide-utilizing firmicute bacterium from the human colon that was identified as a producer of butyric acid during growth on glucose, starch, or inulin. R. inulinivorans A2-194 is also able to grow on the host-derived sugar fucose, following a lag period, producing propionate and propanol as additional fermentation products. A shotgun genomic microarray was constructed and used to investigate the switch in gene expression that is involved in changing from glucose to fucose utilization. This revealed a set of genes coding for fucose utilization, propanediol utilization, and the formation of propionate and propanol that are up-regulated during growth on fucose. These include homologues of genes that are implicated in polyhedral body formation in Salmonella enterica. Dehydration of the intermediate 1,2-propanediol involves an enzyme belonging to the new B12-independent glycerol dehydratase family, in contrast to S. enterica, which relies on a B12-dependent enzyme. A typical gram-positive agr-type quorum-sensing system was also up-regulated in R. inulinivorans during growth on fucose. Despite the lack of genome sequence information for this commensal bacterium, microarray analysis has provided a powerful tool for obtaining new information on its metabolic capabilities. PMID:16740940

  7. Growth differentiation factor-15: a p53- and demethylation-upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells

    PubMed Central

    Tsui, Ke-Hung; Hsu, Shu-Yuan; Chung, Li-Chuan; Lin, Yu-Hsiang; Feng, Tsui-Hsia; Lee, Tzu-Yi; Chang, Phei-Lang; Juang, Horng-Heng

    2015-01-01

    Growth differentiation factor-15 (GDF15), a member of the TGF-? superfamily, affects tumor biology of certain cancers, but remains poorly understood in bladder cancer cells. This study determined the expression, regulation, function, and potential downstream target genes of GDF15 in bladder carcinoma cells. The transitional papilloma carcionoma cells (RT4) expressed higher levels of GDF15 as compared with the bladder carcinoma cells (HT1376 and T24). Treatments of recombinant human GDF15 (rhGDF15) reduced the proliferations of HT1376 and T24 cells. Expression of GDF15 was upregulated via DNA demethylation and p53. The cell proliferation, invasion, and tumorigenesis were reduced in ectopic overexpression of GDF15, while enhanced in GDF15 knockdown. The expressions of mammary serine protease inhibitor (MASPIN) and N-myc downstream-regulated family genes (NDRG1, NDRG2, and NDRG3) were upregulated by GDF15 overexpressions and rhGDF15 treatments in bladder carcinoma cells. GDF15 knockdown induced epithelial-mesenchymal transition (EMT) and F-actin polarization in HT1376 cells. Our results suggest that enhanced expressions of MASPIN and N-myc downstream-regulated family genes and the modulation of EMT may account for the inhibitory functions of GDF15 in the cell proliferation, invasion, and tumorigenesis of bladder carcinoma cells. The GDF15 should be considered as a tumor suppressor in human bladder carcinoma cells. PMID:26249737

  8. Coordinate up-regulation of low-density lipoprotein receptor and cyclo-oxygenase-2 gene expression in human colorectal cells and in colorectal adenocarcinoma biopsies

    NASA Technical Reports Server (NTRS)

    Lum, D. F.; McQuaid, K. R.; Gilbertson, V. L.; Hughes-Fulford, M.

    1999-01-01

    Many colorectal cancers have high levels of cyclo-oxygenase 2 (COX-2), an enzyme that metabolizes the essential fatty acids into prostaglandins. Since the low-density lipoprotein receptor (LDLr) is involved in the uptake of essential fatty acids, we studied the effect of LDL on growth and gene regulation in colorectal cancer cells. DiFi cells grown in lipoprotein-deficient sera (LPDS) grew more slowly than cells with LDL. LDLr antibody caused significant inhibition of tumor cell growth but did not affect controls. In addition, LDL uptake did not change in the presence of excess LDL, suggesting that ldlr mRNA lacks normal feedback regulation in some colorectal cancers. Analysis of the ldlr mRNA showed that excess LDL in the medium did not cause down-regulation of the message even after 24 hr. The second portion of the study examined the mRNA expression of ldlr and its co-regulation with cox-2 in normal and tumor specimens from patients with colorectal adenocarcinomas. The ratio of tumor:paired normal mucosa of mRNA expression of ldlr and of cox-2 was measured in specimens taken during colonoscopy. ldlr and cox-2 transcripts were apparent in 11 of 11 carcinomas. There was significant coordinate up-regulation both of ldlr and of cox-2 in 6 of 11 (55%) tumors compared with normal colonic mucosa. There was no up-regulation of cox-2 without concomitant up-regulation of ldlr. These data suggest that the LDLr is abnormally regulated in some colorectal tumors and may play a role in the up-regulation of cox-2. Copyright 1999 Wiley-Liss, Inc.

  9. Transcriptional up-regulation of antioxidant genes by PPAR{delta} inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells

    SciTech Connect

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk

    2011-03-25

    Research highlights: {yields} Activation of PPAR{delta} by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. {yields} Agonist-activated PPAR{delta} suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. {yields} GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. {yields} Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) {delta} as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPAR{delta} by GW501516, a specific agonist of PPAR{delta}, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPAR{delta} suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPAR{delta}-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.

  10. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    PubMed Central

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kelemen, Linda E.; Kellar, Mellissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F. A. G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Hasmad, Hanis N.; Berchuck, Andrew; Iversen, Edwin S.; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N. A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2015-01-01

    Background Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. Methods In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. Results The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). Conclusion These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes. PMID:26091520

  11. Modified poly(lactic-co-glycolic acid) nanoparticles for enhanced cellular uptake and gene editing in the lung.

    PubMed

    Fields, Rachel J; Quijano, Elias; McNeer, Nicole Ali; Caputo, Christina; Bahal, Raman; Anandalingam, Kavi; Egan, Marie E; Glazer, Peter M; Saltzman, W Mark

    2015-02-18

    Surface-modified poly(lactic-co-glycolic acid) (PLGA)/poly(?-aminoester)(PBAE)nanoparticles (NPs) have shown great promise in gene delivery. In this work, the pulmonary cellular uptake of these NPs is evaluated and surface-modified PLGA/PBAE NPs are shown to achieve higher cellular association and gene editing than traditional NPs composed of PLGA or PLGA/PBAE blends alone. PMID:25156908

  12. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    PubMed

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events. PMID:23946774

  13. Genes Related to Ion-Transport and Energy Production Are Upregulated in Response to CO2-Driven pH Decrease in Corals: New Insights from Transcriptome Analysis

    PubMed Central

    Vidal-Dupiol, Jeremie; Zoccola, Didier; Tambutté, Eric; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Dheilly, Nolwenn M.; Allemand, Denis; Tambutté, Sylvie

    2013-01-01

    Since the preindustrial era, the average surface ocean pH has declined by 0.1 pH units and is predicted to decline by an additional 0.3 units by the year 2100. Although subtle, this decreasing pH has profound effects on the seawater saturation state of carbonate minerals and is thus predicted to impact on calcifying organisms. Among these are the scleractinian corals, which are the main builders of tropical coral reefs. Several recent studies have evaluated the physiological impact of low pH, particularly in relation to coral growth and calcification. However, very few studies have focused on the impact of low pH at the global molecular level. In this context we investigated global transcriptomic modifications in a scleractinian coral (Pocillopora damicornis) exposed to pH 7.4 compared to pH 8.1during a 3-week period. The RNAseq approach shows that 16% of our transcriptome was affected by the treatment with 6% of upregulations and 10% of downregulations. A more detailed analysis suggests that the downregulations are less coordinated than the upregulations and allowed the identification of several biological functions of interest. In order to better understand the links between these functions and the pH, transcript abundance of 48 candidate genes was quantified by q-RT-PCR (corals exposed at pH 7.2 and 7.8 for 3 weeks). The combined results of these two approaches suggest that pH?7.4 induces an upregulation of genes coding for proteins involved in calcium and carbonate transport, conversion of CO2 into HCO3? and organic matrix that may sustain calcification. Concomitantly, genes coding for heterotrophic and autotrophic related proteins are upregulated. This can reflect that low pH may increase the coral energy requirements, leading to an increase of energetic metabolism with the mobilization of energy reserves. In addition, the uncoordinated downregulations measured can reflect a general trade-off mechanism that may enable energy reallocation. PMID:23544045

  14. Iron deficiency upregulates Egr1 expression.

    PubMed

    Lee, Seung-Min; Lee, Sun Bok; Prywes, Ron; Vulpe, Christopher D

    2015-07-01

    Iron-deficient anemia is a prevalent disease among humans. We searched for genes regulated by iron deficiency and its regulated mechanism. cDNA microarrays were performed using Hepa1c1c7 cells treated with 100 ?M desferrioxamine (DFO), an iron chelator. Early growth response 1 (Egr1) was upregulated with at least 20-fold increase within 4 h and lasted for 24 h, which was confirmed by qRT-PCR. This activation was not seen by ferric ammonium citrate (FAC). DFO increased the transcriptional activity of Egr1-luc (-604 to +160) and serum response element (SRE)-luc reporters by 2.7-folds. In addition, cycloheximide lowered DFO-induced Egr1 mRNA levels. The upregulation of Egr1 by DFO was accompanied by sustained ERK signals along with phosphorylation of Elk-1. The ERK inhibitor (PD98059) prevented the DFO-induced Egr1 mRNAs. Overexpression of Elk-1 mutant (pElk-1S383A) decreased Egr1 reporter activity. DFO lowered reactive oxygen species (ROS) production and increased caspase 3/7 activity and cell death. DFO-induced iron deficiency upregulates Egr1 in part through transcriptional activation via ERK and Elk-1 signals, which may be important in the regulation of cell death in hepatoma cells. Our study demonstrated that iron depletion controlled the expression of Egr1, which might contribute to decisions about cellular fate in response to iron deficiency. PMID:25981695

  15. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells.

    PubMed

    Lee, Jehn-Chuan; Chung, Li-Chuan; Chen, Yu-Jen; Feng, Tsui-Hsia; Chen, Wen-Tsung; Juang, Horng-Heng

    2015-05-01

    Oral squamous cell carcinoma (OSCC) is a well-known malignancy that accounts for the majority of oral cancers. B-cell translocation gene 2 (BTG2) is an important regulator of cell cycle dynamics in cancer cells. However, the role of BTG2 in OSCC cells and the influences of epigallocatechin-3-gallate (EGCG) on BTG2 gene expressions have not been well evaluated. The objectives of this study were to examine the effect of EGCG-induced BTG2 expression and the potential signal pathways involved. The (3)H-thymidine incorporation and Western-blot assays revealed cell proliferation was attenuated by EGCG via upregulation of BTG2 expression causing cell cycle G1 phase arrest in OSCC cells. BTG2 overexpression decreased tumor cell growth, while BTG2 knockdown illuminated the opposite effect in xenograft animal studies. Overexpressed BTG2 arrested the cell cycle at the G1 phase and downregulated protein expressions of cyclin A, cyclin D, and cyclin E. Western-blot assays indicated that EGCG induced phosphorylation of p38, JNK, and ERK. However, pretreatments with selective mitogen-activated protein kinase (MAPK) inhibitors, SB203580 (p38 inhibitor) and PD0325901 (ERK1/2 inhibitor), significantly suppressed the activation of EGCG on BTG2 expression. Our results indicate that EGCG attenuates cell proliferation of OSCC cells by upregulating BTG2 expression via p38 and ERK pathways. PMID:25721086

  16. Tolerance in banana to Fusarium wilt is associated with early up-regulation of cell wall-strengthening genes in the roots.

    PubMed

    VAN DEN Berg, Noëlani; Berger, Dave K; Hein, Ingo; Birch, Paul R J; Wingfield, Michael J; Viljoen, Altus

    2007-05-01

    SUMMARY Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of bananas. In the tropics and subtropics, Cavendish banana varieties are highly susceptible to Foc race 4 (VCG 0120). Cavendish selection GCTCV-218 was shown to have significantly lower disease severity and incidence compared with susceptible cultivar Williams in replicated greenhouse and field trials. Suppression subtractive hybridization (SSH) was previously carried out to identify genes induced in roots of GCTCV-218, but not in Williams, after infection with Foc'subtropical' race 4. Seventy-nine SSH clones were sequenced and revealed 13 non-redundant gene fragments, several of which showed homology to defence-associated genes, including cell wall-strengthening genes. Quantitative RT-PCR was used to confirm up-regulation and differential expression of a number of genes throughout a time-course, following Foc infection in the tolerant GCTCV-218 when compared with susceptible cv. Williams. Tolerance of GCTCV-218 was linked to significantly increased induction of cell wall-associated phenolic compounds. PMID:20507503

  17. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation.

    PubMed

    Kawamura-Saito, Miho; Yamazaki, Yukari; Kaneko, Keiko; Kawaguchi, Noriyoshi; Kanda, Hiroaki; Mukai, Hiroyuki; Gotoh, Takahiro; Motoi, Tohru; Fukayama, Masashi; Aburatani, Hiroyuki; Takizawa, Toichiro; Nakamura, Takuro

    2006-07-01

    Ewing's family tumors (EFTs) are highly malignant tumors arising from bone and soft tissues that exhibit EWS-FLI1 or variant EWS-ETS gene fusions in more than 85% of the cases. Here we show that CIC, a human homolog of Drosophila capicua which encodes a high mobility group box transcription factor, is fused to a double homeodomain gene DUX4 as a result of a recurrent chromosomal translocation t(4;19)(q35;q13). This translocation was seen in two cases of soft tissue sarcoma diagnosed as Ewing-like sarcoma. CIC-DUX4 exhibits a transforming potential for NIH 3T3 fibroblasts, and as a consequence of fusion with a C-terminal fragment of DUX4, CIC acquires an enhanced transcriptional activity, suggesting that expression of its downstream targets might be deregulated. Gene expression analysis identified the ETS family genes, ERM/ETV5 and ETV1, as potential targets for the gene product of CIC-DUX4. Indeed, CIC-DUX4 directly binds the ERM promoter by recognizing a novel target sequence and significantly up-regulates its expression. This study clarifies the function of CIC and its role in tumorigenesis, as well as the importance of the PEA3 subclass of ETS family proteins in the development of EFTs arising through mechanisms different from those involving EWS-ETS chimeras. Moreover, the study identifies the role of DUX4 that is closely linked to facioscapulohumeral muscular dystrophy in transcriptional regulation. PMID:16717057

  18. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression

    PubMed Central

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated ?-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057

  19. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures

    PubMed Central

    Zeng, Hongkui; Shen, Elaine H.; Hohmann, John G.; Oh, Wook Seung; Bernard, Amy; Royall, Joshua J.; Glattfelder, Katie J.; Sunkin, Susan M.; Morris, John A.; Guillozet-Bongaarts, Angela L.; Smith, Kimberly A.; Ebbert, Amanda J.; Swanson, Beryl; Kuan, Leonard; Page, Damon T.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hof, Patrick R.; Hyde, Thomas M.; Kleinman, Joel E.; Jones, Allan R.

    2012-01-01

    Summary Although there have been major advances in elucidating the functional biology of the human brain, relatively little is known of its cellular and molecular organization. Here we report a large-scale characterization of the expression of ~1,000 genes important for neural functions, by in situ hybridization with cellular resolution in visual and temporal cortices of adult human brains. These data reveal diverse gene expression patterns and remarkable conservation of each individual gene’s expression among individuals (95%), cortical areas (84%), and between human and mouse (79%). A small but substantial number of genes (21%) exhibited species-differential expression. Distinct molecular signatures, comprised of genes both common between species and unique to each, were identified for each major cortical cell type. The data suggest that gene expression profile changes may contribute to differential cortical function across species, in particular, a shift from corticosubcortical to more predominant corticocortical communications in the human brain. PMID:22500809

  20. Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos.

    PubMed

    Edman, R M; Linger, R J; Belikoff, E J; Li, F; Sze, S-H; Tarone, A M; Scott, M J

    2015-02-01

    The New World screwworm fly, Cochliomyia hominivorax, and the Australian sheep blow fly, Lucilia cuprina, are major pests of livestock. The sterile insect technique was used to eradicate C.?hominivorax from North and Central America. This involved area-wide releases of male and female flies that had been sterilized by radiation. Genetic systems have been developed for making 'male-only' strains that would improve the efficiency of genetic control of insect pests. One system involves induction of female lethality in embryos through activation of a pro-apoptotic gene by the tetracycline-dependent transactivator. Sex-specific expression is achieved using an intron from the transformer gene, which we previously isolated from several calliphorids. In the present study, we report the isolation of the promoters from the C.?hominivorax slam and Lucilia?sericata bnk cellularization genes and show that these promoters can drive expression of a GFP reporter gene in early embryos of transgenic L.?cuprina. Additionally, we report the isolation of the L.?sericata pro-apoptotic hid and rpr genes, identify conserved motifs in the encoded proteins and determine the relative expression of these genes at different stages of development. We show that widespread expression of the L.?sericata pro-apoptotic genes was lethal in Drosophila melanogaster. The isolated gene promoters and pro-apoptotic genes could potentially be used to build transgenic embryonic sexing strains of calliphorid livestock pests. PMID:25225046

  1. Lentiviral gene therapy using cellular promoters cures type 1 Gaucher disease in mice.

    PubMed

    Dahl, Maria; Doyle, Alexander; Olsson, Karin; Månsson, Jan-Eric; Marques, André R A; Mirzaian, Mina; Aerts, Johannes M; Ehinger, Mats; Rothe, Michael; Modlich, Ute; Schambach, Axel; Karlsson, Stefan

    2015-05-01

    Gaucher disease is caused by an inherited deficiency of the enzyme glucosylceramidase. Due to the lack of a fully functional enzyme, there is progressive build-up of the lipid component glucosylceramide. Insufficient glucosylceramidase activity results in hepatosplenomegaly, cytopenias, and bone disease in patients. Gene therapy represents a future therapeutic option for patients unresponsive to enzyme replacement therapy and lacking a suitable bone marrow donor. By proof-of-principle experiments, we have previously demonstrated a reversal of symptoms in a murine disease model of type 1 Gaucher disease, using gammaretroviral vectors harboring strong viral promoters to drive glucosidase ?-acid (GBA) gene expression. To investigate whether safer vectors can correct the enzyme deficiency, we utilized self-inactivating lentiviral vectors (SIN LVs) with the GBA gene under the control of human phosphoglycerate kinase (PGK) and CD68 promoter, respectively. Here, we report prevention of, as well as reversal of, manifest disease symptoms after lentiviral gene transfer. Glucosylceramidase activity above levels required for clearance of glucosylceramide from tissues resulted in reversal of splenomegaly, reduced Gaucher cell infiltration and a restoration of hematological parameters. These findings support the use of SIN-LVs with cellular promoters in future clinical gene therapy protocols for type 1 Gaucher disease. PMID:25655314

  2. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    NASA Astrophysics Data System (ADS)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-03-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly (P < 0.05) higher during the thermal stress. Pearson correlation coefficient analysis revealed that the expression of ATPase ?1, ATPase B2, and ATPase B3 is highly correlated (P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  3. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls.

    PubMed

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T V; Alyethodi, Rafeeque R; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly (P?genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle. PMID:25875448

  4. Modified pectin-based carrier for gene delivery: Cellular barriers in gene delivery course

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of biodegradable and biocompatible polysaccharides as DNA carriers has high potential for gene therapy applications. Pectin is a structural plant polysaccharide heterogeneous with respect to its chemical structure. It contains branches rich in galactose residues which serve as potential liga...

  5. Genome-wide matching of genes to cellular roles using guilt-by-association models derived from single sample analysis

    PubMed Central

    2012-01-01

    Background High-throughput methods that ascribe a cellular or physiological function for each gene product are useful to understand the roles of genes that have not been extensively characterized by molecular or genetic approaches. One method to infer gene function is "guilt-by-association", in which the expression pattern of a poorly characterized gene is shown to co-vary with the expression of better-characterized genes. The function of the poorly characterized gene is inferred from the known function(s) of the well-described genes. For example, genes co-expressed with transcripts that vary during the cell cycle, development, environmental stresses, and with oncogenesis have been implicated in those processes. Findings While examining the expression characteristics of several poorly characterized genes, we noted that we could associate each of the genes with a cellular phenotype by correlating individual gene expression changes with gene set enrichment scores from individual samples. We evaluated the effectiveness of this approach using a modest sized gene expression data set (expO) and a compendium of gene expression phenotypes (MSigDBv3.0). We found the transcripts that correlated best with enrichment in mitochondrial and lysosomal gene sets were mostly related to those processes (89/100 and 44/50, respectively). The reciprocal evaluation, ranking gene sets according to correlation of enrichment with an individual gene’s expression, also reflected known associations for prominent genes in the biomedical literature (16/19). In evaluating the model, we also found that 4% of the genome encodes proteins that are associated with small molecule and small peptide signal transduction gene sets, implicating a large number of genes in both internal and external environmental sensing. Conclusions Our results show that this approach is useful to infer functions of disparate sets of genes. This method mirrors the biological experimental approaches used by others to associate individual genes with defined gene expression changes. Moreover, the approach can be used beyond discovering genes related to a cellular process to discover meaningful expression phenotypes from a compendium that are associated with a given gene. The effectiveness, versatility, and breadth of this approach make possible its application in a variety of contexts and with a variety of downstream analyses. PMID:22824328

  6. Implication of p53-dependent cellular senescence related gene, TARSH in tumor suppression

    SciTech Connect

    Wakoh, Takeshi; Uekawa, Natsuko; Terauchi, Kunihiko; Sugimoto, Masataka; Ishigami, Akihito; Shimada, Jun-ichi; Maruyama, Mitsuo

    2009-03-20

    A novel target of NESH-SH3 (TARSH) was identified as a cellular senescence related gene in mouse embryonic fibroblasts (MEFs) replicative senescence, the expression of which has been suppressed in primary clinical lung cancer specimens. However, the molecular mechanism underlying the regulation of TARSH involved in pulmonary tumorigenesis remains unclear. Here we demonstrate that the reduction of TARSH gene expression by short hairpin RNA (shRNA) system robustly inhibited the MEFs proliferation with increase in senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity. Using p53{sup -/-} MEFs, we further suggest that this growth arrest by loss of TARSH is evoked by p53-dependent p21{sup Cip1} accumulation. Moreover, we also reveal that TARSH reduction induces multicentrosome in MEFs, which is linked in chromosome instability and tumor development. These results suggest that TARSH plays an important role in proliferation of replicative senescence and may serve as a trigger of tumor development.

  7. Expression of Senescence-Associated microRNAs and Target Genes in Cellular Aging and Modulation by Tocotrienol-Rich Fraction

    PubMed Central

    2014-01-01

    Emerging evidences highlight the implication of microRNAs as a posttranscriptional regulator in aging. Several senescence-associated microRNAs (SA-miRNAs) are found to be differentially expressed during cellular senescence. However, the role of dietary compounds on SA-miRNAs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF) on SA-miRNAs (miR-20a, miR-24, miR-34a, miR-106a, and miR-449a) and established target genes of miR-34a (CCND1, CDK4, and SIRT1) during replicative senescence of human diploid fibroblasts (HDFs). Primary cultures of HDFs at young and senescent were incubated with TRF at 0.5?mg/mL. Taqman microRNA assay showed significant upregulation of miR-24 and miR-34a and downregulation of miR-20a and miR-449a in senescent HDFs (P < 0.05). TRF reduced miR-34a expression in senescent HDFs and increased miR-20a expression in young HDFs and increased miR-449a expression in both young and senescent HDFs. Our results also demonstrated that ectopic expression of miR-34a reduced the expression of CDK4 significantly (P < 0.05). TRF inhibited miR-34a expression thus relieved its inhibition on CDK4 gene expression. No significant change was observed on the expression of CCND1, SIRT1, and miR-34a upstream transcriptional regulator, TP53. In conclusion tocotrienol-rich fraction prevented cellular senescence of human diploid fibroblasts via modulation of SA-miRNAs and target genes expression. PMID:25132913

  8. Cellular defense system gene expression profiling of human whole blood: opportunities to predict health benefits in response to diet.

    PubMed

    Drew, Janice E

    2012-07-01

    Diet is a critical factor in the maintenance of human cellular defense systems, immunity, inflammation, redox regulation, metabolism, and DNA repair that ensure optimal health and reduce disease risk. Assessment of dietary modulation of cellular defense systems in humans has been limited due to difficulties in accessing target tissues. Notably, peripheral blood gene expression profiles associated with nonhematologic disease are detectable. Coupled with recent innovations in gene expression technologies, gene expression profiling of human blood to determine predictive markers associated with health status and dietary modulation is now a feasible prospect for nutrition scientists. This review focuses on cellular defense system gene expression profiling of human whole blood and the opportunities this presents, using recent technological advances, to predict health status and benefits conferred by diet. PMID:22797985

  9. Correlation of Glucocorticoid-mediated E4BP4 upregulation with altered expression of pro- and anti-apoptotic genes in CEM human lymphoblastic leukemia cells

    PubMed Central

    Beach, Jessica A.; Nary, Laura J.; Hovanessian, Rebeka; Medh, Rheem D.

    2014-01-01

    In C.elegans, motoneuron apoptosis is regulated via a ces-2 – ces-1 – egl-1 pathway. We tested whether human CEM lymphoblastic leukemia cells undergo apoptosis via an analogous pathway. We have previously shown that E4BP4, a ces-2 ortholog, mediates glucocorticoid (GC)-dependent upregulation of BIM, an egl-1 ortholog, in GC-sensitive CEM C7-14 cells and in CEM C1-15 mE#3 cells, which are sensitized to GCs by ectopic expression of E4BP4. In the present study, we demonstrate that the human ces-1 orthologs, SLUG and SNAIL, are not significantly repressed in correlation with E4BP4 expression. Expression of E4BP4 homologs, the PAR family genes, especially HLF, encoding a known anti-apoptotic factor, was inverse to that of E4BP4 and BIM. Expression of pro- and anti-apoptotic genes in CEM cells was analyzed via an apoptosis PCR Array. We identified BIRC3 and BIM as genes whose expression paralleled that of E4BP4, while FASLG, TRAF4, BCL2A1, BCL2L1, BCL2L2 and CD40LG as genes whose expression was opposite to that of E4BP4. PMID:25101525

  10. Rosiglitazone but not losartan prevents Nrf-2 dependent CD36 gene expression up-regulation in an in vivo atherosclerosis model

    PubMed Central

    Hernandez-Trujillo, Y; Rodriguez-Esparragon, F; Macias-Reyes, A; Caballero-Hidalgo, A; Rodriguez-Perez, Jose C

    2008-01-01

    Background Thiazolidinediones exert anti-inflammatory and anti-oxidative roles and attenuate atherosclerosis by mechanisms partially independent of their metabolizing actions. High doses of angiotensin type 1 receptor (AT1R) blocker losartan (LST) seem to promote fat cell formation by preserving PPAR? activity. Methods C57BL/6J diet-induced atherosclerotic susceptible mice randomly received a normal or a high-fat high-cholesterol (HFHC) diet and were treated with rosiglitazone (RG), LST or a vehicle for 12 weeks. Results HFHC was associated with increased PPAR? gene expression without an over regulation of PPAR? responsive genes, whereas RG and LST treatments were found to maintain PPAR? activity without resulting in increased PPAR? gene expression. A better anti-inflammatory and antioxidant profile in mice treated with RG regarding LST was observed in spite of a similar PPAR? preserved activity. Chromatin immunoprecipitation (ChIP) assays revealed that animals under HFHC diet treated with RG showed a significant nuclear factor erythroid 2-like 2 (Nrf2)-dependent down-regulation of the expression of the CD36 gene. Conclusion The PPAR? agonist RG exerts antioxidant properties that significantly reduced Nrf-2-dependent CD-36 up-regulation in mice under HFHC diet. Because LST treatment was also associated with a preserved PPAR? activity, our data suggests that these RG antioxidant effects are partially independent of its PPAR? metabolizing properties. PMID:18302760

  11. Transcriptome Profiling of Botrytis cinerea Conidial Germination Reveals Upregulation of Infection-Related Genes during the Prepenetration Stage

    PubMed Central

    Leroch, Michaela; Kleber, Astrid; Silva, Evelyn; Coenen, Tina; Koppenhöfer, Dieter; Shmaryahu, Amir; Valenzuela, Pablo D. T.

    2013-01-01

    Botrytis cinerea causes gray mold on a great number of host plants. Infection is initiated by airborne conidia that invade the host tissue, often by penetration of intact epidermal cells. To mimic the surface properties of natural plant surfaces, conidia were incubated on apple wax-coated surfaces, resulting in rapid germination and appressorium formation. Global changes in gene expression were analyzed by microarray hybridization between conidia incubated for 0 h (dormant), 1 h (pregermination), 2.5 h (postgermination), 4 h (appressoria), and 15 h (early mycelium). Considerable changes were observed, in particular between 0 h and 1 h. Genes induced during germination were enriched in those genes encoding secreted proteins, including lytic enzymes. Comparison of wild-type and a nonpathogenic MAP kinase mutant (bmp1) revealed marked differences in germination-related gene expression, in particular related to secretory proteins. Using promoter-GFP reporter strains, we detected a strictly germination-specific expression pattern of a putative chitin deacetylase gene (cda1). In contrast, a cutinase gene (cutB) was found to be expressed only in the presence of plant lipids, in a developmentally less stringent pattern. We also identified a coregulated gene cluster possibly involved in secondary metabolite synthesis which was found to be controlled by a transcription factor also encoded in this cluster. Our data demonstrate that early conidial development in B. cinerea is accompanied by rapid shifts in gene expression that prepare the fungus for germ tube outgrowth and host cell invasion. PMID:23417562

  12. Identification of unannotated exons of low abundance transcripts in Drosophila melanogaster and cloning of a new serine protease gene upregulated upon injury

    PubMed Central

    Maia, Rafaela M; Valente, Valeria; Cunha, Marco AV; Sousa, Josane F; Araujo, Daniela D; Silva, Wilson A; Zago, Marco A; Dias-Neto, Emmanuel; Souza, Sandro J; Simpson, Andrew JG; Monesi, Nadia; Ramos, Ricardo GP; Espreafico, Enilza M; Paçó-Larson, Maria L

    2007-01-01

    Background The sequencing of the D.melanogaster genome revealed an unexpected small number of genes (~ 14,000) indicating that mechanisms acting on generation of transcript diversity must have played a major role in the evolution of complex metazoans. Among the most extensively used mechanisms that accounts for this diversity is alternative splicing. It is estimated that over 40% of Drosophila protein-coding genes contain one or more alternative exons. A recent transcription map of the Drosophila embryogenesis indicates that 30% of the transcribed regions are unannotated, and that 1/3 of this is estimated as missed or alternative exons of previously characterized protein-coding genes. Therefore, the identification of the variety of expressed transcripts depends on experimental data for its final validation and is continuously being performed using different approaches. We applied the Open Reading Frame Expressed Sequence Tags (ORESTES) methodology, which is capable of generating cDNA data from the central portion of rare transcripts, in order to investigate the presence of hitherto unnanotated regions of Drosophila transcriptome. Results Bioinformatic analysis of 1,303 Drosophila ORESTES clusters identified 68 sequences derived from unannotated regions in the current Drosophila genome version (4.3). Of these, a set of 38 was analysed by polyA+ northern blot hybridization, validating 17 (50%) new exons of low abundance transcripts. For one of these ESTs, we obtained the cDNA encompassing the complete coding sequence of a new serine protease, named SP212. The SP212 gene is part of a serine protease gene cluster located in the chromosome region 88A12-B1. This cluster includes the predicted genes CG9631, CG9649 and CG31326, which were previously identified as up-regulated after immune challenges in genomic-scale microarray analysis. In agreement with the proposal that this locus is co-regulated in response to microorganisms infection, we show here that SP212 is also up-regulated upon injury. Conclusion Using the ORESTES methodology we identified 17 novel exons from low abundance Drosophila transcripts, and through a PCR approach the complete CDS of one of these transcripts was defined. Our results show that the computational identification and manual inspection are not sufficient to annotate a genome in the absence of experimentally derived data. PMID:17650329

  13. Mechanisms of Cardiovascular Homeostasis and Pathophysiology?- From Gene Expression, Signal Transduction to Cellular Communication.

    PubMed

    Akazawa, Hiroshi

    2015-11-25

    During embryogenesis, progenitor cells are specified and differentiated into mature cardiomyocytes. Soon after birth, the ability of cardiomyocytes to proliferate is strongly restrained, and thereafter, they grow in size without cell division. Under pathological conditions, cardiomyocytes show adaptive and maladaptive responses through complex intracellular signaling pathways and cross-talking networks of intercellular and inter-tissue communications, but ultimately, they become dysfunctional and undergo cell death or degeneration. Cardiovascular diseases remain the most prevalent, costly, disabling, and deadly medical conditions. To develop novel therapies for them, it is important to elucidate the underlying mechanisms that govern gene expression, signal transduction to cellular communication. In this review article for the 2014 SATO Memorial Award, an approach to uncover molecular and cellular pathophysiology is summarized, focusing on homeobox transcription factor Nkx2-5 in the transcriptional regulation of the cardiac gene program, 3-phosphoinositide-dependent kinase-1, in the regulation of postnatal cardiomyocyte growth, survival, and function, angiotensin II type 1 receptor in the development of pathological hypertrophy and remodeling, and mast cell infiltration in the pathogenesis of atrial remodeling and fibrillation. (Circ J 2015; 79: 2529-2536). PMID:26538467

  14. A cellular genetics approach identifies gene-drug interactions and pinpoints drug toxicity pathway nodes

    PubMed Central

    Suzuki, Oscar T.; Frick, Amber; Parks, Bethany B.; Trask, O. Joseph; Butz, Natasha; Steffy, Brian; Chan, Emmanuel; Scoville, David K.; Healy, Eric; Benton, Cristina; McQuaid, Patricia E.; Thomas, Russell S.; Wiltshire, Tim

    2014-01-01

    New approaches to toxicity testing have incorporated high-throughput screening across a broad-range of in vitro assays to identify potential key events in response to chemical or drug treatment. To date, these approaches have primarily utilized repurposed drug discovery assays. In this study, we describe an approach that combines in vitro screening with genetic approaches for the experimental identification of genes and pathways involved in chemical or drug toxicity. Primary embryonic fibroblasts isolated from 32 genetically-characterized inbred mouse strains were treated in concentration-response format with 65 compounds, including pharmaceutical drugs, environmental chemicals, and compounds with known modes-of-action. Integrated cellular responses were measured at 24 and 72 h using high-content imaging and included cell loss, membrane permeability, mitochondrial function, and apoptosis. Genetic association analysis of cross-strain differences in the cellular responses resulted in a collection of candidate loci potentially underlying the variable strain response to each chemical. As a demonstration of the approach, one candidate gene involved in rotenone sensitivity, Cybb, was experimentally validated in vitro and in vivo. Pathway analysis on the combined list of candidate loci across all chemicals identified a number of over-connected nodes that may serve as core regulatory points in toxicity pathways. PMID:25221565

  15. The effects of local bFGF release and uniaxial strain on cellular adaptation and gene expression in a 3D environment: implications for ligament tissue engineering.

    PubMed

    Petrigliano, Frank A; English, Christopher S; Barba, David; Esmende, Sean; Wu, Benjamin M; McAllister, David R

    2007-11-01

    The objectives of this investigation were (1) to characterize the growth factor release profile of a basic fibroblast growth factor (bFGF)-coated three-dimensional (3D) polymer scaffold under static and cyclically strained conditions, and (2) to delineate the individual and collective contributions of locally released bFGF and mechanical strain on cellular morphology and gene expression in this 3D system. Scaffolds were treated with I(125)-bFGF and subjected to mechanical strain or maintained in a static environment and the media sampled for factor release over a period of 6 days. Over the first 10 hours, a burst release of 25% of the incorporated growth factor into the surrounding media was noted. At 24 hours, approximately 40% of the bFGF was released into the media, after which steady state was achieved and minimal subsequent release was noted. Mechanical stimulation had no effect on growth factor release from the scaffold in this system. To test the concerted effects of bFGF and mechanical stimulation on bone marrow stromal cells (BMSCs), scaffolds were loaded with 0, 100, or 500 ng of bFGF, seeded with cells, and subjected to mechanical strain or maintained in a static environment. Scaffolds were harvested at 1, 7, and 21 days for RT-PCR and histomorphometry. All scaffolds subjected to growth factor and/or mechanical stimulation demonstrated cellular adherence and spreading at 21 days. Conversely, in the absence of both bFGF and mechanical stimulation, cells demonstrated minimal cytoplasmic spread. Moreover, at 21 days, cells subjected to both mechanical stimulation and bFGF (500 ng) demonstrated the highest upregulation of stress-resistive (collagen I, III) and stress-responsive proteins (tenascin-C). The effect of growth factor may be dose sensitive, however, as unstrained scaffolds treated with 100 ng of bFGF demonstrated upregulation of gene expression comparable to strained scaffolds treated with lower doses of bFGF (0 or 100 ng). In conclusion, results from this study suggest that the stimulatory effects of bFGF are dose sensitive and appear to be influenced by the addition of mechanical strain. The concurrent application of biochemical and mechanical stimuli may be important in promoting the adaptation of BMSCs and driving the transcription of genes essential for synthesis of a functional ligament replacement tissue. PMID:17727336

  16. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway

    PubMed Central

    Awortwe, Charles; Manda, Vamshi K.; Avonto, Cristina; Khan, Shabana I.; Khan, Ikhlas A.; Walker, Larry A.; Bouic, Patrick J.; Rosenkranz, Bernd

    2015-01-01

    This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. Thus E. purpurea preparations cause herb–drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation. PMID:25377539

  17. Upregulated PD-1 Expression Is Associated with the Development of Systemic Lupus Erythematosus, but Not the PD-1.1 Allele of the PDCD1 Gene.

    PubMed

    Jiao, Qingqing; Liu, Cuiping; Yang, Ziliang; Ding, Qiang; Wang, Miaomiao; Li, Min; Zhu, Tingting; Qian, Hua; Li, Wei; Tu, Na; Fang, Fumin; Ye, Licai; Zhao, Zuotao; Qian, Qihong

    2014-01-01

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with complicated genetic inheritance. Programmed death 1 (PD-1), a negative T cell regulator to maintain peripheral tolerance, induces negative signals to T cells during interaction with its ligands and is therefore a candidate gene in the development of SLE. In order to examine whether expression levels of PD-1 contribute to the pathogenesis of SLE, 30 patients with SLE and 30 controls were recruited and their PD-1 expression levels in peripheral blood mononuclear cells (PBMCs) were measured via flow cytometry and quantitative real-time-reverse transcription polymerase chain reaction (RT-PCR). Also, whether PD-1 expression levels are associated with the variant of the SNP rs36084323 and the SLE Disease Activity Index (SLEDAI) was studied in this work. The PD-1 expression levels of SLE patients were significantly increased compared with those of the healthy controls. The upregulated PD-1 expression levels in SLE patients were greatly associated with SLEDAI scores. No significant difference was found between PD-1 expression levels and SNP rs36084323. The results suggest that increased expression of PD-1 may correlate with the pathogenesis of SLE, upregulated PD-1 expression may be a biomarker for SLE diagnosis, and PD-1 inhibitor may be useful to SLE treatment. PMID:24860805

  18. Upregulated PD-1 Expression Is Associated with the Development of Systemic Lupus Erythematosus, but Not the PD-1.1 Allele of the PDCD1 Gene

    PubMed Central

    Jiao, Qingqing; Liu, Cuiping; Yang, Ziliang; Ding, Qiang; Wang, Miaomiao; Li, Min; Zhu, Tingting; Qian, Hua; Li, Wei; Tu, Na; Fang, Fumin; Ye, Licai; Zhao, Zuotao; Qian, Qihong

    2014-01-01

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with complicated genetic inheritance. Programmed death 1 (PD-1), a negative T cell regulator to maintain peripheral tolerance, induces negative signals to T cells during interaction with its ligands and is therefore a candidate gene in the development of SLE. In order to examine whether expression levels of PD-1 contribute to the pathogenesis of SLE, 30 patients with SLE and 30 controls were recruited and their PD-1 expression levels in peripheral blood mononuclear cells (PBMCs) were measured via flow cytometry and quantitative real-time-reverse transcription polymerase chain reaction (RT-PCR). Also, whether PD-1 expression levels are associated with the variant of the SNP rs36084323 and the SLE Disease Activity Index (SLEDAI) was studied in this work. The PD-1 expression levels of SLE patients were significantly increased compared with those of the healthy controls. The upregulated PD-1 expression levels in SLE patients were greatly associated with SLEDAI scores. No significant difference was found between PD-1 expression levels and SNP rs36084323. The results suggest that increased expression of PD-1 may correlate with the pathogenesis of SLE, upregulated PD-1 expression may be a biomarker for SLE diagnosis, and PD-1 inhibitor may be useful to SLE treatment. PMID:24860805

  19. PPAR{alpha} gene expression is up-regulated by LXR and PXR activators in the small intestine

    SciTech Connect

    Inoue, Jun; Satoh, Shin-ichi; Kita, Mariko; Nakahara, Mayuko; Hachimura, Satoshi; Miyata, Masaaki; Nishimaki-Mogami, Tomoko; Sato, Ryuichiro

    2008-07-11

    LXR, PXR, and PPAR{alpha} are members of a nuclear receptor family which regulate the expression of genes involved in lipid metabolism. Here, we show the administration of T0901317 stimulates PPAR{alpha} gene expression in the small intestine but not in the liver of both normal and FXR-null mice. The administration of LXR specific ligand GW3965, or PXR specific ligand PCN has the same effect, indicating that ligand-dependent activation of LXR and PXR, but not FXR, is responsible for the increased gene expression of PPAR{alpha} in the mouse small intestine.

  20. Cellular density-dependent down-regulation of EP4 prostanoid receptors via the up-regulation of hypoxia-inducible factor-1? in HCA-7 human colon cancer cells

    PubMed Central

    Otake, Sho; Yoshida, Kenji; Seira, Naofumi; Sanchez, Christopher M; Regan, John W; Fujino, Hiromichi; Murayama, Toshihiko

    2015-01-01

    Increases in prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) levels are features of colon cancer. Among the different E-type prostanoid receptor subtypes, EP4 receptors are considered to play a crucial role in carcinogenesis by, for example, inducing COX-2 when stimulated with PGE2. However, EP4 receptor levels and PGE2-induced cellular responses are inconsistent among the cellular conditions. Therefore, the connections responsible for the expression of EP4 receptors were investigated in the present study by focusing on cell density-induced hypoxia-inducible factor-1? (HIF-1?). The expression of EP4 receptors was examined using immunoblot analysis, quantitative polymerase chain reaction, and reporter gene assays in HCA-7 human colon cancer cells with different cellular densities. The involvement of HIF-1? and its signaling pathways were also examined by immunoblot analysis, reporter gene assays, and with siRNA. We here demonstrated that EP4 receptors as well as EP4 receptor-mediated COX-2 expression levels decreased with an increase in cellular density. In contrast, HIF-1? levels increased in a cellular density-dependent manner. The knockdown of HIF-1? by siRNA restored the expression of EP4 receptors and EP4 receptor-mediated COX-2 in cells at a high density. Thus, the cellular density-dependent increase observed in HIF-1? expression levels reduced the expression of COX-2 by decreasing EP4 receptor levels. This novel regulation mechanism for the expression of EP4 receptors by HIF-1? may provide an explanation for the inconsistent actions of PGE2. The expression levels of EP4 receptors may vary depending on cellular density, which may lead to the differential activation of their signaling pathways by PGE2. Thus, cellular density-dependent PGE2-mediated signaling may determine the fate/stage of cancer cells, i.e., the surrounding environments could define the fate/stage of malignancies associated with colon cancer. PMID:25692008

  1. Vitamin D Metabolites Inhibit Hepatitis C Virus and Modulate Cellular Gene Expression

    PubMed Central

    Gutierrez, Julio A.; Jones, Krysten A.; Flores, Roxana; Singhania, Akul; Woelk, Christopher H.; Schooley, Robert T.; Wyles, David L.

    2015-01-01

    Background and Aims Previous studies suggest that low serum 25-hydroxyvitamin D [25(OH) D] levels are associated with reduced responsiveness to interferon and ribavirin therapy. We investigated the impact of vitamin D metabolites on HCV and cellular gene expression in cultured hepatoma cells. Methods HCV Replicon cell lines stably expressing luciferase reporter constructs (genotype 1b and 2a replicon) or JC1-Luc2a were incubated in the presence of vitamin D2, vitamin D3 or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Presence of HCV was quantified by a luciferase reporter assay and immunoblot of the Core protein. Synergy of interferon-alpha A/D (IFN-?) and 1,25(OH)2D3 was evaluated using the Chou-Talalay method. Cellular gene expression by microarray analysis using Illumina Bead Chips and real-time quantitative PCR. Results Vitamin D2, D3 and 1,25(OH)2D3 each demonstrated anti-HCV activity at low micro molar concentrations. In vitro conversion from D3 to 25(OH)D3 was shown by LC/MS/MS. Combination indices of 1,25(OH)2D3 and IFN-? demonstrated a synergistic effect (0.23-0.46) and significantly reduced core expression by immunoblot. Differentially expressed genes were identified between Huh7.5.1 cells in the presence and absence of 1,25(OH)2D3 and HCV. Genes involved with classical effects of vitamin D metabolism and excretion were activated, along with genes linked to autophagy such as G-protein coupled receptor 37 (GPR37) and Hypoxia-inducible factor 1-alpha (HIF1a). Additionally, additive effects of 1,25(OH)2D3 and IFN-? were seen on mRNA expression of chemokine motif ligand 20 (CCL20). Conclusions This study shows that vitamin D reduces HCV protein production in cell culture synergistically with IFN-?. Vitamin D also activates gene expression independently and additively with IFN-? and this may explain its ability to aid in the clearance of HCV in vivo.

  2. Upregulation of N-methyl-D-aspartate receptor subunits and c-Fos expressing genes in PC12D cells by nobiletin.

    PubMed

    Kimura, Junko; Nemoto, Kiyomitsu; Degawa, Masakuni; Yokosuka, Akihito; Mimaki, Yoshihiro; Shimizu, Kosuke; Oku, Naoto; Ohizumi, Yasushi

    2014-01-01

    The N-methyl-D-aspartate (NMDA) receptor plays a key role in learning and memory. Our recent studies have shown that nobiletin from citrus peels activates the cAMP response element-binding protein (CREB) signaling pathway and ameliorates NMDA receptor antagonist-induced learning impairment by activating extracellular signal-regulated kinase. For the first time, we have shown that nobiletin significantly upregulated mRNA expression of the NMDA receptor subunits NR1, NR2A, and NR2B in PC12D cells. Furthermore, c-Fos mRNA expression also increased due to the action of nobiletin. Our results indicate that nobiletin modulates the expression of essential genes for learning and memory by activating the CREB signaling pathway, and suggest that this action mechanism of nobiletin plays a crucial role in improving NMDA receptor antagonist-induced learning impairment in model animals with dementia. PMID:24964900

  3. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion.

    PubMed

    Gutowska-Owsiak, Danuta; Schaupp, Anna L; Salimi, Maryam; Selvakumar, Tharini A; McPherson, Tess; Taylor, Stephen; Ogg, Graham S

    2012-02-01

    Atopic eczema and psoriasis are common skin diseases. While it is well established that the pathogenesis of these diseases varies, both are characterized by impairment in epidermal barrier function and abnormal IL-17 expression in the skin and peripheral blood. Recent findings indicated that filaggrin is essential during barrier formation and its insufficiency underlies the pathogenesis of atopic eczema. Filaggrin downregulation has also been reported in psoriasis. It is clear that Th1/Th2 bias influences expression of the protein, but an analysis of the effects of interleukin-17 (IL-17) on the expression of the protein and profilaggrin-processing enzymes has not yet been reported. In addition, the effect of the cytokine on components of functional epidermal barrier, tight junctions and adhesion/desmosomal proteins, has not been elucidated. Keratinocytes were exposed to interleukin-17A, and microarray analysis was performed. Filaggrin protein level was assessed by western blot. We have observed a significant decrease in profilaggrin mRNA level in interleukin-17A-exposed cultures (P = 0.008). Expression of processing enzymes was also altered, indicating an indirect effect of the cytokine on filaggrin production/degradation. Moreover, expression of many genes involved in cellular adhesion was also decreased. A significant downregulation of filaggrin at the protein level was detected by western blot in immortal and primary keratinocytes. Gene ontology analysis indicated changes in keratinization, epidermal differentiation and formation of the cornified envelope. We conclude that IL-17A downregulates the expression of filaggrin and genes important for cellular adhesion which could affect epidermal barrier formation. This effect potentially contributes to barrier dysfunction and could become a possible therapeutic target. PMID:22229441

  4. Tumour necrosis factor superfamily member 15 (Tnfsf15) facilitates lymphangiogenesis via up-regulation of Vegfr3 gene expression in lymphatic endothelial cells.

    PubMed

    Qin, Ting-Ting; Xu, Guo-Ce; Qi, Jian-Wei; Yang, Gui-Li; Zhang, Kun; Liu, Hai-Lin; Xu, Li-Xia; Xiang, Rong; Xiao, Guozhi; Cao, Huiling; Wei, Yuquan; Zhang, Qiang-Zhe; Li, Lu-Yuan

    2015-11-01

    Lymphangiogenesis is essential in embryonic development but is rare in adults. It occurs, however, in many disease conditions including cancers. Vascular endothelial growth factor-C/D (VEGF-C/D) and VEGF receptor-3 (Vegfr3) play a critical role in the regulation of lymphangiogenesis. We investigated how the VEGF-C/Vegfr3 signalling system is regulated by tumour necrosis factor superfamily member 15 (Tnfsf15), an endothelium-derived cytokine. We report here that Tnfsf15, which is known to induce apoptosis in vascular endothelial cells, can promote lymphatic endothelial cell (LEC) growth and migration, stimulate lymphangiogenesis, and facilitate lymphatic circulation. Treatment of mouse LECs with Tnfsf15 results in up-regulation of Vegfr3 expression; this can be inhibited by gene silencing of death domain-containing receptor-3 (DR3; Tnfrsf25), a cell surface receptor for Tnfsf15, with siRNA, or by blocking Tnfsf15-DR3 interaction with a Tnfsf15 neutralizing antibody, 4-3H. Additionally, Tnfsf15/DR3 signalling pathways in LECs include activation of NF-?B. Tnfsf15-overexpressing transgenic mice exhibit a marked enhancement of lymph drainage; this is confirmed by treatment of wild-type mice with intraperitoneal injection of recombinant Tnfsf15. Moreover, systemic treatment of pregnant Tnfsf15 transgenic mice with 4-3H leads to inhibition of embryonic lymphangiogenesis. Our data indicate that Tnfsf15, a cytokine produced largely by endothelial cells, facilitates lymphangiogenesis by up-regulating Vegfr3 gene expression in LECs, contributing to the maintenance of the homeostasis of the circulatory system. This finding also suggests that Tnfsf15 may be of potential value as a therapeutic tool for the treatment of lymphoedema. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:26096340

  5. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells.

    PubMed

    Li, Huige; Xia, Ning; Brausch, Isolde; Yao, Ying; Förstermann, Ulrich

    2004-09-01

    Nitric oxide (NO) produced by endothelial nitric-oxide synthase (eNOS) represents an antithrombotic and anti-atherosclerotic principle in the vasculature. Hence, an enhanced expression of eNOS in response to pharmacological interventions could provide protection against cardiovascular diseases. In EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (HUVECs), an artichoke leaf extract (ALE) increased the activity of the human eNOS promoter (determined by luciferase reporter gene assay). An organic subfraction from ALE was more potent in this respect than the crude extract, whereas an aqueous subfraction of ALE was without effect. ALE and the organic subfraction thereof also increased eNOS mRNA expression (measured by an RNase protection assay) and eNOS protein expression (determined by Western blot) both in EA.hy 926 cells and in native HUVECs. NO production (measured by NO-ozone chemiluminescence) was increased by both extracts. In organ chamber experiments, ex vivo incubation (18 h) of rat aortic rings with the organic subfraction of ALE enhanced the NO-mediated vasodilator response to acetylcholine, indicating that the up-regulated eNOS remained functional. Caffeoylquinic acids and flavonoids are two major groups of constituents of ALE. Interestingly, the flavonoids luteolin and cynaroside increased eNOS promoter activity and eNOS mRNA expression, whereas the caffeoylquinic acids cynarin and chlorogenic acid were without effect. Thus, in addition to the lipid-lowering and antioxidant properties of artichoke, an increase in eNOS gene transcription may also contribute to its beneficial cardiovascular profile. Artichoke flavonoids are likely to represent the active ingredients mediating eNOS up-regulation. PMID:15123766

  6. Sexually dimorphic expression and estradiol mediated up-regulation of a sex-linked ribosomal gene, RPS6, in the zebra finch brain.

    PubMed

    Acharya, Kalpana D; Veney, Sean L

    2013-08-01

    Sex-linked genes are considered to be a major contributor to neural sex differences in zebra finches. While several candidates have been identified, additional ones are continuously being discovered. Here we report on a novel Z-linked ribosomal gene (rpS6) that is enhanced in the male brain as compared to the female's throughout life. In both sexes, expression of rpS6 is highest at P3 and P8 (just before the onset of morphologically detectable sex differences), decreases around P15, and then remains decreased through adulthood. Analysis of rpS6 mRNA revealed widespread distribution throughout the brain. However, within song regions HVC and RA, mRNA containing cells were greater in males as compared to females. Hormones are also involved in the development of neural dimorphisms, so we additionally investigated whether rpS6 might interact with estradiol (E2 ). An up-regulation of rpS6 gene was observed in both sexes following treatment with E2 and the effect was approximately twice as large in males as compared with females. These data suggest that rpS6 may be involved in sexual differentiation of the zebra finch brain, and that the effect is facilitated by E2 . PMID:23554148

  7. Epstein–Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression

    PubMed Central

    Ramasubramanyan, Sharada; Osborn, Kay; Al-Mohammad, Rajaei; Naranjo Perez-Fernandez, Ijiel B.; Zuo, Jianmin; Balan, Nicolae; Godfrey, Anja; Patel, Harshil; Peters, Gordon; Rowe, Martin; Jenner, Richard G.; Sinclair, Alison J.

    2015-01-01

    Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements. PMID:25779048

  8. Early life manganese exposure upregulates tumor-associated genes in the hypothalamus of female rats: relationship to manganese-induced precocious puberty.

    PubMed

    Srivastava, Vinod K; Hiney, Jill K; Dees, William L

    2013-12-01

    Prepubertal exposure to low, but elevated levels of manganese (Mn) can induce increased secretions of puberty-related hormones resulting in precocious pubertal development in female rats. These events are due to an action of the element within the hypothalamus to induce the secretion of gonadotropin-releasing hormone (GnRH). Because of these prepubertal effects of Mn and because precocious puberty is a serious neuroendocrine disorder, we have assessed whether early life exposure to this environmental element is capable of precociously upregulating the expression of a select group of genes previously associated with tumor growth or suppression, and that have more recently been shown to increase at the normal time of puberty. Female rat pups received a daily dose of either 10mg/kg manganese(II) chloride or an equal volume of saline by gastric gavage from postnatal day 12 through day 22 or 29. At this time, blood was collected for estradiol analysis and hypothalamic brain tissue frozen on dry ice until assessed for gene expressions. Rats exposed to the elevated levels of Mn showed a precocious increase in GnRH gene expression in the preoptic area and rostral hypothalamus on day 29, an action associated with precociously increased expressions of specific tumor-associated, puberty-related genes. These results demonstrate for the first time that prepubertal Mn exposure is capable of activating specific upstream genes regulating hypothalamic GnRH and suggest that these actions are involved in the mechanism by which this element can induce precocious puberty. PMID:23997110

  9. Applying a highly specific and reproducible cDNA RDA method to clone garlic up-regulated genes in human gastric cancer cells

    PubMed Central

    Li, Yong; Lu, You-Yong

    2002-01-01

    AIM: To develop and optimize cDNA representational difference analysis (cDNA RDA) method and to identify and clone garlic up-regulated genes in human gastric cancer (HGC) cells. METHODS: We performed cDNA RDA method by using abundant double-stranded cDNA messages provided by two self-constructed cDNA libraries (Allitridi-treated and paternal HGC cell line BGC823 cells cDNA libraries respectively). BamH I and Xho I restriction sites harbored in the library vector were used to select representations. Northern and Slot blots analyses were employed to identify the obtained difference products. RESULTS: Fragments released from the cDNA library vector after restriction endonuclease digestion acted as good marker indicating the appropriate digestion degree for library DNA. Two novel expressed sequence tags (ESTs) and a recombinant gene were obtained. Slot blots result showed a 8-fold increase of glia-derived nexin/protease nexin 1 (GDN/PN1) gene expression level and 4-fold increase of hepatitis B virus x-interacting protein (XIP) mRNA level in BGC823 cells after Allitridi treatment for 72 h. CONCLUSION: Elevated levels of GDN/PN1 and XIP mRNAs induced by Allitridi provide valuable molecular evidence for elucidating the garlic's efficacies against neurodegenerative and inflammatory diseases. Isolation of a recombinant gene and two novel ESTs further show cDNA RDA based on cDNA libraries to be a powerful method with high specificity and reproducibility in cloning differentially expressed genes. PMID:11925594

  10. Aquatic Toxicology 78 (2006) 272283 Up-regulation of the alligator CYP3A77 gene by toxaphene

    E-print Network

    Blumberg, Bruce

    2006-01-01

    -2300, United States d University of Victoria, Department of Biochemistry and Microbiology, Petch 249/251, P.O. Box 3055 STN CSC, Victoria B.C., Canada V8W 3P6 Received 19 July 2005; received in revised form 25, an organochlorine compound found in high concentrations in Lake Apopka alligators, induces this gene. Estrogen

  11. Cloning and characterization of up-regulated HbSINA4 gene induced by drought stress in Tibetan hulless barley.

    PubMed

    Yuan, H J; Luo, X M; Nyima, T S; Wang, Y L; Xu, Q J; Zeng, X Q

    2015-01-01

    Hulless barley is an important crop cereal in Tibetan, China. Drought is a major abiotic stress in barley production. In this study, we cloned the drought-related HbSINA4 gene from the variety 'Himalaya 10' and analyzed its expression patterns under different drought and rehydration conditions. The cDNA of HbSINA4 was 1052 bp long, including an open reading frame of 771 bp that encoded a protein of 256 amino acids. The molecular weight of HbSINA4 protein was predicted to be 29.53 kDa and the theoretical pI was 8.32. Bioinformatic analysis showed that the HbSINA4 gene contained a protein kinase domain profile family signature motif, with high similarity to that of Oryza sativa and Brachypodium distachyon. Real-time polymerase chain reaction (PCR) assays revealed that gene expression declined rapidly with increasing drought stress; in contrast, its expression increased after rehydration treatment. Therefore, the HbSINA4 gene responds to the drought stress and plays an important role in barely drought resistance. Furthermore, our results provide information which may be useful in other temperate crop studies and in aiding resistance to drought. PMID:26634495

  12. Perturbations at the ribosomal genes loci are at the centre of cellular dysfunction and human disease

    PubMed Central

    2014-01-01

    Ribosomal RNA (rRNA) gene (rDNA) transcription by RNA Polymerase I (Pol I) drives cell growth and underlies nucleolar structure and function, indirectly coordinating many fundamental cellular processes. The importance of keeping rDNA transcription under tight control is reflected by the fact that deranged Pol I transcription is a feature of cancer and other human disorders. In this review, we discuss multiple aspects of rDNA function including the relationship between Pol I transcription and proliferative capacity, the role of Pol I transcription in mediating nucleolar structure and integrity, and rDNA/nucleolar interactions with the genome and their influence on heterochromatin and global genome stability. Furthermore, we discuss how perturbations in the structure of the rDNA loci might contribute to human disease, in some cases independent of effects on ribosome biogenesis. PMID:25949792

  13. Cellular adhesion gene SELP is associated with rheumatoid arthritis and displays differential allelic expression.

    PubMed

    Burkhardt, Jana; Blume, Mechthild; Petit-Teixeira, Elisabeth; Hugo Teixeira, Vitor; Steiner, Anke; Quente, Elfi; Wolfram, Grit; Scholz, Markus; Pierlot, Céline; Migliorini, Paola; Bombardieri, Stefano; Balsa, Alejandro; Westhovens, René; Barrera, Pilar; Radstake, Timothy R D J; Alves, Helena; Bardin, Thomas; Prum, Bernard; Emmrich, Frank; Cornelis, François; Ahnert, Peter; Kirsten, Holger

    2014-01-01

    In rheumatoid arthritis (RA), a key event is infiltration of inflammatory immune cells into the synovial lining, possibly aggravated by dysregulation of cellular adhesion molecules. Therefore, single nucleotide polymorphisms of 14 genes involved in cellular adhesion processes (CAST, ITGA4, ITGB1, ITGB2, PECAM1, PTEN, PTPN11, PTPRC, PXN, SELE, SELP, SRC, TYK2, and VCAM1) were analyzed for association with RA. Association analysis was performed consecutively in three European RA family sample groups (Nfamilies?=?407). Additionally, we investigated differential allelic expression, a possible functional consequence of genetic variants. SELP (selectin P, CD62P) SNP-allele rs6136-T was associated with risk for RA in two RA family sample groups as well as in global analysis of all three groups (ptotal?=?0.003). This allele was also expressed preferentially (p<10-6) with a two- fold average increase in regulated samples. Differential expression is supported by data from Genevar MuTHER (p1?=?0.004; p2?=?0.0177). Evidence for influence of rs6136 on transcription factor binding was also found in silico and in public datasets reporting in vitro data. In summary, we found SELP rs6136-T to be associated with RA and with increased expression of SELP mRNA. SELP is located on the surface of endothelial cells and crucial for recruitment, adhesion, and migration of inflammatory cells into the joint. Genetically determined increased SELP expression levels might thus be a novel additional risk factor for RA. PMID:25147926

  14. Cellular Adhesion Gene SELP Is Associated with Rheumatoid Arthritis and Displays Differential Allelic Expression

    PubMed Central

    Petit-Teixeira, Elisabeth; Hugo Teixeira, Vitor; Steiner, Anke; Quente, Elfi; Wolfram, Grit; Scholz, Markus; Pierlot, Céline; Migliorini, Paola; Bombardieri, Stefano; Balsa, Alejandro; Westhovens, René; Barrera, Pilar; Radstake, Timothy R. D. J.; Alves, Helena; Bardin, Thomas; Prum, Bernard; Emmrich, Frank; Cornelis, François

    2014-01-01

    In rheumatoid arthritis (RA), a key event is infiltration of inflammatory immune cells into the synovial lining, possibly aggravated by dysregulation of cellular adhesion molecules. Therefore, single nucleotide polymorphisms of 14 genes involved in cellular adhesion processes (CAST, ITGA4, ITGB1, ITGB2, PECAM1, PTEN, PTPN11, PTPRC, PXN, SELE, SELP, SRC, TYK2, and VCAM1) were analyzed for association with RA. Association analysis was performed consecutively in three European RA family sample groups (Nfamilies?=?407). Additionally, we investigated differential allelic expression, a possible functional consequence of genetic variants. SELP (selectin P, CD62P) SNP-allele rs6136-T was associated with risk for RA in two RA family sample groups as well as in global analysis of all three groups (ptotal?=?0.003). This allele was also expressed preferentially (p<10?6) with a two- fold average increase in regulated samples. Differential expression is supported by data from Genevar MuTHER (p1?=?0.004; p2?=?0.0177). Evidence for influence of rs6136 on transcription factor binding was also found in silico and in public datasets reporting in vitro data. In summary, we found SELP rs6136-T to be associated with RA and with increased expression of SELP mRNA. SELP is located on the surface of endothelial cells and crucial for recruitment, adhesion, and migration of inflammatory cells into the joint. Genetically determined increased SELP expression levels might thus be a novel additional risk factor for RA. PMID:25147926

  15. Glutathione S-Transferase (GST) Gene Diversity in the Crustacean Calanus finmarchicus – Contributors to Cellular Detoxification

    PubMed Central

    Roncalli, Vittoria; Cieslak, Matthew C.; Passamaneck, Yale; Christie, Andrew E.; Lenz, Petra H.

    2015-01-01

    Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST) superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival. PMID:25945801

  16. Salmonella enterica Serovar Typhimurium Colonizing the Lumen of the Chicken Intestine Grows Slowly and Upregulates a Unique Set of Virulence and Metabolism Genes?

    PubMed Central

    Harvey, P. C.; Watson, M.; Hulme, S.; Jones, M. A.; Lovell, M.; Berchieri, A.; Young, J.; Bumstead, N.; Barrow, P.

    2011-01-01

    The pattern of global gene expression in Salmonella enterica serovar Typhimurium bacteria harvested from the chicken intestinal lumen (cecum) was compared with that of a late-log-phase LB broth culture using a whole-genome microarray. Levels of transcription, translation, and cell division in vivo were lower than those in vitro. S. Typhimurium appeared to be using carbon sources, such as propionate, 1,2-propanediol, and ethanolamine, in addition to melibiose and ascorbate, the latter possibly transformed to d-xylulose. Amino acid starvation appeared to be a factor during colonization. Bacteria in the lumen were non- or weakly motile and nonchemotactic but showed upregulation of a number of fimbrial and Salmonella pathogenicity island 3 (SPI-3) and 5 genes, suggesting a close physical association with the host during colonization. S. Typhimurium bacteria harvested from the cecal mucosa showed an expression profile similar to that of bacteria from the intestinal lumen, except that levels of transcription, translation, and cell division were higher and glucose may also have been used as a carbon source. PMID:21768276

  17. Against All Odds: Trehalose-6-Phosphate Synthase and Trehalase Genes in the Bdelloid Rotifer Adineta vaga Were Acquired by Horizontal Gene Transfer and Are Upregulated during Desiccation

    PubMed Central

    Hespeels, Boris; Li, Xiang; Flot, Jean-François; Pigneur, Lise-Marie; Malaisse, Jeremy; Da Silva, Corinne; Van Doninck, Karine

    2015-01-01

    The disaccharide sugar trehalose is essential for desiccation resistance in most metazoans that survive dryness; however, neither trehalose nor the enzymes involved in its metabolism have ever been detected in bdelloid rotifers despite their extreme resistance to desiccation. Here we screened the genome of the bdelloid rotifer Adineta vaga for genes involved in trehalose metabolism. We discovered a total of four putative trehalose-6-phosphate synthase (TPS) and seven putative trehalase (TRE) gene copies in the genome of this ameiotic organism; however, no trehalose-6-phosphate phosphatase (TPP) gene or domain was detected. The four TPS copies of A. vaga appear more closely related to plant and fungi proteins, as well as to some protists, whereas the seven TRE copies fall in bacterial clades. Therefore, A. vaga likely acquired its trehalose biosynthesis and hydrolysis genes by horizontal gene transfers. Nearly all residues important for substrate binding in the predicted TPS domains are highly conserved, supporting the hypothesis that several copies of the genes might be functional. Besides, RNAseq library screening showed that trehalase genes were highly expressed compared to TPS genes, explaining probably why trehalose had not been detected in previous studies of bdelloids. A strong overexpression of their TPS genes was observed when bdelloids enter desiccation, suggesting a possible signaling role of trehalose-6-phosphate or trehalose in this process. PMID:26161530

  18. Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting

    PubMed Central

    Zheng, Nan; Yin, Lichen; Song, Ziyuan; Ma, Liang; Tang, Haoyu; Gabrielson, Nathan P.; Lu, Hua; Cheng, Jianjun

    2014-01-01

    The application of non-viral gene delivery vectors is often accompanied with the poor correlation between transfection efficiency and the safety profiles of vectors: vectors with high transfection efficiencies often suffer from high toxicities, making it unlikely to improve their efficiencies by increasing the DNA dosage. In the current study, we developed a ternary complex system which consisted of a highly membrane-active cationic helical polypeptide (PVBLG-8), a low-toxic, membrane-inactive cationic helical polypeptide (PVBLG-7) capable of mediating mannose receptor targeting, and DNA. The PVBLG-7 moiety notably enhanced the cellular uptake and transfection efficiency of PVBLG-8 in a variety of mannose receptor-expressing cell types (HeLa, COS-7, and Raw 264.7), while it did not compromise the membrane permeability of PVBLG-8 or bring additional cytotoxicities. Because of the simplicity and adjustability of the self-assembly approach, optimal formulations of the ternary complexes with a proper balance between membrane activity and targeting capability were easily identified in each specific cell type. The optimal ternary complexes displayed desired cell tolerability and markedly outperformed the PVBLG-8/DNA binary complexes as well as commercial reagent Lipofectamine™ 2000 in terms of transfection efficiency. This study therefore provides an effective and facile strategy to overcome the efficiency-toxicity poor correlation of non-viral vectors, which contributes insights into the design strategy of effective and safe non-viral gene delivery vectors. PMID:24211080

  19. Mechanistic links between cellular trade-offs, gene expression, and growth

    PubMed Central

    Oyarzún, Diego A.; Danos, Vincent; Swain, Peter S.

    2015-01-01

    Intracellular processes rarely work in isolation but continually interact with the rest of the cell. In microbes, for example, we now know that gene expression across the whole genome typically changes with growth rate. The mechanisms driving such global regulation, however, are not well understood. Here we consider three trade-offs that, because of limitations in levels of cellular energy, free ribosomes, and proteins, are faced by all living cells and we construct a mechanistic model that comprises these trade-offs. Our model couples gene expression with growth rate and growth rate with a growing population of cells. We show that the model recovers Monod’s law for the growth of microbes and two other empirical relationships connecting growth rate to the mass fraction of ribosomes. Further, we can explain growth-related effects in dosage compensation by paralogs and predict host–circuit interactions in synthetic biology. Simulating competitions between strains, we find that the regulation of metabolic pathways may have evolved not to match expression of enzymes to levels of extracellular substrates in changing environments but rather to balance a trade-off between exploiting one type of nutrient over another. Although coarse-grained, the trade-offs that the model embodies are fundamental, and, as such, our modeling framework has potentially wide application, including in both biotechnology and medicine. PMID:25695966

  20. Molecular and Cellular Endocrinology 283 (2008) 3848 Auto-regulation of estrogen receptor subtypes and gene expression profiling

    E-print Network

    Xia, Xuhua

    2008-01-01

    Molecular and Cellular Endocrinology 283 (2008) 38­48 Auto-regulation of estrogen receptor subtypes-regulation of the three goldfish estrogen receptor (ER) subtypes was examined simultaneously in multiple tissues. © 2007 Elsevier Ireland Ltd. All rights reserved. Keywords: Estrogen receptors; Fish; Aromatase; Gene

  1. Registering Drosophila Embryos at Cellular Resolution to Build a Quantitative 3D Atlas of Gene Expression Patterns and Morphology

    E-print Network

    Fowlkes, Charless

    Registering Drosophila Embryos at Cellular Resolution to Build a Quantitative 3D Atlas of Gene , Mark D. Biggin2 , David W. Knowles2 , Damir Sudar2 , Jitendra Malik1 Berkeley Drosophila Transcription The Berkeley Drosophila Transcription Network Project is developing a suite of methods to convert volumetric

  2. Panax ginseng extract modulates oxidative stress, DNA fragmentation and up-regulate gene expression in rats sub chronically treated with aflatoxin B1 and fumonisin B 1.

    PubMed

    Hassan, Aziza M; Abdel-Aziem, Sekena H; El-Nekeety, Aziza A; Abdel-Wahhab, Mosaad A

    2015-10-01

    Aflatoxins and fumonisins are important food-borne mycotoxins implicated in human health and have cytotoxic effects. The aims of the current study were to evaluate the protective role of Panax ginseng extract (PGE) against the synergistic effect of subchronic administration of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) on DNA and gene expression in rat. Female Sprague-Dawley rats were divided into eight groups (ten rats/group) and treated for 12 weeks including the control group, the group having received AFB1 (80 µg/kg bw), the group having received FB1 (100 µg/kg bw), the group having received AFB1 plus FB1 and the groups having received PGE (20 mg/kg bw) alone or with AFB1 and/or FB1. At the end of experiment, liver and kidney were collected for the determination of DNA fragmentation, lipid peroxidation (LP), glutathione (GSH) contents and alterations in gene expression. The results indicated that these mycotoxins increased DNA fragmentation, LP and decreased GSH content in liver and kidney and down-regulated gene expression of antioxidants enzymes. The combined treatments with AFB1 and/or FB1 plus PGE suppressed DNA fragmentation only in the liver, normalized LP and increased GSH in the liver and kidney as well as up-regulated the expression of GPx, SOD1 and CAT mRNA. It could be concluded that AFB1 and FB1 have synergistic genotoxic effects. PGE induced protective effects against their oxidative stress and genotoxicity through its antioxidant properties. PMID:24748134

  3. Transcription factor REST negatively influences the protein kinase C-dependent up-regulation of human mu-opioid receptor gene transcription.

    PubMed

    Bedini, Andrea; Baiula, Monica; Carbonari, Gioia; Spampinato, Santi

    2010-01-01

    Mu-opioid receptor expression increases during neurogenesis, regulates the survival of maturing neurons and is implicated in ischemia-induced neuronal death. The repressor element 1 silencing transcription factor (REST), a regulator of a subset of genes in differentiating and post-mitotic neurons, is involved in its transcriptional repression. Extracellular signaling molecules and mechanisms that control the human mu-opioid receptor (hMOR) gene transcription are not clearly understood. We examined the role of protein kinase C (PKC) on hMOR transcription in a model of neuronal cells and in the context of the potential influence of REST. In native SH-SY5Y neuroblastoma cells, PKC activation with phorbol 12-myristate 13-acetate (PMA, 16 nM, 24h) down-regulated hMOR transcription and concomitantly elevated the REST binding activity to repressor element 1 of the hMOR promoter. In contrast, PMA activated hMOR gene transcription when REST expression was knocked down by an antisense strategy or by retinoic acid-induced cell differentiation. PMA acts through a PKC-dependent pathway requiring downstream MAP kinases and the transcription factor AP-1. In a series of hMOR-luciferase promoter/reporter constructs transfected into SH-SY5Y cells and PC12 cells, PMA up-regulated hMOR transcription in PC12 cells lacking REST, and in SH-SY5Y cells either transfected with constructs deficient in the REST DNA binding element or when REST was down-regulated in retinoic acid-differentiated cells. These findings help explain how hMOR transcription is regulated and may clarify its contribution to epigenetic modifications and reprogramming of differentiated neuronal cells exposed to PKC-activating agents. PMID:19913583

  4. 2009 pandemic H1N1 influenza virus causes disease and upregulation of genes related to inflammatory and immune responses, cell death, and lipid metabolism in pigs.

    PubMed

    Ma, Wenjun; Belisle, Sarah E; Mosier, Derek; Li, Xi; Stigger-Rosser, Evelyn; Liu, Qinfang; Qiao, Chuanling; Elder, Jake; Webby, Richard; Katze, Michael G; Richt, Juergen A

    2011-11-01

    There exists limited information about whether adaptation is needed for cross-species transmission of the 2009 pandemic H1N1 influenza virus (pH1N1). Here, we compare the pathogenesis of two pH1N1 viruses, one derived from a human patient (A/CA/04/09 [CA09]) and the other from swine (A/swine/Alberta/25/2009 [Alb09]), with that of the 1918-like classical swine influenza virus (A/swine/Iowa/1930 [IA30]) in the pig model. Both pH1N1 isolates induced clinical symptoms such as coughing, sneezing, decreased activity, fever, and labored breathing in challenged pigs, but IA30 virus did not cause any clinical symptoms except fever. Although both the pH1N1 viruses and the IA30 virus caused lung lesions, the pH1N1 viruses were shed from the nasal cavities of challenged pigs whereas the IA30 virus was not. Global gene expression analysis indicated that transcriptional responses of the viruses were distinct. pH1N1-infected pigs had an upregulation of genes related to inflammatory and immune responses at day 3 postinfection that was not seen in the IA30 infection, and expression levels of genes related to cell death and lipid metabolism at day 5 postinfection were markedly different from those of IA30 infection. These results indicate that both pH1N1 isolates are more virulent due in part to differences in the host transcriptional response during acute infection. Our study also indicates that pH1N1 does not need prior adaptation to infect pigs, has a high potential to be maintained in naïve swine populations, and might reassort with currently circulating swine influenza viruses. PMID:21900171

  5. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    35S-Labeled calmodulin (CaM) was used to screen a tobacco anther cDNA library. A positive clone (NtER1) with high homology to an early ethylene-up-regulated gene (ER66) in tomato, and an Arabidopsis homolog was isolated and characterized. Based on the helical wheel projection, a 25-mer peptide corresponding to the predicted CaM-binding region of NtER1 (amino acids 796-820) was synthesized. The gel-mobility shift assay showed that the peptide formed a stable complex with CaM only in the presence of Ca(2+). CaM binds to NtER1 with high affinity (K(d) approximately 12 nm) in a calcium-dependent manner. Tobacco flowers at different stages of development were treated with ethylene or with 1-methylcyclopropene for 2 h before treating with ethylene. Northern analysis showed that the NtER1 was rapidly induced after 15 min of exposure to ethylene. However, the 2-h 1-methylcyclopropene treatment totally blocked NtER1 expression in flowers at all stages of development, suggesting that NtER1 is an early ethylene-up-regulated gene. The senescing leaves and petals had significantly increased NtER1 induction as compared with young leaves and petals, implying that NtER1 is developmentally regulated and acts as a trigger for senescence and death. This is the first documented evidence for the involvement of Ca(2+)/CaM-mediated signaling in ethylene action.

  6. Hypoxia-independent upregulation of placental hypoxia inducible factor-1? gene expression contributes to the pathogenesis of preeclampsia.

    PubMed

    Iriyama, Takayuki; Wang, Wei; Parchim, Nicholas F; Song, Anren; Blackwell, Sean C; Sibai, Baha M; Kellems, Rodney E; Xia, Yang

    2015-06-01

    Accumulation of hypoxia inducible factor-1? (HIF-1?) is commonly an acute and beneficial response to hypoxia, whereas chronically elevated HIF-1? is associated with multiple disease conditions, including preeclampsia, a serious hypertensive disease of pregnancy. However, the molecular basis underlying the persistent elevation of placental HIF-1? in preeclampsia and its role in the pathogenesis of preeclampsia are poorly understood. Here we report that Hif-1? mRNA and HIF-1? protein were elevated in the placentas of pregnant mice infused with angiotensin II type I receptor agonistic autoantibody, a pathogenic factor in preeclampsia. Knockdown of placental Hif-1? mRNA by specific siRNA significantly attenuated hallmark features of preeclampsia induced by angiotensin II type I receptor agonistic autoantibody in pregnant mice, including hypertension, proteinuria, kidney damage, impaired placental vasculature, and elevated maternal circulating soluble fms-like tyrosine kinase-1 levels. Next, we discovered that Hif-1? mRNA levels and HIF-1? protein levels were induced in an independent preeclampsia model with infusion of the inflammatory cytokine tumor necrosis factor superfamily member 14 (LIGHT). SiRNA knockdown experiments also demonstrated that elevated HIF-1? contributed to LIGHT-induced preeclampsia features. Translational studies with human placentas showed that angiotensin II type I receptor agonistic autoantibody or LIGHT is capable of inducing HIF-1? in a hypoxia-independent manner. Moreover, increased HIF-1? was found to be responsible for angiotensin II type I receptor agonistic autoantibody or LIGHT-induced elevation of Flt-1 gene expression and production of soluble fms-like tyrosine kinase-1 in human villous explants. Overall, we demonstrated that hypoxia-independent stimulation of HIF-1? gene expression in the placenta is a common pathogenic mechanism promoting disease progression. Our findings reveal new insight to preeclampsia and highlight novel therapeutic possibilities for the disease. PMID:25847948

  7. A Prolyl-Hydroxylase Inhibitor, Ethyl-3,4-Dihydroxybenzoate, Induces Cell Autophagy and Apoptosis in Esophageal Squamous Cell Carcinoma Cells via Up-Regulation of BNIP3 and N-myc Downstream-Regulated Gene-1

    PubMed Central

    Han, Bo; Li, Wei; Sun, Yulin; Zhou, Lanping; Xu, Yang; Zhao, Xiaohang

    2014-01-01

    The protocatechuic acid ethyl ester ethyl-3,4-dihydroxybenzoate is an antioxidant found in the testa of peanut seeds. Previous studies have shown that ethyl-3,4-dihydroxybenzoate can effectively reduce breast cancer cell metastasis by inhibiting prolyl-hydroxylase. In this study, we investigated the cytotoxic effect of ethyl-3,4-dihydroxybenzoate on esophageal squamous cell carcinoma cells in vitro and identified key regulators of ethyl-3,4-dihydroxybenzoate-induced esophageal cancer cell death through transcription expression profiling. Using flow cytometry analysis, we found that ethyl-3,4-dihydroxybenzoate induced S phase accumulation, a loss in mitochondrial membrane permeabilization, and caspase-dependent apoptosis. Moreover, an expression profile analysis identified 46 up- and 9 down-regulated genes in esophageal cancer KYSE 170 cells treated with ethyl-3,4-dihydroxybenzoate. These differentially expressed genes are involved in several signaling pathways associated with cell cycle regulation and cellular metabolism. Consistent with the expression profile results, the transcriptional and protein expression levels of candidate genes NDRG1, BNIP3, AKR1C1, CCNG2 and VEGFA were found to be significantly increased in treated KYSE 170 cells by reverse-transcription PCR and western blot analysis. We also found that protein levels of hypoxia-inducible factor-1?, BNIP3, Beclin and NDRG1 were increased and that enriched expression of BNIP3 and Beclin caused autophagy mediated by microtubule-associated protein 1 light chain 3 in the treated cells. Autophagy and apoptosis were activated together in esophageal cancer cells after exposed to ethyl-3,4-dihydroxybenzoate. Furthermore, knock-down of NDRG1 expression by siRNA significantly attenuated apoptosis in the cancer cells, implying that NDRG1 may be required for ethyl-3,4-dihydroxybenzoate-induced apoptosis. Together, these results suggest that the cytotoxic effects of ethyl-3,4-dihydroxybenzoate were mediated by the up-regulation of NDRG1, BNIP3, Beclin and hypoxia-inducible factor-1?, initiating BNIP3 and Beclin mediated autophagy at an early stage and ultimately resulting in esophageal cancer cell apoptosis. PMID:25232961

  8. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4

    SciTech Connect

    Brüning, Ansgar Matsingou, Christina; Brem, German Johannes; Rahmeh, Martina; Mylonas, Ioannis

    2012-10-15

    Inhibins and activins are gonadal peptide hormones of the transforming growth factor-? super family with important functions in the reproductive system. By contrast, the recently identified inhibin ?E subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin ?E in hepatoma cells and anti-proliferative effects of ectopic inhibin ?E overexpression indicated growth-regulatory effects of inhibin ?E. We observed a selective re-expression of the inhibin ?E subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin ?E re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin ?E expression in HeLa cells and indicates inhibin ?E as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin ?E subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress. -- Highlights: ? Endoplasmic reticulum stress induces inhibin beta E expression. ? Inhibin beta E is regulated by the transcription factor ATF4. ? Inhibin beta E expression can be used as a marker for drug-induced ER stress.

  9. A Single-Cell Gene-Expression Profile Reveals Inter-Cellular Heterogeneity within Human Monocyte Subsets

    PubMed Central

    Gren, Susanne T.; Rasmussen, Thomas B.; Janciauskiene, Sabina; Håkansson, Katarina; Gerwien, Jens G.; Grip, Olof

    2015-01-01

    Human monocytes are a heterogeneous cell population classified into three different subsets: Classical CD14++CD16-, intermediate CD14++CD16+, and non-classical CD14+CD16++ monocytes. These subsets are distinguished by their differential expression of CD14 and CD16, and unique gene expression profile. So far, the variation in inter-cellular gene expression within the monocyte subsets is largely unknown. In this study, the cellular variation within each human monocyte subset from a single healthy donor was described by using a novel single-cell PCR gene-expression analysis tool. We investigated 86 different genes mainly encoding cell surface markers, and proteins involved in immune regulation. Within the three human monocyte subsets, our descriptive findings show multimodal expression of key immune response genes, such as CD40, NF?B1, RELA, TLR4, TLR8 and TLR9. Furthermore, we discovered one subgroup of cells within the classical monocytes, which showed alterations of 22 genes e.g. IRF8, CD40, CSF1R, NF?B1, RELA and TNF. Additionally one subgroup within the intermediate and non-classical monocytes also displayed distinct gene signatures by altered expression of 8 and 6 genes, respectively. Hence the three monocyte subsets can be further subdivided according to activation status and differentiation, independently of the traditional classification based on cell surface markers. Demonstrating the use and the ability to discover cell heterogeneity within defined populations of human monocytes is of great importance, and can be useful in unravelling inter-cellular variation in leukocyte populations, identifying subpopulations involved in disease pathogenesis and help tailor new therapies. PMID:26650546

  10. Aspirin influences megakaryocytic gene expression leading to up-regulation of multidrug resistance protein-4 in human platelets

    PubMed Central

    Massimi, Isabella; Guerriero, Raffaella; Lotti, Lavinia Vittoria; Lulli, Valentina; Borgognone, Alessandra; Romani, Federico; Barillà, Francesco; Gaudio, Carlo; Gabbianelli, Marco; Frati, Luigi; Pulcinelli, Fabio M

    2014-01-01

    Aim The aim of the study was to investigate whether human megakaryocytic cells have an adaptive response to aspirin treatment, leading to an enhancement of multidrug resistance protein-4 (MRP4) expression in circulating platelets responsible for a reduced aspirin action. We recently found that platelet MRP4 overexpression has a role in reducing aspirin action in patients after by-pass surgery. Aspirin enhances MRP4-mRNA levels in rat liver and drug administration transcriptionally regulates MRP4 gene expression through peroxisome proliferator-activated receptor-? (PPAR?). Methods The effects induced by aspirin or PPAR? agonist (WY14643) on MRP4 modulation were evaluated in vitro in a human megakaryoblastic DAMI cell line, in megakaryocytes (MKs) and in platelets obtained from human haematopoietic progenitor cell (HPC) cultures, and in vivo platelets obtained from aspirin treated healthy volunteers (HV). Results In DAMI cells, aspirin and WY14643 treatment induced a significant increase in MRP4 and PPAR? expression. In human MKs grown in the presence of either aspirin or WY14643, MRP4 and PPAR?-mRNA were higher than in control cultures and derived platelets showed an enhancement in MRP4 protein expression. The ability of aspirin to modulate MRP4 expression in MKs and to transfer it to platelets was also confirmed in vivo. In fact, we found the highest MRP4 mRNA and protein expression in platelets obtained from HV after 15 days' aspirin treatment. Conclusions The present study provides evidence, for the first time, that aspirin treatment affects the platelet protein pattern through MK genomic modulation. This work represents an innovative and attractive approach, useful both to identify patients less sensitive to aspirin and to improve pharmacological treatment in cardiovascular high-risk patients. PMID:24902864

  11. Dietary wolfberry up-regulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice

    PubMed Central

    Yu, Huifeng; Wark, Logan; Ji, Hua; Willard, Lloyd; Jaing, Yu; Han, Jing; He, Hui; Ortiz, Edlin; Zhang, Yunong; Medeiros, Denis M; Lin, Dingbo

    2013-01-01

    Scope Our aim was to investigate whether dietary wolfberry altered carotenoid metabolic gene expression and enhanced mitochondrial biogenesis in the retina of diabetic mice. Methods and Results Six-week-old male db/db and wild type mice were fed the control or wolfberry diets for 8 weeks. At study termination, liver and retinal tissues were collected for analysis by transmission electron microscopy, real-time PCR, immunoprecipitation, Western blot, and HPLC. Wolfberry elevated zeaxanthin and lutein levels in the liver and retinal tissues and stimulated expression of retinal scavenger receptor class B type I, glutathione S-transferase Pi 1, and ?,?-carotene 9’,10’-oxygenase 2, and induced activation and nuclear enrichment of retinal AMP-activated protein kinase ?2 (AMPK?2). Furthermore, wolfberry attenuated hypoxia and mitochondrial stress as demonstrated by declined expression of hypoxia-inducible factor-1?, vascular endothelial growth factor, and heat shock protein 60. Wolfberry enhanced retinal mitochondrial biogenesis in diabetic retinas as demonstrated by reversed mitochondrial dispersion in the retinal pigment epithelium, increased mitochondrial copy number, elevated citrate synthase activity, and up-regulated expression of peroxisome proliferator-activated receptor ? co-activator 1 ?, nuclear respiratory factor 1, and mitochondrial transcription factor A. Conclusion Consumption of dietary wolfberry could be beneficial to retinoprotection through reversal of mitochondrial function in diabetic mice. PMID:23505020

  12. Cellular Transcriptome Analysis Reveals Differential Expression of Pro- and Antiapoptosis Genes by Varicella-Zoster Virus-Infected Neurons and Fibroblasts

    PubMed Central

    Markus, Amos; Waldman Ben-Asher, Hiba; Kinchington, Paul R.

    2014-01-01

    Transcriptional changes following varicella-zoster virus (VZV) infection of cultured human neurons derived from embryonic stem cells were compared to those in VZV-infected human foreskin fibroblasts. Transcription of 340 neuronal genes significantly altered by VZV infection included 223 transcript changes unique to neurons. Strikingly, genes inhibiting apoptosis were upregulated in neurons, while proapoptotic gene transcription was increased in fibroblasts. These data are a basis for discovery of differences in virus-host interactions between these VZV targets. PMID:24741086

  13. Extravirgin olive oil up-regulates CB? tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    PubMed

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB?) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 ?M) or authentic hydroxytyrosol (HT, 50 ?M) for 24 h. None of the other major elements of the ECS (i.e., CB?; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB? expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB? expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB? mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB? gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may provide a new therapeutic avenue for treatment and/or prevention of colon cancer. PMID:25533906

  14. L-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats

    SciTech Connect

    Ramprasath, Tharmarajan; Hamenth Kumar, Palani; Syed Mohamed Puhari, Shanavas; Senthil Murugan, Ponniah; Vasudevan, Varadaraj; Selvam, Govindan Sadasivam

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer L-Arginine treatment reduced the metabolic disturbances in diabetic animals. Black-Right-Pointing-Pointer Antioxidant marker proteins were found high in myocardium by L-arginine treatment. Black-Right-Pointing-Pointer Elevated antioxidant status, mediates the reduced TBA-reactivity in left ventricle. Black-Right-Pointing-Pointer L-Arginine treatment enhanced the Nrf2 and eNOS signaling in left ventricle. Black-Right-Pointing-Pointer Improved cell survival signaling by arginine, offers a novel tactic for targeting. -- Abstract: Hyperglycemia is independently related with excessive morbidity and mortality in cardiovascular disorders. L-Arginine-nitric oxide (NO) pathway and the involvement of NO in modulating nuclear factor-E2-related factor-2 (Nrf2) signaling were well established. In the present study we investigated, whether L-arginine supplementation would improve the myocardial antioxidant defense under hyperglycemia through activation of Nrf2 signaling. Diabetes was induced by alloxan monohydrate (90 mg kg{sup -1} body weight) in rats. Both non-diabetic and diabetic group of rats were divided into three subgroups and they were administered either with L-arginine (2.25%) or L-NAME (0.01%) in drinking water for 12 days. Results showed that L-arginine treatment reduced the metabolic disturbances in diabetic rats. Antioxidant enzymes and glutathione levels were found to be increased in heart left ventricles, thereby reduction of lipid peroxidation by L-arginine treatment. Heart histopathological analysis further validates the reversal of typical diabetic characteristics consisting of alterations in myofibers and myofibrillary degeneration. qRT-PCR studies revealed that L-arginine treatment upregulated the transcription of Akt and downregulated NF-{kappa}B. Notably, transcription of eNOS and Nrf2 target genes was also upregulated, which were accompanied by enhanced expression of Nrf2 in left ventricular tissue from diabetic and control rats. Under these findings, we suggest that targeting of eNOS and Nrf2 signaling by L-arginine supplementation could be used as a potential treatment method to alleviate the late diabetic complications.

  15. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(?-glutamic acid) (?-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with ?-PGA promotes cellular uptake of the polyplex particles, particularly by ?-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the ?-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(?-glutamic acid) (?-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with ?-PGA promotes cellular uptake of the polyplex particles, particularly by ?-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the ?-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02395a

  16. The hepatitis B virus X protein increases the cellular level of TATA-binding protein, which mediates transactivation of RNA polymerase III genes

    SciTech Connect

    Wang, Horng-Dar; Johnson, D.L.; Yuh, Chio-Hwa

    1995-12-01

    This report decribes the mechanism by which the hepatitis B virus X gene product induces RNA polymerase III genes. The RNA pol III transcription system serves as model for understanding the mechanism of X in the transactivation of cellular genes in both Drosophila and rat cell lines. 53 refs., 7 figs., 1 tab.

  17. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms.

    PubMed

    Horikawa, Izumi; Barrett, J Carl

    2003-07-01

    Malignant transformation from mortal, normal cells to immortal, cancer cells is generally associated with activation of telomerase and subsequent telomere maintenance. A major mechanism to regulate telomerase activity in human cells is transcriptional control of the telomerase catalytic subunit gene, human telomerase reverse transcriptase (hTERT). Several transcription factors, including oncogene products (e.g. c-Myc) and tumor suppressor gene products (e.g. WT1 and p53), are able to control hTERT transcription when over-expressed, although it remains to be determined whether a cancer-associated alteration of these factors is primarily responsible for the hTERT activation during carcinogenic processes. Microcell-mediated chromosome transfer experiments have provided evidence for endogenous factors that function to repress the telomerase activity in normal cells and are inactivated in cancer cells. At least one of those endogenous telomerase repressors, which is encoded by a putative tumor suppressor gene on chromosome 3p, acts through transcriptional repression of the hTERT gene. The hTERT gene is also a target site for viruses frequently associated with human cancers, such as human papillomavirus (HPV) and hepatitis B virus (HBV). HPV E6 protein contributes to keratinocyte immortalization and carcinogenesis through trans-activation of the hTERT gene transcription. In at least some hepatocellular carcinomas, the hTERT gene is a non-random integration site of HBV genome, which activates in cis the hTERT transcription. Thus, a variety of cellular and viral oncogenic mechanisms converge on transcriptional control of the hTERT gene. Regulation of chromatin structure through the modification of nucleosomal histones may mediate the action of these cellular and viral mechanisms. Further elucidation of the hTERT transcriptional regulation, including identification and characterization of the endogenous repressor proteins, should lead to better understanding of the complex regulation of human telomerase in normal and cancer cells and may open up new strategies for anticancer therapy. PMID:12807729

  18. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress

    PubMed Central

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response. PMID:26442059

  19. Mangosteen leaf extract increases melanogenesis in B16F1 melanoma cells by stimulating tyrosinase activity in vitro and by up-regulating tyrosinase gene expression.

    PubMed

    Hamid, Mariani Abdul; Sarmidi, Mohamad Roji; Park, Chang Seo

    2012-02-01

    Melanin synthesis is stimulated by various effectors, including ?-melanocyte stimulating hormone (?-MSH), cyclic AMP (cAMP)-elevating agents (forskolin, isobutylmethylxantine, glycyrrhizin) and ultraviolet light. Our investigation focused on the identification of the melanogenic efficacy of mangosteen (Garcinia mangostana) leaf extract with regard to its effects on melanogenesis in B16F1 melanoma cells, since it has been known to possess strong anti-oxidant activities. The mangosteen leaf extract was found to stimulate melanin synthesis and tyrosinase activity in a dose-dependent manner without any significant effects on cell proliferation. Cytotoxicity of the extract was measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; the highest concentration of the extract that did not affect cell viability was 32 µg/ml. Formation of melanin from cultured B16F1 melanoma induced by extract treatment was estimated using spectrophotometry. In order to clarify the subsequent mechanism of tyrosinase activation by the extract, the levels of tyrosinase expression in B16F1 melanoma were examined using an intracellular tyrosinase assay and tyrosinase zymography. Up-regulation of intracellular tyrosinase expression seemed to correlate with an increase in microphtalmia-associated transcription factor (MITF) protein levels since MITF is the key factor for genes involved in melanogenesis. Both of the results showed that tyrosinase activity was markedly enhanced from extract-treated cells. The overall results suggest that mangosteen leaf extract may be a promising candidate for the treatment of hypopigmentation disorder and useful for self-tanning cosmetic products. PMID:22089762

  20. Aging and chronic administration of serotonin-selective reuptake inhibitor citalopram upregulate Sirt4 gene expression in the preoptic area of male mice

    PubMed Central

    Wong, Dutt Way; Soga, Tomoko; Parhar, Ishwar S.

    2015-01-01

    Sexual dysfunction and cognitive deficits are markers of the aging process. Mammalian sirtuins (SIRT), encoded by sirt 1-7 genes, are known as aging molecules which are sensitive to serotonin (5-hydroxytryptamine, 5-HT). Whether the 5-HT system regulates SIRT in the preoptic area (POA), which could affect reproduction and cognition has not been examined. Therefore, this study was designed to examine the effects of citalopram (CIT, 10 mg/kg for 4 weeks), a potent selective-serotonin reuptake inhibitor and aging on SIRT expression in the POA of male mice using real-time PCR and immunocytochemistry. Age-related increases of sirt1, sirt4, sirt5, and sirt7 mRNA levels were observed in the POA of 52 weeks old mice. Furthermore, 4 weeks of chronic CIT treatment started at 8 weeks of age also increased sirt2 and sirt4 mRNA expression in the POA. Moreover, the number of SIRT4 immuno-reactive neurons increased with aging in the medial septum area (12 weeks = 1.00 ± 0.15 vs. 36 weeks = 1.68 ± 0.14 vs. 52 weeks = 1.54 ± 0.11, p < 0.05). In contrast, the number of sirt4-immunopositive cells did not show a statistically significant change with CIT treatment, suggesting that the increase in sirt4 mRNA levels may occur in cells in which sirt4 is already being expressed. Taken together, these studies suggest that CIT treatment and the process of aging utilize the serotonergic system to up-regulate SIRT4 in the POA as a common pathway to deregulate social cognitive and reproductive functions. PMID:26442099

  1. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells. PMID:26420239

  2. CD84 is markedly up-regulated in Kawasaki disease arteriopathy

    PubMed Central

    Reindel, R; Bischof, J; Kim, K-Y A; Orenstein, J M; Soares, M B; Baker, S C; Shulman, S T; Perlman, E J; Lingen, M W; Pink, A J; Trevenen, C; Rowley, A H

    2014-01-01

    The major goals of Kawasaki disease (KD) therapy are to reduce inflammation and prevent thrombosis in the coronary arteries (CA), but some children do not respond to currently available non-specific therapies. New treatments have been difficult to develop because the molecular pathogenesis is unknown. In order to identify dysregulated gene expression in KD CA, we performed high-throughput RNA sequencing on KD and control CA, validated potentially dysregulated genes by real-time reverse transcription–polymerase chain reaction (RT–PCR) and localized protein expression by immunohistochemistry. Signalling lymphocyte activation molecule CD84 was up-regulated 16-fold (P < 0·01) in acute KD CA (within 2 months of onset) and 32-fold (P < 0·01) in chronic CA (5 months to years after onset). CD84 was localized to inflammatory cells in KD tissues. Genes associated with cellular proliferation, motility and survival were also up-regulated in KD CA, and immune activation molecules MX2 and SP140 were up-regulated in chronic KD. CD84, which facilitates immune responses and stabilizes platelet aggregates, is markedly up-regulated in KD CA in patients with acute and chronic arterial disease. We provide the first molecular evidence of dysregulated inflammatory responses persisting for months to years in CA significantly damaged by KD. PMID:24635044

  3. Cellular Gene Expression upon Human Immunodeficiency Virus Type 1 Infection of CD4+-T-Cell Lines

    PubMed Central

    van 't Wout, Angélique B.; Lehrman, Ginger K.; Mikheeva, Svetlana A.; O'Keeffe, Gemma C.; Katze, Michael G.; Bumgarner, Roger E.; Geiss, Gary K.; Mullins, James I.

    2003-01-01

    The expression levels of ?4,600 cellular RNA transcripts were assessed in CD4+-T-cell lines at different times after infection with human immunodeficiency virus type 1 strain BRU (HIV-1BRU) using DNA microarrays. We found that several classes of genes were inhibited by HIV-1BRU infection, consistent with the G2 arrest of HIV-1-infected cells induced by Vpr. These included genes involved in cell division and transcription, a family of DEAD-box proteins (RNA helicases), and all genes involved in translation and splicing. However, the overall level of cell activation and signaling was increased in infected cells, consistent with strong virus production. These included a subgroup of transcription factors, including EGR1 and JUN, suggesting they play a specific role in the HIV-1 life cycle. Some regulatory changes were cell line specific; however, the majority, including enzymes involved in cholesterol biosynthesis, of changes were regulated in most infected cell lines. Compendium analysis comparing gene expression profiles of our HIV-1 infection experiments to those of cells exposed to heat shock, interferon, or influenza A virus indicated that HIV-1 infection largely induced specific changes rather than simply activating stress response or cytokine response pathways. Thus, microarray analysis confirmed several known HIV-1 host cell interactions and permitted identification of specific cellular pathways not previously implicated in HIV-1 infection. Continuing analyses are expected to suggest strategies for impacting HIV-1 replication in vivo by targeting these pathways. PMID:12502855

  4. Role of AP-1 in ethanol-induced N-methyl-D-aspartate receptor 2B subunit gene up-regulation in mouse cortical neurons.

    PubMed

    Qiang, Mei; Ticku, Maharaj K

    2005-12-01

    Activator protein 1 (AP-1) has been reported to regulate the gene expression in a wide variety of cellular processes in response to stimuli. In this study, we investigated the DNA-protein binding activities and promoter activity in the N-methyl-D-aspartate R2B (NR2B) gene AP-1 site in normal and ethanol-treated cultured neurons. The identity of the AP-1 site as the functional binding factor is suggested by the specific binding of nuclear extract derived from cultured cortical neurons to the labeled probes and the specific antibody-induced supershift. Mutations in the core sequence resulted in a significantly reduced promoter activity and the ability to compete for the binding. Moreover, treatment of the cultured neuron with 75 mm ethanol for 5 days caused a significant increase in the AP-1 binding activity and promoter activity. The AP-1 DNA-binding complex in control and ethanol-treated nuclear extract was composed of c-Fos, FosB, c-Jun, JunD, and phosphorylated CREB (p-CREB). Western blot analysis showed that p-CREB and FosB significantly increased, whereas c-Jun decreased. The DNA affinity precipitation assay indicated that FosB, p-CREB, and c-Jun increased in the AP-1 complex following ethanol treatment. These results suggest that AP-1 is an active regulator of the NR2B transcription and ethanol-induced changes may result at multiple levels in the regulation including AP-1 proteins expression, CREB phosphorylation and perhaps reorganization of dimmers. PMID:16313514

  5. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana

    PubMed Central

    Chen, Yu; Xu, Bin; Yang, Zhimin; Huang, Bingru

    2015-01-01

    Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2.- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or ‘dwarfism’, both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits. PMID:26177510

  6. Upregulation of orphan nuclear receptor Nur77 following PGF2?, Bimatoprost, and Butaprost treatments. Essential role of a protein kinase C pathway involved in EP2 receptor activated Nur77 gene transcription

    PubMed Central

    Liang, Yanbin; Li, Chen; Guzman, Victor M; Chang, William W; Evinger, Albert J; Pablo, Jozelyn V; Woodward, David F

    2004-01-01

    Using gene chip technology, we first identified that PGF2? (FP agonist) and Butaprost (EP2 agonist) induced about a five-fold upregulation of Nur77 mRNA expression in hFP-HEK 293/EBNA and hEP2-HEK293/EBNA cells. Northern Blot analysis revealed that PGF2?- and Butaprost-induced upregulation of Nur77 expression are dose- and time-dependent. Both PGF2? and Butaprost upregulated Nur77 gene expression through the protein kinase C (PKC) pathway. These data are the first showing a link between EP2 receptor stimulation and protein kinase C activation. Calcineurin was found to be involved downstream of the PKC pathway in PGF2?-induced Nur77 expression, but not in Butaprost-induced Nur77 expression. We also used Nur77 as a marker gene to compare the effects of PGF2?, Butaprost, and Bimatoprost (a prostamide) on Nur77 expression in human primary trabecular meshwork and ciliary smooth muscle (SM) cells, which are target cells for antiglaucoma drugs. The results showed that PGF2? and Butaprost, but not Bimatoprost, induced upregulation of Nur77 expression in human TM cells. PGF2?, but not Bimatoprost, dramatically induced upregulation of Nur77 mRNA expression in human ciliary SM cells, whereas Butaprost slightly upregulated Nur77 mRNA expression in SM cells. Nur77 promoter deletion analysis indicated that PGF2?, but not Bimatoprost, activated Nur77 promoter-luciferase reporter in hFP-HEK 293/EBNA cells. Butaprost was less efficacious in inducing Nur77 promoter-luciferase reporter activity in hEP2-HEK293/EBNA cells relative to PGF2? in the comparable assay. The data for Nur77 promoter functional analysis were matched to the Northern blot analysis. It appears that PGF2? and Butaprost activate Nur77 transcription mechanisms through the activation of FP and EP2 receptor-coupled signaling pathways, whereas Bimatoprost stimulates neither FP nor EP2 receptors. PMID:15159280

  7. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample

    SciTech Connect

    Suzuki, M.T.; Rappe, M.S.; Haimberger, Z.W.

    1997-03-01

    Numerous investigations applying the cloning and sequencing of rRNA genes (rDNAs) to the study of marine bacterioplankton diversity have shown that the sequences of genes cloned directly from environmental DNA do not correspond to the genes of cultured marine taxa. These results have been interpreted as support for the hypothesis that the most abundant heterotrophic marine bacterioplankton species are not readily culturable by commonly used methods. However, an alternative explanation is that marine bacterioplankton can be easily cultured but are not well represented in sequence databases. To further examine this question, we compared the small-subunit (SSU) rDNAs of 127 cellular clones isolated from a water sample collected off the Oregon coast to 58 bacterial SSU rDNAs cloned from environmental DNAs from the same water sample. The results revealed little overlap between partial SSU rDNA sequences from the cellular clones and the environmental clone library. An exception was the SSU rDNA sequence recovered from a cellular clone belonging to the Pseudomonas subgroup of the {gamma} subclass of the class Proteobacteria, which was related to a single gene cloned directly from the same water sample (OCS181) (similarity, 94.6%). In addition, partial SSU rDNA sequences from three of the cultured strains matched a novel rDNA clone related to the {gamma} subclass of the Proteobacteria found previously in an environmental clone library from marine aggregates (AGG53) (similarity, 94.3 to 99.6%). Our results support the hypothesis that many of the most abundant bacterioplankton species are not readily culturable by standard methods but also show that heterotrophic bacterioplankton that are culturable on media with high organic contents include many strains for which SSU rDNA sequences are not available in sequence databases. 34 refs., 4 figs., 3 tabs.

  8. Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators

    PubMed Central

    Muyan, Mesut; Güpür, Gizem; Ya?ar, Pelin; Ayaz, Gamze; User, S?rma Damla; Kazan, Hasan Hüseyin; Huang, Yanfang

    2015-01-01

    Estrogen receptor ? (ER?), as a ligand-dependent transcription factor, mediates 17?-estradiol (E2) effects. ER? is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino- and carboxyl-termini. The interaction of the E2-activated ER? dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric transcription activators, or monotransactivators, assembled from an engineered ERE-binding module (EBM) using the ER?-DBD and constitutively active ADs from other transcription factors. Monotransactivators modulated cell proliferation by activating and repressing ERE-driven gene expressions that simulate responses observed with E2-ER?. We reasoned here that integration of potent heterologous repression domains (RDs) into EBM could generate monotransrepressors that alter ERE-bearing gene expressions and cellular proliferation in directions opposite to those observed with E2-ER? or monotransactivators. Consistent with this, monotransrepressors suppressed reporter gene expressions that emulate the ERE-dependent signaling pathway. Moreover, a model monotransrepressor regulated DNA synthesis, cell cycle progression and proliferation of recombinant adenovirus infected ER-negative cells through decreasing as well as increasing gene expressions with polar directions compared with E2-ER? or monotransactivator. Our results indicate that an ‘activator’ or a ‘repressor’ possesses both transcription activating/enhancing and repressing/decreasing abilities within a chromatin context. Offering a protein engineering platform to alter signal pathway-specific gene expressions and cell growth, our approach could also be used for the development of tools for epigenetic modifications and for clinical interventions wherein multigenic de-regulations are an issue. PMID:26295471

  9. Single-cell gene expression analyses of cellular reprogramming reveal a stochastic early and hierarchic late phase

    PubMed Central

    Buganim, Yosef; Faddah, Dina A.; Cheng, Albert W.; Itskovich, Elena; Markoulaki, Styliani; Ganz, Kibibi; Klemm, Sandy L.; van Oudenaarden, Alexander; Jaenisch, Rudolf

    2012-01-01

    During cellular reprogramming only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene expression technologies to profile 48 genes in single cells at various stages during the reprogramming process. Analysis of early stages revealed considerable variation in gene expression between cells in contrast to late stages. Expression of Esrrb, Utf1, Lin28, and Dppa2 is a better predictor for cells to progress into iPSCs than expression of Fbxo15, Fgf4, and Oct4 previously suggested to be reprogramming markers. Stochastic gene expression early in reprogramming is followed by a late hierarchical phase with Sox2 being the upstream factor in a gene expression hierarchy. Finally, downstream factors derived from the late phase, which do not include Oct4, Sox2, Klf4, c-Myc and Nanog, can activate the pluripotency circuitry. PMID:22980981

  10. A Digital Framework to Build, Visualize and Analyze a Gene Expression Atlas with Cellular Resolution in Zebrafish Early Embryogenesis

    PubMed Central

    Castro-González, Carlos; Luengo-Oroz, Miguel A.; Duloquin, Louise; Savy, Thierry; Rizzi, Barbara; Desnoulez, Sophie; Doursat, René; Kergosien, Yannick L.; Ledesma-Carbayo, María J.; Bourgine, Paul

    2014-01-01

    A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages. PMID:24945246

  11. Expression of Novel Gene Products Upregulated by Disuse is Normalized by an Osteogenic Mechanical Stimulus: Evidence for the Molecular Basis of a Low Level Biomechanical Countermeasure for Osteoporosis?

    NASA Technical Reports Server (NTRS)

    Rubin, C.; Zhi, J.; Xu, G.; Cute, M.; McLeod, K.; Hadjiargyrou, M.

    1999-01-01

    The National Research Council's report entitled: A Strategy for Space Biology and Medical Science, highlighted several areas of fundamental scientific investigation which must be addressed to make long-term space exploration not only feasible, but safe. This "Goldberg Strategy," as well as several subsequent reports published by the NRC's Space Studies Board (e.g., Assessment of Programs in Space Biology and Medicine, Smith et. al., 1991), suggests that the principal hurdle to man's extended presence in space is the osteopenia which parallels reduced gravity. Ironically, the most significant risk to the skeleton may only be realized on return to normal gravitational fields, and full recovery of bone mass may never occur. Effective counter-measures to this microgravity induced bone loss are thus essential. Considering the similarities of space and aging induced osteopenia, an indisputable benefit of such a prophylaxis would be its potential as a treatment for the bone loss which plagues over 25 million people in the U.S. The osteogenic potential of mechanical strain is strongly frequency dependent, with sensitivity increasing up through at least 60 Hz (cycles per second). One hundred seconds per day of a 1 Hz cyclic loading will inhibit disuse osteopenia only if sufficient in magnitude to engender 1000 microstrain (mu(epsilon)) in the tissue. When loading is applied at 30 Hz, however, mechanical strains on the order of 5O mu(epsilon) (approx. 1% of the peak strains which occur in bone during vigorous functional activity), can stimulate bone formation in a duration dependent manner. In longer term animal studies, strains of less than 10 mu(epsilon), induced non-invasively via a whole body vibration, will stimulate bone formation on the surfaces of trabeculae, increase bone density, and improve strength. Finally, preliminary results from a double blind prospective clinical trial shows promise in inhibiting the bone loss which parallels the menopause. Based on these observations, we propose that these high frequency, low magnitude, mechanical strains effectively serve as a "surrogate" for musculoskeletal ground reaction forces, and thus represent an ideal countermeasure to the osteopenia which parallels microgravity conditions. The specific goal of this NASA funded work is to identify genes in bone upregulated by disuse, and to determine the efficacy of an osteogenic mechanical stimulus to downregulate their expression.

  12. Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting

    E-print Network

    Cheng, Jianjun

    Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane: Received 26 July 2013 Accepted 24 September 2013 Available online 7 November 2013 Keywords: Non-viral gene a c t The application of non-viral gene delivery vectors is often accompanied with the poor

  13. Combined Alloreactive CTL Cellular Therapy with Prodrug Activator Gene Therapy in a Model of Breast Cancer Metastatic to the Brain

    PubMed Central

    Hickey, Michelle J.; Malone, Colin C.; Erickson, Kate L.; Lin, Amy; Soto, Horacio; Ha, Edward T.; Kamijima, Shuichi; Inagaki, Akihito; Takahashi, Masamichi; Kato, Yuki; Kasahara, Noriyuki; Mueller, Barbara M.; Kruse, Carol A.

    2013-01-01

    Purpose Individual or combined strategies of cellular therapy with alloreactive cytotoxic T lymphocytes (alloCTL) and gene therapy employing retroviral replicating vectors (RRV) encoding a suicide prodrug activating gene were explored for the treatment of breast tumors metastatic to the brain. Experimental Design AlloCTL, sensitized to the human leukocyte antigens of MDA-MB-231 breast cancer cells, were examined in vitro for anti-tumor functionality toward breast cancer targets. RRV encoding the yeast cytosine deaminase (CD) gene was tested in vivo for virus spread, ability to infect, and kill breast cancer targets when exposed to 5-fluorocytosine (5-FC). Individual and combination treatments were tested in subcutaneous and intracranial xenograft models with 231BR, a brain tropic variant. Results AlloCTL preparations were cytotoxic, proliferated and produced interferon-gamma when coincubated with target cells displaying relevant HLA. In vivo, intratumorally-placed alloCTL trafficked through one established intracranial 231BR focus to another in contralateral brain and induced tumor cell apoptosis. RRV-CD efficiently spread in vivo, infected 231BR and induced their apoptosis upon 5-FC exposure. Subcutaneous tumor volumes were significantly reduced in alloCTL and/or gene therapy treated groups compared to control groups. Mice with established intracranial 231BR tumors treated with combined alloCTL and RRV-CD had a median survival of 97.5 days compared with single modalities (50–83 days); all experimental treatment groups survived significantly longer than sham-treated groups (median survivals 31.5 or 40 days) and exhibited good safety/toxicity profiles. Conclusion The results indicate combining cellular and suicide gene therapies is a viable strategy for the treatment of established breast tumors in the brain. PMID:23780889

  14. Lymphocytes as cellular vehicles for gene therapy in mouse and man

    SciTech Connect

    Culver, K.; Cornetta, K.; Morgan, R.; Morecki, S.; Aebersold, P.; Kasid, A.; Lotze, M.; Rosenberg, S.A.; Anderson, W.F.; Blaese, R.M. )

    1991-04-15

    The application of bone marrow gene therapy has been stalled by the inability to achieve stable high-level gene transfer and expression in the totipotent stem cells. The authors that retroviral vectors can stably introduce genes into antigen-specific murine and human T lymphocytes in culture. Murine helper T cells were transduced with the retroviral vector SAX to express both neomycin-resistance and human adenosine deaminase genes. To determine if cultured T cells might be used for gene therapy, their persistence and continued expression of the introduced genes was evaluated in nude mice transplanted with the SAX-transduced T cells. They studied cultured human tumor-infiltrating lymphocytes as a candidate cell for a trial of gene transfer in man. Gene insertion and subsequent G418 selection did not substantially alter the growth characteristics, interleukin 2 dependence, membrane phenotype, or cytotoxicity profile of the transduced T cells. These studies provided a portion of the experimental evidence supporting the feasibility of the presently ongoing clinical trials of lymphocyte gene therapy in cancer as well as in patients with adenosine deaminase deficiency.

  15. A Special Extract of Bacopa monnieri (CDRI-08)-Restored Memory in CoCl2-Hypoxia Mimetic Mice Is Associated with Upregulation of Fmr-1 Gene Expression in Hippocampus.

    PubMed

    Rani, Anupama; Prasad, S

    2015-01-01

    Fragile X mental retardation protein (FMRP) is a neuronal translational repressor and has been implicated in learning, memory, and cognition. However, the role of Bacopa monnieri extract (CDRI-08) in enhancing cognitive abilities in hypoxia-induced memory impairment via Fmr-1 gene expression is not known. Here, we have studied effects of CDRI-08 on the expression of Fmr-1 gene in the hippocampus of well validated cobalt chloride (CoCl2)-induced hypoxia mimetic mice and analyzed the data with alterations in spatial memory. Results obtained from Morris water maze test suggest that CoCl2 treatment causes severe loss of spatial memory and CDRI-08 is capable of reversing it towards that in the normal control mice. Our semiquantitative RT-PCR, Western blot, and immunofluorescence microscopic data reveal that CoCl2-induced hypoxia significantly upregulates the expression of Hif-1? and downregulates the Fmr-1 expression in the hippocampus, respectively. Further, CDRI-08 administration reverses the memory loss and this is correlated with significant downregulation of Hif-1? and upregulation of Fmr-1 expression. Our data are novel and may provide mechanisms of hypoxia-induced impairments in the spatial memory and action of CDRI-08 in the recovery of hypoxia led memory impairment involving Fmr-1 gene encoded protein called FMRP. PMID:26413121

  16. A Special Extract of Bacopa monnieri (CDRI-08)-Restored Memory in CoCl2-Hypoxia Mimetic Mice Is Associated with Upregulation of Fmr-1 Gene Expression in Hippocampus

    PubMed Central

    Rani, Anupama; Prasad, S.

    2015-01-01

    Fragile X mental retardation protein (FMRP) is a neuronal translational repressor and has been implicated in learning, memory, and cognition. However, the role of Bacopa monnieri extract (CDRI-08) in enhancing cognitive abilities in hypoxia-induced memory impairment via Fmr-1 gene expression is not known. Here, we have studied effects of CDRI-08 on the expression of Fmr-1 gene in the hippocampus of well validated cobalt chloride (CoCl2)-induced hypoxia mimetic mice and analyzed the data with alterations in spatial memory. Results obtained from Morris water maze test suggest that CoCl2 treatment causes severe loss of spatial memory and CDRI-08 is capable of reversing it towards that in the normal control mice. Our semiquantitative RT-PCR, Western blot, and immunofluorescence microscopic data reveal that CoCl2-induced hypoxia significantly upregulates the expression of Hif-1? and downregulates the Fmr-1 expression in the hippocampus, respectively. Further, CDRI-08 administration reverses the memory loss and this is correlated with significant downregulation of Hif-1? and upregulation of Fmr-1 expression. Our data are novel and may provide mechanisms of hypoxia-induced impairments in the spatial memory and action of CDRI-08 in the recovery of hypoxia led memory impairment involving Fmr-1 gene encoded protein called FMRP. PMID:26413121

  17. Adipose depots differ in cellularity, adipokines produced, gene expression, and cell systems

    PubMed Central

    Dodson, Michael V; Du, Min; Wang, Songbo; Bergen, Werner G; Fernyhough-Culver, Melinda; Basu, Urmila; Poulos, Sylvia P; Hausman, Gary J

    2014-01-01

    The race to manage the health concerns related to excess fat deposition has spawned a proliferation of clinical and basic research efforts to understand variables including dietary uptake, metabolism, and lipid deposition by adipocytes. A full appreciation of these variables must also include a depot-specific understanding of content and location in order to elucidate mechanisms governing cellular development and regulation of fat deposition. Because adipose tissue depots contain various cell types, differences in the cellularity among and within adipose depots are presently being documented to ascertain functional differences. This has led to the possibility of there being, within any one adipose depot, cellular distinctions that essentially result in adipose depots within depots. The papers comprising this issue will underscore numerous differences in cellularity (development, histogenesis, growth, metabolic function, regulation) of different adipose depots. Such information is useful in deciphering adipose depot involvement both in normal physiology and in pathology. Obesity, diabetes, metabolic syndrome, carcass composition of meat animals, performance of elite athletes, physiology/pathophysiology of aging, and numerous other diseases might be altered with a greater understanding of adipose depots and the cells that comprise them—including stem cells—during initial development and subsequent periods of normal/abnormal growth into senescence. Once thought to be dormant and innocuous, the adipocyte is emerging as a dynamic and influential cell and research will continue to identify complex physiologic regulation of processes involved in adipose depot physiology. PMID:26317047

  18. TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways.

    PubMed

    De Conti, Laura; Akinyi, Maureen V; Mendoza-Maldonado, Ramiro; Romano, Maurizio; Baralle, Marco; Buratti, Emanuele

    2015-10-15

    In recent times, high-throughput screening analyses have broadly defined the RNA cellular targets of TDP-43, a nuclear factor involved in neurodegeneration. A common outcome of all these studies is that changing the expression levels of this protein can alter the expression of several hundred RNAs within cells. What still remains to be clarified is which changes represent direct cellular targets of TDP-43 or just secondary variations due to the general role played by this protein in RNA metabolism. Using an HTS-based splicing junction analysis we identified at least six bona fide splicing events that are consistent with being controlled by TDP-43. Validation of the data, both in neuronal and non-neuronal cell lines demonstrated that TDP-43 substantially alters the levels of isoform expression in four genes potentially important for neuropathology: MADD/IG20, STAG2, FNIP1 and BRD8. For MADD/IG20 and STAG2, these changes could also be confirmed at the protein level. These alterations were also observed in a cellular model that successfully mimics TDP-43 loss of function effects following its aggregation. Most importantly, our study demonstrates that cell cycle alterations induced by TDP-43 knockdown can be recovered by restoring the STAG2, an important component of the cohesin complex, normal splicing profile. PMID:26261209

  19. TDP-43 affects splicing profiles and isoform production of genes involved in the apoptotic and mitotic cellular pathways

    PubMed Central

    De Conti, Laura; Akinyi, Maureen V.; Mendoza-Maldonado, Ramiro; Romano, Maurizio; Baralle, Marco; Buratti, Emanuele

    2015-01-01

    In recent times, high-throughput screening analyses have broadly defined the RNA cellular targets of TDP-43, a nuclear factor involved in neurodegeneration. A common outcome of all these studies is that changing the expression levels of this protein can alter the expression of several hundred RNAs within cells. What still remains to be clarified is which changes represent direct cellular targets of TDP-43 or just secondary variations due to the general role played by this protein in RNA metabolism. Using an HTS-based splicing junction analysis we identified at least six bona fide splicing events that are consistent with being controlled by TDP-43. Validation of the data, both in neuronal and non-neuronal cell lines demonstrated that TDP-43 substantially alters the levels of isoform expression in four genes potentially important for neuropathology: MADD/IG20, STAG2, FNIP1 and BRD8. For MADD/IG20 and STAG2, these changes could also be confirmed at the protein level. These alterations were also observed in a cellular model that successfully mimics TDP-43 loss of function effects following its aggregation. Most importantly, our study demonstrates that cell cycle alterations induced by TDP-43 knockdown can be recovered by restoring the STAG2, an important component of the cohesin complex, normal splicing profile. PMID:26261209

  20. Exposure of a 23F Serotype Strain of Streptococcus pneumoniae to Cigarette Smoke Condensate Is Associated with Selective Upregulation of Genes Encoding the Two-Component Regulatory System 11 (TCS11)

    PubMed Central

    Herbert, Jenny A.; Mitchell, Timothy J.; Dix-Peek, Thérèse; Dickens, Caroline; Anderson, Ronald; Feldman, Charles

    2014-01-01

    Alterations in whole genome expression profiles following exposure of the pneumococcus (strain 172, serotype 23F) to cigarette smoke condensate (160??g/mL) for 15 and 60?min have been determined using the TIGR4 DNA microarray chip. Exposure to CSC resulted in the significant (P < 0.014–0.0006) upregulation of the genes encoding the two-component regulatory system 11 (TCS11), consisting of the sensor kinase, hk11, and its cognate response regulator, rr11, in the setting of increased biofilm formation. These effects of cigarette smoke on the pneumococcus may contribute to colonization of the airways by this microbial pathogen. PMID:25013815

  1. A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility.

    PubMed

    Damotte, V; Guillot-Noel, L; Patsopoulos, N A; Madireddy, L; El Behi, M; De Jager, P L; Baranzini, S E; Cournu-Rebeix, I; Fontaine, B

    2014-03-01

    Genome-wide association studies (GWASs) perform per-SNP association tests to identify variants involved in disease or trait susceptibility. However, such an approach is not powerful enough to unravel genes that are not individually contributing to the disease/trait, but that may have a role in interaction with other genes as a group. Pathway analysis is an alternative way to highlight such group of genes. Using SNP association P-values from eight multiple sclerosis (MS) GWAS data sets, we performed a candidate pathway analysis for MS susceptibility by considering genes interacting in the cell adhesion molecule (CAMs) biological pathway using Cytoscape software. This network is a strong candidate, as it is involved in the crossing of the blood-brain barrier by the T cells, an early event in MS pathophysiology, and is used as an efficient therapeutic target. We drew up a list of 76 genes belonging to the CAM network. We highlighted 64 networks enriched with CAM genes with low P-values. Filtering by a percentage of CAM genes up to 50% and rejecting enriched signals mainly driven by transcription factors, we highlighted five networks associated with MS susceptibility. One of them, constituted of ITGAL, ICAM1 and ICAM3 genes, could be of interest to develop novel therapeutic targets. PMID:24430173

  2. Journal of Cellular Biochemistry 84:484496 (2002) Multiple Collagen I Gene Regulatory Elements Have Sites

    E-print Network

    Benham, Craig J.

    2002-01-01

    of previously identi®ed regulatory elements in the murine a1(I) collagen (Col1a1) gene domain. We found of the Col1a1 gene are characterized by strongly destabilized SIDD pro®les. Elements in the proximal 50 promoter and ®rst intron which differentially regulate Col1a1 promoter activity in different collagen

  3. Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth

    PubMed Central

    Rallis, Charalampos; López-Maury, Luis; Georgescu, Teodora; Pancaldi, Vera; Bähler, Jürg

    2014-01-01

    Summary Target of rapamycin complex 1 (TORC1), which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We screened a deletion library, comprising ?84% of all non-essential fission yeast genes, for drug-resistant mutants. This screen identified 33 genes encoding functions such as transcription, kinases, mitochondrial respiration, biosynthesis, intra-cellular trafficking, and stress response. Among the corresponding mutants, 5 showed shortened and 21 showed increased maximal chronological lifespans; 15 of the latter mutants showed no further lifespan increase with rapamycin and might thus represent key targets downstream of TORC1. We pursued the long-lived sck2 mutant with additional functional analyses, revealing that the Sck2p kinase functions within the TORC1 network and is required for normal cell growth, global protein translation, and ribosomal S6 protein phosphorylation in a nutrient-dependent manner. Notably, slow cell growth was associated with all long-lived mutants while oxidative-stress resistance was not. PMID:24463365

  4. Enhanced cellular uptake and gene silencing activity of siRNA molecules mediated by chitosan-derivative nanocomplexes.

    PubMed

    Guzman-Villanueva, Diana; El-Sherbiny, Ibrahim M; Vlassov, Alexander V; Herrera-Ruiz, Dea; Smyth, Hugh D C

    2014-10-01

    The RNA interference (RNAi) constitutes a conservative mechanism in eukaryotic cells that induces silencing of target genes. In mammalians, the RNAi is triggered by siRNA (small interfering RNA) molecules. Due to its potential in silencing specific genes, the siRNA has been considered a potential alternative for the treatment of genetic and acquired diseases. However, the siRNA therapy has been limited by its low stability and rapid degradation in presence of nucleases, low cellular uptake, and immune response activation. In order to overcome these drawbacks, we propose the synthesis and characterization of non-viral delivery systems using chitosan derivatives to obtain siRNA complexes (polyplexes). The non-viral delivery systems synthesized included PEG-g-OCs (oligochitosan) and PEG-g-Cs (chitosan medium molecular weight). Both systems allowed the formation of siRNA polyplexes, increased the stability of siRNA in the presence of nucleases, enhanced cellular internalization, and showed low toxicity in the A549 cell line. Finally, the complexes obtained with the PEG-g-OCs system showed silencing activity in a GFP model in the cell line A549 in comparison with naked siRNA. PMID:25063077

  5. Laf4/Aff3, a Gene Involved in Intellectual Disability, Is Required for Cellular Migration in the Mouse Cerebral Cortex

    PubMed Central

    Lee, Sheena; Lickiss, Tom; Molnár, Zoltán; Davies, Kay E.

    2014-01-01

    Members of the AFF (AF4/FMR2) family of putative transcription factors are involved in infant acute leukaemia and intellectual disability (ID), although very little is known about their transcriptional targets. For example, deletion of human lymphoid nuclear protein related to AF4/AFF member 3 (LAF4/AFF3) is known to cause severe neurodevelopmental defects, and silencing of the gene is also associated with ID at the folate-sensitive fragile site (FSFS) FRA2A; yet the normal function of this gene in the nervous system is unclear. The aim of this study was to further investigate the function of Laf4 in the brain by focusing on its role in the cortex. By manipulating expression levels in organotypic slices, we demonstrate here that Laf4 is required for normal cellular migration in the developing cortex and have subsequently identified Mdga2, an important structural protein in neurodevelopment, as a target of Laf4 transcriptional activity. Furthermore, we show that the migration deficit caused by loss of Laf4 can be partially rescued by Mdga2 over-expression, revealing an important functional relationship between these genes. Our study demonstrates the key transcriptional role of Laf4 during early brain development and reveals a novel function for the gene in the process of cortical cell migration relevant to the haploinsufficiency and silencing observed in human neurodevelopmental disorders. PMID:25162227

  6. MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy Metabolism Genes during C2C12 Myoblast Differentiation

    PubMed Central

    Siengdee, Puntita; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2. PMID:26010876

  7. TNF-{alpha} upregulates the A{sub 2B} adenosine receptor gene: The role of NAD(P)H oxidase 4

    SciTech Connect

    St Hilaire, Cynthia; Koupenova, Milka; Carroll, Shannon H.; Smith, Barbara D.; Ravid, Katya

    2008-10-24

    Proliferation of vascular smooth muscle cells (VSMC), oxidative stress, and elevated inflammatory cytokines are some of the components that contribute to plaque formation in the vasculature. The cytokine tumor necrosis factor-alpha (TNF-{alpha}) is released during vascular injury, and contributes to lesion formation also by affecting VSMC proliferation. Recently, an A{sub 2B} adenosine receptor (A{sub 2B}AR) knockout mouse illustrated that this receptor is a tissue protector, in that it inhibits VSMC proliferation and attenuates the inflammatory response following injury, including the release of TNF-{alpha}. Here, we show a regulatory loop by which TNF-{alpha} upregulates the A{sub 2B}AR in VSMC in vitro and in vivo. The effect of this cytokine is mimicked by its known downstream target, NAD(P)H oxidase 4 (Nox4). Nox4 upregulates the A{sub 2B}AR, and Nox inhibitors dampen the effect of TNF-{alpha}. Hence, our study is the first to show that signaling associated with Nox4 is also able to upregulate the tissue protecting A{sub 2B}AR.

  8. Expression of AtSAP5 in cotton up-regulates putative stress-responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress.

    PubMed

    Hozain, Moh'd; Abdelmageed, Haggag; Lee, Joohyun; Kang, Miyoung; Fokar, Mohamed; Allen, Randy D; Holaday, A Scott

    2012-09-01

    The regulation of gene expression is a key factor in plant acclimation to stress, and it is thought that manipulation of the expression of critical stress-responsive genes should ultimately provide increased protection against abiotic stress. The aim of this study was to test the hypothesis that the ectopic expression of the AtSAP5 (AT3G12630) gene in transgenic cotton (Gossypium hirsutum, cv. Coker 312) will improve tolerance to drought and heat stress by up-regulating the expression of endogenous stress-responsive genes. The SAP5 gene is a member of the stress-associated family of genes that encode proteins containing A20/AN1 zinc finger domains. Under non-stressful conditions, cotton plants that expressed the AtSAP5 gene showed elevated expression of at least four genes normally induced during water deficit or heat stress. The rate of net CO(2) assimilation A for three of four transgenic lines tested was less sensitive to rapidly developing water deficit over 4d than untransformed wild-type plants, but the recovery of A following drought was not significantly affected. The enhanced protection of photosynthesis during drought was determined to be primarily at the biochemical level, since the extent of stomatal closure was not significantly different for all genotypes. Expression of AtSAP5 resulted in the complete protection of photosystem (PS) II complexes from photodamage at mid-day after 4 d of drought, whereas wild-type plants experienced a 20% decline in active photosystem II (PSII) complexes. In addition, enhanced protection of seedling growth and leaf viability was associated with the expression of AtSAP5. Since A for the transgenic plants was significantly more heat tolerant than A for wild-type plants, we conclude that ectopic expression of SAP genes is a potentially viable approach to improving carbon gain and productivity for cotton grown in semi-arid regions with severe drought and heat stress. PMID:22633820

  9. PROX1 Gene is Differentially Expressed in Oral Cancer and Reduces Cellular Proliferation

    PubMed Central

    Rodrigues, Maria F.S.D.; de Oliveira Rodini, Camila; de Aquino Xavier, Flávia C.; Paiva, Katiúcia B.; Severino, Patrícia; Moyses, Raquel A.; López, Rossana M.; DeCicco, Rafael; Rocha, Lília A.; Carvalho, Marcos B.; Tajara, Eloiza H.; Nunes, Fabio D.

    2014-01-01

    Abstract Homeobox genes are a family of transcription factors that play a pivotal role in embryogenesis. Prospero homeobox 1 (PROX1) has been shown to function as a tumor suppressor gene or oncogene in various types of cancer, including oral squamous cell carcinoma (OSCC). We have previously identified PROX1 as a downregulated gene in OSCC. The aim of this study is to clarify the underlying mechanism by which PROX1 regulates tumorigenicity of OSCC cells. PROX1 mRNA and protein expression levels were first investigated in 40 samples of OSCC and in nontumor margins. Methylation and amplification analysis was also performed to assess the epigenetic and genetic mechanisms involved in controlling PROX1 expression. OSCC cell line SCC9 was also transfected to stably express the PROX1 gene. Next, SCC9-PROX1-overexpressing cells and controls were subjected to proliferation, differentiation, apoptosis, migration, and invasion assays in vitro. OSCC samples showed reduced PROX1 expression levels compared with nontumor margins. PROX1 amplification was associated with better overall survival. PROX1 overexpression reduces cell proliferation and downregulates cyclin D1. PROX1-overexpressing cells also exhibited reduced CK18 and CK19 expression and transcriptionally altered the expression of WISP3, GATA3, NOTCH1, and E2F1. Our results suggest that PROX1 functions as a tumor suppressor gene in oral carcinogenesis. PMID:25526434

  10. Re-engineering cellular physiology by rewiring high-level global regulatory genes.

    PubMed

    Fitzgerald, Stephen; Dillon, Shane C; Chao, Tzu-Chiao; Wiencko, Heather L; Hokamp, Karsten; Cameron, Andrew D S; Dorman, Charles J

    2015-01-01

    Knowledge of global regulatory networks has been exploited to rewire the gene control programmes of the model bacterium Salmonella enterica serovar Typhimurium. The product is an organism with competitive fitness that is superior to that of the wild type but tuneable under specific growth conditions. The paralogous hns and stpA global regulatory genes are located in distinct regions of the chromosome and control hundreds of target genes, many of which contribute to stress resistance. The locations of the hns and stpA open reading frames were exchanged reciprocally, each acquiring the transcription control signals of the other. The new strain had none of the compensatory mutations normally associated with alterations to hns expression in Salmonella; instead it displayed rescheduled expression of the stress and stationary phase sigma factor RpoS and its regulon. Thus the expression patterns of global regulators can be adjusted artificially to manipulate microbial physiology, creating a new and resilient organism. PMID:26631971

  11. Re-engineering cellular physiology by rewiring high-level global regulatory genes

    PubMed Central

    Fitzgerald, Stephen; Dillon, Shane C.; Chao, Tzu-Chiao; Wiencko, Heather L.; Hokamp, Karsten; Cameron, Andrew D. S.; Dorman, Charles J.

    2015-01-01

    Knowledge of global regulatory networks has been exploited to rewire the gene control programmes of the model bacterium Salmonella enterica serovar Typhimurium. The product is an organism with competitive fitness that is superior to that of the wild type but tuneable under specific growth conditions. The paralogous hns and stpA global regulatory genes are located in distinct regions of the chromosome and control hundreds of target genes, many of which contribute to stress resistance. The locations of the hns and stpA open reading frames were exchanged reciprocally, each acquiring the transcription control signals of the other. The new strain had none of the compensatory mutations normally associated with alterations to hns expression in Salmonella; instead it displayed rescheduled expression of the stress and stationary phase sigma factor RpoS and its regulon. Thus the expression patterns of global regulators can be adjusted artificially to manipulate microbial physiology, creating a new and resilient organism. PMID:26631971

  12. Cellular Localization of PRL-1 and PRL-2 Gene Expression in Normal Adult Human Tissues

    PubMed Central

    Dumaual, Carmen M.; Sandusky, George E.; Crowell, Pamela L.; Randall, Stephen K.

    2006-01-01

    Recent evidence suggests that the PRL-1 and ?2 phosphatases may be multifunctional enzymes with diverse roles in a variety of tissue and cell types. Northern blotting has previously shown widespread expression of both transcripts; however, little is known about the cell type-specific expression of either gene, especially in human tissues. Therefore, we investigated expression patterns for PRL-1 and ?2 genes in multiple normal, adult human tissues using in situ hybridization. Although both transcripts were ubiquitously expressed, they exhibited strikingly different patterns of expression. PRL-2 was expressed heavily in almost every tissue and cell type examined, whereas PRL-1 expression levels varied considerably both between tissue types and between individuals. Widespread expression of PRL-1 and ?2 in multiple organ systems suggests an important functional role for these enzymes in normal tissue homeostasis. In addition, the variable patterns of expression for these genes may provide distinct activities in each tissue or cell type. PMID:16957164

  13. Evidence for a cellular gene with potential oncogenic activity in plants.

    PubMed

    Hansen, C E; Meins, F

    1986-04-01

    During tumor inception in crown gall disease, a portion of the tumor-inducing (Ti) plasmid, the transferred DNA (T-DNA), is integrated into the genome of the plant cell. Autonomous growth of the transformants requires expression of genes in the tmr and tms regions of the T-DNA, which code for enzymes concerned with biosynthesis of the plant growth hormones cytokinin and auxin, respectively. We show that a mutation of the Habituated leaf gene, Hl, of tobacco can compensate for a defective tmr locus in expression of the tumor phenotype. This provides evidence that a specific host-cell gene has an oncogenic function similar to tmr in the T-DNA. PMID:3458211

  14. Rapid Up-Regulation of HKT1, a High-Affinity Potassium Transporter Gene, in Roots of Barley and Wheat following Withdrawal of Potassium1

    PubMed Central

    Wang, Tie-Bang; Gassmann, Walter; Rubio, Francisco; Schroeder, Julian I.; Glass, Anthony D.M.

    1998-01-01

    High-affinity K+ uptake in plant roots is rapidly up-regulated when K+ is withheld and down-regulated when K+ is resupplied. These processes make important contributions to plant K+ homeostasis. A cDNA coding for a high-affinity K+ transporter, HKT1, was earlier cloned from wheat (Triticum aestivum L.) roots and functionally characterized. We demonstrate here that in both barley (Hordeum vulgare L.) and wheat roots, a rapid and large up-regulation of HKT1 mRNA levels resulted when K+ was withdrawn from growth media. This effect was specific for K+; withholding N caused a modest reduction of HKT1 mRNA levels. Up-regulation of HKT1 transcript levels in barley roots occurred within 4 h of removing K+, which corresponds to the documented increase of high-affinity K+ uptake in roots following removal of K+. Increased expression of HKT1 mRNA was evident before a decline in total root K+ concentration could be detected. Resupply of 1 mm K+ was sufficient to strongly reduce HKT1 transcript levels. In wheat root cortical cells, both membrane depolarizations in response to 100 ?m K+, Cs+, and Rb+, and high-affinity K+ uptake were enhanced by K+ deprivation. Thus, in both plant systems the observed physiological changes associated with manipulating external K+ supply were correlated with levels of HKT1 mRNA expression. Implications of these findings for K+ sensing and regulation of the HKT1 mRNA levels in plant roots are discussed. PMID:9765551

  15. Up-regulation of the mu-opioid receptor gene is mediated through chromatin remodeling and transcriptional factors in differentiated neuronal cells.

    PubMed

    Hwang, Cheol Kyu; Kim, Chun Sung; Kim, Do Kyung; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H

    2010-07-01

    The effects of morphine are mediated mainly through the mu opioid receptor (MOR). Expression of the MOR is up-regulated during neuronal differentiation in P19 embryonal carcinoma cells and epigenetic changes play an important role in MOR up-regulation. This study investigates the basis for differentiation-dependent alterations of MOR chromatin by studying the recruitment or dissociation of several factors to the remodeled chromatin locus. Chromatin immunoprecipitation assays were used to demonstrate the recruitment of the transcriptional activator Sp1 and the chromatin remodeling factors Brg1 and BAF155 to this promoter, as well as the dissociation of repressors [histone deacetylases, mSin3A, Brm, and methyl-CpG-binding protein 2 (MeCP2)]. Histone modifications (acetylation, induction of histone H3-lys4 methylation, and reduction of H3-lys9 methylation) were consistently detected on this promoter. Overexpression of Sp1 strongly enhanced MOR promoter activity, and the histone deacetylase inhibitor trichostatin A also increased promoter activity. In vitro DNA CpG-methylation of the promoter partially blocked binding of the Sp1 factor but induced MeCP2 binding. Coimmunoprecipitation studies also found novel evidence of an endogenous MeCP2 interaction with Sp3 but a weaker interaction with Sp1. Overall, the results suggest that during neuronal differentiation, MeCP2 and DNA methylation mediate remodeling of the MOR promoter by chromatin remodeling factors (Brg1 and BAF155) from a compacted state to a conformation allowing access for transcriptional factors. Subsequent recruitment of the activating transcription factor Sp1 to the remodeled promoter results in MOR up-regulation. PMID:20385708

  16. Virus-Activated Interferon Regulatory Factor 7 Upregulates Expression of the Interferon-Regulated BST2 Gene Independently of Interferon Signaling

    PubMed Central

    Bego, Mariana G.; Mercier, Johanne

    2012-01-01

    BST-2/tetherin is an interferon (IFN)-inducible host restriction factor that inhibits the release of many enveloped viruses and functions as a negative-feedback regulator of IFN production by plasmacytoid dendritic cells. Currently, mechanisms underlying BST2 transcriptional regulation by type I IFN remain largely unknown. Here, we demonstrate that the BST2 promoter is a secondary target of the IFN cascade and show that a single IRF binding site is sufficient to render this promoter responsive to IFN-?. Interestingly, expression of IRF-1 or virus-activated forms of IRF-3 and IRF-7 stimulated the BST2 promoter even under conditions where type I IFN signaling was inhibited. Indeed, vesicular stomatitis virus could directly upregulate BST-2 during infection of mouse embryonic fibroblasts through a process that required IRF-7 but was independent from the type I IFN cascade; however, in order to achieve optimal BST-2 induction, the type I IFN cascade needed to be engaged through activation of IRF-3. Furthermore, using human peripheral blood mononuclear cells, we show that BST-2 upregulation is part of an early intrinsic immune response since TLR8 and TLR3 agonists, known to trigger pathways that mediate activation of IRF proteins, could upregulate BST-2 prior to engagement of the type I IFN pathway. Collectively, our findings reveal that BST2 is activated by the same signals that trigger type I IFN production, outlining a regulatory mechanism ensuring that production of type I IFN and expression of a host restriction factor involved in the IFN negative-feedback loop are closely coordinated. PMID:22301143

  17. Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program

    E-print Network

    Thiru, Prathapan

    The key player in directing proper chromosome segregation is the macromolecular kinetochore complex, which mediates DNA–microtubule interactions. Previous studies testing individual kinetochore genes documented examples ...

  18. Association of Angiotensin-Converting Enzyme (ACE) Gene Polymorphism with Inflammation and Cellular Cytotoxicity in Vitiligo Patients

    PubMed Central

    Hasan, Nermeen; Zahra, Amr; Fayez, Salwa

    2015-01-01

    Background Vitiligo is a disorder with profound heterogeneity in its aetio-pathophysiology. Angiotensin converting enzyme (ACE) plays an important role in the physiology of the vasculature, blood pressure and inflammation. An insertion/deletion (I/D) polymorphism of the ACE gene was reported be associated with the development of vitiligo. Objective Our aim was to evaluate the ACE I/D polymorphism in vitiligo patients and controls. Our second aim was to find a possible association between ACE gene polymorphism and inflammatory mediators (as interleukin (IL)-6) and/or cellular cytotoxicity induced by serum nitrite (as a breakdown product of the cytotoxic nitric oxide) in vitiligo patients. Methods This case-control study included 74 vitiligo patients and 75 apparently healthy controls. The distribution of ACE gene I/D genotype was investigated using PCR. Serum ACE, IL-6 and nitrite were measured by colorimetric method, ELISA and Griess assay respectively. Results The ACE allele frequency was significantly different between vitiligo patients and healthy controls (P = 0.026). However there was no significant difference between the ACE genotyping frequency in both groups (P = 0.115). There were statistically significant higher VIDA score (P = 0.007), and serum IL-6 (P < 0.001) in patients with the DD genotype when compared to other genotypes. Serum nitrite in patients with the DD genotype was significantly higher (P = 0.007) when compared to patients with II genotype. Serum levels of ACE, IL-6 and nitrite in vitiligo patients were statistically significantly higher than those in controls. Conclusion As a conclusion, ACE gene polymorphism might grant susceptibility to develop vitiligo. Serum IL-6 and nitrite levels might have an important role in the pathogenesis of vitiligo. Targeting these two factors might have an implication in the treatment of some resistant cases. PMID:26177100

  19. Effect of passage number on cellular response DNA-damaging agents: cell survival and gene expression

    SciTech Connect

    Chang-Liu, Chin-Mei; Wolschak, G.E.

    1996-03-01

    The effect of different passage numbers on plating efficiency, doubling time, cell growth, and radiation sensitivity was assessed in Syrian hamster embryo (SHE) cells. Changes in gene expression after UV or {gamma}-ray irradiation at different passage numbers were also examined. The SHE cells were maintained in culture medium for up to 64 passages. Cells were exposed to {sup 60}Co {gamma} rays or 254-m UV radiation. Differential display of cDNAs and Northern blots were used for the study of gene expression. With increasing passage number, SHE cells demonstrated decreased doubling time, increased plating efficiency, and a decreased yield in the number of cells per plate. Between passages 41 and 48 a ``crisis`` period was evident during which time cell growth in high serum (20%) was no longer optimal, and serum concentrations were reduced (to 10%) to maintain cell growth. Sensitivity to ionizing radiation was no different between early- and intermediate-passage cells. However, after UV exposure at low passages (passage 3), confluent cells were more sensitive to the killing effects of UV than were log-phase cells. At intermediate passages (passages 43, 48), confluent cells were slightly more radioresistant- than were log-phase cells. By passage 64, however, both confluent and log-phase cells showed similar patterns of UV sensitivity. Expression of {gamma}-actin, PCNA, and p53 transcripts did not change following UV exposure. p53 mRNA was induced following {gamma}-ray exposure of the intermediate (passage 45) epithelial cells. Differential display, however, revealed changes in expression of several transcripts following exposure to ionizing and ultraviolet radiations. The observed differences in radiation sensitivity associated with increasing passage number may be influenced by radiation-induced gene expression. We are conducting experiments to identify these genes.

  20. Folate depletion in human lymphocytes up-regulates p53 expression despite marked induction of strand breaks in exons 5 – 8 of the gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low dietary folate intake is associated with an elevated risk for carcinogenesis. One putative mechanism by which folate depletion promotes carcinogenesis is by inducing gene-specific strand breakage and impaired expression of affected genes. Primary human lymphocytes were cultured in media containi...

  1. Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders

    PubMed Central

    Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T.; Oliveira, Bárbara; Marshall, Christian R.; Magalhaes, Tiago R.; Lowe, Jennifer K.; Howe, Jennifer L.; Griswold, Anthony J.; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A.; De Jonge, Maretha V.; Cuccaro, Michael; Crawford, Emily L.; Correia, Catarina T.; Conroy, Judith; Conceição, Inês C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L. Alison; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F.; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.

    2014-01-01

    Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10?5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10?15, ?3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation. PMID:24768552

  2. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders.

    PubMed

    Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A S; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T; Oliveira, Bárbara; Marshall, Christian R; Magalhaes, Tiago R; Lowe, Jennifer K; Howe, Jennifer L; Griswold, Anthony J; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A; De Jonge, Maretha V; Cuccaro, Michael; Crawford, Emily L; Correia, Catarina T; Conroy, Judith; Conceição, Inês C; Chiocchetti, Andreas G; Casey, Jillian P; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L Alison; McGrew, Susan G; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M; Vieland, Veronica J; Vicente, Astrid M; Schellenberg, Gerard D; Pericak-Vance, Margaret; Paterson, Andrew D; Parr, Jeremy R; Oliveira, Guiomar; Nurnberger, John I; Monaco, Anthony P; Maestrini, Elena; Klauck, Sabine M; Hakonarson, Hakon; Haines, Jonathan L; Geschwind, Daniel H; Freitag, Christine M; Folstein, Susan E; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W

    2014-05-01

    Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ?3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation. PMID:24768552

  3. Pluripotent stem cells as a cellular model for skin: relevance for physiopathology, cell/gene therapy and drug screening.

    PubMed

    Levy, Ayelet; Petit, Isabelle; Aberdam, Daniel

    2015-04-01

    The skin represents the largest tissue in the human body. Its external part, the epidermis, accomplishes vital functions such as barrier protection, thermoregulation and immune function. The mammalian skin epidermis has been for decades the paradigm for studying the molecular events that occur in tissue homeostasis and repair. Many genes and signaling pathways have been identified by the use of manipulated transgenic and KO mice. However, despite numerous elegant transgenic mice experiments, absence of an appropriate in vitro model system has hampered the molecular study of the early events responsible for epidermal and dermal commitments, stages at which congenital genetic alterations are responsible for hundreds of rare skin diseases. For most of them, etiology and treatment are still missing. Here we review the last decade of studies aimed at designing cellular models from pluripotent stem cells (PSC) that recapitulate in vitro the main molecular steps of skin formation. As described below, PSC-based models are powerful tools to (i) clarify early molecular events that occur during epithelial/mesenchymal interactions, (ii) produce in large amount skin cells that could become an alternative for cell/gene therapies and (iii) screen for therapeutic compounds to treat genodermatoses. PMID:26287031

  4. Electrical stimulation of neonatal cardiac myocytes activates the NFAT3 and GATA4 pathways and up-regulates the adenylosuccinate synthetase 1 gene.

    PubMed

    Xia, Y; McMillin, J B; Lewis, A; Moore, M; Zhu, W G; Williams, R S; Kellems, R E

    2000-01-21

    Electrically stimulated pacing of cultured cardiomyocytes serves as an experimentally convenient and physiologically relevant in vitro model of cardiac hypertrophy. Electrical pacing triggers a signaling cascade that results in the activation of the muscle-specific Adss1 gene and the repression of the nonmuscle Adss2 isoform. Activation of the Adss1 gene involves the calcineurin-mediated dephosphorylation of NFAT3, allowing its translocation to the nucleus, where it can directly participate in Adss1 gene activation. Mutational studies show that an NFAT binding site located in the Adss1 5'-flanking region is essential for this activation. Electrical pacing also results in the increased synthesis of GATA4, another critical cardiac transcription factor required for Adss1 gene expression. MEF2C also produces transactivation of the Adss1 gene reporter in control and paced cardiac myocytes. Using the Adss1 gene as a model, these studies are the first to demonstrate that electrical pacing activates the calcineurin/NFAT3 and GATA4 pathways as a means of regulating cardiac gene expression. PMID:10636885

  5. Hypoxia inducible factor-1 mediates upregulation of urokinase-type plasminogen activator receptor gene transcription during hypoxia in cervical cancer cells.

    PubMed

    Nishi, Hirotaka; Sasaki, Toru; Nagamitsu, Yuzo; Terauchi, Fumitoshi; Nagai, Takeshi; Nagao, Toshitaka; Isaka, Keiichi

    2016-02-01

    Hypoxia occurs during development of cervical cancer and is considered to correlate with its invasion. Hypoxia mediates tumor cells to have more invasive property in a variety of cancers. Urokinase plasminogen activator receptor (uPAR) which mediates invasion is considered to be induced by hypoxia. We sought to determine the regulators of uPAR expression during hypoxia in cervical cancer. We showed that cervical cancer cell lines, CaSki and CA, were more invasive under hypoxic condition (1% O2) than under normoxic condition (20% O2) by invasion assays. Using western blot analysis, hypoxia enhanced the endogenous hypoxia-inducible factor (HIF)-1? and uPAR protein expression. uPAR mRNA level was also upregulated by hypoxia using real-time RT-PCR. Overexpression of HIF-1? which is induced by hypoxia activated the transcriptional activity of the uPAR promoter by luciferase assays. HIF-1 protein bound the putative HIF-1 response element on the uPAR promoter using electrophoretic mobility shift analysis, and additional luciferase assays show that this is essential for uPAR transactivation by HIF-1. HIF-1 overexpression enhanced the endogenous uPAR expression and introduction of siRNA for HIF-1? diminishes uPAR expression during hypoxia. These results indicate the upregulation of uPAR by hypoxia in cervical cancer cells is mediated through HIF-1. In cervical cancer tissues, we also demonstrated that uPAR protein expression was detected in cervical cancer but not in normal cervix or cervical intraepithelial neoplasia (CIN) by immunohistopathological staining. Our results provide evidence that regulation of uPAR expression by HIF-1 represents a mechanism for cervical cancer invasion during hypoxia. PMID:26718775

  6. An Arabidopsis WDR protein coordinates cellular networks involved in light, stress response and hormone signals.

    PubMed

    Chuang, Huey-Wen; Feng, Ji-Huan; Feng, Yung-Lin; Wei, Miam-Ju

    2015-12-01

    The WD-40 repeat (WDR) protein acts as a scaffold for protein interactions in various cellular events. An Arabidopsis WDR protein exhibited sequence similarity with human WDR26, a scaffolding protein implicated in H2O2-induced cell death in neural cells. The AtWDR26 transcript was induced by auxin, abscisic acid (ABA), ethylene (ET), osmostic stress and salinity. The expression of AtWDR26 was regulated by light, and seed germination of the AtWDR26 overexpression (OE) and seedling growth of the T-DNA knock-out (KO) exhibited altered sensitivity to light. Root growth of the OE seedlings increased tolerance to ZnSO4 and NaCl stresses and were hypersensitive to inhibition of osmotic stress. Seedlings of OE and KO altered sensitivities to multiple hormones. Transcriptome analysis of the transgenic plants overexpressing AtWDR26 showed that genes involved in the chloroplast-related metabolism constituted the largest group of the up-regulated genes. AtWDR26 overexpression up-regulated a large number of genes related to defense cellular events including biotic and abiotic stress response. Furthermore, several members of genes functioning in the regulation of Zn homeostasis, and hormone synthesis and perception of auxin and JA were strongly up-regulated in the transgenic plants. Our data provide physiological and transcriptional evidence for AtWDR26 role in hormone, light and abiotic stress cellular events. PMID:26706055

  7. Murine Hyperglycemic Vasculopathy and Cardiomyopathy: Whole-Genome Gene Expression Analysis Predicts Cellular Targets and Regulatory Networks Influenced by Mannose Binding Lectin

    PubMed Central

    Zou, Chenhui; La Bonte, Laura R.; Pavlov, Vasile I.; Stahl, Gregory L.

    2012-01-01

    Hyperglycemia, in the absence of type 1 or 2 diabetes, is an independent risk factor for cardiovascular disease. We have previously demonstrated a central role for mannose binding lectin (MBL)-mediated cardiac dysfunction in acute hyperglycemic mice. In this study, we applied whole-genome microarray data analysis to investigate MBL’s role in systematic gene expression changes. The data predict possible intracellular events taking place in multiple cellular compartments such as enhanced insulin signaling pathway sensitivity, promoted mitochondrial respiratory function, improved cellular energy expenditure and protein quality control, improved cytoskeleton structure, and facilitated intracellular trafficking, all of which may contribute to the organismal health of MBL null mice against acute hyperglycemia. Our data show a tight association between gene expression profile and tissue function which might be a very useful tool in predicting cellular targets and regulatory networks connected with in vivo observations, providing clues for further mechanistic studies. PMID:22375142

  8. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    SciTech Connect

    Liu Hua; Luan Fang; Ju Ying; Shen Hongyu; Gao Lifen; Wang Xiaoyan; Liu Suxia; Zhang Lining; Sun Wensheng; Ma Chunhong . E-mail: machunhong@sdu.edu.cn

    2007-04-06

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation.

  9. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: Implications for carcinogenesis, senescence, and age-related diseases

    PubMed Central

    Chang, Bey-Dih; Watanabe, Keiko; Broude, Eugenia V.; Fang, Jing; Poole, Jason C.; Kalinichenko, Tatiana V.; Roninson, Igor B.

    2000-01-01

    Induction of cyclin-dependent kinase inhibitor p21Waf1/Cip1/Sdi1 triggers cell growth arrest associated with senescence and damage response. Overexpression of p21 from an inducible promoter in a human cell line induces growth arrest and phenotypic features of senescence. cDNA array hybridization showed that p21 expression selectively inhibits a set of genes involved in mitosis, DNA replication, segregation, and repair. The kinetics of inhibition of these genes on p21 induction parallels the onset of growth arrest, and their reexpression on release from p21 precedes the reentry of cells into cell cycle, indicating that inhibition of cell-cycle progression genes is a mechanism of p21-induced growth arrest. p21 also up-regulates multiple genes that have been associated with senescence or implicated in age-related diseases, including atherosclerosis, Alzheimer's disease, amyloidosis, and arthritis. Most of the tested p21-induced genes were not activated in cells that had been growth arrested by serum starvation, but some genes were induced in both forms of growth arrest. Several p21-induced genes encode secreted proteins with paracrine effects on cell growth and apoptosis. In agreement with the overexpression of such proteins, conditioned media from p21-induced cells were found to have antiapoptotic and mitogenic activity. These results suggest that the effects of p21 induction on gene expression in senescent cells may contribute to the pathogenesis of cancer and age-related diseases. PMID:10760295

  10. Minireview: Long Noncoding RNAs: New “Links” Between Gene Expression and Cellular Outcomes in Endocrinology

    PubMed Central

    Sun, Miao

    2013-01-01

    Recent advances in sequencing technologies have revealed that the genome is extensively transcribed, yielding a large repertoire of noncoding RNAs. These include long noncoding RNAs (lncRNAs), mRNA-like molecules that do not code for proteins, which are emerging as a new class of RNAs that play important roles in a variety of cellular processes. Ongoing studies are revealing new insights about lncRNAs, including their physiological functions, disease relationships, and molecular mechanisms of action. Characterized lncRNAs have been shown to interact with and modulate the activity of other RNAs and protein partners, leading to alterations in transcriptional and posttranscriptional regulatory processes. In this review, we summarize the key features of lncRNAs, their molecular mechanisms of action, biological functions, and therapeutic implications, particularly as they apply to the field of molecular endocrinology. In addition, we provide a brief overview of how molecular biologists are beginning to probe the identity, mechanisms, and functions of this emerging class of RNA molecules. PMID:23885095

  11. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    SciTech Connect

    Alvarez, Enrique; Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M.

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  12. DaTrypsin, a novel clip-domain serine proteinase gene up-regulated during winter and summer diapauses of the onion maggot, Delia antiqua

    E-print Network

    Monteiro, Antónia

    diapauses of the onion maggot, Delia antiqua Bin Chena,b,c,*, Takumi Kayukawaa , Haobo Jiangd , Anto of winter (WD) and summer diapauses (SD), we screened for diapause-specific genes in the onion maggot, Delia

  13. RNA pol II transcript abundance controls condensin accumulation at mitotically up-regulated and heat-shock-inducible genes in fission yeast

    PubMed Central

    Nakazawa, Norihiko; Sajiki, Kenichi; Xu, Xingya; Villar-Briones, Alejandro; Arakawa, Orie; Yanagida, Mitsuhiro

    2015-01-01

    Condensin plays fundamental roles in chromosome dynamics. In this study, we determined the binding sites of condensin on fission yeast (Schizosaccharomyces pombe) chromosomes at the level of nucleotide sequences using chromatin immunoprecipitation (ChIP) and ChIP sequencing (ChIP-seq). We found that condensin binds to RNA polymerase I-, II- and III-transcribed genes during both mitosis and interphase, and we focused on pol II constitutive and inducible genes. Accumulation sites for condensin are distinct from those of cohesin and DNA topoisomerase II. Using cell cycle stage and heat-shock-inducible genes, we show that pol II-mediated transcripts cause condensin accumulation. First, condensin's enrichment on mitotically activated genes was abolished by deleting the sep1+ gene that encodes an M-phase-specific forkhead transcription factor. Second, by raising the temperature, condensin accumulation was rapidly induced at heat-shock protein genes in interphase and even during mid-mitosis. In interphase, condensin accumulates preferentially during the postreplicative phase. Pol II-mediated transcription was neither repressed nor activated by condensin, as levels of transcripts per se did not change when mutant condensin failed to associate with chromosomal DNA. However, massive chromosome missegregation occurred, suggesting that abundant pol II transcription may require active condensin before proper chromosome segregation. PMID:25847133

  14. Whole-Genome Gene Expression Profiling Reveals the Major Role of Nitric Oxide in Mediating the Cellular Transcriptional Response to Ionizing Radiation in Normal Human Fibroblasts

    PubMed Central

    Sokolov, Mykyta V.; Panyutin, Igor G.; Neumann, Ronald D.

    2012-01-01

    The indirect biological effects of ionizing radiation (IR) are thought to be mediated largely by reactive oxygen and nitrogen species (ROS and RNS). However, no data are available on how nitric oxide (NO) modulates the response of normal human cells to IR exposures at the level of the whole transcriptome. Here, we examined the effects of NO and ROS scavengers, carboxy-PTIO and DMSO, on changes in global gene expression in cultured normal human fibroblasts after exposures to gamma-rays, aiming to elucidate the involvement of ROS and RNS in transcriptional response to IR. We found that NO depletion dramatically affects the gene expression in normal human cells following irradiation with gamma-rays. We observed striking (more than seven-fold) reduction of the number of upregulated genes upon NO scavenging compared to reference irradiated cell cultures. NO scavenging in irradiated IMR-90 cells results in induction of p53 signaling, DNA damage and DNA repair pathways. PMID:22814268

  15. Dual regulation of ?2-adrenoceptor messenger RNA expression in human lung fibroblasts by ?2-cAMP signaling; delayed upregulated inhibitors oppose a rapid in onset, direct stimulation of gene expression.

    PubMed

    Kämpfer, N; Lamyel, F; Schütz, I; Warnken, M; Hoffmann, K; von Kügelgen, I; Racké, Kurt

    2014-07-01

    Based on their bronchodilatory effect, ?2-adrenoceptor agonists constitute essential elements in the treatment of bronchial asthma and COPD. As treatment with ?2-adrenoceptor agonists has been associated with worsening of airway hyper-reactivity, possibly because of loss of ?-adrenoceptor function, molecular mechanism of the regulation of ?2-adrenoceptor expression were studied. MRC-5 human lung fibroblasts were cultured in absence or presence of test substances followed by ?2-adrenoceptor messenger RNA (mRNA) determination by qPCR. After inhibition of mRNA synthesis by actinomycin D, ?2-adrenoceptor mRNA decreased with a half-life of 23 min, whereas inhibition of protein synthesis by cycloheximide caused an about 5- and 6-fold increase within 1.5 and 4 h, respectively. ?2-Adrenoceptor mRNA was increased by about 100 % after 1 h exposure to formoterol or olodaterol but decreased by about 60 % after 4 h agonist exposure. Both effects of ?2-adrenoceptor agonists were mimicked by forskolin, a direct activator of adenylyl cyclase and cholera toxin, which stimulates adenylyl cyclase by permanent activation of Gs. ?2-Adrenoceptor agonist-induced upregulation of ?2-adrenoceptor mRNA was blocked by the ?2-adrenoceptor antagonist ICI 118551 and prevented by actinomycin D, but not by cycloheximide. Moreover, in presence of cycloheximide, ?2-adrenoceptor agonist-induced reduction in ?2-adrenoceptor mRNA was converted into stimulation, resulting in a more than 10-fold increase. In conclusion, expression of ?2-adrenoceptors in human lung fibroblasts is highly regulated at transcriptional level. The ?2-adrenoceptor gene is under strong inhibitory control of short-living suppressor proteins. ?2-Adrenoceptor activation induces via adenylyl cyclase - cyclic adenosine monophosphate (cAMP) signaling a rapid in onset direct stimulation of the ?2-adrenoceptor gene transcription, an effect opposed by a delayed upregulation of inhibitory factors. PMID:24705868

  16. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    PubMed Central

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-01-01

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918

  17. Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unicellular Cyanobacterium

    PubMed Central

    Vinh, Nguyen X.; Viswanathan, Ganesh A.; Chetty, Madhu; Wangikar, Pramod P.

    2015-01-01

    Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 (henceforth Cyanothece), temporally separate the oxygen sensitive nitrogen fixation from oxygen evolving photosynthesis not only under diurnal cycles (LD) but also in continuous light (LL). However, recent reports demonstrate that the oscillations in LL occur with a shorter cycle time of ~11 h. We find that indeed, majority of the genes oscillate in LL with this cycle time. Genes that are upregulated at a particular time of day under diurnal cycle also get upregulated at an equivalent metabolic phase under LL suggesting tight coupling of various cellular events with each other and with the cell’s metabolic status. A number of metabolic processes get upregulated in a coordinated fashion during the respiratory phase under LL including glycogen degradation, glycolysis, oxidative pentose phosphate pathway, and tricarboxylic acid cycle. These precede nitrogen fixation apparently to ensure sufficient energy and anoxic environment needed for the nitrogenase enzyme. Photosynthetic phase sees upregulation of photosystem II, carbonate transport, carbon concentrating mechanism, RuBisCO, glycogen synthesis and light harvesting antenna pigment biosynthesis. In Synechococcus elongates PCC 7942, a non-nitrogen fixing cyanobacteria, expression of a relatively smaller fraction of genes oscillates under LL condition with the major periodicity being 24 h. In contrast, the entire cellular machinery of Cyanothece orchestrates coordinated oscillation in anticipation of the ensuing metabolic phase in both LD and LL. These results may have important implications in understanding the timing of various cellular events and in engineering cyanobacteria for biofuel production. PMID:25973856

  18. Gene Expression Dynamics during Diabetic Periodontitis

    PubMed Central

    Andriankaja, O.M.; Galicia, J.; Dong, G.; Xiao, W.; Alawi, F.; Graves, D.T.

    2012-01-01

    Diabetes impairs the resolution of periodontal inflammation. We explored pathways altered by inflammation in the diabetic periodontium by using ligatures to induce periodontitis in type-2 diabetic Goto-Kakizaki rats. Ligatures were removed after 7 days, and rats were then treated with TNF inhibitor (pegsunercept) or vehicle alone and euthanized 4 days later. RNA was extracted from periodontal tissue, examined by mRNA profiling, and further analyzed by functional criteria. We found that 1,754 genes were significantly up-regulated and 1,243 were down-regulated by pegsunercept (p < 0.05). Functional analysis revealed up-regulation of neuron-associated and retina-associated gene clusters as well as those related to cell activity and signaling. Others were down-regulated by TNF inhibition and included genes associated with host defense, apoptosis, cell signaling and activity, and coagulation/hemostasis/complement. For selected genes, findings with microarray and rt-PCR agreed. PPAR-? was investigated further by immunohistochemistry due to its anti-inflammatory function and was found to be up-regulated in the gingiva during the resolution of periodontal inflammation and suppressed by diabetes. The results indicate that diabetes-enhanced inflammation both up- and down-regulates genes involved in cellular activity and cell signaling, while it predominantly up-regulates genes involved in the host response, apoptosis, and coagulation/homeostasis/complement and down-regulates mRNA levels of neuron, retina, and energy/metabolism-associated genes. PMID:23103632

  19. NF-?Bp65 and Expression of Its Pro-Inflammatory Target Genes Are Upregulated in the Subcutaneous Adipose Tissue of Cachectic Cancer Patients

    PubMed Central

    Gonzalez Camargo, Rodolfo; Mendes dos Reis Riccardi, Daniela; Quintas Teixeira Ribeiro, Henrique; Carlos Carnevali, Luiz; Marques de Matos-Neto, Emidio; Enjiu, Lucas; Xavier Neves, Rodrigo; Darck Carola Correia Lima, Joanna; Galvão Figuerêdo, Raquel; Sérgio Martins de Alcântara, Paulo; Maximiano, Linda; Otoch, José; Batista, Miguel Luiz; Püschel, Gerhard; Seelaender, Marilia

    2015-01-01

    Cancer cachexia, of which the most notable symptom is severe and rapid weight loss, is present in the majority of patients with advanced cancer. Inflammatory mediators play an important role in the development of cachexia, envisaged as a chronic inflammatory syndrome. The white adipose tissue (WAT) is one of the first compartments affected in cancer cachexia and suffers a high rate of lipolysis. It secretes several cytokines capable of directly regulating intermediate metabolism. A common pathway in the regulation of the expression of pro-inflammatory cytokines in WAT is the activation of the nuclear transcription factor kappa-B (NF-?B). We have examined the gene expression of the subunits NF-?Bp65 and NF-?Bp50, as well as NF-?Bp65 and NF-?Bp50 binding, the gene expression of pro-inflammatory mediators under NF-?B control (IL-1?, IL-6, INF-?, TNF-?, MCP-1), and its inhibitory protein, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (I?B-?). The observational study involved 35 patients (control group, n = 12 and cancer group, n = 23, further divided into cachectic and non-cachectic). NF-?Bp65 and its target genes expression (TNF-?, IL-1?, MCP-1 and I?B-?) were significantly higher in cachectic cancer patients. Moreover, NF-?Bp65 gene expression correlated positively with the expression of its target genes. The results strongly suggest that the NF-?B pathway plays a role in the promotion of WAT inflammation during cachexia. PMID:26053616

  20. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    SciTech Connect

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu; Li, Xiaoyu; Tong, Nanwei

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  1. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  2. OVER-ACCUMULATION OF HIGHER POLYAMINES IN RIPENING TRANSGENIC TOMATO FRUIT REVIVES METABOLIC MEMORY, UPREGULATES ANABOLISM-RELATED GENES, AND POSITIVELY IMPACTS NUTRITIONAL QUALITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern science is making strides into our understanding of the interrelationships between diet and disease. Thus, functional genomics research that not only deciphers the functional roles of genes but also to understand how a particular diet or a component thereof influences a particular disease has...

  3. Simian virus 40 gene A regulation of cellular DNA synthesis. II. In nonpermissive cells.

    PubMed Central

    Hiscott, J B; Defendi, V

    1981-01-01

    The stimulation of host macromolecular synthesis and induction into the cell cycle of serum-deprived G0-G1-arrested mouse embryo fibroblasts were examined after infection of resting cells with wild-type simian virus 40 or with viral mutants affecting T antigen (tsA58) or small t antigen (dl884). At various times after virus infection, cell cultures were analyzed for DNA synthesis by autoradiography and flow microfluorimetry. Whereas mock-infected cultured remained quiescent and displayed either a 2N DNA content (80%) or a 4N DNA content (15%), mouse cells infected with wild-type simian virus 40, tsA58 at 33 degrees C, or dl884 were induced into active cell cycling at approximately 18 h postinfection. Although dl884-infected mouse cells were induced to cycle initially at the same rate as wild type-infected cells, they became arrested earlier after infection and also failed to reach the saturation densities of wild-type simian virus 40-infected cells. Infection with dl884 also failed to induce loss of cytoplasmic actin cables in the majority of the infected cell population. Mouse cells infected with tsA58 and maintained at 39.5 degrees C showed a transient burst of DNA synthesis as reflected by changes in cell DNA content and an increase in the number of labeled nuclei during the first 24 h postinfection; however, after the abortive stimulation of DNA synthesis at 39.5 degrees C shift experiments demonstrated that host DNA replication was regulated by a functional A gene product. It is concluded that both products of the early region of simian virus 40 DNA play a complementary role in recruiting and maintaining simian virus 40-infected cells in the cell cycle. Images PMID:6261020

  4. Respiratory Viral Infections and Subversion of Cellular Antioxidant Defenses

    PubMed Central

    Komaravelli, Narayana; Casola, Antonella

    2014-01-01

    Reactive oxygen species (ROS) formation is part of normal cellular aerobic metabolism, due to respiration and oxidation of nutrients in order to generate energy. Low levels of ROS are involved in cellular signaling and are well controlled by the cellular antioxidant defense system. Elevated levels of ROS generation due to pollutants, toxins and radiation exposure, as well as infections, are associated with oxidative stress causing cellular damage. Several respiratory viruses, including respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and influenza, induce increased ROS formation, both intracellularly and as a result of increased inflammatory cell recruitment at the site of infection. They also reduce antioxidant enzyme (AOE) levels and/or activity, leading to unbalanced oxidative-antioxidant status and subsequent oxidative cell damage. Expression of several AOE is controlled by the activation of the nuclear transcription factor NF-E2-related factor 2 (Nrf2), through binding to the antioxidant responsive element (ARE) present in the AOE gene promoters. While exposure to several pro-oxidant stimuli usually leads to Nrf2 activation and upregulation of AOE expression, respiratory viral infections are associated with inhibition of AOE expression/activity, which in the case of RSV and hMPV is associated with reduced Nrf2 nuclear localization, decreased cellular levels and reduced ARE-dependent gene transcription. Therefore, administration of antioxidant mimetics or Nrf2 inducers represents potential viable therapeutic approaches to viral-induced diseases, such as respiratory infections and other infections associated with decreased cellular antioxidant capacity. PMID:25584194

  5. Immortalization by c-myc, H-ras, and Ela oncogenes induces differential cellular gene expression and growth factor responses

    SciTech Connect

    Kelekar, A.; Cole, M.D.

    1987-11-01

    Early-passage rat kidney cells were immortalized or rescued from senescence with three different oncogenes: viral promoter-driven c-myc, H-ras (Val-12), and adenovirus type 5 E1a. The normal c-myc and H-ras (Gly-12) were unable to immortalize cells under similar conditions. Quantitation of RNA in the ras-immortalized lines demonstrated that the H-ras oncogene was expressed at a level equivalent to that of the normal H-ras gene in established human or rat cell lines. Cell lines immortalized by different oncogenes were found to have distinct growth responses to individual growth factors in a short-term assay. E1a-immortalized cells were largely independent of serum growth factors, whereas c-myc-immortalized cells responded to serum better than to epidermal growth factor and insulin. H-ras-immortalized cells responded significantly to insulin alone and gave a maximal response to epidermal growth factor and insulin. Several cellular genes associated with platelet-derived growth factor stimulation, including c-myc, were expressed at high levels in the H-ras-immortalized cells, and c-myc expression was deregulated, suggesting that the H-ras oncogene has provided a ''competence'' function. H-ras-immortalized cells could not be morphologically transformed by secondary transfection with a long terminal repeat-c-myc oncogene, but secondary transfection of the same cells with H-ras (Val-12) produced morphologically transformed colonies that had 20- to 40-fold higher levels of H-ras oncogene expression. Thus transformation in this system is dependent on high levels of H-ras oncogene expression rather than on the presence of activated H-ras and c-myc oncogenes in the same cell.

  6. Mechanism of enhanced responses after combination photodynamic therapy (cPDT) in carcinoma cells involves C/EBP-mediated transcriptional upregulation of the coproporphyrinogen oxidase (CPO) gene

    NASA Astrophysics Data System (ADS)

    Anand, Sanjay; Hasan, Tayyaba; Maytin, Edward V.

    2013-03-01

    Photodynamic therapy (PDT) with aminolevulinate (ALA) is widely accepted as an effective treatment for superficial carcinomas and pre-cancers. However, PDT is still suboptimal for deeper tumors, mainly due to inadequate ALA penetration and subsequent conversion to PpIX. We are interested in improving the effectiveness of photodynamic therapy (PDT) for deep tumors, using a combination approach (cPDT) in which target protoporphyrin (PpIX) levels are significantly enhanced by differentiation caused by giving Vitamin D or methotrexate (MTX) for 3 days prior to ALAPDT. In LNCaP and MEL cells, a strong correlation between inducible differentiation and expression of C/EBP transcription factors, as well as between differentiation and mRNA levels of CPO (a key heme-synthetic enzyme), indicates the possibility of CPO transcriptional regulation by the C/EBPs. Sequence analysis of the first 1300 base pairs of the murine CPO upstream region revealed 15 consensus C/EBP binding sites. Electrophoretic Mobility Shift Assays (EMSA) proved that these sites form specific complexes that have strong, moderate or weak affinities for C/EBPs. However, in the context of the full-length CPO promoter, inactivation of any type of site (strong or weak) reduced CPO promoter activity (luciferase assay) to nearly the same extent, suggesting cooperative interactions. A comparative analysis of murine and human CPO promoters revealed possible protein-protein interactions between C/EBPs and several neighboring transcription factors such as NFkB, Sp1, AP-1, CBP/p300 and CREB (an enhanceosome complex). Overall, these results confirm that C/EBP's are important for CPO expression via complex mechanisms which upregulate PpIX and enhance the outcome of cPDT.

  7. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression

    PubMed Central

    Cicatelli, Angela; Lingua, Guido; Todeschini, Valeria; Biondi, Stefania; Torrigiani, Patrizia; Castiglione, Stefano

    2010-01-01

    Background and Aims It is increasingly evident that plant tolerance to stress is improved by mycorrhiza. Thus, suitable plant–fungus combinations may also contribute to the success of phytoremediation of heavy metal (HM)-polluted soil. Metallothioneins (MTs) and polyamines (PAs) are implicated in the response to HM stress in several plant species, but whether the response is modulated by arbuscular mycorrhizal fungi (AMF) remains to be clarified. The aim of the present study was to check whether colonization by AMF could modify growth, metal uptake/translocation, and MT and PA gene expression levels in white poplar cuttings grown on HM-contaminated soil, and to compare this with plants grown on non-contaminated soil. Methods In this greenhouse study, plants of a Populus alba clone were pre-inoculated, or not, with either Glomus mosseae or G. intraradices and then grown in pots containing either soil collected from a multimetal- (Cu and Zn) polluted site or non-polluted soil. The expression of MT and PA biosynthetic genes was analysed in leaves using quantitative reverse transcription–PCR. Free and conjugated foliar PA concentrations were determined in parallel. Results On polluted soil, AMF restored plant biomass despite higher Cu and Zn accumulation in plant organs, especially roots. Inoculation with the AMF caused an overall induction of PaMT1, PaMT2, PaMT3, PaSPDS1, PaSPDS2 and PaADC gene expression, together with increased free and conjugated PA levels, in plants grown on polluted soil, but not in those grown on non-polluted soil. Conclusions Mycorrhizal plants of P. alba clone AL35 exhibit increased capacity for stabilization of soil HMs, together with improved growth. Their enhanced stress tolerance may derive from the transcriptional upregulation of several stress-related genes, and the protective role of PAs. PMID:20810743

  8. Toxic-Selenium and Low-Selenium Transcriptomes in Caenorhabditis elegans: Toxic Selenium Up-Regulates Oxidoreductase and Down-Regulates Cuticle-Associated Genes

    PubMed Central

    Boehler, Christopher J.; Raines, Anna M.; Sunde, Roger A.

    2014-01-01

    Selenium (Se) is an element that in trace quantities is both essential in mammals but also toxic to bacteria, yeast, plants and animals, including C. elegans. Our previous studies showed that selenite was four times as toxic as selenate to C. elegans, but that deletion of thioredoxin reductase did not modulate Se toxicity. To characterize Se regulation of the full transcriptome, we conducted a microarray study in C. elegans cultured in axenic media supplemented with 0, 0.05, 0.1, 0.2, and 0.4 mM Se as selenite. C. elegans cultured in 0.2 and 0.4 mM Se displayed a significant delay in growth as compared to 0, 0.05, or 0.1 mM Se, indicating Se-induced toxicity, so worms were staged to mid-L4 larval stage for these studies. Relative to 0.1 mM Se treatment, culturing C. elegans at these Se concentrations resulted in 1.9, 9.7, 5.5, and 2.3%, respectively, of the transcriptome being altered by at least 2-fold. This toxicity altered the expression of 295 overlapping transcripts, which when filtered against gene sets for sulfur and cadmium toxicity, identified a dataset of 182 toxic-Se specific genes that were significantly enriched in functions related to oxidoreductase activity, and significantly depleted in genes related to structural components of collagen and the cuticle. Worms cultured in low Se (0 mM Se) exhibited no signs of deficiency, but low Se was accompanied by a transcriptional response of 59 genes changed ?2-fold when compared to all other Se concentrations, perhaps due to decreases in Se-dependent TRXR-1 activity. Overall, these results suggest that Se toxicity in C. elegans causes an increase in ROS and stress responses, marked by increased expression of oxidoreductases and reduced expression of cuticle-associated genes, which together underlie the impaired growth observed in these studies. PMID:24971995

  9. KSHV encoded LANA upregulates Pim-1 and is a substrate for its kinase activity

    SciTech Connect

    Bajaj, Bharat G.; Verma, Subhash C.; Lan, Ke; Cotter, Murray A.; Woodman, Zenda L.; Robertson, Erle S. . E-mail: erle@mail.med.upenn.edu

    2006-07-20

    Pim kinases are proto-oncogenes that are upregulated in a number of B cell cancers, including Epstein-Barr Virus (EBV) associated Burkitt's lymphoma. They have also been shown to be upregulated in Kaposi sarcoma-associated herpes virus (KSHV) infected primary B cells. Most cells in KSHV-associated tumors are latently infected and express only a small subset of viral genes, with KSHV latency associated nuclear antigen (LANA) being constitutively expressed. LANA regulates the transcription of a large number of cellular and viral genes. Here, we show that LANA upregulates transcription from the Pim-1 promoter (pPim-1) and map this activation to a region in the promoter located within the sequence (-681 to +37). We show that LANA expressing cells can proliferate faster and are better protected from drug induced apoptosis. Since transition through cell cycle check points and anti-apoptosis are functions associated with Pim-1, it is likely that higher Pim-1 expression in cells expressing LANA is responsible, at least in part, for this effect. A Pim-1 phosphorylation site was also identified within the amino-terminal domain of LANA. Using in vitro kinase assays, we confirmed that LANA was indeed a Pim-1 substrate, and the failure of Pim-1 to phosphorylate LANA mutated at SS205/6RR identified this site as the specific serine residues phosphorylated by Pim-1. This report provides valuable insight into yet another cellular signaling pathway subverted by KSHV LANA and suggests a contribution to KSHV related oncogenesis.

  10. Microarray Analysis of Gene Expression Alteration in Human Middle Ear Epithelial Cells Induced by Asian Sand Dust

    PubMed Central

    Go, Yoon Young; Park, Moo Kyun; Kwon, Jee Young; Seo, Young Rok; Chae, Sung-Won

    2015-01-01

    Objectives The primary aim of this study is to evaluate the gene expression profile of Asian sand dust (ASD)-treated human middle ear epithelial cell (HMEEC) using microarray analysis. Methods The HMEEC was treated with ASD (400 µg/mL) and total RNA was extracted for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed. For selected genes, the changes in gene expression were confirmed by real-time polymerase chain reaction. Results A total of 1,274 genes were differentially expressed by ASD. Among them, 1,138 genes were 2 folds up-regulated, whereas 136 genes were 2 folds down-regulated. Up-regulated genes were mainly involved in cellular processes, including apoptosis, cell differentiation, and cell proliferation. Down-regulated genes affected cellular processes, including apoptosis, cell cycle, cell differentiation, and cell proliferation. The 10 genes including ADM, CCL5, EDN1, EGR1, FOS, GHRL, JUN, SOCS3, TNF, and TNFSF10 were identified as main modulators in up-regulated genes. A total of 11 genes including CSF3, DKK1, FOSL1, FST, TERT, MMP13, PTHLH, SPRY2, TGFBR2, THBS1, and TIMP1 acted as main components of pathway associated with 2-fold down regulated genes. Conclusion We identified the differentially expressed genes in ASD-treated HMEEC. Our work indicates that air pollutant like ASD, may play an important role in the pathogenesis of otitis media. PMID:26622952

  11. Expression of human kinase suppressor of Ras 2 (hKSR-2) gene in HL60 leukemia cells is directly upregulated by 1,25-dihydroxyvitamin D{sub 3} and is required for optimal cell differentiation

    SciTech Connect

    Wang Xuening; Wang, T.-T.; White, John H.; Studzinski, George P. . E-mail: studzins@umdnj.edu

    2007-08-15

    Induction of terminal differentiation of neoplastic cells offers potential for a novel approach to cancer therapy. One of the agents being investigated for this purpose in preclinical studies is 1,25-dihydroxyvitamin D{sub 3} (1,25D), which can convert myeloid leukemia cells into normal monocyte-like cells, but the molecular mechanisms underlying this process are not fully understood. Here, we report that 1,25D upregulates the expression of hKSR-2, a new member of a small family of proteins that exhibit evolutionarily conserved function of potentiating ras signaling. The upregulation of hKSR-2 is direct, as it occurs in the presence of cycloheximide, and occurs primarily at the transcriptional level, via activation of vitamin D receptor, which acts as a ligand-activated transcription factor. Two VDRE-type motifs identified in the hKSR-2 gene bind VDR-RXR alpha heterodimers present in nuclear extracts of 1,25D-treated HL60 cells, and chromatin immunoprecipitation assays show that these VDRE motifs bind VDR in 1,25D-dependent manner in intact cells, coincident with the recruitment of RNA polymerase II to these motifs. Treatment of the cells with siRNA to hKSR-2 reduced the proportion of the most highly differentiated cells in 1,25D-treated cultures. These results demonstrate that hKSR-2 is a direct target of 1,25D in HL60 cells, and is required for optimal monocytic differentiation.

  12. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study

    PubMed Central

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Frank, Mark Barton; Bebak, Melissa; Ding, Xi-Qin

    2013-01-01

    The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3?/?/Nrl?/? and Cngb3?/?/Nrl?/? mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3?/?/Nrl?/? and 92 in Cngb3?/?/Nrl?/? retinas, relative to Nrl?/? retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3?/?/Nrl?/? and Cngb3?/?/Nrl?/? retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels. PMID:23740940

  13. Up-regulation of early growth response gene 1 (EGR-1) via ERK1/2 signals attenuates sulindac sulfide-mediated cytotoxicity in the human intestinal epithelial cells

    SciTech Connect

    Moon, Yuseok Yang, Hyun; Kim, Yung Bu

    2007-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are used to relieve pain and inflammation and have also received considerable attention because of their preventive effects against human cancer. However, the drug application is sometimes limited by the severe gastrointestinal ulcers and mucosal complications. In the present study, NSAID sulindac sulfide was investigated for the cytotoxic injury in the intestinal epithelial cells in association with an immediate inducible factor, early growth response gene 1 (EGR-1). Previously we reported that sulindac sulfide can suppress tumor cell invasion by inducing EGR-1. Extending the previous study, EGR-1 induction by sulindac sulfide was observed both in the non-transformed and transformed human intestinal epithelial cell lines. In terms of signaling pathway, ERK1/2 MAP kinases and its substrate Elk-1 transcription factor were involved in the sulindac sulfide-induced EGR-1 gene expression. Moreover, sulindac sulfide stimulated the nuclear translocation of the transcription factor EGR-1, which was also mediated by ERK1/2 signaling pathway. The roles of EGR-1 signals in the apoptotic cell death were assessed in the intestinal epithelial cells. Suppression of EGR-1 expression retarded cellular growth and colony forming activity in the intestinal epithelial cells. Moreover, induced EGR-1 ameliorated sulindac sulfide-mediated apoptotic cell death and enhanced the cellular survival. Taken all together, sulindac sulfide activated ERK1/2 MAP kinases which then mediated EGR-1 induction and nuclear translocation, all of which played important roles in the cellular survival from NSAID-mediated cytotoxicity in the human intestinal epithelial cells, implicating the protective roles of EGR-1 in the NSAID-mediated mucosal injuries.

  14. Modulation of p53? and p53? expression by regulating the alternative splicing of TP53 gene modifies cellular response

    PubMed Central

    Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C

    2014-01-01

    In addition to the tumor suppressor p53 protein, also termed p53?, the TP53 gene produces p53? and p53? through alternative splicing of exons 9? and 9? located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53? and p53? at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9?/9?. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and ? variant, supporting our experimental data. Using siRNA specifically targeting exons 9?/9?, we demonstrate that cell growth can be driven by modulating p53? and p53? expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53? and p53? promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53? enhanced p53? transcriptional activity on the p21 and Bax promoters, while p53? increased p53? transcriptional activity on the Bax promoter only. Moreover, p53? and p53? co-immunoprecipitate with p53? only in the presence of p53-responsive promoter. Interestingly, although p53? and p53? promote apoptosis in MCF7 cells, p53? and p53? maintain cell growth in response to TG003 in a p53?-dependent manner. The dual activities of p53? and p53? isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53? and p53? regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616

  15. Modulation of p53? and p53? expression by regulating the alternative splicing of TP53 gene modifies cellular response.

    PubMed

    Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C

    2014-09-01

    In addition to the tumor suppressor p53 protein, also termed p53?, the TP53 gene produces p53? and p53? through alternative splicing of exons 9? and 9? located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53? and p53? at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9?/9?. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and ? variant, supporting our experimental data. Using siRNA specifically targeting exons 9?/9?, we demonstrate that cell growth can be driven by modulating p53? and p53? expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53? and p53? promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53? enhanced p53? transcriptional activity on the p21 and Bax promoters, while p53? increased p53? transcriptional activity on the Bax promoter only. Moreover, p53? and p53? co-immunoprecipitate with p53? only in the presence of p53-responsive promoter. Interestingly, although p53? and p53? promote apoptosis in MCF7 cells, p53? and p53? maintain cell growth in response to TG003 in a p53?-dependent manner. The dual activities of p53? and p53? isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53? and p53? regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616

  16. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    SciTech Connect

    Reuther, Sebastian; Metzke, Elisabeth; Bonin, Michael; Petersen, Cordula; Dikomey, Ekkehard; Raabe, Annette

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  17. 3,4,5-tri-O-caffeoylquinic acid inhibits amyloid ?-mediated cellular toxicity on SH-SY5Y cells through the upregulation of PGAM1 and G3PDH.

    PubMed

    Miyamae, Yusaku; Han, Junkyu; Sasaki, Kazunori; Terakawa, Mika; Isoda, Hiroko; Shigemori, Hideyuki

    2011-03-01

    Caffeoylquinic acid (CQA) is one of the phenylpropanoids found in a variety of natural resources and foods, such as sweet potatoes, propolis, and coffee. Previously, we reported that 3,5-di-O-caffeoylquinic acid (3,5-di-CQA) has a neuroprotective effect against amyloid-? (A?)-induced cell death through the overexpression of glycolytic enzyme. Additionally, 3,5-di-CQA administration induced the improvement of spatial learning and memory on senescence accelerated-prone mice (SAMP8). The aim of this study was to investigate whether 3,4,5-tri-O-caffeoylquinic acid (3,4,5-tri-CQA), isolated from propolis, shows a neuroprotective effect against A?-induced cell death on human neuroblastoma SH-SY5Y cells. To clarify the possible mechanism, we performed proteomics and real-time RT-PCR as well as a measurement of the intracellular adenosine triphosphate (ATP) level. These results showed that 3,4,5-tri-CQA attenuated the cytotoxicity and prevented A?-mediated apoptosis. Glycolytic enzymes, phosphoglycerate mutase 1 (PGAM1) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were overexpressed in co-treated cells with both 3,4,5-tri-CQA and A?. The mRNA expression of PGAM1, G3PDH, and phosphoglycerate kinase 1 (PGK1), and intracellular ATP level were also increased in 3,4,5-tri-CQA treated cells. Taken together the findings in our study suggests that 3,4,5-tri-CQA shows a neuroprotective effect against A?-induced cell death through the upregulation of glycolytic enzyme mRNA as well as ATP production activation. PMID:21424281

  18. Probiotics (Bifidobacterium longum) Increase Bone Mass Density and Upregulate Sparc and Bmp-2 Genes in Rats with Bone Loss Resulting from Ovariectomy

    PubMed Central

    Parvaneh, Kolsoom; Ebrahimi, Mahdi; Sabran, Mohd Redzwan; Karimi, Golgis; Hwei, Angela Ng Min; Abdul-Majeed, Saif; Ahmad, Zuraini; Ibrahim, Zuriati; Jamaluddin, Rosita

    2015-01-01

    Probiotics are live microorganisms that exert beneficial effects on the host, when administered in adequate amounts. Mostly, probiotics affect the gastrointestinal (GI) tract of the host and alter the composition of gut microbiota. Nowadays, the incidence of hip fractures due to osteoporosis is increasing worldwide. Ovariectomized (OVX) rats have fragile bone due to estrogen deficiency and mimic the menopausal conditions in women. Therefore, this study aimed to examine the effects of Bifidobacterium longum (B. longum) on bone mass density (BMD), bone mineral content (BMC), bone remodeling, bone structure, and gene expression in OVX rats. The rats were randomly assigned into 3 groups (sham, OVX, and the OVX group supplemented with 1?mL of B. longum 108–109 colony forming units (CFU)/mL). B. longum was given once daily for 16 weeks, starting from 2 weeks after the surgery. The B. longum supplementation increased (p < 0.05) serum osteocalcin (OC) and osteoblasts, bone formation parameters, and decreased serum C-terminal telopeptide (CTX) and osteoclasts, bone resorption parameters. It also altered the microstructure of the femur. Consequently, it increased BMD by increasing (p < 0.05) the expression of Sparc and Bmp-2 genes. B. longum alleviated bone loss in OVX rats and enhanced BMD by decreasing bone resorption and increasing bone formation. PMID:26366421

  19. Probiotics (Bifidobacterium longum) Increase Bone Mass Density and Upregulate Sparc and Bmp-2 Genes in Rats with Bone Loss Resulting from Ovariectomy.

    PubMed

    Parvaneh, Kolsoom; Ebrahimi, Mahdi; Sabran, Mohd Redzwan; Karimi, Golgis; Hwei, Angela Ng Min; Abdul-Majeed, Saif; Ahmad, Zuraini; Ibrahim, Zuriati; Jamaluddin, Rosita

    2015-01-01

    Probiotics are live microorganisms that exert beneficial effects on the host, when administered in adequate amounts. Mostly, probiotics affect the gastrointestinal (GI) tract of the host and alter the composition of gut microbiota. Nowadays, the incidence of hip fractures due to osteoporosis is increasing worldwide. Ovariectomized (OVX) rats have fragile bone due to estrogen deficiency and mimic the menopausal conditions in women. Therefore, this study aimed to examine the effects of Bifidobacterium longum (B. longum) on bone mass density (BMD), bone mineral content (BMC), bone remodeling, bone structure, and gene expression in OVX rats. The rats were randomly assigned into 3 groups (sham, OVX, and the OVX group supplemented with 1?mL of B. longum 10(8)-10(9) colony forming units (CFU)/mL). B. longum was given once daily for 16 weeks, starting from 2 weeks after the surgery. The B. longum supplementation increased (p < 0.05) serum osteocalcin (OC) and osteoblasts, bone formation parameters, and decreased serum C-terminal telopeptide (CTX) and osteoclasts, bone resorption parameters. It also altered the microstructure of the femur. Consequently, it increased BMD by increasing (p < 0.05) the expression of Sparc and Bmp-2 genes. B. longum alleviated bone loss in OVX rats and enhanced BMD by decreasing bone resorption and increasing bone formation. PMID:26366421

  20. Cell type-dependent modulation of the gene encoding heat shock protein HSPA2 by hypoxia-inducible factor HIF-1: Down-regulation in keratinocytes and up-regulation in HeLa cells.

    PubMed

    Habryka, Anna; Gogler-Pig?owska, Agnieszka; Sojka, Damian; Kryj, Mariusz; Krawczyk, Zdzis?aw; Scieglinska, Dorota

    2015-09-01

    HSPA2 belongs to the multigene HSPA family, whose members encode chaperone proteins. Although expression and function of HSPA2 is mainly associated with spermatogenesis, recent studies demonstrated that in humans, the gene is active in various cancers, as well as in normal tissues, albeit in a cell type-specific manner. In the epidermis, HSPA2 is expressed in keratinocytes in the basal layer. Currently, the mechanisms underlying the regulation of HSPA2 expression remain unknown. This study was aimed at determining whether HIF-1 and its binding site, the hypoxia-response element (HRE) located in the HSPA2 promoter, are involved in HSPA2 regulation. As a model system, we used an immortal human keratinocyte line (HaCaT) and cervical cancer cells (HeLa) grown under control or hypoxic conditions. Using an in vitro gene reporter assay, we demonstrated that in keratinocytes HSPA2 promoter activity is reduced under conditions that facilitate stabilization of HIF-1?, whereas HIF-1 inhibitors abrogated the suppressive effect of hypoxia on promoter activity. Chromatin immunoprecipitation revealed that HIF-1? binds to the HSPA2 promoter. In keratinocytes, hypoxia or overexpression of a stable form of HIF-1? attenuated the expression of endogenous HSPA2, whereas targeted repression of HIF-1? by RNAi increased transcription of HSPA2 under hypoxia. Conversely, in HeLa cells, HSPA2 expression increased under conditions that stimulated HIF-1? activity, whereas inhibition of HIF-1? abrogated hypoxia-induced up-regulation of HSPA2 expression. Taken together, our results demonstrate that HIF-1 can exert differential, cell context-dependent regulatory control of the HSPA2 gene. Additionally, we also showed that HSPA2 expression can be stimulated during hypoxia/reoxygenation stress. PMID:26164067

  1. FTZ-F1 and FOXL2 up-regulate catfish brain aromatase gene transcription by specific binding to the promoter motifs.

    PubMed

    Sridevi, P; Chaitanya, R K; Dutta-Gupta, Aparna; Senthilkumaran, B

    2012-01-01

    Cytochrome P450 aromatase (cyp19) catalyzes the conversion of androgens into estrogens. Teleosts have distinct, ovarian specific (cyp19a1a) and brain specific (cyp19a1b) cyp19 genes. Previous studies in teleosts demonstrated regulation of cyp19a1a expression by the NR5A nuclear receptor subfamily as well as a fork head transcription factor, FOXL2. In the present study, we investigated the involvement of fushi tarazu factor 1, FTZ-F1, a NR5A subfamily member, and FOXL2 in the regulation of cyp19a1b expression in brain of the air-breathing catfish, Clarias gariepinus. Based on the synchronous expression pattern of cyp19a1b, FTZ-F1 and FOXL2 in the brain, we isolated the 5' upstream region of cyp19a1b to analyse regulatory motifs. Promoter motif analysis revealed FTZ-F1/NR5A1 and FOXL2 binding nucleotide sequences. Transient transfection studies showed that FTZ-F1 and FOXL2 together enhanced the transcriptional activity of cyp19a1b gene in mammalian cell lines. Mutation in either of their putative binding sites within the cyp19a1b promoter abolished this effect. Electrophoretic gel mobility shift experiments indicated that FTZ-F1 and FOXL2 proteins bind to the synthesized radio-labelled oligomers used as probes and mobility shifted upon addition of their respective antibodies. Chromatin immunoprecipitation assay confirmed the binding of both these transcription factors to their corresponding cis-acting elements in the upstream region of cyp19a1b. To our knowledge, this study is the first report on the transcriptional regulation of cyp19a1b by FTZ-F1 and FOXL2 in a teleost fish. PMID:22019437

  2. Synaptoproteomic Analysis of a Rat Gene-Environment Model of Depression Reveals Involvement of Energy Metabolism and Cellular Remodeling Pathways

    PubMed Central

    Failler, Marion; Corna, Stefano; Racagni, Giorgio; Mathé, Aleksander A.; Popoli, Maurizio

    2015-01-01

    Background: Major depression is a severe mental illness that causes heavy social and economic burdens worldwide. A number of studies have shown that interaction between individual genetic vulnerability and environmental risk factors, such as stress, is crucial in psychiatric pathophysiology. In particular, the experience of stressful events in childhood, such as neglect, abuse, or parental loss, was found to increase the risk for development of depression in adult life. Here, to reproduce the gene x environment interaction, we employed an animal model that combines genetic vulnerability with early-life stress. Methods: The Flinders Sensitive Line rats (FSL), a validated genetic animal model of depression, and the Flinders Resistant Line (FRL) rats, their controls, were subjected to a standard protocol of maternal separation (MS) from postnatal days 2 to 14. A basal comparison between the two lines for the outcome of the environmental manipulation was performed at postnatal day 73, when the rats were into adulthood. We carried out a global proteomic analysis of purified synaptic terminals (synaptosomes), in order to study a subcellular compartment enriched in proteins involved in synaptic function. Two-dimensional gel electrophoresis (2-DE), mass spectrometry, and bioinformatic analysis were used to analyze proteins and related functional networks that were modulated by genetic susceptibility (FSL vs. FRL) or by exposure to early-life stress (FRL + MS vs. FRL and FSL + MS vs. FSL). Results: We found that, at a synaptic level, mainly proteins and molecular pathways related to energy metabolism and cellular remodeling were dysregulated. Conclusions: The present results, in line with previous works, suggest that dysfunction of energy metabolism and cytoskeleton dynamics at a synaptic level could be features of stress-related pathologies, in particular major depression. PMID:25522407

  3. Conjugated linoleic acid-enriched butter improved memory and up-regulated phospholipase A2 encoding-genes in rat brain tissue.

    PubMed

    Gama, Marco A S; Raposo, Nádia R B; Mury, Fábio B; Lopes, Fernando C F; Dias-Neto, Emmanuel; Talib, Leda L; Gattaz, Wagner F

    2015-10-01

    Reduced phospholipase A2 (PLA2) activity has been reported in blood cells and in postmortem brains of patients with Alzheimer disease (AD), and there is evidence that conjugated linoleic acid (CLA) modulates the activity of PLA2 groups in non-brain tissues. As CLA isomers were shown to be actively incorporated and metabolized in the brains of rats, we hypothesized that feeding a diet naturally enriched in CLA would affect the activity and expression of Pla 2 -encoding genes in rat brain tissue, with possible implications for memory. To test this hypothesis, Wistar rats were trained for the inhibitory avoidance task and fed a commercial diet (control) or experimental diets containing either low CLA- or CLA-enriched butter for 4 weeks. After this period, the rats were tested for memory retrieval and killed for tissue collection. Hippocampal expression of 19 Pla 2 genes was evaluated by qPCR, and activities of PLA2 groups (cPLA2, iPLA2, and sPLA2) were determined by radioenzymatic assay. Rats fed the high CLA diet had increased hippocampal mRNA levels for specific PLA2 isoforms (iPla 2 g6?; cPla 2 g4a, sPla 2 g3, sPla 2 g1b, and sPla 2 g12a) and higher enzymatic activity of all PLA2 groups as compared to those fed the control and the low CLA diet. The increment in PLA2 activities correlated significantly with memory enhancement, as assessed by increased latency in the step-down inhibitory avoidance task after 4 weeks of treatment (r s = 0.69 for iPLA2, P < 0.001; r s = 0.81 for cPLA2, P < 0.001; and r s = 0.69 for sPLA2, P < 0.001). In face of the previous reports showing reduced PLA2 activity in AD brains, the present findings suggest that dairy products enriched in cis-9, trans-11 CLA may be useful in the treatment of this disease. PMID:25913570

  4. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-? coactivator 1? regulated ?-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models.

    PubMed

    Gong, Bing; Pan, Yong; Vempati, Prashant; Zhao, Wei; Knable, Lindsay; Ho, Lap; Wang, Jun; Sastre, Magdalena; Ono, Kenjiro; Sauve, Anthony A; Pasinetti, Giulio M

    2013-06-01

    Nicotinamide adenine dinucleotide (NAD)(+), a coenzyme involved in redox activities in the mitochondrial electron transport chain, has been identified as a key regulator of the lifespan-extending effects, and the activation of NAD(+) expression has been linked with a decrease in beta-amyloid (A?) toxicity in Alzheimer's disease (AD). Nicotinamide riboside (NR) is a NAD(+) precursor, it promotes peroxisome proliferator-activated receptor-? coactivator 1 (PGC)-1? expression in the brain. Evidence has shown that PGC-1? is a crucial regulator of A? generation because it affects ?-secretase (BACE1) degradation. In this study we tested the hypothesis that NR treatment in an AD mouse model could attenuate A? toxicity through the activation of PGC-1?-mediated BACE1 degradation. Using the Tg2576 AD mouse model, using in vivo behavioral analyses, biochemistry assays, small hairpin RNA (shRNA) gene silencing and electrophysiological recording, we found (1) dietary treatment of Tg2576 mice with 250 mg/kg/day of NR for 3 months significantly attenuates cognitive deterioration in Tg2576 mice and coincides with an increase in the steady-state levels of NAD(+) in the cerebral cortex; (2) application of NR to hippocampal slices (10 ?M) for 4 hours abolishes the deficits in long-term potentiation recorded in the CA1 region of Tg2576 mice; (3) NR treatment promotes PGC-1? expression in the brain coinciding with enhanced degradation of BACE1 and the reduction of A? production in Tg2576 mice. Further in vitro studies confirmed that BACE1 protein content is decreased by NR treatment in primary neuronal cultures derived from Tg2576 embryos, in which BACE1 degradation was prevented by PGC-1?-shRNA gene silencing; and (4) NR treatment and PGC-1? overexpression enhance BACE1 ubiquitination and proteasomal degradation. Our studies suggest that dietary treatment with NR might benefit AD cognitive function and synaptic plasticity, in part by promoting PGC-1?-mediated BACE1 ubiquitination and degradation, thus preventing A? production in the brain. PMID:23312803

  5. Regulation of the cellular stress response by reactive electrophiles. The role of covalent binding and cellular thiols in transcriptional activation of the 70-kilodalton heat shock protein gene by nephrotoxic cysteine conjugates.

    PubMed

    Chen, Q; Yu, K; Stevens, J L

    1992-12-01

    The cytotoxicity of nephrotoxic cysteine conjugates (NCC) in the renal epithelial cell line, LLC-PK1, is due to the covalent binding of a reactive electrophilic metabolite produced from NCC metabolism by cysteine conjugate beta-lyase. Covalent binding of NCC-derived reactive metabolites leads to a cascade of events including depletion of cellular non-protein sulfhydryls, increased cytosolic free calcium, and lipid peroxidation, which is ultimately responsible for cell death. We have used this model to investigate the signalling mechanism(s) through which reactive electrophiles increase synthesis of the 70-kD heat shock protein (HSP70). NCC treatment resulted in increased HSP70 synthesis as well as time- and dose-dependent increases in hsp70 mRNA in LLC-PK1 cells. The induction of hsp70 mRNA was blocked by actinomycin D, and nuclear run-on experiments showed that the hsp70 gene was transcriptionally activated. Inhibition of protein synthesis did not block the increase in hsp70 mRNA or transcriptional activation of the hsp70 gene suggesting that induction occurs due to activation of existing transcription factors. Inhibiting the covalent binding with a beta-lyase inhibitor, aminooxyacetic acid, blocked the increase in hsp70 mRNA. Agents which do not alter binding but do prevent toxicity by blocking the rise in cytosolic free calcium and lipid peroxidation were not effective inhibitors of hsp70 mRNA accumulation. However, the thiol reducing agent, dithiothreitol, inhibited induction of hsp70 mRNA by NCC. The data suggest that covalent binding and alterations in cellular non-protein thiols serve as signals for activation of pre-existing transcription factors which increase hsp70 gene expression. It is proposed that reactive electrophiles may have a primary effect on protein conformation resulting in activation of the hsp70 gene. PMID:1447182

  6. Molecular cloning and characterization of a novel RING zinc-finger protein gene up-regulated under in vitro salt stress in cassava.

    PubMed

    dos Reis, Sávio Pinho; Tavares, Liliane de Souza Conceição; Costa, Carinne de Nazaré Monteiro; Brígida, Aílton Borges Santa; de Souza, Cláudia Regina Batista

    2012-06-01

    Cassava (Manihot esculenta Crantz) is one of the world's most important food crops. It is cultivated mainly in developing countries of tropics, since its root is a major source of calories for low-income people due to its high productivity and resistance to many abiotic and biotic factors. A previous study has identified a partial cDNA sequence coding for a putative RING zinc finger in cassava storage root. The RING zinc finger protein is a specialized type of zinc finger protein found in many organisms. Here, we isolated the full-length cDNA sequence coding for M. esculenta RZF (MeRZF) protein by a combination of 5' and 3' RACE assays. BLAST analysis showed that its deduced amino acid sequence has a high level of similarity to plant proteins of RZF family. MeRZF protein contains a signature sequence motif for a RING zinc finger at its C-terminal region. In addition, this protein showed a histidine residue at the fifth coordination site, likely belonging to the RING-H2 subgroup, as confirmed by our phylogenetic analysis. There is also a transmembrane domain in its N-terminal region. Finally, semi-quantitative RT-PCR assays showed that MeRZF expression is increased in detached leaves treated with sodium chloride. Here, we report the first evidence of a RING zinc finger gene of cassava showing potential role in response to salt stress. PMID:22307786

  7. Hexabromocyclododecane exposure induces cardiac hypertrophy and arrhythmia by inhibiting miR-1 expression via up-regulation of the homeobox gene Nkx2.5.

    PubMed

    Wu, Meifang; Wu, Di; Wang, Chonggang; Guo, Zhizhun; Li, Bowen; Zuo, Zhenghong

    2016-01-25

    Hexabromocyclododecane (HBCD) is one of the most widely used brominated flame retardants. Although studies have reported that HBCD can cause a wide range of toxic effects on animals including humans, limited information can be found about its cardiac toxicity. In the present study, zebrafish embryos were exposed to HBCD at low concentrations of 0, 2, 20 and 200nM. The results showed that HBCD exposure could induce cardiac hypertrophy and increased deposition of collagen. In addition, disordered calcium (Ca(2+)) handling was observed in H9C2 rat cardiomyocyte cells exposed to HBCD. Using small RNA sequencing and real-time quantitative PCR, HBCD exposure was shown to induce significant changes in the miRNA expression profile associated with the cardiovascular system. Further findings indicated that miR-1, which was depressed by Nkx2.5, might play a fundamental role in mediating cardiac hypertrophy and arrhythmia via its target genes Mef2a and Irx5 after HBCD treatment. HBCD exposure induced an arrhythmogenic disorder, which was triggered by the imbalance of Ryr2, Serca2a and Ncx1 expression, inducing Ca(2+) overload in the sarcoplasmic reticulum and high Ca(2+)-ATPase activities in the H9C2 cells. PMID:26476318

  8. Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi.

    PubMed

    Kobae, Yoshihiro; Kawachi, Miki; Saito, Katsuharu; Kikuchi, Yusuke; Ezawa, Tatsuhiro; Maeshima, Masayoshi; Hata, Shingo; Fujiwara, Toru

    2015-07-01

    Arbuscular mycorrhizal (AM) fungi colonize roots and form two kinds of mycelium, intraradical mycelium (IRM) and extraradical mycelium (ERM). Arbuscules are characteristic IRM structures that highly branch within host cells in order to mediate resource exchange between the symbionts. They are ephemeral structures and at the end of their life span, arbuscular branches collapse from the tip, fungal cytoplasm withdraws, and the whole arbuscule shrinks into fungal clumps. The exoskeleton of an arbuscule contains structured chitin, which is a polymer of N-acetylglucosamine (GlcNAc), whereas a collapsed arbuscule does not. The molecular mechanisms underlying the turnover of chitin in AM fungi remain unknown. Here, a GlcNAc transporter, RiNGT, was identified from the AM fungus Rhizophagus irregularis. Yeast mutants defective in endogenous GlcNAc uptake and expressing RiNGT took up (14)C-GlcNAc, and the optimum uptake was at acidic pH values (pH 4.0-4.5). The transcript levels of RiNGT in IRM in mycorrhizal Lotus japonicus roots were over 1000 times higher than those in ERM. GlcNAc-6-phosphate deacetylase (DAC1) and glucosamine-6-phosphate isomerase (NAG1) genes, which are related to the GlcNAc catabolism pathway, were also induced in IRM. Altogether, data suggest the existence of an enhanced recycling mode of GlcNAc in IRM of AM fungi. PMID:25564438

  9. AMPA protects cultured neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression.

    PubMed

    Wu, Xuan; Zhu, Daming; Jiang, Xueying; Okagaki, Peter; Mearow, Karen; Zhu, Guanshan; McCall, Sherman; Banaudha, Krishna; Lipsky, Robert H; Marini, Ann M

    2004-08-01

    The signal transduction and molecular mechanisms underlying alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-mediated neuroprotection are unknown. In the present study, we determined a major AMPA receptor-mediated neuroprotective pathway. Exposure of cerebellar granule cells to AMPA (500 microM) + aniracetam (1 microM), a known blocker of AMPA receptor desensitization, evoked an accumulation of brain-derived neurotropic factor (BDNF) in the culture medium and enhanced TrkB-tyrosine phosphorylation following the release of BDNF. AMPA also activated the src-family tyrosine kinase, Lyn, and the downstream target of the phosphatidylinositol 3-kinase (PI3-K) pathway, Akt. Extracellular signal regulated kinase (ERK), a component of the mitogen-activated protein kinase (MAPK) pathway, was also activated. K252a, a selective inhibitor of neurotrophin signaling, blocked the AMPA-mediated neuroprotection. The involvement of BDNF release in protecting neurons by AMPA was confirmed using a BDNF-blocking antibody. AMPA-mediated neuroprotection is blocked by PP1, an inhibitor of src family kinases, LY294002, a PI3-K inhibitor, or U0126, a MAPK kinase (MEK) inhibitor. Neuroprotective concentrations of AMPA increased BDNF mRNA levels that was blocked by the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX). The increase in BDNF gene expression appeared to be the downstream target of the PI3-K-dependent activation of the MAPK cascade since MEK or the PI3-K inhibitor blocked the AMPA receptor-mediated increase in BDNF mRNA. Thus, AMPA receptors protect neurons through a mechanism involving BDNF release, TrkB receptor activation, and a signaling pathway involving a PI3-K dependent activation of MAPK that increases BDNF expression. PMID:15287886

  10. Inhibition of cellular proliferation by the Wilms' tumor suppressor WT1 is associated with suppression of insulin-like growth factor I receptor gene expression.

    PubMed Central

    Werner, H; Shen-Orr, Z; Rauscher, F J; Morris, J F; Roberts, C T; LeRoith, D

    1995-01-01

    We have investigated the regulation of the insulin-like growth factor I receptor (IGF-I-R) gene promoter by the Wilms' tumor suppressor WT1 in intact cells. The levels of endogenous IGF-I-R mRNA and the activity of IGF-I-R gene promoter fragments in luciferase reporter constructs were found to be significantly higher in G401 cells (a Wilms' tumor-derived cell line lacking detectable WT1 mRNA) than in 293 cells (a human embryonic kidney cell line which expresses significant levels of WT1 mRNA). To study whether WT1 could suppress the expression of the endogenous IGF-I-R gene, WT1-negative G401 cells were stably transfected with a WT1 expression vector. Expression of WT1 mRNA in G401 cells resulted in a significant decrease in the rate of cellular proliferation, which was associated with a reduction in the levels of IGF-I-R mRNA, promoter activity, and ligand binding and with a reduction in IGF-I-stimulated cellular proliferation, thymidine incorporation, and anchorage-independent growth. These data suggest that a major aspect of the action of the WT1 tumor suppressor is the repression of IGF-I-R gene expression. PMID:7791758

  11. Cytotoxic T lymphocyte antigen 4 decreases humoral and cellular immunity by adenovirus to enhance target GFP gene transfer in C57BL/6 mice.

    PubMed

    Bai, Dou; Zhu, Wei; Zhang, Yu; Long, Ling; Zhu, Naishuo

    2015-12-01

    Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer. PMID:26555302

  12. Interplay between TAp73 Protein and Selected Activator Protein-1 (AP-1) Family Members Promotes AP-1 Target Gene Activation and Cellular Growth*

    PubMed Central

    Subramanian, Deepa; Bunjobpol, Wilawan; Sabapathy, Kanaga

    2015-01-01

    Unlike p53, which is mutated at a high rate in human cancers, its homologue p73 is not mutated but is often overexpressed, suggesting a possible context-dependent role in growth promotion. Previously, we have shown that co-expression of TAp73 with the proto-oncogene c-Jun can augment cellular growth and potentiate transactivation of activator protein (AP)-1 target genes such as cyclin D1. Here, we provide further mechanistic insights into the cooperative activity between these two transcription factors. Our data show that TAp73-mediated AP-1 target gene transactivation relies on c-Jun dimerization and requires the canonical AP-1 sites on target gene promoters. Interestingly, only selected members of the Fos family of proteins such as c-Fos and Fra1 were found to cooperate with TAp73 in a c-Jun-dependent manner to transactivate AP-1 target promoters. Inducible expression of TAp73 led to the recruitment of these Fos family members to the AP-1 target promoters on which TAp73 was found to be bound near the AP-1 site. Consistent with the binding of TAp73 and AP-1 members on the target promoters in a c-Jun-dependent manner, TAp73 was observed to physically interact with c-Jun specifically at the chromatin via its carboxyl-terminal region. Furthermore, co-expression of c-Fos or Fra1 was able to cooperate with TAp73 in potentiating cellular growth, similarly to c-Jun. These data together suggest that TAp73 plays a vital role in activation of AP-1 target genes via direct binding to c-Jun at the target promoters, leading to enhanced loading of other AP-1 family members, thereby leading to cellular growth. PMID:26018080

  13. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells

    SciTech Connect

    Salmina, Kristine; Jankevics, Eriks; Huna, Anda; Perminov, Dmitry; Radovica, Ilze; Klymenko, Tetyana; Ivanov, Andrey; Jascenko, Elina; Scherthan, Harry; Cragg, Mark; Erenpreisa, Jekaterina

    2010-08-01

    We have previously documented that transient polyploidy is a potential cell survival strategy underlying the clonogenic re-growth of tumour cells after genotoxic treatment. In an attempt to better define this mechanism, we recently documented the key role of meiotic genes in regulating the DNA repair and return of the endopolyploid tumour cells (ETC) to diploidy through reduction divisions after irradiation. Here, we studied the role of the pluripotency and self-renewal stem cell genes NANOG, OCT4 and SOX2 in this polyploidy-dependent survival mechanism. In irradiation-resistant p53-mutated lymphoma cell-lines (Namalwa and WI-L2-NS) but not sensitive p53 wild-type counterparts (TK6), low background expression of OCT4 and NANOG was up-regulated by ionising radiation with protein accumulation evident in ETC as detected by OCT4/DNA flow cytometry and immunofluorescence (IF). IF analysis also showed that the ETC generate PML bodies that appear to concentrate OCT4, NANOG and SOX2 proteins, which extend into complex nuclear networks. These polyploid tumour cells resist apoptosis, overcome cellular senescence and undergo bi- and multi-polar divisions transmitting the up-regulated OCT4, NANOG and SOX2 self-renewal cassette to their descendents. Altogether, our observations indicate that irradiation-induced ETC up-regulate key components of germ-line cells, which potentially facilitate survival and propagation of the tumour cell population.

  14. Hepatitis B virus X protein induces RNA polymerase III-dependent gene transcription and increases cellular TATA-binding protein by activating the Ras signaling pathway.

    PubMed Central

    Wang, H D; Trivedi, A; Johnson, D L

    1997-01-01

    Our previous studies have shown that the hepatitis B virus protein, X, activates all three classes of RNA polymerase III (pol III)-dependent promoters by increasing the cellular level of TATA-binding protein (TBP) (H.-D. Wang et al., Mol. Cell. Biol. 15:6720-6728, 1995), a limiting transcription component (A. Trivedi et al., Mol. Cell. Biol. 16:6909-6916, 1996). We have investigated whether these X-mediated events are dependent on the activation of the Ras/Raf-1 signaling pathway. Transient expression of a dominant-negative mutant Ras gene (Ras-ala15) in a Drosophila S-2 stable cell line expressing X (X-S2), or incubation of the cells with a Ras farnesylation inhibitor, specifically blocked both the X-dependent activation of a cotransfected tRNA gene and the increase in cellular TBP levels. Transient expression of a constitutively activated form of Ras (Ras-val12) in control S2 cells produced both an increase in tRNA gene transcription and an increase in cellular TBP levels. These events are not cell type specific since X-mediated gene induction was also shown to be dependent on Ras activation in a stable rat 1A cell line expressing X. Furthermore, increases in RNA pol III-dependent gene activity and TBP levels could be restored in X-S2 cells expressing Ras-ala15 by coexpressing a constitutively activated form of Raf-1. These events are serum dependent, and when the cells are serum deprived, the X-mediated effects are augmented. Together, these results demonstrate that the X-mediated induction of RNA pol III-dependent genes and increase in TBP are both dependent on the activation of the Ras/Raf-1 signaling cascade. In addition, these studies define two new and important consequences mediated by the activation of the Ras signal transduction pathway: an increase in the central transcription factor, TBP, and the induction of RNA pol III-dependent gene activity. PMID:9372915

  15. nAture methods | VOL.11 NO.4 | APRIL2014 | 449 Gene circuits are dynamical systems that regulate cellular

    E-print Network

    Cai, Long

    Articles nAture methods | VOL.11 NO.4 | APRIL2014 | 449 Gene circuits are dynamical systems an optogenetic `function generator' method for programming tailor-made gene expression signals in live bacterial. Nonetheless, the accuracy and degree of gene expression programmability of these methods remains limited7

  16. Cellular Chaperonin CCT? Contributes to Rabies Virus Replication during Infection

    PubMed Central

    Zhang, Jinyang; Wu, Xiaopeng; Zan, Jie; Wu, Yongping; Ye, Chengjin; Ruan, Xizhen

    2013-01-01

    Rabies, as the oldest known infectious disease, remains a serious threat to public health worldwide. The eukaryotic cytosolic chaperonin TRiC/CCT complex facilitates the folding of proteins through ATP hydrolysis. Here, we investigated the expression, cellular localization, and function of neuronal CCT? during neurotropic rabies virus (RABV) infection using mouse N2a cells as a model. Following RABV infection, 24 altered proteins were identified by using two-dimensional electrophoresis and mass spectrometry, including 20 upregulated proteins and 4 downregulated proteins. In mouse N2a cells infected with RABV or cotransfected with RABV genes encoding nucleoprotein (N) and phosphoprotein (P), confocal microscopy demonstrated that upregulated cellular CCT? was colocalized with viral proteins N and P, which formed a hollow cricoid inclusion within the region around the nucleus. These inclusions, which correspond to Negri bodies (NBs), did not form in mouse N2a cells only expressing the viral protein N or P. Knockdown of CCT? by lentivirus-mediated RNA interference led to significant inhibition of RABV replication. These results demonstrate that the complex consisting of viral proteins N and P recruits CCT? to NBs and identify the chaperonin CCT? as a host factor that facilitates intracellular RABV replication. This work illustrates how viruses can utilize cellular chaperonins and compartmentalization for their own benefit. PMID:23637400

  17. MTSS1 gene regulated by miR-96 inhibits cell proliferation and metastasis in tongue squamous cellular carcinoma Tca8113 cell line

    PubMed Central

    Guo, Yan; Ren, Mei-Si; Shang, Chao; Zhu, Li; Zhong, Ming

    2015-01-01

    Background: Metastasis suppressor-1 (MTSS1) is a novel potential metastasis suppressor gene in several types of human cancers. However, the exact function and regulatory mechanism of MTSS1 in Tongue squamous cellular carcinoma (TSCC) have not been elucidated. Material/Methods: We first confirmed the MTSS1 gene expression by using quantitative real time-PCR (qRT-PCR) and immunohistochemical staining. Then we detected the effect of MTSS1 gene on Tca8113 cells proliferation and invasion ability by using MTT, wound healing and invasion assay. Finally by using bioinformatics analysis, luciferase reporter assay and a serial method, we analyzed the targeting of miR-96 on MTSS1 and the ability of miR-96 on MTSS1 gene mediated biological alterations in Tca8113 cells. Results: Our findings showed that the expression of MTSS1 was down-regulated in both TSCC tissues and Tca8113 cells. Forced expression of MTSS1 led to inhibited cell proliferation ability, retarded wound closing and reduced trans-membrane cell numbers. MiR-96 is confirmed to be a direct target of MTSS1 gene and could regulate MTSS1 mediated Tca8113 cells proliferation and metastasis. But miR-96 could not completely restore the invasion ability of Tca8113 cells. Conclusions: MiR-96 targeting and promoting MTSS1 repression may precipitate in the TSCC tumorigenesis through bypassing cell proliferation and metastasis control.

  18. The mitochondrial uncoupler DNP triggers brain cell mTOR signaling network reprogramming and CREB pathway up-regulation.

    PubMed

    Liu, Dong; Zhang, Yongqing; Gharavi, Robert; Park, Hee Ra; Lee, Jaewon; Siddiqui, Sana; Telljohann, Richard; Nassar, Matthew R; Cutler, Roy G; Becker, Kevin G; Mattson, Mark P

    2015-08-01

    Mitochondrial metabolism is highly responsive to nutrient availability and ongoing activity in neuronal circuits. The molecular mechanisms by which brain cells respond to an increase in cellular energy expenditure are largely unknown. Mild mitochondrial uncoupling enhances cellular energy expenditure in mitochondria and can be induced with 2,4-dinitrophenol (DNP), a proton ionophore previously used for weight loss. We found that DNP treatment reduces mitochondrial membrane potential, increases intracellular Ca(2+) levels and reduces oxidative stress in cerebral cortical neurons. Gene expression profiling of the cerebral cortex of DNP-treated mice revealed reprogramming of signaling cascades that included suppression of the mammalian target of rapamycin (mTOR) and insulin--PI3K - MAPK pathways, and up-regulation of tuberous sclerosis complex 2, a negative regulator of mTOR. Genes encoding proteins involved in autophagy processes were up-regulated in response to DNP. CREB (cAMP-response element-binding protein) signaling, Arc and brain-derived neurotrophic factor, which play important roles in synaptic plasticity and adaptive cellular stress responses, were up-regulated in response to DNP, and DNP-treated mice exhibited improved performance in a test of learning and memory. Immunoblot analysis verified that key DNP-induced changes in gene expression resulted in corresponding changes at the protein level. Our findings suggest that mild mitochondrial uncoupling triggers an integrated signaling response in brain cells characterized by reprogramming of mTOR and insulin signaling, and up-regulation of pathways involved in adaptive stress responses, molecular waste disposal, and synaptic plasticity. Physiological bioenergetic challenges such as exercise and fasting can enhance neuroplasticity and protect neurons against injury and neurodegeneration. Here, we show that the mitochondrial uncoupling agent 2,4-dinitrophenol (DNP) elicits adaptive signaling responses in the cerebral cortex involving activation of Ca(2+) -CREB and autophagy pathways, and inhibition of mTOR and insulin signaling pathways. The molecular reprogramming induced by DNP, which is similar to that of exercise and fasting, is associated with improved learning and memory, suggesting potential therapeutic applications for DNP. PMID:26010875

  19. gamma-Glutamyl transpeptidase expression in Ewing's sarcoma cells: up-regulation by interferons.

    PubMed Central

    Bouman, Lena; Sancéau, Josiane; Rouillard, Dany; Bauvois, Brigitte

    2002-01-01

    The genetic hallmark of Ewing's sarcoma family of tumours (ET) is the presence of the translocation t(11;22)(q24;q12), which creates the ET fusion gene, leading to cellular transformation. Five human gamma-glutamyl transpeptidase (gamma-GT) genes are located near the chromosomal translocation in ET. gamma-GT is a major enzyme involved in glutathione homoeostasis. Five human cell lines representative of primary or metastatic tumours were investigated to study whether gamma-GT alterations could occur at the chromosomal breaks and rearrangements in ET. As shown by enzymic assays and FACS analyses, all ET cell lines consistently expressed a functional gamma-GT which however did not discriminate steps of ET progression. As shown previously [Sancéau, Hiscott, Delattre and Wietzerbin (2000) Oncogene 19, 3372-3383], ET cells respond to the antiproliferative effects of interferons (IFNs) type I (alpha and beta) and to a much less degree to IFN type II (gamma). IFN-alpha and -beta arrested cells in the S-phase of the cell cycle. We found an enhancement of gamma-GT mRNA species with IFN-alpha and -beta by reverse transcriptase-PCR analyses. This is reflected by up-regulation of gamma-GT protein, which coincides with the increase in gamma-GT-specific enzymic activity. Similarly, IFNs up-regulate the levels of gamma-GT in another IFN-responsive B cell line. Whether this up-regulation of gamma-GT by IFNs is of physiological relevance to cell behaviour remains to be studied. PMID:12049636

  20. The Cyanobacterial NAD Kinase Gene sll1415 Is Required for Photoheterotrophic Growth and Cellular Redox Homeostasis in Synechocystis sp. Strain PCC 6803

    PubMed Central

    Gao, Hong

    2012-01-01

    NAD kinase (NADK), which phosphorylates NAD to NADP, is one of the key enzymes regulating the cellular NADP(H) level. In Synechocystis sp. strain PCC 6803, slr0400 and sll1415 were shown to encode NAD kinases. The NADP(H) pool in the cyanobacterium was remarkably reduced by an sll1415-null mutation but slightly reduced by an slr0400-null mutation. The reduction of the NADP(H) level in the sll1415 mutant led to a significant accumulation of glucose-6-phosphate and a loss of photoheterotrophic growth. As the primary NADK gene, sll1415 was found to inhibit the transcription of genes involved in redox homeostasis and to exert stronger effects on methyl viologen tolerance than slr0040. PMID:22056937

  1. Evolving gene regulation networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system

    PubMed Central

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L.

    2014-01-01

    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs, their localized patterning into remarkably different cell types aggregated into variably sized parts of the central nervous system begin to emerge. Insights at the cellular and molecular level begin to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early and not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system. PMID:25416504

  2. Stat1 expression is not sufficient to regulate the interferon signaling pathway in cellular immortalization.

    PubMed

    Tang, Lin; Roberts, Paul C; Kraniak, Janice M; Li, Qunfang; Tainsky, Michael A

    2006-01-01

    DNA hypermethylation in gene promoters is an epigenetic mechanism regulating gene expression in cellular immortalization, an important step in carcinogenesis. Previously, we studied the genes dysregulated during immortalization using spontaneously immortalized fibroblasts from patients with Li-Fraumeni syndrome (LFS), who carry a germline mutation in the tumor suppressor gene p53. We found that multiple interferon (IFN) signaling pathway genes were regulated by epigenetic silencing. In this study we focused on a key regulator of that pathway, the signal transducer and transcription activator 1 (Stat1) gene. Although Stat1 is downregulated after cellular immortalization and upregulated in immortal MDAH041 cells after 5-aza-2'-deoxycytidine (5-aza-dC) treatment, we detected no methylation of the Stat1 promoter region in these cells before or after immortalization. To analyze the function of Stat1 in immortalization, we expressed Stat1 in immortal MDAH041 cells by stable infection, expecting to induce IFN-regulated genes or cellular senescence or both. However, the overexpression of Stat1 alone was not sufficient to repress the proliferation rate of immortal MDAH041 cells or induce senescence in immortal MDAH041 cells. We concluded that factor(s) additional to Stat1 (whether IFN dependent or not) are required for the immortalization of LFS fibroblasts. PMID:16426144

  3. Cellular repressor of E1A-stimulated genes is a bona fide lysosomal protein which undergoes proteolytic maturation during its biosynthesis

    SciTech Connect

    Schaehs, Philipp; Weidinger, Petra; Probst, Olivia C.; Svoboda, Barbara; Stadlmann, Johannes; Beug, Hartmut; Waerner, Thomas; Mach, Lukas

    2008-10-01

    Cellular repressor of E1A-stimulated genes (CREG) has been reported to be a secretory glycoprotein implicated in cellular growth and differentiation. We now show that CREG is predominantly localized within intracellular compartments. Intracellular CREG was found to lack an N-terminal peptide present in the secreted form of the protein. In contrast to normal cells, CREG is largely secreted by fibroblasts missing both mannose 6-phosphate receptors. This is not observed in cells lacking only one of them. Mass spectrometric analysis of recombinant CREG revealed that the protein contains phosphorylated oligosaccharides at either of its two N-glycosylation sites. Cellular CREG was found to cosediment with lysosomal markers upon subcellular fractionation by density-gradient centrifugation. In fibroblasts expressing a CREG-GFP fusion construct, the heterologous protein was detected in compartments containing lysosomal proteins. Immunolocalization of endogenous CREG confirmed that intracellular CREG is localized in lysosomes. Proteolytic processing of intracellular CREG involves the action of lysosomal cysteine proteinases. These results establish that CREG is a lysosomal protein that undergoes proteolytic maturation in the course of its biosynthesis, carries the mannose 6-phosphate recognition marker and depends on the interaction with mannose 6-phosphate receptors for efficient delivery to lysosomes.

  4. Comparative gene expression profiling of adult mouse ovary-derived oogonial stem cells supports a distinct cellular identity

    PubMed Central

    Imudia, Anthony N.; Wang, Ning; Tanaka, Yoshihiro; White, Yvonne A.R.; Woods, Dori C.; Tilly, Jonathan L.

    2013-01-01

    Objective Perform gene expression profiling of adult mouse ovary-derived oogonial stem cells (OSCs). Design Experimental animal study. Setting Research laboratory. Animal(s) Adult C57BL/6 female mice. Intervention(s) None. Main outcome measure(s) Gene expression profiles were compared between freshly isolated and cultured OSCs, as well as between OSCs and embryonic stem cells (ESCs), fetal primordial germ cells (PGCs) and spermatogonial stem cells (SSCs); OSC yield from ovaries versus meiotic gene activation during the estrous cycle was determined. Result(s) Freshly isolated OSCs, PGCs and SSCs exhibited distinct gene expression profiles. Cultured OSCs maintained their germline gene expression pattern, but gained expression of pluripotency markers found in PGCs and ESCs. Cultured OSCs also expressed the meiotic marker, stimulated by retinoic acid gene 8 (Stra8). In vivo, OSC yield was higher from luteal versus follicular phase ovaries and this was inversely related to Stra8 expression. Conclusion(s) Freshly isolated OSCs exhibit a germline gene expression profile that overlaps with, but is distinct from, that of PGCs and SSCs. After in vitro expansion, OSCs activate expression of pluripotency genes found in freshly isolated PGCs. In vivo, OSC numbers in the ovaries fluctuate during the estrous cycle, with the highest numbers noted during the luteal phase. This is followed by activation of Stra8 expression during the follicular phase, which may signify a wave of neo-oogenesis to partially offset follicular loss through atresia and ovulation in the prior cycle. PMID:23876535

  5. Genetic Labeling Reveals Novel Cellular Targets of Schizophrenia Susceptibility Gene: Distribution of GABA and Non-GABA ErbB4-Positive Cells in Adult Mouse Brain

    PubMed Central

    Bean, Jonathan C.; Lin, Thiri W.; Sathyamurthy, Anupama; Liu, Fang; Yin, Dong-Min; Xiong, Wen-Cheng

    2014-01-01

    Neuregulin 1 (NRG1) and its receptor ErbB4 are schizophrenia risk genes. NRG1-ErbB4 signaling plays a critical role in neural development and regulates neurotransmission and synaptic plasticity. Nevertheless, its cellular targets remain controversial. ErbB4 was thought to express in excitatory neurons, although recent studies disputed this view. Using mice that express a fluorescent protein under the promoter of the ErbB4 gene, we determined in what cells ErbB4 is expressed and their identity. ErbB4 was widely expressed in the mouse brain, being highest in amygdala and cortex. Almost all ErbB4-positive cells were GABAergic in cortex, hippocampus, basal ganglia, and most of amygdala in neonatal and adult mice, suggesting GABAergic transmission as a major target of NRG1-ErbB4 signaling in these regions. Non-GABAergic, ErbB4-positive cells were present in thalamus, hypothalamus, midbrain, and hindbrain. In particular, ErbB4 is expressed in serotoninergic neurons of raphe nuclei but not in norepinephrinergic neurons of the locus ceruleus. In hypothalamus, ErbB4 is present in neurons that express oxytocin. Finally, ErbB4 is expressed in a group of cells in the subcortical areas that are positive for S100 calcium binding protein ?. These results identify novel cellular targets of NRG1-ErbB4 signaling. PMID:25274830

  6. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-?-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis.

    PubMed

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-?, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3?-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-?-induced ICAM-1 protein expression almost completely, whereas the TNF-?-induced ICAM-1 mRNA expression and NF-?B signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-?-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  7. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-?-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

    PubMed Central

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-?, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3?-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-?-induced ICAM-1 protein expression almost completely, whereas the TNF-?-induced ICAM-1 mRNA expression and NF-?B signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-?-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  8. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling.

    PubMed

    Colangelo, Vittorio; Schurr, Jill; Ball, Melvyn J; Pelaez, Ricardo Palacios; Bazan, Nicolas G; Lukiw, Walter J

    2002-11-01

    Alterations in transcription, RNA editing, translation, protein processing, and clearance are a consistent feature of Alzheimer's disease (AD) brain. To extend our initial study (Alzheimer Reports [2000] 3:161-167), RNA samples isolated from control and AD hippocampal cornu ammonis 1 (CA1) were analyzed for 12633 gene and expressed sequence tag (EST) expression levels using DNA microarrays (HG-U95Av2 Genechips; Affymetrix, Santa Clara, CA). Hippocampal CA1 tissues were carefully selected from several hundred potential specimens obtained from domestic and international brain banks. To minimize the effects of individual differences in gene expression, RNA of high spectral quality (A(260/280) > or= 1.9) was pooled from CA1 of six control or six AD subjects. Results were compared as a group; individual gene expression patterns for the most-changed RNA message levels were also profiled. There were no significant differences in age, postmortem interval (mean < or = 2.1 hr) nor tissue pH (range 6.6-6.9) between the two brain groups. AD tissues were derived from subjects clinically classified as CDR 2-3 (CERAD/NIA). Expression data were analyzed using GeneSpring (Silicon Genetics, Redwood City, CA) and Microarray Data Mining Tool (Affymetrix) software. Compared to controls and 354 background/alignment markers, AD brain showed a generalized depression in brain gene transcription, including decreases in RNA encoding transcription factors (TFs), neurotrophic factors, signaling elements involved in synaptic plasticity such as synaptophysin, metallothionein III, and metal regulatory factor-1. Three- or morefold increases in RNAs encoding DAXX, cPLA(2), CDP5, NF-kappaBp52/p100, FAS, betaAPP, DPP1, NFIL6, IL precursor, B94, HB15, COX-2, and CEX-1 signals were strikingly apparent. These data support the hypothesis of widespread transcriptional alterations, misregulation of RNAs involved in metal ion homeostasis, TF signaling deficits, decreases in neurotrophic support and activated apoptotic and neuroinflammatory signaling in moderately affected AD hippocampal CA1. PMID:12391607

  9. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process

    PubMed Central

    Schuster, Andrè; Kubicek, Christian P; Friedl, Martina A; Druzhinina, Irina S; Schmoll, Monika

    2007-01-01

    Background In fungi, light is primarily known to influence general morphogenesis and both sexual and asexual sporulation. In order to expand the knowledge on the effect of light in fungi and to determine the role of the light regulatory protein ENVOY in the implementation of this effect, we performed a global screen for genes, which are specifically effected by light in the fungus Hypocrea jecorina (anamorph Trichoderma reesei) using Rapid Subtraction Hybridization (RaSH). Based on these data, we analyzed whether these genes are influenced by ENVOY and if overexpression of ENVOY in darkness would be sufficient to execute its function. Results The cellular functions of the detected light responsive genes comprised a variety of roles in transcription, translation, signal transduction, metabolism, and transport. Their response to light with respect to the involvement of ENVOY could be classified as follows: (i) ENVOY-mediated upregulation by light; (ii) ENVOY-independent upregulation by light; (iii) ENVOY-antagonized upregulation by light; ENVOY-dependent repression by light; (iv) ENVOY-independent repression by light; and (v) both positive and negative regulation by ENVOY of genes not responsive to light in the wild-type. ENVOY was found to be crucial for normal growth in light on various carbon sources and is not able to execute its regulatory function if overexpressed in the darkness. Conclusion The different responses indicate that light impacts fungi like H. jecorina at several cellular processes, and that it has both positive and negative effects. The data also emphasize that ENVOY has an apparently more widespread cellular role in this process than only in modulating the response to light. PMID:18053205

  10. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling.

    PubMed

    Rice, Gillian I; del Toro Duany, Yoandris; Jenkinson, Emma M; Forte, Gabriella M A; Anderson, Beverley H; Ariaudo, Giada; Bader-Meunier, Brigitte; Baildam, Eileen M; Battini, Roberta; Beresford, Michael W; Casarano, Manuela; Chouchane, Mondher; Cimaz, Rolando; Collins, Abigail E; Cordeiro, Nuno J V; Dale, Russell C; Davidson, Joyce E; De Waele, Liesbeth; Desguerre, Isabelle; Faivre, Laurence; Fazzi, Elisa; Isidor, Bertrand; Lagae, Lieven; Latchman, Andrew R; Lebon, Pierre; Li, Chumei; Livingston, John H; Lourenço, Charles M; Mancardi, Maria Margherita; Masurel-Paulet, Alice; McInnes, Iain B; Menezes, Manoj P; Mignot, Cyril; O'Sullivan, James; Orcesi, Simona; Picco, Paolo P; Riva, Enrica; Robinson, Robert A; Rodriguez, Diana; Salvatici, Elisabetta; Scott, Christiaan; Szybowska, Marta; Tolmie, John L; Vanderver, Adeline; Vanhulle, Catherine; Vieira, Jose Pedro; Webb, Kate; Whitney, Robyn N; Williams, Simon G; Wolfe, Lynne A; Zuberi, Sameer M; Hur, Sun; Crow, Yanick J

    2014-05-01

    The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome and of other undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (also called MDA5) cause a spectrum of neuroimmunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer gain of function such that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation. PMID:24686847

  11. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling

    PubMed Central

    Jenkinson, Emma M; Forte, Gabriella MA; Anderson, Beverley H; Ariaudo, Giada; Bader-Meunier, Brigitte; Baildam, Eileen M; Battini, Roberta; Beresford, Michael W; Casarano, Manuela; Chouchane, Mondher; Cimaz, Rolando; Collins, Abigail E; Cordeiro, Nuno JV; Dale, Russell C; Davidson, Joyce E; De Waele, Liesbeth; Desguerre, Isabelle; Faivre, Laurence; Fazzi, Elisa; Isidor, Bertrand; Lagae, Lieven; Latchman, Andrew R; Lebon, Pierre; Li, Chumei; Livingston, John H; Lourenço, Charles M; Mancardi, Maria Margherita; Masurel-Paulet, Alice; McInnes, Iain B; Menezes, Manoj P; Mignot, Cyril; O’Sullivan, James; Orcesi, Simona; Picco, Paolo P; Riva, Enrica; Robinson, Robert A; Rodriguez, Diana; Salvatici, Elisabetta; Scott, Christiaan; Szybowska, Marta; Tolmie, John L; Vanderver, Adeline; Vanhulle, Catherine; Vieira, Jose Pedro; Webb, Kate; Whitney, Robyn N; Williams, Simon G; Wolfe, Lynne A; Zuberi, Sameer M; Hur, Sun; Crow, Yanick J

    2014-01-01

    The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, and of other patients with undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (MDA5) cause a spectrum of neuro-immunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer a gain-of-function - so that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation. PMID:24686847

  12. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

    SciTech Connect

    Hossain, Ekhtear; Ota, Akinobu; Karnan, Sivasundaram; Damdindorj, Lkhagvasuren; Takahashi, Miyuki; Konishi, Yuko; Konishi, Hiroyuki; Hosokawa, Yoshitaka

    2013-12-15

    Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-?B)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-?B inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-?B signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis. - Highlights: • Sodium arsenite (SA) increases LOX-1 expression in mouse aortic endothelial cells. • SA enhances cellular uptake of oxidized LDL in dose-dependent manner. • SA-induced ROS generation enhances phosphorylation of NF-?B. • SA upregulates LOX-1 expression through ROS-activated NF-?B signaling pathway.

  13. A Digital Framework to Build, Visualize and Analyze a Gene Expression Atlas with Cellular Resolution in Zebrafish Early Embryogenesis

    E-print Network

    Luengo-Oroz, Miguel A.

    A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, ...

  14. Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle.

    PubMed

    Kamneva, Olga K; Knight, Stormy J; Liberles, David A; Ward, Naomi L

    2012-01-01

    The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several outgroup species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups. We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved genetic module preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies. PMID:23221607

  15. Analysis of Genome Content Evolution in PVC Bacterial Super-Phylum: Assessment of Candidate Genes Associated with Cellular Organization and Lifestyle

    PubMed Central

    Kamneva, Olga K.; Knight, Stormy J.; Liberles, David A.; Ward, Naomi L.

    2012-01-01

    The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several outgroup species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups. We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved genetic module preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies. PMID:23221607

  16. Identification of Hypoxia-Inducible Target Genes of Aspergillus fumigatus by Transcriptome Analysis Reveals Cellular Respiration as an Important Contributor to Hypoxic Survival

    PubMed Central

    Kroll, Kristin; Pähtz, Vera; Hillmann, Falk; Vaknin, Yakir; Schmidt-Heck, Wolfgang; Roth, Martin; Jacobsen, Ilse D.; Osherov, Nir; Brakhage, Axel A.

    2014-01-01

    Aspergillus fumigatus is an opportunistic, airborne pathogen that causes invasive aspergillosis in immunocompromised patients. During the infection process, A. fumigatus is challenged by hypoxic microenvironments occurring in inflammatory, necrotic tissue. To gain further insights into the adaptation mechanism, A. fumigatus was cultivated in an oxygen-controlled chemostat under hypoxic and normoxic conditions. Transcriptome analysis revealed a significant increase in transcripts associated with cell wall polysaccharide metabolism, amino acid and metal ion transport, nitrogen metabolism, and glycolysis. A concomitant reduction in transcript levels was observed with cellular trafficking and G-protein-coupled signaling. To learn more about the functional roles of hypoxia-induced transcripts, we deleted A. fumigatus genes putatively involved in reactive nitrogen species detoxification (fhpA), NAD+ regeneration (frdA and osmA), nitrogen metabolism (niaD and niiA), and respiration (rcfB). We show that the nitric oxygen (NO)-detoxifying flavohemoprotein gene fhpA is strongly induced by hypoxia independent of the nitrogen source but is dispensable for hypoxic survival. By deleting the nitrate reductase gene niaD, the nitrite reductase gene niiA, and the two fumarate reductase genes frdA and osmA, we found that alternative electron acceptors, such as nitrate and fumarate, do not have a significant impact on growth of A. fumigatus during hypoxia, but functional mitochondrial respiratory chain complexes are essential under these conditions. Inhibition studies indicated that primarily complexes III and IV play a crucial role in the hypoxic growth of A. fumigatus. PMID:25084861

  17. Hepatic and Nephric NRF2 Pathway Up-Regulation, an Early Antioxidant Response, in Acute Arsenic-Exposed Mice.

    PubMed

    Li, Jinlong; Duan, Xiaoxu; Dong, Dandan; Zhang, Yang; Li, Wei; Zhao, Lu; Nie, Huifang; Sun, Guifan; Li, Bing

    2015-01-01

    Inorganic arsenic (iAs), a proven human carcinogen, damages biological systems through multiple mechanisms, one of them being reactive oxygen species (ROS) production. NRF2 is a redox-sensitive transcription factor that positively regulates the genes of encoding antioxidant and detoxification enzymes to neutralize ROS. Although NRF2 pathway activation by iAs has been reported in various cell types, however, the experimental data in vivo are very limited and not fully elucidated in humans. The present investigation aimed to explore the hepatic and nephric NRF2 pathway upregulation in acute arsenic-exposed mice in vivo. Our results showed 10 mg/kg NaAsO? elevated the NRF2 protein and increased the transcription of Nrf2 mRNA, as well as up-regulated NRF2 downstream targets HO-1, GST and GCLC time- and dose-dependently both in the liver and kidney. Acute NaAsO? exposure also resulted in obvious imbalance of oxidative redox status represented by the increase of GSH and MDA, and the decrease of T-AOC. The present investigation reveals that hepatic and nephric NRF2 pathway expression is an early antioxidant defensive response upon iAs exposure. A better knowledge about the NRF2 pathway involvment in the cellular response against arsenic could help improve the strategies for reducing the cellular toxicity related to this metalloid. PMID:26473898

  18. Hepatic and Nephric NRF2 Pathway Up-Regulation, an Early Antioxidant Response, in Acute Arsenic-Exposed Mice

    PubMed Central

    Li, Jinlong; Duan, Xiaoxu; Dong, Dandan; Zhang, Yang; Li, Wei; Zhao, Lu; Nie, Huifang; Sun, Guifan; Li, Bing

    2015-01-01

    Inorganic arsenic (iAs), a proven human carcinogen, damages biological systems through multiple mechanisms, one of them being reactive oxygen species (ROS) production. NRF2 is a redox-sensitive transcription factor that positively regulates the genes of encoding antioxidant and detoxification enzymes to neutralize ROS. Although NRF2 pathway activation by iAs has been reported in various cell types, however, the experimental data in vivo are very limited and not fully elucidated in humans. The present investigation aimed to explore the hepatic and nephric NRF2 pathway upregulation in acute arsenic-exposed mice in vivo. Our results showed 10 mg/kg NaAsO2 elevated the NRF2 protein and increased the transcription of Nrf2 mRNA, as well as up-regulated NRF2 downstream targets HO-1, GST and GCLC time- and dose-dependently both in the liver and kidney. Acute NaAsO2 exposure also resulted in obvious imbalance of oxidative redox status represented by the increase of GSH and MDA, and the decrease of T-AOC. The present investigation reveals that hepatic and nephric NRF2 pathway expression is an early antioxidant defensive response upon iAs exposure. A better knowledge about the NRF2 pathway involvment in the cellular response against arsenic could help improve the strategies for reducing the cellular toxicity related to this metalloid. PMID:26473898

  19. Age-related thermal response: the cellular resilience of juveniles.

    PubMed

    Clark, M S; Thorne, M A S; Burns, G; Peck, L S

    2016-01-01

    Understanding species' responses to environmental challenges is key to predicting future biodiversity. However, there is currently little data on how developmental stages affect responses and also whether universal gene biomarkers to environmental stress can be identified both within and between species. Using the Antarctic clam, Laternula elliptica, as a model species, we examined both the tissue-specific and age-related (juvenile versus mature adult) gene expression response to acute non-lethal warming (12 h at 3 °C). In general, there was a relatively muted response to this sub-lethal thermal challenge when the expression profiles of treated animals, of either age, were compared with those of 0 °C controls, with none of the "classical" stress response genes up-regulated. The expression profiles were very variable between the tissues of all animals, irrespective of age with no single transcript emerging as a universal biomarker of thermal stress. However, when the expression profiles of treated animals of the different age groups were directly compared, a very different pattern emerged. The profiles of the younger animals showed significant up-regulation of chaperone and antioxidant transcripts when compared with those of the older animals. Thus, the younger animals showed evidence of a more robust cellular response to warming. These data substantiate previous physiological analyses showing a more resilient juvenile population. PMID:26364303

  20. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    NASA Astrophysics Data System (ADS)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  1. MyoD directly up-regulates premyogenic mesoderm factors during induction of skeletal myogenesis in stem cells.

    PubMed

    Gianakopoulos, Peter J; Mehta, Virja; Voronova, Anastassia; Cao, Yi; Yao, Zizhen; Coutu, Josée; Wang, Xiaonan; Waddington, Michelle S; Tapscott, Stephen J; Skerjanc, Ilona S

    2011-01-28

    Gain- and loss-of-function experiments have illustrated that the family of myogenic regulatory factors is necessary and sufficient for the formation of skeletal muscle. Furthermore, MyoD required cellular aggregation to induce myogenesis in P19 embryonal carcinoma stem cells. To determine the mechanism by which stem cells can be directed into skeletal muscle, a time course of P19 cell differentiation was examined in the presence and absence of exogenous MyoD. By quantitative PCR, the first MyoD up-regulated transcripts were the premyogenic mesoderm factors Meox1, Pax7, Six1, and Eya2 on day 4 of differentiation. Subsequently, the myoblast markers myogenin, MEF2C, and Myf5 were up-regulated, leading to skeletal myogenesis. These results were corroborated by Western blot analysis, showing up-regulation of Pax3, Six1, and MEF2C proteins, prior to myogenin protein expression. To determine at what stage a dominant-negative MyoD/EnR mutant could inhibit myogenesis, stable cell lines were created and examined. Interestingly, the premyogenic mesoderm factors, Meox1, Pax3/7, Six1, Eya2, and Foxc1, were down-regulated, and as expected, skeletal myogenesis was abolished. Finally, to identify direct targets of MyoD in this system, chromatin immunoprecipitation experiments were performed. MyoD was observed associated with regulatory regions of Meox1, Pax3/7, Six1, Eya2, and myogenin genes. Taken together, MyoD directs stem cells into the skeletal muscle lineage by binding and activating the expression of premyogenic mesoderm genes, prior to activating myoblast genes. PMID:21078671

  2. Control of stem cell self-renewal and differentiation by the heterochronic genes and the cellular asymmetry machinery in Caenorhabditis elegans

    PubMed Central

    Harandi, Omid F.; Ambros, Victor R.

    2015-01-01

    Transitions between asymmetric (self-renewing) and symmetric (proliferative) cell divisions are robustly regulated in the context of normal development and tissue homeostasis. To genetically assess the regulation of these transitions, we used the postembryonic epithelial stem (seam) cell lineages of Caenorhabditis elegans. In these lineages, the timing of these transitions is regulated by the evolutionarily conserved heterochronic pathway, whereas cell division asymmetry is conferred by a pathway consisting of Wnt (Wingless) pathway components, including posterior pharynx defect (POP-1)/TCF, APC related/adenomatosis polyposis coli (APR-1)/APC, and LIT-1/NLK (loss of intestine/Nemo-like kinase). Here we explore the genetic regulatory mechanisms underlying stage-specific transitions between self-renewing and proliferative behavior in the seam cell lineages. We show that mutations of genes in the heterochronic developmental timing pathway, including lin-14 (lineage defect), lin-28, lin-46, and the lin-4 and let-7 (lethal defects)-family microRNAs, affect the activity of LIT-1/POP-1 cellular asymmetry machinery and APR-1 polarity during larval development. Surprisingly, heterochronic mutations that enhance LIT-1 activity in seam cells can simultaneously also enhance the opposing, POP-1 activity, suggesting a role in modulating the potency of the cellular polarizing activity of the LIT-1/POP-1 system as development proceeds. These findings illuminate how the evolutionarily conserved cellular asymmetry machinery can be coupled to microRNA-regulated developmental pathways for robust regulation of stem cell maintenance and proliferation during the course of development. Such genetic interactions between developmental timing regulators and cell polarity regulators could underlie transitions between asymmetric and symmetric stem cell fates in other systems and could be deregulated in the context of developmental disorders and cancer. PMID:25561544

  3. An Image-Based Genetic Assay Identifies Genes in T1D Susceptibility Loci Controlling Cellular Antiviral Immunity in Mouse

    PubMed Central

    Liao, Juan; Jijon, Humberto B.; Kim, Ira R.; Goel, Gautam; Doan, Aivi; Sokol, Harry; Bauer, Hermann; Herrmann, Bernhard G.; Lassen, Kara G.; Xavier, Ramnik J.

    2014-01-01

    The pathogenesis of complex diseases, such as type 1 diabetes (T1D), derives from interactions between host genetics and environmental factors. Previous studies have suggested that viral infection plays a significant role in initiation of T1D in genetically predisposed individuals. T1D susceptibility loci may therefore be enriched in previously uncharacterized genes functioning in antiviral defense pathways. To identify genes involved in antiviral immunity, we performed an image-based high-throughput genetic screen using short hairpin RNAs (shRNAs) against 161 genes within T1D susceptibility loci. RAW 264.7 cells transduced with shRNAs were infected with GFP-expressing herpes simplex virus type 1 (HSV-1) and fluorescent microscopy was performed to assess the viral infectivity by fluorescence reporter activity. Of the 14 candidates identified with high confidence, two candidates were selected for further investigation, Il27 and Tagap. Administration of recombinant IL-27 during viral infection was found to act synergistically with interferon gamma (IFN-?) to activate expression of type I IFNs and proinflammatory cytokines, and to enhance the activities of interferon regulatory factor 3 (IRF3). Consistent with a role in antiviral immunity, Tagap-deficient macrophages demonstrated increased viral replication, reduced expression of proinflammatory chemokines and cytokines, and decreased production of IFN-?. Taken together, our unbiased loss-of-function genetic screen identifies genes that play a role in host antiviral immunity and delineates roles for IL-27 and Tagap in the production of antiviral cytokines. PMID:25268627

  4. Gene Expression in Placentas From Nondiabetic Women Giving Birth to Large for Gestational Age Infants.

    PubMed

    Ahlsson, F; Åkerud, H; Schijven, D; Olivier, J; Sundström-Poromaa, I

    2015-10-01

    Gestational diabetes, obesity, and excessive weight gain are known independent risk factors for the birth of a large for gestational age (LGA) infant. However, only 1 of the 10 infants born LGA is born by mothers with diabetes or obesity. Thus, the aim of the present study was to compare placental gene expression between healthy, nondiabetic mothers (n = 22) giving birth to LGA infants and body mass index-matched mothers (n = 24) giving birth to appropriate for gestational age infants. In the whole gene expression analysis, only 29 genes were found to be differently expressed in LGA placentas. Top upregulated genes included insulin-like growth factor binding protein 1, aminolevulinate ? synthase 2, and prolactin, whereas top downregulated genes comprised leptin, gametocyte-specific factor 1, and collagen type XVII ? 1. Two enriched gene networks were identified, namely, (1) lipid metabolism, small molecule biochemistry, and organismal development and (2) cellular development, cellular growth, proliferation, and tumor morphology. PMID:25824011

  5. Human cytomegalovirus microRNA miR-US25-1-5p inhibits viral replication by targeting multiple cellular genes during infection.

    PubMed

    Jiang, Shujuan; Qi, Ying; He, Rong; Huang, Yujing; Liu, Zhongyang; Ma, Yanping; Guo, Xin; Shao, Yaozhong; Sun, Zhengrong; Ruan, Qiang

    2015-10-01

    MicroRNAs (miRNAs) play important roles in regulating various cellular processes in plants, animals, and viruses. This mechanism is also utilized by human cytomegalovirus (HCMV) in the process of infection and pathogenesis. The HCMV-encoded miRNA, hcmv-miR-US25-1-5p, was highly expressed during lytic and latent infections, and was found to inhibit viral replication. Identification of functional target genes of this microRNA is important in that it will enable a better understanding of the function of hcmv-miR-US25-1-5p during HCMV infection. In the present study, 35 putative cellular transcript targets of hcmv-miR-US25-1-5p were identified. Down-regulation of the targets YWHAE, UBB, NPM1, and HSP90AA1 by hcmv-miR-US25-1-5p was validated by luciferase reporter assay and Western blot analysis. In addition, we showed that hcmv-miR-US25-1-5p could inhibit viral replication by interacting with these targets, the existence of which may impact virus replication directly or indirectly. PMID:26055091

  6. To Investigate the Necessity of STRA6 Upregulation in T Cells during T Cell Immune Responses

    PubMed Central

    Charpentier, Tania; Lamarre, Alain; Zhong, Ming; Sun, Hui; Mao, Jianning; Qi, Shijie; Luo, Hongyu; Wu, Jiangping

    2013-01-01

    Our earlier study revealed that STRA6 (stimulated by retinoic acid gene 6) was up-regulated within 3 h of TCR stimulation. STRA6 is the high-affinity receptor for plasma retinol-binding protein (RBP) and mediates cellular vitamin A uptake. We generated STRA6 knockout (KO) mice to assess whether such up-regulation was critical for T-cell activation, differentiation and function. STRA6 KO mice under vitamin A sufficient conditions were fertile without apparent anomalies upon visual inspection. The size, cellularity and lymphocyte subpopulations of STRA6 KO thymus and spleen were comparable to those of their wild type (WT) controls. KO and WT T cells were similar in terms of TCR-stimulated proliferation in vitro and homeostatic expansion in vivo. Naive KO CD4 cells differentiated in vitro into Th1, Th2, Th17 as well as regulatory T cells in an analogous manner as their WT counterparts. In vivo experiments revealed that anti-viral immune responses to lymphocytic choriomeningitis virus in KO mice were comparable to those of WT controls. We also demonstrated that STRA6 KO and WT mice had similar glucose tolerance. Total vitamin A levels are dramatically lower in the eyes of KO mice as compared to those of WT mice, but the levels in other organs were not significantly affected after STRA6 deletion under vitamin A sufficient conditions, indicating that the eye is the mouse organ most sensitive to the loss of STRA6. Our results demonstrate that 1) in vitamin A sufficiency, the deletion of STRA6 in T cells does no affect the T-cell immune responses so-far tested, including those depend on STAT5 signaling; 2) STRA6-independent vitamin A uptake compensated the lack of STRA6 in lymphoid organs under vitamin A sufficient conditions in mice; 3) STRA6 is critical for vitamin A uptake in the eyes even in vitamin A sufficiency. PMID:24391722

  7. Integrated analysis of the differential cellular and EBV miRNA expression profiles in microdissected nasopharyngeal carcinoma and non-cancerous nasopharyngeal tissues.

    PubMed

    Wan, Xun-Xun; Yi, Hong; Qu, Jia-Quan; He, Qiu-Yan; Xiao, Zhi-Qiang

    2015-11-01

    Nasopharyngeal carcinoma (NPC) is commonly diagnosed in southern Asia. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally. Increasing evidence suggests that the dysregulation of miRNAs promotes NPC tumorigenesis. Epstein-Barr virus (EBV) infection and EBV-encoded miRNAs are also associated with the development of NPC. However, it is unclear how cellular and EBV miRNAs jointly regulate target genes and signaling pathways in NPC. In the present study, we analyzed the differential cellular and EBV miRNA expression profiles in 20 pooled NPC tissues using microarrays. We found that 19 cellular miRNAs and 9 EBV miRNAs were upregulated and 31 cellular miRNAs were downregulated in NPC tissues. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the 19 upregulated miRNAs target mainly the p53 signaling pathway in cancer, whereas the downregulated miRNAs regulate pathways related to cancer, focal adhesion and Erb, and MAPK signaling. In contrast, the upregulated EBV miRNAs target primarily the TGF-? and Wnt signaling pathways. Data also suggested that cellular miR-34b, miR-34c, miR-18a, miR?200a/b, miR-449a, miR-31 and let-7 may be dysregulated in NPCs, and that the aberrant activation of their target genes in the p53 pathway and cell cycle enhance NPC cell survival and proliferation. In addition, EBV-miRNAs such as BART3 and BART5 target genes in the p53, TGF-? and Wnt signaling pathways to modulate NPC apoptosis and transformation. To better elucidate the interaction between miRNAs and target genes, we constructed an anti-correlated cellular and EBV miRNA/target gene regulatory network. The current findings may help dissect the roles played by cellular and EBV miRNAs during NPC tumorigenesis, and also provide useful biomarkers for the diagnosis and treatment of NPCs. PMID:26330189

  8. Reactive oxygen species- and DNA damage response-dependent NK cell activating ligand upregulation occurs at transcriptional levels and requires the transcriptional factor E2F1.

    PubMed

    Soriani, Alessandra; Iannitto, Maria Luisa; Ricci, Biancamaria; Fionda, Cinzia; Malgarini, Giulia; Morrone, Stefania; Peruzzi, Giovanna; Ricciardi, Maria Rosaria; Petrucci, Maria Teresa; Cippitelli, Marco; Santoni, Angela

    2014-07-15

    Increasing evidence indicates that cancer cell stress induced by chemotherapeutic agents promote antitumor immune responses and contribute to their full clinical efficacy. In this article, we identify the signaling events underlying chemotherapy-induced NKG2D and DNAM-1 ligand expression on multiple myeloma (MM) cells. Our findings indicate that sublethal doses of doxorubicin and melphalan initiate a DNA damage response (DDR) controlling ligand upregulation on MM cell lines and patient-derived malignant plasma cells in Chk1/2-dependent and p53-independent manner. Drug-induced MICA and PVR gene expression are transcriptionally regulated and involve DDR-dependent E2F1 transcription factor activity. We also describe the involvement of changes in the redox state in the control of DDR-dependent upregulation of ligand surface expression and gene transcriptional activity by using the antioxidant agent N-acetyl-L-cysteine. Finally, in accordance with much evidence indicating that DDR and oxidative stress are major determinants of cellular senescence, we found that redox-dependent DDR activation upon chemotherapeutic treatment is critical for MM cell entry in premature senescence and is required for the preferential ligand upregulation on senescent cells, which are preferentially killed by NK cells and trigger potent IFN-? production. We propose immunogenic senescence as a mechanism that promotes the clearance of drug-treated tumor cells by innate effector lymphocytes, including NK cells. PMID:24913980

  9. De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus

    PubMed Central

    Stilling, Roman M.; Benito, Eva; Gertig, Michael; Barth, Jonas; Capece, Vincenzo; Burkhardt, Susanne; Bonn, Stefan; Fischer, Andre

    2014-01-01

    Aging is accompanied by gradually increasing impairment of cognitive abilities and constitutes the main risk factor of neurodegenerative conditions like Alzheimer's disease (AD). The underlying mechanisms are however not well understood. Here we analyze the hippocampal transcriptome of young adult mice and two groups of mice at advanced age using RNA sequencing. This approach enabled us to test differential expression of coding and non-coding transcripts, as well as differential splicing and RNA editing. We report a specific age-associated gene expression signature that is associated with major genetic risk factors for late-onset AD (LOAD). This signature is dominated by neuroinflammatory processes, specifically activation of the complement system at the level of increased gene expression, while de-regulation of neuronal plasticity appears to be mediated by compromised RNA splicing. PMID:25431548

  10. The Shh Signaling Pathway Is Upregulated in Multiple Cell Types in Cortical Ischemia and Influences the Outcome of Stroke in an Animal Model

    PubMed Central

    Jin, Yongmin; Raviv, Nataly; Barnett, Austin; Bambakidis, Nicholas C.; Filichia, Emily; Luo, Yu

    2015-01-01

    Recently the sonic hedgehog (shh) signaling pathway has been shown to play an important role in regulating repair and regenerative responses after brain injury, including ischemia. However, the precise cellular components that express and upregulate the shh gene and the cellular components that respond to shh signaling remain to be identified. In this study, using a distal MCA occlusion model, our data show that the shh signal is upregulated both at the cortical area near the injury site and in the adjacent striatum. Multiple cell types upregulate shh signaling in ischemic brain, including neurons, reactive astrocytes and nestin-expressing cells. The shh signaling pathway genes are also expressed in the neural stem cells (NSCs) niche in the subventricular zone (SVZ). Conditional deletion of the shh gene in nestin-expressing cells both at the SVZ niche and at the ischemic site lead to significantly more severe behavioral deficits in these shh iKO mice after cortical stroke, measured using an automated open field locomotion apparatus (Student’s t-test, p<0.05). In contrast, animals given post-stroke treatment with the shh signaling agonist (SAG) demonstrated less deficits in behavioral function, compared to vehicle-treated mice. At 7 days after stroke, SAG-treated mice showed higher values in multiple horizontal movement parameters compared to vehicle treated mice (Student’s t-test, p<0.05) whereas there were no differences in pre-stroke measurements, (Student’s t-test, p>0.05). In summary, our data demonstrate that shh signaling plays critical and ongoing roles in response to ischemic injury and modulation of shh signaling in vivo alters the functional outcome after cortical ischemic injury. PMID:25927436

  11. Effect of passage number on cellular response to DNA-damaging agents: Cell survival and gene expression

    SciTech Connect

    Chang-Liu, C.M.; Woloschak, G.E.

    1997-08-01

    The effect of different passage numbers on plating efficiency, doubling time, cell growth, and radiation sensitivity was assessed in Syrian hamster embryo (SHE) cells. Changes in gene expression after UV or {gamma}-ray irradiation at different passage numbers were also examined. The SHE cells were maintained in culture medium for up to 64 passages. Cells were exposed to {sup 60}Co {gamma} rays or 254-nm UV radiation. Differential display of cDNAs and northern blots were used for the study of gene expression. With increasing passage number, SHE cells demonstrated decreased doubling time, increased plating efficiency, and a decreased yield in the number of cells per plate. Between passages 41 and 48 a crisis period was evident during which time cell growth in high serum was no longer optimal, and serum concentrations were reduced to maintain cell growth. Sensitivity to ionizing radiation was no different between early- and intermediate-passage cells. However, after UV exposure at low passages (passage 3), confluent cells were more sensitive to the killing effects of UV than were log-phase cells. At intermediate passages (passages 43, 48), confluent cells were slightly more radioresistant than were log-phase cells. By passage 64, however, both confluent and log-phase cells showed similar patterns of UV sensitivity. Expression of {gamma}-actin, PCNA, and p53 transcripts did not change following UV exposure. p53 mRNA was induced following {gamma}-ray exposure of the intermediate (passage 45) epithelial cells. The observed differences in radiation sensitivity associated with increasing passage number may be influenced by radiation-induced gene expression. The authors are conducted experiments to identify these genes.

  12. Stabilization of SIRT7 deacetylase by viral oncoprotein HBx leads to inhibition of growth restrictive RPS7 gene and facilitates cellular transformation.

    PubMed

    Pandey, Vijaya; Kumar, Vijay

    2015-01-01

    Sirtuin-7 (SIRT7) deacetylase exhibits a high selectivity for acetylated H3K18 and has been implicated in the maintenance of malignant phenotype. However, it remains unclear if SIRT7 and H3K18ac play a role in the tumorigenic program driven by oncogenic viruses. We show that ectopically expressed HBx oncoprotein of hepatitis B virus promoted intracellular stability of SIRT7 by salvaging it from ubiquitin-mediated proteasomal degradation. HBx-dependent accumulation of SIRT7 favored H3K18 deacetylation and down-regulated the small ribosomal protein gene, RPS7, involved in cell death and DNA damage response. HBx facilitated the recruitment of SIRT7 to RPS7 promoter thus impeding H3K18ac occupancy and hindering RPS7 transcription. The antagonistic relationship between SIRT7 and RPS7 was also observed in the HBx transgenic mice, where elevated levels of SIRT7 protein were coincident with low levels of H3K18ac and RPS7. Strikingly, inhibition of cellular deubiquitinase activity restored RPS7 gene transcription. Further, depletion of endogenous SIRT7 led to decreased cell viability and transformation. The biological relevance of RPS7 suppression by HBx-SIRT7 axis was evident from ectopic expression of RPS7 which attenuated clonogenicity of cells. Thus, our findings suggest that SIRT7 is a critical regulator of HBx-driven oncogenic program, through its antagonistic impact on growth restrictive ribosomal protein RPS7. PMID:26442981

  13. Stabilization of SIRT7 deacetylase by viral oncoprotein HBx leads to inhibition of growth restrictive RPS7 gene and facilitates cellular transformation

    PubMed Central

    Pandey, Vijaya; Kumar, Vijay

    2015-01-01

    Sirtuin-7 (SIRT7) deacetylase exhibits a high selectivity for acetylated H3K18 and has been implicated in the maintenance of malignant phenotype. However, it remains unclear if SIRT7 and H3K18ac play a role in the tumorigenic program driven by oncogenic viruses. We show that ectopically expressed HBx oncoprotein of hepatitis B virus promoted intracellular stability of SIRT7 by salvaging it from ubiquitin-mediated proteasomal degradation. HBx-dependent accumulation of SIRT7 favored H3K18 deacetylation and down-regulated the small ribosomal protein gene, RPS7, involved in cell death and DNA damage response. HBx facilitated the recruitment of SIRT7 to RPS7 promoter thus impeding H3K18ac occupancy and hindering RPS7 transcription. The antagonistic relationship between SIRT7 and RPS7 was also observed in the HBx transgenic mice, where elevated levels of SIRT7 protein were coincident with low levels of H3K18ac and RPS7. Strikingly, inhibition of cellular deubiquitinase activity restored RPS7 gene transcription. Further, depletion of endogenous SIRT7 led to decreased cell viability and transformation. The biological relevance of RPS7 suppression by HBx-SIRT7 axis was evident from ectopic expression of RPS7 which attenuated clonogenicity of cells. Thus, our findings suggest that SIRT7 is a critical regulator of HBx-driven oncogenic program, through its antagonistic impact on growth restrictive ribosomal protein RPS7. PMID:26442981

  14. Malignant transformation of wild-type but not plasminogen activator inhibitor-1 gene-deficient fibroblasts decreases cellular sensitivity to chemotherapy-mediated apoptosis.

    PubMed

    Lademann, Ulrik; Rømer, Maria U; Jensen, Peter Buhl; Hofland, Kenneth F; Larsen, Lise; Christensen, Ib Jarle; Brünner, Nils

    2005-05-01

    Plasminogen activator inhibitor-1 (PAI-1) inhibits the activation of the plasminogen activator system, the latter being involved in cancer growth and dissemination. Interestingly, PAI-1 is elevated in many solid tumours and this elevation has consistently been shown to be associated with shorter length of patient survival. This study aims to determine whether PAI-1 contributes to cancer cell growth by inhibiting apoptosis of tumour cells. It is shown that spontaneous transformation decreases cellular sensitivity to chemotherapy-mediated apoptosis of wild-type, but not PAI-1 gene-deficient, fibrosarcomas. PAI-1 gene-deficient and wild-type mice displayed similar sensitivity to treatment with etoposide, suggesting a differential effect of PAI-1 expression between cancer cells and normal cells. Thus, since PAI-1 appears to be an important factor in regulating apoptosis in cancer cells but not in normal cells, inhibitors of PAI-1 might be useful as sensitising pre-treatment for subsequent apoptosis-inducing anti-cancer therapy. PMID:15862760

  15. Identification of mycoparasitism-related genes in Clonostachys rosea 67-1 active against Sclerotinia sclerotiorum

    PubMed Central

    Sun, Zhan-Bin; Sun, Man-Hong; Li, Shi-Dong

    2015-01-01

    Clonostachys rosea is a mycoparasite that has shown great potential in controlling various plant fungal pathogens. In order to find mycoparasitism-related genes in C. rosea, the transcriptome of the efficient isolate 67-1 in association with sclerotia of Sclerotinia sclerotiorum was sequenced and analysed. The results identified 26,351 unigenes with a mean length of 1,102 nucleotides, among which 18,525 were annotated in one or more databases of NR, KEGG, Swiss-Prot, GO and COG. Differentially expressed genes at 8?h, 24?h and 48?h after sclerotial induction were analysed, and 6,890 unigenes were upregulated compared with the control without sclerotia. 713, 1,008 and 1,929 genes were specifically upregulated expressed, while 1,646, 283 and 529 genes were specifically downregulated, respectively. Gene ontology terms analysis indicated that these genes were mainly involved in metabolism of biological process, catalysis of molecular function and cellular component. The expression levels of 12 genes that were upregulated after encountering with S. sclerotiorum were monitored using real-time PCR. The results indicated that the quantitative detection was consistent with the transcriptome analysis. The study provides transcriptional gene expression information on C. rosea parasitizing S. sclerotiorum and forms the basis for further investigation of mycoparasitism-related genes of C. rosea. PMID:26657839

  16. Identification of mycoparasitism-related genes in Clonostachys rosea 67-1 active against Sclerotinia sclerotiorum.

    PubMed

    Sun, Zhan-Bin; Sun, Man-Hong; Li, Shi-Dong

    2015-01-01

    Clonostachys rosea is a mycoparasite that has shown great potential in controlling various plant fungal pathogens. In order to find mycoparasitism-related genes in C. rosea, the transcriptome of the efficient isolate 67-1 in association with sclerotia of Sclerotinia sclerotiorum was sequenced and analysed. The results identified 26,351 unigenes with a mean length of 1,102 nucleotides, among which 18,525 were annotated in one or more databases of NR, KEGG, Swiss-Prot, GO and COG. Differentially expressed genes at 8?h, 24?h and 48?h after sclerotial induction were analysed, and 6,890 unigenes were upregulated compared with the control without sclerotia. 713, 1,008 and 1,929 genes were specifically upregulated expressed, while 1,646, 283 and 529 genes were specifically downregulated, respectively. Gene ontology terms analysis indicated that these genes were mainly involved in metabolism of biological process, catalysis of molecular function and cellular component. The expression levels of 12 genes that were upregulated after encountering with S. sclerotiorum were monitored using real-time PCR. The results indicated that the quantitative detection was consistent with the transcriptome analysis. The study provides transcriptional gene expression information on C. rosea parasitizing S. sclerotiorum and forms the basis for further investigation of mycoparasitism-related genes of C. rosea. PMID:26657839

  17. Binding of the ubiquitous cellular transcription factors Sp1 and Sp3 to the ZI domains in the Epstein-Barr virus lytic switch BZLF1 gene promoter.

    PubMed

    Liu, S; Borras, A M; Liu, P; Suske, G; Speck, S H

    1997-02-01

    Induction of the Epstein-Barr virus lytic cycle in latently infected B cells requires the expression of the immediate-early lytic gene BZLF1. We have previously identified several cis-elements within the BZLF1 promoter that are required for induction by known inducers of the lytic cycle [E. Flemington and S. H. Speck (1990)J. Virol. 64, 1217-1226]. These include four elements termed the ZI domains (ZIA, ZIB, ZIC, and ZID) that share extensive homology and that have recently been shown to bind several cellular transcription factors [A. M. Borras, J. L. Strominger, and S. H. Speck (1996) J. Virol. 70, 3894-3901]. Here Sp1 and Sp3 are identified as the cellular factors present in crude B cell nuclear extract preparations that bind to the ZIC domain. In addition, three of the four complexes observed in electrophoretic mobility shift analyses employing probes containing either the ZIA or the ZID domains also represent Sp1 or Sp3 binding. Binding of Sp1 and Sp3 to the ZI domains was shown to be significantly weaker than binding of these factors to a consensus Sp1 site. A heterologous promoter construct containing three repeats of a consensus Sp1 site, cloned upstream of a single copy of the ZII (CREB/ AP1) element from the BZLF1 promoter linked to the beta-globin TATA box, exhibited phorbol ester inducibility. The latter observation was consistent with the functional behavior exhibited by a heterologous promoter construct containing multiple copies of the ZIC domain liked to the ZII element. However, the basal activity of the heterologous promoter construct driven by the consensus Sp1 sites was ca. 10-fold higher than that of the heterologous reporter construct containing multimerized ZIC sites. Thus, the low affinity of Sp1 binding to the ZI domains may contribute to the low-level basal activity of the BZLF1 promoter. PMID:9024805

  18. Expression of Caveolin-1 reduces cellular responses to TGF-{beta}1 through down-regulating the expression of TGF-{beta} type II receptor gene in NIH3T3 fibroblast cells

    SciTech Connect

    Lee, Eun Kyung; Lee, Youn Sook; Han, In-Oc; Park, Seok Hee . E-mail: parks@skku.edu

    2007-07-27

    Transcriptional repression of Transforming Growth Factor-{beta} type II receptor (T{beta}RII) gene has been proposed to be one of the major mechanisms leading to TGF-{beta} resistance. In this study, we demonstrate that expression of Caveolin-1 (Cav-1) gene in NIH3T3 fibroblast cells down-regulates the expression of T{beta}RII gene in the transcriptional level, eventually resulting in the decreased responses to TGF-{beta}. The reduced expression of T{beta}RII gene by Cav-1 appeared to be due to the changes of the sequence-specific DNA binding proteins to either Positive Regulatory Element 1 (PRE1) or PRE2 of the T{beta}RII promoter. In addition, Cav-1 expression inhibited TGF-{beta}-mediated cellular proliferation and Plasminogen Activator Inhibitor (PAI)-1 gene expression as well as TGF-{beta}-induced luciferase activity. Furthermore, the inhibition of endogeneous Cav-1 by small interfering RNA increased the expression of T{beta}RII gene. These findings strongly suggest that expression of Cav-1 leads to the decreased cellular responsiveness to TGF-{beta} through down-regulating T{beta}RII gene expression.

  19. A novel embryological theory of autism causation involving endogenous biochemicals capable of initiating cellular gene transcription: a possible link between twelve autism risk factors and the autism 'epidemic'.

    PubMed

    King, Chiara R

    2011-05-01

    Human alpha-fetoprotein is a pregnancy-associated protein with an undetermined physiological role. As human alpha-fetoprotein binds retinoids and inhibits estrogen-dependent cancer cell proliferation, and because retinoic acid (a retinol metabolite) and estradiol (an estrogen) can both initiate cellular gene transcription, it is hypothesized here that alpha-fetoprotein functions during critical gestational periods to prevent retinoic acid and maternal estradiol from inappropriately stimulating gene expression in developing brain regions which are sensitive to these chemicals. Prenatal/maternal factors linked to increased autism risk include valproic acid, thalidomide, alcohol, rubella, cytomegalovirus, depression, schizophrenia, obsessive-compulsive disorder, autoimmune disease, stress, allergic reaction, and hypothyroidism. It will be shown how each of these risk factors may initiate expression of genes which are sensitive to retinoic acid and/or estradiol - whether by direct promotion or by reducing production of alpha-fetoprotein. It is thus hypothesized here that autism is not a genetic disorder, but is rather an epigenetic disruption in brain development caused by gestational exposure to chemicals and/or conditions which either inhibit alpha-fetoprotein production or directly promote retinoic acid-sensitive or estradiol-sensitive gene expression. This causation model leads to potential chemical explanations for autistic brain morphology, the distinct symptomatology of Asperger's syndrome, and the differences between high-functioning and low-functioning autism with regard to mental retardation, physical malformation, and sex ratio. It will be discussed how folic acid may cause autism under the retinoic acid/estradiol model, and the history of prenatal folic acid supplementation will be shown to coincide with the history of what is popularly known as the autism epidemic. It is thus hypothesized here that prenatal folic acid supplementation has contributed to the post-1980 increase in US autism diagnoses. In addition to explaining the epidemic within the wider retinoic acid/estradiol model of causation, this theory leads to potential explanations for certain genetic findings in autism, autistic regression, and changing trends in autism symptomatology with regard to mental retardation, wheat allergy, and gastrointestinal problems. PMID:21388746

  20. A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network.

    PubMed

    Guo, Hongliang; Meng, Yan; Jin, Yaochu

    2009-12-01

    A major research challenge of multi-robot systems is to predict the emerging behaviors from the local interactions of the individual agents. Biological systems can generate robust and complex behaviors through relatively simple local interactions in a world characterized by rapid changes, high uncertainty, infinite richness, and limited availability of information. Gene Regulatory Networks (GRNs) play a central role in understanding natural evolution and development of biological organisms from cells. In this paper, inspired by biological organisms, we propose a distributed GRN-based algorithm for a multi-robot construction task. Through this algorithm, multiple robots can self-organize autonomously into different predefined shapes, and self-reorganize adaptively under dynamic environments. This developmental process is evolved using a multi-objective optimization algorithm to achieve a shorter travel distance and less convergence time. Furthermore, a theoretical proof of the system's convergence is also provided. Various case studies have been conducted in the simulation, and the results show the efficiency and convergence of the proposed method. PMID:19446001

  1. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes.

    PubMed

    Suthar, Mehul S; Brassil, Margaret M; Blahnik, Gabriele; McMillan, Aimee; Ramos, Hilario J; Proll, Sean C; Belisle, Sarah E; Katze, Michael G; Gale, Michael

    2013-02-01

    The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs(-/-) × Ifnar(-/-) mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs(-/-) × Ifnar(-/-) infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. PMID:23544010

  2. Aberrant Gene Expression Profile of Unaffected Colon Mucosa from Patients with Unifocal Colon Polyp

    PubMed Central

    Lian, Jingjing; Ma, Lili; Yang, Jiayin; Xu, Lili

    2015-01-01

    Background The aim of this study was to evaluate gene expression profiles in unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp to investigate the potential mucosa impairment in normal-appearing colon mucosa from these patients. Material/Methods Colon polyp patients were prospectively recruited. We obtained colon biopsies from the normal-appearing sites and polyp tissue through colonoscopy. Gene expression analysis was performed using microarrays. Gene ontology and clustering were evaluated by bioinformatics. Results We detected a total of 711 genes (274 up-regulated and 437 down-regulated) in polyp tissue and 256 genes (170 up-regulated and 86 down-regulated) in normal-appearing colon mucosa, with at least a 3-fold of change compared to healthy controls. Heatmapping of the gene expression showed similar gene alteration patterns between unaffected colon mucosa and polyp tissue. Gene ontology analyses confirmed the overlapped molecular functions and pathways of altered gene expression between unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp. The most significantly altered genes in normal-appearing tissues in polyp patients include immune response, external side of plasma membrane, nucleus, and cellular response to zinc ion. Conclusions Significant gene expression alterations exist in unaffected colon mucosa from patients with unifocal colon polyp. Unaffected colon mucosa and polyp tissue share great similarity and overlapping of altered gene expression profiles, indicating the potential possibility of recurrence of colon polyps due to underlying molecular abnormalities of colon mucosa in these patients. PMID:26675397

  3. Aberrant Gene Expression Profile of Unaffected Colon Mucosa from Patients with Unifocal Colon Polyp.

    PubMed

    Lian, Jingjing; Ma, Lili; Yang, Jiayin; Xu, Lili

    2015-01-01

    BACKGROUND The aim of this study was to evaluate gene expression profiles in unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp to investigate the potential mucosa impairment in normal-appearing colon mucosa from these patients. MATERIAL AND METHODS Colon polyp patients were prospectively recruited. We obtained colon biopsies from the normal-appearing sites and polyp tissue through colonoscopy. Gene expression analysis was performed using microarrays. Gene ontology and clustering were evaluated by bioinformatics. RESULTS We detected a total of 711 genes (274 up-regulated and 437 down-regulated) in polyp tissue and 256 genes (170 up-regulated and 86 down-regulated) in normal-appearing colon mucosa, with at least a 3-fold of change compared to healthy controls. Heatmapping of the gene expression showed similar gene alteration patterns between unaffected colon mucosa and polyp tissue. Gene ontology analyses confirmed the overlapped molecular functions and pathways of altered gene expression between unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp. The most significantly altered genes in normal-appearing tissues in polyp patients include immune response, external side of plasma membrane, nucleus, and cellular response to zinc ion. CONCLUSIONS Significant gene expression alterations exist in unaffected colon mucosa from patients with unifocal colon polyp. Unaffected colon mucosa and polyp tissue share great similarity and overlapping of altered gene expression profiles, indicating the potential possibility of recurrence of colon polyps due to underlying molecular abnormalities of colon mucosa in these patients. PMID:26675397

  4. Age-Specific Gene Expression Profiles of Rhesus Monkey Ovaries Detected by Microarray Analysis

    PubMed Central

    Wei, Hengxi; Liu, Xiangjie; Yuan, Jihong; Li, Li; Zhang, Dongdong; Guo, Xinzheng; Liu, Lin; Zhang, Shouquan

    2015-01-01

    The biological function of human ovaries declines with age. To identify the potential molecular changes in ovarian aging, we performed genome-wide gene expression analysis by microarray of ovaries from young, middle-aged, and old rhesus monkeys. Microarray data was validated by quantitative real-time PCR. Results showed that a total of 503 (60 upregulated, 443 downregulated) and 84 (downregulated) genes were differentially expressed in old ovaries compared to young and middle-aged groups, respectively. No difference in gene expression was found between middle-aged and young groups. Differentially expressed genes were mainly enriched in cell and organelle, cellular and physiological process, binding, and catalytic activity. These genes were primarily associated with KEGG pathways of cell cycle, DNA replication and repair, oocyte meiosis and maturation, MAPK, TGF-beta, and p53 signaling pathway. Genes upregulated were involved in aging, defense response, oxidation reduction, and negative regulation of cellular process; genes downregulated have functions in reproduction, cell cycle, DNA and RNA process, macromolecular complex assembly, and positive regulation of macromolecule metabolic process. These findings show that monkey ovary undergoes substantial change in global transcription with age. Gene expression profiles are useful in understanding the mechanisms underlying ovarian aging and age-associated infertility in primates. PMID:26421297

  5. A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques

    SciTech Connect

    Shimizu, Yuya; Inaba, Katsuhisa; Kaneyasu, Kentaro; Ibuki, Kentaro; Himeno, Ai; Okoba, Masashi; Goto, Yoshitaka; Hayami, Masanori; Miura, Tomoyuki; Haga, Takeshi . E-mail: a0d518u@cc.miyazaki-u.ac.jp

    2007-04-25

    Regulated-on-activation-normal-T-cell-expressed-and-secreted (RANTES), a CC-chemokine, enhances antigen-specific T helper (Th) type-1 responses against HIV-1. To evaluate the adjuvant effects of RANTES against HIV vaccine candidate in SHIV-macaque models, we genetically engineered a live-attenuated SHIV to express the RANTES gene (SHIV-RANTES) and characterized the virus's properties in vivo. After the vaccination, the plasma viral loads were same in the SHIV-RANTES-inoculated monkeys and the parental nef-deleted SHIV (SHIV-NI)-inoculated monkeys. SHIV-RANTES provided some immunity in monkeys by remarkably increasing the antigen-specific CD4{sup +} Th cell-proliferative response and by inducing an antigen-specific IFN-{gamma} ELISpot response. The magnitude of the immunity in SHIV-RANTES-immunized animals, however, failed to afford greater protection against a heterologous pathogenic SHIV (SHIV-C2/1) challenge compared to control SHIV-NI-immunized animals. SHIV-RANTES immunized monkeys, elicited robust cellular CD4{sup +} Th responses and IFN-{gamma} ELISpot responses after SHIV-C2/1 challenge. These findings suggest that the chemokine RANTES can augment vaccine-elicited, HIV-specific CD4{sup +} T cell responses.

  6. The Cellular Proteins Grb2 and DDX3 Are Increased upon Human Cytomegalovirus Infection and Act in a Proviral Fashion

    PubMed Central

    Laib Sampaio, Kerstin; Madlung, Johannes; Lamkemeyer, Tobias; Jahn, Gerhard; Nordheim, Alfred; Sinzger, Christian

    2015-01-01

    While it is well established that human cytomegalovirus (HCMV) upregulates many cellular proteins and incorporates several of them into its virion, little is known about the functional relevance of such virus-host interactions. Two cellular proteins, Grb2 and DDX3, gained our interest as they appeared enriched in virion particles and this incorporation depended on the viral tegument protein pp65, suggesting a functional relevance. We therefore tested whether the level of these proteins is altered upon HCMV infection and whether they support viral replication. Immunoblotting analyses of cellular fractions showed increased levels of both proteins in infected cells with a maximum at 2 d p.i. and a reduction of the soluble Grb2 fraction. Knockdown of either gene by transfection of siRNAs reduced viral spread not only of the cell culture adapted HCMV strain TB40/E but also of recent clinical isolates. Apparently, Grb2 and DDX3 are proviral cellular factors that are upregulated in infected cells. PMID:26121620

  7. Characterization of epithelial senescence by serial analysis of gene expression: identification of genes potentially involved in prostate cancer.

    PubMed

    Untergasser, Gerold; Koch, Heike B; Menssen, Antje; Hermeking, Heiko

    2002-11-01

    Evasion of cellular senescence is required for the immortal phenotype of tumor cells. The tumor suppressor genes p16(INK4A), pRb, and p53 have been implicated in the induction of cellular senescence. To identify additional genes and pathways involved in the regulation of senescence in prostate epithelial cells (PrECs), we performed serial analysis of gene expression (SAGE). The gene expression pattern of human PrECs arrested because of senescence was compared with the pattern of early passage cells arrested because of confluence. A total of 144,137 SAGE tags representing 25,645 unique mRNA species was collected and analyzed: 157 mRNAs (70 with known function) were up-regulated and 116 (65 with known function) were down-regulated significantly in senescent PrECs (P < 0.05; fold difference >2.5). The differential regulation of an exemplary set of genes during senescence was confirmed by quantitative real-time PCR in PrECs derived from three different donors. The results presented here provide the molecular basis of the characteristic changes in morphology and proliferation observed in senescent PrECs. Furthermore, the differentially expressed genes identified in this report will be instrumental in the further analysis of cellular senescence in PrECs and may lead to the identification of tumor suppressor genes and proto-oncogenes involved in the development of prostate cancer. PMID:12414655

  8. Microarray studies on the genes responsive to the addition of spermidine or spermine to a Saccharomyces cerevisiae spermidine synthase mutant.

    PubMed

    Chattopadhyay, Manas K; Chen, Weiping; Poy, George; Cam, Margaret; Stiles, David; Tabor, Herbert

    2009-10-01

    The naturally occurring polyamines putrescine, spermidine or spermine are ubiquitous in all cells. Although polyamines have prominent regulatory roles in cell division and growth, precise molecular and cellular functions are not well-established in vivo. In this work we have performed microarray experiments with a spermidine synthase, spermine oxidase mutant (Deltaspe3 Deltafms1) strain to investigate the responsiveness of yeast genes to supplementation with spermidine or spermine. Expression analysis identified genes responsive to the addition of either excess spermidine (10(-5) M) or spermine (10(-5) M) compared to a control culture containing 10(-8) M spermidine. 247 genes were upregulated > two-fold and 11 genes were upregulated >10-fold after spermidine addition. Functional categorization of the genes showed induction of transport-related genes and genes involved in methionine, arginine, lysine, NAD and biotin biosynthesis. 268 genes were downregulated more than two-fold, and six genes were downregulated > eight-fold after spermidine addition. A majority of the downregulated genes are involved in nucleic acid metabolism and various stress responses. In contrast, only a few genes (18) were significantly responsive to spermine. Thus, results from global gene expression profiling demonstrate a more major role for spermidine in modulating gene expression in yeast than spermine. PMID:19688718

  9. HUMAN T CELLS UPREGULATE CD69 AFTER COCULTURE WITH XENOGENEIC GENETICALLY-MODIFIED PIG MESENCHYMAL STROMAL CELLS

    PubMed Central

    Li, Jiang; Andreyev, Oleg; Chen, Man; Marco, Michael; Iwase, Hayato; Long, Cassandra; Ayares, David; Shen, Zhongyang; Cooper, David K.C.; Ezzelarab, Mohamed B.

    2013-01-01

    Mesenchymal stromal cells (MSC) obtained from ?1,3-galactosyltransferase gene knock-out pigs transgenic for the human complement-regulatory protein CD46 (GTKO/CD46 pMSC) suppress in vitro human anti-pig cellular responses as efficiently as allogeneic human MSC. We investigated the immunoregulatory effects of GTKO/CD46 pMSC on human CD4+ and CD8+ T cell proliferation in response to pig aortic endothelial cells (pAEC). pMSC efficiently suppressed T cell proliferation, which was associated with downregulation of granzyme B expression. No induction of CD4+CD25+Foxp3hi regulatory T cells or T cell apoptosis was documented. In correlation with T cell proliferation, CD25 expression was upregulated on T cells in response to pAEC but not to pMSC. In contrast, CD69 expression was upregulated on T cells in response to both pMSC and pAEC, which was associated with a significant increase in the phosphorylation of STAT5. GTKO/CD46 pMSC possibly regulate human T cell responses through modulation of CD69 expression and STAT5 signaling. PMID:24044963

  10. Induction of interferon-stimulated genes by Simian virus 40 T antigens

    SciTech Connect

    Rathi, Abhilasha V.; Cantalupo, Paul G.; Sarkar, Saumendra N.; Pipas, James M.

    2010-10-25

    Simian virus 40 (SV40) large T antigen (TAg) is a multifunctional oncoprotein essential for productive viral infection and for cellular transformation. We have used microarray analysis to examine the global changes in cellular gene expression induced by wild-type T antigen (TAg{sup wt}) and TAg-mutants in mouse embryo fibroblasts (MEFs). The expression profile of approximately 800 cellular genes was altered by TAg{sup wt} and a truncated TAg (TAg{sup N136}), including many genes that influence cell cycle, DNA-replication, transcription, chromatin structure and DNA repair. Unexpectedly, we found a significant number of immune response genes upregulated by TAg{sup wt} including many interferon-stimulated genes (ISGs) such as ISG56, OAS, Rsad2, Ifi27 and Mx1. Additionally, we also observed activation of STAT1 by TAg{sup wt}. Our genetic studies using several TAg-mutants reveal an unexplored function of TAg and indicate that the LXCXE motif and p53 binding are required for the upregulation of ISGs.

  11. Effect of Huanglian Jiedu Decoction on Thoracic Aorta Gene Expression in Spontaneous Hypertensive Rats

    PubMed Central

    Yue, Gui-Hua; Zhuo, Shao-Yuan; Zhang, Zhuo; Gao, Yi-Wen; Luo, Yuan

    2014-01-01

    Objective. Hypertension is one of the most common cardiovascular disorders with high mortality. Here we explored the antihypertension effects of Huanglian Jiedu Decoction (HJD) on thoracic aorta gene expression in spontaneous hypertensive rats. Methods. A rat model of spontaneous hypertension was used. The gene change profile of thoracic aorta after JHD treatment was assessed by GeneChip(GC) analysis using the Agilent Whole Rat Genome Oligo Microarray. Results. Hypertension induced 441 genes upregulated and 417 genes downregulated compared with the normal control group. Treatment of HJD resulted in 76 genes downregulated and 20 genes upregulated. GC data analysis showed that the majority of change genes were involved in immune system process, developmental process, and cell death. Conclusion. Hypertension altered expression of many genes that regulate various biological functions. HJD significantly reduced hypertension and altered the gene expression profiles of SHR rats. These changing genes were involved in many cellular functions such as regulating smooth muscle contraction, Ca(2+) homeostasis, and NO pathway. This study provides the potential novel insights into hypertension and antihypertension effects of HJD. PMID:24744811

  12. TRIB3 enhances cell viability during glucose deprivation in HEK293-derived cells by upregulating IGFBP2, a novel nutrient deficiency survival factor.

    PubMed

    Örd, Tiit; Örd, Daima; Adler, Priit; Vilo, Jaak; Örd, Tõnis

    2015-10-01

    Glucose deprivation occurs in several human diseases, including infarctions and solid tumors, and leads to cell death. In this article, we investigate the role of the pseudokinase Tribbles homolog 3 (TRIB3) in the cellular stress response to glucose starvation using cell lines derived from HEK293, which is highly glycolytic under standard conditions. Our results show that TRIB3 mRNA and protein levels are strongly upregulated in glucose-deprived cells via the induction of activating transcription factor 4 (ATF4) by the endoplasmic reticulum (ER) stress sensor kinase PERK. Cell survival in glucose-deficient conditions is enhanced by TRIB3 overexpression and reduced by TRIB3 knockdown. Genome-wide gene expression profiling uncovered approximately 40 glucose deprivation-responsive genes that are affected by TRIB3, including several genes involved in signaling processes and metabolism. Based on transcription factor motif analysis, the majority of TRIB3-downregulated genes are target genes of ATF4, which TRIB3 is known to inhibit. The gene most substantially upregulated by TRIB3 is insulin-like growth factor binding protein 2 (IGFBP2). IGFBP2 mRNA and protein levels are downregulated in cells subjected to glucose deprivation, and reduced IGFBP2 expression aggravates cell death during glucose deficiency, while overexpression of IGFBP2 prolongs cell survival. Moreover, IGFBP2 silencing abrogates the pro-survival effect of TRIB3. Since TRIB3 augments IGFBP2 expression in glucose-starved cells, the data indicate that IGFBP2 contributes to the attenuation of cell death by TRIB3. These results implicate TRIB3 and IGFBP2, both of which are known to be overexpressed in several types of cancers, as pro-survival modulators of cell viability in nutrient-deficient microenvironments. PMID:26094770

  13. Regulatory subunits of PKA define an axis of cellular proliferation/differentiation in ovarian cancer cells

    PubMed Central

    Cheadle, Chris; Nesterova, Maria; Watkins, Tonya; Barnes, Kathleen C; Hall, John C; Rosen, Antony; Becker, Kevin G; Cho-Chung, Yoon S

    2008-01-01

    Background The regulatory subunit of cAMP-dependent protein kinase (PKA) exists in two isoforms, RI and RII, which distinguish the PKA isozymes, type I (PKA-I) and type II (PKA-II). Evidence obtained from a variety of different experimental approaches has shown that the relative levels of type I and type II PKA in cells can play a major role in determining the balance between cell growth and differentiation. In order to characterize the effect of PKA type I and type II regulatory subunits on gene transcription at a global level, the PKA regulatory subunit genes for RI? and RII? were stably transfected into cells of the ovarian cancer cell line (OVCAR8). Results RI? transfected cells exhibit hyper-proliferative growth and RII? transfected cells revert to a relatively quiescent state. Profiling by microarray revealed equally profound changes in gene expression between RI?, RII?, and parental OVCAR cells. Genes specifically up-regulated in RI? cells were highly enriched for pathways involved in cell growth while genes up-regulated in RII? cells were enriched for pathways involved in differentiation. A large group of genes (~3600) was regulated along an axis of proliferation/differentiation between RI?, parental, and RII? cells. RI?/wt and RII?/wt gene regulation was shown by two separate and distinct gene set analytical methods to be strongly cross-correlated with a generic model of cellular differentiation. Conclusion Overexpression of PKA regulatory subunits in an ovarian cancer cell line dramatically influences the cell phenotype. The proliferation phenotype is strongly correlated with recently identified clinical biomarkers predictive of poor prognosis in ovarian cancer suggesting a possible pivotal role for PKA regulation in disease progression. PMID:18822129

  14. Lactating Ctcgrp Nulls Lose Twice the Normal Bone Mineral Content due to Fewer Osteoblasts and More Osteoclasts, Whereas Bone Mass Is Fully Restored After Weaning in Association With Up-Regulation of Wnt Signaling and Other Novel Genes

    PubMed Central

    Collins, Jillian N.; Kirby, Beth J.; Woodrow, Janine P.; Gagel, Robert F.; Rosen, Clifford J.; Sims, Natalie A.

    2013-01-01

    The maternal skeleton resorbs during lactation to provide calcium to milk and the lost mineral content is restored after weaning. The changes are particularly marked in Ctcgrp null mice, which lose 50% of spine mineral content during lactation but restore it fully. The known calciotropic hormones are not required for skeletal recovery to occur; therefore, unknown factors that stimulate bone formation may be responsible. We hypothesized that the genes responsible for regulating postweaning bone formation are differentially regulated in bone or marrow, and this regulation may be more marked in Ctcgrp null mice. We confirmed that Ctcgrp null mice had twice as many osteoclasts and 30–40% fewer osteoblasts as compared with wild-type mice during lactation but no deficit in osteoblast numbers after weaning. Genome-wide microarray analyses on tibial RNA showed differential expression of 729 genes in wild-type mice at day 7 after weaning vs prepregnancy, whereas the same comparison in Ctcgrp null mice revealed only 283 genes. Down-regulation of Wnt family inhibitors, Sost and Dkk1, and inhibition of Mef2c, a sclerostin stimulator, were observed. Ctsk, a gene expressed during osteoclast differentiation, and Igfbp2, which stimulates bone resorption, were inhibited. Differential regulation of genes involved in energy use was compatible with a net increase in bone formation. The most marked changes occurred in genes not previously associated with bone metabolism. In conclusion, the postlactation skeleton shows dynamic activity with more than 700 genes differentially expressed. Some of these genes are likely to promote bone formation during postweaning by stimulating the proliferation and activity of osteoblasts, inhibiting osteoclasts, and increasing energy use. PMID:23462960

  15. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line

    PubMed Central

    2011-01-01

    Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699

  16. A putative amino acid transporter of the SLC6 family is up-regulated by lithium and is required for resistance to lithium toxicity in Drosophila

    PubMed Central

    Kasuya, Junko; Kaas, Garrett A.; Kitamoto, Toshihiro

    2009-01-01

    Lithium is an efficacious drug for the treatment of mood disorders, and its application is also considered a potential therapy for brain damage. However, the mechanisms underlying lithium’s therapeutic action and toxic effects in the nervous system remain largely elusive. Here we report on the use of a versatile genetic model, the fruit fly Drosophila melanogaster, to discover novel molecular components involved in the lithium-responsive neurobiological process. We previously identified CG15088, which encodes a putative nutrient amino acid transporter of the solute carrier 6 (SLC6) family, as one of the genes most significantly up-regulated in response to lithium treatment. This gene was the only SLC6 gene induced by lithium, and was thus designated as Lithium-inducible SLC6 transporter or List. Either RNAi-mediated knockdown or complete deletion of List resulted in a remarkable increase in the susceptibility of adult flies to lithium’s toxic effects, whereas transgenic expression of wild-type List significantly suppressed the lithium hypersensitive phenotype of List-deficient flies. Other ions such as sodium, potassium and chloride did not induce List up-regulation, nor did they affect the viability of flies with suppressed List expression. These results indicate that lithium’s biochemical or physical properties, rather than general osmotic responses, are responsible for the lithium-induced up-regulation of List, as well as for the lithium-susceptible phenotype observed in List knockdown flies. Interestingly, flies became significantly more susceptible to lithium toxicity when List RNAi was specifically expressed in glia than when it was expressed in neurons or muscles, which is consistent with potential glial expression of List. These results show that the List transporter confers resistance to lithium toxicity, possibly as a consequence of its amino acid transporter activity in CNS glia. Our results have provided a new avenue of investigation toward a better understanding of the molecular and cellular mechanisms that underlie lithium-responsive neurobiological process. PMID:19619614

  17. Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR

    PubMed Central

    Oguro-Ando, A; Rosensweig, C; Herman, E; Nishimura, Y; Werling, D; Bill, BR; Berg, JM; Gao, F; Coppola, G; Abrahams, BS; Geschwind, DH

    2015-01-01

    Rare maternally inherited duplications at 15q11-13 are observed in about 1% of individuals with an Autism Spectrum Disorder (ASD), making it among the most common causes of ASD. 15q11-13 comprises a complex region, and because this CNV encompasses many genes, it is important to explore individual genotypephenotype relationships. Cytoplasmic FMR1 interacting protein 1 (CYFIP1) is of particular interest because of its interaction with FMRP, its upregulation in transformed lymphoblastoid cell lines from patients with duplications at 15q11-13 and ASD, and the presence of smaller overlapping deletions of CYFIP1 in patients with schizophrenia and intellectual disability. Here, we confirm that CYFIP1 is upregulated in transformed lymphoblastoid cell lines, and demonstrate its upregulation in postmortem brain from 15q11-13 duplication patients for the first time. To investigate how increased CYFIP1 dosage might predispose to neurodevelopmental disease, we studied the consequence of its overexpression in multiple systems. We show that overexpression of CYFIP1 results in morphological abnormalities including cellular hypertrophy in SY5Y cells and differentiated mouse neuronal progenitors. We validate these results in vivo by generating a BAC transgenic mouse, which over-expresses CYFIP1 under the endogenous promotor, observing an increase in the proportion of mature dendrite spines and dendritic spine density. Gene expression profiling at embryonic day 15 suggested dysregulation of mTOR signaling, which was confirmed at the protein level. Importantly, similar evidence of mTOR-related dysregulation was seen in brains from 15q11-13 duplication patients with ASD. Finally, treatment of differentiated mouse neuronal progenitors with an mTOR inhibitor (rapamycin) rescued the morphological abnormalities resulting from CYFIP1 overexpression. Together, these data show that CYFIP1 overexpression results in specific cellular phenotypes, and implicate modulation by mTOR signaling, further emphasizing its role as a potential convergent pathway in some forms of ASD. PMID:25311365

  18. The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A(p21) upregulation in human cancer cell lines.

    PubMed

    Cabello, Christopher M; Bair, Warner B; Ley, Stephanie; Lamore, Sarah D; Azimian, Sara; Wondrak, Georg T

    2009-04-01

    Cytokinins and cytokinin nucleosides are purine derivatives with potential anticancer activity. N(6)-furfuryladenosine (FAdo, kinetin-riboside) displays anti-proliferative and apoptogenic activity against various human cancer cell lines, and FAdo has recently been shown to suppress tumor growth in murine xenograft models of human leukemia and melanoma. In this study, FAdo-induced genotoxicity, stress response gene expression, and cellular ATP depletion were examined as early molecular consequences of FAdo exposure in MiaPaCa-2 pancreas carcinoma, A375 melanoma, and other human cancer cell lines. FAdo, but not adenosine or N(6)-furfuryladenine (FA), displayed potent anti-proliferative activity that was also observed in human primary fibroblasts and keratinocytes. Remarkably, massive ATP depletion and induction of genotoxic stress as assessed by the alkaline comet assay occurred within 60-180min of exposure to low micromolar concentrations of FAdo. This was followed by rapid upregulation of CDKN1A and other DNA damage/stress response genes (HMOX1, DDIT3, and GADD45A) as revealed by expression array and Western analysis. Pharmacological and siRNA-based genetic inhibition of adenosine kinase (ADK) suppressed FAdo cytotoxicity and also prevented ATP depletion and p21 upregulation suggesting the importance of bioconversion of FAdo into the nucleotide form required for drug action. Taken together our data suggest that early induction of genotoxicity and energy crisis are important causative factors involved in FAdo cytotoxicity. PMID:19186174

  19. Iron upregulates melanogenesis in cultured retinal pigment epithelial cells.

    PubMed

    Wolkow, Natalie; Li, Yafeng; Maminishkis, Arvydas; Song, Ying; Alekseev, Oleg; Iacovelli, Jared; Song, Delu; Lee, Jennifer C; Dunaief, Joshua L

    2014-11-01

    The purpose of our studies was to examine the relationship between iron and melanogenesis in retinal pigment epithelial cells, as prior observations had suggested that iron may promote melanogenesis. This relationship has potential clinical importance, as both iron overload and hyperpigmentation are associated with age-related macular degeneration (AMD). Human fetal retinal pigment epithelial cells and ARPE-19 cells were treated with iron in the form of ferric ammonium citrate, after which quantitative RT-PCR and electron microscopy were performed. Melanogenesis genes tyrosinase, tyrosinase-related protein 1, Hermansky-Pudlak Syndrome 3, premelanosome protein and dopachrome tautomerase were upregulated, as was the melanogenesis-controlling transcription factor, microphthalmia-associated transcription factor (MITF). Iron-treated cells had increased pigmentation and melanosome number. Multiple transcription factors upstream of MITF were upregulated by iron. PMID:25277027

  20. Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms

    PubMed Central

    Robertson, Kelly L.; Mostaghim, Anahita; Cuomo, Christina A.; Soto, Carissa M.; Lebedev, Nikolai; Bailey, Robert F.; Wang, Zheng

    2012-01-01

    Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes regulated by radiation. PMID:23139812

  1. MicroRNA-223 Expression Is Upregulated in Insulin Resistant Human Adipose Tissue

    PubMed Central

    Chuang, Tung-Yueh; Wu, Hsiao-Li; Chen, Chen-Chun; Gamboa, Gloria Mabel; Layman, Lawrence C.; Diamond, Michael P.; Azziz, Ricardo; Chen, Yen-Hao

    2015-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs involved in posttranscriptional regulation of gene expression and influence many cellular functions including glucose and lipid metabolism. We previously reported that adipose tissue (AT) from women with polycystic ovary syndrome (PCOS) or controls with insulin resistance (IR) revealed a differentially expressed microRNA (miRNA) profile, including upregulated miR-93 in PCOS patients and in non-PCOS women with IR. Overexpressed miR-93 directly inhibited glucose transporter isoform 4 (GLUT4) expression, thereby influencing glucose metabolism. We have now studied the role of miR-223, which is also abnormally expressed in the AT of IR subjects. Our data indicates that miR-223 is significantly overexpressed in the AT of IR women, regardless of whether they had PCOS or not. miR-223 expression in AT was positively correlated with HOMA-IR. Unlike what is reported in cardiomyocytes, overexpression of miR-223 in human differentiated adipocytes was associated with a reduction in GLUT4 protein content and insulin-stimulated glucose uptake. In addition, our data suggests miR-223 regulates GLUT4 expression by direct binding to its 3? untranslated region (3?UTR). In conclusion, in AT miR-223 is an IR-related miRNA that may serve as a potential therapeutic target for the treatment of IR-related disorders. PMID:26273679

  2. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy.

    PubMed

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M

    2010-03-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy. PMID:19942609

  3. A combined biomaterial and cellular approach for annulus fibrosus rupture repair.

    PubMed

    Pirvu, Tatiana; Blanquer, Sebastien B G; Benneker, Lorin M; Grijpma, Dirk W; Richards, Robert G; Alini, Mauro; Eglin, David; Grad, Sibylle; Li, Zhen

    2015-02-01

    Recurrent intervertebral disc (IVD) herniation and degenerative disc disease have been identified as the most important factors contributing to persistent pain and disability after surgical discectomy. An annulus fibrosus (AF) closure device that provides immediate closure of the AF rupture, restores disc height, reduces further disc degeneration and enhances self-repair capacities is an unmet clinical need. In this study, a poly(trimethylene carbonate) (PTMC) scaffold seeded with human bone marrow derived mesenchymal stromal cells (MSCs) and covered with a poly(ester-urethane) (PU) membrane was assessed for AF rupture repair in a bovine organ culture annulotomy model under dynamic load for 14 days. PTMC scaffolds combined with the sutured PU membrane restored disc height of annulotomized discs and prevented herniation of nucleus pulposus (NP) tissue. Implanted MSCs showed an up-regulated gene expression of type V collagen, a potential AF marker, indicating in situ differentiation capability. Furthermore, MSCs delivered within PTMC scaffolds induced an up-regulation of anabolic gene expression and down-regulation of catabolic gene expression in adjacent native disc tissue. In conclusion, the combined biomaterial and cellular approach has the potential to hinder herniation of NP tissue, stabilize disc height, and positively modulate cell phenotype of native disc tissue. PMID:25542789

  4. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks

    PubMed Central

    Vidyasekar, Prasanna; Shyamsunder, Pavithra; Arun, Rajpranap; Santhakumar, Rajalakshmi; Kapadia, Nand Kishore; Kumar, Ravi; Verma, Rama Shanker

    2015-01-01

    Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated) and 2542 (downregulated) genes (>2 fold) in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated) and 444 (downregulated) genes (>2 fold) under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2. PMID:26295583

  5. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-{alpha}-induced apoptosis via NF-{kappa}B in mesenchymal stem cells

    SciTech Connect

    Peng, Cheng-Fei; Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang ; Han, Ya-Ling; Jie-Deng,; Yan, Cheng-Hui; Jian-Kang,; Bo-Luan,; Jie-Li

    2011-03-25

    Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified as a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this study indicate that CREG acts as a novel and potent survival factor in MSCs, and may therefore be a useful therapeutic adjunct for transplanting MSCs into the damaged heart after myocardial infarction.

  6. GATA2 is critical for the maintenance of cellular identity in differentiated mast cells derived from mouse bone marrow.

    PubMed

    Ohmori, Shin'ya; Moriguchi, Takashi; Noguchi, Yuki; Ikeda, Muneharu; Kobayashi, Kota; Tomaru, Nazuki; Ishijima, Yasushi; Ohneda, Osamu; Yamamoto, Masayuki; Ohneda, Kinuko

    2015-05-21

    GATA2 plays a crucial role for the mast cell fate decision. We herein demonstrate that GATA2 is also required for the maintenance of the cellular identity in committed mast cells derived from mouse bone marrow (BMMCs). The deletion of the GATA2 DNA binding domain (GATA2?CF) in BMMCs resulted in a loss of the mast cell phenotype and an increase in the number of CD11b- and/or Ly6G/C-positive cells. These cells showed the ability to differentiate into macrophage- and neutrophil-like cells but not into eosinophils. Although the mRNA levels of basophil-specific genes were elevated, CD49b, a representative basophil marker, never appeared on these cells. GATA2 ablation led to a significant upregulation of C/EBP?, and forced expression of C/EBP? in wild-type BMMCs phenocopied the GATA2?CF cells. Interestingly, simultaneous deletion of the Gata2 and Cebpa genes in BMMCs restored the aberrant increases of CD11b and Ly6G/C while retaining the reduced c-Kit expression. Chromatin immunoprecipitation assays indicated that GATA2 directly binds to the +37-kb region of the Cebpa gene and thereby inhibits the RUNX1 and PU.1 binding to the neighboring region. Upregulation of C/EBP? following the loss of GATA2 was not observed in cultured mast cells derived from peritoneal fluid, whereas the repression of c-Kit and other mast cell-specific genes were observed in these cells. Collectively, these results indicate that GATA2 maintains cellular identity by preventing Cebpa gene activation in a subpopulation of mast cells, whereas it plays a fundamental role as a positive regulator of mast cell-specific genes throughout development of this cell lineage. PMID:25855601

  7. Transcriptional up-regulation of restin by all-trans retinoic acid through STAT1 in cancer cell differentiation process

    SciTech Connect

    Fu Haiyan; Yang Guodong; Lu Fan; Wang Ruihua; Yao Libo; Lu Zifan . E-mail: zifan_lu@yahoo.com.cn

    2006-05-19

    RESTIN, a member of the melanoma-associated antigen superfamily, is a nuclear protein induced by atRA (all-trans retinoic acid) in HL60 cells. HeLa cells stably transfected with restin results in G1 cell cycle arrest. How this gene is regulated by atRA in the cell differentiation process is still unclear. In this study, we observed that up-regulation of restin was present during the atRA-induced HL60 cell differentiation process, suggesting the functional relevance between RESTIN and atRA-induced cellular effects. In order to further define the transcriptional regulation of restin by atRA, we analyzed the promoter region of restin. About 2.1 kb 5' flanking sequence of this gene was cloned into vector pGL3 and its core promoter region was identified through systemic deletions. Interestingly, restin promoter containing several potential consensus-binding sites of STAT-1{alpha} was activated by atRA in ER{sup +} MCF-7 cells but not in ER{sup -} MDA-MB-231 cells, over-expression of STAT-1{alpha} in latter rescued the activation effect of restin promoter in response to atRA and IFN{gamma}. Our evidence supported that STAT-1{alpha} plays an important role in the atRA-induced transcriptional up-regulation of restin, which was associated with the atRA-induced HL60 cell differentiation and potentially mediated the downstream effects of atRA signal pathway via STAT-1{alpha} in some cancer cells.

  8. DNA Damage Response Genes and the Development of Cancer Metastasis

    PubMed Central

    Broustas, Constantinos G.; Lieberman, Howard B.

    2014-01-01

    DNA damage response genes play vital roles in the maintenance of a healthy genome. Defects in cell cycle checkpoint and DNA repair genes, especially mutation or aberrant downregulation, are associated with a wide spectrum of human disease, including a predisposition to the development of neurodegenerative conditions and cancer. On the other hand, upregulation of DNA damage response and repair genes can also cause cancer, as well as increase resistance of cancer cells to DNA damaging therapy. In recent years, it has become evident that many of the genes involved in DNA damage repair have additional roles in tumorigenesis, most prominently by acting as transcriptional (co-) factors. Although defects in these genes are causally connected to tumor initiation, their role in tumor progression is more controversial and it seems to depend on tumor type. In some tumors like melanoma, cell cycle checkpoint/DNA repair gene upregulation is associated with tumor metastasis, whereas in a number of other cancers the opposite has been observed. Several genes that participate in the DNA damage response, such as RAD9, PARP1, BRCA1, ATM and TP53 have been associated with metastasis by a number of in vitro biochemical and cellular assays, by examining human tumor specimens by immunohistochemistry or by DNA genomewide gene expression profiling. Many of these genes act as transcriptional effectors to regulate other genes implicated in the pathogenesis of cancer. Furthermore, they are aberrantly expressed in numerous human tumors and are causally related to tumorigenesis. However, whether the DNA damage repair function of these genes is required to promote metastasis or another activity is responsible (e.g., transcription control) has not been determined. Importantly, despite some compelling in vitro evidence, investigations are still needed to demonstrate the role of cell cycle checkpoint and DNA repair genes in regulating metastatic phenotypes in vivo. PMID:24397478

  9. IL-6 Trans-signaling-STAT3 Pathway Mediates ECM and Cellular Proliferation in Fibroblasts from Hypertrophic Scar

    PubMed Central

    Ray, Sutapa; Ju, Xiaoxi; Sun, Hong; Finnerty, Celeste C; Herndon, David N; Brasier, Allan R

    2012-01-01

    The molecular mechanisms behind the pathogenesis of post-burn hypertrophic scar (HS) remain unclear. Here, we investigate the role of interleukin-6 (IL-6) trans-signaling-STAT3 pathway in HS fibroblasts (HSF) derived from burned-induced HS skin. HSF showed increased Tyr 705 STAT3 phosphorylation over normal fibroblast (NF) after IL-6•IL-6R? stimulation by immunoassays. The endogenous STAT3 target gene, SOCS3, was upregulated in HSF and showed increased STAT3 binding on its promoter relative to NF in Chromatin Immunoprecipitation assay. We observed that the cell surface signaling transducer glycoprotein 130 is upregulated in HSF using Q-RT-PCR and flow cytometry. The production of excessive extracellular matrix (ECM), including the expression of alpha2 (1) procollagen (Col1A2) and fibronectin 1 (FN) were seen in HSFs. A STAT3 peptide inhibitor abrogated FN and Col1A2 gene expression in HSF indicating involvement of STAT3 in ECM production. The cellular proliferation markers Cyclin D1, Bcl-Xl and c-Myc were also upregulated in HSF and knockdown of STAT3 by siRNA attenuated c-Myc expression indicating the essential role of STAT3 in fibroblast proliferation. Taken together, our results suggest that the IL-6-trans-signaling-STAT3 pathway may play an integral role in HS pathogenesis and disruption of this pathway could be a potential therapeutic strategy for the treatment of burn-induced HS. PMID:23303450

  10. Epigenetic upregulation of endogenous VEGF-A reduces myocardial infarct size in mice.

    PubMed

    Turunen, Mikko P; Husso, Tiia; Musthafa, Haja; Laidinen, Svetlana; Dragneva, Galina; Laham-Karam, Nihay; Honkanen, Sanna; Paakinaho, Anne; Laakkonen, Johanna P; Gao, Erhe; Vihinen-Ranta, Maija; Liimatainen, Timo; Ylä-Herttuala, Seppo

    2014-01-01

    "Epigenetherapy" alters epigenetic status of the targeted chromatin and modifies expression of the endogenous therapeutic gene. In this study we used lentiviral in vivo delivery of small hairpin RNA (shRNA) into hearts in a murine infarction model. shRNA complementary to the promoter of vascular endothelial growth factor (VEGF-A) was able to upregulate endogenous VEGF-A expression. Histological and multiphoton microscope analysis confirmed the therapeutic effect in the transduced hearts. Magnetic resonance imaging (MRI) showed in vivo that the infarct size was significantly reduced in the treatment group 14 days after the epigenetherapy. Importantly, we show that promoter-targeted shRNA upregulates all isoforms of endogenous VEGF-A and that an intact hairpin structure is required for the shRNA activity. In conclusion, regulation of gene expression at the promoter level is a promising new treatment strategy for myocardial infarction and also potentially useful for the upregulation of other endogenous genes. PMID:24587164

  11. Epigenetic Upregulation of Endogenous VEGF-A Reduces Myocardial Infarct Size in Mice

    PubMed Central

    Musthafa, Haja; Laidinen, Svetlana; Dragneva, Galina; Laham-Karam, Nihay; Honkanen, Sanna; Paakinaho, Anne; Laakkonen, Johanna P.; Gao, Erhe; Vihinen-Ranta, Maija; Liimatainen, Timo; Ylä-Herttuala, Seppo

    2014-01-01

    “Epigenetherapy” alters epigenetic status of the targeted chromatin and modifies expression of the endogenous therapeutic gene. In this study we used lentiviral in vivo delivery of small hairpin RNA (shRNA) into hearts in a murine infarction model. shRNA complementary to the promoter of vascular endothelial growth factor (VEGF-A) was able to upregulate endogenous VEGF-A expression. Histological and multiphoton microscope analysis confirmed the therapeutic effect in the transduced hearts. Magnetic resonance imaging (MRI) showed in vivo that the infarct size was significantly reduced in the treatment group 14 days after the epigenetherapy. Importantly, we show that promoter-targeted shRNA upregulates all isoforms of endogenous VEGF-A and that an intact hairpin structure is required for the shRNA activity. In conclusion, regulation of gene expression at the promoter level is a promising new treatment strategy for myocardial infarction and also potentially useful for the upregulation of other endogenous genes. PMID:24587164

  12. Phosphorylation Drives an Apoptotic Protein to Activate Antiapoptotic Genes

    PubMed Central

    Halder, Umesh Chandra; Bhowmick, Rahul; Roy Mukherjee, Tapasi; Nayak, Mukti Kant; Chawla-Sarkar, Mamta

    2013-01-01

    During infection, viral proteins target cellular pathways that regulate cellular innate immune responses and cell death. We demonstrate that influenza A virus matrix 1 protein (M1), an established proapoptotic protein, activates nuclear factor-?B member RelB-mediated survival genes (cIAP1, cIAP2, and cFLIP), a function that is linked with its nuclear translocation during early infection. Death domain-associated protein 6 (Daxx) is a transcription co-repressor of the RelB-responsive gene promoters. During influenza virus infection M1 binds to and stabilizes Daxx protein by preventing its ubiquitination and proteasomal degradation. Binding of M1 with Daxx through its Daxx binding motif prevents binding of RelB and Daxx, resulting in up-regulation of survival genes. This interaction also prevents promoter recruitment of DNA methyltransferases (Dnmt1 and Dnmt3a) and lowers CpG methylation of the survival gene promoters, leading to the activation of these genes. Thus, M1 prevents repressional function of Daxx during infection, thereby exerting a survival role. In addition to its nuclear localization signal, translocation of M1 to the nucleus depends on cellular kinase-mediated phosphorylation as the protein kinase C inhibitor calphostin C effectively down-regulates virus replication. The study reconciles the ambiguity of dual antagonistic function of viral protein and potentiates a possible target to limit virus infection. PMID:23548901

  13. Role of Mesoporous Wollastonite (Calcium Silicate) in Mesenchymal Stem Cell Proliferation and Osteoblast Differentiation: A Cellular and Molecular Study.

    PubMed

    Saravanan, S; Vimalraj, S; Vairamani, M; Selvamurugan, N

    2015-07-01

    Wollastonite (calcium silicate) has been widely used in bone tissue engineering, but its mechanism of action on the regulation of mesenchymal stem cell proliferation and differentiation to osteoblasts still remains unclear. The current study utilized an inexpensive source of rice straw ash to synthesize wollastonite with mesoporous architecture. Mesoporous-wollastonite (m-WS) particles were characterized by transmission electron microscopy (TEM), N2 adsorption-desorption isotherms, and Fourier transform infrared (FT-IR) spectroscopy. These particles were found to be biocompatible with mouse mesenchymal stem cells (C3H10T1/2) and significantly stimulated cell proliferation by promoting the entry of the cell population from the G0/G1 phase into the S and G2/M phases via the upregulated expression of the cyclin B1 and cyclin E genes. Under osteogenic conditions, m-WS particles promoted osteoblast differentiation as indicated by calcium deposits and upregulated mRNA expression of osteoblast differentiation marker genes determined by real-time RT-PCR, depicting the osteoconductive nature of these particles. Runx2, a bone-specific transcription factor responsible for the expression of osteoblast differentiation marker genes, was upregulated in C3H10T1/2 cells. The expression of Runx2 co-regulators like Sirt-1, a positive regulator, and HDAC-4, a negative regulator, were upregulated and downregulated, respectively, by m-WS particles in these cells. Thus, this study provides a detailed insight into the effect of m-WS particles on mesenchymal stem cells at the molecular and cellular levels for in vitro bone formation. PMID:26307836

  14. Transactivation of Cellular Genes Involved in Nucleotide Metabolism by the Regulatory IE1 Protein of Murine Cytomegalovirus Is Not Critical for Viral Replicative Fitness in Quiescent Cells and Host Tissues?

    PubMed Central

    Wilhelmi, Vanessa; Simon, Christian O.; Podlech, Jürgen; Böhm, Verena; Däubner, Torsten; Emde, Simone; Strand, Dennis; Renzaho, Angélique; Lemmermann, Niels A. W.; Seckert, Christof K.; Reddehase, Matthias J.; Grzimek, Natascha K. A.

    2008-01-01

    Despite its high coding capacity, murine CMV (mCMV) does not encode functional enzymes for nucleotide biosynthesis. It thus depends on cellular enzymes, such as ribonucleotide reductase (RNR) and thymidylate synthase (TS), to be supplied with deoxynucleoside triphosphates (dNTPs) for its DNA replication. Viral transactivation of these cellular genes in quiescent cells of host tissues is therefore a parameter of viral fitness relevant to pathogenicity. Previous work has shown that the IE1, but not the IE3, protein of mCMV transactivates RNR and TS gene promoters and has revealed an in vivo attenuation of the mutant virus mCMV-?IE1. It was attractive to propose the hypothesis that lack of transactivation by IE1 and a resulting deficiency in the supply of dNTPs are the reasons for growth attenuation. Here, we have tested this hypothesis with the mutant virus mCMV-IE1-Y165C expressing an IE1 protein that selectively fails to transactivate RNR and TS in quiescent cells upon transfection while maintaining the capacity to disperse repressive nuclear domains (ND10). Our results confirm in vivo attenuation of mCMV-?IE1, as indicated by a longer doubling time in host organs, whereas mCMV-IE1-Y165C replicated like mCMV-WT and the revertant virus mCMV-IE1-C165Y. Notably, the mutant virus transactivated RNR and TS upon infection of quiescent cells, thus indicating that IE1 is not the only viral transactivator involved. We conclude that transactivation of cellular genes of dNTP biosynthesis is ensured by redundancy and that attenuation of mCMV-?IE1 results from the loss of other critical functions of IE1, with its function in the dispersal of ND10 being a promising candidate. PMID:18684825

  15. Advanced Review Viruses and the cellular RNA

    E-print Network

    . Glaunsinger The ability to control cellular and viral gene expression, either globally or selectively pathogens. In eukaryotes, regulation of message stability contributes significantly to the control of gene to manipulate them for enhanced viral replication and gene expression. Given our incomplete understanding of how

  16. ZNF143 transcription factor mediates cell survival through upregulation of the GPX1 activity in the mitochondrial respiratory dysfunction

    PubMed Central

    Lu, W; Chen, Z; Zhang, H; Wang, Y; Luo, Y; Huang, P

    2012-01-01

    Mitochondrial respiratory dysfunction has intimate relationship with redox regulation. The key mechanism about how the mitochondrial respiration-defective cells survive oxidative stress is still elusive. Here, we report that transcription factor zinc-finger protein 143 (ZNF143) expression and glutathione peroxidase (GPX) activity are markedly increased in the mitochondrial respiratory-defective cells induced by dominant-negative DNA polymerase ? (POLGdn). In this work, investigation of the cellular antioxidant glutathione (GSH) and enzyme GPX activity in the mitochondrial dysfunction revealed the presence of an increased synthesis of GSH through the activation of GCLC (glutamate–cysteine ligase catalytic subunit) and GCLM (glutamate–cysteine ligase regulatory subunit) gene expression, and also a positive upregulation of glutathione peroxidase 1 (GPX1) activity by the transcription factor ZNF143. Significant increase in gene expression of SepSecS, the key enzyme responsible for selenocysteine transfer RNA (tRNA) synthesis, further confirmed the activation of the selenocysteine synthesis pathway. By using both GPX1 and ZNF143 knockdown, we provided insight into the involvement of ZNF143 in promoting GPX1 activity and protecting cells from oxidative damage and cisplatin treatment in the mitochondrial dysfunction. Furthermore, we reported the possible regulation of mitochondrial transcription factor A (TFAM) in the mitochondrial dysfunction. Our findings delineate an important antioxidant survival pathway that allows the mitochondrial-defective cells to survive oxidative stress and cisplatin treatment. PMID:23152058

  17. ZNF143 transcription factor mediates cell survival through upregulation of the GPX1 activity in the mitochondrial respiratory dysfunction.

    PubMed

    Lu, W; Chen, Z; Zhang, H; Wang, Y; Luo, Y; Huang, P

    2012-01-01

    Mitochondrial respiratory dysfunction has intimate relationship with redox regulation. The key mechanism about how the mitochondrial respiration-defective cells survive oxidative stress is still elusive. Here, we report that transcription factor zinc-finger protein 143 (ZNF143) expression and glutathione peroxidase (GPX) activity are markedly increased in the mitochondrial respiratory-defective cells induced by dominant-negative DNA polymerase ? (POLGdn). In this work, investigation of the cellular antioxidant glutathione (GSH) and enzyme GPX activity in the mitochondrial dysfunction revealed the presence of an increased synthesis of GSH through the activation of GCLC (glutamate-cysteine ligase catalytic subunit) and GCLM (glutamate-cysteine ligase regulatory subunit) gene expression, and also a positive upregulation of glutathione peroxidase 1 (GPX1) activity by the transcription factor ZNF143. Significant increase in gene expression of SepSecS, the key enzyme responsible for selenocysteine transfer RNA (tRNA) synthesis, further confirmed the activation of the selenocysteine synthesis pathway. By using both GPX1 and ZNF143 knockdown, we provided insight into the involvement of ZNF143 in promoting GPX1 activity and protecting cells from oxidative damage and cisplatin treatment in the mitochondrial dysfunction. Furthermore, we reported the possible regulation of mitochondrial transcription factor A (TFAM) in the mitochondrial dysfunction. Our findings delineate an important antioxidant survival pathway that allows the mitochondrial-defective cells to survive oxidative stress and cisplatin treatment. PMID:23152058

  18. Hox Targets and Cellular Functions

    PubMed Central

    Sánchez-Herrero, Ernesto

    2013-01-01

    Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function. PMID:24490109

  19. Toxic responses in rat embryonic cells to silver nanoparticles and released silver ions as analyzed via gene expression profiles and transmission electron microscopy.

    PubMed

    Xu, Liming; Shi, Chang; Shao, Anliang; Li, Xuefei; Cheng, Xiang; Ding, Rigao; Wu, Gang; Chou, Laisheng Lee

    2015-05-01

    After exposing rat embryonic cells to 20??g/mL of silver nanoparticle (NP) suspension and their released ions for different time periods, silver nanoparticles were found in cellular nuclei, mitochondria, cytoplasm and lysosomes by transmission electron microscopy (TEM). We also observed mitochondrial destruction, distension of endoplasmic reticulum and apoptotic bodies. Global gene expression analysis showed a total of 279 genes that were up-regulated and 389 genes that were down-regulated in the silver-NP suspension exposure group, while 3 genes were up-regulated and 41 genes were down-regulated in the silver ion exposure group. Further, the GO pathway analysis suggested that these differentially expressed genes are involved in several biological processes, such as energy metabolism, oxygen transport, enzyme activities, molecular binding, etc. It is possible that inhibition of oxygen transport is mediated by the significant down-regulation of genes of the globin family, which might play an important role in silver ion-induced toxicity. KEGG pathway analysis showed that there were 23 signal pathways that were affected in the cells after exposure to silver-NP suspension, but not silver ion alone. The most significant change concerned inflammatory signal pathways, which were only found in silver-NP suspension exposed cells, indicating that inflammatory response might play an important role in the mechanism(s) of silver-NP-induced toxicity. The significant up-regulation of matrix metalloproteinases 3 and 9 suggests that silver NPs could induce extracellular matrix degradation via an inflammatory signaling pathway. The significant up-regulation of secretory leukocyte peptidase inhibitor and serine protease inhibitor 2c was considered to be an embryonic cellular defense mechanism in response to silver-NP-induced inflammation. PMID:25119417

  20. Proteasomal modulation of cellular SNAT2 (SLC38A2) abundance and function by unsaturated fatty acid availability.

    PubMed

    Nardi, Francesca; Hoffmann, Thorsten M; Stretton, Clare; Cwiklinski, Emma; Taylor, Peter M; Hundal, Harinder S

    2015-03-27

    Expression and activity of the System A/SNAT2 (SLC38A2) amino acid transporter is up-regulated by amino acid starvation and hypertonicity by a mechanism dependent on both ATF4-mediated transcription of the SLC38A2 gene and enhanced stabilization of SNAT2 itself, which forms part of an integrated cellular stress response to nutrient deprivation and osmotic stress. Here we demonstrate that this adaptive increase in System A function is restrained in cells subjected to prior incubation with linoleic acid (LOA, an unsaturated C18:2 fatty acid) for 24 h. While fatty acid treatment had no detectable effect upon stress-induced SNAT2 or ATF4 gene transcription, the associated increase in SNAT2 protein/membrane transport activity were strongly suppressed in L6 myotubes or HeLa cells preincubated with LOA. Cellular ubiquitination of many proteins was increased by LOA and although the fatty acid-induced loss of SNAT2 could be attenuated by proteasomal inhibition, the functional increase in System A transport activity associated with amino acid starvation/hypertonicity that depends upon processing/maturation and delivery of SNAT2 to the cell surface could not be rescued. LOA up-regulated cellular expression of Nedd4.2, an E3-ligase implicated in SNAT2 ubiquitination, but shRNA-directed Nedd4.2 gene silencing could not curb fatty acid-induced loss of SNAT2 adaptation. However, expression of SNAT2 in which seven putative lysyl-ubiquitination sites in the cytoplasmic N-terminal domain were mutated to alanine protected SNAT2 against LOA-induced proteasomal degradation. Collectively, our findings indicate that increased availability of unsaturated fatty acids can compromise the stress-induced induction/adaptation in SNAT2 expression and function by promoting its degradation via the ubiquitin-proteasome system. PMID:25653282

  1. Inhibition of Acyl-CoA: Cholesterol Acyltransferase (ACAT), Overexpression of Cholesterol Transporter Gene, and Protection of Amyloid ? (A?) Oligomers-Induced Neuronal Cell Death by Tricyclic Pyrone Molecules

    PubMed Central

    Pokhrel, Laxman; Maezawa, Izumi; Nguyen, Thi D. T.; Chang, Kyeong-Ok; Jin, Lee-Way; Hua, Duy H.

    2012-01-01

    A major effort in Alzheimer’s disease therapeutic development has targeted A? and downstream events. We have synthesized a small library of tricyclic pyrone compounds. Their protective action in MC65 cells and inhibition of ACAT along with the upregulation of cholesterol transporter gene were investigated. Five active compounds exhibited potencies in the nanomolar ranges. The multiple effects of the compounds on A? and cellular cholesterol pathways could be potential mechanisms underlying the protective effects in vivo. PMID:23025824

  2. Endothelin-1 upregulates MCAM in melanocytes.

    PubMed

    Mangahas, Catherine R; dela Cruz, Gelo V; Schneider, Robert J; Jamal, Sumayah

    2004-12-01

    Melanoma cell adhesion molecule (MCAM) is a cell-surface adhesion molecule expressed on over 70% of metastatic melanoma cells but not expressed in normal melanocytes invivo. Protein levels of MCAM correlate with aggressive invasive behavior of melanoma cells in vitro and invivo. Here we demonstrate that endothelin-1 (ET-1) upregulates MCAM protein in primary human melanocytes. MCAM upregulation by ET-1 occurs irrespective of degree of melanocyte pigmentation and is dose-responsive. The drug BQ788 is an endothelin-B (ET(B)) receptor antagonist and inhibits upregulation of MCAM by ET-1. In addition, endothelin-3 (ET-3) and N-succinyl-[Glu9, Ala11, 15]-ET-1-1620, both selective ET(B) agonists, are potent upregulators of MCAM. These demonstrate a critical role for the ET(B) receptor in the upregulation of MCAM by ET-1 and related isoforms. MCAM mRNA abundance is also increased by ET-1 stimulation, thus the mechanism of MCAM protein upregulation may occur at the level of transcription. Our previous studies have demonstrated that ET-1 downregulates E-cadherin in melanocytes and melanoma cells. Since E-cadherin is a melanoma invasion suppressor, and MCAM is a melanoma invasion promoter, ET-1 may promote melanoma invasion and metastasis through the regulation of adhesion molecule expression. PMID:15610525

  3. A PASport to cellular proliferation.

    PubMed

    Zlotorynski, Eitan; Agami, Reuven

    2008-07-25

    The use of alternative polyadenylation sites produces mRNA isoforms with different 3' untranslated regions. A recent report in Science (Sandberg et al., 2008) suggests that alternative polyadenylation is connected to microRNA-mediated regulation of gene expression as part of a global program for cellular proliferation. PMID:18662535

  4. Ethanol extract of Hedyotis diffusa willd upregulates G0/G1 phase arrest and induces apoptosis in human leukemia cells by modulating caspase cascade signaling and altering associated genes expression was assayed by cDNA microarray.

    PubMed

    Kuo, Yu-Jui; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-09-01

    The authors' previous study has shown that water extract of Hedyotis diffusa Willd (HDW) promoted immune response and exhibited anti-leukemic activity in BALB/c leukemic mice in vivo. In this study, the anti-proliferation effects of ethanol extract of H. diffusa Willd (EEHDW) on lung cancer cell lines (A549, H1355, and LLC), leukemia cell lines (HL-60, WEHI-3), and a mouse melanoma cell line (B16F10) in vitro were investigated. The results demonstrated that EEHDW suppressed the cell proliferation of A549, H1355, HL-60, WEHI-3, and B16F10 cells as well as reduced cell viability in a concentration-dependent manner. We found that EEHDW inhibited the cell proliferation of HL-60 cells in concentration-dependent manner. In addition, EEHDW triggered an arrest of HL-60 cells at G0/G1 phase and sub-G1 population (apoptotic cells). EEHDW provoked DNA condensation and DNA damage in HL-60 cells. The activities of caspase-3, caspase-8, and caspase-9 were elevated in EEHDW-treated HL-60 cells. DNA microarray to investigate and display the gene levels related to cell growth, signal transduction, apoptosis, cell adhesion, cell cycle, DNA damage and repair, transcription and translation was also used. These findings suggest that EEHDW may be a potential herbal medicine and therapeutic agent for the treatment of leukemia. PMID:24677778

  5. Regulatory mechanisms of replication growth limits in cellular senescence.

    PubMed

    Chang, Z F

    1997-10-01

    Normal human diploid fibroblasts cannot divide indefinitely in culture. At the end of their lifespan they withdraw from the cell cycle permanently by a process termed cellular senescence. Recent molecular studies indicate that upregulation of two inhibitors of cyclin-dependent kinases, p16 and p21, is responsible for blocking the G1/S transition in senescent cells. Although the state of senescence resembles terminal differentiation in that both exhibit irreversible growth arrest and resistance to apoptosis, other molecular changes are seen only in senescent cells. This suggests that the signal pathway specific for senescence is present in normal cells. Changes in chromosomes, such as progressive shortening of the telomeres and erosive damage by detrimental by-products in metabolism, may be the signals that trigger senescence, leading to the inactivation of cell cycle progression. On the other hand, it seems that a dominant genetic program is intrinsically preset to ensure a growth limit in the normal cell. This notion is supported by cell fusion and microcell transfer experiments which show that escaping from senescence requires recessive mutations in senescence-specific genes. Identification of these participating genes and clarification of their mode of action will provide the basis for understanding the mechanisms governing the differences between mortality in normal cells and immortality in cancer cells. PMID:9343977

  6. Antidepressants upregulate messenger RNA levels of the neuroprotective enzyme superoxide dismutase (SOD1).

    PubMed Central

    Li, X M; Chlan-Fourney, J; Juorio, A V; Bennett, V L; Shrikhande, S; Bowen, R C

    2000-01-01

    OBJECTIVE: To investigate the effect of amitriptyline, bupropion, doxepin or venlafaxine on the gene expression of the neuroprotective enzyme superoxide dismutase (SOD1) in a catecholamine cell in vitro model. DESIGN: Molecular study of a cultured cell line. INTERVENTIONS: Rat pheochromocytoma (PC12) cells were incubated in 1 and 10 mumol/L of various antidepressant medications for 24 or 48 hours. OUTCOME MEASURES: Northern blot analysis. RESULTS: Amitriptyline up-regulated SOD1 messenger RNA in a time- and dose-dependent manner. The greatest up-regulation was following incubation with 10 mumol/L amitriptyline for 48 hours. The addition of bupropion, doxepin or venlafaxine to PC12 cell cultures also up-regulated SOD1 mRNA. CONCLUSIONS: These findings suggest that some antidepressants have the ability to positively regulate neuroprotective genes. Images Fig. 2 PMID:10721683

  7. MicroRNA-34a induces a senescence-like change via the down-regulation of SIRT1 and up-regulation of p53 protein in human esophageal squamous cancer cells with a wild-type p53 gene background.

    PubMed

    Ye, Zhimin; Fang, Jun; Dai, Shujun; Wang, Yuezhen; Fu, Zhenfu; Feng, Wei; Wei, Qichun; Huang, Pintong

    2016-01-28

    MiR-34a has been reported as a non-coding RNA universally expressed in normal old cells and a probable suppressor of diverse cancer cells; however, this miRNA's expression and anti-tumor mechanism in esophageal squamous cancer cells (ESCC) remains unclear. We explored these questions in three human ESCC lines, KYSE-450, KYSE-410, and ECa-109, with wild-type p53 and mutant p53 backgrounds. Through a specific stem-loop RT primer for miR-34a, we examined the relevant expression level of miR-34a in these three cell lines using real-time reverse transcription PCR (qRT-PCR). We found that the expression level of miR-34a induced by the DNA damage agent adrmycin (ADR) was both p53- and time-dependent. Following incubation with miR-34a, cellular growth inhibition was exhibited differently in the three cell lines harbored with different p53 backgrounds. Furthermore, the MTT assay demonstrated an miR-34a-related cytotoxic effect in cell growth. Senescence-associated ?-galactosidase (SA-?-Gal) staining was used to examine senescence-like phenotypes induced by miR-34a. Mechanistic investigation suggested that the down-regulation of Sirtuin1 (SIRT1) and up-regulation of p53/p21 contributed to the anti-tumor mechanism of miR-34a in wild-type p53 ECa-109 cells, while neither of the apoptosis-related proteins PARP and caspase-3 caused significant changes. In summary, our findings indicated that the intrinsic expression of miR-34a was relatively low and was expressed differently among different p53 backgrounds and ADR treatment times. The anti-tumor effect of miR-34a was primarily dependent on the regulation of SIRT1 and p53/p21 protein, not apoptosis-associated proteins. PMID:26523671

  8. Lucidone protects human skin keratinocytes against free radical-induced oxidative damage and inflammation through the up-regulation of HO-1/Nrf2 antioxidant genes and down-regulation of NF-?B signaling pathway.

    PubMed

    Kumar, K J Senthil; Yang, Hsin-Ling; Tsai, Yu-Cheng; Hung, Pin-Chun; Chang, Show-Huei; Lo, Heng-Wei; Shen, Pei-Chun; Chen, Ssu-Ching; Wang, Hui-Min; Wang, Sheng-Yang; Chou, Chih-Wei; Hseu, You-Cheng

    2013-09-01

    We investigated the protective effects of lucidone, a naturally occurring cyclopentenedione isolated from the fruits of Lindera erythrocarpa Makino, against free-radical and inflammation stimulator 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress in human keratinocyte (HaCaT) cells, with the aim of revealing the possible mechanisms underlying the protective efficacy. Lucidone pretreatment (0.5-10 ?g/mL) markedly increased HaCaT cell viability and suppressed AAPH-induced reactive oxygen species (ROS) generation, lipid peroxidation, and DNA damage. Notably, the antioxidant potential of lucidone was directly correlated with the increased expression of an antioxidant gene, heme oxygenase 1 (HO-1), which was followed by the augmentation of the nuclear translocation and transcriptional activation of NF-E2-related factor-2 (Nrf2), with or without AAPH. Nrf2 knockdown diminished the protective effects of lucidone. We also observed that lucidone pretreatment inhibited AAPH-induced inflammatory chemokine prostaglandin E? (PGE?) production and the expression of cyclooxygenase-2 (COX-2) in HaCaT cells. Lucidone treatment also significantly inhibited AAPH-induced nuclear factor-?B (NF-?B) activation and suppressing the degradation of inhibitor-?B (I-?B). Furthermore, lucidone significantly diminished AAPH-induced COX-2 expression through the down-regulation of the extracellular signal-regulated kinase (ERK) and p38 MAPK signaling pathways. Therefore, lucidone may possess antioxidant and anti-inflammatory properties and may be useful for the prevention of free radical-induced skin damage. PMID:23712098

  9. ATM couples replication stress and metabolic reprogramming during cellular senescence

    PubMed Central

    Aird, Katherine M.; Worth, Andrew J.; Snyder, Nathaniel W.; Lee, Joyce V.; Sivanand, Sharanya; Liu, Qin; Blair, Ian A.; Wellen, Kathryn E.; Zhang, Rugang

    2015-01-01

    Summary Replication stress induced by nucleotide deficiency plays an important role in cancer initiation. Replication stress in primary cells typically activates the cellular senescence tumor suppression mechanism. Senescence bypass correlates with development of cancer, a disease characterized by metabolic reprogramming. However, the role of metabolic reprogramming in cellular response to replication stress is unknown. Here we report that ATM plays a central role in regulating cellular response to replication stress by shifting cellular metabolism. ATM inactivation bypasses senescence induced by replication stress triggered by nucleotide deficiency. This was due to restoration of dNTP levels through both upregulation of the pentose phosphate pathway via increased G6PD activity and enhanced glucose and glutamine consumption. These phenotypes were mediated by a coordinated suppression of p53 and upregulation of c-MYC downstream of ATM inactivation. Our data indicate that ATM status couples replication stress and metabolic reprogramming during senescence. PMID:25937285

  10. Freezing of body fluids induces metallothionein gene expression in earthworms (Dendrobaena octaedra).

    PubMed

    Fisker, Karina Vincents; Holmstrup, Martin; Sørensen, Jesper Givskov

    2016-01-01

    The molecular mechanisms activated by environmental contaminants and natural stressors such as freezing need to be investigated in order to better understand the mechanisms of interaction and potential effects that combined stressors may have on organisms. Using the freeze-tolerant earthworm Dendrobaena octaedra as model species, we exposed worms to freezing and exposure to sublethal copper in a factorial design and investigated the transcription of candidate genes for metal and cold stress. We hypothesised that both freezing and copper would induce transcription of genes coding for heat shock proteins (hsp10 and hsp70), metallothioneins (mt1 and mt2), and glutathione-S-transferase (gst), and that the combined effects of these two stressors would be additive. The gene transcripts hsp10, hsp70, and gst were significantly upregulated by freezing, but only hsp10 was upregulated by copper. We found that copper at the time of sampling had no effect on transcription of two metallothionein genes whereas transcription was strongly upregulated by freezing. Moreover, there was a significant interaction causing more than additive transcription rates of mt1 in the copper/freezing treatment suggesting that freeze-induced cellular dehydration increases the concentration of free copper ions in the cytosol. This metallothionein response to freezing is likely adaptive and possibly provides protection against freeze-induced elevated metal concentrations in the cytosol and excess ROS levels due to hypoxia during freezing. PMID:26325206

  11. Aquaporin-4 gene silencing protects injured neurons after early cerebral infarction

    PubMed Central

    He, Zhan-ping; Lu, Hong

    2015-01-01

    Aquaporin-4 regulates water molecule channels and is important in tissue regulation and water transportation in the brain. Upregulation of aquaporin-4 expression is closely related to cellular edema after early cerebral infarction. Cellular edema and aquaporin-4 expression can be determined by measuring cerebral infarct area and apparent diffusion coefficient using diffusion-weighted imaging (DWI). We examined the effects of silencing aquaporin-4 on cerebral infarction. Rat models of cerebral infarction were established by occlusion of the right middle cerebral artery and siRNA-aquaporin-4 was immediately injected via the right basal ganglia. In control animals, the area of high signal intensity and relative apparent diffusion coefficient value on T2-weighted imaging (T2WI) and DWI gradually increased within 0.5–6 hours after cerebral infarction. After aquaporin-4 gene silencing, the area of high signal intensity on T2WI and DWI reduced, relative apparent diffusion coefficient value was increased, and cellular edema was obviously alleviated. At 6 hours after cerebral infarction, the apparent diffusion coefficient value was similar between treatment and model groups, but angioedema was still obvious in the treatment group. These results indicate that aquaporin-4 gene silencing can effectively relieve cellular edema after early cerebral infarction; and when conducted accurately and on time, the diffusion coefficient value and the area of high signal intensity on T2WI and DWI can reflect therapeutic effects of aquaporin-4 gene silencing on cellular edema. PMID:26330830

  12. The CD36, CLA-1(CD36L1), and LIMPII (CD36L2) gene family: Cellular distribution, chromosomal location, and genetic evolution

    SciTech Connect

    Calvo, D.; Vega, M.A.; Dopazo, J.

    1995-01-01

    CD36, CLA-1, and LIMPII are single polypeptide membrane glycoproteins, and the genes encoding them constitute a recently described gene family. In the present paper, a cDNA encoding the human lysosomal membrane protein LIMPII was used to determine its expression pattern in cells of various lineages. Like CLA-1, and in contrast with the restricted expression of CD36, the expression of LIMPII is widespread. Mapping of the human LIMPII and CLA-1 genes (gene symbols CD36L2 and CD36L1, respectively) to specific chromosomes revealed that CLA-1, LIMPII, and CD36 do not form a gene cluster, but are found dispersed on chromosomes 12, 4, and 7, respectively. These data, together with the phylogenetic analysis carried out for the members of this family, indicate that the LIMPII, CIA-1, and CD36 genes diverged early in evolution from an ancestor gene, possibly before the divergence between the arthropods and the vertebrates. 48 refs., 5 figs.

  13. Modulation of albumin-induced endoplasmic reticulum stress in renal proximal tubule cells by upregulation of mapk phosphatase-1.

    PubMed

    Gorostizaga, Alejandra; Mori Sequeiros García, Maria Mercedes; Acquier, Andrea; Gomez, Natalia V; Maloberti, Paula M; Mendez, Carlos F; Paz, Cristina

    2013-10-25

    High amounts of albumin in urine cause tubulointerstitial damage that leads to a rapid deterioration of the renal function. Albumin exerts its injurious effects on renal cells through a process named endoplasmic reticulum (ER) stress due to the accumulation of unfolded proteins in the ER lumen. In addition, albumin promotes phosphorylation and consequent activation of MAPKs such as ERK1/2. Since ERK1/2 activation promoted by albumin is a transient event, the aims of the present work were to identify the phosphatase involved in their dephosphorylation in albumin-exposed cells and to analyze the putative regulation of this phosphatase by albumin. We also sought to determine the role played by the phospho/dephosphorylation of ERK1/2 in the cellular response to albumin-induced ER stress. MAP kinase phosphatase-1, MKP-1, is a nuclear enzyme involved in rapid MAPK dephosphorylation. Here we present evidence supporting the notion that this phosphatase is responsible for ERK1/2 dephosphorylation after albumin exposure in OK cells. Moreover, we demonstrate that exposure of OK cells to albumin transiently increases MKP-1 protein levels. The increase was evident after 15 min of exposure, peaked at 1 h (6-fold) and declined thereafter. In cells overexpressing flag-MKP-1, albumin caused the accumulation of this chimera, promoting MKP-1 stabilization by a posttranslational mechanism. Albumin also promoted a transient increase in MKP-1 mRNA levels (3-fold at 1 h) through the activation of gene transcription. In addition, we also show that albumin increased mRNA levels of GRP78, a key marker of ER stress, through an ERK-dependent pathway. In line with this finding, our studies demonstrate that flag-MKP-1 overexpression blunted albumin-induced GRP78 upregulation. Thus, our work demonstrates that albumin overload not only triggers MAPK activation but also tightly upregulates MKP-1 expression, which might modulate ER stress response to albumin overload. PMID:23994741

  14. Lung fibrotic tenascin-C upregulation is associated with other extracellular matrix proteins and induced by TGF?1

    PubMed Central

    2014-01-01

    Background Idiopathic pulmonary fibrosis (IPF) is a progressive parenchymal lung disease of unknown aetiology and poor prognosis, characterized by altered tissue repair and fibrosis. The extracellular matrix (ECM) is a critical component in regulating cellular homeostasis and appropriate wound healing. The aim of our study was to determine the expression profile of highlighted ECM proteins in IPF lungs. Methods ECM gene and protein expression was analyzed by cDNA microarrays, rt-PCR, immunohistochemistry and western-blot in lungs from idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis (HP), categorized as chronic (cHP) and subacute (saHP), and healthy lung tissue. Primary fibroblast cultures from normal subjects and fibrotic patients were studied to evaluate tenascin-C (TNC) synthesis. Results A total of 20 ECM proteins were upregulated and 6 proteins downregulated in IPF. TNC was almost undetected in normal lungs and significantly upregulated in fibrotic lungs (IPF and cHP) compared to saHP. Furthermore, it was located specifically in the fibroblastic foci areas of the fibrotic lung with a subepithelial gradient pattern. TNC levels were correlated with fibroblastic foci content in cHP lungs. Versican and fibronectin glycoproteins were associated with TNC, mainly in fibroblastic foci of fibrotic lungs. Fibroblasts from IPF patients constitutively synthesized higher levels of TNC than normal fibroblasts. TNC and ?-sma was induced by TGF-?1 in both fibrotic and normal fibroblasts. TNC treatment of normal and fibrotic fibroblasts induced a non-significant increased ?-sma mRNA. Conclusions The difference in ECM glycoprotein content in interstitial lung diseases could contribute to the development of lung fibrosis. The increase of TNC in interstitial areas of fibrotic activity could play a key role in the altered wound healing. PMID:25064447

  15. Direct interaction of cellular hnRNP-F and NS1 of influenza A virus accelerates viral replication by modulation of viral transcriptional activity and host gene expression

    SciTech Connect

    Lee, Jun Han; Kim, Sung-Hak; Pascua, Philippe Noriel Q.; Song, Min-Suk; Baek, Yun Hee; Jin, Xun; Choi, Joong-Kook; Kim, Chul-Joong; Kim, Hyunggee; Choi, Young Ki

    2010-02-05

    To investigate novel NS1-interacting proteins, we conducted a yeast two-hybrid analysis, followed by co-immunoprecipitation assays. We identified heterogeneous nuclear ribonucleoprotein F (hnRNP-F) as a cellular protein interacting with NS1 during influenza A virus infection. Co-precipitation assays suggest that interaction between hnRNP-F and NS1 is a common and direct event among human or avian influenza viruses. NS1 and hnRNP-F co-localize in the nucleus of host cells, and the RNA-binding domain of NS1 directly interacts with the GY-rich region of hnRNP-F determined by GST pull-down assays with truncated proteins. Importantly, hnRNP-F expression levels in host cells indicate regulatory role on virus replication. hnRNP-F depletion by small interfering RNA (siRNA) shows 10- to 100-fold increases in virus titers corresponding to enhanced viral RNA polymerase activity. Our results delineate novel mechanism of action by which NS1 accelerates influenza virus replication by modulating normal cellular mRNA processes through direct interaction with cellular hnRNP-F protein.

  16. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    SciTech Connect

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ? PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ? One-day exposure to PM induced genes involved in responding to oxidative stress. ? 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  17. Intricately Regulated: A Cellular Toolbox for Fine-Tuning XBP1 Expression and Activity

    PubMed Central

    Byrd, Andrew E.; Brewer, Joseph W.

    2012-01-01

    Stress in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), a signaling mechanism that allows cellular adaptation to ER stress by engaging pro-adaptive transcription factors and alleviating protein folding demand. One such transcription factor, X-box binding protein (XBP1), originates from the inositol-requiring transmembrane kinase/endoribonuclease 1 (IRE1) UPR stress sensor. XBP1 up-regulates a pool of genes involved in ER protein translocation, protein folding, vesicular trafficking and ER- associated protein degradation. Recent data suggest that the regulation of XBP1 expression and transcriptional activity may be a tissue- and stress-dependent phenomenon. Moreover, the intricacies involved in “fine-tuning” XBP1 activity in various settings are now coming to light. Here, we provide an overview of recent developments in understanding the regulatory mechanisms underlying XBP1 expression and activity and discuss the significance of these new insights. PMID:24710528

  18. Cultured lymphocytes from autistic children and non-autistic siblings up-regulate heat shock protein RNA in response to thimerosal challenge.

    PubMed

    Walker, Stephen J; Segal, Jeffrey; Aschner, Michael

    2006-09-01

    There are reports suggesting that some autistic children are unable to mount an adequate response following exposure to environmental toxins. This potential deficit, coupled with the similarity in clinical presentations of autism and some heavy metal toxicities, has led to the suggestion that heavy metal poisoning might play a role in the etiology of autism in uniquely susceptible individuals. Thimerosal, an anti-microbial preservative previously added routinely to childhood multi-dose vaccines, is composed of 49.6% ethyl mercury. Based on the levels of this toxin that children receive through routine immunization schedules in the first years of life, it has been postulated that thimerosal may be a potential triggering mechanism contributing to autism in susceptible individuals. One potential risk factor in these individuals may be an inability to adequately up-regulate metallothionein (MT) biosynthesis in response to presentation of a heavy metal challenge. To investigate this hypothesis, cultured lymphocytes (obtained from the Autism Genetic Resource Exchange, AGRE) from autistic children and non-autistic siblings were challenged with either 10 microM ethyl mercury, 150 microM zinc, or fresh media (control). Following the challenge, total RNA was extracted and used to query "whole genome" DNA microarrays. Cultured lymphocytes challenged with zinc responded with an impressive up-regulation of MT transcripts (at least nine different MTs were over-expressed) while cells challenged with thimerosal responded by up-regulating numerous heat shock protein transcripts, but not MTs. Although there were no apparent differences between autistic and non-autistic sibling responses in this very small sampling group, the differences in expression profiles between those cells treated with zinc versus thimerosal were dramatic. Determining cellular response, at the level of gene expression, has important implications for the understanding and treatment of conditions that result from exposure to neurotoxic compounds. PMID:16870260

  19. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls

    NASA Astrophysics Data System (ADS)

    Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.

    2003-05-01

    Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the ?-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.

  20. Specifically Expressed Genes of the Nematode Bursaphelenchus Xylophilus Involved with Early Interactions with Pine Trees

    PubMed Central

    Qiu, Xiuwen; Wu, Xiaoqin; Huang, Lin; Tian, Minqi; Ye, Jianren

    2013-01-01

    As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. However, the pathogenesis-related genes of B. xylophilus are not well characterized. Thus, DNA microarrays were used to investigate differential gene expression in PWN where Pinus thunbergii was inoculated with nematodes, compared with those cultured on Botrytis cinerea. The microarrays comprised 31121 probes, 1310 (4.2%) of which were differentially regulated (changes of >2-fold, P < 0.01) in the two growth conditions. Of these 1310 genes, 633 genes were upregulated, whereas 677 genes were downregulated. Gene Ontology (GO) categories were assigned to the classes Cellular Component, Molecular Function, and Biological Process. The comparative gene expression analysis showed that a large number of the pathogenesis-related genes of B. xylophilus, such as pectate lyase genes, cytochrome P450s, UGTs, and ABC transporter genes, were highly expressed when B. xylophilus infected P. thunbergii. Annotation analysis indicated that these genes contributed to cell wall degradation, detoxification, and the reproduction process. The microarray results were validated using quantitative RT-PCR (qRT-PCR). The microarray data confirmed the specific expression of B. xylophilus genes during infection of P. thunbergii, which provides basic information that facilitates a better understanding of the molecular mechanism of PWD. PMID:24155981

  1. Specifically expressed genes of the nematode Bursaphelenchus xylophilus involved with early interactions with pine trees.

    PubMed

    Qiu, Xiuwen; Wu, Xiaoqin; Huang, Lin; Tian, Minqi; Ye, Jianren

    2013-01-01

    As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. However, the pathogenesis-related genes of B. xylophilus are not well characterized. Thus, DNA microarrays were used to investigate differential gene expression in PWN where Pinus thunbergii was inoculated with nematodes, compared with those cultured on Botrytis cinerea. The microarrays comprised 31121 probes, 1310 (4.2%) of which were differentially regulated (changes of >2-fold, P < 0.01) in the two growth conditions. Of these 1310 genes, 633 genes were upregulated, whereas 677 genes were downregulated. Gene Ontology (GO) categories were assigned to the classes Cellular Component, Molecular Function, and Biological Process. The comparative gene expression analysis showed that a large number of the pathogenesis-related genes of B. xylophilus, such as pectate lyase genes, cytochrome P450s, UGTs, and ABC transporter genes, were highly expressed when B. xylophilus infected P. thunbergii. Annotation analysis indicated that these genes contributed to cell wall degradation, detoxification, and the reproduction process. The microarray results were validated using quantitative RT-PCR (qRT-PCR). The microarray data confirmed the specific expression of B. xylophilus genes during infection of P. thunbergii, which provides basic information that facilitates a better understanding of the molecular mechanism of PWD. PMID:24155981

  2. PIM-1 modulates cellular senescence and links IL-6 signaling to heterochromatin formation

    PubMed Central

    Jin, Bo; Wang, Yu; Wu, Chen Lin; Liu, Kai Yu; Chen, Hao; Mao, Ze Bin

    2014-01-01

    Cellular senescence is a stable state of proliferative arrest that provides a barrier against malignant transformation and contributes to the antitumor activity of certain chemotherapies. Unexpectedly, we found that the expression of proto-oncogene PIM-1, which can promote tumorigenesis, is induced at transcriptional level during senescence. Inhibition of PIM-1 alleviated both replicative and oncogene-induced senescence. Conversely, ectopic expression of PIM-1 resulted in premature senescence. We also revealed that PIM-1 interacts with and phosphorylates heterochromatin protein 1? (HP1?) on Ser93. This PIM-1-mediated HP1? phosphorylation enhanced HP1?’s capacity to bind to H3K9me3, resulting in heterochromatin formation and suppression of proliferative genes, such as CCNA2 and PCNA. Analysis of the mechanism underlying the up-regulation of PIM-1 expression during senescence demonstrated that IL-6, a critical regulator of cellular senescence, is responsible for PIM-1 induction. Our study demonstrated that PIM-1 is a key component of the senescence machinery that contributes to heterochromatin formation. More importantly, we demonstrated that PIM-1 is also a direct target of IL-6/STAT3 signaling and mediates cytokine-induced cellular senescence. PMID:25040935

  3. Gene Expression Reaction Norms Unravel the Molecular and Cellular Processes Underpinning the Plastic Phenotypes of Alternanthera Philoxeroides in Contrasting Hydrological Conditions

    PubMed Central

    Gao, Lexuan; Geng, Yupeng; Yang, Hongxing; Hu, Yonghong; Yang, Ji

    2015-01-01

    Alternanthera philoxeroides is an amphibious invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation. Little is known about the molecular basis underlying environment-induced phenotypic changes. Variation in transcript abundance in A. philoxeroides was characterized throughout the time-courses of pond and upland treatments using RNA-Sequencing. Seven thousand eight hundred and five genes demonstrated variable expression in response to different treatments, forming 11 transcriptionally coordinated gene groups. Functional enrichment analysis of plastically expressed genes revealed pathway changes in hormone-mediated signaling, osmotic adjustment, cell wall remodeling, and programmed cell death, providing a mechanistic understanding of the biological processes underlying the phenotypic changes in A. philoxeroides. Both transcriptional modulation of environmentally sensitive loci and environmentally dependent control of regulatory loci influenced the plastic responses to the environment. Phenotypic responses and gene expression patterns to contrasting hydrological conditions were compared between A. philoxeroides and its alien congener Alternanthera pungens. The terricolous A. pungens displayed limited phenotypic plasticity to different treatments. It was postulated based on gene expression comparison that the interspecific variation in plasticity between A. philoxeroides and A. pungens was not due to environmentally-mediated changes in hormone levels but to variations in the type and relative abundance of different signal transducers and receptors expressed in the target tissue. PMID:26617628

  4. Identification of Four Entamoeba histolytica Organellar DNA Polymerases of the Family B and Cellular Localization of the Ehodp1 Gene and EhODP1 Protein

    PubMed Central

    Herrera-Aguirre, María Esther; Luna-Arias, Juan Pedro; Labra-Barrios, María Luisa; Orozco, Esther

    2010-01-01

    We report the identification of a family of four active genes (Ehodp1, Ehodp2, Ehodp3, and Ehodp4) encoding putative DNA polymerases in Entamoeba histolytica, the protozoan parasite responsible of human amoebiasis. The four Ehodp genes show similarity to DNA polymerases encoded in fungi and plant mitochondrial plasmids. EhODP polypeptides conserve the 3?-5? exonuclease II and 5?-3? polymerization domains, and they have the I, II, and III conserved boxes that characterize them as DNA polymerases of family B. Furthermore, we found in EhODP polymerases two novel A and B boxes, present also in DNA polymerases encoded in fungi mitochondrial plasmids. By in situ PCR, Ehodp1 gene was located in nuclei and in DNA-containing cytoplasmic structures. Additionally, using polyclonal antibodies against a recombinant rEhODP1-168 polypeptide, and confocal microscopy, EhODP1 was located in cytoplasmic DNA-containing structures. PMID:20300437

  5. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    SciTech Connect

    Zhang, Yu; Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 ; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ER? expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ER? expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ER? antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ER? expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ER? expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  6. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro.

    PubMed

    Spatz, Jordan M; Wein, Marc N; Gooi, Jonathan H; Qu, Yili; Garr, Jenna L; Liu, Shawn; Barry, Kevin J; Uda, Yuhei; Lai, Forest; Dedic, Christopher; Balcells-Camps, Mercedes; Kronenberg, Henry M; Babij, Philip; Pajevic, Paola Divieti

    2015-07-01

    Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor ?? ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone. PMID:25953900

  7. Down-regulation of the cotton endo-1,4-?-glucanase gene KOR1 disrupts endosperm cellularization, delays embryo development, and reduces early seedling vigour

    PubMed Central

    Shang, Xiaoguang; Chai, Qichao; Zhang, Qinghu; Jiang, Jianxiong; Zhang, Tianzhen; Guo, Wangzhen; Ruan, Yong-Ling

    2015-01-01

    Towards the aim of examining the potential function of KORRIGAN (KOR), a highly conserved membrane-bound endoglucanase, in reproductive development, here transgenic evidence is provided that a cotton (Gossypium hirsutum) endoglucanase, GhKOR1, plays significant roles in endosperm and embryo development. RNA interference (RNAi)- and co-suppression-mediated down-regulation of GhKOR1 resulted in smaller filial tissue and reduced seed weight, which were characterized by disrupted endosperm cellularization and delayed embryo development, leading to a delayed germination and a weak growth of seedlings early in development. The transgenic seeds exhibited fewer and smaller endosperm cells with irregular and brittle cell walls, and their embryos developed only to the globular stage at 10 days post-anthesis (DPA) when the wild-type endosperm has become highly cellularized and the embryo has progressed to the heart stage. The transgenic seed also displayed a significant reduction of callose in the seed coat transfer cells and reduced cellulose content both in the seed coat and in mature fibres. These findings demonstrate that GhKOR1 is required for the developmental of both seed filial and maternal tissues and the establishment of seedling vigour. PMID:25805716

  8. Giant seaperch iridovirus infection upregulates Bas and Bak expression, leading to apoptotic death of fish cells.

    PubMed

    Chen, Xin-Yu; Wen, Chiu-Ming; Hui, Cho-Fat; Chen, Ming-Chyuan; Wu, Jen-Leih; Hsueh, Tsai-Ching; Lei, Wei-Han; Hong, Jiann-Ruey

    2015-08-01

    The giant seaperch iridovirus (GSIV) induces host cell apoptosis by a poorly-understood process. In this study, GSIV is shown to upregulate the pro-apoptotic death genes Bax and Bak at the middle replication stage, and factors in the grouper fin cell line (GF-1) are shown to modulate this process. Studying the mechanism of cell death, we found that upregulated, de novo-synthesized Bax and Bak proteins formed heterodimers. This up-regulation process correlated with mitochondrial membrane potential (MMP) loss, increased caspase-3 activity, and increased apoptotic cell death. All effects were diminished by treatment of infected GF-1 cells with the protein synthesis inhibitor cycloheximide. Interestingly, overexpression of the anti-apoptotic gene Bcl-xL also diminished GSIV-induced mitochondria-mediated cell death, increasing host cell viability and decreasing MMP loss at the early replication stage. Our data suggest that GSIV induces GF-1 apoptotic cell death through up-regulation of the pro-apoptotic genes Bax and Bak, which are regulated by Bcl-xL overexpression on mitochondria in GF-1 cells. PMID:26067170