Science.gov

Sample records for urban development impacts

  1. [Advances in low impact development technology for urban stormwater management].

    PubMed

    Liu, Wen; Chen, Wei-ping; Peng, Chi

    2015-06-01

    Low impact development ( LID), as an innovative technology for stormwater management, is effective to mitigate urban flooding and to detain pollutants. This paper systemically introduced the LID technology system, and summarized the reduction effects of three typical LID facilities (i.e. , bio-retention, green roof and permeable pavement) on stormwater runoff and main pollutants in recent literature, as well as research outcomes and experiences of LID technology on model simulation, cost-benefit analysis and management system. On this basis, we analyzed the problems and limitations of current LID technology studies. Finally, some suggestions about future research directions, appropriate design and scientific management were put forth. This work intended to provide scientific basis and suggestions for widespread use and standard setting of LID technology in China by referencing overseas studies. PMID:26572048

  2. Process and impact evaluation of the Greater Christchurch Urban Development Strategy Health Impact Assessment

    PubMed Central

    Mathias, Kaaren R; Harris-Roxas, Ben

    2009-01-01

    Background despite health impact assessment (HIA) being increasingly widely used internationally, fundamental questions about its impact on decision-making, implementation and practices remain. In 2005 a collaboration between public health and local government authorities performed an HIA on the Christchurch Urban Development Strategy Options paper in New Zealand. The findings of this were incorporated into the Greater Christchurch Urban Development Strategy; Methods using multiple qualitative methodologies including key informant interviews, focus groups and questionnaires, this study performs process and impact evaluations of the Christchurch HIA including evaluation of costs and resource use; Results the evaluation found that the HIA had demonstrable direct impacts on planning and implementation of the final Urban Development Strategy as well as indirect impacts on understandings and ways of working within and between organisations. It also points out future directions and ways of working in this successful collaboration between public health and local government authorities. It summarises the modest resource use and discusses the important role HIA can play in urban planning with intersectoral collaboration and enhanced relationships as both catalysts and outcomes of the HIA process; Conclusion as one of the few evaluations of HIA that have been published to date, this paper makes a substantial contribution to the literature on the impact, utility and effectiveness of HIA. PMID:19344529

  3. Development of a Tool for Siting Low Impact Development in Urban Watersheds

    NASA Astrophysics Data System (ADS)

    Martin-Mikle, C.; de Beurs, K.; Julian, J.

    2013-12-01

    Low impact development (LID) -- a comprehensive land use planning and design approach with the goal of mitigating development impacts on hydrologic/nutrient cycles and ecosystems -- is increasingly being touted as an effective approach to lessen overland runoff and pollutant loadings. Examples of LIDs include riparian buffers, grassed swales, detention/retention ponds, rain gardens, green roofs and rain barrels. Broad-scale decision support tools for siting LIDs have been developed for agricultural watersheds, but are rare for urban watersheds, largely due to greater land use complexity and lack of necessary high-resolution geospatial data. Here, we develop a framework to assist city planners and water quality managers in siting LIDs in urban watersheds. One key component of this research is a framework accessible to those interested in using it. Hence, development of the framework has centered around 1) determining optimal data requirements for siting LID in an urban watershed and 2) developing a tool compatible with both open-source and commercial GIS software. We employ a wide variety of landscape metrics to evaluate the tool. A case study of the Lake Thunderbird Watershed, an urbanized watershed southeast of Oklahoma City, illustrates the effectiveness of a tool that is capable of siting LID in an urban watershed.

  4. Climate variability effects on urban recharge beneath low impact development

    NASA Astrophysics Data System (ADS)

    Newcomer, M. E.; Gurdak, J. J.

    2012-12-01

    Groundwater resources in urban and coastal environments are highly vulnerable to human pressures and climate variability and change, and many communities face water shortages and need to find alternative water supplies. Therefore, understanding how low impact development (LID) site planning and integrated/best management practices (BMPs) affect recharge rates and volumes is important because of the increasing use of LID and BMP to reduce stormwater runoff and improve surface-water quality. Often considered a secondary management benefit, many BMPs may also enhance recharge to local aquifers; however these hypothesized benefits have not been thoroughly tested or quantified. In this study, we quantify stormwater capture and recharge enhancement beneath a BMP infiltration trench of the LID research network at San Francisco State University, San Francisco, California. Stormwater capture and retention was analyzed using the SCS TR-55 curve number method and in-situ infiltration rates to assess LID storage. Recharge was quantified using vadose zone monitoring equipment, a detailed water budget analysis, and a Hydrus-2D model. Additionally, the effects of historical and predicted future precipitation on recharge rates were examined using precipitation from the Geophysical Fluid Dynamic Laboratory (GFDL) A1F1 climate scenario. Observed recharge rates beneath the infiltration trench range from 1,600 to 3,700 mm/year and are an order of magnitude greater than recharge beneath an irrigated grass lawn and a natural setting. The Hydrus-2D model results indicate increased recharge under the GFDL A1F1 scenario compared with historical and GFDL modeled 20th century rates because of the higher frequency of large precipitation events that induce runoff into the infiltration trench. However, under a simulated A1F1 El Nio year, recharge calculated by a water budget does not increase compared with current El Nio recharge rates. In comparison, simulated recharge rates were considerably lower beneath the grass lawn for historical and future precipitation years. This work highlights the potential management strategy of using LID to capture excess runoff during El Nio years that can be recharged and stored as groundwater. An additional benefit of LID in coastal aquifer systems is the ability to capture and redirect precipitation from runoff to recharge that may help mitigate the negative effects from groundwater pumping and sea-water intrusion.

  5. Phosphorous Attenuation in Urban Best Management (BMP) and Low Impact Development (LID) Practices

    EPA Science Inventory

    While all living organisms require phosphorous (P) to live and grow, adding too much P to the environment can cause unintended and undesirable effects, such as eutrophication of surface waters and harmful algal blooms. Urban best management (BMP) and low impact development (LI...

  6. Accounting for uncertainty in evaluating water quality impacts of urban development plan

    SciTech Connect

    Zhou Jiquan; Liu Yi; Chen Jining

    2010-07-15

    The implementation of urban development plans causes land use change, which can have significant environmental impacts. In light of this, environmental concerns should be considered sufficiently at an early stage of the planning process. However, uncertainties existing in urban development plans hamper the application of strategic environmental assessment, which is applied to evaluate the environmental impacts of policies, plans and programs. This study develops an integrated assessment method based on accounting uncertainty of environmental impacts. And the proposed method consists of four main steps: (1) designing scenarios of economic scale and industrial structure, (2) sampling for possible land use layouts, (3) evaluating each sample's environmental impact, and (4) identifying environmentally sensitive industries. In doing so, uncertainties of environmental impacts can be accounted. Then environmental risk, overall environmental pressure and potential extreme environmental impact of urban development plans can be analyzed, and environmentally sensitive factors can be identified, especially under considerations of uncertainties. It can help decision-makers enhance environmental consideration and take measures in the early stage of decision-making.

  7. Importance of anthropogenic climate impact, sampling error and urban development in sewer system design.

    PubMed

    Egger, C; Maurer, M

    2015-04-15

    Urban drainage design relying on observed precipitation series neglects the uncertainties associated with current and indeed future climate variability. Urban drainage design is further affected by the large stochastic variability of precipitation extremes and sampling errors arising from the short observation periods of extreme precipitation. Stochastic downscaling addresses anthropogenic climate impact by allowing relevant precipitation characteristics to be derived from local observations and an ensemble of climate models. This multi-climate model approach seeks to reflect the uncertainties in the data due to structural errors of the climate models. An ensemble of outcomes from stochastic downscaling allows for addressing the sampling uncertainty. These uncertainties are clearly reflected in the precipitation-runoff predictions of three urban drainage systems. They were mostly due to the sampling uncertainty. The contribution of climate model uncertainty was found to be of minor importance. Under the applied greenhouse gas emission scenario (A1B) and within the period 2036-2065, the potential for urban flooding in our Swiss case study is slightly reduced on average compared to the reference period 1981-2010. Scenario planning was applied to consider urban development associated with future socio-economic factors affecting urban drainage. The impact of scenario uncertainty was to a large extent found to be case-specific, thus emphasizing the need for scenario planning in every individual case. The results represent a valuable basis for discussions of new drainage design standards aiming specifically to include considerations of uncertainty. PMID:25644630

  8. Rural to urban migration is an unforeseen impact of development intervention in Ethiopia.

    PubMed

    Gibson, Mhairi A; Gurmu, Eshetu

    2012-01-01

    Rural development initiatives across the developing world are designed to improve community well-being and livelihoods. However they may also have unforeseen consequences, in some cases placing further demands on stretched public services. In this paper we use data from a longitudinal study of five Ethiopian villages to investigate the impact of a recent rural development initiative, installing village-level water taps, on rural to urban migration of young adults. Our previous research has identified that tap stands dramatically reduced child mortality, but were also associated with increased fertility. We demonstrate that the installation of taps is associated with increased rural-urban migration of young adults (15-30 years) over a 15 year period (15.5% migrate out, n?=?1912 from 1280 rural households). Young adults with access to this rural development intervention had three times the relative risk of migrating to urban centres compared to those without the development. We also identify that family dynamics, specifically sibling competition for limited household resources (e.g. food, heritable land and marriage opportunities), are key to understanding the timing of out-migration. Birth of a younger sibling doubled the odds of out-migration and starting married life reduced it. Rural out-migration appears to be a response to increasing rural resource scarcity, principally competition for agricultural land. Strategies for livelihood diversification include education and off-farm casual wage-labour. However, jobs and services are limited in urban centres, few migrants send large cash remittances back to their families, and most return to their villages within one year without advanced qualifications. One benefit for returning migrants may be through enhanced social prestige and mate-acquisition on return to rural areas. These findings have wide implications for current understanding of the processes which initiate rural-to-urban migration and transitions to low fertility, as well as for the design and implementation of development intervention across the rural and urban developing world. PMID:23155400

  9. Rural to Urban Migration Is an Unforeseen Impact of Development Intervention in Ethiopia

    PubMed Central

    Gibson, Mhairi A.; Gurmu, Eshetu

    2012-01-01

    Rural development initiatives across the developing world are designed to improve community well-being and livelihoods. However they may also have unforeseen consequences, in some cases placing further demands on stretched public services. In this paper we use data from a longitudinal study of five Ethiopian villages to investigate the impact of a recent rural development initiative, installing village-level water taps, on rural to urban migration of young adults. Our previous research has identified that tap stands dramatically reduced child mortality, but were also associated with increased fertility. We demonstrate that the installation of taps is associated with increased rural-urban migration of young adults (1530 years) over a 15 year period (15.5% migrate out, n?=?1912 from 1280 rural households). Young adults with access to this rural development intervention had three times the relative risk of migrating to urban centres compared to those without the development. We also identify that family dynamics, specifically sibling competition for limited household resources (e.g. food, heritable land and marriage opportunities), are key to understanding the timing of out-migration. Birth of a younger sibling doubled the odds of out-migration and starting married life reduced it. Rural out-migration appears to be a response to increasing rural resource scarcity, principally competition for agricultural land. Strategies for livelihood diversification include education and off-farm casual wage-labour. However, jobs and services are limited in urban centres, few migrants send large cash remittances back to their families, and most return to their villages within one year without advanced qualifications. One benefit for returning migrants may be through enhanced social prestige and mate-acquisition on return to rural areas. These findings have wide implications for current understanding of the processes which initiate rural-to-urban migration and transitions to low fertility, as well as for the design and implementation of development intervention across the rural and urban developing world. PMID:23155400

  10. An analysis of urban development and its environmental impact on the Tampa Bay watershed

    USGS Publications Warehouse

    Xian, G.; Crane, M.; Su, J.

    2007-01-01

    Urbanization has transformed natural landscapes into anthropogenic impervious surfaces. Urban land use has become a major driving force for land cover and land use change in the Tampa Bay watershed of west-central Florida. This study investigates urban land use change and its impact on the watershed. The spatial and temporal changes, as well as the development density of urban land use are determined by analyzing the impervious surface distribution using Landsat satellite imagery. Population distribution and density are extracted from the 2000 census data. Non-point source pollution parameters used for measuring water quality are analyzed for the sub-drainage basins of Hillsborough County. The relationships between 2002 urban land use, population distribution and their environmental influences are explored using regression analysis against various non-point source pollutant loadings in these sub-drainage basins. The results suggest that strong associations existed between most pollutant loadings and the extent of impervious surface within each sub-drainage basin in 2002. Population density also exhibits apparent correlations with loading rates of several pollutants. Spatial variations of selected non-point source pollutant loadings are also assessed. ?? 2006 Elsevier Ltd. All rights reserved.

  11. The effects of low impact development on urban flooding under different rainfall characteristics.

    PubMed

    Qin, Hua-peng; Li, Zhuo-xi; Fu, Guangtao

    2013-11-15

    Low impact development (LID) is generally regarded as a more sustainable solution for urban stormwater management than conventional urban drainage systems. However, its effects on urban flooding at a scale of urban drainage systems have not been fully understood particularly when different rainfall characteristics are considered. In this paper, using an urbanizing catchment in China as a case study, the effects of three LID techniques (swale, permeable pavement and green roof) on urban flooding are analyzed and compared with the conventional drainage system design. A range of storm events with different rainfall amounts, durations and locations of peak intensity are considered for holistic assessment of the LID techniques. The effects are measured by the total flood volume reduction during a storm event compared to the conventional drainage system design. The results obtained indicate that all three LID scenarios are more effective in flood reduction during heavier and shorter storm events. Their performance, however, varies significantly according to the location of peak intensity. That is, swales perform best during a storm event with an early peak, permeable pavements perform best with a middle peak, and green roofs perform best with a late peak, respectively. The trends of flood reduction can be explained using a newly proposed water balance method, i.e., by comparing the effective storage depth of the LID designs with the accumulative rainfall amounts at the beginning and end of flooding in the conventional drainage system. This paper provides an insight into the performance of LID designs under different rainfall characteristics, which is essential for effective urban flood management. PMID:24029461

  12. Urban impacts on precipitation

    NASA Astrophysics Data System (ADS)

    Han, Ji-Young; Baik, Jong-Jin; Lee, Hyunho

    2014-01-01

    Weather and climate changes caused by human activities (e.g., greenhouse gas emissions, deforestation, and urbanization) have received much attention because of their impacts on human lives as well as scientific interests. The detection, understanding, and future projection of weather and climate changes due to urbanization are important subjects in the discipline of urban meteorology and climatology. This article reviews urban impacts on precipitation. Observational studies of changes in convective phenomena over and around cities are reviewed, with focus on precipitation enhancement downwind of cities. The proposed causative factors (urban heat island, large surface roughness, and higher aerosol concentration) and mechanisms of urban-induced and/or urban-modified precipitation are then reviewed and discussed, with focus on downwind precipitation enhancement. A universal mechanism of urban-induced precipitation is made through a thorough literature review and is as follows. The urban heat island produces updrafts on the leeward or downwind side of cities, and the urban heat island-induced updrafts initiate moist convection under favorable thermodynamic conditions, thus leading to surface precipitation. Surface precipitation is likely to further increase under higher aerosol concentrations if the air humidity is high and deep and strong convection occurs. It is not likely that larger urban surface roughness plays a major role in urbaninduced precipitation. Larger urban surface roughness can, however, disrupt or bifurcate precipitating convective systems formed outside cities while passing over the cities. Such urban-modified precipitating systems can either increase or decrease precipitation over and/or downwind of cities. Much effort is needed for in-depth or new understanding of urban precipitation anomalies, which includes local and regional modeling studies using advanced numerical models and analysis studies of long-term radar data.

  13. Evaluation of the impacts of urban development on groundwater storage at the regional scale

    NASA Astrophysics Data System (ADS)

    Bhaskar, A. S.; Welty, C.; Maxwell, R. M.; Miller, A. J.

    2013-12-01

    Urban development results in a myriad of changes to the natural environment; these changes can give rise to a range of effects on the groundwater system. We have used the integrated subsurface - surface - land surface hydrologic model ParFlow.CLM to evaluate and isolate the impacts of urban development on groundwater storage at the regional scale. We have applied the model to the 13,216 sq km Baltimore metropolitan area at a 500 m horizontal and 5 m vertical discretization, incorporating realistic estimates of anthropogenic fluxes (lawn watering, leakage from water supply pipes, infiltration into sewer pipes, withdrawals for water supply) as well as any available hydrogeologic data. We developed a base-case model, where all urban fluxes and features are incorporated, followed by model scenarios in which urban features were modified one-at-a time to evaluate the effects of each feature. The scenarios presented are: (1) the vegetated city, in which urban land is represented as natural vegetation mosaic in the land surface model; (2) the pervious city, in which low hydraulic conductivity values representing impervious surfaces are replaced with higher soil hydraulic conductivities; (3) the intact-sewer scenario, in which infiltration and inflow (I/I) of groundwater and stormwater into wastewater sewer pipes is removed; and (4) the no-anthropogenic- discharge-and-recharge scenario, in which all anthropogenic input and output fluxes are removed. We compared the subsurface storage of these scenarios to the base case model. We found that the pervious city subsurface storage was slightly greater than the subsurface storage in the base case, which is expected due to additional infiltration associated higher hydraulic conductivity values. The magnitude of this increase in subsurface storage was surprisingly small compared to changes found in other scenarios. The intact-sewer scenario eliminated the large quantity of groundwater infiltrating into wastewater pipes in the separate sanitary and storm sewer system of Baltimore. This led to an increase and the largest change in subsurface storage of all scenarios. The no anthropogenic-recharge-or-discharge scenario removed lawn irrigation and water supply pipe leakage as well as infiltration into wastewater pipes and all human-induced discharges. The subsurface storage for this scenario was less than that for the intact sewer scenario because the total recharge removed (lawn irrigation and pipe leakage) outweighed the net effect of the discharge removed. The vegetated city scenario led to less subsurface storage during high evapotranspirative periods compared to the base case. Future work includes modeling the impacts of scenarios of urban growth.

  14. Ozone Air Quality Impacts of Shale Gas Development in South Texas Urban Areas

    NASA Astrophysics Data System (ADS)

    Chang, C.; Liao, K.

    2013-12-01

    Recent technological advances, mainly horizontal drilling and hydraulic fracturing, and continued drilling in shale, have increased domestic production of oil and gas in the United State (U.S.). However, shale gas developments could also affect the environment and human health, particularly in areas where oil and gas developments are new activities. This study is focused on the impacts of shale gas developing activities on summertime ozone air quality in South Texas urban areas since many of them are already ozone nonattainment areas. We use an integrated approach to investigate the ozone air quality impact of the shale gas development in South Texas urban areas. They are: (1) satellite measurement of precursors, (2) observations of ground-level ozone concentrations, and (3) air mass trajectory modeling. Nitrogen dioxide (NO2) is an important precursor to ozone formation, and summertime average tropospheric nitrogen dioxide (NO2) column densities measured by the National Aeronautics and Space Administration's Ozone Monitoring Instrument increased in the South Texas shale area (i.e., the Eagle Ford Shale area) in 2011 and 2012 as compared to 2008-2010. The U.S. Environmental Protection Agency's ground-level observations showed summertime average and peak ozone (i.e., the 4th highest daily maximum 8-hour average ozone) concentrations slightly increased from 2010 to 2012 in Austin and San Antonio. However, the frequencies of peak ozone concentrations above the 75ppb ozone standard have been significantly increasing since 2011 in Austin and San Antonio. It is expected to increase the possibilities of violating the ozone National Ambient Air Quality Standard (NAAQS) for South Texas urban areas in the future. The results of trajectory modeling showed air masses transported from the southeastern Texas could reach Austin and San Antonio and confirmed that emissions from the Eagle Ford Shale area could affect ozone air quality in South Texas urban areas in 2011 and 2012. Overall, emissions associated with shale gas activities in South Texas have been affecting ozone air quality in neighboring urban areas. Developing effective control strategies for reducing emissions from shale gas activities and improving ozone air quality is an important issue in Texas and other states in the U.S..Changes in percentage of summertime 4th highest ozone daily maximum as comparing to previous year

  15. Rehabilitation of concrete canals in urban catchments using low impact development techniques

    NASA Astrophysics Data System (ADS)

    Palanisamy, Bakkiyalakshmi; Chui, Ting Fong May

    2015-04-01

    Urbanization generally increases surface runoff and pollutant loading and decreases infiltration and dry weather flow in canals. Efforts to handle the increased surface runoff, such as widening and deepening canals, further degrade the landscape and riverine habitats. To avert the negative effects of such changes, low-impact development (LID) has been adopted to restore natural flow processes and enhance nutrient removal from urban runoff in recent years. However, the installation of LID techniques often requires space, which can be very limited in intensely developing catchments. This study proposes to install a LID structure, referred to as the Green Channel Cover (GCC), in the space available on top of an open concrete canal to retain stormwater at the receiving end of the water body. The bioretention LID module of the Environmental Protection Agency's Storm Water Management Model 5 was used to simulate flow through the proposed GCC. The peak canal flow depth in a heavily urbanized, tropical catchment was reduced by up to 14% in the presence of the GCC, which occupied only 0.07% of the catchment area. The proposed GCC also retained up to 36 mm of the storm water runoff during peak flows, which resulted in peak flow reduction, especially during high intensity rainfall events with precipitation rates greater than 25 mm h-1. A sensitivity analysis showed that the hydraulic conductivity and depths of the soil and storage layers of the GCC did not influence the peak flow reduction as much as the percent impervious area of the catchment. A partial GCC, with an opening that allows direct sunlight and rainfall into canal, was also successfully tested for efficiency in reducing canal peak flows. Overall, the GCC was found to be a good augmentation to existing rehabilitation measures in urban catchments.

  16. Urban traffic-related determinants of health questionnaire (UTDHQ): an instrument developed for health impact assessments

    PubMed Central

    Nadrian, Haidar; Nedjat, Saharnaz; Taghdisi, Mohammad Hossein; Shojaeizadeh, Davoud

    2014-01-01

    Background: Traffic and transport is a substantial part of a range of economic, social and environmental factors distinguished to have impact on human health. This paper is a report on a preliminary section of a Health Impact Assessment (HIA) on urban traffic and transport initiatives, being conducted in Sanandaj, Iran. In this preliminary study, the psychometric properties of Urban Traffic related Determinants of Health Questionnaire (UTDHQ) were investigated. Methods: Multistage cluster sampling was employed to recruit 476 key informants in Sanandaj from April to June 2013 to participate in the study. The development of UTDHQ began with a comprehensive review of the literature. Then face, content and construct validity as well as reliability were determined. Results: Exploratory Factor Analysis showed optimal reduced solution including 40 items and 8 factors. Three of the factors identified were Physical Environment, Social Environment, Public Services Delivery and Accessibility. UTDHQ demonstrated an appropriate validity, reliability, functionality and simplicity. Conclusion: Despite the need for further studies on UTDHQ, this study showed that it can be a practical and useful tool for conducting HIAs in order to inform decision makers and stakeholders about the health influences of their decisions and measures. PMID:25664285

  17. Impacts of urban development on runoff event characteristics and unit hydrographs across warm and cold seasons in high latitudes

    NASA Astrophysics Data System (ADS)

    Sillanp, Nora; Koivusalo, Harri

    2015-02-01

    The impacts of urbanization on catchment hydrology are widely studied by comparing how different urban catchments respond to storm events, but rarely by realizing long-term observations of hydrological changes during the construction process at urbanizing small catchments. In this study, the changes occurring in runoff generation were monitored in a developing catchment under construction and in two urban control catchments. As the imperviousness of the developing catchment increased from 1.5% to 37%, significant increases were observed in event runoff depths and peak flows during rainfall-runoff events. At the same time, the only statistically significant changes that were observed for the cold period runoff events were the shorter duration and smaller runoff depths. The effect of urbanization on event runoff dynamics was studied in terms of changes in the instantaneous unit hydrographs (IUH). Negative trends were detected in the gamma parameters of IUHs, which became more consistent across events and produced a sharper shape of the hydrograph as the construction works progressed. Because urban development caused the greatest relative changes in runoff during frequently occurring minor rainfall events, the study results underlined the importance of small storms in urban runoff management for maintaining the predevelopment water balance. During infrequent major rainfall events and the cold period snowmelt events the impacts of urbanization were less pronounced. The impact of urbanization on runoff was best detected based on peak flow rates, volumetric runoff coefficients, or mean runoff intensities. Control catchments were essential to distinguish the hydrological impact caused by catchment characteristics from those caused by changes in the meteorological conditions or season.

  18. Urban Development in Costa Rica: The Direct and Indirect Impacts on Local and Regional Avian Assemblages

    ERIC Educational Resources Information Center

    Norris, Jeff L.

    2012-01-01

    Urban development, the pinnacle of human land use, has drastic effects on native ecosystems and the species they contain. For the first time in recorded history there are more people living in cities than in the rural areas surrounding them. Furthermore, the global rate of urbanization continues increasing; raising serious concerns for

  19. Urban Development in Costa Rica: The Direct and Indirect Impacts on Local and Regional Avian Assemblages

    ERIC Educational Resources Information Center

    Norris, Jeff L.

    2012-01-01

    Urban development, the pinnacle of human land use, has drastic effects on native ecosystems and the species they contain. For the first time in recorded history there are more people living in cities than in the rural areas surrounding them. Furthermore, the global rate of urbanization continues increasing; raising serious concerns for…

  20. Automated Geospatial Watershed Assessment Tool (AGWA): Applications for Assessing the Impact of Urban Growth and the use of Low Impact Development Practices.

    EPA Science Inventory

    New tools and functionality have been incorporated into the Automated Geospatial Watershed Assessment Tool (AGWA) to assess the impact of urban growth and evaluate the effects of low impact development (LID) practices. AGWA (see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov...

  1. Watershed Watch Undergraduate Research Projects: Monitoring Environmental Impacts on Tree Growth - Urban Development and Hurricanes

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Hale, S.

    2009-12-01

    Watershed Watch (NSF 0525433) is designed to engage early undergraduate students from two-year and four-year colleges in student-driven full inquiry-based instruction in the biogeosciences. Program goals for Watershed Watch are to test if inquiry-rich student-driven projects sufficiently engage undeclared students (or noncommittal STEM majors) to declare a STEM major (or remain with their STEM major). The program is a partnership between two four-year campuses - the University of New Hampshire (UNH), and Elizabeth City State University (ECSU, in North Carolina); and two two-year campuses - Great Bay Community College (GBCC, in New Hampshire) and the College of the Albemarle (COA, in North Carolina). Two Watershed Watch students from the 2009 Summer Research Institute (SRI), held on the ECSU campus, August 3-14, 2009 investigated the use of wood cores collected from loblolly pine (Pinus taeda) and bald cypress (Taxodium distichum). One student team studied the possible impacts of urban development on tree growth, focusing on the use of dendrochronology to assess the effect of environmental factors on the trees. Tree cores and foliar samples were collected at the ECSU Outdoor Classroom and compared with the same species from the Great Dismal Swamp (GDS) in Virginia. The main targets of this experiment were one aquatic tree, the bald cypress, and a land based tree, the loblolly pine. This allowed us to compare an urbanized area (ECSU) with a more natural setting (GDS) to evaluate factors impacting tree growth. This experiment suggests that there may be potentially harmful impacts of an urban environment with the data that at ECSU. The growth rings of the ECSU campus tree cores are noticeably narrow, especially in the loblolly pine from the ECSU outdoor classroom, and multiple fluctuations in more recent tree rings of the bald cypress in the ECSU campus. Growth ring compression, beginning approximately in 1956 in 100-year old loblolly pines, corresponds in timing with the nearby construction of two student dormitories within 100 feet of the trees. The other student team studied cores for evidence of possible impacts from four recent hurricanes (Isabel, category 5, 2003; Floyd, category 4, 1999; Bonnie, category 3, 1998; and Fran, Category 3, 1996) on trees from the Alligator River (near Cape Hatteras, NC) and from the ECSU campus (well inland). Cores were evaluated for the presence or absence of false growth rings that could be the result of saltwater impoundment associated with storm surges. False growth rings were seen in the cores of loblolly pine from the Alligator River site, but only for the years 2003 and 1999. No false growth rings were seen in the cores of loblolly pine from the ECSU campus. Both hurricanes Isabel and Floyd were stronger storms and had higher storm surges (8-10 ft) than either Bonnie or Fran (storm surges of 3-5 feet). The team hypothesized that the false growth rings were related to the impacts of the two stronger storms.

  2. Quito's Urban Watersheds: Applications of Low Impact Development and Sustainable Watershed Management

    NASA Astrophysics Data System (ADS)

    Marzion, R.; Serra-Llobet, A.; Ward Simons, C.; Kondolf, G. M.

    2013-12-01

    Quito, Ecuador sits high in an Interandean valley (elevation ~2,830 meters) at the foot of Pichincha volcano. Above the city, mountain streams descend from high-altitude Andean páramo grasslands down steep slopes through quebradas (ravines) to the Machángara River. Quito's rapid urban growth, while indicative of the city's economic vitality, has led to the city's expansion along the valley floor, settlements along precarious hillslopes and ravines, disappearance of wetlands, and loss of páramo. The upper reaches of the watersheds are being rapidly settled by migrants whose land-use practices result in contamination of waters. In the densely-settled downstream reaches, urban encroachment has resulted in filling and narrowing of quebradas with garbage and other poor-quality fill. These practices have dramatically altered natural drainage patterns, reduced the flood conveyance capacity of the channels (increasing the flood risk to surrounding communities), and further deteriorated water quality. The city's stormwater, wastewater, and surface waters suffer from untreated pollutant loads, aging pipes, and sewer overflows. In response to environmental degradation of the quebradas, awareness is increasing, at both local community and municipal levels, of the importance of stream corridors for water quality, wildlife, and recreation for nearby residents. Citizen groups have organized volunteer river cleanups, and municipal agencies have committed to implementing ';green infrastructure' solutions to make Quito a healthier habitat for humans and other species. City leaders are evaluating innovative low impact development (LID) methods to help decontaminate surface waters, mitigate urban flooding, and promote sustainable water systems. Quito's municipal water agency, EPMAPS, invited faculty and students from Quito and Berkeley to collaborate with agency staff and citizen groups to analyze opportunities and to develop plans and designs for sustainable infrastructure. To facilitate the evaluation of LID potential in Quito, we conducted field observations and measurements, completed archival research, analyzed available geographic and hydrologic data, and developed plans and designs for the Quebrada Ortega from its steep headwater reaches down through the densely-populated valley floor. We identified opportunities and constraints for LID, along with strategies from international LID precedent cities that can be applied in the context of Quito's unique physical and climatic characteristics, urban planning practices, and institutional structures. Using remote sensing techniques to determine permeable versus impermeable surface areas, we calculated that basins of at least 1% of the Ortega subwatershed's surface area would be needed to mitigate peak flows from most design storm scenarios. Rainwater harvesting can provide approximately 30% of average daily water needs based on current Quito consumption rates for the subwatershed's residents. By implementing LID strategies while also addressing other water management priorities, Quito provides a unique case study of a city that could bypass prohibitively expensive models used in industrialized countries (e.g., end-of-pipe treatments), and serve as a model for other Latin American cities seeking to resolve similar water management problems.

  3. Exploring the Impact of a Wilderness-Based Positive Youth Development Program for Urban Youth

    ERIC Educational Resources Information Center

    Norton, Christine Lynn; Watt, Toni Terling

    2014-01-01

    Young people today face a multitude of challenges, especially when growing up in an urban environment. Risk factors such as poverty, exposure to gangs, drugs, and community and family violence threaten healthy development. The positive youth development (PYD) approach attempts to combat these personal and environmental challenges by providing…

  4. Exploring the Impact of a Wilderness-Based Positive Youth Development Program for Urban Youth

    ERIC Educational Resources Information Center

    Norton, Christine Lynn; Watt, Toni Terling

    2014-01-01

    Young people today face a multitude of challenges, especially when growing up in an urban environment. Risk factors such as poverty, exposure to gangs, drugs, and community and family violence threaten healthy development. The positive youth development (PYD) approach attempts to combat these personal and environmental challenges by providing

  5. Stormwater management impacts on urban stream water quality and quantity during and after development in Clarksburg, MD

    NASA Astrophysics Data System (ADS)

    Loperfido, J. V.; Noe, G. B.; Jarnagin, S.; Mohamoud, Y. M.; Van Ness, K.; Hogan, D. M.

    2012-12-01

    Urbanization and urban land use leads to degradation of local stream habitat and 'urban stream syndrome.' Best Management Practices (BMPs) are often used in an attempt to mitigate the impact of urban land use on stream water quality and quantity. Traditional development has employed stormwater BMPs that were placed in a centralized manner located either in the stream channel or near the riparian zone to treat stormwater runoff from large drainage areas; however, urban streams have largely remained impaired. Recently, distributed placement of BMPs throughout the landscape has been implemented in an attempt to detain, treat, and infiltrate stormwater runoff from smaller drainage areas near its source. Despite increasing implementation of distributed BMPs, little has been reported on the catchment-scale (1-10 km^2) performance of distributed BMPs and how they compare to centralized BMPs. The Clarksburg Special Protection Area (CSPA), located in the Washington, DC exurbs within the larger Chesapeake Bay watershed, is undergoing rapid urbanization and employs distributed BMPs on the landscape that treat small drainage areas with the goal of preserving high-quality stream resources in the area. In addition, the presence of a nearby traditionally developed (centralized BMPs) catchment and an undeveloped forested catchment makes the CSPA an ideal setting to understand how the best available stormwater management technology implemented during and after development affects stream water quality and quantity through a comparative watershed analysis. The Clarksburg Integrated Monitoring Partnership is a consortium of local and federal agencies and universities that conducts research in the CSPA including: monitoring of stream water quality, geomorphology, and biology; analysis of stream hydrological and water quality data; and GIS mapping and analysis of land cover, elevation change and BMP implementation data. Here, the impacts of urbanization on stream water quantity, geomorphology, and biology during development while implementing advanced sediment and erosion control BMPs are discussed. Also, effects of centralized versus distributed stormwater BMPs and land cover on stream water quantity and quality following suburban development are presented. This includes stream response to precipitation events, baseflow and stormflow export of water, and water chemistry data. Results from this work have informed land use planning at the local level and are being incorporated through adaptive management to maintain the high-quality stream resources in the CSPA. More generally, results from this work could inform urban development stakeholders on effective strategies to curtail urban stream syndrome.

  6. Urban Heat Island Effect and its Impact on Boundary Layer Development and Land-Sea Circulation over Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, C.; Chen, F.; Huang, J.; Liou, Y.; Chen, W.

    2007-12-01

    The impact of the urban heat island (UHI) effect on environmental phenomena and regional climate has been receiving wide attention in recent decades. Taiwan, especially Taipei (located in northern Taiwan), is experiencing a significant urban heat island effect due to its high population density and the uniqueness of the geographic structure. In order to evaluate the impacts of urbanization and UHI effect over northern Taiwan, a next generation mesoscale model, Weather Research and Forecasting (WRF) model coupled with the Noah land surface model and Urban canopy model (UCM), was used to study this issue. By using the WRF-Noah-UCM model, it has significantly improved our simulation results for the prediction of the UHI effect, boundary layer development, and land sea breeze. Observations of weather stations and Lidar showed that the near surface air temperature was nearly 34 -35¢XC and the boundary layer height was nearly 1500 m around noon in Taipei on 17 June 2006. Around midnight, the air temperature ranged from 26 to 28°C. Our model can predict well for boundary layer develop during the daytime and the urban heat island effect in northern Taiwan. Sensitivity tests indicate that the anthropogenic heat (AH) plays an important role for the boundary layer to develop and UHI intensity in the Taipei area, especially during night time and early morning. When we increase AH by 100 W/m2 in the model, the average surface temperature could increase nearly 0.3°C in Taipei. Furthermore, we found the UHI effect also has a significant impact on land sea circulation. It could enhance the sea breeze in the daytime and weaken the land breeze during the night time and thus had a significant impact on the air pollution diffusion in northern Taiwan.

  7. Development and validation of a macroinvertebrate index of biotic integrity (IBI) for assessing urban impacts to Northern California freshwater wetlands.

    PubMed

    Lunde, Kevin B; Resh, Vincent H

    2012-06-01

    Despite California policies requiring assessment of ambient wetland condition and compensatory wetland mitigations, no intensive monitoring tools have been developed to evaluate freshwater wetlands within the state. Therefore, we developed standardized, wadeable field methods to sample macroinvertebrate communities and evaluated 40 wetlands across Northern California to develop a macroinvertebrate index of biotic integrity (IBI). A priori reference sites were selected with minimal urban impacts, representing a best-attainable condition. We screened 56 macroinvertebrate metrics for inclusion in the IBI based on responsiveness to percent urbanization. Eight final metrics were selected for inclusion in the IBI: percent three dominant taxa; scraper richness; percent Ephemeroptera, Odonata, and Trichoptera (EOT); EOT richness; percent Tanypodinae/Chironomidae; Oligochaeta richness; percent Coleoptera; and predator richness. The IBI (potential range 0-100) demonstrated significant discriminatory power between the reference (mean?=?69) and impacted wetlands (mean?=?28). It also declined with increasing percent urbanization (R (2)?=?0.53, p?urban (stormwater and flood control ponds), as well as rural freshwater wetlands (stockponds, seasonal wetlands, and natural ponds). Biological differences between perennial and non-perennial wetlands suggest that developing separate indicators for these wetland types may improve applicability, although the existing data set was not sufficient for exploring this option. PMID:21823050

  8. Urban recharge beneath low impact development and effects of climate variability and change

    NASA Astrophysics Data System (ADS)

    Newcomer, Michelle E.; Gurdak, Jason J.; Sklar, Leonard S.; Nanus, Leora

    2014-02-01

    low impact development (LID) planning and best management practices (BMPs) effects on recharge is important because of the increasing use of LID BMPs to reduce storm water runoff and improve surface-water quality. LID BMPs are microscale, decentralized management techniques such as vegetated systems, pervious pavement, and infiltration trenches to capture, reduce, filter, and slow storm water runoff. Some BMPs may enhance recharge, which has often been considered a secondary management benefit. Here we report results of a field and HYDRUS-2D modeling study in San Francisco, California, USA to quantify urban recharge rates, volumes, and efficiency beneath a LID BMP infiltration trench and irrigated lawn considering historical El Nio/Southern Oscillation (ENSO) variability and future climate change using simulated precipitation from the Geophysical Fluid Dynamic Laboratory (GFDL) A1F1 climate scenario. We find that in situ and modeling methods are complementary, particularly for simulating historical and future recharge scenarios, and the in situ data are critical for accurately estimating recharge under current conditions. Observed (2011-2012) and future (2099-2100) recharge rates beneath the infiltration trench (1750-3710 mm yr-1) were an order of magnitude greater than beneath the irrigated lawn (130-730 mm yr-1). Beneath the infiltration trench, recharge rates ranged from 1390 to 5840 mm yr-1 and averaged 3410 mm yr-1 for El Nio years (1954-2012) and from 1540 to 3330 mm yr-1 and averaged 2430 mm yr-1 for La Nia years. We demonstrate a clear benefit for recharge and local groundwater resources using LID BMPs.

  9. From Rain Tanks to Catchments: Use of Low-Impact Development To Address Hydrologic Symptoms of the Urban Stream Syndrome.

    PubMed

    Askarizadeh, Asal; Rippy, Megan A; Fletcher, Tim D; Feldman, David L; Peng, Jian; Bowler, Peter; Mehring, Andrew S; Winfrey, Brandon K; Vrugt, Jasper A; AghaKouchak, Amir; Jiang, Sunny C; Sanders, Brett F; Levin, Lisa A; Taylor, Scott; Grant, Stanley B

    2015-10-01

    Catchment urbanization perturbs the water and sediment budgets of streams, degrades stream health and function, and causes a constellation of flow, water quality, and ecological symptoms collectively known as the urban stream syndrome. Low-impact development (LID) technologies address the hydrologic symptoms of the urban stream syndrome by mimicking natural flow paths and restoring a natural water balance. Over annual time scales, the volumes of stormwater that should be infiltrated and harvested can be estimated from a catchment-scale water-balance given local climate conditions and preurban land cover. For all but the wettest regions of the world, a much larger volume of stormwater runoff should be harvested than infiltrated to maintain stream hydrology in a preurban state. Efforts to prevent or reverse hydrologic symptoms associated with the urban stream syndrome will therefore require: (1) selecting the right mix of LID technologies that provide regionally tailored ratios of stormwater harvesting and infiltration; (2) integrating these LID technologies into next-generation drainage systems; (3) maximizing potential cobenefits including water supply augmentation, flood protection, improved water quality, and urban amenities; and (4) long-term hydrologic monitoring to evaluate the efficacy of LID interventions. PMID:26317612

  10. Climatic impacts of urbanization on the Beijing

    NASA Astrophysics Data System (ADS)

    Yu, Miao

    2015-04-01

    WRF coupled UCM is used to simulate the climatic impacts from 2008 to 2012 of urbanization on the Beijing. The results show that simulation is generally well compared to the observation. The urbanization caused a strongest UHI in the night in urban areas. The precipitation is reduced slightly. The relative humidity has a more direct response to the urbanization process than precipitation. The effect of urbanization can heat the temperature up to 1.2 kilometers inside the urban boundary layer in the daytime. While for the nighttime, the UHI development height is less than 400 meters. The relative humidity is reduced below 800 meters in daytime in Beijing but is hardly changed in nighttime. Three different urban land use datasets include year 1990, 2000 and 2010 are used to set up three sensitive tests to find out that the real urbanization process has changed the surface energy balance with the sensible heat flux increase, latent heat flux decrease and ground heat flux increase, causing the increase of temperature which forms the UHI. Both the changes of sensible heat flux and latent heat flux is more pronounced in the time period of 2000 to 2010 than that of 1990 to 2000. Twenty years from1990 to 2010 urbanization can enhance the UHI about 3.5˚C, among which the 2000-2010 period urbanization has attributed over 68%. The latest ten years urbanization process has a much pronounced impact on the UHI.

  11. The Impact of Urban Development in the Arid Zone and its Management.

    NASA Astrophysics Data System (ADS)

    Gat, J. R.

    2002-05-01

    From the experience in humid and semi-arid settings, the immediate impact of urbanization on the hydrological system is the interference with the natural direct infiltration pathways, resulting in a decrease of groundwater recharge as well as the possibility of surface flooding. In contrast, in the arid environment the limited rain amounts and number of rain events makes the contribution of rain of marginal importance in the city's water balance. The major impact of urbanization in the arid zone is the continuous excess of discharge of treated or untreated sewage or water spills, originating from the import of water to the city's water supply. Their effect can be advantageous if properly channeled. On the other hand, the polluting potential of these water excesses as well as the possibility of mobilizing stored salinity in the downstream locations is of concern, if the natural drainage network and its remediation capacity becomes overloaded. Further, since the arid zone hydrological cycle depends naturally on a discontinuous and episodal groundwater recharge pattern, the new situation requires the re-assessment of the eco-hydrological patterns in the downstream location.

  12. A Suite of GIS-Based Tools for Siting Low Impact Development in an Urban Watershed

    EPA Science Inventory

    Low impact development (LID) -- a comprehensive land use planning and design approach with the goal of mitigating development impacts on hydrologic/nutrient cycles and ecosystems -- is increasingly being touted as an effective approach to lessen overland runoff and pollutant load...

  13. Urban heat island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Chuan-Yao; Chen, Fei; Huang, J. C.; Chen, W.-C.; Liou, Y.-A.; Chen, W.-N.; Liu, Shaw-C.

    The impact of the urban heat island (UHI) effect on environmental and regional climate has been receiving wide attention in recent decades. Taiwan, especially Taipei (located in northern Taiwan), is experiencing a significant UHI effect due to its high population density and the uniqueness of the geographic structure. In order to evaluate the impacts of urbanization and UHI effect over northern Taiwan, a next generation mesoscale model, Weather Research and Forecasting (WRF) model coupled with the Noah land surface model and Urban Canopy model (UCM), was used to study this issue. By using the WRF-Noah-UCM model, it has significantly improved our simulation results for the prediction of the UHI effect, boundary layer development, and land sea breeze. Observations of weather stations and Lidar showed that the near surface air temperature was nearly 34-35 °C and the boundary layer height was nearly 1500 m around noon in Taipei on 17 June 2006. Around midnight, the air temperature ranged from 26 to 28 °C. Our model can predict well for boundary layer development during the daytime and the UHI effect in northern Taiwan. Sensitivity tests indicate that the anthropogenic heat (AH) plays an important role for the boundary layer development and UHI intensity in the Taipei area, especially during nighttime and early morning. When we increase AH by 100 W m -2 in the model, the average surface temperature could increase nearly 0.3 °C in Taipei. Furthermore, we found the UHI effect also has a significant impact on land sea circulation. It could enhance the sea breeze in the daytime and weaken the land breeze during the nighttime and hence had a significant impact on the air pollution diffusion in northern Taiwan.

  14. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach.

    PubMed

    Baek, Sang-Soo; Choi, Dong-Ho; Jung, Jae-Woon; Lee, Hyung-Jin; Lee, Hyuk; Yoon, Kwang-Sik; Cho, Kyung Hwa

    2015-12-01

    Currently, continued urbanization and development result in an increase of impervious areas and surface runoff including pollutants. Also one of the greatest issues in pollutant emissions is the first flush effect (FFE), which implies a greater discharge rate of pollutant mass in the early part in the storm. Low impact development (LID) practices have been mentioned as a promising strategy to control urban stormwater runoff and pollution in the urban ecosystem. However, this requires many experimental and modeling efforts to test LID characteristics and propose an adequate guideline for optimizing LID management. In this study, we propose a novel methodology to optimize the sizes of different types of LID by conducting intensive stormwater monitoring and numerical modeling in a commercial site in Korea. The methodology proposed optimizes LID size in an attempt to moderate FFE on a receiving waterbody. Thereby, the main objective of the optimization is to minimize mass first flush (MFF), which is an indicator for quantifying FFE. The optimal sizes of 6 different LIDs ranged from 1.2 mm to 3.0 mm in terms of runoff depths, which significantly moderate the FFE. We hope that the new proposed methodology can be instructive for establishing LID strategies to mitigate FFE. PMID:26432400

  15. The Impact of Urban Development on the Water Quality in the Las Vegas Watershed

    NASA Astrophysics Data System (ADS)

    Yu, A.; Simmons, C.; Acharya, K.

    2009-12-01

    Las Vegas, one of the fastest growing cities in the nation, must have its water strictly monitored for quality as well as degree of pollution. Samples at various sites were collected to analyze the current pollution status of our water bodies (in both residential and urban settings) in the Las Vegas watershed. These gathered samples (sediment and water) were collected and analyzed for measuring total phosphorus, total organic carbon, trace metal contents, i.e., selenium, arsenic, mercury and lead, as well as pathogens, i.e., E-coli and total coliform counts. The concentrations of various pollutions will be compared among different sites as well as natural local sites (due to the natural occurrence of a few trace metals and normal levels of other measurements) and analyzed for spatial distribution for source identification and for elucidating the cause and consequence. Preliminary analyses of the results indicate that nonpoint source pollutions (golf courses, construction sites, etc.) have larger impacts than point source pollutions such as wastewater treatment effluents. This study will help understand and evaluate the degradation of the water quality caused by the increase of human actions in recent years in Las Vegas.

  16. A Review of the Urban Development and Transport Impacts on Public Health with Particular Reference to Australia: Trans-Disciplinary Research Teams and Some Research Gaps

    PubMed Central

    Black, Deborah; Black, John

    2009-01-01

    Urbanization and transport have a direct effect on public health. A transdisciplinary approach is proposed and illustrated to tackle the general problem of these environmental stressors and public health. Processes driving urban development and environmental stressors are identified. Urbanization, transport and public health literature is reviewed and environmental stressors are classified into their impacts and which group is affected, the geographical scale and potential inventions. Climate change and health impacts are identified as a research theme. From an Australian perspective, further areas for research are identified. PMID:19543407

  17. Use of the AGNPS model to assess impacts of development and best management practices in an urban watershed

    NASA Astrophysics Data System (ADS)

    Cross, J. A.

    2006-12-01

    A Geographical Information System (GIS) is an invaluable tool in the estimation of land use changes and spatial variability in urban areas. (Non-Point Source (NPS) models provide hypothetical opportunities to assess impacts which storm water management strategies and land use changes have on watersheds by predicting loadings on a watershed scale. This study establishes a methodology for analyzing land use changes and management associated with them by utilizing a GIS analysis of impervious surfaces and AGricultural Non- Point Source (AGNPS) modeling. The GIS analysis of Total Impervious Area (TIA) was used to quantify increases in development and provided land use data for use in AGNPS modeling in a small artificially- delineated urban watershed. AGNPS modeling was executed in several different scenarios to predict changes in NPS loadings associated with increases in TIA and its subsequent management in a small artificially- delineated urban watershed. Data editing, creation and extracting was completed using ArcView (3.2) GeoMedia (6) GIS systems. The GIS analysis quantified the increase in urbanization via TIA within the Bluebonnet Swamp Watershed (BSW) in East Baton Rouge Parish (EBRP), Louisiana. The BSW had significant increases in urbanization in the 8 year time span of 1996 2004 causing and increase in quantity and decrease in quality of subsequent runoff. Datasets made available from the GIS analysis included TIA and the change in percentage from 1996 to 2004. This information is fundamental for the AGNPS model because it was used to calculate TIA percentages within each AGNPS cell. A 30 year daily climate file was used to execute AGNPS in different land use and storm water management scenarios within the 1100 acre BSW. Runoff qualities and quantities were then compared for different periods of 1996 and 2004. Predictions of sediment, erosion and runoff were compared according by scenario year. Management practices were also simulated by changing the Runoff Curve Number (RCN) within AGNPS and their results were also compared. This study provides an aid to planners and managers in estimating increases in urbanization by artificially- delineated watershed. It also in illustrates how to use AGNPS to predict NPS pollution and the influence that change in TIA, land use and storm water management strategies have on sediment loadings, erosion and runoff in a watershed.

  18. Vegetation and other development options for mitigating urban air pollution impacts

    EPA Science Inventory

    In addition to installing air pollution control devices and reducing emissions activities, urban air pollution can be further mitigated through planning and design strategies including vegetation planting, building design, installing roadside and near source structures, and modif...

  19. The impact of urban areas on weather

    NASA Astrophysics Data System (ADS)

    Collier, C. G.

    2006-01-01

    The industrial revolution led to a rapid development of urban areas. This has continued unremittingly over the last 200 years or so. In most urban areas the surface properties are heterogeneous, which has significant implications for energy budgets, water budgets and weather phenomena within the part of the earth's atmosphere that humans live. In this paper I discuss the structure of the planetary boundary layer, confining our analysis to the region above the rooftops (canopy layer) up to around the level where clouds form. It is in this part of the atmosphere that most of the weather impacting our lives occurs, and where the buildings of our cities impact the weather.In this review, observations of the structure of the urban atmospheric boundary layer are discussed. In particular the use of Doppler lidar provides measurements above the canopy layer. The impact of high-rise buildings is considered.Urban morphology impacts energy fluxes and airflow leading to phenomena such as the urban heat island and convective rainfall initiation. I discuss in situ surface-based remote sensing and satellite measurements of these effects. Measurements have been used with simple and complex numerical models to understand the complexity and balance of the interactions involved. Cities have been found to be sometimes up to 10 degC warmer than the surrounding rural areas, and to cause large increases in rainfall amounts. However, there are situations in which urban aerosol may suppress precipitation.Although much progress has been made in understanding these impacts, our knowledge remains incomplete. These limitations are identified. As city living becomes even more the norm for large numbers of people, it is imperative that we ensure that urban effects on the weather are included in development plans for the built environment of the future.

  20. Parasitic diseases and urban development.

    PubMed Central

    Mott, K. E.; Desjeux, P.; Moncayo, A.; Ranque, P.; de Raadt, P.

    1990-01-01

    The distribution and epidemiology of parasitic diseases in both urban and periurban areas of endemic countries have been changing as development progresses. The following different scenarios involving Chagas disease, lymphatic filariasis, leishmaniasis and schistosomiasis are discussed: (1) infected persons entering nonendemic urban areas without vectors; (2) infected persons entering nonendemic urban areas with vectors; (3) infected persons entering endemic urban areas; (4) non-infected persons entering endemic urban areas; (5) urbanization or domestication of natural zoonotic foci; and (6) vectors entering nonendemic urban areas. Cultural and social habits from the rural areas, such as type of house construction and domestic water usage, are adopted by migrants to urban areas and increase the risk of disease transmission which adversely affects employment in urban populations. As the urban health services must deal with the rise in parasitic diseases, appropriate control strategies for the urban setting must be developed and implemented. PMID:2127380

  1. Sustainable urban development and geophysics

    NASA Astrophysics Data System (ADS)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be investigated [2]. The first objective of urban geophysics is to study systematically the geophysical fields in cities, searching for principles and processes governing the intensity and patterns of variation of the geophysical properties, as well as the potential consequences on the biosphere. Secondly, geophysics has already been found to be a useful tool for subsurface detection and investigation, hazard mitigation, and assessment of environmental contamination. Geophysicists have documented numerous cases of successful applications of geophysical techniques to solve problems related to hazard mitigation, safeguarding of lifeline infrastructure and urban gateways (air- and sea-ports, railway and highway terminals), archaeological and heritage surveys, homeland security, urban noise control, water supplies, sanitation and solid waste management etc. In contrast to conventional geophysical exploration, the undertaking of geophysical surveys in an urban setting faces many new challenges and difficulties. First of all, the ambient cultural noise in cities caused by traffic, electromagnetic radiation and electrical currents often produce undesirably strong interference with geophysical measurements. Secondly, subsurface surveys in an urban area are often targeted at the uppermost several metres of the ground, which are the most heterogeneous layers with many man-made objects. Thirdly, unlike conventional geophysical exploration which requires resolution in the order of metres, many urban geophysical surveys demand a resolution and precision in the order of centimetres or even millimetres. Finally restricted site access and limited time for conducting geophysical surveys, regulatory constraints, requirements for traffic management and special logistical arrangements impose additional difficulties. All of these factors point to the need for developing innovative research methods and geophysical instruments suitable for use in urban settings. This special issue on 'Sustainable urban development and geophysics' in Journal of Geophysics and Engineering is a response to the call for the development of novel geophysical techniques especially applicable to city settings. It consists of 11 papers which are selected and expanded from a collection of papers presented to the special sessions on 'Sustainable Urban Development and Geophysics' (U14A, U15A, and U41B) in the Union section of the Western Pacific Geophysics Meeting held in Beijing, China, on 22-27 July 2006 [3]. This indicates that new and innovative geophysical applications in urban settings have emerged, and these innovations may be potentially useful for the planning, implementation, and maintenance of urban infrastructure systems. These 11 research papers can be divided into three groups: (1) geophysics and urban infrastructure; (2) geophysics and urban environment; and (3) geophysical investigations associated with geological hazards. The first group of papers focuses on urban infrastructure. Fred Stumm et al reported a geohydrologic assessment of fractured crystalline bedrock with borehole radar in Manhattan, New York in preparation for the construction of a new water tunnel. Using GPR, Xie et al conducted a quality control study of the walls of the river-crossing highway tunnel in Shanghai. For the same purpose, S Liu et al investigated the effect of concrete cracks on GPR signatures using a numerical simulation technique. Sun et al, using seismic surface waves, investigated road beds and the degree of weathering of the marble fence in the Forbidden City, Beijing. In the second group of papers, using a numerical simulation technique, L Liu et al studied the effect of a building coordinate error on sound wave propagation with the aim of locating sound sources in urban settings. Chan et al studied the abundance of radio elements in weathered igneous bedrock in Hong Kong for the purpose of the promotion of public health in the urban environment. The third group includes five papers on geo-hazards. The three papers by B Zhao et al and Z Zhao et al address the problem of earthquake strong ground motion in urban regions using case studies from Osaka, Japan and the city of Yinchuan, China. The other two papers study the geological hazard of surface subsidence using geophysical tools: G Leucci reported a comprehensive study in Nardo, Italy, while Kim et al reported a similar case study for a small city in South Korea. One striking feature of all the papers in this special issue is that multiple authors with at least 3 co-authors wrote the majority of the papers, which is an indication of strong team work and interdisciplinary collaboration. This is essential for the successful application of geophysical science and technology in tackling a variety of engineering and environmental problems for the urban setting. The only sole author, Dr Leucci, expressed deep gratitude in his acknowledgements to his team members who carried out substantial parts of the data acquisition. We are pleased to present this special issue to the engineering and environmental geophysics community and hope that it can serve as a snapshot of the current state-of-the-art studies in urban geophysics. References [1] United Nations 1990 World Demographic Estimates and Projections (1950-2025) (New York: Press of United Nations) [2] Chen Y, L-S Chan and S Yu 2003 J. Geodesy & Geodynamics 23 1-4 (in Chinese) [3] American Geophysics Union 2006 Eos Trans. AGU 87 (36)

  2. ECOSYSTEM IMPACTS OF URBANIZATION ASSESSMENT METHODOLOGY

    EPA Science Inventory

    A methodology is developed to use space-time analysis and ecosystem modeling to assess the secondary impacts of wastewater treatment facilities (i.e., urbanization) on the ecosystem. The existing state of the ecosystem is described with emphasis on the dynamic, periodic, trend, a...

  3. Energy, economic and urban impacts of United States postindustrial development: A critique of the postindustrial paradigm

    NASA Astrophysics Data System (ADS)

    Wykoff, Rebecca J.

    Postindustrial theory has become the mainstream model of social progress in the Western world during the latter half of the twentieth century. It is a technoeconomic vision of change which argues that society is transforming from the industrial order to new social forms and functions that are anchored in services and information rather than materials and manufacturing. Observable shifts cited as evidence of postindustrialization include the movement from blue-collar to white-collar occupations, the increasing scale of economic activities, and the widespread adoption of electricity-based technology. This dissertation identifies three primary principles which define postindustrial theory: abundance, or expanding wealth and productivity; technological and economic efficiency; and adaptation to technological and economic forces. In the United States, postindustrialism has been challenged by the national urban crisis of the 1960s and the energy crises of the 1970s. The apparent contradictions to social well-being prompted a theoretical reconceptualization which defined the "crises" as "transition costs." Empirical implications are defined and appropriate indicators identified to assess the validity of postindustrialism as an explanation of current phenomena and a guide for future development. The time frame for the analysis is 1967--1997, which encompasses the culmination of post-World War II growth, the periods of crisis, and present manifestations. It is concluded that postindustrial theory is less an explanation of contemporary social change than a presumption that change is progressive. The period of "transition" is critically examined as one in which rapid increases in inequality, decreases in social health and growth in trends of unsustainable resource use occur. The future orientation of postindustrialism, and its appeal to aggregate trends as evidence of progress, ignores the existence of problems experienced by a majority of Americans and mounting threats to the natural environment, It is argued that a new theory of political economy is needed which explains current conditions, provides an understanding of progress that incorporates the roles of politics and social valuation, and embraces the goals of equity, sustainability and social justice.

  4. Climate change risks to United States infrastructure: impacts on coastal development, roads, bridges, and urban drainage

    EPA Science Inventory

    Changes in temperature, precipitation, sea level, and coastal storms will likely increase the vulnerability of infrastructure across the United States. Using four models of vulnerability, impacts, and adaptation of infrastructure, its deployment, and its role in protecting econom...

  5. Front-loading urban stormwater management for success a perspective incorporating current studies on the implementation of retrofit low-impact development

    EPA Science Inventory

    Recent work into the implementation of low-impact development and green infrastructure suggests that a decentralized, source-control approach has the potential to significantly reduce urban stormwater runoff quantity. We posit that the factors of increasing public participation i...

  6. Front-loading urban stormwater management for success – a perspective incorporating current studies on the implementation of retrofit low-impact development

    EPA Science Inventory

    Recent work into the implementation of low-impact development and green infrastructure suggests that a decentralized, source-control approach has the potential to significantly reduce urban stormwater runoff quantity. We posit that the factors of increasing public participation i...

  7. Violent Loss and Urban Children: Understanding the Impact on Grieving and Development

    ERIC Educational Resources Information Center

    Zenere, Frank

    2009-01-01

    Youth attitudes, perspectives, and behaviors regarding violence and loss are shaped by a variety of community, familial, and cultural influences. Their life stories are testimonials to the impact of cumulative grief experiences, each of which are powerful reminders of the fragility of life in their world. Erroneously, some believe that youth…

  8. Impact of a 4-H Youth Development Program on At-Risk Urban Teenagers

    ERIC Educational Resources Information Center

    Cutz, German; Campbell, Benjamin; Filchak, Karen K.; Valiquette, Edith; Welch, Mary Ellen

    2015-01-01

    Dynamic programs that integrate science literacy and workforce readiness are essential to today's youth. The program reported here combined science literacy (gardening and technology) with workforce readiness to assess the impact of program type, prior program participation, and behavior/punctuality on knowledge gain. Findings show that past…

  9. Impact of a 4-H Youth Development Program on At-Risk Urban Teenagers

    ERIC Educational Resources Information Center

    Cutz, German; Campbell, Benjamin; Filchak, Karen K.; Valiquette, Edith; Welch, Mary Ellen

    2015-01-01

    Dynamic programs that integrate science literacy and workforce readiness are essential to today's youth. The program reported here combined science literacy (gardening and technology) with workforce readiness to assess the impact of program type, prior program participation, and behavior/punctuality on knowledge gain. Findings show that past

  10. Violent Loss and Urban Children: Understanding the Impact on Grieving and Development

    ERIC Educational Resources Information Center

    Zenere, Frank

    2009-01-01

    Youth attitudes, perspectives, and behaviors regarding violence and loss are shaped by a variety of community, familial, and cultural influences. Their life stories are testimonials to the impact of cumulative grief experiences, each of which are powerful reminders of the fragility of life in their world. Erroneously, some believe that youth

  11. Development of a quantitative methodology to assess the impacts of urban transport interventions and related noise on well-being.

    PubMed

    Braubach, Matthias; Tobollik, Myriam; Mudu, Pierpaolo; Hiscock, Rosemary; Chapizanis, Dimitris; Sarigiannis, Denis A; Keuken, Menno; Perez, Laura; Martuzzi, Marco

    2015-06-01

    Well-being impact assessments of urban interventions are a difficult challenge, as there is no agreed methodology and scarce evidence on the relationship between environmental conditions and well-being. The European Union (EU) project "Urban Reduction of Greenhouse Gas Emissions in China and Europe" (URGENCHE) explored a methodological approach to assess traffic noise-related well-being impacts of transport interventions in three European cities (Basel, Rotterdam and Thessaloniki) linking modeled traffic noise reduction effects with survey data indicating noise-well-being associations. Local noise models showed a reduction of high traffic noise levels in all cities as a result of different urban interventions. Survey data indicated that perception of high noise levels was associated with lower probability of well-being. Connecting the local noise exposure profiles with the noise-well-being associations suggests that the urban transport interventions may have a marginal but positive effect on population well-being. This paper also provides insight into the methodological challenges of well-being assessments and highlights the range of limitations arising from the current lack of reliable evidence on environmental conditions and well-being. Due to these limitations, the results should be interpreted with caution. PMID:26016437

  12. Development of a Quantitative Methodology to Assess the Impacts of Urban Transport Interventions and Related Noise on Well-Being

    PubMed Central

    Braubach, Matthias; Tobollik, Myriam; Mudu, Pierpaolo; Hiscock, Rosemary; Chapizanis, Dimitris; Sarigiannis, Denis A.; Keuken, Menno; Perez, Laura; Martuzzi, Marco

    2015-01-01

    Well-being impact assessments of urban interventions are a difficult challenge, as there is no agreed methodology and scarce evidence on the relationship between environmental conditions and well-being. The European Union (EU) project “Urban Reduction of Greenhouse Gas Emissions in China and Europe” (URGENCHE) explored a methodological approach to assess traffic noise-related well-being impacts of transport interventions in three European cities (Basel, Rotterdam and Thessaloniki) linking modeled traffic noise reduction effects with survey data indicating noise-well-being associations. Local noise models showed a reduction of high traffic noise levels in all cities as a result of different urban interventions. Survey data indicated that perception of high noise levels was associated with lower probability of well-being. Connecting the local noise exposure profiles with the noise-well-being associations suggests that the urban transport interventions may have a marginal but positive effect on population well-being. This paper also provides insight into the methodological challenges of well-being assessments and highlights the range of limitations arising from the current lack of reliable evidence on environmental conditions and well-being. Due to these limitations, the results should be interpreted with caution. PMID:26016437

  13. Developing Ecological Indicators for Nutrients and Urban Impacts to Streams in Coastal Watersheds

    EPA Science Inventory

    Increased nutrient loads associated with human activities are among leading causes of impairment to streams and receiving waterbodies. For streams draining to the environmentally and economically important Narragansett Bay estuary, we developed indicators based on (1) nitrogen an...

  14. Land contestation in Karachi and the impact on housing and urban development

    PubMed Central

    Hasan, Arif

    2015-01-01

    Karachi is one of the world’s fastest growing large cities. This paper describes the complex processes by which land is (formally and informally) made available for housing (and for commercial development), as well as who benefits – and how the low-income majority of Karachi citizens lose out. It also describes what underpins this – especially the political complications in a city that has grown so rapidly, has had fundamental changes in its ethnic composition (and thus also in its politics) and has attracted so many illegal immigrants. The paper describes the changes in formal and informal land markets over the last 50 years and the changing responses by government agencies to housing (and land for housing) issues. Also explored are the connections among land, housing and transport (which include different processes of densification) and the complex politics involved. The paper ends with recommendations for land titling, for changes in transport policies, for better use of land already owned by government agencies, for cross-political party agreement on how to address serious security issues (that are leading to loss of investment) and for increased political effectiveness of Karachi’s active civil society organizations. PMID:26321797

  15. Modeling the impact of urbanization on infectious disease transmission in developing countries: a case study in Changchun City, China

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Atkinson, Peter; Yang, Changbao

    2008-10-01

    This paper presents an integrated model to model the effects of urbanization on infectious disease transmission by coupling a cellular automata (CA) land use development model, population projection matrix model and CA epidemic model. The improvement of this model lies in using an improved CA epidemic model that can divide individuals into three states (susceptible, infected and recovered) and combine connection factor, movement factor into the epidemic model to provide more helpful outcomes in infectious disease transmission. A population density surface model and a household density surface were used to bridge the gap between urbanization and infectious disease transmission. A case study is presented involving modelling infectious disease transmission in Changchun City, a rapidly urbanizing city in China. The simulation results for Changchun City over a 30-year period show that the average numbers of susceptible individuals, infected individuals and recovered individuals in the latter time are greater than those in the previous time during the process of urbanization. In addition, the average numbers of susceptible individuals, infected individuals and recovered individuals increase with higher population growth rate.

  16. Impact of Urban Surfaces on Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Shepherd, J. M.

    2004-01-01

    The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by two United Nations organizations, the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) to assess the "risk of human-induced climate change". Such reports are used by decision-makers around the world to assess how our climate is changing. Its reports are widely respected and cited and have been highly influential in forming national and international responses to climate change. The Fourth Assessment report includes a section on the effects of surface processes on climate. This sub-chapter provides an overview of recent developments related to the impact of cities on rainfall. It highlights the possible mechanisms that buildings, urban heat islands, urban aerosols or pollution, and other human factors in cities that can affect rainfall.

  17. Stormwater Management Impacts on Urban Stream Water Quality and Quantity During and After Development in Clarksburg, MD

    EPA Science Inventory

    Urbanization and urban land use leads to degradation of local stream habitat generally termed as urban stream syndrome. Best Management Practices (BMPs) are often used in an attempt to mitigate water quality and water quantity degradation in urban streams. Traditional developme...

  18. Stormwater Management Impacts on Urban Stream Water Quality and Quantity During and After Development in Clarksburg, MD

    EPA Science Inventory

    Urbanization and urban land use leads to degradation of local stream habitat generally termed as ‘urban stream syndrome.’ Best Management Practices (BMPs) are often used in an attempt to mitigate water quality and water quantity degradation in urban streams. Traditional developme...

  19. Perspectives on Urban Economic Development.

    ERIC Educational Resources Information Center

    Ray, Dennis M.

    1992-01-01

    Examines the alternative meaning of economic development in an urban context and attempts to link the literature on community development in North America to concepts about economic development in developing countries. Looks at five strategies of community-based economic development, emphasizing internationalization of development policy. (Author)

  20. Assessing urbanization impacts on catchment transit times

    NASA Astrophysics Data System (ADS)

    Soulsby, Chris; Birkel, Christian; Tetzlaff, Doerthe

    2014-01-01

    Stable isotopes have potential for assessing the hydrologic impacts of urbanization, although it is unclear whether established methods of isotope modeling translate to such disturbed environments. We tested two transit time modeling approaches (using a gamma distribution and a two-parallel linear reservoir (TPLR) model) in a rapidly urbanizing catchment. Isotopic variability in precipitation was damped in streams with attenuation inversely correlated with urban cover. The models captured this reasonably well, although the TPLR better represented the integrated dual response of urban and nonurban areas with reduced uncertainty. Percent urban cover influenced the shape of the catchment transit time distribution. Total urban cover reduced the mean transit time to <10 days compared with ~1 year and ~2-3 years with 63% and 13% urbanization, respectively, while it was at >4 years for nonurban sites.

  1. Education, Urban Development and Local Initiatives.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation.

    Innovative practices in education and local development in Western Europe, Australia, and the United States are described and analyzed in this report. Part One reviews urban problems, their impact on education, and the need for a new approach. Part Two explores how schools and institutes of adult education can provide information about the local

  2. Heat waves in urban heat islands: interactions, impacts, and mitigation

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Li, D.

    2013-12-01

    Urbanization rates and the intensity of anthropogenic global warming are both on the rise. By the middle of this century, climate change impacts on humans will be largely manifested in urban regions and will result from a combination of global to regional impacts related to greenhouse gas emissions, as well as regional to local impacts related to land-cover changes associated with urbanization. Alarmingly, our understanding of how these two distinct impacts will interact remains very poor. One example, which is the focus of this study, is the interaction of urban heat islands and heat waves. Urban heat islands (UHIs) are spatial anomalies consisting of higher temperatures over built terrain; while their intensity varies with many factors, it consistently increases with city size. UHIs will hence intensify in the future as cities expand. Heat waves are temporal anomalies in the regional temperatures that affect both urban and rural areas; there is high certainty that the frequency and intensity of such waves will increase as a result global warming. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses of a heat wave event over the Baltimore-Washington urban corridor reveals synergistic interactions between urban heat islands and heat waves. Not only do heat waves increase the regional temperatures, but they also intensify the difference between urban and rural temperatures. That is, their impact is stronger in cities and the urban heat stress during such waves is larger than the sum of the background urban heat island effect and the heat wave effect. We also develop a simple analytical model of this interaction that suggests that this exacerbated impact in urban areas is primarily to the lack of surface moisture, with low wind speeds also playing a smaller role. Finally, the effectiveness of cool and green roofs as UHI mitigation strategies during intense heat waves are evaluated at city scales. These strategies are shown to reduce urban surface temperatures in the Baltimore-Washington corridor by about 5 K and urban air temperatures by about 1 K. These reductions are most significant in the dense urban cores of the two cities, but they are not sufficient to fully offset the UHI effect.

  3. The Impact of Professional Development on Elementary Teachers' Strategies for Teaching Science with Diverse Student Groups in Urban Elementary Schools

    NASA Astrophysics Data System (ADS)

    Adamson, Karen; Santau, Alexandra; Lee, Okhee

    2013-04-01

    This study examined elementary teachers' instructional strategies for promoting scientific understanding and inquiry and supporting English language development with diverse student groups including English language learners. The study was part of a 5-year research and development project consisting of reform-based science curriculum units and teacher workshops aimed at providing effective science instruction to promote students' science and literacy achievement in urban elementary schools. Data consisted of 213 post-observation interviews with third, fourth, and fifth grade teachers. The teachers reported using instructional strategies to promote scientific understanding, but generally did not employ more sophisticated inquiry-based strategies. They also reported using instructional strategies to support English language development. There were significant differences among grade levels and by years of teacher participation.

  4. The Conundrum of Impacts of Climate Change on Urbanization and the Urban Heat Island Effect

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2011-01-01

    The twenty-first century is the first urban century according to the United Nations Development Program. The focus on cities reflects awareness of the growing percentage of the world's population that lives in urban areas. In 2000, approximately 3 billion people representing about 40% of the global population resided in urban areas. The United Nations estimates that by 2025, 60% of the world s population will live in urban areas. As a consequence, the number of megacities (those cities with populations of 10 million inhabitants or more) will increase by 100 by 2025. Thus, there is a critical need to understand the spatial growth of urban areas and what the impacts are on the environment. Moreover, there is a critical need to assess how under global climate change, cities will affect the local, regional, and even global climate. As urban areas increase in size, it is anticipated there will be a concomitant growth of the Urban Heat Island effect (UHI), and the attributes that are related to its spatial and temporal dynamics. Therefore, how climate change, including the dynamics of the UHI, will affect the urban environment, must be explored to help mitigate potential impacts on the environment (e.g., air quality, heat stress, vectorborne disease) and on human health and well being, to develop adaptation schemes to cope with these impacts.

  5. Impact of urbanization on US surface climate

    NASA Astrophysics Data System (ADS)

    Bounoua, Lahouari; Zhang, Ping; Mostovoy, Georgy; Thome, Kurtis; Masek, Jeffrey; Imhoff, Marc; Shepherd, Marshall; Quattrochi, Dale; Santanello, Joseph; Silva, Julie; Wolfe, Robert; Mounirou Toure, Ally

    2015-08-01

    We combine Landsat and MODIS data in a land model to assess the impact of urbanization on US surface climate. For cities built within forests, daytime urban land surface temperature (LST) is much higher than that of vegetated lands. For example, in Washington DC and Atlanta, daytime mean temperature differences between impervious and vegetated lands reach 3.3 and 2.0 °C, respectively. Conversely, for cities built within arid lands, such as Phoenix, urban areas are 2.2 °C cooler than surrounding shrubs. We find that the choice and amount of tree species in urban settings play a commanding role in modulating cities’ LST. At continental and monthly scales, impervious surfaces are 1.9 °C ± 0.6 °C warmer than surroundings during summer and expel 12% of incoming precipitation as surface runoff compared to 3.2% over vegetation. We also show that the carbon lost to urbanization represents 1.8% of the continental total, a striking number considering urbanization occupies only 1.1% of the US land. With a small areal extent, urbanization has significant effects on surface energy, water and carbon budgets and reveals an uneven impact on surface climate that should inform upon policy options for improving urban growth including heat mitigation and carbon sequestration.

  6. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    PubMed

    Villaseor, Nlida R; Driscoll, Don A; Escobar, Martn A H; Gibbons, Philip; Lindenmayer, David B

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes. PMID:24810286

  7. Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects

    PubMed Central

    Villaseor, Nlida R.; Driscoll, Don A.; Escobar, Martn A. H.; Gibbons, Philip; Lindenmayer, David B.

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes. PMID:24810286

  8. Early urban impact on Mediterranean coastal environments

    NASA Astrophysics Data System (ADS)

    Kaniewski, David; van Campo, Elise; Morhange, Christophe; Guiot, Joël; Zviely, Dov; Shaked, Idan; Otto, Thierry; Artzy, Michal

    2013-12-01

    A common belief is that, unlike today, ancient urban areas developed in a sustainable way within the environmental limits of local natural resources and the ecosystem's capacity to respond. This long-held paradigm is based on a weak knowledge of the processes underpinning the emergence of urban life and the rise of an urban-adapted environment in and beyond city boundaries. Here, we report a 6000-year record of environmental changes around the port city of Akko (Acre), Israel, to analyse ecological processes and patterns stemming from the emergence and growth of urban life. We show that early urban development deeply transformed pre-existing ecosystems, swiftly leading to an urban environment already governed by its own ecological rules and this, since the emergence of the cities.

  9. Early urban impact on Mediterranean coastal environments

    PubMed Central

    Kaniewski, David; Van Campo, Elise; Morhange, Christophe; Guiot, Joël; Zviely, Dov; Shaked, Idan; Otto, Thierry; Artzy, Michal

    2013-01-01

    A common belief is that, unlike today, ancient urban areas developed in a sustainable way within the environmental limits of local natural resources and the ecosystem's capacity to respond. This long-held paradigm is based on a weak knowledge of the processes underpinning the emergence of urban life and the rise of an urban-adapted environment in and beyond city boundaries. Here, we report a 6000-year record of environmental changes around the port city of Akko (Acre), Israel, to analyse ecological processes and patterns stemming from the emergence and growth of urban life. We show that early urban development deeply transformed pre-existing ecosystems, swiftly leading to an urban environment already governed by its own ecological rules and this, since the emergence of the cities. PMID:24345820

  10. Impacts of urbanization on the carbon cycle (Invited)

    NASA Astrophysics Data System (ADS)

    Hutyra, L.; Raciti, S. M.; Dunn, A. L.; Gately, C.; Sue Wing, I.; Woodcock, C.; Olofsson, P.; Friedl, M. A.

    2013-12-01

    Urban areas are expanding rapidly in population and land area. The impact of urban areas on carbon budgets is especially profound. Cities consume nearly 80% of total global energy use and produce approximately 70% of CO2 emissions. Expansion of urban areas in the coming decades is expected to outpace urban population growth, making urban land use change and associated impacts on regional C dynamics a critical element of the global C cycle. Despite the rapid urban expansion, the trajectories of carbon losses and gains following urban development remain poorly quantified, particularly at the urban-rural interface. This is the zone where land use change and C stocks are most dynamic, but least well quantified. While a growing body of research has allowed us to better quantify biomass in forested areas and within the boundaries of major cities, comparatively little work has addressed C stocks and dynamics in the 'middle ground' where the majority of land use change is occurring. Existing spatially-explicit regional and continental scale biomass estimates exclude urban developed areas or presume that they contain little or no biomass. Data on urban C fluxes to and from the atmosphere are likewise very sparse. Our existing network of surface CO2 observation sites intentionally avoids cities. We describe a multidisciplinary study across the greater Boston metropolitan region to characterize the sources and sinks of CO2 across urban-to-rural gradients including the development of new emissions inventories, assessment of land cover change, and process-level studies of variations in ecosystem productivity.

  11. IMPACTS OF URBANIZATION ON WATERSHED HYDROLOGIC FUNCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although urbanization has a major impact on watershed hydrology, there have not been studies to quantify basic hydrological relationships are altered by the addition of impervious surfaces. The USDA-ARS and USEPA-ORD-NRMRL have initiated a pilot program to study the impacts of different extents and...

  12. IMPACTS OF URBANIZATION ON WATERSHED HYDROLOGIC FUNCTION

    EPA Science Inventory

    Although urbanization has a major impact on watershed hydrology, there have not been studies to quantify basic hydrological relationships that are altered by the addition of impervious surfaces. The USDA-ARS and USEPA-ORD-NRMRL have initiated a pilot program to study the impacts...

  13. Urban Problems and Community Development.

    ERIC Educational Resources Information Center

    Ferguson, Ronald F., Ed.; Dickens, William T., Ed.

    The essays in this collection promote a conception of community development that entails building practical capacities to improve the quality of life among residents of targeted neighborhoods. The causes, consequences, and potential solutions of urban problems that lie both inside and outside neighborhood borders are emphasized. The chapters are:

  14. Redesigning Urban Classrooms to Impact Student Achievement

    ERIC Educational Resources Information Center

    Guice, Andrea D.

    2009-01-01

    Because of the No Child Left Behind school reform policies, public schools are gravely scrutinized. This analysis focuses on how to redesign the urban classroom in order to impact student achievement with the intent of being an impetus for better overall school performance ratings. All public school leaders are expected to adhere to the same…

  15. URBAN RUNOFF RECEIVING WATER IMPACTS: PROGRAM OVERVIEW

    EPA Science Inventory

    Receiving water impacts are a major national concern. The US is spending billions of dollars on secondary treatment plants, meanwhile urban stormwater and combined sewer overflow (CSO) are still uncontrolled. To attain the goals set forth in PL 92-500 and PL 95-217 in an economic...

  16. Urban greening impacts on tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Grote, R.; Churkina, G.; Butler, T. M.; Morfopoulos, C.

    2013-12-01

    Cities are characterized by elevated air temperatures as well as high anthropogenic emissions of air pollutants. Cities' greening in form of urban parks, street trees, and vegetation on roofs and walls of buildings is supposed to generally mitigate negative impacts on human health and well-being. However, high emissions of biogenic volatile organic compounds (BVOC) from certain popular urban plants in combination with the elevated concentrations of NOx have the potential to increase ground-level ozone concentrations - with negative impacts on health, agriculture, and climate. Policies targeting reduction of ground-level ozone in urban and suburban areas therefore must consider limiting BVOC emissions along with measures for decreasing NOx and VOC from anthropogenic sources. For this, integrated climate/ chemistry models are needed that take into account the species-specific physiological responses of urban plants which in turn drive their emission behavior. Current models of urban climate and air quality 1) do not account for the feedback between ozone concentrations, productivity, and BVOC emission and 2) do not distinguish different physiological properties of urban tree species. Instead environmental factors such as light, temperature, carbon dioxide, and water supply are applied disregarding interactions between such influences. Thus we may not yet be able to represent the impacts of air pollution under multiple changed conditions such as climate change, altered anthropogenic emission patterns, and new urban structures. We present here the implementation of the new BVOC emission model (Morfopolous et al., in press) that derives BVOC emissions directly from the electron production potential and consumption from photosynthesis calculation that is already supplied by the CLM land surface model. The new approach has the advantage that many environmental drivers of BVOC emissions are implicitly considered in the description of plant photosynthesis and phenology. We investigate the tradeoff between vegetation driven ozone -reduction and -formation processes in dependence on temperature, radiation, CO2 and O3 concentrations. We have parameterized suitable plant functional types for different urban greening structures, currently focusing on central European vegetation. The modified CLM model is applied in a global (CESM) and a regional climate/ air quality model (WRF-Chem) to calculate realistic ozone concentrations in the influence zones of urban conglomerations. BVOC emissions and their impacts are also calculated with the standard MEGAN2.1 approach for comparison. The simulation results are analyzed and discussed in view of the models suitability for air quality scenario estimates under simultaneously changing climate, anthropogenic emissions and plant species composition. References Morfopoulos, C., Prentice, I.C., Keenan T.F., Friedlingstein, P., Medlyn, B., Penuelas, J., Possel, M. (in press): A unifying conceptual model for the environmental responses of isoprene emission by plants. Annals of Botany

  17. Impacts of urbanization on West Nose Creek: a Canadian experience.

    PubMed

    van Duin, B; Garcia, J

    2006-01-01

    The lower reaches of West Nose Creek have been subject to urbanization since the 1970s, leading to channel widening and excessive erosion. This paper discusses what would likely happen if urbanization were allowed to continue in the same manner. Comparisons are presented of the channel width and depth for both the upstream rural and downstream urbanizing reaches. Estimates of the evolution of the creek were generated by linking the dominant discharge to the entire shape and volume of the hydrograph that the creek is subjected to rather than solely considering peak discharges. otential remedial measures and stormwater management philosophies are discussed in relationship to instream flow needs (IFNs) initiatives. IFNs are generally developed by relating the amount of suitable aquatic habitat to the quantity of flow. The emphasis has so far been on IFNs for large river systems. Unfortunately, none of the IFN approaches cover streams that are subject to significant urbanization. In urbanized streams the issue is not as much the impacts due to withdrawals but due to significantly increased runoff rates and volumes generated within the urban areas. Examples are provided how fisheries habitat is impacted by the changed hydrologic regime and changed stream morphology. PMID:16838708

  18. A landscape based, systems dynamic model for assessing impacts of urban development on water quality for sustainable seagrass growth in Tampa Bay, Florida

    EPA Science Inventory

    We present an integrated assessment model to predict potential unintended consequences of urban development on the sustainability of seagrasses and preservation of ecosystem services, such as catchable fish, in Tampa Bay. Ecosystem services are those ecological functions and pro...

  19. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam

    NASA Astrophysics Data System (ADS)

    Huong, H. T. L.; Pathirana, A.

    2013-01-01

    Urban development increases flood risk in cities due to local changes in hydrological and hydrometeorological conditions that increase flood hazard, as well as to urban concentrations that increase the vulnerability. The relationship between the increasing urban runoff and flooding due to increased imperviousness is better perceived than that between the cyclic impact of urban growth and the urban rainfall via microclimatic changes. The large-scale, global impacts due to climate variability and change could compound these risks. We present the case of a typical third world city - Can Tho (the biggest city in Mekong River Delta, Vietnam) - faced with multiple future challenges, namely: (i) the likely effect of climate change-driven sea level rise, (ii) an expected increase of river runoff due to climate change as estimated by the Vietnamese government, (iii) increased urban runoff driven by imperviousness, and (iv) enhancement of extreme rainfall due to urban growth-driven, microclimatic change (urban heat islands). A set of model simulations were used to construct future scenarios, combining these influences. Urban growth of the city was projected up to year 2100 based on historical growth patterns, using a land use simulation model (Dinamica EGO). A dynamic limited-area atmospheric model (WRF), coupled with a detailed land surface model with vegetation parameterization (Noah LSM), was employed in controlled numerical experiments to estimate the anticipated changes in extreme rainfall patterns due to urban heat island effect. Finally, a 1-D/2-D coupled urban-drainage/flooding model (SWMM-Brezo) was used to simulate storm-sewer surcharge and surface inundation to establish the increase in the flood hazard resulting from the changes. The results show that under the combined scenario of significant change in river level (due to climate-driven sea level rise and increase of flow in the Mekong) and "business as usual" urbanization, the flooding of Can Tho could increase significantly. The worst case may occur if a sea level rise of 100 cm and the flow from upstream happen together with high-development scenarios. The relative contribution of causes of flooding are significantly different at various locations; therefore, detailed research on adaptation are necessary for future investments to be effective.

  20. Impacts of Urbanization on Flood and Soil Erosion Hazards in Istanbul, Turkey

    ERIC Educational Resources Information Center

    Ozacar, Biricik Gozde

    2013-01-01

    Due to the inappropriate planning and explosive population growth in urban areas, especially in developing countries, sustainable and disaster-safe urbanization has become the most important challenge for governments. Urbanization presents benefits in different ways but has led simultaneously to changes in land use/land cover (LULC), impacting

  1. PREDICTING THE RELATIVE IMPACTS OF URBAN DEVELOPMENT POLICIES AND ON-ROAD VEHICLE TECHNOLOGIES ON AIR QUALITY IN THE UNITED STATES: MODELING AND ANALYSIS OF A CASE STUDY IN AUSTIN, TEXAS

    EPA Science Inventory

    Urban development results in changes to land use and land cover and, consequently, to biogenic and anthropogenic emissions, meteorological processes, and processes such as dry deposition that influence future predictions of air quality. This study examines the impacts of alter...

  2. Urbanization and watershed sustainability: Collaborative simulation modeling of future development states

    NASA Astrophysics Data System (ADS)

    Randhir, Timothy O.; Raposa, Sarah

    2014-11-01

    Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.

  3. Increasing impact of urban fine particles (PM2.5) on areas surrounding Chinese cities

    PubMed Central

    Han, Lijian; Zhou, Weiqi; Li, Weifeng

    2015-01-01

    The negative impacts of rapid urbanization in developing countries have led to a deterioration in urban air quality, which brings increasing negative impact to its surrounding areas (e.g. in China). However, to date there has been rare quantitative estimation of the urban air pollution to its surrounding areas in China.We thus evaluated the impact of air pollution on the surrounding environment under rapid urbanization in Chinese prefectures during 1999 2011. We found that: (1) the urban environment generated increasing negative impact on the surrounding areas, and the PM2.5 concentration difference between urban and rural areas was particularly high in large cities. (2) Nearly half of the Chinese prefectures (156 out of 350) showed increased impact of urban PM2.5 pollution on its surrounding areas. Those prefectures were mainly located along two belts: one from northeast China to Sichuan province, the other from Shanghai to Guangxi province. Our study demonstrates the deterioration in urban air quality and its potential impacts on its surrounding areas in China. We hope that the results presented here will encourage different approaches to urbanization to mitigate the negative impact caused by urban air pollution, both in China and other rapidly developing countries. PMID:26219273

  4. Increasing impact of urban fine particles (PM2.5) on areas surrounding Chinese cities.

    PubMed

    Han, Lijian; Zhou, Weiqi; Li, Weifeng

    2015-01-01

    The negative impacts of rapid urbanization in developing countries have led to a deterioration in urban air quality, which brings increasing negative impact to its surrounding areas (e.g. in China). However, to date there has been rare quantitative estimation of the urban air pollution to its surrounding areas in China.We thus evaluated the impact of air pollution on the surrounding environment under rapid urbanization in Chinese prefectures during 1999 - 2011. We found that: (1) the urban environment generated increasing negative impact on the surrounding areas, and the PM2.5 concentration difference between urban and rural areas was particularly high in large cities. (2) Nearly half of the Chinese prefectures (156 out of 350) showed increased impact of urban PM2.5 pollution on its surrounding areas. Those prefectures were mainly located along two belts: one from northeast China to Sichuan province, the other from Shanghai to Guangxi province. Our study demonstrates the deterioration in urban air quality and its potential impacts on its surrounding areas in China. We hope that the results presented here will encourage different approaches to urbanization to mitigate the negative impact caused by urban air pollution, both in China and other rapidly developing countries. PMID:26219273

  5. Increasing impact of urban fine particles (PM2.5) on areas surrounding Chinese cities

    NASA Astrophysics Data System (ADS)

    Han, Lijian; Zhou, Weiqi; Li, Weifeng

    2015-07-01

    The negative impacts of rapid urbanization in developing countries have led to a deterioration in urban air quality, which brings increasing negative impact to its surrounding areas (e.g. in China). However, to date there has been rare quantitative estimation of the urban air pollution to its surrounding areas in China.We thus evaluated the impact of air pollution on the surrounding environment under rapid urbanization in Chinese prefectures during 1999 - 2011. We found that: (1) the urban environment generated increasing negative impact on the surrounding areas, and the PM2.5 concentration difference between urban and rural areas was particularly high in large cities. (2) Nearly half of the Chinese prefectures (156 out of 350) showed increased impact of urban PM2.5 pollution on its surrounding areas. Those prefectures were mainly located along two belts: one from northeast China to Sichuan province, the other from Shanghai to Guangxi province. Our study demonstrates the deterioration in urban air quality and its potential impacts on its surrounding areas in China. We hope that the results presented here will encourage different approaches to urbanization to mitigate the negative impact caused by urban air pollution, both in China and other rapidly developing countries.

  6. Simulated Climate Impacts of Mexico City's Historical Urban Expansion

    NASA Astrophysics Data System (ADS)

    Benson-Lira, Valeria

    Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research gap in emerging nations concerning this topic. Thus, this research focuses on the assessment of climate impacts related to urbanization on the largest metropolitan area in Latin America: Mexico City. Numerical simulations using a state-of-the-science regional climate model are utilized to address a trio of scientifically relevant questions with wide global applicability. The importance of an accurate representation of land use and land cover is first demonstrated through comparison of numerical simulations against observations. Second, the simulated effect of anthropogenic heating is quantified. Lastly, numerical simulations are performed using pre-historic scenarios of land use and land cover to examine and quantify the impact of Mexico City's urban expansion and changes in surface water features on its regional climate.

  7. Urbanization Impacts on River Landscapes in a Global Context

    NASA Astrophysics Data System (ADS)

    Chin, A.

    2005-12-01

    A half century ago, Strahler (1956) and Leopold (1956) pointed attention to the reality of human impacts on river systems, outlining erosion and aggradation as system responses when steady state is disturbed by human activity, and linking river channel adjustments to changes in sediment yield owing to land use alterations. Significant advances have been made along these lines in the years since, with intensified research efforts producing a voluminous literature documenting a range of human impacts on fluvial geomorphology. This paper summarizes the progress made on understanding the impacts of urban development on river landscapes, with emphasis on the distribution of such impacts in a global context. Drawing from a database developed from published literature representing a range of world areas, the analysis quantifies the magnitude and direction of urban-induced change in a comparative context, evaluates how impacts vary with locale and scale, and assesses the persistence of such impacts across locales and scales. Results indicate high variability both in magnitude and persistence of impacts. The spatial distribution of research investigations has also been markedly uneven, with input to theory development having come from a limited number of sites. Substantial areas across the earth surface remain blind spots in this context; future investigations might serve the science best if they are conducted in some of these locations.

  8. A population-level approach to promoting healthy child development and school success in low-income, urban neighborhoods: impact on parenting and child conduct problems.

    PubMed

    Dawson-McClure, Spring; Calzada, Esther; Huang, Keng-Yen; Kamboukos, Dimitra; Rhule, Dana; Kolawole, Bukky; Petkova, Eva; Brotman, Laurie Miller

    2015-02-01

    Minority children living in disadvantaged neighborhoods are at high risk for school dropout, delinquency, and poor health, largely due to the negative impact of poverty and stress on parenting and child development. This study evaluated a population-level, family-centered, school-based intervention designed to promote learning, behavior, and health by strengthening parenting, classroom quality, and child self-regulation during early childhood. Ten schools in urban districts serving primarily low-income Black students were randomly assigned to intervention or a "pre-kindergarten education as usual" control condition. Intervention included a family program (a 13-week behavioral parenting intervention and concurrent group for children) and professional development for early childhood teachers. The majority (88 %) of the pre-kindergarten population (N = 1,050; age 4) enrolled in the trial, and nearly 60 % of parents in intervention schools participated in the family program. This study evaluated intervention impact on parenting (knowledge, positive behavior support, behavior management, involvement in early learning) and child conduct problems over a 2-year period (end of kindergarten). Intent-to-treat analyses found intervention effects on parenting knowledge, positive behavior support, and teacher-rated parent involvement. For the highest-risk families, intervention also resulted in increased parent-rated involvement in early learning and decreased harsh and inconsistent behavior management. Among boys at high risk for problems based on baseline behavioral dysregulation (age 4, 23 % of sample), intervention led to lower rates of conduct problems at age 6. Family-centered intervention at the transition to school has potential to improve population health and break the cycle of disadvantage for low-income, minority families. PMID:24590412

  9. A population-level approach to promoting healthy child development and school success in low-income, urban neighborhoods: Impact on parenting and child conduct problems

    PubMed Central

    Dawson-McClure, Spring; Calzada, Esther; Huang, Keng-Yen; Kamboukos, Dimitra; Rhule, Dana; Kolawole, Bukky; Petkova, Eva; Brotman, Laurie Miller

    2014-01-01

    Minority children living in disadvantaged neighborhoods are at high risk for school dropout, delinquency and poor health, largely due to the negative impact of poverty and stress on parenting and child development. This study evaluated a population-level, family-centered, school-based intervention designed to promote learning, behavior and health by strengthening parenting, early childhood classroom quality, and child self-regulation during early childhood. Ten schools in urban districts serving primarily low-income Black students were randomly assigned to intervention or a “pre-kindergarten education as usual” control condition. Intervention included a family program (13-week behavioral parenting intervention and concurrent group for children) and professional development for early childhood teachers. The majority (88%) of the pre-kindergarten population (N=1050; age 4) enrolled in the trial and nearly 60% of parents in intervention schools participated in the family program. This study evaluated intervention impact on parenting (knowledge, positive behavior support, behavior management, involvement in early learning) and child conduct problems over a 2-year period (end of kindergarten). Intent-to-treat analyses found intervention effects on knowledge, positive behavior support and teacher-rated parent involvement in early learning. For the highest-risk families, intervention also resulted in increased parent-rated involvement in early learning and decreased harsh and inconsistent behavior management. Among boys at high risk for problems based on baseline behavioral dysregulation (age 4, 23% of sample), intervention led to lower rates of conduct problems at age 6. Family-centered intervention at the transition to school has potential to improve population health and break the cycle of disadvantage for low-income, minority families. PMID:24590412

  10. Intimations of the Potential Environmental Impact of Urbanization

    NASA Astrophysics Data System (ADS)

    Wolman, M. G.

    2006-05-01

    Roughly fifty years ago the hydrologic literature began to reflect growing recognition of the potential impact of urbanization on the environment. Documented impacts ranged from the urban heat island of several degrees Fahrenheit to doubling of the cross-sectional area of urban stream channels. Observers noted a broad spectrum of changes. Peak stages of small floods increased along with their volume and frequency. Increasing direct runoff was accompanied by decreasing elevation of the groundwater table. As the impermeable surface of streets and roof tops expands, sediment concentration declines as bank erosion, not the land surface, becomes the dominant source of supply. Runoff from streets and storm drains in places proved to be comparable to effluent from secondary treatment plants often containing pathogens as well as organics, salts, and metals. Ameliorating or reversing the negative hydrologic impacts has proven difficult. Creative design encompassing channel morphology and the scaling and disposition of reservoirs is the requisite mantra, not restoration. Unfortunately, hierarchical drainage nets and random spatial and temporal characteristics of precipitation events are generally incompatible with sequential land development and equity in storage requirements for individual parcels of land. Nevertheless, in the last half-century the image of urban rivers has been transformed from drainage ditch to potential aesthetic treasure.

  11. The Impact of Professional Development on Elementary Teachers' Strategies for Teaching Science with Diverse Student Groups in Urban Elementary Schools

    ERIC Educational Resources Information Center

    Adamson, Karen; Santau, Alexandra; Lee, Okhee

    2013-01-01

    This study examined elementary teachers' instructional strategies for promoting scientific understanding and inquiry and supporting English language development with diverse student groups including English language learners. The study was part of a 5-year research and development project consisting of reform-based science curriculum units and

  12. Soybean development: the impact of a decade of agricultural change on urban and economic growth in Mato Grosso, Brazil.

    PubMed

    Richards, Peter; Pellegrina, Heitor; VanWey, Leah; Spera, Stephanie

    2014-01-01

    In this research we consider the impact of export-driven, soybean agriculture in Mato Grosso on regional economic growth. Here we argue that the soybean sector has served as a motor to the state's economy by increasing the demand for services, housing, and goods, and by providing a source of investment capital to the non-agricultural sector. Specifically, we show that each square kilometer of soybean production supports 2.5 formal sector jobs outside of agriculture, and the equivalent of approximately 150,000US in annual, non-agricultural GDP. We also show that annual gains in non-agricultural employment and GDP are closely tied to soybean profitability, and thus vary from year to year. However, while this article highlights the potential of the agricultural sector as a driver of regional economic growth, it also acknowledges that this growth has been sustained by profits determined by externally set prices and the rate of exchange, and that future growth trajectories will be susceptible to potential currency of market shocks. We also show that while Mato Grosso's economic growth has come at a significant cost to the environment, value added by the agriculture sector, directly and indirectly, has surpassed the value of the CO2-e emitted through land clearings. PMID:25919305

  13. Soybean Development: The Impact of a Decade of Agricultural Change on Urban and Economic Growth in Mato Grosso, Brazil

    PubMed Central

    Richards, Peter; Pellegrina, Heitor; VanWey, Leah; Spera, Stephanie

    2015-01-01

    In this research we consider the impact of export-driven, soybean agriculture in Mato Grosso on regional economic growth. Here we argue that the soybean sector has served as a motor to the state’s economy by increasing the demand for services, housing, and goods, and by providing a source of investment capital to the non-agricultural sector. Specifically, we show that each square kilometer of soybean production supports 2.5 formal sector jobs outside of agriculture, and the equivalent of approximately 150,000US in annual, non-agricultural GDP. We also show that annual gains in non-agricultural employment and GDP are closely tied to soybean profitability, and thus vary from year to year. However, while this article highlights the potential of the agricultural sector as a driver of regional economic growth, it also acknowledges that this growth has been sustained by profits determined by externally set prices and the rate of exchange, and that future growth trajectories will be susceptible to potential currency of market shocks. We also show that while Mato Grosso’s economic growth has come at a significant cost to the environment, value added by the agriculture sector, directly and indirectly, has surpassed the value of the CO2-e emitted through land clearings. PMID:25919305

  14. Contrasting impacts of urban forms on the future thermal environment: example of Beijing metropolitan area

    NASA Astrophysics Data System (ADS)

    Yang, Long; Niyogi, Dev; Tewari, Mukul; Aliaga, Daniel; Chen, Fei; Tian, Fuqiang; Ni, Guangheng

    2016-03-01

    This study investigated impacts of urban forms on the future thermal environment over Beijing, the capital city of China. Beijing is experiencing remarkable urban expansion and is planned to undergo the transformation of urban forms from single-centric (compact-city) to poly-centric city (dispersed-city). Impacts of urban forms on the future thermal environment were compared and evaluated by conducting numerical experiments based on a regional atmospheric model coupled with a single-layer urban canopy model as well as future climate forcing output from a global climate model. Results show that a dispersed city is efficient in reducing mean urban heat island intensity, but produces larger thermal loading and deeper thermal feedback at the regional scale compared to a compact city. Thermal comfort over downtown areas is reduced in compact-city scenario under future climate conditions. Future climate contributes almost 80% of the additional thermal loading over urban areas, with the remaining 20% contributed by urbanization (for both the compact-city and dispersed-city scenarios). The thermal contrast between the two urban forms is dominated by the expected future climate change. This study leads to two complementary conclusions: (i) for developing assessments related to current climate comfort, urban form of the city is important; (ii) for assessing future climate change impacts, the areal coverage of the city and urbanization extent emerges to be more important than the details related to how the urbanization will evolve.

  15. Disaster incubation, cumulative impacts and the urban/ex-urban/rural dynamic

    SciTech Connect

    Mulvihill, Peter R. . E-mail: prm@yorku.ca; Ali, S. Harris . E-mail: hali@yorku.ca

    2007-05-15

    This article explores environmental impacts and risks that can accumulate in rural and ex-urban areas and regions and their relation to urban and global development forces. Two Southern Ontario cases are examined: an area level water disaster and cumulative change at the regional level. The role of disaster incubation analysis and advanced environmental assessment tools are discussed in terms of their potential to contribute to more enlightened and effective assessment and planning processes. It is concluded that conventional approaches to EA and planning are characteristically deficient in addressing the full range of impacts and risks, and particularly those originating from pathogens, dispersed and insidious sources. Rigorous application of disaster incubation analysis and more advanced forms of EA has considerable potential to influence a different pattern of planning and decision making.

  16. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools

    PubMed Central

    Seto, Karen C.; Güneralp, Burak; Hutyra, Lucy R.

    2012-01-01

    Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km2, nearly tripling the global urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr−1), equal to ∼5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and vegetation carbon losses. PMID:22988086

  17. Metrics in Urban Health: Current Developments and Future Prospects.

    PubMed

    Prasad, Amit; Gray, Chelsea Bettina; Ross, Alex; Kano, Megumi

    2016-03-18

    The research community has shown increasing interest in developing and using metrics to determine the relationships between urban living and health. In particular, we have seen a recent exponential increase in efforts aiming to investigate and apply metrics for urban health, especially the health impacts of the social and built environments as well as air pollution. A greater recognition of the need to investigate the impacts and trends of health inequities is also evident through more recent literature. Data availability and accuracy have improved through new affordable technologies for mapping, geographic information systems (GIS), and remote sensing. However, less research has been conducted in low- and middle-income countries where quality data are not always available, and capacity for analyzing available data may be limited. For this increased interest in research and development of metrics to be meaningful, the best available evidence must be accessible to decision makers to improve health impacts through urban policies. PMID:26789382

  18. Urbanization and health in developing countries.

    PubMed

    Harpham, T; Stephens, C

    1991-01-01

    In developing countries the level of urbanization is expected to increase to 39.5% by the end of this century and to 56.9% by 2025. The number of people living in slums and shanty towns represent about one-third of the people living in cities in developing countries. This article focuses upon these poor urban populations and comments upon their lifestyle and their exposure to hazardous environmental conditions which are associated with particular patterns of morbidity and mortality. The concept of marginality has been used to describe the lifestyle of the urban poor in developing countries. This concept is critically examined and it is argued that any concept of the urban poor in developing countries being socially, economically or politically marginal is a myth. However, it can certainly be claimed that in health terms the urban poor are marginal as demonstrated by some of the studies reviewed in this article. Most studies of the health of the urban poor in developing countries concentrate on the environmental conditions in which they live. The environmental conditions of the urban poor are one of the main hazards of the lifestyle of poor urban residents. However, other aspects of their way of life, or lifestyle, have implications for their health. Issues such as smoking, diet, alcohol and drug abuse, and exposure to occupational hazards, have received much less attention in the literature and there is an urgent need for more research in these areas. PMID:1926894

  19. Strategies for managing the effects of urban development on streams

    USGS Publications Warehouse

    Cappiella, Karen; Stack, William P.; Fraley-McNeal, Lisa; Lane, Cecilia; McMahon, Gerard

    2012-01-01

    Urban development remains an important agent of environmental change in the United States. The U.S. population grew by 17 percent from 1982 to 1997, while urbanized land area grew by 47 percent, suggesting that urban land consumption far outpaced population growth (Fulton and others, 2001; Sierra Club, 2003; American Farmland Trust, 2009). Eighty percent of Americans now live in metropolitan areas. Each American effectively occupies about 20 percent more developed land (for housing, schools, shopping, roads, and other related services) than 20 years ago (Markham and Steinzor, 2006). Passel and Cohn (2008) predict a dramatic 48 percent increase in the population of the United States from 2005 to 2050. The advantages and challenges of living in these developed areasconvenience, congestion, employment, pollutionare part of the day-to-day realities of most Americans. Nowhere are the environmental changes associated with urban development more evident than in urban streams. The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program investigation of the effects of urban development on stream ecosystems (EUSE) during 19992004 provides the most spatially comprehensive analysis of stream impacts of urban development that has been completed in the United States. A nationally consistent study design was used in nine metropolitan areas of the United StatesPortland, Oregon; Salt Lake City, Utah; Birmingham, Alabama; Atlanta, Georgia; Raleigh, North Carolina; Boston, Massachusetts; Denver, Colorado; Dallas, Texas; and Milwaukee, Wisconsin. A summary report published as part of the EUSE study describes several of these impacts on urban streams (Coles and others, 2012).

  20. Impact of future urbanization on a hot summer: a case study of Israel

    NASA Astrophysics Data System (ADS)

    Kaplan, Shai; Georgescu, Matei; Alfasi, Nurit; Kloog, Itai

    2015-12-01

    Israel's population is projected to increase significantly through the middle of the current century, requiring further expansion of the built environment to accommodate additional inhabitants and accompanying urban infrastructure. This study examines the climatic impacts of future urban expansion through simulated near-surface temperature and energy flux components associated with built environment growth. The Weather Research and Forecasting model was used to simulate present day extreme summertime conditions, at 1-km resolution, utilizing contemporary urban representation. To determine impacts associated with the physical growth of the urban environment, sensitivity simulations, also at 1-km resolution, incorporating projected changes in urban areas for Israel-based national development plans, were performed. Spatially and diurnally averaged at the national scale, projected urbanization is shown to increase summertime temperatures 0.4-0.8 °C, with greater temperature rise in northern compared to southern parts of the country. Across the diurnal cycle, urban impacts on near-surface warming are minimal during daytime hours, but exceed 3 °C across many urban locales during nighttime hours. The results presented here demonstrate the spatio-temporal impact of future urban expansion in Israel on temperature. The magnitude of these changes highlight the need for strategically designed regional and national planning to alleviate potentially deleterious climatic impacts associated with the physical growth of the built environment.

  1. Globalisation and climate change in Asia: the urban health impact.

    PubMed

    Munslow, Barry; O'Dempsey, Tim

    2010-01-01

    Asia's economic development successes will create new policy areas to address, as the advances made through globalisation create greater climate change challenges, particularly the impact on urban health. Poverty eradication and higher standards of living both increase demand on resources. Globalisation increases inequalities and those who are currently the losers will carry the greatest burden of the costs in the form of the negative effects of climate change and the humanitarian crises that will ensue. Of four major climate change challenges affecting the environment and health, twourban air pollution and waste managementcan be mitigated by policy change and technological innovation if sufficient resources are allocated. Because of the urban bias in the development process, these challenges will probably register on policy makers' agenda. The second two major challengesfloods and droughtare less amenable to policy and technological solutions: many humanitarian emergency challenges lie ahead. This article describes the widely varying impact of both globalisation and climate change across Asia. The greatest losers are those who flee one marginal location, the arid inland areas, only to settle in another marginal location in the flood prone coastal slums. Effective preparation is required, and an effective response when subsequent humanitarian crises occur. PMID:21506298

  2. Urban water infrastructure optimization to reduce environmental impacts and costs.

    PubMed

    Lim, Seong-Rin; Suh, Sangwon; Kim, Jung-Hoon; Park, Hung Suck

    2010-01-01

    Urban water planning and policy have been focusing on environmentally benign and economically viable water management. The objective of this study is to develop a mathematical model to integrate and optimize urban water infrastructures for supply-side planning and policy: freshwater resources and treated wastewater are allocated to various water demand categories in order to reduce contaminants in the influents supplied for drinking water, and to reduce consumption of the water resources imported from the regions beyond a city boundary. A case study is performed to validate the proposed model. An optimal urban water system of a metropolitan city is calculated on the basis of the model and compared to the existing water system. The integration and optimization decrease (i) average concentrations of the influents supplied for drinking water, which can improve human health and hygiene; (ii) total consumption of water resources, as well as electricity, reducing overall environmental impacts; (iii) life cycle cost; and (iv) water resource dependency on other regions, improving regional water security. This model contributes to sustainable urban water planning and policy. PMID:19939551

  3. Hydro-meteorological and micro-climatic impacts of urbanization

    NASA Astrophysics Data System (ADS)

    Li, D.; Bou-Zeid, E.; Baeck, M. L.; Jessup, S.; Smith, J. A.

    2012-12-01

    Urbanization is one of the important drivers of micro and regional climate change. However, urban modeling still faces significant challenges mainly due to difficulties in representing small-scale physical processes occurring in urban canopies and in parameterizing the highly heterogeneous urban surfaces at regional scales. The Weather Research and Forecasting (WRF) model can be a powerful tool in overcoming these challenges due to its nesting and large-eddy simulation capabilities. In this study, we use the WRF model to study the impact of urbanization on urban hydrology (particularly rainfall) and the urban microclimate (i.e., the urban heat island) along the Baltimore-Washington Corridor. Two periods are simulated using WRF, one includes a heavy rainfall event and the other includes a heat wave event. The simulation results are compared to a variety of measurements, including radar rainfall estimates; vertical profiles of wind, water vapor and potential temperature; surface meteorological observations; and remotely-observed land surface temperature. The findings indicate that changing urban surface representations in the WRF model leads to significant changes in the rainfall pattern and amount, due to the modification of the surface energy budgets and the canopy effect. The sensitivity of urban rainfall modeling to urban surface models is comparable to the sensitivity to the microphysics schemes. The urban canopy model (UCM) is critical for capturing the surface energy partitioning and the land surface temperature. We also observe that the default single-layer urban canopy model (UCM) in WRF overestimates the surface temperatures along Washington-Baltimore Corridor when compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. To improve the model performance, a new urban canopy model, calibrated using field observations, with two surface types for the roofs (conventional roof and green roof) and three for the ground (asphalt, concrete and grass) is implemented into WRF. The new urban canopy model significantly reduces the errors in land surface temperature over urban areas and can simulate the urban heat island effect reasonably well.

  4. Impacts of urbanization on future climate in China

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Frauenfeld, Oliver W.

    2015-09-01

    Urbanization plays an important role in human-induced climate change at the regional scale through altered land-atmosphere interactions over urban areas. In this study, the impacts of future urbanization in China on climate are investigated. The Weather Research and Forecasting model is used to downscale future projections using Representative Concentration Pathways (RCP) 4.5 simulations from the Community Earth System Model. Results for 2050 show decreased latent and increased sensible heat fluxes over the urban area, therefore leading to higher surface temperatures and less humidity. Future climate projections reveal that urbanization produces strong warming effects, up to 1.9 °C at regional and local/urban scales, which is comparable to the magnitude of greenhouse gas forcing under the RCP 4.5 scenario. Greater urban warming effects are projected during night and summer, which can be attributed to the high heat capacity of built-up areas. The impacts of urbanization on precipitation show varying effects primarily in summer—both increases and decreases depending on spatial scale—related to both local moisture deficits and large-scale circulation changes. Urbanization could strengthen the East Asian summer monsoon in southern China in summer, and slightly weaken it in eastern China in winter. Due to these significant impacts, we suggest that urbanization should be included in model projections to provide a more realistic and complete depiction of future climate.

  5. Development of a vehicle emission inventory with high temporal-spatial resolution based on NRT traffic data and its impact on air pollution in Beijing - Part 2: Impact of vehicle emission on urban air quality

    NASA Astrophysics Data System (ADS)

    He, Jianjun; Wu, Lin; Mao, Hongjun; Liu, Hongli; Jing, Boyu; Yu, Ye; Ren, Peipei; Feng, Cheng; Liu, Xuehao

    2016-03-01

    A companion paper developed a vehicle emission inventory with high temporal-spatial resolution (HTSVE) with a bottom-up methodology based on local emission factors, complemented with the widely used emission factors of COPERT model and near-real-time (NRT) traffic data on a specific road segment for 2013 in urban Beijing (Jing et al., 2016), which is used to investigate the impact of vehicle pollution on air pollution in this study. Based on the sensitivity analysis method of switching on/off pollutant emissions in the Chinese air quality forecasting model CUACE, a modelling study was carried out to evaluate the contributions of vehicle emission to the air pollution in Beijing's main urban areas in the periods of summer (July) and winter (December) 2013. Generally, the CUACE model had good performance of the concentration simulation of pollutants. The model simulation has been improved by using HTSVE. The vehicle emission contribution (VEC) to ambient pollutant concentrations not only changes with seasons but also changes with time. The mean VEC, affected by regional pollutant transports significantly, is 55.4 and 48.5 % for NO2 and 5.4 and 10.5 % for PM2.5 in July and December 2013 respectively. Regardless of regional transports, relative vehicle emission contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and December 2013, while it is 8.7 and 13.9 % for PM2.5. The RVEC to PM2.5 is lower than the PM2.5 contribution rate for vehicle emission in total emission, which may be due to dry deposition of PM2.5 from vehicle emission in the near-surface layer occuring more easily than from elevated source emission.

  6. Impacts of new highways and subsequent landscape urbanization on stream habitat and biota

    USGS Publications Warehouse

    Wheeler, A.P.; Angermeier, P.L.; Rosenberger, A.E.

    2005-01-01

    New highways are pervasive, pernicious threats to stream ecosystems because of their short- and long-term physical, chemical, and biological impacts. Unfortunately, standard environmental impact statements (EISs) and environmental assessments (EAs) focus narrowly on the initial direct impacts of construction and ignore other long-term indirect impacts. More thorough consideration of highway impacts, and, ultimately, better land use decisions may be facilitated by conceptualizing highway development in three stages: initial highway construction, highway presence, and eventual landscape urbanization. Highway construction is characterized by localized physical disturbances, which generally subside through time. In contrast, highway presence and landscape urbanization are characterized by physical and chemical impacts that are temporally persistent. Although the impacts of highway presence and landscape urbanization are of similar natures, the impacts are of a greater magnitude and more widespread in the urbanization phase. Our review reveals that the landscape urbanization stage is clearly the greatest threat to stream habitat and biota, as stream ecosystems are sensitive to even low levels (<10%) of watershed urban development. Although highway construction is ongoing, pervasive, and has severe biological consequences, we found few published investigations of its impacts on streams. Researchers know little about the occurrence, loading rates, and biotic responses to specific contaminants in highway runoff. Also needed is a detailed understanding of how highway crossings, especially culverts, affect fish populations via constraints on movement and how highway networks alter natural regimes (e.g., streamflow, temperature). Urbanization research topics that may yield especially useful results include a) the relative importance and biological effects of specific components of urban development - e.g., commercial or residential; b) the scenarios under which impacts are reversible; and c) the efficacy of mitigation measures - e.g., stormwater retention or treatment and forested buffers. Copyright ?? Taylor & Francis Inc.

  7. Urbanization and energy use in economic development

    SciTech Connect

    Jones, D.W.

    1989-03-01

    This paper identifies a number of developments which are prominent during the urbanization of a country and which have particularly strong implications for energy use. Concomitant with urbanization, the industrial composition of the economy's production shifts, with reductions in agriculture and increases in the importance of primary metals, chemicals, and cement, all of which are relatively energy-intensive sectors. Evidence from India indicates that the movement of a worker from agriculture to the least energy-intensive urban activity other than services will quadruple per worker production energy requirements. Next, population concentration associated with urbanization facilitates increases in the scale of production which in turn encourages the substitution of modern energy for traditional fuels and requires energy for longer deliveries. Also, concentrated, off-farm populations require processing and delivery of food, which are not required for largely agricultural countries. Domestic activity changes send activities which were formerly conducted in the household with little or no energy use, outside, usually into firms, where fuels are used. Urban households also use considerably more transportation than do rural households. Evidence from Hong Kong indicates that pure urban density increases encourage substitutions of modern energy for traditional fuels. Finally, increased real incomes associated with urbanization increase energy consumption, with an elasticity of roughly unity. Aggregate cross-sectional data evidence from sixty developing countries was used to examine the overall magnitude of the effects of urbanization and associated developmental changes on per capita energy use. Controlling for industrial structure, per capita income (per capita gross domestic product), and several other variables, a one-percent increase in urbanization will cause a one-half percent increase in per capita energy use. 81 refs., 5 figs., 63 tabs.

  8. Impacts of Urbanization in the Coastal Tropical City of San Juan, Puerto Rico

    NASA Technical Reports Server (NTRS)

    Comarazamy, Daniel E.; Gonzalez, Jorge E.; Luvall, Jeffrey C.; Rickman, Douglass

    2007-01-01

    Urban sprawl in tropical locations is rapidly accelerating and it is more evident in islands where a large percentage of the population resides along the coasts. This paper focuses on the analysis of the impacts of land use and land cover for urbanization in the tropical coastal city of San Juan, in the Caribbean island of Puerto Rico. A mesoscale numerical model, the Regional Atmospheric Modeling System (RAMS), is used to study the impacts of land use for urbanization in the environment including specific characteristics of the urban heat island in the San Juan Metropolitan Area (SJMA), one of the most noticeable urban cores of the Caribbean. The research also makes use of the observations obtained during the airborne San Juan Atlas Mission. Surface and raw insonde data from the mission are used to validate the atmospheric model yielding satisfactory results. Airborne high resolution remote sensing data are used to update the model's surface characteristics in order to obtain a more accurate and detailed configuration of the SJMA and perform a climate impact analysis based on land cover/land use (LCLU) changes. The impact analysis showed that the presence of the urban landscape of San Juan has an impact reflected in higher air temperatures over the area occupied by the city, with positive values of up to 2.5 degrees C, for the simulations that have specified urban LCLU indexes in the model's bottom boundary. One interesting result of the impact analysis was the finding of a precipitation disturbance shown as a difference in total accumulated rainfall between the present urban landscape and with a potential natural vegetation, apparently induced by the presence of the urban area. Results indicate that the urban-enhanced cloud formation and precipitation development occur mainly downwind of the city, including the accumulated precipitation. This spatial pattern can be explained by the presence of a larger urbanized area in the southwest sector of the city, and of the approaching northeasterly trade winds.

  9. Health impact assessment of urban waterway decisions.

    PubMed

    Korfmacher, Katrina Smith; Aviles, Katia; Cummings, B J; Daniell, William; Erdmann, Jared; Garrison, Valerie

    2015-01-01

    Health impact assessments (HIA) promote the consideration of health in a wide range of public decisions. Although each HIA is different, common pathways, evidence bases, and strategies for community engagement tend to emerge in certain sectors, such as urban redevelopment, natural resource extraction, or transportation planning. To date, a limited number of HIAs have been conducted on decisions affecting water resources and waterfronts. This review presents four recent HIAs of water-related decisions in the United States and Puerto Rico. Although the four cases are topically and geographically diverse, several common themes emerged from the consideration of health in water-related decisions. Water resource decisions are characterized by multiple competing uses, inter-institutional and inter-jurisdictional complexity, scientific uncertainty, long time scales for environmental change, diverse cultural and historical human values, and tradeoffs between private use and public access. These four case studies reveal challenges and opportunities of examining waterfront decisions through a "health lens". This review analyzes these cases, common themes, and lessons learned for the future practice of HIA in the waterfront zone and beyond. PMID:25547399

  10. Health Impact Assessment of Urban Waterway Decisions

    PubMed Central

    Korfmacher, Katrina Smith; Aviles, Katia; Cummings, B.J.; Daniell, William; Erdmann, Jared; Garrison, Valerie

    2014-01-01

    Health impact assessments (HIA) promote the consideration of health in a wide range of public decisions. Although each HIA is different, common pathways, evidence bases, and strategies for community engagement tend to emerge in certain sectors, such as urban redevelopment, natural resource extraction, or transportation planning. To date, a limited number of HIAs have been conducted on decisions affecting water resources and waterfronts. This review presents four recent HIAs of water-related decisions in the United States and Puerto Rico. Although the four cases are topically and geographically diverse, several common themes emerged from the consideration of health in water-related decisions. Water resource decisions are characterized by multiple competing uses, inter-institutional and inter-jurisdictional complexity, scientific uncertainty, long time scales for environmental change, diverse cultural and historical human values, and tradeoffs between private use and public access. These four case studies reveal challenges and opportunities of examining waterfront decisions through a “health lens”. This review analyzes these cases, common themes, and lessons learned for the future practice of HIA in the waterfront zone and beyond. PMID:25547399

  11. EVALUATION OF SECONDARY ENVIRONMENTAL IMPACTS OF URBAN RUNOFF POLLUTION CONTROL

    EPA Science Inventory

    This report presents a generalized evaluation of the impacts associated with different urban stormwater runoff (UR) treatment techniques. The report addresses the definition of the problem, estimates the volume and characteristics of the UR and the sludges expected, evaluates six...

  12. Application of the ACASA model for urban development studies

    NASA Astrophysics Data System (ADS)

    Marras, S.; Pyles, R. D.; Falk, M.; Snyder, R. L.; Paw U, K. T.; Blecic, I.; Trunfio, G. A.; Cecchini, A.; Spano, D.

    2012-04-01

    Since urban population is growing fast and urban areas are recognized as the major source of CO2 emissions, more attention has being dedicated to the topic of urban sustainability and its connection with the climate. Urban flows of energy, water and carbon have an important impact on climate change and their quantification is pivotal in the city design and management. Large effort has been devoted to quantitative estimates of the urban metabolism components, and several advanced models have been developed and used at different spatial and temporal scales for this purpose. However, it is necessary to develop suitable tools and indicators to effectively support urban planning and management with the goal of achieving a more sustainable metabolism in the urban environment. In this study, the multilayer model ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) was chosen to simulate the exchanges of heat, water vapour and CO2 within and above urban canopy. After several calibration and evaluation tests over natural and agricultural ecosystems, the model was recently modified for application in urban and peri-urban areas. New equations to account for the anthropogenic contribution to heat exchange and carbon production, as well as key parameterizations of leaf-facet scale interactions to separate both biogenic and anthropogenic flux sources and sinks, were added to test changes in land use or urban planning strategies. The analysis was based on the evaluation of the ACASA model performance in estimating urban metabolism components at local scale. Simulated sensible heat, latent heat, and carbon fluxes were compared with in situ Eddy Covariance measurements collected in the city centre of Florence (Italy). Statistical analysis was performed to test the model accuracy and reliability. Model sensitivity to soil types and increased population density values was conducted to investigate the potential use of ACASA for evaluating the impact of planning alternative scenarios. In this contest, an in progress application of ACASA for estimating carbon exchanges alternative scenarios is represented by its integration in a software framework composed by: (i) a Cellular Automata model to simulate the urban land-use dynamics; (ii) a transportation model, able to estimate the variation of the transportation network load; (iii) the ACASA model, and (iv) the mesoscale weather model WRF for the estimation of the relevant urban metabolism components at regional scale. The CA module is able to produce future land use maps, which represent a spatial distribution of the aggregate land-use demand consistent with the main rules governing the functioning of an urban system. Such future land use maps, together with the street network including the current traffic data, are used by the transportation module for estimating future traffic data coherent with the assumed land uses trends. All these information are then used by the coupled model WRF-ACASA for estimating future maps of CO2 fluxes in the urban area under consideration, allowing to estimate the impact of future planning strategies in reducing C emissions. The in-progress application of this system to the city of Florence is presented here.

  13. Impact of urban sprawl on United States residential energy use

    NASA Astrophysics Data System (ADS)

    Rong, Fang

    Improving energy efficiency through technological advances has been the focus of U.S. energy policy for decades. However, there is evidence that technology alone will be neither sufficient nor timely enough to solve looming crises associated with fossil fuel dependence and resulting greenhouse gas accumulation. Hence attention is shifting to demand-side measures. While the impact of urban sprawl on transportation energy use has been studied to a degree, the impact of sprawl on non-transport residential energy use represents a new area of inquiry. This dissertation is the first study linking sprawl to residential energy use and provides empirical support for compact land-use developments, which, as a demand-side measure, might play an important role in achieving sustainable residential energy consumption. This dissertation develops an original conceptual framework linking urban sprawl to residential energy use through electricity transmission and distribution losses and two mediators, housing stock and formation of urban heat islands. These two mediators are the focuses of this dissertation. By tapping multiple databases and performing statistical and geographical spatial analyses, this dissertation finds that (1) big houses consume more energy than small ones and single-family detached housing consumes more energy than multifamily or single-family attached housing; (2) residents of sprawling metro areas are more likely to live in single-family detached rather than attached or multifamily housing and are also expected to live in big houses; (3) a compact metro area is expected to have stronger urban heat island effects; (4) nationwide, urban heat island phenomena bring about a small energy reward, due to less energy demand on space heating, while they impose an energy penalty in States with a hot climate like Texas, due to higher energy demand for cooling; and taken all these together, (5) residents of sprawling metro areas are expected to consume more energy at home than residents of compact metro areas. This dissertation concludes with the policy implications that emerged from this study and suggestions for future research as well.

  14. The hydrological and economic impacts of changing water allocation in political regions within the peri-urban South Creek catchment in Western Sydney I: Model development

    NASA Astrophysics Data System (ADS)

    Davidson, Brian; Malano, Hector; Nawarathna, Bandara; Maheshwari, Basant

    2013-08-01

    In this paper an integrated model of the hydrological and economic impacts of deploying water within the political divisions in the South Creek catchment of the ‘peri-urban’ region of Western Sydney is presented. This model enables an assessment of the hydrological and economic merits of different water allocation-substitution strategies, both over the whole catchment and in each political region and jurisdiction within it, to be undertaken. Not only are the differences in the water allocated to each region and use revealed, but also the net present values associated with each use within each region. In addition, it is possible to determine measures of equity in water distribution using this approach. It was found that over a period from 2008 to 2031 the South Creek catchment in total would on average use approximately 50,600 ML of potable water a year, the vast majority of this is used in the two urban regions of Penrith and Blacktown. Agricultural water use was also greatest in these two regions. Over this period the allocation system was estimated to have a small net present value of approximately A301 million and the Benefit-Cost ratio was estimated to be 1.06. The urban regions of Penrith and Blacktown and the rural region of Hawkesbury were estimated to have returned a net positive benefit of A76 million, A246 million and A39 million (respectively), while water to Liverpool and Camden was delivered at a loss of A7 million and A52 million over the period assessed. It was found that across the catchment a fair degree of both physical and economic equity occurred between regions, with the exception of Liverpool, which was over endowed with water and paid a high cost for it.

  15. Hydrometeorologic impacts of urban expansion and the role of spatial arrangement (Invited)

    NASA Astrophysics Data System (ADS)

    Bowling, L. C.

    2013-12-01

    Global land cover/land use is changing notably due to expansion of urban areas, resulting in the conversion of natural landscapes to roads, industrial areas, and buildings. The associated reduction in infiltration and runoff lag time have long been the domain of the urban hydrologist, while this landscape transformation also leads to changes in land surface heterogeneities, resulting in alterations of land-atmosphere interactions and convective processes. The integrated impacts of both impervious area and precipitation changes to flood risk in urban environments have not been well-represented by existing predictive tools, which often focus at disparate scales. This presentation attempts an integrated assessment of the multi-scale interaction of urban landcover, hydrology and convective processes, in order to investigate how urbanization has altered the hydrometeorology of urban thunderstorm events, and the role of the spatial arrangement and scale of urban landcover on urban flood frequency. Studies suggest that in some cases, urban influence creates a convergence zone upstream of the urban area, resulting in precipitation increases both upstream and downstream of the urban influence. Total runoff increases consistently with urbanization by restricting infiltration on the land surface, but this is coupled with high uncertainty in the spatial pattern of precipitation change. For some watersheds, the convective influence can result in a significant increase in peak streamflow, relative to impervious influence alone. The spatial pattern of urban development can further affect the hydrologic regime by influencing the hydrologic connectivity of urban areas at the catchment scale, while at the river basin scale the travel time from urban centers to the watershed outlet controls flood magnitudes.

  16. Analysing the impact of urban areas patterns on the mean annual flow of 43 urbanized catchments

    NASA Astrophysics Data System (ADS)

    Salavati, B.; Oudin, L.; Furusho, C.; Ribstein, P.

    2015-06-01

    It is often argued that urban areas play a significant role in catchment hydrology, but previous studies reported disparate results of urbanization impacts on stream flow. This might stem either from the difficulty to quantify the historical flow changes attributed to urbanization only (and not climate variability) or from the inability to decipher what type of urban planning is more critical for flows. In this study, we applied a hydrological model on 43 urban catchments in the United States to quantify the flow changes attributable to urbanization. Then, we tried to relate these flow changes to the changes of urban/impervious areas of the catchments. We argue that these spatial changes of urban areas can be more precisely characterized by landscape metrics, which enable analysing the patterns of historical urban growth. Landscape metrics combine the richness (the number) and evenness (the spatial distribution) of patch types represented on the landscape. Urbanization patterns within the framework of patch analysis have been widely studied but, to our knowledge, previous research works had not linked them to catchments hydrological behaviours. Our results showed that the catchments with larger impervious areas and larger mean patch areas are likely to have larger increase of runoff yield.

  17. Urban storm-induced discharge impacts

    SciTech Connect

    Field, R. ); Pitt, R.E. )

    1990-08-01

    Toxic heavy metals, organic pollutants, fecal coliform bacteria and pathogens, high flow rates, and sediment are commonly associated with urban receiving-water problems. Most beneficial water uses have been adversely affected by urban runoff. Many of the effects are associated with organic and toxic pollutant accumulations over a long time and are not associated with individual runoff events. The US EPA's Storm and Combined Sewer Research Program has sponsored several long-term research projects that are concerned with urban receiving-water problems. This article discusses the testing, sampling, pollutant effects, and some of the other results of the research programs.

  18. Impacts of urbanization on Indian summer monsoon rainfall extremes

    NASA Astrophysics Data System (ADS)

    Shastri, Hiteshri; Paul, Supantha; Ghosh, Subimal; Karmakar, Subhankar

    2015-01-01

    areas have different climatology with respect to their rural surroundings. Though urbanization is a worldwide phenomenon, it is especially prevalent in India, where urban areas have experienced an unprecedented rate of growth over the last 30 years. Here we take up an observational study to understand the influence of urbanization on the characteristics of precipitation (specifically extremes) in India. We identify 42 urban regions and compare their extreme rainfall characteristics with those of surrounding rural areas. We observe that, on an overall scale, the urban signatures on extreme rainfall are not prominently and consistently visible, but they are spatially nonuniform. Zonal analysis reveals significant impacts of urbanization on extreme rainfall in central and western regions of India. An additional examination, to understand the influences of urbanization on heavy rainfall climatology, is carried with station level data using a statistical method, quantile regression. This is performed for the most populated city of India, Mumbai, in pair with a nearby nonurban area, Alibaug; both having similar geographic location. The derived extreme rainfall regression quantiles reveal the sensitivity of extreme rainfall events to the increased urbanization. Overall the study identifies the climatological zones in India, where increased urbanization affects regional rainfall pattern and extremes, with a detailed case study of Mumbai. This also calls attention to the need of further experimental investigation, for the identification of the key climatological processes, in different regions of India, affected by increased urbanization.

  19. Pubertal development timing in urban Chinese boys.

    PubMed

    Ma, H-M; Chen, S-K; Chen, R-M; Zhu, C; Xiong, F; Li, T; Wang, W; Liu, G-L; Luo, X-P; Liu, L; Du, M-L

    2011-10-01

    We describe current pubertal development in healthy urban Chinese boys. A cross-sectional study of the pubertal development of 18,807 urban Chinese boys aged from 3.50 to 18.49years was conducted between 2003 and 2005. Testicular volume was evaluated with a Prader orchidometer. Pubic hair development was assessed according to the Tanner method. Data on spermarche were collected using the status quo method. Probit analysis was used to calculate the median age and 95% CI at different stages of testicular development, pubic hair development and spermarche. By age 9, 12.99% of the boys had a testicular volume of 4mL or greater. The median age of onset of puberty defined as the age at attainment of testicular volume of 4mL or greater was 10.55 (95% CI 10.27-10.79) years. The median age for onset of pubic hair development (PH(2) ) and spermarche was 12.78 (95%CI 12.67-12.89) years and 14.05 (95%CI 13.80-14.32) years, respectively. Pubertal onset in urban Chinese boys is earlier than currently used clinical norms but their pubic hair development occurs relatively late in comparison with the reported data from numerous other countries. There is also evidence of a secular trend towards an earlier age of spermarche since 1979 in Chinese urban boys. PMID:21658069

  20. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools

    NASA Astrophysics Data System (ADS)

    Seto, K. C.; Guneralp, B.; Hutyra, L.

    2012-12-01

    Urban land cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. Yet, despite projections that world urban populations will increase to 4.3 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop the first global probabilistic forecasts of urban land cover change and explore the impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue, then by 2030, urban land cover will expand between 800,000 and 3.3 million km2, representing a doubling to five-fold increase from the global urban land cover in 2000. This would result in considerable loss of habitats in key biodiversity hotspots, including the Guinean forests of West Africa, Tropical Andes, Western Ghats and Sri Lanka. Within the pan-tropics, loss in forest biomass from urban expansion is estimated to be 1.38 PgC (0.05 PgC yr-1), equal to approximately 5% of emissions from tropical land use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and forest carbon losses.

  1. Urban areas impact on surface water quality during rainfall events

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S. S.; Soares, D.; Ferreira, A. J. D.; Costa, M. L.; Steenhuis, T. S.; Coelho, C. O. A.; Walsh, R. P. D.

    2012-04-01

    Increasing population and welfare puts water management under stress, especially in what concerns water quality. Surface water properties are strongly linked with hydrological processes and are affected by stream flow variability. Changes in some chemical substances concentrations can be ascribed to different water sources. Runoff generated in urban areas is considered the main responsible for water quality degradation inside catchments. This poster presents the methodology and first results of a study that is being developed to assess the impact of urbanization on surface water quality, during rainfall events. It focuses on the Ribeira dos Coves catchment (620 ha) located in central Portugal. Due to its proximity to the Coimbra city in central region, the urban areas sprawled during the last decades. In 2008, urban areas represented 32% of the area. Recently a highway was constructed crossing the catchment and a technological industrial park is being build-up in the headwaters. Several water samples were collected at four different locations: the catchment outlet and in three sub-catchments with distinct urbanization patterns - Esprito Santo that represents a highly urbanized area (45%) located over sandstone, Porto do Bordalo with 30% of urbanized area located over limestone, and IParque, mainly forest and just downstream the disturbed technological industrial park construction area. The samples were collected at different times during rainfall events to monitor the variability along the hydrograph. Six monitoring campaigns were performed: two in April 2011, at the end of the winter period, and the others between October and November 2011, after the dry summer. The number of samples collected per monitoring campaign is variable according with rainfall pattern. Parameters such as pH, conductivity, turbidity and total suspended sediments were immediately analyzed. The samples were then preserved, after filtered (0.45m), and later analyzed for dissolved chemical oxygen demand, total phosphorous, nitrogen (Kjeldahl, nitrate and ammonium), some cations and heavy metals, according with standard methods. In each monitored location there is a continuous-recording water-level that provides flow data. The rainfall data is monitored with a raingauge located at the catchment outlet. The results show that surface runoff affects stream water quality according with rainfall pattern. During rainfall events the rising limb flow is associated with an increase in suspended sediment concentration and turbidity, particularly at Iparque. In this sub-catchment, the deforestation and the topsoil removal associated with the technological industrial park construction, promotes suspended sediments growth ranging from 395% to 1645%, corresponding to peak concentrations of 1049mg/L and 3621mg/L, for similar rainfall amounts but with distinct intensities (0.4mm/5minutes and 1.2mm/5minutes, respectively). As regards to the monitored dissolved chemical properties, despite the variability, related with the hydrograph, the increase is much lower comparing with the suspended sediments. Generally, the values are higher at the catchment outlet, which can indicate that the contact time between rainfall and the surfaces before reach the water line affects water quality. This should be considered during urban planning to improve water quality and reduce environmental impacts with low investment.

  2. Modeling Low Impact Development Alternatives with SWIMM

    EPA Science Inventory

    The U.S. Environmental Protection Agencys Office of Water (OW) is actively promoting the use of Low Impact Development (LID) practices to help protect and restore water quality in urban and developing areas. Such practices support the concepts of green infrastructure and sustain...

  3. Development Communication in an Urban Setting.

    ERIC Educational Resources Information Center

    Development Communication Report, 1980

    1980-01-01

    The application of lessons gained from rural experience with development communications to the problems of delivering social services to the poorer segments of the urban areas is described in a report on the squatter upgrading project in Lusaka, the capital of Zambia. A Project Support Communications Unit established to provide communication

  4. Climatic impact of urbanization in Eastern China: modeling the combined urban heat island and aerosol effects

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Yang, B.; Zhao, C.; Leung, L. R.; Yan, H.; Fan, J.

    2014-12-01

    In this study we investigate the climatic impact of urbanization, including both Urban Heat Island (UHI) and aerosol effects, over the Yangtze-Delta metropolitan clusters region of Eastern China, based on a series of simulations with prescribed land use/land cover and emissions of aerosols and their precursors for the 2000s and 1970s , respectively. We conduct simulations for each land use/land cover and emission scenario from 2006-2010 using the Weather Research and Forecasting (WRF) model, with online chemistry/aerosol and urban canopy models, at a 3-km grid spacing. Overall the model can reasonably capture the spatial pattern of temperature and precipitation as well as the phase of precipitation diurnal cycle in summer. Simulations results show a very clear UHI effect, i.e. expanded urban surface decreases surface latent heat flux, increases sensible heat flux and PBL height, and reduces surface wind over urban areas, with a more significant change in summer. Aerosol has much less obvious impact on local surface heat flux and temperature, but shows more remote impacts downwind due to dispersion and transport of pollutants and aerosol-cloud interaction. Aerosol also has a larger impact on precipitation amount and areal coverage than UHI. While UHI increases precipitation over urban regions during daytime especially when the southeasterly monsoonal flow prevails, aerosol remarkably suppresses precipitation, especially for light to moderate rain events, and increases the frequency of dry days in the entire model region.

  5. Evaluating nutrient impacts in urban watersheds: challenges and research opportunities.

    PubMed

    Carey, Richard O; Hochmuth, George J; Martinez, Christopher J; Boyer, Treavor H; Dukes, Michael D; Toor, Gurpal S; Cisar, John L

    2013-02-01

    This literature review focuses on the prevalence of nitrogen and phosphorus in urban environments and the complex relationships between land use and water quality. Extensive research in urban watersheds has broadened our knowledge about point and non-point pollutant sources, but the fate of nutrients is not completely understood. For example, it is not known how long-term nutrient cycling processes in turfgrass landscapes influence nitrogen retention rates or the relative atmospheric contribution to urban nitrogen exports. The effect of prolonged reclaimed water irrigation is also unknown. Stable isotopes have been used to trace pollutants, but distinguishing sources (e.g., fertilizers, wastewater, etc.) can be difficult. Identifying pollutant sources may aid our understanding of harmful algal blooms because the extent of the relationship between urban nutrient sources and algal blooms is unclear. Further research on the delivery and fate of nutrients within urban watersheds is needed to address manageable water quality impacts. PMID:23202644

  6. Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

    2011-12-01

    Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport, and lake water quality. The integrated model will be validated using a comprehensive observational database that includes soil moisture, evapotranspiration, stomatal conductance, streamflow, stream and lake water quality, and crop yields and productivity. Integrated scenarios will be developed to synthesize decision-maker perspectives, alternative approaches to resource governance, plausible trends in demographic and economic drivers, and model projections under alternate climate and land use regimes to understand future conditions of the watershed and its ecosystem services. The quantitative data and integrated scenarios will then be linked to evaluate governance of water and land use.

  7. An exploratory study of the impact of an inquiry-based professional development course on the beliefs and instructional practices of urban inservice teachers

    NASA Astrophysics Data System (ADS)

    Suters, Leslie Ann

    Five urban teachers completed a total of 50 contact hours of professional development in which they: participated in authentic, inquiry-based experiences facilitated by a scientist; learned new science content related to the nature of science and scientific inquiry; developed inquiry-based lesson plans to implement in their classrooms; and developed science-specific strategies to mentor novice and experienced teachers. The focus of this research was to determine changes in their: beliefs and instructional practices; understanding of scientific literacy; and efficacy toward mentoring other teachers. A collective case study methodology was used in which participants completed questionnaires and were observed and interviewed, prior to and at the completion of the course. They were also asked to complete reflective journal questions during the course. While the teachers' beliefs did not change as measured by the Teacher's Pedagogical Philosophy Interview (TPPI) (teacher-centered beliefs for "Teacher Actions" and "Teacher and Content"; conceptual/student-centered for "Student Actions" and "Philosophy of Teaching"), their teacher-centered behaviors changed to conceptual/student-centered as measured by the Secondary Science Teachers Analysis Matrix (STAM). Their responses to the Constructivist Learning Environment Survey (CLES) generally correlated with their post-STAM results. Participants gained a better understanding of the creative aspect of the nature of science as measured by the Modified Nature of Scientific Knowledge Scale (MNSKS) instrument, while two novice teachers improved their personal science teaching efficacy after participation in the course as measured by the Science Teaching Efficacy Belief Instrument (STEBI). Four of the five teachers felt better prepared to mentor others to use inquiry-based instruction. In contrast to these positive trends, their outcome expectancy beliefs (STEBI subscale) were generally lower than their perceived personal teaching efficacy before and after the course, which could be an indicator of the environment in urban schools where there is often little support or equipment for innovative practices in science. Generally there was a shift from traditional to constructivist instructional practices as measured by the STAM, while results varied for teacher beliefs and efficacy regarding science instruction as measured by the TPPI, CLES, and STEBI and teachers' understanding of the nature of science as measured by the MNSKS.

  8. DISSOLVED OXYGEN IMPACT FROM URBAN STORM RUNOFF

    EPA Science Inventory

    The primary objective of the research reported here is to determine if on a national basis a correlation exists between strength of dissolved oxygen (DO) deficits and the presence of rainfall and/or storm runoff downstream of urban areas. A secondary objective is to estimate the ...

  9. A simple model for urban ozone impact predictions

    SciTech Connect

    Laird, A.R.; Miksad, R.W.; Middleton, P.

    1982-12-01

    A simple urban ozone model for air quality management analysis is presented. The model is evaluated by comparing predicted and observed patterns in monthly average ozone maxima and dosages for two distinct urban areas and by comparing the simple model results for altered sources to the results of the Empirical Kinetic Modeling Approach (EKMA) and the Graedel complete urban air chemistry model. From these comparisons it is concluded that the simple ozone model can be used for accurate yet efficient qualitative analysis of the influence of various air quality policy options on future ozone impacts.

  10. Influences of Different Land Use Spatial Control Schemes on Farmland Conversion and Urban Development

    PubMed Central

    Zhou, Min; Tan, Shukui; Zhang, Lu

    2015-01-01

    Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management. PMID:25915897

  11. Influences of different land use spatial control schemes on farmland conversion and urban development.

    PubMed

    Zhou, Min; Tan, Shukui; Zhang, Lu

    2015-01-01

    Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management. PMID:25915897

  12. The impact of urbanization on family structure: the experience of Sarawak, Malaysia.

    PubMed

    Sim, Hew Cheng

    2003-01-01

    This paper argues that women and men encounter the processes of migration and urbanization in very gendered ways. It examines state development policies and their role in accelerating the pace of urbanization, Using material from a recently concluded study on single mothers in the lower socio-economic strata, this paper explores the impact of these wider processes on the structure of the family and women from this strata specifically. PMID:21853623

  13. Analysing the impact of urban pressures on agricultural land

    NASA Astrophysics Data System (ADS)

    Aksoy, Ece; Schröder, Christoph; Fons, Jaume; Gregor, Mirko; Louwagie, Geertrui

    2015-04-01

    Land, and here in particular soil, is a finite and essentially non-renewable resource. EU-wide, land take, i.e. the increase of settlement area over time, consumes more than 1000 km2 annually of which half is actually sealed and, hence, lost under impermeable surfaces. Land take and in particular soil sealing has already been identified as one of the major soil threats in the 2006 EC Communication 'Towards a Thematic Strategy on Soil Protection' (Soil Thematic Strategy), and has been confirmed as such in the report on the implementation of this strategy. The aim of this study is to relate the potential of land for a particle use in a given region with the actual land use. This allows evaluating whether land (in particular the soil dimension) is used according to its (theoretical) potential. To this aim, the impact of a number of land cover flows related to urban development on soils with a good, average and poor production potential were assessed and mapped. Thus, the amount and quality (potentials and/or suitability for agricultural production) of agricultural land lost between the years 2000 and 2006 was identified. In addition, areas with high productivity potential around urban areas indicating areas of potential future land use conflicts for Europe were identified.

  14. Satellite monitoring of urbanization and environmental impacts-A comparison of Stockholm and Shanghai

    NASA Astrophysics Data System (ADS)

    Haas, Jan; Furberg, Dorothy; Ban, Yifang

    2015-06-01

    This study investigates urbanization and its potential environmental consequences in Shanghai and Stockholm metropolitan areas over two decades. Changes in land use/land cover are estimated from support vector machine classifications of Landsat mosaics with grey-level co-occurrence matrix features. Landscape metrics are used to investigate changes in landscape composition and configuration and to draw preliminary conclusions about environmental impacts. Speed and magnitude of urbanization is calculated by urbanization indices and the resulting impacts on the environment are quantified by ecosystem services. Growth of urban areas and urban green spaces occurred at the expense of cropland in both regions. Alongside a decrease in natural land cover, urban areas increased by approximately 120% in Shanghai, nearly ten times as much as in Stockholm, where the most significant land cover change was a 12% urban expansion that mostly replaced agricultural areas. From the landscape metrics results, it appears that fragmentation in both study regions occurred mainly due to the growth of high density built-up areas in previously more natural/agricultural environments, while the expansion of low density built-up areas was for the most part in conjunction with pre-existing patches. Urban growth resulted in ecosystem service value losses of approximately 445 million US dollars in Shanghai, mostly due to the decrease in natural coastal wetlands while in Stockholm the value of ecosystem services changed very little. Total urban growth in Shanghai was 1768 km2 and 100 km2 in Stockholm. The developed methodology is considered a straight-forward low-cost globally applicable approach to quantitatively and qualitatively evaluate urban growth patterns that could help to address spatial, economic and ecological questions in urban and regional planning.

  15. Satellite remote sensing data for urban heat waves assessment and human health impacts

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Dida, M. R.

    2012-10-01

    Remote sensing is a key application in global-change science and urban climatology. Urbanization, the conversion of other types of land to uses associated with growth of populations and economy has a great impact on both micro-climate as well as macro-climate. By integrating high-resolution and medium-resolution satellite imagery with other geospatial information, have been investigated several land surface parameters including impervious surfaces and land surface temperatures for Bucharest metropolitan area in Romania. The aim of this study is to examine the changes in land use/cover pattern in a rapidly changing area of Bucharest in relation to urbanization since the 1990s till 2011 and then to investigate the impact of such changes on the intensity and spatial pattern of the UHI (Urban Heat Island) effect in the region in relation with heat waves assessment. Investigation of radiative properties, energy balance, heat fluxes and NDVI, EVI is based on satellite data provided by various sensors Landsat TM/ETM, ASTER, MODIS and IKONOS. A detailed analysis was done for summer 2003, 2007 and 2010 years heat wave events in and related impacts on human health. So called effect of "urban heat island" must be considered mostly for summer periods conditions and large European scale heat waves. As future climate trends have been predicted to increase the magnitude and negative impacts of urban heat waves in Bucharest metropolitan area, there is an urgent need to be developed adequate strategies for societal vulnerability reducing.

  16. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China.

    PubMed

    Zhou, Decheng; Zhang, Liangxia; Hao, Lu; Sun, Ge; Liu, Yongqiang; Zhu, Chao

    2016-02-15

    Urban heat island (UHI) represents a major anthropogenic modification to the Earth system and its relationship with urban development is poorly understood at a regional scale. Using Aqua MODIS data and Landsat TM/ETM+ images, we examined the spatiotemporal trends of the UHI effect (ΔT, relative to the rural reference) along the urban development intensity (UDI) gradient in 32 major Chinese cities from 2003 to 2012. We found that the daytime and nighttime ΔT increased significantly (p<0.05, mostly in linear form) along a rising UDI for 27 and 30 out of 32 cities, respectively. More rapid increases were observed in the southeastern and northwestern parts of China in the day and night, respectively. Moreover, the ΔT trends differed greatly by season and during daytime in particular. The ΔT increased more rapidly in summer than in winter during the day and the reverse occurred at night for most cities. Inter-annually, the ΔT increased significantly in about one-third of the cities during both the day and night times from 2003 to 2012, especially in suburban areas (0.25urbanization effects on local climate cross China and offer limitations on how these certain methods should be used to quantify UHI intensity over large areas. Furthermore, the impacts of urbanization on climate are complex, thus future research efforts should focus more toward direct observation and physical-based modeling to make credible predictions of the effects. PMID:26674691

  17. Impacts of Urbanization in the Coastal Tropical City of San Juan, Puerto Rico

    NASA Technical Reports Server (NTRS)

    Comarazamy, Daniel E.; Gonzalez, Jorge E.; Luvall, Jeffrey C.; Rickman, Douglas L.; Mulero, Pedro J.

    2007-01-01

    Urban sprawl in tropical locations is rapidly accelerating and it is more evident in islands where a large percentage of the population resides along the coasts. This paper focuses on the analysis of the impacts of land use and land cover for urbanization in the tropical coastal city of San Juan, in the Caribbean island of Puerto Rico. A mesoscale numerical model, the Regional Atmospheric Modeling System (RAMS), is used to study the impacts of land use for urbanization in the environment including specific characteristics of the urban heat island in the San Juan Metropolitan Area (SJMA), one of the most noticeable urban cores of the Caribbean. The research also makes use of the observations obtained during the airborne San Juan Atlas Mission. Surface and rawinsonde data from the mission are used to validate the atmospheric model yielding satisfactory results. Airborne high resolution remote sensing data are used to update the model's surface characteristics in order to obtain a more accurate and detailed configuration of the SJMA and perform a climate impact analysis based on land cover/land use (LCLU) changes. The impact analysis showed that the presence of the urban landscape of San Juan has an impact reflected in higher air temperatures over the area occupied by the city, with positive values of up to 2.5 C, for the simulations that have specified urban LCLU indexes in the model's bottom boundary. One interesting result of the impact analysis was the finding of a precipitation disturbance shown as a difference in total accumulated rainfall between the present urban landscape and with a potential natural vegetation, apparently induced by the presence of the urban area. Results indicate that the urban enhanced cloud formation and precipitation development occur mainly downwind of the city, including the accumulated precipitation. This spatial pattern can be explained by the presence of a larger urbanized area in the southwest sector of the city, and of the approaching northeasterly trade winds. No significant impacts were found in the sea breeze patterns of the city.

  18. Impacts of Urbanization on Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Shastri, H. K.; Ghosh, S.; Karmakar, S.

    2013-12-01

    Rapid urbanisation all around the world is a matter of concern to the scientific community. The fast growing urban areas carries out huge anthropogenic activities that burdens natural environment and its resources like air-water quality and space, thus have different climatology to their rural surroundings. World Urbanization Prospects 2005 annual report described 20th century as witnessing a rapid urbanization of the world's population. Though urbanization is a worldwide phenomenon, it is especially prevalent in India, where urban areas have experienced an unprecedented rate of growth with level of urbanization increased from 17.23 % to 31.16% in year 1951 to 2011and the number of cities with population more than one million has grown from 5 to 53 over the same time. We take up an observational study to understand influence of urbanisation on mesoscale circulations and resulting convection, thus nature of precipitation around urban areas. The spatially distributed analysis of gridded daily precipitation data over the country is carried out to identify nature of trends in selected statistics of Indian summer monsoon precipitation and examine its association with urban land cover to have an impact on precipitation statistics. We evaluate explicit changes around urban land use in context of 40 large Indian urban areas. Further we assess local-urban climatic signals in the point level rainfall observations with model based analysis of two nearby locations under similar climatic conditions but differing largely in terms of urbanisation. The results of gridded data analysis indicate an overall tendency towards decrease in mean precipitation however, rainfall activities are enhanced around urban areas across different climate zones of the country. Though trends observed in selected climatic parameters revealed great degree of spatial inter variability in selected precipitation statistics over the country, they accounts a greater degree of inclination for occurrence under regions of urban influence. Examination of urbanization influence on heavy rainfall climatology carried out through point scale experiment with statistical framework of quantile based regression for the most populated city of India Mumbai, in pair with a nearby non-urban area Alibaug also point toward sensitivity of extreme rainfall events to the local land use under urbanisation. Overall the study indicate influence of urbanisation over amendments in conventional regional rainfall pattern to a convinced extent and illustrate that even if only a small percentage of land covers urban areas they may play a key role to alter the hydrology at local and regional scales. The study highlights need of further investigation in terms of quantifying the impact and estimation of associated uncertainties in form of detailed theoretical and numerical studies for India to more clearly highlight the role that urbanisation plays in precipitation enhancement of Indian monsoon rainfall in order to make better assessment of urban planning, water resources management and urban flooding.

  19. Evaluation of urban sprawl and urban landscape pattern in a rapidly developing region.

    PubMed

    Lv, Zhi-Qiang; Dai, Fu-Qiang; Sun, Cheng

    2012-10-01

    Urban sprawl is a worldwide phenomenon happening particularly in rapidly developing regions. A study on the spatiotemporal characteristics of urban sprawl and urban pattern is useful for the sustainable management of land management and urban land planning. The present research explores the spatiotemporal dynamics of urban sprawl in the context of a rapid urbanization process in a booming economic region of southern China from 1979 to 2005. Three urban sprawl types are distinguished by analyzing overlaid urban area maps of two adjacent study years which originated from the interpretation of remote sensed images and vector land use maps. Landscape metrics are used to analyze the spatiotemporal pattern of urban sprawl for each study period. Study results show that urban areas have expanded dramatically, and the spatiotemporal landscape pattern configured by the three sprawl types changed obviously. The different sprawl type patterns in five study periods have transformed significantly, with their proportions altered both in terms of quantity and of location. The present research proves that urban sprawl quantification and pattern analysis can provide a clear perspective of the urbanization process during a long time period. Particularly, the present study on urban sprawl and sprawl patterns can be used by land use and urban planners. PMID:22095203

  20. Examining childhood development in contaminated urban settings.

    PubMed Central

    Guillette, E A

    2000-01-01

    Normal childhood development and growth is affected by such factors as genetics, nutrition, and multiple familial and social factors. In large urban settings, children are constantly exposed to varying amounts of assorted toxic chemicals both inside and outside the home. Many of these contaminants are suspected to be associated with developmental alterations. The heterogeneity of risk factors in urban populations poses a challenging situation for research. Change must be made in the manner in which developmental toxicological research is undertaken. Plans should be made for immediate data collection after a large-scale exposure to prevent the loss of valuable information. Retrospective studies would benefit from applying rapid assessment techniques to identify high- and low-risk children. In all cases, the development of research design and investigative format needs to reflect the strengths of both social factors and scientific facts. Cross-disciplinary approaches, using physicians and physical and social scientists and incorporating community knowledge, are required for the evaluation of children in urban settings, with each discipline contributing to theory and methodology. PMID:10852833

  1. Climate and change: simulating flooding impacts on urban transport network

    NASA Astrophysics Data System (ADS)

    Pregnolato, Maria; Ford, Alistair; Dawson, Richard

    2015-04-01

    National-scale climate projections indicate that in the future there will be hotter and drier summers, warmer and wetter winters, together with rising sea levels. The frequency of extreme weather events is expected to increase, causing severe damage to the built environment and disruption of infrastructures (Dawson, 2007), whilst population growth and changed demographics are placing new demands on urban infrastructure. It is therefore essential to ensure infrastructure networks are robust to these changes. This research addresses these challenges by focussing on the development of probabilistic tools for managing risk by modelling urban transport networks within the context of extreme weather events. This paper presents a methodology to investigate the impacts of extreme weather events on urban environment, in particular infrastructure networks, through a combination of climate simulations and spatial representations. By overlaying spatial data on hazard thresholds from a flood model and a flood safety function, mitigated by potential adaptation strategies, different levels of disruption to commuting journeys on road networks are evaluated. The method follows the Catastrophe Modelling approach and it consists of a spatial model, combining deterministic loss models and probabilistic risk assessment techniques. It can be applied to present conditions as well as future uncertain scenarios, allowing the examination of the impacts alongside socio-economic and climate changes. The hazard is determined by simulating free surface water flooding, with the software CityCAT (Glenis et al., 2013). The outputs are overlapped to the spatial locations of a simple network model in GIS, which uses journey-to-work (JTW) observations, supplemented with speed and capacity information. To calculate the disruptive effect of flooding on transport networks, a function relating water depth to safe driving car speed has been developed by combining data from experimental reports (Morris et al., 2011) safety literature (Great Britain Department for Transport, 1999), analysis of videos of cars driving through floodwater, and expert judgement. A preliminary analysis has been run in the Tyne & Wear (in North-East England) region to demonstrate how the analysis can be used to assess the disruptions for commuter journeys due to flooding and will be demonstrated in this paper. The research will also investigate the effectiveness of adaptation strategies for extreme rainfall events, such as permeable surfaces and roof storages for buildings. Multiple scenarios (from the every-day-rainfall to the extreme weather phenomena) will be modelled, with different rainfall rates, rainfall durations and return periods. The comparison between the scenarios in which no interventions are adopted and those improved by one of the adaptation option will be compared to determine the cost-effectiveness of the solution considered. Integrating spatial analysis of transport use with an urban flood model and flood safety function enables the investigation of the impacts of extreme weather on infrastructure networks. Further work will develop the analysis in a number of ways (i) testing a range of flood events with different severity and frequency, (ii) exploration of the influence of climate and socio-economic change (iii) analysis of multiple hazard events and (iv) consideration of cascading disruption across different infrastructure networks.

  2. Advantages of High Resolution Modeling to Investigate Urbanization Impacts

    NASA Astrophysics Data System (ADS)

    Kirsch, B.; Lopez, S. R.; Condon, L. E.; Maxwell, R. M.

    2012-12-01

    Urban infrastructures have impervious surfaces that directly affect the hydrology of the system. Impervious surfaces affect drainage networks, alter aqueous flow paths, change feedbacks to the atmosphere and promote contaminant transport. Through the usage of a fully integrated physical hydrology model, this study aims to investigate the impacts of green infrastructure within an urban environment. The model used for analysis is ParFlow, a fully coupled physical hydrologic model that simulates surface and subsurface water interactions, coupled with the common land model (CLM) to simulate land surface processes. Analysis includes investigating stormwater routing, infiltration, pollutant transport and water quality during infiltration and storage on a test domain. This work will also investigate, from an economic perspective, the costs of urbanization upon water resources and under what conditions green infrastructure projects may produce positive benefit-cost ratios, as well as how such infrastructure may impact optimal water resource management strategies.

  3. Managing the adverse thermal effects of urban development in a densely populated Chinese city.

    PubMed

    Weng, Qihao; Yang, Shihong

    2004-02-01

    Guangzhou city in South China has experienced an accelerated urban development since the 1980s. This paper examines the impact of the urban development on urban heat islands through a historical analysis of urban-rural air temperature differences. Remote sensing techniques were applied to derive information on land use/cover and land surface temperatures and to assess the thermal response patterns of land cover types. The results revealed an overriding importance of urban land cover expansion in the changes in heat island intensity and surface temperature patterns. Urban development was also related to a continual air temperature increase in the 1980s and 1990s. The combined use of satellite-derived vegetation and land cover distributions with land surface temperature maps provides a potential useful tool for many planning applications. The city's greening campaigns and landscaping designs should consider the different cooling effects of forest, shrubs and grassy lawns for temperature control and should plant more tall trees. PMID:15160740

  4. Urban, Regional and Global Impacts of Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Rizzo, L. V.; Setzer, A.; Cirino, G.

    2013-05-01

    Biomass burning is a major regional and global driver for atmospheric composition. Its effects in regional and global climate are very significant, but still difficult to assess. Even in large urban areas in Latin America such as Mexico City, Sao Paulo and Santiago, and in developed areas such as Paris and Californian cities it is possible to observe significant biomass burning effects air quality. The wood burning components as well as inner city and vicinities burning if agricultural residues impact heavily the concentration of organic aerosol, carbon monoxide and ozone in urban areas. Regionally, regions such as Amazonia and Central America show large plumes of smoke that extend their impact over continental areas, with changes in the radiation balance, air quality and climate. The deforestation rate in Amazonia have dropped strongly from 27,000 Km2 in 2004 to 6,200 Km2 in 2011, a very significant reduction, but this reduction was not observed in Africa and Southeast Asia. Health effects of biomass burning emissions are very significant, and observed in several key regions. Remote sensing techniques for fire detection have progressed significantly and long time series (10-15 years) are now feasible. The black carbon associated with biomass burning has important impacts in formation and development of clouds in Amazonia and other regions. The organic component of biomass burning emissions scatter light and increase diffuse radiation that alters carbon uptake in large regions of Amazonia and certainly other forested areas. Increase of up to 30% in carbon uptake associated with biomass burning emissions was observed in Amazonia, as part of the LBA Experiment. New analytical methods that quantify the absorption angstrom exponent of biomass burning and fossil fuel black carbon (BC) can differentiate BC from different burning sources. In addition, the hygroscopic properties of particles with a core shell of BC coated with organic compounds can be measured and shows very significant cloud nucleation properties of these complex particles that can change cloud formation and development mechanisms. Recent papers on the radiative forcing of black carbon estimate that BC can have a very high positive forcing of +0.5 watts/m2, and at the same time the organic compounds associated with BC emissions can bring the total radiative forcing to zero. This would imply that policies to reduce BC emissions as a strategy to quickly reduce global warming could not be that much effective. BC continues to be a critically important global driver of climate change, but its effects are still quite unknown.

  5. Evaluation of the impact of the surrounding urban morphology on building energy consumption

    SciTech Connect

    Wong, Nyuk Hien; Chen, Yixing; Hajadi, Norwin; Sathyanarayanan, Haripriya; Manickavasagam, Yamini Vidya; Jusuf, Steve Kardinal; Syafii, Nedyomukti Imam

    2011-01-15

    Empirical models of minimum (T{sub min}), average (T{sub avg}) and maximum (T{sub max}) air temperature for Singapore estate have been developed and validated based on a long-tem field measurement. There are three major urban elements, which influence the urban temperature at the local scale. Essentially, they are buildings, greenery and pavement. Other related parameters identified for the study, such as green plot ratio (GnPR), sky view factor (SVF), surrounding building density, the wall surface area, pavement area, albedo are also evaluated to give a better understanding on the likely impact of the modified urban morphology on energy consumption. The objective of this research is to assess and to compare how the air temperature variation of urban condition can affect the building energy consumption in tropical climate of Singapore. In order to achieve this goal, a series of numerical calculation and building simulation are utilized. A total of 32 cases, considering different urban morphologies, are identified and evaluated to give better a understanding on the implication of urban forms, with the reference to the effect of varying density, height and greenery density. The results show that GnPR, which related to the present of greenery, have the most significant impact on the energy consumption by reducing the temperature by up to 2 C. The results also strongly indicate an energy saving of 4.5% if the urban elements are addressed effectively. (author)

  6. Using Repeated LIDAR to Characterize Topographic Changes in Riparian Areas and Stream Channel Morphology in Areas Undergoing Urban Development: An Accuracy Assessment Guide for Local Watershed Managers

    EPA Science Inventory

    Urban development and the corresponding increases in impervious surfaces associated with that development have long been known to have adverse impacts upon urban riparian systems, water quality and quantity, groundwater recharge, streamflow, and aquatic ecosystem integrity. The ...

  7. EVALUATION OF URBANIZATION IMPACTS ON HYDROLOGY - LABORATORY AND FIELD APPROACHES

    EPA Science Inventory

    Although urbanization has a major impact on watershed hydrology, there have not been many studies to quantify how basic hydrological relationships are altered by the addition of impervious surface under controlled conditions. In addition, few studies have been conducted to quanti...

  8. Rapid urbanization - Its impact on mental health: A South Asian perspective.

    PubMed

    Trivedi, Jitendra K; Sareen, Himanshu; Dhyani, Mohan

    2008-07-01

    Rapid increase in urban population as a proportion of total population is resulting in rapid urbanization of the world. By the end of 2008, a majority of the world's population will be living in the cities. This paradigm shift in the dynamics of human population is attracting attention of demographers, sociologists, scientists, and politicians alike. Urbanization brings with it a unique set of advantages and disadvantages. Though it is driving the economies of most of the nations of the world, a serious concern regarding the impact of urbanization on mental health is warranted. The impact of urbanization on mental health in South-Asian countries needs to be examined. These countries by virtue of their developing economies and a significant proportion of population still living below poverty line are particularly vulnerable and tend to have a higher burden of diseases with an already compromised primary health care delivery system. The range of disorders and deviancies associated with urbanization is enormous and includes psychoses, depression, sociopathy, substance abuse, alcoholism, crime, delinquency, vandalism, family disintegration, and alienation. Thus, it is a heterogenous mix of problems and categorizing them to one particular subtype seems daunting and undesirable. Urbanization is affecting the entire gamut of population especially the vulnerable sections of society - elderly, children and adolescents, and women. Rapid urbanization has also led to creation of "fringe population" mostly living from hand to mouth which further adds to poverty. Poverty and mental health have a complex and multidimensional relationship. Urban population is heavily influenced by changing cultural dynamics leading to particular psychiatric problems like depression, alcoholism, and delinquency. Judicious use of resources, balanced approach to development, and sound government policies are advocated for appropriate growth of advancing economies of South-Asian region. PMID:19742238

  9. Impacts of urbanization on river flow frequency: A controlled experimental modeling-based evaluation approach

    NASA Astrophysics Data System (ADS)

    Chu, M. L.; Knouft, J. H.; Ghulam, A.; Guzman, J. A.; Pan, Z.

    2013-07-01

    Changes in land use are likely to cause a non-linear response in watershed hydrology. Specifically, small increases in urban expansion may greatly increase surface runoff while decreasing infiltration, impacting aquifer recharge and changing streamflow regimes. Quantifying the effects of urbanization on streamflow is crucial to the development of plans to mitigate the effects of anthropogenic changes on watershed processes. This study focused on quantifying the potential effects of varying degrees of urban expansion on the frequency of discharge, velocity, and water depth using the physically-based watershed model, MIKE-SHE, and the 1D hydrodynamic river model, MIKE-11. Five land cover scenarios corresponding to varying degrees of urban expansion were used to determine the sensitivity of these flow variables in the Big River watershed located in east central Missouri, in which urban areas have increased by more than 300% in the last 15 years (1992-2006). Differences in the frequency distributions of the flow variables under each scenario were quantified using a Smirnov test. Results indicated a potential increase in the frequency of high flow events to more than 140% while decreasing the frequency of low flow events by up to 100% if the current rate of urbanization continues. In general, the frequency of low flow events decreased as urban expansion increased while the frequency of average and high-flow events increased as urbanization increased. An increase in frequency of high-flow events is expected to impact the safety of structures, sediment load, water quality, and the riparian ecosystem. This research will be valuable to assess mitigation strategies in order to protect the ecosystem, infrastructure, and livelihood in the watershed where urban development is inevitable.

  10. Factors Contributing to Urban Heat Island Development: A Global Perspective

    NASA Astrophysics Data System (ADS)

    Hertel, W.; Snyder, P. K.; Twine, T. E.

    2012-12-01

    Urban heat islands (UHIs) are the result of the urban core of a city encountering temperatures that are warmer than the surrounding rural areas. Temperature in the urban core can be 2-5°C warmer during the day and as much as 10°C warmer at night compared to outlying areas. This modification of the local climate can contribute to significant health-related impacts during heat waves, increased energy consumption, a decrease in air quality, deteriorating urban ecosystems, and enhancing the thermal pollution into urban water bodies. To understand the mechanisms contributing to the formation of UHIs and to identify sound mitigation strategies requires examining the UHIs of cities around the world to look for factors that enhance or minimize the heat island effect. Numerous factors influence the strength of the UHI, and vary from city to city. Population size and density influence the magnitude and spatial extent of the UHI. The ecosystem in which the city resides affects the rural climatology. Regional weather patterns can also influence the development of UHIs, with the frequency of certain types of weather conducive to the development of strong UHIs. Local geography such as proximity to water bodies and topography can influence UHI development. Cultural and regional influences such as the use of certain types of building materials, architecture, and the density of vegetation can all contribute towards the strength of a city's UHI. To better understand how UHIs develop and to understand the factors that influence them, we have undertaken the Islands in the Sun project, which includes an analysis of the UHIs of the largest cities in the world. In this study we examine how different factors have influenced the structure of the UHI and to identify factors that can mitigate and minimize their impact. Here we present a preliminary analysis of four metropolitan areas: Minneapolis-St. Paul, Buenos Aires, Riyadh, and Jakarta. In this study we investigate how various factors define a city's UHI. The cities presented here include some of the factors that can influence the UHI signal. The magnitude, diurnal and seasonal variability of the UHI is examined in each city through temperature records and satellite imagery. The UHIs are analyzed to assess the influences of the local geography and meteorology, the ecosystem in which the city resides, and the nature of the built environment. Because the Minneapolis-St. Paul region contains numerous water bodies, special emphasis is placed on the impact of its UHI on thermal pollution.

  11. Sensitivity of Urbanization Impact over China by Using WRF/Chem

    NASA Astrophysics Data System (ADS)

    Yu, M.; Carmichael, G.

    2012-12-01

    Urbanization in China is an inevitable process coming along with economic development and population boost, which brings two impacts on air quality modeling. One is land-cover change and the other one is the additional stream of anthropogenic heat. In this study, we employed Weather Research Forecasting -Chemistry (WRF-Chem) to evaluate the sensitivity of meteorology and ozone concentrations in response to urbanization, by two cases, Jing-Jin-Ji (JJJ, indicating Beijing-Tianjin-Hebei) and Yangtze River Delta (YRD) areas. The first impact was achieved by updating the default land-cover data in WRF/Chem. Preliminary results showed an increase in 2-m temperature and PBL heights, and a decrease in wind-speed and dew points. For ozone concentrations, after updating land-cover data there was a corresponding rise in the surface level. The maximum increase was as much as 20 ppb for JJJ and 14 ppb for YRD area. The second impact was evaluated by adding anthropogenic heat stream into simulations. This heat stream was developed by considering both urban expansion and peak value at city centers. Test results showed a comparative 2-m temperature increase when compared to the first impact. While for PBL heights and dew points, the difference is negligible. Ozone concentrations within surface layer were also enhanced. The maximum increase was 7 ppb for JJJ area. Taking urbanization into consideration is a significant improvement for air quality modeling over China. After including both 1st and 2nd impact into WRF/Chem, the mean error was reduced by 35.6% for urban locations. One of our ongoing studies is focusing on further improvement of updating more recent land-cover data and anthropogenic heat. Ozone difference after including 1st impact Temporal plots for PKU(urban location)

  12. Impact of Urbanization on Stormwater Runoff from a Small Urban Catchment: Gda?sk Ma?omiejska Basin Case Study

    NASA Astrophysics Data System (ADS)

    Olechnowicz, Borys; Weinerowska-Bords, Katarzyna

    2014-12-01

    This paper deals with the impact of different forms of urbanization on the basin outflow. The influence of changes in land cover/use, drainage system development, reservoirs, and alternative ways of stormwater management (green roofs, permeable pavements) on basin runoff was presented in the case of a small urban basin in Gdansk (Poland). Seven variants of area development (in the period of 2000-2012) - three historical and four hypothetical - were analyzed. In each case, runoff calculations for three rainfall scenarios were carried out by means of the Hydrologic Modeling System designed by Hydrologic Engineering Center of the U.S. Army Corps of Engineers (HEC-HMS). The Soil Conservation Service (SCS) Curve Number (CN) method was used for calculations of effective rainfall, the kinematic wave model for those of overland flow, and the Muskingum-Cunge model for those of channel routing. The calculations indicated that urban development had resulted in increased peak discharge and runoff volume and in decreased peak time. On the other hand, a significant reduction in peak values was observed for a relatively small decrease in the normal storage level (NSL) in reservoirs or when green roofs on commercial centers were present. The study confirmed a significant increase in runoff as a result of urbanization and a considerable runoff reduction by simple alternative ways of stormwater management.

  13. STORMWATER MANAGEMENT AND LOW IMPACT DEVELOPMENT PRESENTATION DESCRIPTION

    EPA Science Inventory

    Low Impact Development (LID) is the general term typically used to characterize a comprehensive array of site planning, design and pollution prevention strategies that when combined create a more economically sustainable and ecologically functional urban landscape. LID uses a dec...

  14. Interdisciplinary Study of Urbanization and Impacts - the Poplex 2014 Field Campaign

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Masetti, M.; Stevenazzi, S.; Bonfanti, M.; Conforto, A.; Filippini, M.; Fabbri, P.; Pola, M.; Sorichetta, A.; Linard, C.; Pampaloni, P.; Paloscia, S.; Santi, E. S.; Catani, F.; Neumann, G.

    2014-12-01

    Haphazard urban development may have far reaching impacts not only around the urban vicinity but also across regional and perhaps global scales. To investigate urban change and impacts, the PO PLain EXperiment (POPLEX) was conducted in May 2014. The focus of POPLEX was to conduct the most effective study, by closely coordinating the field campaign with the science team in different zones of the Po Plain in northern Italy, and also with an extension to Florence in the Tuscany region. Northern Italy is one of the most populated areas in Europe and most of its cities registered an urban sprawl pattern in the 2000s. In this view, the POPLEX domain represents a pertinent "pilot area" to identify environmental impacts due to urban sprawl. This is to identify and understand the influence of urban characteristics and urban change on important environmental topics such as: (a) groundwater resource quality assessment and management, (b) air quality assessment, and (c) temperature assessment. POPLEX involved 25 participants from 15 institutions from 5 countries using data from 12 satellites and extensive field networks including approximately 220 meteorological stations, 170 air monitoring stations, hundreds of groundwater monitoring wells, and 20 river gauges together with demographic census data and detailed survey maps of land cover and land use. Innovative processing, with the Dense Sampling Method and Rosette Transform applied to satellite scatterometer data, has allowed a successful development of a spatially and temporally consistent dataset delineating urban extension and thus to monitor the annual rate of changes, in each pixel of a 1-km grid, throughout the decade of 2000s across the landscape without spatial gaps. Such dataset enables the introduction of the time dimension into dynamic analyses combining both anthropogenic and natural factors including atmospheric, geophysical, and hydrogeological characteristics of each study area. Initial results have been obtained and will be presented on: (i) accelerated urbanization gradient in Milan transition areas, (ii) air pollution over urban areas and its constrain in the Po Plain surrounded by mountains, (iii) water contaminations due to urbanization in Lombardy, and (iv) hot-spot urbanization pattern of new built-up pockets in the Florence-Prato plain.

  15. Developing an Integrated Approach for Local Urban Climate Models in London from Neighbourhood to Street Scale

    NASA Astrophysics Data System (ADS)

    Bakkali, M.; Davies, M.; Steadman, J. P.

    2012-04-01

    We currently have an incomplete understanding of how weather varies across London and how the city's microclimate will intensify levels of heat, cold and air pollution in the future. There is a need to target priority areas of the city and to promote design guidance on climate change mitigation strategies. As a result of improvements in the accuracy of local weather data in London, an opportunity is emerging for designers and planners of the built environment to measure the impact of their designs on local urban climate and to enhance the designer's role in creating more informed design choices at an urban micro-scale. However, modelling the different components of the urban environment separately and then collating and comparing the results invariably leads to discrepancies in the output of local urban climate modelling tools designed to work at different scales. Of particular interest is why marked differences appear between the data extracted from local urban climate models when we change the scale of modelling from city to building scale. An example of such differences is those that have been observed in relation to the London Unified Model and London Site Specific Air Temperature model. In order to avoid these discrepancies we need a method for understanding and assessing how the urban environment impacts on local urban climate as a whole. A step to achieving this is by developing inter-linkages between assessment tools. Accurate information on the net impact of the urban environment on the local urban climate will in turn facilitate more accurate predictions of future energy demand and realistic scenarios for comfort and health. This paper will present two key topographies of London's urban environment that influence local urban climate: land use and street canyons. It will look at the possibilities for developing an integrated approach to modelling London's local urban climate from the neighbourhood to the street scale.

  16. Review: Impact of underground structures on the flow of urban groundwater

    NASA Astrophysics Data System (ADS)

    Attard, Guillaume; Winiarski, Thierry; Rossier, Yvan; Eisenlohr, Laurent

    2016-02-01

    Property economics favours the vertical development of cities but flow of groundwater can be affected by the use of underground space in them. This review article presents the state of the art regarding the impact of disturbances caused by underground structures (tunnels, basements of buildings, deep foundations, etc.) on the groundwater flow in urban aquifers. The structures built in the underground levels of urban areas are presented and organised in terms of their impact on flow: obstacle to the flow or disturbance of the groundwater budget of the flow system. These two types of disturbance are described in relation to the structure area and the urban area. The work reviewed shows, on one hand, the individual impacts of different urban underground structures, and on the other, their cumulative impacts on flow, using real case studies. Lastly, the works are placed in perspective regarding the integration of underground structures with the aim of operational management of an urban aquifer. The literature presents deterministic numerical modelling as a tool capable of contributing to this aim, in that it helps to quantify the effect of an underground infrastructure project on groundwater flow, which is crucial for decision-making processes. It can also be an operational decision-aid tool for choosing construction techniques or for formulating strategies to manage the water resource.

  17. IMPACT OF URBANIZATION ON THE HYDROLOGY OF THE POCONO CREEK WATERSHED: A MODEL STUDY

    EPA Science Inventory

    The Pocono Creek watershed located in Monroe County, PA, is threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of wild ...

  18. Introduction: population migration and urbanization in developing countries.

    PubMed

    Kojima, R

    1996-12-01

    This introductory article discusses the correlation between migration and rapid urbanization and growth in the largest cities of the developing world. The topics include the characteristics of urbanization, government policies toward population migration, the change in absolute size of the rural population, and the problems of maintaining megacities. Other articles in this special issue are devoted to urbanization patterns in China, South Africa, Iran, Korea and Taiwan as newly industrialized economies (NIEs), informal sectors in the Philippines and Thailand, and low-income settlements in Bogota, Colombia, and India. It is argued that increased urbanization is produced by natural population growth, the expansion of the urban administrative area, and the in-migration from rural areas. A comparison of urbanization rates of countries by per capita gross national product (GNP) reveals that countries with per capita GNP of under US$2000 have urbanization rates of 10-60%. Rates are under 30% in Africa, the Middle East, South Asia, China, and Indonesia. Rapid urbanization appears to follow the economic growth curve. The rate of urbanization in Latin America is high enough to be comparable to urbanization in Europe and the US. Taiwan and Korea have high rates of urbanization that surpass the rate of industrialization. Thailand and Malaysia have low rates of urbanization compared to the size of their per capita GNP. Urbanization rates under 20% occur in countries without economic development. Rates between 20% and 50% occur in countries with or without industrialization. East Asian urbanization is progressing along with industrialization. Africa and the Middle East have urbanization without industrialization. In 1990 there were 20 developing countries and 5 developed countries with populations over 5 million. In 10 of 87 developing countries rural population declined in absolute size. The author identifies and discusses four patterns of urban growth. PMID:12292278

  19. Leading for Urban School Reform and Community Development

    ERIC Educational Resources Information Center

    Green, Terrance L.

    2015-01-01

    Purpose: Improving urban schools of color and the communities where they are located requires leadership that spans school and community boundaries. The purpose of this study is to understand how principal and community leader actions support urban school reform along with community development at two community schools in the urban Midwest and

  20. Developing a Professional Learning Community among Urban School Principals

    ERIC Educational Resources Information Center

    Hipp, Kristine Keifer; Weber, Paul

    2008-01-01

    This article describes how ten exemplary urban school principals worked together under a Wallace Foundation Grant to advance the understanding of urban school leadership. The grant's intent was to contribute to the development of a national model for the assessment of master principals by demonstrating how building-level leadership in urban

  1. URBANIZATION, PLANNING AND HIGHER EDUCATION EXTENSION, GENERAL CONSIDERATIONS IN COMMUNITY ACTION. KANSAS STATE UNIVERSITY SHORT COURSE SERIES IN PLANNING AND DEVELOPMENT, 1.

    ERIC Educational Resources Information Center

    DEINES, VERNON P.

    THE FIRST IN A KANSAS STATE UNIVERSITY SERIES DESIGNED TO DEVELOP AN UNDERSTANDING OF THE PROCESS OF URBANIZATION AND TO ESTABLISH A DIALOGUE BETWEEN URBAN PLANNERS AND PLANNING THEORETICIANS THROUGH HIGHER EDUCATION EXTENSION, THIS ESSAY FOCUSES ON THE NATURE AND IMPACT OF URBANIZATION, THE EXTENT OF THE NEED FOR URBAN PLANNING, THE PURPOSES AND

  2. The Impact of Urbanization on the Precipitation Component of the Water Cycle: A New Perspective

    NASA Technical Reports Server (NTRS)

    Shephard, J. Marshal

    2002-01-01

    It is estimated that by the year 2025, 60% of the world s population will live in cities (UNFP, 1999). As cities continue to grow, urban sprawl (e.g., the expansion of urban surfaces outward into rural surroundings) creates unique problems related to land use, transportation, agriculture, housing, pollution, and development. Urban expansion also has measurable impacts on environmental processes. Urban areas modify boundary layer processes through the creation of an urban heat island (UHI). The literature indicates that the signature of the urban heat island effect may be resolvable in rainfall patterns over and downwind of metropolitan areas. However, a recent U.S. Weather Research Program panel concluded that more observational and modeling research is needed in this area (Dabberdt et al. 2000). NASA and other agencies initiated programs such as the Atlanta Land-use Analysis: Temperature and Air Quality Project (ATLANTA) (Quattrochi et al. 1998) which aimed to identify and understand how urban heat islands impact the environment. However, a comprehensive assessment of the role of urban-induced rainfall in the global water and energy cycle (GWEC) and cycling of freshwater was not a primary focus of these efforts. NASA's Earth Science Enterprise (ESE) seeks to develop a scientific understanding of the Earth system and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards (NASA, 2000). Within this mission, the ESE has three basic thrusts: science research to increase Earth system knowledge; an applications program to transfer science knowledge to practical use in society; and a technology program to enable new, better, and cheaper capabilities for observing the earth. Within this framework, a research program is underway to further address the co-relationship between land cover use and change (e.g. urban development) and its impact on key components of the GWEC (e.g., precipitation). This presentation discusses the feasibility of using the TRMM or GPM satellite to identify precipitation anomalies likely caused by urbanization (Shepherd et al. 2002). Recent results from analyses of TRMM data around several major U.S. cities (e.g. Dallas, Atlanta, Houston) will be discussed. The presentation also summarizes a NASA-funded research effort to investigate the phenomenon of urban-induced precipitation anomalies using TRMM (future GPM) satellite-based remote sensing, an intensive ground observation/validation effort near Atlanta, and coupled atmosphere-land numerical modeling techniques.

  3. Impact of land cover types and components on urban heat

    NASA Astrophysics Data System (ADS)

    Xie, L. T.; Cai, G. Y.

    2015-12-01

    This paper discussed the impact of the distribution of parks including water bodies on the relief of urban heat. An image of QuickBird on Aug. 30, 2013 was employed to perform the detailed land cover classification. One swath of Landsat 8 THIR image was collected to derive the land surface temperature. After some necessary preprocessing procedures, object-based classification method was used to classify the land cover as residential region, square and road, water body, as well as park. The results showed that water bodies and parks play an important role in reducing the land surface temperature. Grass, shrub and trees were extracted out respectively by manual from parks that were adopted to test the influence of proportions among trees, shrubs and grass on the fluctuation of land surface temperature in urban area. The results achieved in this paper could be helpful for the local governments to make a decision in urban plan and management.

  4. Urban impacts on regional carbonaceous aerosols: investigation of seasonal urban outflow impacts using trajectory analysis, OCEC and absorption parameters

    NASA Astrophysics Data System (ADS)

    Sheesley, R. J.; Barrett, T. E.; Andersson, A.

    2012-04-01

    It is of high interest to determine the impact of large urban centers on regional aerosol. However, it is difficult to ascertain impact using only chemical or meteorological data. A combination of techniques would enable more accurate assessment of the frequency, magnitude and character of the urban outflow at a background site. The study site is centralized in Texas, and is regularly 12-24h downwind of either the Dallas-Fort Worth metropolitan area (4.2 million) or the Houston metropolitan area (4 million). Back trajectory analysis (BT), chemical characterization (organic and elemental carbon - OCEC), mass absorption cross-section (MAC) and the light attenuation coefficient (ATN) will be presented for a yearlong sampling campaign (May 2011-Apr 2012). Correlations among these factors (BTs, OCEC, MAC and ATN) will be used to begin to assess urban outflow from these two metropolitan centers on the regional receptor site. Seasonal differences in the OCEC, MAC and ATN transported from these urban centers will be explored in greater detail during a summer and winter intensive. Preliminary data (May-Nov 2011) indicates EC to OC ratio of 0.015 with an r2 = 0.75. Summer drought conditions in 2011 resulted in stable air mass movement in the region, with consistent southerly winds and high potential for Houston outflow impacts. Conclusions will be supported with gaseous pollutant data from local monitoring sites including ozone, NOx and CO.

  5. Impact of Urbanization on Precipitation Distribution and Intensity over Lake Victoria Basin

    NASA Astrophysics Data System (ADS)

    Gudoshava, M.; Semazzi, F. H. M.

    2014-12-01

    In this study, sensitivity simulations on the impact of rapid urbanization over Lake Victoria Basin in East Africa were done using a Regional Climate Model (RegCM4.4-rc29) with the Hostetler lake model activated. The simulations were done for the rainy seasons that is the long rains (March-April-May) and short rains (October-November-December). Africa is projected to have a surge in urbanization with an approximate rate of 590% in 2030 over their 2000 levels. The Northern part of Lake Victoria Basin and some parts of Rwanda and Burundi are amongst the regions with high urbanization projections. Simulations were done with the land cover for 2000 and the projected 2030 urbanization levels. The results showed that increasing the urban fraction over the northern part of the basin modified the physical parameters such as albedo, moisture and surface energy fluxes, aerodynamic roughness and surface emissivity, thereby altering the precipitation distribution, intensity and frequency in the region. The change in the physical parameters gave a response of an average increase in temperature of approximately 2oC over the urbanized region. A strong convergence zone was formed over the urbanized region and thereby accelerating the lake-breeze front towards the urbanized region center. Precipitation in the urbanized region and regions immediate to the area increased by approximately 4mm/day, while drying up the southern (non-urbanized) side of the basin. The drying up of the southern side of the basin could be a result of divergent flow and subsidence that suppresses vertical development of storms.

  6. Development of the multi-scale model for urban climate analysis and evaluation of urban greening effects on energy consumption

    NASA Astrophysics Data System (ADS)

    Hamano, H.; Nakayama, T.; Fujita, T.; Hori, H.; Tagami, H.

    2009-12-01

    It is necessary to reduce Greenhouse gases (GHG) emissions drastically to stabilize climate change, and Japan is also required to assess its long-term global warming policy. In achieving the low carbon society and sustainable cities, the numerical evaluation of environmental impacts of the application of different technologies and policies was preliminarily examined by utilizing integrative urban environmental model. This research aims to develop the multi-scale model for urban climate analysis and to evaluate the urban greening effects on energy consumption from household and business sectors. It developed the multi-scale model combined the process-based NIES integrated catchment-based eco-hydrology (NICE) model with the meso-scale meteorological model (Regional Atmospheric Modeling System : RAMS) and urban canopy model to estimate the urban climate mitigation effects by introduction of urban heat environmental mitigation technology and scenario. The numerical simulation conducted with the multi-scale level horizontally consisting regional scale (260260km with 2km grid) and urban area scale (3626km with 0.2km grid) against the objective area, Kawasaki city of Japan. The urban canopy model predicts the three dimensional atmospheric conditions including anthropogenic heat effect from household, business and factory sectors. Furthermore the tile method applied into the urban canopy model for the improvement of numerical accuracy and detailed land use information in each grid. The validation of this model was conducted by comparison with the observed air temperature of 29 points in entire Kawasaki area from 1st to 31th of August, 2006. From the quantitative validation of model performance, the coefficient of correlation was 0.72 and the root mean square error was 2.99C. The introduction of patch method into urban canopy model made it possible to calculate the each land use effect, and the accuracy of predicted results was improved against the land use area consisting of mixing urban and natural land covers. The urban greening effect was estimated by comparison with the vertical air temperature difference to derive air-conditioning load change against each building between present condition and urban greening condition. By using this model, it estimated that about 14 MWh/day and 197MWh/day of air conditioning energy consumption energy for the household and business sectors without the effect of building inner load were reduced by introducing the greening regulation of Kawasaki city and ideal maximum greening area during August 2006.

  7. The evaluation of the environmental impact and the external factors of urban transport in Constanta

    NASA Astrophysics Data System (ADS)

    Stanca, C.; Stîngă, V. G.; Georgescu, S.; Cupşa, O. S.

    2015-11-01

    Transport activities are known to have a substantial negative environmental impact especially when referring to the urban transport. Studies have shown that external costs (as accidents, congestion, air emissions, climate change or noise) are an important subject of the European Union, that is why were carried out several research projects. This paper will highlight the current requirements and methodologies used by the European Union regarding the impact of the external costs of urban transport in most of the growth poles of Europe. Taking into consideration that Constanta is considered to be one of the seven major growth poles of Romania for the 2014-2020 period, this study aims at analyzing how the results of similar studies made in others centers of the European Union can be applied in Constanta, showing different methodologies and evaluations regarding the external costs and their impact. We will analyze how the conclusions obtained in previous projects are applicable to data collected by us throughout a field research on the technical description of the means of transport used it this city. As methodology, we will use one that was adopted by the European Union regarding the estimation of urban external costs, taking into consideration that each externality has a different method for estimating it. The results of this study may be useful in developing the sustainable urban mobility plan for Constanta, as a strategic plan design to reduce the impact of urban transport for a better quality of life at present and in the future. Through this paper we will get an insight into the urban transport in Constanta, but also data on external costs generated by the urban transport, given that road transport is considered to be the most polluting transport mode.

  8. Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China.

    PubMed

    Xu, C; Liu, M; An, S; Chen, J M; Yan, P

    2007-11-01

    Urbanization is one of the most important aspects of global change. The process of urbanization has a significant impact on the terrestrial ecosystem carbon cycle. The Yangtze Delta region has one of the highest rates of urbanization in China. In this study, carried out in Jiangyin County as a representative region within the Yangtze Delta, land use and land cover changes were estimated using Landsat TM and ETM+ imagery. With these satellite data and the BEPS process model (Boreal Ecosystem Productivity Simulator), the impacts of urbanization on regional net primary productivity (NPP) and annual net primary production were assessed for 1991 and 2002. Landsat-based land cover maps in 1991 and 2002 showed that urban development encroached large areas of cropland and forest. Expansion of residential areas and reduction of vegetated areas were the major forms of land transformation in Jiangyin County during this period. Mean NPP of the total area decreased from 818 to 699 gCm(-2)yr(-1) during the period of 1991 to 2002. NPP of cropland was only reduced by 2.7% while forest NPP was reduced by 9.3%. Regional annual primary production decreased from 808 GgC in 1991 to 691 GgC in 2002, a reduction of 14.5%. Land cover changes reduced regional NPP directly, and the increasing intensity and frequency of human-induced disturbance in the urbanized areas could be the main reason for the decrease in forest NPP. PMID:17234324

  9. Impact of Urbanization on Storm Response of White Rock Creek, Dallas, Texas.

    NASA Astrophysics Data System (ADS)

    Williams, H.; Groening-Vicars, J.

    2005-12-01

    This study documents hydrological changes resulting from urbanization of the upper sub-basin of White Rock Creek watershed in Collin and Dallas counties, Texas. The 66.4 square mile watershed was transformed from 87% rural in 1961 to 95% urban in 2002, following construction of the Dallas suburbs of Richardson, Addison, Plano and Frisco. The objective of the study was to investigate changes in the storm response of White Rock Creek in terms of peak storm flow, storm flow volume and lag time. The approach employed to compare pre- and post-urbanization hydrology was to develop average unit hydrographs for each time period and use them to generate the creek's storm flow response to a set of six hypothetical precipitation events. The results suggest that substantial hydrological changes have occurred. The average infiltration capacity of the watershed was reduced by about 60%, so that storm flow was generated at lower precipitation intensities in the post-urbanization period. Storm flow peak discharge and volume were more than doubled for a hypothetical 10-year precipitation event. Average lag time was about 45 minutes faster in the post-urbanization period. It was concluded that urbanization has significantly impacted the storm response of the creek and increased the potential for flooding. It is anticipated that similar hydrological changes will occur in other rapidly urbanizing watersheds in the Dallas-Fort Worth Metropolitan region.

  10. Impact of Urban Growth and Urbanization on the Environmental Degradation of Lakes in Hyderabad City, India

    NASA Astrophysics Data System (ADS)

    Nandan, M. J.; Sen, M. K.; Harini, P.; Sekhar, B. M.; Balaji, T.

    2013-12-01

    Lakes are a vital part of urban ecosystems which perform important ecological and environmental functions to safeguard local climate, groundwater and habitat. The incessant population growth coupled with low urban planning is causing severe damage to urban ecosystems throughout the world. Hyderabad is one of the largest growing metropolitan cities of India covering an area of 65000 ha situated on the banks of Musi River in the northern part of the Deccan Plateau. The city had a population of 1.25 million in 1961 which increased to 6.8 million in 2011 with a metropolitan population of 7.75 million, making it India's fourth most populous city and sixth most populous urban agglomeration. Hyderabad is popularly known as 'City of Lakes' which occupies the top position in India in terms of Urban Lakes. In 20th century, the number of lakes were around 925 which are now reduced to 521 and most of these lakes are facing extinction. The water spread area of these lakes has been considerably reduced due to steady urban growth and the carrying capacity and ecological status of these urban lakes are in real danger. Many of these lakes have shrunk in size while the waters of several lakes got polluted with the discharge of untreated domestic and industrial effluents. Taking into consideration the environmental degradation of urban lakes, an attempt was made to study the current status, loss of water bodies and water spread using remote sensing and GIS techniques. Time-series satellite images of MSS, IRS and RESOURCESAT and Survey of India maps of 1:50,000 and 1:25,000 were used for this study. Analysis of these together with other data sets was accomplished through integrated use of ERDAS Imagine Arc view and ArcGIS software packages. It is estimated that there were 925 lakes in 1982 in erstwhile Hyderabad Urban Development Authority (HUDA) area which came down to 521 in 2012. A total number of 404 lakes disappeared during the last 30 years period. Consequently the water spread area of these lakes got reduced from 14005 ha. to 11066 ha. The area covered under water bodies has come down from 21.53 per cent of the geographical area in 1982 to 17.02 per cent in 2012. The decline during 2002-2012 period was severe which can be directly related to the highest urban growth (87.2%) during the same period. The study indicates that, immediate attention be drawn towards conservation and management of these lakes for the protection of urban systems.

  11. Adaptation to urbanization impacts on drainage in the city of Hohhot, China.

    PubMed

    Zhou, Qianqian; Ren, Yi; Xu, Miaomiao; Han, Nini; Wang, Heping

    2016-01-01

    This study presents a quantitative assessment of urbanization effects on hydrological runoff and drainage network in the city of Hohhot, China. The evolution of urban spatial morphology for the historical years (1987-2010) and projected year (2020) is described by changes in geographic information system (GIS)-based land use maps and further represented in hydrological parameters in the Storm Water Management Model (SWMM) simulation. The results show the levels of service of historical drainage were too low to have dominant impacts on flood risks, and hence a significant upward trend in catchment runoff response was observed over time. Comparisons with changes in system overloading indicate that the relative increase in flood risk is greatest at the early stage of urbanization with relatively low levels of development. The proposed adaptation measures based on a cost-effective optimal approach was found feasible to significantly improve the drainage performance and mitigate the increasing flooding impacts. PMID:26744948

  12. RIVER QUALITY MODEL FOR URBAN STORMWATER IMPACTS

    EPA Science Inventory

    A simplified continuous receiving water quality model has been developed as a planning guide to permit preliminary screening of areawide wastewater management strategies. The model simulates the hypothetical response of the stream or tidal river system to the separate and combine...

  13. Impact of Urban Growth on Surface Climate: A Case Study in Oran, Algeria

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari; Safia, Abdelmounaine; Masek, Jeffrey; Peters-Lidars, Christaq; Imhoff, Marc L.

    2008-01-01

    We develop a land use map discriminating urban surfaces from other cover types over a semiarid region in North Africa and use it in a land surface model to assess the impact of urbanized land on surface energy, water and carbon balances. Unlike in temperate climates where urbanization creates a marked heat island effect, this effect is not strongly marked in semiarid regions. During summer, the urban class results in an additional warming of 1.45 C during daytime and 0.81 C at night compared to that simulated for needleleaf trees under similar climate conditions. Seasonal temperatures show urban areas warmer than their surrounding during summer and slightly cooler in winter. The hydrological cycle is practically "shut down" during summer and characterized by relatively large amount of runoff in winter. We estimate the annual amount of carbon uptake to 1.94 million metric tons with only 11.9% assimilated during the rainy season. However, if urbanization expands to reach 50% of the total area excluding forests, the annual total carbon uptake will decline by 35% and the July mean temperature would increase only 0.10 C, compared to current situation. In contrast, if urbanization expands to 50% of the total land excluding forests and croplands but all short vegetation is replaced by native broadleaf deciduous trees, the annual carbon uptake would increase 39% and the July mean temperature would decrease by 0.9 C, compared to current configuration. These results provide guidelines for urban planners and land use managers and indicate possibilities for mitigating the urban heat.

  14. Nested High Resolution Modeling of the Impact of Urbanization on Regional Climate in Three Vast Urban Agglomerations in China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2013-04-01

    In this paper, the Weather Research and Forecasting (WRF) model coupled to the Urban Canopy Model (UCM) is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high resolution land use and land cover data, two scenarios are designed to represent the non-urban and current urban land use distributions. By comparing the results of two nested, high resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1? and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban area mainly in summer and change the regional precipitation pattern to a certain extent.

  15. Evaluation of the environmental impact of the urban energy lifecycle based on lifecycle assessment

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Su, Meirong; Yang, Zhifeng; Liu, Gengyuan

    2014-03-01

    Energy resources have environmental impact through their entire lifecycle. The evaluation of the environmental impacts of the energy lifecycle can contribute to decision making regarding energy management. In this paper, the lifecycle assessment (LCA) method is introduced to calculate the environmental impact loads of different types of energy resources (including coal, oil, natural gas, and electricity) used in urban regions. The scope of LCA includes the production, transportation, and consumption processes. The pollutant emission inventory is listed, and the environmental impact loads are acquired through the calculation of environmental impact potentials, normalization, and weighted assessment. The evaluation method is applied to Beijing, China, revealing that photochemical oxidant formation and acidification are the primary impact factors in the lifecycle of all energy resources and that the total environmental impact load increased steadily from 132.69 million person equivalents (PE) in 1996 to 208.97 million PE in 2010. Among the energy types, coal contributes most to the environmental impact, while the impacts caused by oil, natural gas, and electricity have been growing. The evaluation of the environmental impact of the urban energy lifecycle is useful for regulating energy structures and reducing pollution, which could help achieve sustainable energetic and environmental development.

  16. Evaluation of the impact of planning alternative strategies on urban metabolism with the ACASA model

    NASA Astrophysics Data System (ADS)

    Marras, S.; Casula, M.; Pyles, R. D.; Paw U, K. T.; Spano, D.

    2011-12-01

    A crucial point in urban sustainable development is to evaluate the impact that future planning alternatives has on the main factors affecting the citizens liveableness, as the development of the urban heat island or the carbon emissions level. Recent advances in bio-physical sciences have led to new methods and models to estimate energy, water, and carbon fluxes. Also, several studies have addressed urban metabolism issues, but few have integrated the development of numerical tools and methodologies for the analysis of fluxes between a city and its environment with its validation and application in terms of future development alternatives. Over the past several years and most recently within the European Project "BRIDGE", CMCC tested the ACASA (Advanced-Canopy-Atmosphere-Soil Algorithm) land-surface model over agricultural ecosystems (grapes), wild vegetation (forests and Mediterranean maquis), and urban (Florence) or mixed urban/vegetated land (Helsinki). Preliminary results show success in adapting the model to mixed urban systems in each of the main fluxes of interest. The model was improved to adapt it for urban environment, and key parameterizations of leaf-facet scale interactions permit separate accounting of both biogenic and anthropogenic flux sources and sinks, and allow for easy scenario building for simulations designed to test changes in land use or urban planning. In this way, sustainable planning strategies are proposed based on quantitative assessments of energy, water, and carbon fluxes. In this research, three planning alternatives accounting for an increase in urbanization intensity were tested by ACASA in Helsinki (Finland) for the year 2008. Helsinki is located at a high latitude and is characterized by a rapid urbanization that requires a substantial amount of energy for heating. The model behavior for the baseline and alternatives scenarios (i.e., urban classes with low, mid, and high residential intensity) during the entire year was investigated and the model results were compared with in situ Eddy Covariance energy and mass flux measurements. Model sensitivity to land use change and increased population density values was tested individually first. Then, the impact of the three urban classes was evaluated by analyzing energy and mass fluxes produced by combining soil type classes, varying from silty-clay-loam to sand and bedrock, to increased population density values, respectively. Preliminary results are shown and statistical analysis was performed in order to evaluate the model performance for each scenario. From this first analysis, it appeared that ACASA model was able to adequately reproduce the increase in urban heat island and carbon emissions related to rapid urbanization. Also, the model could be used to simulate urban fluxes at both local and regional scale (when coupled to the mesoscale model WRF) and help local administration in planning future sustainable development strategies.

  17. Environmental Impacts of China's Urbanization from 2000 to 2010 and Management Implications.

    PubMed

    Tao, Yu; Li, Feng; Crittenden, John C; Lu, Zhongming; Sun, Xiao

    2016-02-01

    Rapid urbanization in China during the first decade of the twenty first century has brought about profound environmental changes at citywide and regional scales. In this paper, we present a comprehensive set of indicators and put forward a new evaluation method for measuring environmental impacts of urbanization from 2000 to 2010. We compared these impacts among 286 cities in mainland China and found that the overall quantity of pollutant discharge decreased as cities became more economically developed during the years 2000-2010. However, larger and denser cities, and wealthier cities in the eastern part of China tended to have larger quantities of pollutant discharge, resource consumption, and changes in land use (i.e., expansion of the built environment). The discharge increase occurred despite these cities having increased their investment in pollution control and construction of municipal environmental infrastructure. The negative impact from the intensity of pollutant discharge (i.e., discharge per unit of economic output) was generally less in more developed cities, although this was not always the case. Some cities, such as resource-based cities and old industrial cities, had both larger quantities of pollutant discharge and greater pollution intensity compared to other types of cities, indicating that environmental impacts did not necessarily decrease with increasing urbanization. The results of this study provide a promising basis for decision-making to reduce the impacts for different types of cities in the decades to come. PMID:26404432

  18. Environmental Impacts of China's Urbanization from 2000 to 2010 and Management Implications

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Li, Feng; Crittenden, John C.; Lu, Zhongming; Sun, Xiao

    2016-02-01

    Rapid urbanization in China during the first decade of the twenty first century has brought about profound environmental changes at citywide and regional scales. In this paper, we present a comprehensive set of indicators and put forward a new evaluation method for measuring environmental impacts of urbanization from 2000 to 2010. We compared these impacts among 286 cities in mainland China and found that the overall quantity of pollutant discharge decreased as cities became more economically developed during the years 2000-2010. However, larger and denser cities, and wealthier cities in the eastern part of China tended to have larger quantities of pollutant discharge, resource consumption, and changes in land use (i.e., expansion of the built environment). The discharge increase occurred despite these cities having increased their investment in pollution control and construction of municipal environmental infrastructure. The negative impact from the intensity of pollutant discharge (i.e., discharge per unit of economic output) was generally less in more developed cities, although this was not always the case. Some cities, such as resource-based cities and old industrial cities, had both larger quantities of pollutant discharge and greater pollution intensity compared to other types of cities, indicating that environmental impacts did not necessarily decrease with increasing urbanization. The results of this study provide a promising basis for decision-making to reduce the impacts for different types of cities in the decades to come.

  19. Urban Migration and Koineization in the Development of the Berlin Urban Vernacular

    ERIC Educational Resources Information Center

    Ehresmann, Todd M.

    2012-01-01

    The development of the Berlin urban vernacular during the late Early Modern and Industrial Period has been described in the literature in two primary ways: The first describes it as the result of the wholesale adoption of an autochthonous Upper Saxon dialect by a small and mobile urban elite in Berlin, who in turn imparted this newly-acquired

  20. The Department of Housing and Urban Development and Cooperative Extension: A Case for Urban Collaboration.

    ERIC Educational Resources Information Center

    Borich, Timothy O.

    2001-01-01

    U.S. Department of Agriculture-sponsored cooperative extension systems and university programs offered through the U.S. Department of Housing and Urban Development may find themselves in collaboration or conflict as both expand urban outreach activities. A case study in Des Moines, Iowa, illustrates how collaboration can occur and redundancy

  1. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    NASA Astrophysics Data System (ADS)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-02-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  2. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2012-11-01

    In this paper, the Weather Research and Forecasting Model, coupled to the Urban Canopy Model, is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high-resolution land use and land cover data, two scenarios are designed to represent the nonurban and current urban land use distributions. By comparing the results of two nested, high-resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget, and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1C, and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened, and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban areas, mainly in summer, and change the regional precipitation pattern to a certain extent.

  3. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo

    2011-11-01

    In this paper, the Weather Research and Forecasting Model, coupled to the Urban Canopy Model, is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high-resolution land use and land cover data, two scenarios are designed to represent the nonurban and current urban land use distributions. By comparing the results of two nested, high-resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget, and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1C, and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened, and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban areas, mainly in summer, and change the regional precipitation pattern to a certain extent.

  4. Crossing-scale hydrological impacts of urbanization and climate variability in the Greater Chicago Area

    NASA Astrophysics Data System (ADS)

    Rougé, Charles; Cai, Ximing

    2014-09-01

    This paper uses past hydrological records in Northeastern Illinois to disentangle the combined effects of urban development and climatic variability at different spatial scales in the Greater Chicago Area. A step increase in annual precipitation occurred in Northeastern Illinois during 1965-1972 according to climate records. Urbanization has occurred as a gradual process over the entire Greater Chicago Area, both before and after the abrupt annual precipitation increase. The analysis of streamflow trends at each gaging station is supplemented by the comparison of the evolution of streamflow indicators in a group of urban and agricultural watersheds, thanks to an original use of the Mann-Whitney test. Results suggest that urban expansion in the Greater Chicago Area has led to widespread increases in a wide variety of streamflow metrics, with the exceptions being spring flows and some of the peak flow indicators. The increases detected in small (<100 km2) urban watersheds are mitigated in large (>200 km2) ones, over which the changes in streamflow are relatively homogeneous. While the impacts of land-use change are identified across a wide range of flow indicators and spatial scales, there are indications that some of these effects are mitigated or made negligible by other factors. For example, while impervious surfaces are found to increase flooding, stormwater management facilities, an adaptation to increased flooding, mitigate their impacts at a wide range of scales. While impervious surfaces are known to reduce infiltration and baseflow, a low flow increase was triggered by water withdrawals from Lake Michigan, as a response to a rising water demand which made on-site groundwater extraction unsustainable. Our analysis thus highlights the impacts of adaptive planning and management of water resources on urban hydrology.

  5. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Haas, Jan; Ban, Yifang

    2014-08-01

    This study investigates land cover changes, magnitude and speed of urbanization and evaluates possible impacts on the environment by the concepts of landscape metrics and ecosystem services in China's three largest and most important urban agglomerations: Jing-Jin-Ji, the Yangtze River Delta and the Pearl River Delta. Based on the classifications of six Landsat TM and HJ-1A/B remotely sensed space-borne optical satellite image mosaics with a superior random forest decision tree ensemble classifier, a total increase in urban land of about 28,000 km2 could be detected alongside a simultaneous decrease in natural land cover classes and cropland. Two urbanization indices describing both speed and magnitude of urbanization were derived and ecosystem services were calculated with a valuation scheme adapted to the Chinese market based on the classification results from 1990 and 2010 for the predominant land cover classes affected by urbanization: forest, cropland, wetlands, water and aquaculture. The speed and relative urban growth in Jing-Jin-Ji was highest, followed by the Yangtze River Delta and Pearl River Delta, resulting in a continuously fragmented landscape and substantial decreases in ecosystem service values of approximately 18.5 billion CNY with coastal wetlands and agriculture being the largest contributors. The results indicate both similarities and differences in urban-regional development trends implicating adverse effects on the natural and rural landscape, not only in the rural-urban fringe, but also in the cities' important hinterlands as a result of rapid urbanization in China.

  6. A case study predicting environmental impacts of urban transport planning in China.

    PubMed

    Chen, Chong; Shao, Li-guo; Xu, Ling; Shang, Jin-cheng

    2009-10-01

    Predicting environmental impacts is essential when performing an environmental assessment on urban transport planning. System dynamics (SD) is usually used to solve complex nonlinear problems. In this study, we utilized system dynamics (SD) to evaluate the environmental impacts associated with urban transport planning in Jilin City, China with respect to the local economy, society, transport, the environment and resources. To accomplish this, we generated simulation models comprising interrelated subsystems designed to utilize changes in the economy, society, road construction, changes in the number of vehicles, the capacity of the road network capacity, nitrogen oxides emission, traffic noise, land used for road construction and fuel consumption associated with traffic to estimate dynamic trends in the environmental impacts associated with Jilin's transport planning. Two simulation scenarios were then analyzed comparatively. The results of this study indicated that implementation of Jilin transport planning would improve the current urban traffic conditions and boost the local economy and development while benefiting the environment in Jilin City. In addition, comparative analysis of the two scenarios provided additional information that can be used to aid in scientific decision-making regarding which aspects of the transport planning to implement in Jilin City. This study demonstrates that our application of the SD method, which is referred to as the Strategic Environmental Assessment (SEA), is feasible for use in urban transport planning. PMID:18850296

  7. Workshop Report On Sustainable Urban Development

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie; Martin, Gary; Barone, Larry; Wagener, Wolfgang

    2010-01-01

    The key workshop goal was to explore and document how NASA technologies, such as remote sensing, climate modeling, and high-end computing and visualization along with NASA assets such as Earth Observing Satellites (EOS) and Unmanned Aerial Vehicles (UAVs) can contribute to creating and managing a sustainable urban environment. The focus was on the greater Bay Area, but many aspects of the workshop were applicable to urban management at the local, regional and global scales. A secondary goal was to help NASA better understand the problems facing urban managers and to make city leaders in the Bay Area more aware of NASA's capabilities. By bringing members of these two groups together we hope to see the beginnings of new collaborations between NASA and those faced with instituting sustainable urban management in Bay Area cities.

  8. Probabilistic Impact Assessment of Domestic Rainwater Harvesting in Urban Slums: West Africa Case Study

    NASA Astrophysics Data System (ADS)

    Cowden, J. R.; Watkins, D. W.; Mihelcic, J. R.; Fry, L. M.

    2007-12-01

    Urban populations now exceed rural populations worldwide, creating unique challenges in providing basic services, especially in developing countries where informal or illegal settlements grow in peri-urban areas. West Africa is an acute example of the problems created by rapid urban growth, with high levels of urban poverty and low water and sanitation access rates. Although considerable effort has been made in providing improved water access and urban services to slum communities, research indicates that clean water access rates are not keeping up with urbanization rates in several areas of the world and that rapidly growing slum communities are beginning to overwhelm many prior water improvements projects. In the face of these challenges, domestic rainwater harvesting is proposed as a technologically appropriate and economically viable option for enhancing water supplies to urban slum households. However, assessing the reliability, potential health impacts, and overall cost-effectiveness of these systems on a regional level is difficult for several reasons. First, long daily rainfall records are not readily available in much of the developing world, including many regions of sub-Saharan Africa. Second, significant uncertainties exist in the relevant cost, water use, and health data. Third, to estimate the potential future impacts at the regional scale, various global change scenarios should be investigated. Finally, in addition to these technical challenges, there is also a need to develop relatively simple and transparent assessment methods for informing policy makers. A procedure is presented for assessment of domestic rainwater harvesting systems using a combination of scenario, sensitivity, and trade-off analyses. Using data from West Africa, simple stochastic weather models are developed to generate rainfall sequences for the region, which are then used to estimate the reliability of providing a range of per capita water supplies. Next, a procedure is proposed for quantifying the health impacts of improved water supplies, and sensitivity analysis of cost and health data provides an indication of cost- effectiveness. Climate change impacts are assessed via weather model parameter adjustment according to statistical downscaling of general circulation model output. Future work involving the interpolation of model parameters to ungaged sites, incorporation of additional global change scenarios (e.g., population, emissions), and extension of the procedure to a full Monte Carlo analysis will be discussed as time allows.

  9. Examining Urban Students' Constructions of a STEM/Career Development Intervention over Time

    ERIC Educational Resources Information Center

    Blustein, David L.; Barnett, Michael; Mark, Sheron; Depot, Mark; Lovering, Meghan; Lee, Youjin; Hu, Qin; Kim, James; Backus, Faedra; Dillon-Lieberman, Kristin; DeBay, Dennis

    2013-01-01

    Using consensual qualitative research, the study examines urban high school students' reactions to a science, technology, engineering, and math (STEM) enrichment/career development program, their resources and barriers, their perspectives on the impact of race and gender on their career development, and their overall views of work and their…

  10. The Integrated WRF/Urban Modeling System: Development, Evaluation, and Applications to Urban Environmental Problems

    EPA Science Inventory

    To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and fore...

  11. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China's 32 major cities.

    PubMed

    Zhou, Decheng; Zhao, Shuqing; Liu, Shuguang; Zhang, Liangxia

    2014-08-01

    Terrestrial vegetation plays many pivotal roles in urban systems. However, the impacts of urbanization on vegetation are poorly understood. Here we examined the spatiotemporal trends of the vegetation activity measured by MODIS Enhanced Vegetation Index (EVI) along Urban Development Intensity (UDI) gradient in 32 major Chinese cities from 2000 to 2012. We also proposed to use a new set of concepts (i.e., actual, theoretical, and positive urbanization effects) to better understand and quantify the impacts of urbanization on vegetation activities. Results showed that the EVI decreased significantly along a rising UDI for 28 of 32 cities (p<0.05) in linear, convex or concave form, signifying the urbanization impacts on vegetation varied across cities and UDI zones within a city. Further, the actual urbanization effects were much weaker than the theoretical estimates because of the offsetting positive effects generated by multiple urban environmental and anthropogenic factors. Examining the relative changes of EVI in various UDI zones against that in the rural area (ΔEVI), which effectively removed the effects of climate variability, demonstrated that ΔEVI decreased markedly from 2000 to 2012 for about three-quarters of the cities in the exurban (0.05urban (0.5urban core (0.75urban and urban core of many cities could primarily be attributed to the importance of positive effects derived from the urban environment and the improvement of management and maintenance of urban green space. More work is needed to quantify mechanistically the detailed negative and positive effects of urban environmental factors and management practices on vegetation activities. PMID:24829041

  12. Impact of climate change on runoff pollution in urban environments

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Kramer, S.; Barry, D. A.; Roudier, P.

    2012-12-01

    Runoff from urban environments is generally contaminated. These contaminants mostly originate from road traffic and building envelopes. Facade envelopes generate lead, zinc and even biocides, which are used for facade protection. Road traffic produces particles from tires and brakes. The transport of these pollutants to the environment is controlled by rainfall. The interval, duration and intensity of rainfall events are important as the dynamics of the pollutants are often modeled with non-linear buildup/washoff functions. Buildup occurs during dry weather when pollution accumulates, and is subsequently washed-off at the time of the following rainfall, contaminating surface runoff. Climate predictions include modified rainfall distributions, with changes in both number and intensity of events, even if the expected annual rainfall varies little. Consequently, pollutant concentrations in urban runoff driven by buildup/washoff processes will be affected by these changes in rainfall distributions. We investigated to what extent modifications in future rainfall distributions will impact the concentrations of pollutants present in urban surface runoff. The study used the example of Lausanne, Switzerland (temperate climate zone). Three emission scenarios (time horizon 2090), multiple combinations of RCM/GCM and modifications in rain event frequency were used to simulate future rainfall distributions with various characteristics. Simulated rainfall events were used as inputs for four pairs of buildup/washoff models, in order to compare future pollution concentrations in surface runoff. In this way, uncertainty in model structure was also investigated. Future concentrations were estimated to be between 40% of today's concentrations depending on the season and, importantly, on the choice of the RCM/GCM model. Overall, however, the dominant factor was the uncertainty inherent in buildup/washoff models, which dominated over the uncertainty in future rainfall distributions. Consequently, the choice of a proper buildup/washoff model, with calibrated site-specific coefficients, is a major factor in modeling future runoff concentrations from contaminated urban surfaces.

  13. Prioritizing Urban Children, Teachers, and Schools through Professional Development Schools

    ERIC Educational Resources Information Center

    Wong, Pia Lindquist, Ed.; Glass, Ronald David, Ed.

    2009-01-01

    How can we better educate disadvantaged urban students? Drawing on over five years' experience in a broad partnership involving twelve urban professional development schools in five districts, a teachers' union, a comprehensive public university, and several community-based organizations, the contributors to this volume describe how they worked…

  14. Prioritizing Urban Children, Teachers, and Schools through Professional Development Schools

    ERIC Educational Resources Information Center

    Wong, Pia Lindquist, Ed.; Glass, Ronald David, Ed.

    2009-01-01

    How can we better educate disadvantaged urban students? Drawing on over five years' experience in a broad partnership involving twelve urban professional development schools in five districts, a teachers' union, a comprehensive public university, and several community-based organizations, the contributors to this volume describe how they worked

  15. Continued Effort and Success: An Urban Professional School Development Program

    ERIC Educational Resources Information Center

    Corrigan, Diane G.; Weber, Edward J.; Francis, Kiffany

    2013-01-01

    The PDS partnership between the Cleveland State University Master of Urban Secondary Teaching (MUST) program and the Cleveland School of Science and Medicine (CSSM) has an established history of preparing educators to teach in urban schools. Recently awarded the NAPDS Award for Exemplary Professional Development School Achievement, this

  16. Resilience Development of Preservice Teachers in Urban Schools

    ERIC Educational Resources Information Center

    Roselle, Rene

    2007-01-01

    Retention of teachers in urban schools continues to plague public schools. Could universities increase the likelihood that teachers will stay in urban schools longer by preparing them for some of the adversities they may face and helping them develop resilience in relation to these challenges? Could we produce resilient educators before they…

  17. Continued Effort and Success: An Urban Professional School Development Program

    ERIC Educational Resources Information Center

    Corrigan, Diane G.; Weber, Edward J.; Francis, Kiffany

    2013-01-01

    The PDS partnership between the Cleveland State University Master of Urban Secondary Teaching (MUST) program and the Cleveland School of Science and Medicine (CSSM) has an established history of preparing educators to teach in urban schools. Recently awarded the NAPDS Award for Exemplary Professional Development School Achievement, this…

  18. A Sensitivity Model (SM) approach to analyze urban development in Taiwan based on sustainability indicators

    SciTech Connect

    Huang Shuli Yeh Chiatsung Budd, William W. Chen Liling

    2009-02-15

    Sustainability indicators have been widely developed to monitor and assess sustainable development. They are expected to guide political decision-making based on their capability to represent states and trends of development. However, using indicators to assess the sustainability of urban strategies and policies has limitations - as they neither reflect the systemic interactions among them, nor provide normative indications in what direction they should be developed. This paper uses a semi-quantitative systematic model tool (Sensitivity Model Tools, SM) to analyze the role of urban development in Taiwan's sustainability. The results indicate that the natural environment in urban area is one of the most critical components and the urban economic production plays a highly active role in affecting Taiwan's sustainable development. The semi-quantitative simulation model integrates sustainability indicators and urban development policy to provide decision-makers with information about the impacts of their decisions on urban development. The system approach incorporated by this paper can be seen as a necessary, but not sufficient, condition for a sustainability assessment. The participatory process of expert participants for providing judgments on the relations between indicator variables is also discussed.

  19. The impact of meteorological parameters on urban air quality

    NASA Astrophysics Data System (ADS)

    Ramsey, Nicole R.; Klein, Petra M.; Moore, Berrien

    2014-04-01

    Previous studies have shown that global climate change will have a significant impact on both regional and urban air quality. As air temperatures continue to rise and mid-latitude cyclone frequencies decrease, the overall air quality is expected to degrade. Climate models are currently predicting an increased frequency of record setting heat and drought for Oklahoma during the summer months. A statistical analysis was thus performed on ozone and meteorological data to evaluate the potential effect of increasing surface temperatures and stagnation patterns on urban air quality in the Oklahoma City Metropolitan area. Compared to the climatological normal, the years 2011 and 2012 were exceptionally warm and dry, and were therefore used as case study years for determining the impact of hot, dry conditions on air quality. These results were then compared to cooler, wetter summers to show how urban air quality is affected by a change in meteorological parameters. It was found that an increase in summertime heat and a decrease in summertime precipitation will lead to a substantial increase in both the minimum and maximum ozone concentrations as well as an increase in the total number of exceedance days. During the hotter, drier years, the number of days with ozone concentrations above the legal regulatory limit increased nearly threefold. The length of time in which humans and crops are exposed to these unsafe levels was also doubled. Furthermore, a significant increase was noted in the overnight minimum ozone concentrations. This in turn can lead to significant, adverse affects on both health and agriculture statewide.

  20. Methods for evaluating the pollution impact of urban wet weather discharges on biocenosis: A review.

    PubMed

    Gosset, Antoine; Ferro, Yannis; Durrieu, Claude

    2016-02-01

    Rainwater becomes loaded with a large number of pollutants when in contact with the atmosphere and urban surfaces. These pollutants (such as metals, pesticides, PAHs, PCBs) reduce the quality of water bodies. As it is now acknowledged that physico-chemical analyses alone are insufficient for identifying an ecological impact, these analyses are frequently completed or replaced by impact studies communities living in freshwater ecosystems (requiring biological indices), ecotoxicological studies, etc. Thus, different monitoring strategies have been developed over recent decades aimed at evaluating the impact of the pollution brought by urban wet weather discharges on the biocenosis of receiving aquatic ecosystems. The purpose of this review is to establish a synthetic and critical view of these different methods used, to define their advantages and disadvantages, and to provide recommendations for futures researches. Although studies on aquatic communities are used efficiently, notably on benthic macroinvertebrates, they are difficult to interpret. In addition, despite the fact that certain bioassays lack representativeness, the literature at present appears meagre regarding ecotoxicological studies conducted in situ. However, new tools for studying urban wet weather discharges have emerged, namely biosensors. The advantages of biosensors are that they allow monitoring the impact of discharges in situ and continuously. However, only one study on this subject has been identified so far, making it necessary to perform further research in this direction. PMID:26720196

  1. Urban waterfront rehabilitation: can it contribute to environmental improvements in the developing world?

    NASA Astrophysics Data System (ADS)

    Vollmer, Derek

    2009-04-01

    This paper examines urban waterfront rehabilitation as a sustainable development strategy in Chinese cities. Though waterfront rehabilitation is increasingly being employed in developed world cities, the environmental benefits are not always clear. Nonetheless, China, like other developing countries, has shown interest in this strategy, for improving its local water quality, upgrading environmental management, and improving quality of life for urban residents. As developing world cities struggle to break from the traditional model of 'pollute first, clean up later', it is critical that they employ strategies which minimize or remediate environmental impacts while still promoting economic development. This paper analyzes three such projects: the Qinhuai River Environmental Improvement Project in Nanjing, the Suzhou Creek Rehabilitation in Shanghai, and the Wuli Lake Rehabilitation in Wuxi. A critical analysis indicates that these projects have served numerous purposes which contribute to the cities' sustainable development. Though waterways may not be restored to pristine conditions, the incremental improvements appear to be a necessary catalyst for sustainable urban development.

  2. Impact of four-dimensional data assimilation (FDDA) on urban climate analysis

    NASA Astrophysics Data System (ADS)

    Pan, Linlin; Liu, Yubao; Liu, Yuewei; Li, Lei; Jiang, Yin; Cheng, Will; Roux, Gregory

    2015-12-01

    This study investigates the impact of four-dimensional data assimilation (FDDA) on urban climate analysis, which employs the NCAR (National Center for Atmospheric Research) WRF (the weather research and forecasting model) based on climate FDDA (CFDDA) technology to develop an urban-scale microclimatology database for the Shenzhen area, a rapidly developing metropolitan located along the southern coast of China, where uniquely high-density observations, including ultrahigh-resolution surface AWS (automatic weather station) network, radio sounding, wind profilers, radiometers, and other weather observation platforms, have been installed. CFDDA is an innovative dynamical downscaling regional climate analysis system that assimilates diverse regional observations; and has been employed to produce a 5 year multiscale high-resolution microclimate analysis by assimilating high-density observations at Shenzhen area. The CFDDA system was configured with four nested-grid domains at grid sizes of 27, 9, 3, and 1 km, respectively. This research evaluates the impact of assimilating high-resolution observation data on reproducing the refining features of urban-scale circulations. Two experiments were conducted with a 5 year run using CFSR (climate forecast system reanalysis) as boundary and initial conditions: one with CFDDA and the other without. The comparisons of these two experiments with observations indicate that CFDDA greatly reduces the model analysis error and is able to realistically analyze the microscale features such as urban-rural-coastal circulation, land/sea breezes, and local-hilly terrain thermal circulations. It is demonstrated that the urbanization can produce 2.5 k differences in 2 m temperatures, delays/speeds up the land/sea breeze development, and interacts with local mountain-valley circulations.

  3. The CLUVA project: Climate-change scenarios and their impact on urban areas in Africa

    NASA Astrophysics Data System (ADS)

    Di Ruocco, Angela; Weets, Guy; Gasparini, Paolo; Jørgensen, Gertrud; Lindley, Sarah; Pauleit, Stephan; Vahed, Anwar; Schiano, Pasquale; Kabisch, Sigrun; Vedeld, Trond; Coly, Adrien; Tonye, Emmanuel; Touré, Hamidou; Kombe, Wilbard; Yeshitela, Kumelachew

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. Its main objective is the estimate of the impacts of climate changes in the next 40 years at urban scale in Africa. The mission of CLUVA is to develop methods and knowledge to assess risks cascading from climate-changes. It downscales IPCC climate projections to evaluate threats to selected African test cities; mainly floods, sea-level rise, droughts, heat waves and desertification. The project evaluates and links: social vulnerability; vulnerability of in-town ecosystems and urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. A multi-scale and multi-disciplinary quantitative, probabilistic, modelling is applied. CLUVA brings together climate experts, risk management experts, urban planners and social scientists with their African counterparts in an integrated research effort focusing on the improvement of the capacity of scientific institutions, local councils and civil society to cope with climate change. The CLUVA approach was set-up in the first year of the project and developed as follows: an ensemble of eight global projections of climate changes is produced for east and west Africa until 2050 considering the new IPCC (International Panel on Climate Changes; http://www.ipcc.ch/) scenarios. These are then downscaled to urban level, where territorial modeling is required to compute hazard effects on the vulnerable physical system (urban ecosystems, informal settlements, lifelines such as transportation and sewer networks) as well as on the social context, in defined time frames, and risk analysis is then employed to assess expected consequences. An investigation of the existing urban planning and governance systems and its interface with climate risks is performed. With the aid of the African partners, the developed approach is currently being applied to selected African case studies: Addis Ababa - Ethiopia; Dar es Salaam - Tanzania, Douala - Cameroun; Ouagadougou - Burkina Faso, St. Louis - Senegal. The poster will illustrate the CLUVA's framework to assess climate-change-related risks at an urban scale in Africa, and will report on the progresses of selected case studies to demonstrate feasibility of a multi-scale and multi-risk quantitative approach for risk management.

  4. The impact of built-up surfaces on land surface temperatures in Italian urban areas.

    PubMed

    Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Orlandini, Simone; Raschi, Antonio; Maracchi, Giampiero; Munafò, Michele

    2016-05-01

    Urban areas are characterized by the very high degree of soil sealing and continuous built-up areas: Italy is one of the European countries with the highest artificial land cover rate, which causes a substantial spatial variation in the land surface temperature (LST), modifying the urban microclimate and contributing to the urban heat island effect. Nevertheless, quantitative data regarding the contribution of different densities of built-up surfaces in determining urban spatial LST changes is currently lacking in Italy. This study, which aimed to provide clear and quantitative city-specific information on annual and seasonal spatial LST modifications resulting from increased urban built-up coverage, was conducted generally throughout the whole year, and specifically in two different periods (cool/cold and warm/hot periods). Four cities (Milan, Rome, Bologna and Florence) were included in the study. The LST layer and the built-up-surface indicator were obtained via use of MODIS remote sensing data products (1km) and a very high-resolution map (5m) of built-up surfaces recently developed by the Italian National Institute for Environmental Protection and Research. The relationships between the dependent (mean daily, daytime and nighttime LST values) and independent (built-up surfaces) variables were investigated through linear regression analyses, and comprehensive built-up-surface-related LST maps were also developed. Statistically significant linear relationships (p<0.001) between built-up surfaces and spatial LST variations were observed in all the cities studied, with a higher impact during the warm/hot period than in the cool/cold ones. Daytime and nighttime LST slope patterns depend on the city size and relative urban morphology. If implemented in the existing city plan, the urban maps of built-up-surface-related LST developed in this study might be able to support more sustainable urban land management practices by identifying the critical areas (Hot-Spots) that would benefit most from mitigation actions by local authorities, land-use decision makers, and urban planners. PMID:26878643

  5. Developing Survival Skills Workshops for Urban Women.

    ERIC Educational Resources Information Center

    Thurston, Linda P.; Greenwood, Charles R.

    Survival Skills for Urban Women is a series of 10 3-hour workshops designed for low-income minority women. The workshops cover the following topics: (1) assertiveness; (2) personal health; (3) nutrition; (4) money management; (5) child management; (6) legal rights; (7) self-advocacy; (8) crisis coping; (9) community resources; and (10) re-entry to…

  6. Impact on Professional Development

    ERIC Educational Resources Information Center

    Nolan, Jim, Jr.; Grove, Doris; Leftwich, Horatio; Mark, Kelly; Peters, Brian

    2011-01-01

    The focus of this chapter is on the evidence to date that documents the impact of PDS engagement on four specific groups of participants: veteran P-12 teachers, university faculty, P-12 school principals, and parents and community members. In reviewing the literature concerning the impact of PDS engagement on these four groups, the authors'…

  7. Impacts of urbanization on the hazard, vulnerability and risk of pluvial disaster

    NASA Astrophysics Data System (ADS)

    Pan, T.-Y.; Chang, T.-J.; Lai, J.-S.; Chang, H.-K.

    2012-04-01

    The design capacity of an urban drainage system is often smaller than that of a fluvial protection facility such as levee. Many metropolises located in lowlands suffer pluvial inundation disaster more than pluvial flood disaster. For improving mitigation strategies, flood risk assessment is an important tool of non-structure flood control measures, especially in the countries suffering tropical cyclones and monsoon with high frequency. Locating in the hot zone of typhoon tracks in the Western Pacific, Taiwan suffers three to five typhoons annually. As results of urbanization in Taiwan, heavy rainfalls cause inundation disaster rising with the increase of population and the demand of land development. The purpose of this study is to evaluate the impacts of urbanization on the hazard, vulnerability and risk of pluvial disaster. This study applies the concept that risk is composed by hazard and vulnerability to assess the flood risk of human life. Two-dimensional overland-flow simulation is performed based on a design extreme rainfall event to calculate the score of pluvial hazard factors for human life, including flood depth, velocity and rising ratio. The score of pluvial vulnerability for human life is carried out according to the factors of resident and environment. The risk matrix is applied to show the risk by composing the inundation hazards and vulnerabilities. Additionally, flood simulations performed are concerned with different stages of drainage channel construction that indicates the progress of the pluvial disaster mitigation for evaluating the impacts of urbanization on inundation hazard. The changes of land use and density of population are concerned with the impacts of urbanization on inundation vulnerability. The Tainan City, one of the earliest cities on Taiwan, is selected as the case study because serious flooding was induced by Typhoon Morakot in 2009. Typhoon Morakot carried intense rain moved from the east slowly as low as 4 km/hr while the southwest monsoon also entered this region at the same time. The combined effect of these was that in the mid-area between typhoon and southwest monsoon, a sharp air-pressure gradient was built which unpredictably brought about heavy rainfall for about 72 hours in the study area to produce a record-breaking rainfall of 625mm in 48 hours. Through the assessing the impacts of urbanization on pluvial inundation risk of the Tainan City in the Typhoon Morakot event, the results show that the inundation hazard is decreased and the vulnerability is increased due to urbanization. Finally, the pluvial inundation risk maps for human life can provide useful information for setting mitigation strategies of flood inundation.

  8. Satellite Maps Show Chesapeake Bay Urban Development

    NASA Astrophysics Data System (ADS)

    Goetz, Scott J.; Jantz, Patrick

    2006-04-01

    The extent, density, and configuration of the built environment-such as buildings, roads, parking lots, and other materials constructed for human use-have an impact on a wide range of biogeochemical and hydrological processes. These built areas, which are impervious to water infiltration, modify hydrology through the combined influence of increased peak flows, reduced base flows, flashier stream hydrographs (decreased lag times between storm events and peak discharge), and changes in bank and streambed erosion [Nilsson et al., 2003]. Additionally, increasing impervious cover has long been known to amplify point source pollution discharges into streams, including chemical runoff from parking lots and roads [Schueler, 1994]. Two maps of the built environment, expressed in terms of impervious surface area, have been derived for areas that encompass the 168,000-square kilometer Chesapeake Bay watershed (Figure 1), a region that has been highly altered by human land use [Goetz et al., 2004; Jantz et al., 2005]. One map was developed for the region at fine (30-square-meter) spatial resolution, and the other covers the extent of the conterminous United States at one-square-kilometer resolution [Elvidge et al., 2004]. A finer-resolution regional map was used to assess the quality of the national map, demonstrating the utility the latter map for a range of applications related to monitoring land transformation and assessing watershed impacts.

  9. Policy directions in urban health in developing countries--the slum improvement approach.

    PubMed

    Harpham, T; Stephens, C

    1992-07-01

    The urban development, or housing, sector has a longer experience of addressing the problems of the urban poor in developing countries than the health sector. In recent years the policy of 'slum improvement', which involves both sectors, has attracted the support of international donors. This article documents the development of the slum improvement approach and addresses key issues of the approach which have implications for health planning: covering the poorest dwellers; relocation; land tenure; gentrification; debt burdens and the impact on women. Questions about the approach which still need answering are defined and a summary of the constraints in slum improvement and potential solutions is presented. PMID:1509300

  10. Bacterioplankton Dynamics within a Large Anthropogenically Impacted Urban Estuary

    PubMed Central

    Jeffries, Thomas C.; Schmitz Fontes, Maria L.; Harrison, Daniel P.; Van-Dongen-Vogels, Virginie; Eyre, Bradley D.; Ralph, Peter J.; Seymour, Justin R.

    2016-01-01

    The abundant and diverse microorganisms that inhabit aquatic systems are both determinants and indicators of aquatic health, providing essential ecosystem services such as nutrient cycling but also causing harmful blooms and disease in impacted habitats. Estuaries are among the most urbanized coastal ecosystems and as a consequence experience substantial environmental pressures, providing ideal systems to study the influence of anthropogenic inputs on microbial ecology. Here we use the highly urbanized Sydney Harbor, Australia, as a model system to investigate shifts in microbial community composition and function along natural and anthopogenic physicochemical gradients, driven by stormwater inflows, tidal flushing and the input of contaminants and both naturally and anthropogenically derived nutrients. Using a combination of amplicon sequencing of the 16S rRNA gene and shotgun metagenomics, we observed strong patterns in microbial biogeography across the estuary during two periods: one of high and another of low rainfall. These patterns were driven by shifts in nutrient concentration and dissolved oxygen leading to a partitioning of microbial community composition in different areas of the harbor with different nutrient regimes. Patterns in bacterial composition were related to shifts in the abundance of Rhodobacteraceae, Flavobacteriaceae, Microbacteriaceae, Halomonadaceae, Acidomicrobiales, and Synechococcus, coupled to an enrichment of total microbial metabolic pathways including phosphorus and nitrogen metabolism, sulfate reduction, virulence, and the degradation of hydrocarbons. Additionally, community beta-diversity was partitioned between the two sampling periods. This potentially reflected the influence of shifting allochtonous nutrient inputs on microbial communities and highlighted the temporally dynamic nature of the system. Combined, our results provide insights into the simultaneous influence of natural and anthropogenic drivers on the structure and function of microbial communities within a highly urbanized aquatic ecosystem. PMID:26858690

  11. Dogs in the Hall: A Case Study of Affective Skill Development in an Urban Veterinary Program

    ERIC Educational Resources Information Center

    Martin, Michael; Tummons, John; Ball, Anna; Bird, William

    2014-01-01

    The purpose of this bounded single case study was to explore how an urban high school veterinary program impacted students' affective skill development. The program was unique because students were required to participate in internships with local animal care businesses and care for animals within the school veterinary laboratory. The…

  12. Analysis of climate change impacts on Urban Heat Island through geospatial data

    NASA Astrophysics Data System (ADS)

    Zoran, M.

    2010-09-01

    Through spatio-temporal changes of micro and macro-meteorological conditions in metropolitan areas, climate change due to increased anthropogenic emissions of greenhouse gases and carbon dioxide (CO2) represents a long-term climate hazard with high potential to alter the intensity, temporal pattern, and spatial extent of the urban heat island (UHI). Instrumental observations and numerical reconstructions of global temperature evolution reveal a pronounced warming during the past 150 years. One expression of this warming is the observed increase in the occurrence of summer heat waves. Conceptually this increase is understood as a shift of the statistical distribution towards warmer temperatures, while changes in the width of the distribution are often considered small. Urban areas tend to experience a relatively higher temperature compared with the surrounding rural areas. This thermal difference, in conjunction with waste heat released from urban houses, transportation and industry, contribute to the development of urban heat island (UHI). Summer heat waves will affect much more urban temperatures and microclimates with adverse effects on human health. Remote sensing is a key application in global change science and urban climatology. Urbanization, the conversion of other types of land to uses associated with growth of populations and economy has a great impact on both micro-climate as well as macro-climate. Remote sensing derived biophysical attributes provide great potential for establishing parameters describing urban land cover/use (construction materials and the composition and structure of urban canopies) for improving the understanding of the urban surface energy budgets, and observing the urban heat island (UHI) effect.In this study, Landsat TM and ETM+ , MODIS, IKONOS images over Bucharest metropolitan area from 1988 to 2008 have been selected to retrieve the urban biogeophysical parameters and brightness temperatures in relation with changes of cover/use types. The spatial distribution of heat islands has been changed from a mixed pattern, where bare land, semi-bare land and land under development were warmer than other surface types, to extensive UHI. Our analysis showed that higher temperature in the UHI was located with a scattered pattern, which was related to certain land-cover types. In order to analyze the relationship between UHI and land-cover changes, this study attempted to employ a quantitative approach in exploring the relationship between temperature and several indices, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Bareness Index (NDBaI) and Normalized Difference Build-up Index (NDBI). It was found that correlations between NDVI, NDWI, NDBaI and temperature are negative when NDVI is limited in range, but positive correlation is shown between NDBI and temperature.Such analysis is very helpful in urban mesoscale models and urban climate studies.

  13. Climate Change and Impacts Research Experiences for Urban Students

    NASA Astrophysics Data System (ADS)

    Marchese, P.; Carlson, B. E.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Scalzo, F.; Frost, J.; Moshary, F.; Greenbaum, S.; Cheung, T. K.; Howard, A.; Steiner, J. C.; Johnson, L. P.

    2011-12-01

    Climate change and impacts research for undergraduate urban students is the focus of the Center for Global Climate Research (CGCR). We describe student research and significant results obtained during the Summer 2011. The NSF REU site, is a collaboration between the City University of New York (CUNY) and the NASA Goddard Institute for Space Studies (GISS). The research teams are mentored by NASA scientists and CUNY faculty. Student projects include: Effects of Stratospheric Aerosols on Tropical Cyclone Activity in the North Atlantic Basin; Comparison of Aerosol Optical Depth and Angstrom Exponent Retrieved by AERONET, MISR, and MODIS Measurements; White Roofs to the Rescue: Combating the Urban Heat Island Effect; Tropospheric Ozone Investigations in New York City; Carbon Sequestration with Climate Change in Alaskan Peatlands; Validating Regional Climate Models for Western Sub-Sahara Africa; Bio-Remediation of Toxic Waste Sites: Mineral Characteristics of Cyanide-Treated Mining Waste; Assessment of an Ocean Mixing Parameterization for Climate Studies; Comparative Wind Speed through Doppler Sounding with Pulsed Infrared LIDAR; and Satellite Telemetry and Communications. The CGCR also partners with the New York City Research Initiative (NYCRI) at GISS. The center is supported by NSF ATM-0851932 and the American Recovery and Reinvestment Act of 2009 (ARRA).

  14. The interaction between land subsidence and urban development in China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Wang, R.; Zhou, Y.; Jiang, Y.; Wang, X.

    2015-11-01

    The Yangtze River Delta and North China Plain are experiencing serious land subsidence development and are also the areas that have undergone the fastest urbanization. Rapid urban development inevitably requires more water resources. However, China is a country with small per capita water resources, nonuniform distribution of water resources, and over-exploitation of groundwater - all of which are critical factors contributing to the potential for a land subsidence disaster. In addition, land subsidence has brought about elevation loss, damaged buildings, decreased safety of rail transit projects, lowered land value, and other huge economic losses and potential safety hazards in China. In this paper, Beijing, a typical northern Chinese city deficient in water, is taken as an example to explore (a) the problems of urban development, utilization of water resources, and land subsidence development; (b) the harm and influence of land subsidence hazards on urban construction; and (c) the relationship between urban development and land subsidence. Based on the results, the author has predicted the trend of urban development and land subsidence in Beijing and puts forward her viewpoints and suggestions.

  15. Impact of urbanization level on urban air quality: a case of fine particles (PM(2.5)) in Chinese cities.

    PubMed

    Han, Lijian; Zhou, Weiqi; Li, Weifeng; Li, Li

    2014-11-01

    We examined and compared PM2.5 concentrations in urban and the surrounding regions, and further investigated the impact of urbanization on urban PM2.5 concentrations at the Chinese prefectures. Annual PM2.5 concentrations in most prefectures were greater than 10?g/m(3), the air quality guideline of the World Health Organization. Those prefectures were mainly distributed along the east coast and southeast of Sichuan province; The urban PM2.5 concentrations ( [Formula: see text] ) in 85 cities were greater than (>10?g/m(3)) those in the surrounding area. Those cities were mainly located in the Beijing-Sichuan and Shanghai-Guangxi belts. In addition, [Formula: see text] was less than (<0?g/m(3)) that in surrounding areas in only 41 prefectures, which were located in western China or nearby mega cities; Significant positive correlations were found between [Formula: see text] and urban population (R(2)=0.99, P<0.05), and between [Formula: see text] and urban second industry fraction (R(2)=0.71, P<0.05), suggesting that urbanization had considerable impact on PM2.5 concentrations. PMID:25113968

  16. Urbanization impact on watershed overland flow generation under Mediterranean influence

    NASA Astrophysics Data System (ADS)

    Ferreira, C. S.; Steenhuis, T. S.; Soares, D.; Ferreira, A. J.; Coelho, C. O.; Walsh, R. P.

    2012-12-01

    Land use and landscape changes alter the hydrologic cycle. Despite many studies examining agricultural and forest changes to urban land use, few have been carried out in Portugal and other countries with a Mediterranean climate. The aim of the study is to assess the hydrological response of urbanizing areas and to identify practices that minimize the impact on the watershed hydrology. The study is carried out in the 6 km2 watershed called Ribeira dos Coves, where rapid urbanization is taken place due to its proximity to Coimbra city centre, the largest city in central Portugal. The study combines field surveys and hydrological monitoring to assess spatiotemporal dynamics and land uses contributions to surface hydrology. Since 2005, the catchment hydrological response has been monitored, through a continuous-recording network that includes a weather station and a river water-level recorder at the outlet. In Fall 2010, the monitoring network was extended by six additional rain gauges and eight water-level recorders. To improve understanding of rainfall-runoff relationships, nine runoff plots of 16m2 were installed in the forest areas, and 31 representative sites were monitored along one year for water repellence, soil moisture and water infiltration. The research showed that the generation of surface runoff in the watershed is different during the summer and winter. During the summer, hydrophobicity is widespread and is especially in forest areas extremely high, resulting in very low or even null water infiltration and quick runoff from infrequent short duration storms. However, despite the soil hydrophobicity the greatest runoff coefficient measured in the runoff plots was only 2.5%, indicating that most rainfall infiltrated outside the water repellent areas and moved via the subsurface to the regional groundwater. In winter the hydrophobicity disappears and the rains increase the ground water table, causing low lying areas to saturate and become runoff source areas. Thus, Hortonian overland flow is important during and immediately after dry periods, while in the wet period the spatial dynamics of saturation overland flow governs runoff responses. Despite the enlargement of the urban areas from 20% to 32% in the last 10 years, the watershed annual runoff coefficient has remained relatively small, and was below 19%. The current low runoff coefficients are a result of the generally sandy soils, the limestone geology (in part of the area) and the deep filled valley on which the watershed is located. All those factors promote infiltration and flow of groundwater under the gage. Considering the quick hydrological response and the predictable runoff increase, associated with urban areas expansion, it is expected flood risk to increase significantly. For this reason it is important to implement planning strategies to preserve the existent infiltration areas and promote new ones, which should consider land uses discontinuities. This should be an important consideration in hydrological modelling and in urban planning.

  17. Urban Impact Assessment and Adaptation Strategies to Climate Change in Europe: A Case Study for Antwerp, Berlin and Almada

    NASA Astrophysics Data System (ADS)

    Stevens, Catherine; Thomas, Bart

    2014-05-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heat waves. For example, the summer 2003 European heat wave caused up to 70.000 excess deaths over four months in Central and Western Europe. As around 75% of Europe's population resides in urban areas, it is of particular relevance to examine the impact of seasonal to decadal-scale climate variability on urban areas and their populations. This study aims at downscaling the spatially coarse resolution CMIP5 climate predictions to the local urban scale and investigating the relation between heat waves and the urban-rural temperature increment (urban heat island effect). The resulting heat stress effect is not only driven by climatic variables but also impacted by urban morphology. Moreover, the exposure varies significantly with the geographical location. All this information is coupled with relevant socio-economic datasets such as population density, age structure, etc. focussing on human health. The analyses are conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (BE), Berlin (DE) and Almada (PT) represented by different climate and urban characteristics. The end-user needs have been consolidated in a climate services plan including the production of heat risk exposure maps and the analysis of various scenarios considering e.g. the uncertainty of the global climate predictions, urban expansion over time and the impact of mitigation measures such as green roofs. The results of this study will allow urban planners and policy makers facing the challenges of climate change and develop sound strategies for the design and management of climate resilient cities.

  18. Functional Zoning and Urban Development Tendencies of Bucharest City/Romania

    NASA Astrophysics Data System (ADS)

    Armas, Iuliana; Dumitrascu, Silvia

    2010-05-01

    Any form of urban development policy for environmental management should be based on the differentiation of the structure of a territory that can be found in the shape of functional zoning. Identifying the patterns of morphological structure of the urban space can provide essential clues concerning the proper measures to take into consideration during the activity of urban planning. In this sense, the Bucharest municipality study case provides the example of a dynamic urban space with a complex and distinctive evolutionary structure. The aim of the study is to set out the main events that shaped the Bucharest city space and the patterns resulted from their impact at the functional level of the Romanian capital. In order to identify the development tendencies of the Bucharest municipality, a series of aspects concerning urban morphology should be highlighted that reveal the impact of the socio-economical policies at the structural level of the territory. In this sense, three images of the urban space stand out, representative for the period when they materialized: the Post-Byzantine (XV-XVIII), the Fanariot (XVIII) and the Modern periods (XIX-XX). The corresponding cartographic documents analyzed are: the Franz Purcel Plan (dated 1789), the Romanian Guide Print Plan and, respectively, the AGC Busman Print Plan. The analysis reveals three distinctive morphological types: radial-concentric in the 17th century, polynuclear in the 18th century, leading to the mixed character in the Modern period. The latest trait of the urban territory is based on the concentric character of the street network (three circles were identified at the level of the capital city that point out the evolution of the urban space: Dacia bv-Mircea Vulcanescu, Stefan cel Mare bv-Iancu de Hunedoara and the last circle outlined by the ring road) and the presence of multiple nuclei that accumulate the commercial, administrative and business functions of the city.

  19. Impact of urban growth-driven landuse change on microclimate and extreme precipitation - A sensitivity study

    NASA Astrophysics Data System (ADS)

    Pathirana, Assela; Denekew, Hailu B.; Veerbeek, William; Zevenbergen, Chris; Banda, Allan T.

    2014-03-01

    More than half of the humanity lives in cities and many cities are growing in size at a phenomenal rate. Urbanisation-driven landuse change influences the local hydrometeorological processes, changes the urban micro-climate and sometimes affects the precipitation significantly. Understanding the feedback of urbanisation driven micro-climatic changes on the rainfall process is a timely challenge. In this study we attempt to investigate the impact of urban growth driven landuse change on the changes in the extreme rainfall in and around cities, by means of sensitivity studies. We conduct three sets of controlled numerical experiments using a mesoscale atmospheric model coupled with a land surface model to investigate the hypothesis that the increasing urbanisation causes a significant increase of extreme rainfall values. First we conduct an ensemble of purely idealised simulations where we show that there is a significant increase of high intensity rainfall with the increase of urban landuse. Then four selected extreme rainfall events of different tropical cities were simulated with first current level of urbanisation and then (ideally) expanded urban areas. Three out of the four cases show a significant increase of local extreme rainfall when the urban area is increased. Finally, we conducted a focused study on the city of Mumbai, India: A landscape dynamics model Dinamica-EGO was used to develop a future urban growth scenario based on past trends. The predicted future landuse changes, with current landuse as control, were used as an input to the atmospheric model. The model was integrated for four historical cases which showed that, had these events occurred with the future landuse, the extreme rainfall outcome would have been significantly more severe. An analysis of extreme rainfall showed that hourly 10-year and 50-year rainfall would increase in frequency to 3-year and 22-year respectively.

  20. Impacts of the impervious surfaces on the water use by urban trees: Hydrogen isotope analysis

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Ryu, Y.

    2013-12-01

    As the urban area is expanding and the populations of cities are growing, the role of urban trees in regulating biogeochemical cycles in urban regions is becoming more important. In particular, impervious surfaces in urban regions greatly disturb water use by trees. Here, we investigate the impacts of the anthropogenic structures on the water use pattern of trees on the Seoul National University campus. We select two types of gingko (Ginko biola L.) : one has been stabilized surrounded by impervious blocks and the other has been grown in natural conditions. To track the source of tree water use, xylem water at stem and soil water at 0-10, 40-50 90-100-cm depth are collected before and after precipitation for all trees. Precipitation is collected just after the rainfall event. Hydrogen isotope ratios of precipitation, soil water and xylem are analyzed to attribute source in tree water use. Finally we discuss the effects of impervious surfaces on root development and water use efficiencies.

  1. Impacts of urban transportation mode split on CO{sub 2} emissions in Jinan, China.

    SciTech Connect

    He, D.; Meng, F.; Wang, M.; He, K.

    2011-04-01

    As the world's largest developing country, China currently is undergoing rapid urbanization and motorization, which will result in far-reaching impacts on energy and the environment. According to estimates, energy use and carbon emissions in the transportation sector will comprise roughly 30% of total emissions by 2030. Since the late 1990s, transportation-related issues such as energy, consumption, and carbon emissions have become a policy focus in China. To date, most research and policies have centered on vehicle technologies that promote vehicle efficiency and reduced emissions. Limited research exists on the control of greenhouse gases through mode shifts in urban transportation - in particular, through the promotion of public transit. The purpose of this study is to establish a methodology to analyze carbon emissions from the urban transportation sector at the Chinese city level. By using Jinan, the capital of China's Shandong Province, as an example, we have developed an analytical model to simulate energy consumption and carbon emissions based on the number of trips, the transportation mode split, and the trip distance. This model has enabled us to assess the impacts of the transportation mode split on energy consumption and carbon emissions. Furthermore, this paper reviews a set of methods for data collection, estimation, and processing for situations where statistical data are scarce in China. This paper also describes the simulation of three transportation system development scenarios. The results of this study illustrate that if no policy intervention is implemented for the transportation mode split (the business-as-usual (BAU) case), then emissions from Chinese urban transportation systems will quadruple by 2030. However, a dense, mixed land-use pattern, as well as transportation policies that encourage public transportation, would result in the elimination of 1.93 million tons of carbon emissions - approximately 50% of the BAU scenario emissions.

  2. Cities of Consumption: The Impact of Corporate Practices on the Health of Urban Populations

    PubMed Central

    Galea, Sandro

    2008-01-01

    The increasing concentration of the world’s population in cities and the growing accumulation of political and economic power by corporations create new threats to health and opportunities for improving global health. By considering the intersection of these two fundamental social determinants of well-being, we elucidate some of the mechanisms by which they influence the health of urban populations. After reviewing the changing historical impact of corporations on cities, we focus on the growth of consumption as a leading cause of mortality and morbidity and describe how the food, tobacco, automobile, and other industries promote unhealthy behaviors and lifestyles in urban settings. Cities are also sites for developing alternatives to unhealthy corporate practices, and we assess strategies used to modify practices that harm health. PMID:18437582

  3. Cities of consumption: the impact of corporate practices on the health of urban populations.

    PubMed

    Freudenberg, Nicholas; Galea, Sandro

    2008-07-01

    The increasing concentration of the world's population in cities and the growing accumulation of political and economic power by corporations create new threats to health and opportunities for improving global health. By considering the intersection of these two fundamental social determinants of well-being, we elucidate some of the mechanisms by which they influence the health of urban populations. After reviewing the changing historical impact of corporations on cities, we focus on the growth of consumption as a leading cause of mortality and morbidity and describe how the food, tobacco, automobile, and other industries promote unhealthy behaviors and lifestyles in urban settings. Cities are also sites for developing alternatives to unhealthy corporate practices, and we assess strategies used to modify practices that harm health. PMID:18437582

  4. Simulation of Regional Climate Change Impacted by Urbanization and Anthropogenic Heat Release in China

    NASA Astrophysics Data System (ADS)

    Feng, J.; Wang, Y.

    2010-12-01

    Anthropogenic heat release produced from energy use may be an important factor which has an impact on climate change, but currently it is uncertain that how much contribution greenhouse gas, the changes of land surface and anthropogenic heat release gives to global warming respectively. In our study, we collected and analyzed the distribution of the urban anthropogenic heat release with the actual energy consumption and climate observation data in China. Based on the data of urbanization and anthropogenic heat release, the Advanced Research WRF (ARW) model and its urban canopy model (UCM) were used to simulate the influences on regional climate by the change of urban land surface and anthropogenic heat release. In the experiments, the classifications of land use of USGS-24 without urban type and USGS-33 with three urban types are adopted. Considering the large areas of urbanization, the surface air temperature becomes obviously higher over most areas of China than that no change of urban land surface is considered, but the impact is not regular for the precipitation. The latent heat flux generally decreases due to the urbanization. In further, the anthropogenic heat release was added into the model according to the three types of urban classification, and then we can find the temperature continues to increase, but the attitude is smaller than that with the change of urban surface. Therefore, anthropogenic heat release is an unnegligible factor for regional climate change.

  5. Assessment tools for urban catchments: developing biological indicators based on benthic macroinvertebrates

    USGS Publications Warehouse

    Purcell, A.H.; Bressler, D.W.; Paul, M.J.; Barbour, M.T.; Rankin, E.T.; Carter, J.L.; Resh, V.H.

    2009-01-01

    Biological indicators, particularly benthic macroinvertebrates, are widely used and effective measures of the impact of urbanization on stream ecosystems. A multimetric biological index of urbanization was developed using a large benthic macroinvertebrate dataset (n = 1,835) from the Baltimore, Maryland, metropolitan area and then validated with datasets from Cleveland, Ohio (n = 79); San Jose, California (n = 85); and a different subset of the Baltimore data (n = 85). The biological metrics used to develop the multimetric index were selected using several criteria and were required to represent ecological attributes of macroinvertebrate assemblages including taxonomic composition and richness (number of taxa in the insect orders of Ephemeroptera, Plecoptera, and Trichoptera), functional feeding group (number of taxa designated as filterers), and habit (percent of individuals which cling to the substrate). Quantile regression was used to select metrics and characterize the relationship between the final biological index and an urban gradient (composed of population density, road density, and urban land use). Although more complex biological indices exist, this simplified multimetric index showed a consistent relationship between biological indicators and urban conditions (as measured by quantile regression) in three climatic regions of the United States and can serve as an assessment tool for environmental managers to prioritize urban stream sites for restoration and protection.

  6. Development of a high temporal-spatial resolution vehicle emission inventory based on NRT traffic data and its impact on air pollution in Beijing - Part 2: Impact of vehicle emission on urban air quality

    NASA Astrophysics Data System (ADS)

    He, J. J.; Wu, L.; Mao, H. J.; Liu, H. L.; Jing, B. Y.; Yu, Y.; Ren, P. P.; Feng, C.; Liu, X. H.

    2015-07-01

    In a companion paper (Jing et al., 2015), a high temporal-spatial resolution vehicle emission inventory (HTSVE) for 2013 in Beijing has been established based on near real time (NRT) traffic data and bottom up methodology. In this study, based on the sensitivity analysis method of switching on/off pollutant emissions in the Chinese air quality forecasting model CUACE, a modeling study was carried out to evaluate the contributions of vehicle emission to the air pollution in Beijing main urban areas in the periods of summer (July) and winter (December) 2013. Generally, CUACE model had good performance of pollutants concentration simulation. The model simulation has been improved by using HTSVE. The vehicle emission contribution (VEC) to ambient pollutant concentrations not only changes with seasons but also changes over moment. The mean VEC, affected by regional pollutant transports significantly, is 55.4 and 48.5 % for NO2, while 5.4 and 10.5 % for PM2.5 in July and December 2013, respectively. Regardless of regional transports, relative vehicle emission contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and December 2013, while 8.7 and 13.9 % for PM2.5. The RVEC to PM2.5 is lower than PM2.5 contribution rate for vehicle emission in total emission, which may be caused by easily dry deposition of PM2.5 from vehicle emission in near-surface layer compared to elevated source emission.

  7. Gulf of Mexico Integrated Science - Tampa Bay Study: Examining the Impact of Urbanization on Seafloor Habitats

    USGS Publications Warehouse

    Yates, Kimberly

    2005-01-01

    Seafloor habitats, such as seagrass beds, provide essential habitat for fish and marine mammals. For many years, the study of seagrass vitality has been a priority for scientists and resource managers working in Tampa Bay. Seafloor habitats are extremely sensitive to changes in water quality. Like a canary in a coal mine, seagrass can serve as an ecological indicator of estuary health. Between the 1940s and the 1970s, seagrass gradually died in Tampa Bay. This loss has been attributed to a rise in urbanization and an increase in nutrient loading into the bay. Better treatment of industrial wastewater and runoff beginning in the 1980s resulted in the continuous recovery of seagrass beds. However, in the mid-1990s, the recovery began to level off in areas where good water quality was expected to support continued seagrass recovery, demonstrating that nutrient loading may be only one factor impacting seagrass health. Researchers now are trying to determine what might be affecting the recovery of seagrass in these areas. Currently, little is understood about the effects that other aspects of urbanization and natural change, such as groundwater and sediment quality, might have on seagrass vitality. This segment of the Tampa Bay integrated science study is intended to identify, quantify, and develop models that illustrate the impact that urbanization may have on seafloor habitat distribution, health, and restoration.

  8. Development of river flood model in lower reach of urbanized river basin

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in the region.

  9. The Association of Urbanicity with Cognitive Development at Five Years of Age in Preterm Children

    PubMed Central

    Gouin, Marion; Flamant, Cyril; Gascoin, Géraldine; Rouger, Valérie; Florin, Agnès; Guimard, Philippe; Rozé, Jean-Christophe; Hanf, Matthieu

    2015-01-01

    Objective To determine the association of urbanicity, defined as living in an urban area, with cognitive development at five years of age in preterm children who were free of any disabilities or neurodevelopmental delays. Design Prospective population-based cohort. Setting French regional Loire Infant Follow-up Team (LIFT) network. Participants Included in the study were 1738 surviving infants born between March 2003 and December 2008 before 35 weeks of gestational age. At two years of age, the children were free of any disabilities and neurodevelopmental delays and were living in the Pays de la Loire region from their birth to five years of age. Main Outcome Measures The cognitive development at five years of age was evaluated with the Global School Adaptation score (GSA). The urbanicity of the residence for each child was classified into three groups: urban, quasi-rural, and rural area. Results Quantile regression approaches were used to identify a significant association between urbanicity and the GSA score at five years of age (adjusting for child and family characteristics). We found that the negative impact of urbanicity on the GSA score was more important for the lower quantile of the GSA scores. Conclusions Urbanicity was significantly associated with cognitive neurodevelopment at five years of age in preterm children born before 35 weeks of gestation. Complementary results additionally suggest that this relation could be mediated at the residence level by a high socioeconomic deprivation level. If these results are confirmed, more personalized follow-ups could be developed for preterm children. Further studies are needed to finely identify the contextual characteristics of urbanicity that underlie this association. PMID:26161862

  10. Conservation in metropolitan regions: assessing trends and threats of urban development and climate change

    NASA Astrophysics Data System (ADS)

    Thorne, J. H.; Santos, M. J.; Bjorkman, J.

    2011-12-01

    Two global challenges to successful conservation are urban expansion and climate change. Rapid urban growth threatens biodiversity and associated ecosystem services, while climate change may make currently protected areas unsuitable for species that exist within them. We examined three measures of landscape change for 8800 km2 of the San Francisco Bay metropolitan region over 80 years past and future: urban growth, protected area establishment, and natural vegetation type extents. The Bay Area is a good test bed for conservation assessment of the impacts of temporal and spatial of urban growth and land cover change. The region is geographically rather small, with over 40% of its lands already dedicated to protected park and open space lands, they are well-documented, and, the area has had extensive population growth in the past and is projected to continue to grow. The ten-county region within which our study area is a subset has grown from 1.78 million people in 1930, to 6.97 million in 2000 and is estimated to grow to 10.94 million by 2050. With such an influx of people into a small geographic area, it is imperative to both examine the past urban expansion and estimate how the future population will be accommodated into the landscape. We quantify these trends to assess conservation 'success' through time. We used historical and current landcover maps to assess trend, and a GIS-based urban modeling (UPlan) to assess future urban growth impacts in the region, under three policy scenarios- business as usual, smart growth, and urban redevelopment. Impacts are measured by the amount of open space targeted by conservation planners in the region that will be urbanized under each urban growth policy. Impacts are also measured by estimates of the energy consumption projected for each of the scenarios on household and business unit level. The 'business as usual' and 'smart growth' scenarios differed little in their impacts to targeted conservation lands, because so little open space remains to accommodate the expected population growth. Redevelopment conserved more naturally vegetated open space. The redevelopment scenario also permits the lowest increase in energy demand because buildings taken out in the process are reconfigured to higher levels of energy efficiency. However, redevelopment requires substantial increases in residential densities to confine the spatial footprint of the expected future urban growth. These three urban growth scenario footprints differ in their impact to natural vegetation and open space. To incorporate the influence of climate change on remaining natural ecosystems in this urbanizing landscape, we projected the stability of existing, mapped, vegetation types in the region under future climates by examining where projected ranges of the dominant plant species comprising each California Wildlife Habitat Relationship type will all remain together, and where they will begin to dis-associate due to biogeographic response to changing climate. This permits identification of stable and unstable zones of vegetation. The combination of climate stable, high conservation priority and likelihood of urban development provides a way to prioritize conservation land acquisitions.

  11. Modelling regional climate change and urban planning scenarios and their impacts on the urban environment in two cities with WRF-ACASA

    NASA Astrophysics Data System (ADS)

    Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.

    2011-12-01

    The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over urban regions. We present comparisons of observed (EC) tower flux observations from the Florence (Ximeniano) site for 1-9 April, 2008 with results from two sets of high-resolution simulations: the first using dynamically-downscaled input/boundary conditions (Model-0) and the second using fully nested WRF-ACASA (Model-1). In each simulation the model physics are the same; only the WRF domain configuration differs. Preliminary results (Figure 1) indicate a degree of parity (and a slight statistical improvement), in the performances of Model-1 vs. that of Model-0 with respect to observed. Figure 1 (below) shows air temperature values from observed and both model estimates. Additional results indicate that care must be taken to configure the WRF domain, as performance appears to be sensitive to model configuration.

  12. Status of NASA Satellite, Field Observations, and Numerical Modeling Addressing the Impact of Urbanization on Short and Long Term Precipitation Variability

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Manyin, Michael; Burian, Steve; Garza, Carlos

    2004-01-01

    Howard (1833a) made the first documented observation of a temperature difference between an urban area and its rural environment. Manley (1958) termed this contrast the "urban heat island (UHI)". The UHI has now become a widely acknowledged, observed, and researched phenomenon because of its broad implications. It is estimated that by the year 2025, 60% of the world's population will live in cities (UNFP, 1999). In the United States, the current urban growth rate is approximately 12.5%, with 80% currently living in urban areas. As cities continue to grow, urban sprawl creates unique problems related to land use, transportation, agriculture, housing, pollution, and development for policymakers. Urban expansion and its associated urban heat islands also have measurable impacts on weather and climate processes.

  13. The impact of aerosols on urban photochemical ozone production

    NASA Astrophysics Data System (ADS)

    Kondragunta, Shobha

    1997-12-01

    Ozone in the troposphere is a photochemically-formed secondary pollutant that is harmful to human health, a green-house gas, and an oxidizing species. Several chemical and meteorological factors that affect the rate of photochemical ozone formation in the troposphere are well understood. The impact of urban aerosols on the photochemical formation of ozone has been generally ignored or assumed to be small. This thesis work shows that radiative properties of aerosols influence the ozone formation significantly. The photolysis rate coefficient of NO2 photolysis, j(NO2), was measured at NASA/Goddard Space Flight Center during the summer of 1995. Aerosol optical depth (?) during the summer of 1995 ranged from 0.1 to 2.0 at photochemically active wavelengths, with a mean value of 1.0 on smoggy days. Surface j(NO2) decreased with increasing effective aerosol optical depth (?/cos ?), where ? is the solar zenith angle. Surface j(NO2) on smoggy days compared to a clear day decreased by 60% when sun was low in the sky (? = 60o), but the effects were marginal for overhead sun. Retrieved radiative properties of aerosols were used as input to the Discrete Ordinate Radiative Transfer model to simulate the observed j(NO2) and compute the vertical profiles of photolysis rate coefficients of other important trace gases. Model calculations showed that high ?-values typical of the eastern United States on smoggy days increased the boundary layer UV flux substantially (up to 36%), and led to accelerated photolysis rate coefficients. Agreement between the calculated and measured j(NO2) was excellent. Variable-grid Urban Airshed Model (UAM-V) simulations using the calculated photolysis rate coefficients for different ?-values showed that boundary layer ozone formation is sensitive to column aerosol content, aerosol single scattering albedo (?), and the thickness of the aerosol layer. Boundary layer ozone increased up to 50 ppb when ?380 (? at 380 nm) increased from 0.0 to 2.0 for an ?-value of unity. Absorbing aerosol with an ?-value of 0.75 decreased ozone formation by 25 ppb when ?380 increased from 0.0 to 2.0. Aerosol with an ?-value of 0.96 increased ozone formation by 25 ppb. However, aerosol above the boundary layer decreased ozone production in the boundary layer by 25 ppb. The impact of aerosols on photochemical production of ozone is significant because reduced sulfur dioxide emissions as mandated by the Clean Air Act Amendment of 1990 may result in an unanticipated benefit for ozone pollution problem.

  14. Hamburg Urban Soil Climate Observatory (HUSCO): A concept to assess the impact of moisture and energy fluxes of urban soils on local climate

    NASA Astrophysics Data System (ADS)

    Sandoval, S.; Ament, F.; Kutzbach, L.; Eschenbach, A.

    2010-09-01

    Soil as a storage and transmitter for water and thermal energy is able to influence and modify the local climate. The aim of this research project is a more precise understanding of the interactions between pedosphere and atmosphere in urban environments. HUSCO focuses on the impact of the modified soil hydrology by different typical urban structural units. The local effect of groundwater and soil properties on meteorological variables in the urban environment will be assessed by integrated flux measurements over urban districts with different groundwater table depth and urban land-uses. The results should open up opportunities to make more tangible predictions about the impacts of climate change in urban areas and to develop adaptation strategies to climate change for urban planning. Long-term measurements will start in early summer 2010 in the city of Hamburg, Germany. To quantify the climate-controlling processes, like fluxes of energy and water, two stationary and one temporary and mobile Eddy covariance system will be used, and various soil measurement stations will be mounted to analyze seasonal variations in soil water balance, ground water table and soil thermal properties. To detect the resulting climate effects, namely the heterogeneity of temperature and humidity in urban areas, coupled "Meteo-stations" will be set up to analyze core atmospheric parameters. In addition, data of the weather mast of Hamburg will be used to evaluate the greater meteorological conditions. The measurement sites were selected with regard to the local groundwater table, the type of housing estate, and size and vegetation of the green space. Two measurement sites - i.e. two urban districts - with different groundwater table depths were chosen: a low groundwater table depth of < 2.5 m and a high groundwater table depth of > 5 m. Each site features two measurement stations, one located in a housing estate and one in a green space. Another two stations will be located inside a sealed courtyard, and in a perimeter block development district. The two Eddy covariance stations will be mounted at heights of about 30 - 40 m located in the housing estates, with a supplementary Meteo-station and soil measurement stations. Temporarily, a mobile Eddy covariance station will be set up inside the green spaces to determine the local occurring fluxes. Furthermore, data of existing observational networks throughout Hamburg will be integrated. We will present objectives of the project, the design of experiments and the selection of investigation sites as well as first data of the mounted measurement stations and the analyzed data of an existing observational network. Acknowledgment: The project is founded by DFG as a part of the cluster of excellence "Integrated Climate System Analysis and Prediction (CliSAP)", KlimaCampus Hamburg

  15. Integrating impact assessment and conflict management in urban planning: Experiences from Finland

    SciTech Connect

    Peltonen, Lasse; Sairinen, Rauno

    2010-09-15

    The article examines the interlinkages between recent developments in conflict management and impact assessment procedures in the context of urban planning in Finland. It sets out by introducing the fields of impact assessment and conflict mediation. It then proceeds to discuss the development of impact assessment practices and the status of conflict mediation in Finnish land use planning. The case of Korteniitty infill development plan in Jyvaeskylae is used to demonstrate how the Finnish planning system operates in conflict situations - and how social impact assessment can contribute to managing planning conflicts. The authors ask how the processes of impact assessment contribute to conflict management. Based on the Finnish experience, it is argued that social impact assessment of land use plans can contribute to conflict management, especially in the absence of institutionalised conflict mediation processes. In addition, SIA may acquire features of conflict mediation, depending on extent and intensity of stakeholder participation in the process, and the quality of linkages it between knowledge production and decision-making. Simultaneously, conflict mediation practices and theoretical insights can inform the application of SIA to help it address land use conflicts more consciously.

  16. Understanding regional metabolism for a sustainable development of urban systems.

    PubMed

    Baccini, P

    1996-06-01

    Cities are the most complex forms of settlements which man has built in the course of his cultural development. Their "metabolism" is connected with the world economy and is run mainly by fossil energy carriers. Up to now there are no validated models for the evaluation of a sustainable development of urban regions.The guidelines for a "sustainable development" suggest the reduction of resource consumption. The article is concerned with the problem of how the "sustainable-development concept" can be transformed from a global to a regional scale. In urban settlements the strategy of final storage should be applied. By this, the subsystem waste management can be transformed within 10 to 15 years to a "sustainable status".With regard to the system "agronomy", the article concludes that agriculture in urban systems should focus on food production instead of promoting reduction of food production in favour of energy plants, which is not a suitable strategy.The main problems are the energy carriers. Transformation to a "sustainble status" is only possible by a reconstruction of the urban system, i.e. of buildings and the transportation network. The rate determining step in achieving such a status is the change in the fabric of buildings and in the type of transportation networks. The reconstruction of an urban system needs, mainly for economical reasons, a time period of two generations. PMID:24234960

  17. Impact of local urban design and traffic restrictions on air quality in a medium-sized town.

    PubMed

    Acero, J A; Simon, A; Padro, A; Santa Coloma, O

    2012-01-01

    Traffic is the major air pollution source in most urban areas. Nowadays, most of the strategies carried out to improve urban air quality are focused on reducing traffic emissions. Nevertheless, acting locally on urban design can also reduce levels of air pollutants. In this paper, both strategies are studied in several scenarios for a medium-sized town of the Basque Country (Spain). Two main actions are analysed in order to reduce traffic emissions: (1) minor extension ofa pre-existing low emission zone (LEZ); (2) substitution of 10% of passenger cars that are older than 5 years by hybrid and electric vehicles. Regarding local urban design, three alternatives for the development of one side of a street canyon are considered: (1) a park with trees; (2) an open space without obstacles; (3) a building. Two different urban traffic dispersion models are used to calculate the air quality scenarios: PROKAS (Gaussian&box) to analyse the reduction of traffic emissions in the whole urban area and WinMISKAM (CFD) to evaluate specific urban designs. The results show the effectiveness of the analysed actions. On one hand, the definition of a small LEZ, as well as the introduction in 2015 of vehicles with new technology (hybrid and electric), results in minor impacts on PM10 and NO2 ambient concentrations. On the other hand, local urban design can cause significant variation in spatial distribution ofpollutant concentrations emitted inside street canyons. Consequently, urban planners should consider all these aspects when dealing with urban air pollution control. PMID:23393990

  18. Impacts of Urbanization on Groundwater Quality and Recharge in a Semi-arid Alluvial Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of groundwater resources is paramount in semi-arid regions experiencing urban development. In the southwestern United States, enhancing recharge of urban storm runoff has been identified as a strategy for augmenting groundwater resources. An understanding of how urbanization may impac...

  19. Impacts of Urbanization on Flood and Soil Erosion Hazards in Istanbul, Turkey

    ERIC Educational Resources Information Center

    Ozacar, Biricik Gozde

    2013-01-01

    Due to the inappropriate planning and explosive population growth in urban areas, especially in developing countries, sustainable and disaster-safe urbanization has become the most important challenge for governments. Urbanization presents benefits in different ways but has led simultaneously to changes in land use/land cover (LULC), impacting…

  20. Results of the round table "Impact of natural and man-made hazards on urban areas"

    NASA Astrophysics Data System (ADS)

    Bostenaru-Dan, Maria; Olga Gociman, Cristina; Hostiuc, Constantin; Mihaila, Marina; Gheorghe (Popovici), Diana Alexandra; Anghelache, Mirela Adriana; Dutu, Andreea; Tascu-Stavre, Miroslav

    2015-04-01

    On Thursday the 6th of November a round table was organised at the Centre of Architectural and Urban Studies of the "Ion Mincu" University of Architecture and Urban Planning on the topic of this session. It included a review of the previous editions, and an outlook to the edition this year. We shared publications, and a publication is in work from the round table itself. The series of round tables at the Centre of Architectural and Urban Studies is an innitiative of Constantin Hostiuc, the secretary general of the centre. This round table was organised by Maria Bostenaru Dan, and moderated by Cristina Olga Gociman, who currently runs a project on a related topic. From the various ways to approach the effects of hazards, up to the disatrous ones, on urban areas, we consider the most suitable the approach to the impact. From the point of view of natural sciences and of the engineering ones this was approached a number of times, and newly social sciences are included as well. The role of planning and design for a better prevention, and even post-disaster intervention is ignored many times though. The goal of the round table was to bring together multidisciplinary approaches (architecture, urban planning, seismology, geography, structural engineering, ecology, communication sciences, art history) on a problem set from this point of view. Discussed topics were: 1. Assessment and mapping methods of the impact of natural hazards on urban areas (preventive, postdisaster) 2. Visualisation and communication techniques of the assessed impact, including GIS, internet, 3D 3. Strategies for the reduction of the impact of natural hazards on urban areas 4. Suitable methods of urban design for the mitigation of the effects of disasters in multihazard case 5. Partnership models among the involved actors in the decision process for disaster mitigaton 6. Urban planning instruments for risc management strategies (ex. master plan) 7. Lessons learned from the relationship between hazard, vulnerability and impact in recent events 8. Investigation o urban morphology for better estimation of urban vulnerability (interaction between neighbouring buildings, the influence of the position of a building in the historical centre, ...) 9. Investigation of urban morphology to assess postdisaster accesibility of strategical buildings, the role of the urban pattern for emergency vehicles 11. Quantifying models of vulnerability through questionnaires based on point numbers - the role of statistics 12. Interactions between the urban systems which can increase/decrease vulnerability 13. The approach difference in the impact on protected urban areas as compared on common urban areas. 14. Keeping the memory in reconstruction/reshape efforts after disasters, the role of heritage habitat.

  1. Effects of urban development on ant communities: implications for ecosystem services and management.

    PubMed

    Sanford, Monte P; Manley, Patricia N; Murphy, Dennis D

    2009-02-01

    Research that connects the effects of urbanization on biodiversity and ecosystem services is lacking. Ants perform multifarious ecological functions that stabilize ecosystems and contribute to a number of ecosystem services. We studied responses of ant communities to urbanization in the Lake Tahoe basin by sampling sites along a gradient of urban land development. We sampled ant communities, measured vegetation characteristics, quantified human activities, and evaluated ant-community responses by grouping ants into service-providing units (SPUs), defined as a group of organisms and their populations that perform specific ecosystem services, to provide an understanding of urbanization impacts on biodiversity and their delivery of ecosystem services. Species richness and abundance peaked at intermediate levels of urban development, as did the richness of 3 types of ant SPUs (aerators, decomposers, and compilers). With increasing land development aerator and decomposer ants significantly declined in abundance, whereas compiler ants significantly increased in abundance. Competing models demonstrated that precipitation was frequently among the strongest influences on ant community structure; however, urban development and human activities also had a strong, negative influence on ants, appearing in most models with DeltaAIC(c) < 2 for species richness and abundance patterns of SPUs and generalists. Response diversity was observed within SPUs, which suggests that the corresponding ecosystem services were maintained until development reached 30-40%. Our data provide evidence that ecosystem functions, such as water infiltration and soil productivity, may be diminished at sites subject to greater levels of urbanization and that conserving ant communities and the ecosystem services they provide could be an important target in land-use planning and conservation efforts. PMID:18778268

  2. Problems of modern urban drainage in developing countries.

    PubMed

    Silveira, A L L

    2002-01-01

    Socio-economic factors in developing countries make it more difficult to solve problems of urban drainage than in countries that are more advanced. Factors inhibiting the adoption of modern solutions include: (1) in matters of urban drainage, 19th-century sanitary philosophy still dominates; (2) both legal and clandestine land settlement limits the space that modern solutions require; (3) contamination of storm runoff by foul sewage, sediment and garbage prevents adoption of developed-country practices; (4) climatic and socio-economic factors favour the growth of epidemics where runoff is retained for flood-avoidance and to increase infiltration; (5) lack of a technological basis for adequate drainage management and design; (6) lack of the interaction between community and city administration that is needed to obtain modern solutions to urban drainage problems. Awareness of these difficulties is fundamental to the search for modern and viable solutions appropriate for developing countries. PMID:11989890

  3. Regional assessment of urban impacts on landcover and open space finds a smart urban growth policy performs little better than business as usual.

    PubMed

    Thorne, James H; Santos, Maria J; Bjorkman, Jacquelyn H

    2013-01-01

    Assessment of landscape change is critical for attainment of regional sustainability goals. Urban growth assessments are needed because over half the global population now lives in cities, which impact biodiversity, ecosystem structure and ecological processes. Open space protection is needed to preserve these attributes, and provide the resources humans need. The San Francisco Bay Area, California, is challenged to accommodate a population increase of 3.07 million while maintaining the region's ecosystems and biodiversity. Our analysis of 9275 km² in the Bay Area links historic trends for three measures: urban growth, protected open space, and landcover types over the last 70 years to future 2050 projections of urban growth and open space. Protected open space totaled 348 km² (3.7% of the area) in 1940, and expanded to 2221 km² (20.2%) currently. An additional 1038 km² of protected open space is targeted (35.1%). Urban area historically increased from 396.5 km² to 2239 km² (24.1% of the area). Urban growth during this time mostly occurred at the expense of agricultural landscapes (62.9%) rather than natural vegetation. Smart Growth development has been advanced as a preferred alternative in many planning circles, but we found that it conserved only marginally more open space than Business-as-usual when using an urban growth model to portray policies for future urban growth. Scenarios to 2050 suggest urban development on non-urban lands of 1091, 956, or 179 km², under Business-as-usual, Smart Growth and Infill policy growth scenarios, respectively. The Smart Growth policy converts 88% of natural lands and agriculture used by Business-as-usual, while Infill used only 40% of those lands. Given the historic rate of urban growth, 0.25%/year, and limited space available, the Infill scenario is recommended. While the data may differ, the use of an historic and future framework to track these three variables can be easily applied to other metropolitan areas. PMID:23755204

  4. Regional Assessment of Urban Impacts on Landcover and Open Space Finds a Smart Urban Growth Policy Performs Little Better than Business as Usual

    PubMed Central

    Thorne, James H.; Santos, Maria J.; Bjorkman, Jacquelyn H.

    2013-01-01

    Assessment of landscape change is critical for attainment of regional sustainability goals. Urban growth assessments are needed because over half the global population now lives in cities, which impact biodiversity, ecosystem structure and ecological processes. Open space protection is needed to preserve these attributes, and provide the resources humans need. The San Francisco Bay Area, California, is challenged to accommodate a population increase of 3.07 million while maintaining the regions ecosystems and biodiversity. Our analysis of 9275 km2 in the Bay Area links historic trends for three measures: urban growth, protected open space, and landcover types over the last 70 years to future 2050 projections of urban growth and open space. Protected open space totaled 348 km2 (3.7% of the area) in 1940, and expanded to 2221 km2 (20.2%) currently. An additional 1038 km2 of protected open space is targeted (35.1%). Urban area historically increased from 396.5 km2 to 2239 km2 (24.1% of the area). Urban growth during this time mostly occurred at the expense of agricultural landscapes (62.9%) rather than natural vegetation. Smart Growth development has been advanced as a preferred alternative in many planning circles, but we found that it conserved only marginally more open space than Business-as-usual when using an urban growth model to portray policies for future urban growth. Scenarios to 2050 suggest urban development on non-urban lands of 1091, 956, or 179 km2, under Business-as-usual, Smart Growth and Infill policy growth scenarios, respectively. The Smart Growth policy converts 88% of natural lands and agriculture used by Business-as-usual, while Infill used only 40% of those lands. Given the historic rate of urban growth, 0.25%/year, and limited space available, the Infill scenario is recommended. While the data may differ, the use of an historic and future framework to track these three variables can be easily applied to other metropolitan areas. PMID:23755204

  5. Education, Development, and the Rebuilding of Urban Community.

    ERIC Educational Resources Information Center

    Keith, Novella Z.; Keith, Nelson W.

    The paper asks what are appropriate policies for urban school reform in the context of global transformations affecting cities in both developed and "Third World" countries. Features of this transformation include growing population diversity, a semi-permanent underclass, and the informal economy. Comprehensive community development (i.e.

  6. Developing a Sustained Interest in Science among Urban Minority Youth

    ERIC Educational Resources Information Center

    Basu, Sreyashi Jhumki; Barton, Angela Calabrese

    2007-01-01

    This study draws upon qualitative case study to investigate the connections between the "funds of knowledge" that urban, high-poverty students bring to science learning and the development of a sustained interest in science. We found that youth developed a sustained interest in science when: (1) their science experiences connected with how they…

  7. Developing a Sustained Interest in Science among Urban Minority Youth

    ERIC Educational Resources Information Center

    Basu, Sreyashi Jhumki; Barton, Angela Calabrese

    2007-01-01

    This study draws upon qualitative case study to investigate the connections between the "funds of knowledge" that urban, high-poverty students bring to science learning and the development of a sustained interest in science. We found that youth developed a sustained interest in science when: (1) their science experiences connected with how they

  8. Modelling the catchment-scale environmental impacts of wastewater treatment in an urban sewage system for CO? emission assessment.

    PubMed

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Water shortages and water pollution are a global problem. Increases in population can have further acute effects on water cycles and on the availability of water resources. Thus, wastewater management plays an important role in mitigating negative impacts on natural ecosystems and human environments and is an important area of research. In this study, we modelled catchment-scale hydrology, including water balances, rainfall, contamination, and urban wastewater treatment. The entire water resource system of a basin, including a forest catchment and an urban city area, was evaluated synthetically from a spatial distribution perspective with respect to water quantity and quality; the Life Cycle Assessment (LCA) technique was applied to optimize wastewater treatment management with the aim of improving water quality and reducing CO? emissions. A numerical model was developed to predict the water cycle and contamination in the catchment and city; the effect of a wastewater treatment system on the urban region was evaluated; pollution loads were evaluated quantitatively; and the effects of excluding rainwater from the treatment system during flooding and of urban rainwater control on water quality were examined. Analysis indicated that controlling the amount of rainwater inflow to a wastewater treatment plant (WWTP) in an urban area with a combined sewer system has a large impact on reducing CO? emissions because of the load reduction on the urban sewage system. PMID:20729603

  9. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lankao, Patricia; Rosenzweig, Cynthia; Ruth, Mattias; Solecki, William; Tarr, Joel

    2008-01-01

    This slide presentation reviews some of the effects that global change has on urban areas in the United States and how the growth of urban areas will affect the environment. It presents the elements of our Synthesis and Assessment Report (SAP) report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  10. Assessment of patches attributes along the Urban Development Gradient

    NASA Astrophysics Data System (ADS)

    Kopel, Daniella; Wittenberg, lea; Malkinson, Dan

    2014-05-01

    The world is increasingly urban. If current trends maintain, by 2050 the global urban population is estimated to be 6.3 billion, nearly doubling the world population in 2010. Consequently, more than 60% of the area projected to be urban in 2030 has yet to be built, replacing the open and agriculture lands with construction and infrastructure. The open green patches (OGP), within the urban matrix, are essential for healthy and wellness of cities by supplying the city's ecological services (Mausback and Seybold, 1998). Regarding future trends, there is a need and obligation to insure the functional and sustainability of the city's OPG. Urban vegetation composition and diversity in the OGP had long been considered as an indication for ecologically functioning systems. Furthermore, urban soil is also essential for the sustainability and function of the urban habitat and ecological services, such as maintaining groundwater restraining urban floods etc. (Lehmann and Stahr 2007). There is no single set of rules to classify a functional urban green patch worth preserving. The aim of this study is to examine the effects of patch properties (including geometry, age, type and location along the urban gradient, connectivity, and urban matrix density) on the presence, abundance and characteristics of vegetation and soil conditions of remnant patches The inspired purpose is to eventually find an assessment for urban open green patches OGP quality by linking, patches attributes, plants indexes and soil quality indexes The research is conducted in the city of Haifa, which is located on the northern part of Mount Carmel in the north-western part of Israel . Mean annual rainfall, 550-800 mm, varies with latitude and the mean temperature is 18.80c. Modern Haifa is a relatively young city which maintains remnant vegetation patches within its municipal boundary. 32 OGP were selected in nine categories (size: small, medium and large, distance from city edge: far, average, near), in which vegetation was surveyed. . All vascular plant species were recorded and identified. The mineral soils (A horizon, depth 10-15 cm) were collected to obtain a constant sample size after removing surface litter and organic matter. The samples were analyzed for mineral and structure properties. Preliminary results of the plant survey and analysis indicated that the patches' vegetation is highly diverse. Within the large patches, regardless of their location along the urban development gradient, higher sub-habitat diversity and plants diversity were observed. The diversity is high for local and exotic species alike. In the medium and small size patches, also regardless of their location, there is a diversity of plant composition that may be connected to different disturbances or matrix related effect not yet considered in the study. Preliminary results of the soil survey and analysis indicated that more than 75% of the soil samples taken from the OGP, regardless of their location in the urban development gradient, exhibited a considerable changes in soil profile, compared to "natural" soils and significant alternations in the physical properties were also observed. The substance that was found in the remnant OGP in Haifa is different from soil, however, links between the urban-soils altered properties and the vegetation composition in those patches, and there relationships are not fully understood.

  11. The possible impact of urbanization on a heavy rainfall event in Beijing

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Liu, Yimin

    2015-08-01

    The impact of urbanization on a heavy rainfall event that occurred in Beijing on 21 July 2012 was investigated using version 3.6.1 of the Weather Research and Forecasting Model coupled with a multilayer urban canopy model. High-resolution land use data for Beijing in 2010 with modified urban parameterization were introduced into the model. Evaluation showed that the simulation result generally agreed well with observations. Two sensitivity tests with different urban high-resolution land use scenarios were employed to analyze the impact of urban expansion on this rainfall event. The simulation results confirmed that urbanization expansion played an important role in the distribution and intensity of precipitation for this extreme event. Urbanization led to total precipitation increasing in upstream and downstream directions. The start time of the precipitation process was advanced by 1 h, and the duration became longer due to the influence of urbanization. Moreover, urbanization caused the spatial distribution of precipitation to become more concentrated. The total precipitation amount above 250 mm and the frequency of precipitation intensity above 40 h-1 mm are both increased. The results of this study show that urbanization plays a significant role in frontal-type rainfall.

  12. Hamburg Urban Soil Climate Observatory (HUSCO): A concept to assess the impact of moisture and energy fluxes of urban soils on local climate

    NASA Astrophysics Data System (ADS)

    Sandoval, Sarah; Ament, Felix; Eschenbach, Annette

    2010-05-01

    The aim of this research project is a more precise understanding of the interactions between pedosphere and atmosphere in urban environments. Soil as a storage and transmitter for water and thermal energy is able to influence and modify the local climate. This effect is to be quantified for three different typical urban structural units, namely green spaces, dense and sparse terraced housing estates, in combination with different soil properties and water table depths. Focus lies on the modified soil hydrology of different housing densities. The impact of soil properties and groundwater table on local climate in urban areas will be assessed. The results should open up opportunities to make more tangible predictions about the impacts of climate change in urban areas and to develop adaptation strategies to climate change for urban planning. Long-term measurements will start in spring 2010 in the city of Hamburg, Germany. To quantify the climate-controlling processes as fluxes of energy and water, two Eddy covariance systems including soil heat flux measurements are used and various soil measurement stations are mounted to analyze seasonal variations in soil water balance, ground water table and soil thermal properties. To detect the resulting climate effects, namely the heterogeneity of temperature and humidity in urban areas, coupled "Meteo-stations" are set up to analyze core atmospheric parameters. Furthermore, data of existing observational networks throughout Hamburg will be integrated. We will present objectives of the project, the design of experiments and the selection of investigation sites as well as very first data. Acknowledgment: The project is founded by DFG as a part of the cluster of excellence "Integrated Climate System Analysis and Prediction (CliSAP)", KlimaCampus, Hamburg

  13. Declining Newspaper Readership: Impact of Region and Urbanization.

    ERIC Educational Resources Information Center

    Tillinghast, William A.

    1981-01-01

    Analyzes four studies indicating that newspaper penetration is (1) declining nationally, (2) varies significantly in different regions of the United States, and (3) increases with increased urbanization. (FL)

  14. Impacts of contaminated urban groundwater on river quality.

    NASA Astrophysics Data System (ADS)

    Ellis, P.; Rivett, M.; Mackay, R.

    2003-04-01

    The characteristics of the groundwater baseflow may have a significant influence on the quality of urban surface watercourses. Transport of dissolved phase contaminants from the aquifer to the river will take place across the groundwater/surface water interface where processes are governed by the rapid change in physical and chemical conditions. Mixing of groundwater and surface water occurs at variable depths below the riverbed within the hyporheic zone where sorption and degradation may be significant with high levels of organic matter and microbial activity. The spatial distribution of flux through the riverbed is complex and sudden changes in river water levels may lead to reversals in flux direction. Results are presented from research to assess the impact of groundwater on the quality of the River Tame that flows through the industrial city of Birmingham across the underlying Triassic Sandstone Aquifer. Indications are that groundwater from the aquifer contributes up to 20% of the river discharge within the 24 km study reach. Three seasons of field work supported by historical monitoring records has yielded quality and head data from piezometers beside and within the river and adjacent abstraction wells and surface water quality and discharge profiles along the reach. Data indicates the discharge of organic (chlorinated solvents) and inorganic groundwater contaminant plumes through the bed of the river. Detailed vertical and horizontal profiles through an identified plume provide an insight into the local controlling processes of groundwater/surface water interaction. The research considers the groundwater to surface water contaminant flux on a regional scale as well as more detailed local evaluation of impacted river stretches.

  15. The response of runoff generation to urban development: modelling and understanding

    NASA Astrophysics Data System (ADS)

    Guan, Mingfu; Sillanpää, Nora; Koivusalo, Harri

    2014-05-01

    The urbanisation process strongly changes natural catchment by increasing the impervious coverage and by creating a need for efficient drainage systems, resulting in a significant change of catchment hydrology from extreme floods to low flows. Thus, it is becoming important to quantify the impacts of urbanisation on runoff generation and to investigate the possibility of restoring pre-development flows in urban catchments for integrated urban stormwater management. Urban hydrological modelling emphasising on urbanisation effects has received substantial attention. However, the lack of good quality monitoring data in a same developing catchment limits model calibration for many of previous studies. In this concern, this study aims to describe and better understand the effects of urbanisation on catchment hydrology through modelling of a series of scenarios in a developing urban catchment of Saunalahdenranta (SR). The catchment is located at Espoo, southern Finland and has an area of about 13.2 ha. The catchment was developed rapidly from a rural area to a residential area during 2001-2006. Hydrological data were measured in two minutes intervals during the development period, when the imperviousness of the catchment changed from 1.5% to 37%. Precipitation-runoff relationship is simulated using the Stormwater Management Model (SWMM) that is firstly parameterised, calibrated, and validated for the scenario of highly developed residential catchment in 2006. The hydrological impacts of spatial resolution and model parameters, such as the delineation of subcatchment, flow width as well as Manning's roughness are evaluated and discussed. The calibrated model is then used to investigate, how the hydrological response to urbanisation was changing in the scenarios for the previous years (2001-2005) with different levels of urban development (represented by impervious surfaces). The predictions for the several scenarios provide a quantification of the hydrological impacts of urban development. The peak value of runoff rate is increased but with a small temporal occurrence. The key phases of the construction activities from the point of view of their impacts on runoff generation are identified. Based on the modelling outputs, the mitigation against the adverse impacts will also be preliminary explored.

  16. A Review of Quantitative Methods for Evaluating Impacts of Climate Change on Urban Water Infrastructure

    EPA Science Inventory

    It is widely accepted that global climate change will impact the regional and local climate and alter some aspects of the hydrologic cycle, which in turn can affect the performance of the urban water supply, wastewater and storm water infrastructur4e. How the urban water infrastr...

  17. Mass balance-based regression modeling of PAHs accumulation in urban soils, role of urban development.

    PubMed

    Peng, Chi; Wang, Meie; Chen, Weiping; Chang, Andrew C

    2015-02-01

    We investigated the polycyclic aromatic hydrocarbons (PAHs) contents in 68 soils samples collected at housing developments that represent different length of development periods across Beijing. Based on the data, we derived a mass balanced mathematical model to simulate the dynamics of PAH accumulations in urban soils as affected by the urban developments. The key parameters were estimated by fitting the modified mass balance model to the data of PAH concentrations vs. building age of the sampling green area. The total PAH concentrations would increase from the baseline of 267 ng g(-1) to 3631 ng g(-1) during the period of 1978-2048. It showed that the dynamic changes in the rates of accumulations of light and heavy PAH species were related to the shifting of sources of fuels, combustion efficiencies, and amounts of energy consumed during the course of development. PMID:25489746

  18. Connecting Urban Youth with their Environment: The Impact of an Urban Ecology Course on Student Content Knowledge, Environmental Attitudes and Responsible Behaviors

    NASA Astrophysics Data System (ADS)

    Hashimoto-Martell, Erin A.; McNeill, Katherine L.; Hoffman, Emily M.

    2012-10-01

    This study explores the impact of an urban ecology program on participating middle school students' understanding of science and pro-environmental attitudes and behaviors. We gathered pre and post survey data from four classes and found significant gains in scientific knowledge, but no significant changes in student beliefs regarding the environment. We interviewed 12 students to better understand their beliefs. Although student responses showed they had learned discrete content knowledge, they lacked any ecological understanding of the environment and had mixed perceptions of the course's relevance in their lives. Students reported doing pro-environmental behaviors, but overwhelmingly contributed such actions to influences other than the urban ecology course. Analyses indicated a disconnect between the course, the environment, and the impact on the students' lives. Consequently, this suggests the importance of recognizing the implications of context, culture, and identity development of urban youth. Perhaps by providing explicit connections and skills in urban environmental programs through engaging students in environmental scientific investigations that stem from their own issues and questions can increase student engagement, motivation, and self-efficacy of environmental issues.

  19. Estimating the effects of urban residential development on water quality using microdata.

    PubMed

    Atasoy, Mary; Palmquist, Raymond B; Phaneuf, Daniel J

    2006-06-01

    In this study, we examine the impact on water quality of urbanization using disaggregate data from Wake County, North Carolina. We use a unique panel data set tracing the conversion of individual residentially zoned land parcels to relate the density of residential development and the change in residential land use to three measures of water quality. Using a spatial econometrics model, we relate spatially and temporally referenced monitoring station readings to our measures of residential land use while controlling for other factors affecting water quality. We find that both the density of residential land use and the rate of land conversion have a negative impact on water quality. The impacts of these non-point sources are found to be larger in magnitude than those from urban point sources. PMID:16303238

  20. Data and Information Management: Essential Basis for Sustainable Urban Management and Development

    NASA Astrophysics Data System (ADS)

    Geerders, P.; Kokke, E.

    2011-08-01

    Management of the urban environment and urban development require well organized data and information as a basis for decision making, planning and policy development. Such data and information needs to be up-to-date, reliable and complete, and moreover be available at the time of need. The latter is especially relevant in the case of disasters such as fires, flooding, earthquakes and volcanic eruptions. Current and future impacts of the on-going climate changes increase the need for geo-referenced data and information on environment, biodiversity and public health, in support of preparation, protection, mitigation and reconstruction. It is important that urban authorities devote more attention and resources to data and information management in order to be able to cope with the present and future challenges of ever growing cities with increasing impacts on their surroundings, and moreover to deal with the impacts of environment and biodiversity on the cities, their population and economies. SOD, Woerden has a long and successful track record of certified training and education in the field of data and information management for authorities, including urban government. The courses provided by SOD cover a wide range of subjects from metadata and digitizing, to enterprise content management and geo-information management. While focused on the Netherlands, SOD also has initiated similar training opportunities in Belgium and Surinam, and efforts are under way in other countries. P. Geerders Consultancy has considerable experience as a consultant and trainer in the field of methods and technologies for the provision of information in support of decision-making, planning and policy development related to integrated management and sustainable development of natural resources. Besides in various countries of Europe, he has worked in Latin America and the Caribbean region. Since several years, P. Geerders works as a freelance teacher with SOD. The paper presents a vision on training and education of urban authorities in information handling and management.

  1. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock.

    PubMed

    Garrido Schneider, Eduardo A; García-Gil, Alejandro; Vázquez-Suñè, Enric; Sánchez-Navarro, José Á

    2016-02-15

    In the last decade, there has been an extensive use of shallow geothermal exploitations in urban environments. Although the thermal interference between exploitations has been recently studied, there is a lack of knowledge regarding the geochemical impacts of those systems on the aquifers where they are installed. Groundwater flow line scale and well-doublet scale research work has been conducted at city scale to quantify the geochemical interaction of shallow geothermal exploitations with the environment. A comprehensive analysis was conducted on data obtained from a monitoring network specifically designed to control and develop aquifer policies related to thermal management of the aquifer. The geochemical impacts were evaluated from a thermodynamic point of view by means of saturation index (SI) calculations with respect to the different mineral species considered in the system. The results obtained indicate limited geochemical interaction with the urban environment in most of the situations. However, there are some cases where the interaction of the groundwater heat pump installations with the evaporitic bedrock resulted in the total disablement of the exploitation system operation wells. The application of the tool proposed proved to be pragmatic in the evaluation of geochemical impacts. Injection of water into the aquifer can trigger an important bedrock gypsum and halite dissolution process that is partly responsible for scaling in well casing pipes and collapse of the terrain in the vicinity of injection wells. PMID:26657381

  2. Impact of Urbanization on Stormwater Runoff from a Small Urban Catchment: Gdańsk Małomiejska Basin Case Study

    NASA Astrophysics Data System (ADS)

    Olechnowicz, Borys; Weinerowska-Bords, Katarzyna

    2014-12-01

    This paper deals with the impact of different forms of urbanization on the basin outflow. The influence of changes in land cover/use, drainage system development, reservoirs, and alternative ways of stormwater management (green roofs, permeable pavements) on basin runoff was presented in the case of a small urban basin in Gdansk (Poland). Seven variants of area development (in the period of 2000-2012) - three historical and four hypothetical - were analyzed. In each case, runoff calculations for three rainfall scenarios were carried out by means of the Hydrologic Modeling System designed by Hydrologic Engineering Center of the U.S. Army Corps of Engineers (HEC-HMS). The Soil Conservation Service (SCS) Curve Number (CN) method was used for calculations of effective rainfall, the kinematic wave model for those of overland flow, and the Muskingum-Cunge model for those of channel routing. The calculations indicated that urban development had resulted in increased peak discharge and runoff volume and in decreased peak time. On the other hand, a significant reduction in peak values was observed for a relatively small decrease in the normal storage level (NSL) in reservoirs or when green roofs on commercial centers were present. The study confirmed a significant increase in runoff as a result of urbanization and a considerable runoff reduction by simple alternative ways of stormwater management.

  3. Impact of Urban Density Type in a Global Climate Model

    NASA Astrophysics Data System (ADS)

    Bogart, T.

    2014-12-01

    The recent inclusion of an urban land model within a large-scale global climate model has allowed for a more realistic representation of the Earth's surface, aiding in a better understanding of land cover and climate relationships. This research uses the NCAR Community Climate System Model version 4.0 (CCSM4.0) with the land component, the Community Land Model version 4.0 (CLM4.0), coupled with the atmospheric component, the Community Atmosphere Model version 4.0 (CAM4). Although the urban land type is a sub-grid phenomena that rarely occupies more than half of a grid cell at the 1° by 1° scale, significant changes in basic climate variables are present in some regions. These changes are primarily seen where a denser network of grid cells exist with an urban presence. Seasonality to the urban influence also exists with the transition months of Spring and Fall having the largest difference in temperatures. Additional relationships beyond the present day urban land cover and climate are investigated. By setting all urban land cover to only one urban density type, the importance of city composition on climate, even within the same city, is highlighted. While preserving the distinct urban regional characteristics and the geographical distribution of urbanized areas, the model is run with homogeneous urban types: high density and tall building district. Although it is unrealistic to assume any of these regions will ever be completely covered with either high density or tall building district density types, it is reasonable to say that the ratio of high density and tall building district areas may increase as population continues to increase. As with the default urban and excluded urban runs, there is strong seasonality to the differences between the all high density, the all tall building district, and default urban simulations. Overall, the transition and winter months are most sensitive to changes in urban density type. The dramatic increases in waste heat, impervious surface fraction, and height to width ratio in the tall building district simulation resulted in significantly increased temperatures. A large significant increase in surface albedo with the tall building district density type also exists although the warming influence of these other variables outweighs the extra reflection from the surface.

  4. DREDGING IMPACT ON AN URBANIZED FLORIDA BAYOU: EFFECTS ON BENTHOS AND ALGAL-PERIPHYTON.

    EPA Science Inventory

    Environmental effects of dredging events have been uncommonly reported for shallow, residential estuaries characteristic of the Gulf of Mexico region. The objective of this study was to determine the impact of hydraulic dredging on an urbanized estuary. Physicochemical quality, ...

  5. Fresno in Transition: Urban Impacts of Rural Migration. Working Paper No. 26.

    ERIC Educational Resources Information Center

    Mason, Bert; Alvarado, Andrew; Palacio, Robert

    This paper examines the social and economic impacts of Mexican immigration on Fresno (California). Since the early 1980s, immigration to California has been dominated by illegal immigrants from rural Mexico seeking agricultural jobs in rural California. This rural migration impacts urban centers in agricultural regions; these impacts lag the

  6. Combining Satellite Data and Models to Assess the Impacts of Urbanization on the Continental US Surface Climate

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.; Mostovoy, G.

    2013-01-01

    Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate

  7. Situating Technology Professional Development in Urban Schools

    ERIC Educational Resources Information Center

    Meier, Ellen B.

    2005-01-01

    The Center for Technology and School Change (CTSC) is a research and development center specializing in professional development, evaluation and technology integration research. The goal of the qualitative research reported in this article was to identify factors that strengthen the integration of technology in classrooms in ways that are…

  8. Meteorological Conditions Favouring Development of Urban Air Pollution Episodes

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Kukkonen, Jaakko; Finardi, Sandro; Beekmann, Matthias; Sokhi, Ranjeet; Mahura, Alexander; Ginsburg, Alexander; Maeikis, Adomas

    2013-04-01

    The causes of urban air pollution episodes are complex and depend on various factors including emissions, meteorological parameters, topography, atmospheric chemical processes and solar radiation. The relative importance of such factors is dependent on the geographical region, its surrounding emission source areas and the related climatic characteristics, as well as the season of the year. The key pollutants are PM10, PM2.5, O3 and NO2, as these cause the worst air quality problems in European cities. The main aim of this study realised within the MEGAPOLI project was to describe and quantify the influence of meteorological patterns on urban air pollution especially high-level concentrations air pollution episodes in megacities. Several European urban agglomerations and megacities, including the Po Valley, Helsinki, London, Paris, Moscow, Vilnius, were considered in the study. The study also carried out analysis of meteorological patterns leading to urban air pollution episodes considered by the development of suitable indicators linking particular meteorological conditions/ parameters to increased air pollution levels in the urban areas. These indicators constitute a useful tool for regulators in suggesting effective policies and mitigation measures. Finally, a combination of modelling and analysis of observations data can allow both the quality assurance of the new parameterisations as well as the verification of input emissions.

  9. Critical Consciousness and Career Development among Urban Youth

    ERIC Educational Resources Information Center

    Diemer, Matthew A.; Blustein, David L.

    2006-01-01

    This study explored the role of critical consciousness as a key factor in predicting progress in career development among urban high school students. Critical consciousness, or the capacity to recognize and overcome sociopolitical barriers, was operationalized through sociopolitical analysis and sociopolitical control. Canonical correlation

  10. Professional Development for Urban Principals in Underperforming Schools

    ERIC Educational Resources Information Center

    Houle, Judith C.

    2006-01-01

    Principals in America's lowest performing urban schools face many challenges, including public scrutiny as a consequence of being identified as such by state and federal legislation. These special circumstances have implications for the professional development of the leaders of these schools. This article chronicles the work of the Connecticut

  11. DEVELOPMENT OF AN IMPROVED URBAN AIRSHED MODELING SYSTEM

    EPA Science Inventory

    A research and development effort to improve certain physical processes simulated in the Urban Airshed Model (UAM) processor and model programs, and to update the computer software is described. he UAM is an Eulerian photochemical grid model designed to simulate the relevant phys...

  12. Professional Development for Urban Principals in Underperforming Schools

    ERIC Educational Resources Information Center

    Houle, Judith C.

    2006-01-01

    Principals in America's lowest performing urban schools face many challenges, including public scrutiny as a consequence of being identified as such by state and federal legislation. These special circumstances have implications for the professional development of the leaders of these schools. This article chronicles the work of the Connecticut…

  13. Self-Concept Development in Rural and Urban Students.

    ERIC Educational Resources Information Center

    Velasco-Barraza, Carlos; Muller, Douglas

    1982-01-01

    Using the Self-Descriptive Inventory, compares development of self-concept, self-esteem, self-ideal in physical maturity, peer relations, academic success, school adaptiveness in 50 rural children (Hatch, New Mexico) and 50 urban children (Las Cruces New Mexico). Finds negative patterns in academic success and school adaptiveness more pronounced

  14. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lnkao, Patricia; Rosenzweig, Cynthia; Ruth, Matthias; Solecki, William; Tarr, Joel

    2007-01-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been annunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAPs) reports to support informed discussion and decision making regarding climate change and variability by policy matters, resource managers, stakeholders, the media, and the general public. We are authors on a SAP describing the effects of global climate change on human settlements. This paper will present the elements of our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  15. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover

    NASA Astrophysics Data System (ADS)

    Miller, James D.; Kim, Hyeonjun; Kjeldsen, Thomas R.; Packman, John; Grebby, Stephen; Dearden, Rachel

    2014-07-01

    This paper investigates changes in storm runoff resulting from the transformation of previously rural landscapes into peri-urban areas. Two adjacent catchments (?5 km2) located within the town of Swindon in the United Kingdom were monitored during 2011 and 2012 providing continuous records of rainfall, runoff and actual evaporation. One catchment is highly urbanized and the other is a recently developed peri-urban area containing two distinct areas of drainage: one with mixed natural and storm drainage pathways, the other entirely storm drainage. Comparison of observed storm hydrographs showed that the degree of area serviced by storm drainage was a stronger determinant of storm runoff response than either impervious area or development type and that little distinction in hydrological response exists between urban and peri-urban developments of similar impervious cover when no significant hydraulic alteration is present. Historical levels of urbanization and impervious cover were mapped from the 1960s to the 2010s based on digitized historical topographic maps and were combined with a hydrological model to enable backcasting of the present day storm runoff response to that of the catchments in their earlier states. Results from the peri-urban catchment showed an increase in impervious cover from 11% in the 1960s to 44% in 2010s, and introduction of a large-scale storm drainage system in the early 2000s, was accompanied by a 50% reduction in the Muskingum routing parameter k, reducing the characteristic flood duration by over 50% while increasing peak flow by over 400%. Comparisons with changes in storm runoff response in the more urban area suggest that the relative increase in peak flows and reduction in flood duration and response time of a catchment is greatest at low levels of urbanization and that the introduction of storm water conveyance systems significantly increases the flashiness of storm runoff above that attributed to impervious area alone. This study demonstrates that careful consideration is required when using impervious cover data within hydrological models and when designing flood mitigation measures, particularly in peri-urban areas where a widespread loss in pervious surfaces and alteration of drainage pathways can significantly alter the storm runoff response. Recommendations include utilizing more refined urban land use typologies that can better represent physical alteration of hydrological pathways.

  16. Urban impacts on mean and trend of surface incident solar radiation

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Ma, Qian; Wang, XiaoYan; Wild, Martin

    2014-07-01

    Anthropogenic aerosols over urban areas may have important effects on surface incident solar radiation (Rs). Studies have claimed that Rs decreased significantly more in urban areas than in rural areas from 1964 to 1989. However, these estimates have substantial biases because they ignored the spatial inhomogeneity of Rs measurements. To address this issue, we selected urban-rural station pairs collocated within 2 2 and found 105 such pairs based on the Global Energy Balance Archive (GEBA). On average, the impact of urban aerosols on mean and trend of Rs is 0.2(0.7, median) 11.2 W m-2 and 0.1(-0.7, median) 6.6 W m-2 per decade from 1961 to 1990, respectively. Hence, the averaged urban impacts on the mean and trend of Rs over Europe, China and Japan from 1961 to 1990 are small although they may be significant at specific sites.

  17. Impacts of urban wastewater discharge on seagrass meadows ( Zostera noltii)

    NASA Astrophysics Data System (ADS)

    Cabao, Susana; Machs, Raquel; Vieira, Vasco; Santos, Rui

    2008-06-01

    The abiotic disturbance of urban wastewater discharge and its effects in the population structure, plant morphology, leaf nutrient content, epiphyte load and macroalgae abundance of Zostera noltii meadows were investigated in Ria Formosa coastal lagoon, southern Portugal using both univariate and multivariate analysis. Four sites were assessed, on a seasonal basis, along a gradient from a major Waste Water Treatment Works (WWTW) discharge to a main navigation channel. The wastewater discharge caused an evident environmental disturbance through the nutrient enrichment of the water and sediment, particularly of ammonium. Zostera noltii of the sites closest to the nutrient source showed higher leaf N content, clearly reflecting the nitrogen load. The anthropogenic nutrient enrichment resulted in higher biomass, and higher leaf and internode length, except for the meadow closest to the wastewater discharge (270 m). The high ammonium concentration (158-663 ?M) in the water at this site resulted in the decrease of biomass, and both the leaf and internode length, suggesting a toxic effect on Z. noltii. The higher abundance of macroalgae and epiphytes found in the meadow closest to the nutrient source may also affect the species negatively. Shoot density was higher at the nutrient-undisturbed site. Two of the three abiotic processes revealed by Principal Component Analysis were clearly related to the WWTW discharge, a contrast between water column salinity and nutrient concentration and a sediment contrast between both porewater nutrients and temperature and redox potential. A multiple regression analysis showed that these abiotic processes had a significant effect on the biomass-density dynamics of meadows and on the overall size of Z. noltii plants, respectively. Results show that the wastewater discharge is an important source of environmental disturbance and nutrients availability in Ria Formosa lagoon affecting the population structure, morphology and N content of Z. noltii. This impact is spatially restricted to areas up to 600 m distant from the WWTW discharge, probably due to the high water renewal of the lagoon.

  18. Impact of urban parameterization on high resolution air quality forecast with the GEM - AQ model

    NASA Astrophysics Data System (ADS)

    Struzewska, J.; Kaminski, J. W.

    2012-11-01

    The aim of this study is to assess the impact of urban cover on high-resolution air quality forecast simulations with the GEM-AQ (Global Environmental Multiscale and Air Quality) model. The impact of urban area on the ambient atmosphere is non-stationary, and short-term variability of meteorological conditions may result in significant changes of the observed intensity of urban heat island and pollutant concentrations. In this study we used the Town Energy Balance (TEB) parameterization to represent urban effects on modelled meteorological and air quality parameters at the final nesting level with horizontal resolution of ~5 km over Southern Poland. Three one-day cases representing different meteorological conditions were selected and the model was run with and without the TEB parameterization. Three urban cover categories were used in the TEB parameterization: mid-high buildings, very low buildings and low density suburbs. Urban cover layers were constructed based on an area fraction of towns in a grid cell. To analyze the impact of urban parameterization on modelled meteorological and air quality parameters, anomalies in the lowest model layer for the air temperature, wind speed and pollutant concentrations were calculated. Anomalies of the specific humidity fields indicate that the use of the TEB parameterization leads to a systematic reduction of moisture content in the air. Comparison with temperature and wind speed measurements taken at urban background monitoring stations shows that application of urban parameterization improves model results. For primary pollutants the impact of urban areas is most significant in regions characterized with high emissions. In most cases the anomalies of NO2 and CO concentrations were negative. This reduction is most likely caused by an enhanced vertical mixing due to elevated surface temperature and modified vertical stability.

  19. Are Urban Heat Island Adaptation Strategies Created Equal? Hydroclimatic Impact Assessment for U.S. 2100 Urban Expansion (Invited)

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Bierwagen, B. G.; Morefield, P.; Weaver, C. P.

    2013-12-01

    With population projections ranging from 380 to 690 million inhabitants for U.S. 2100, considerable conversion of landscapes will be necessary to meet increased demand for the built environment. Incorporating Integrated Climate and Land Use Scenarios (ICLUS) urban expansion data for 2100 as surface boundary conditions within the Weather Research and Forecasting (WRF) modeling system, we examine hydroclimatic consequences owing to built environment expansion scenarios across the conterminous U.S. Continuous, multi-year and multi-member continental scale numerical simulations are performed for a modern day urban representation (Control), a worst-case (A2) and a best-case (B1) urban expansion scenario. Three adaptation approaches are explored to assess the potential offset of urban-induced warming to growth of the built environment: (i) widespread adoption of cool roofs, (ii) a simple representation of green roofs, and a (iii) hypothetical hybrid approach integrating properties of both cool and green roofs (i.e., reflective green roofs).Widespread adoption of adaptation strategies exhibit hydroclimatic impacts that are regionally and seasonally dependant. To help prioritize region-specific adaptation strategies, the potential to offset urban-induced warming by each of the trio of strategies is examined and contrasted across the various hydrometeorological environments.

  20. Gardening's Socioeconomic Impacts: Community Gardening in an Urban Setting.

    ERIC Educational Resources Information Center

    Patel, Ishwarbhai C.

    1991-01-01

    Discusses a survey of 178 gardeners from Newark, New Jersey, and describes Extension's role in improving the life quality and socioeconomic well-being of individuals, families, and neighborhoods through community gardening in an urban environment. (Author)

  1. Using NASA Earth Science Datasets for National Climate Assessment Indicators: Urban Impacts of Heat Waves Associated with Climate Change

    NASA Astrophysics Data System (ADS)

    Sadoff, N.; Weber, S.; Zell, E. R.; de Sherbinin, A. M.

    2014-12-01

    Climate-induced heat waves have been increasing globally in the past 5-10 years and are projected to continue increasing throughout the 21st century. In urban areas, heat waves are exacerbated by the non-climate stressor of urban heat islands (UHIs). The vulnerability of a city's population to heat waves reflects exposure to extreme heat events, sensitivity of the population to impacts, such as adverse health effects, and adaptive capacity to prepare for and respond to heat waves. Socially and economically vulnerable populations are especially at risk to the impacts of heat waves, due to increasing energy costs, air pollution, and heat-related illness and mortality. NASA earth science datasets, combined with socioeconomic data, can be used to create indicators that characterize vulnerability to urban heat events and address the effectiveness of adaptation measures designed to reduce local temperatures. The indicator development process should include engagement from local stakeholders and end users from the onset to ensure local relevance and, ultimately, indicator uptake and sustainability. This presentation will explore the process of working with urban stakeholders in Philadelphia to develop a set of policy-relevant, interdisciplinary vulnerability indicators focused on extreme heat events in urban areas. Ambient and land surface temperature, land cover classifications, NDVI, and US Census data are used to create a basket of indicators that reflect urban heat wave duration and intensity, UHI exposure, socioeconomic vulnerability, and adaptation effectiveness. These indicators can be assessed at the city level and also comparatively among different parts of a city to help quantify and track heat wave impacts on vulnerable populations and the effectiveness of adaptation measures.

  2. Improved understanding and prediction of the hydrologic response of highly urbanized catchments through development of the Illinois Urban Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Cantone, Joshua; Schmidt, Arthur

    2011-08-01

    What happens to the rain in highly urbanized catchments? That is the question that urban hydrologists must ask themselves when trying to integrate the hydrologic and hydraulic processes that affect the hydrologic response of urban catchments. The Illinois Urban Hydrologic Model (IUHM) has been developed to help answer this question and improve understanding and prediction of hydrologic response in highly urbanized catchments. Urban catchments are significantly different than natural watersheds, but there are similarities that allow features of the pioneering geomorphologic instantaneous unit hydrograph concept developed for natural watersheds to be adapted to the urban setting. This probabilistically based approach is a marked departure from the traditional deterministic models used to design and simulate urban sewer systems and does not have the burdensome input data requirements that detailed deterministic models possess. Application of IUHM to the CDS-51 catchment located in the village of Dolton, Illinois, highlights the model's ability to predict the hydrologic response of the catchment as well as the widely accepted SWMM model and is in accordance with observed data recorded by the United States Geological Survey. In addition, the unique structure and organization of urban sewer networks make it possible to characterize a set of ratios for urban catchments that allow IUHM to be applied when detailed input data are not available.

  3. Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area

    NASA Astrophysics Data System (ADS)

    Ryu, Y.-H.; Baik, J.-J.; Kwak, K.-H.; Kim, S.; Moon, N.

    2013-02-01

    Modified local meteorology owing to heterogeneities in the urban-rural surface can affect urban air quality. In this study, the impacts of urban land-surface forcing on ozone air quality during a high ozone (O3) episode in the Seoul metropolitan area, South Korea, are investigated using a high-resolution chemical transport model (CMAQ). Under fair weather conditions, the temperature excess (urban heat island) significantly modifies boundary layer characteristics/structures and local circulations. The modified boundary layer and local circulations result in an increase in O3 levels in the urban area of 16 ppb in the nighttime and 13 ppb in the daytime. Enhanced turbulence in the deep urban boundary layer dilutes pollutants such as NOx, and this contributes to the elevated O3 levels through the reduced O3 destruction by NO in the NOx-rich environment. The advection of O3 precursors over the mountains near Seoul by the prevailing valley-breeze circulation in the mid- to late morning results in the build-up of O3 over the mountains in conjunction with biogenic volatile organic compound (BVOC) emissions there. As the prevailing local circulation in the afternoon changes to urban-breeze circulation, the O3-rich air masses over the mountains are advected over the urban area. The urban-breeze circulation exerts significant influences on not only the advection of O3 but also the chemical production of O3 under the circumstances in which both anthropogenic and biogenic (natural) emissions play important roles in O3 formation. As the air masses that are characterized by low NOx and high BVOC levels and long OH chain length are advected over the urban area from the surroundings, the ozone production efficiency increases in the urban area. The relatively strong vertical mixing in the urban boundary layer embedded in the sea-breeze inflow layer reduces NOx levels, thus contributing to the elevated O3 levels in the urban area.

  4. A scaleable methodology for assessing the impacts of urban shade on the summer electricity use of residential homes

    NASA Astrophysics Data System (ADS)

    Taylor, Robert Vanderlei

    Our cities are experiencing unprecedented growth while net global temperatures continue to trend warmer making sustainable urban development and energy conservation pressing public issues. This research explores how urban landscaping -- in particular trees and buildings -- affect summer electricity use in residential homes. I studied the interactions of urban shade and temperature to explore how vegetation distribution and intensity could play a meaningful role in heat mitigation in urban environments. Only a few studies have reconciled modeled electricity savings from tree shade with actual electricity consumption data. This research proposes a methodology for modeling the isolated effects of urban shade (tree shade vs building shade) on buildings' summertime electricity consumption from micro to mesoscales, empirically validating the modeled shade with actual electricity billing data, and comparing the electric energetic impact of tree shade effects with building shade effects. This proposed methodology seeks to resolve three primary research questions: 1) What are the modeled quantities of urban shade associated with the area of interest (AOI)? 2) To what extent do the effects of shading from trees and buildings mitigate summertime heat in the AOI? 2) To what extent do the shade effects from trees and buildings reduce summertime electricity consumption in the AOI?

  5. The impact of projected increases in urbanization on ecosystem services

    PubMed Central

    Eigenbrod, F.; Bell, V. A.; Davies, H. N.; Heinemeyer, A.; Armsworth, P. R.; Gaston, K. J.

    2011-01-01

    Alteration in land use is likely to be a major driver of changes in the distribution of ecosystem services before 2050. In Europe, urbanization will probably be the main cause of land-use change. This increase in urbanization will result in spatial shifts in both supplies of ecosystem services and the beneficiaries of those services; the net outcome of such shifts remains to be determined. Here, we model changes in urban land cover in Britain based on large (16%) projected increases in the human population by 2031, and the consequences for three different servicesflood mitigation, agricultural production and carbon storage. We show that under a scenario of densification of urban areas, the combined effect of increasing population and loss of permeable surfaces is likely to result in 1.7 million people living within 1 km of rivers with at least 10 per cent increases in projected peak flows, but that increasing suburban sprawl will have little effect on flood mitigation services. Conversely, losses of stored carbon and agricultural production are over three times as high under the sprawl as under the densification urban growth scenarios. Our results illustrate the challenges of meeting, but also of predicting, future demands and patterns of ecosystem services in the face of increasing urbanization. PMID:21389035

  6. The impact of projected increases in urbanization on ecosystem services.

    PubMed

    Eigenbrod, F; Bell, V A; Davies, H N; Heinemeyer, A; Armsworth, P R; Gaston, K J

    2011-11-01

    Alteration in land use is likely to be a major driver of changes in the distribution of ecosystem services before 2050. In Europe, urbanization will probably be the main cause of land-use change. This increase in urbanization will result in spatial shifts in both supplies of ecosystem services and the beneficiaries of those services; the net outcome of such shifts remains to be determined. Here, we model changes in urban land cover in Britain based on large (16%) projected increases in the human population by 2031, and the consequences for three different services--flood mitigation, agricultural production and carbon storage. We show that under a scenario of densification of urban areas, the combined effect of increasing population and loss of permeable surfaces is likely to result in 1.7 million people living within 1 km of rivers with at least 10 per cent increases in projected peak flows, but that increasing suburban 'sprawl' will have little effect on flood mitigation services. Conversely, losses of stored carbon and agricultural production are over three times as high under the sprawl as under the 'densification' urban growth scenarios. Our results illustrate the challenges of meeting, but also of predicting, future demands and patterns of ecosystem services in the face of increasing urbanization. PMID:21389035

  7. Assessing climate impacts of planning policies-An estimation for the urban region of Leipzig (Germany)

    SciTech Connect

    Schwarz, Nina Bauer, Annette Haase, Dagmar

    2011-03-15

    Local climate regulation by urban green areas is an important urban ecosystem service, as it reduces the extent of the urban heat island and therefore enhances quality of life. Local and regional planning policies can control land use changes in an urban region, which in turn alter local climate regulation. Thus, this paper describes a method for estimating the impacts of current land uses as well as local and regional planning policies on local climate regulation, using evapotranspiration and land surface emissivity as indicators. This method can be used by practitioners to evaluate their policies. An application of this method is demonstrated for the case study Leipzig (Germany). Results for six selected planning policies in Leipzig indicate their distinct impacts on climate regulation and especially the role of their spatial extent. The proposed method was found to easily produce a qualitative assessment of impacts of planning policies on climate regulation.

  8. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Wilbanks, T. J.; Kirshen, P. H.; Romero-Lankao, P.; Rosenzweig, C. E.; Ruth, M.; Solecki, W.; Tarr, J. A.

    2007-05-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been enunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAP) reports to support informed discussion and decision making regarding climate change and variability by policy makers, resource managers, stakeholders, the media, and the general public. We are working on a chapter of SAP 4.6 ("Analysis of the Effects of Global Chance on Human Health and Welfare and Human Systems") wherein we wish to describe the effects of global climate change on human settlements. This paper will present the thoughts and ideas that are being formulated for our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We wish to present these ideas and concepts as a "work in progress" that are subject to several rounds of review, and we invite comments from listeners at this session on the rationale and veracity of our thoughts. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  9. A Collaborative Model for Developing Classroom Management Skills in Urban Professional Development School Settings

    ERIC Educational Resources Information Center

    Dobler, Elizabeth; Kesner, Cathy; Kramer, Rebecca; Resnik, Marilyn; Devin, Libby

    2009-01-01

    This article describes a school-university partnership that focuses on the development of classroom management skills for preservice teachers in an urban setting, through collaboration between mentors, principals, and a university supervisor. To prepare preservice teachers for the unique challenges of urban schools, three key elements were

  10. Combining MODIS and Landsat to Study the Impact of Urban Lands on Surface Climate in the U.S

    NASA Astrophysics Data System (ADS)

    Bounoua, L.; Mostovoy, G.; Zhang, P.; Thome, K. J.; Imhoff, M. L.; Shepherd, M.; Santanello, J. A.; Quattrochi, D. A.; Silva, J.; Wolfe, R. E.

    2014-12-01

    A fusion of Landsat and MODIS products is used in the Simple Biosphere model (SIB2) to describe the urban and vegetation characteristics over the U.S. We assess the urban heat island occurrence and amplitude and the impact of urbanization as a form of land use on the surface energy, carbon and water cycles for year 2001. Interactions between urban and different vegetation classes was assessed for better understanding the vegetation control on UHI hourly and seasonal dynamics. UHI analysis over several urban centers will be presented as well as an aggregate impact of urban lands on the surface temperature, carbon and water cycles over the continental United States.

  11. Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff.

    PubMed

    McIntyre, J K; Davis, J W; Hinman, C; Macneale, K H; Anulacion, B F; Scholz, N L; Stark, J D

    2015-08-01

    Green stormwater infrastructure (GSI), or low impact development, encompasses a diverse and expanding portfolio of strategies to reduce the impacts of stormwater runoff on natural systems. Benchmarks for GSI success are usually framed in terms of hydrology and water chemistry, with reduced flow and loadings of toxic chemical contaminants as primary metrics. Despite the central goal of protecting aquatic species abundance and diversity, the effectiveness of GSI treatments in maintaining diverse assemblages of sensitive aquatic taxa has not been widely evaluated. In the present study we characterized the baseline toxicity of untreated urban runoff from a highway in Seattle, WA, across six storm events. For all storms, first flush runoff was toxic to the daphniid Ceriodaphnia dubia, causing up to 100% mortality or impairing reproduction among survivors. We then evaluated whether soil media used in bioretention, a conventional GSI method, could reduce or eliminate toxicity to juvenile coho salmon (Oncorhynchus kisutch) as well as their macroinvertebrate prey, including cultured C. dubia and wild-collected mayfly nymphs (Baetis spp.). Untreated highway runoff was generally lethal to salmon and invertebrates, and this acute mortality was eliminated when the runoff was filtered through soil media in bioretention columns. Soil treatment also protected against sublethal reproductive toxicity in C. dubia. Thus, a relatively inexpensive GSI technology can be highly effective at reversing the acutely lethal and sublethal effects of urban runoff on multiple aquatic species. PMID:25576131

  12. Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Chuan-Yao; Su, Chiung-Jui; Kusaka, Hiroyuki; Akimoto, Yuko; Sheng, Yang-Fan; Huang, -Chuan, Jr.; Hsu, Huang-Hsiung

    2016-02-01

    This study evaluates the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) Model coupled with the Noah land-surface model and a modified urban canopy model (WRF-UCM2D). In the original UCM coupled to WRF (WRF-UCM), when the land use in the model grid is identified as "urban", the urban fraction value is fixed. Similarly, the UCM assumes the distribution of anthropogenic heat (AH) to be constant. This may not only lead to over- or underestimation of urban fraction and AH in urban and non-urban areas, but spatial variation also affects the model-estimated temperature. To overcome the abovementioned limitations and to improve the performance of the original UCM model, WRF-UCM is modified to consider the 2-D urban fraction and AH (WRF-UCM2D).The two models were found to have comparable temperature simulation performance for urban areas, but large differences in simulated results were observed for non-urban areas, especially at nighttime. WRF-UCM2D yielded a higher correlation coefficient (R2) than WRF-UCM (0.72 vs. 0.48, respectively), while bias and RMSE achieved by WRF-UCM2D were both significantly smaller than those attained by WRF-UCM (0.27 and 1.27 vs. 1.12 and 1.89, respectively). In other words, the improved model not only enhanced correlation but also reduced bias and RMSE for the nighttime data of non-urban areas. WRF-UCM2D performed much better than WRF-UCM at non-urban stations with a low urban fraction during nighttime. The improved simulation performance of WRF-UCM2D in non-urban areas is attributed to the energy exchange which enables efficient turbulence mixing at a low urban fraction. The result of this study has a crucial implication for assessing the impacts of urbanization on air quality and regional climate.

  13. The regional impacts of urban land use change and anthropogenic heat release on climate change over China

    NASA Astrophysics Data System (ADS)

    Yongli, W.; Jinming, F.

    2011-12-01

    Along with the economic development and the accelerated urbanization, urban population in China has been increasing rapidly, while anthropogenic heat release produced by the large-scale energy consumption in cities will be a vital factor to the climate change. The facts are found in the results of two years simulations of WRF coupled with UCM without nested domain in former paper including that after considering the combined function of the urban land use change and the anthropogenic heat release, the surface temperature increased in most areas of China, especially in Yangtze River delta; The precipitation increased in some areas especially in the Beijing-Tianjin-Hebei area, while which decreased in the other areas, the notable place was the Yangtze River delta; The latent heat flux has opposite changes while there was an increased sensible heat flux. In this paper, NCAR Advanced Research WRF (ARW) model coupled with Urban Canopy Model (UCM) is used as a nested regional climate model to simulate the regional impacts of urban land use change and the anthropogenic heat release on climate change, and three types of experiments with the land use classifications of USGS-24 without urban type and USGS-33 with three urban are adopted from December 2006 to December 2008, the horizontal resolution in the outer domain is 30km with 179×161 grid points, and The 3:1 grid ratio between the outer and nest domains is typical for WRF. So the horizontal resolution of innermost nest domain is 3.3km with 151×157 grid points over Beijing-Tianjin-Hebei area and the other domain is over the Yangtze River delta with 145×151 grid points. The summer surface temperature increased in all of China, but the added magnitude is less than the results without nested domain. That maybe the nesting have an unknown impact on the simulations. The other results are coming up in the few days.

  14. Development at the wildland-urban interface and the mitigation of forest-fire risk.

    PubMed

    Spyratos, Vassilis; Bourgeron, Patrick S; Ghil, Michael

    2007-09-01

    This work addresses the impacts of development at the wildland-urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland-urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk. PMID:17717082

  15. Development at the wildland–urban interface and the mitigation of forest-fire risk

    PubMed Central

    Spyratos, Vassilis; Bourgeron, Patrick S.; Ghil, Michael

    2007-01-01

    This work addresses the impacts of development at the wildland–urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland–urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk. PMID:17717082

  16. Geochemistry of urban sediments from small urban areas and potential impact on surface waters: a case study in Northern Portugal

    NASA Astrophysics Data System (ADS)

    Reis, Anabela; Oliveira, Ana Isabel; Pinto, João; Parker, Andrew

    2015-04-01

    Urban sediments are an important source of contaminants in urban catchments with impact on river ecosystems. Surface runoff from impermeable surfaces transfers sediments and associated contaminants to water bodies affecting the quality of both water and sediment compartments. This study aims to evaluate the metal contents in urban sediments (road deposited sediments) in a small sized urban area, located in a rural mountainous region with no significant industrial units, or mining activities in the vicinity, and subsequently have an insight on the potential contribution to the metal loads transported by fluvial sediments in the streams from the surrounding drainage network. The area under investigation locates in the northeast Portugal, in the Trás-os-Montes region (NE Portugal). Vila Real is a rural city, with 52781 inhabitants, and in the urban area there are dispersed parks with forest and gardens; locally and in the surroundings of the city there are agricultural terrains. The industry is concentrated, in general, in the industry park. Major pollutant activities can be considered the agriculture (pollution by sediments, metals and use of fertilizers) and urban activities such as atmospheric deposition, vehicular traffic, residential activities, soil erosion and industrial activities. According to the aim of the study, road deposited sediment samples were collected in urban and periurban areas as well as in public playgrounds and in the industrial area. The samples were decomposed with aqua regia, and the concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn and V were obtained by ICP-AES. The total concentrations of As, Cr, Cu, Fe, Mn, Ni, Pb, Zn and V, in road-deposited sediments, indicate relative enrichments in samples collected in the main streets and roads, showing spatial variability. The association of Cu, Pb and Zn is observed in samples collected in the streets with high traffic density and industrial activity; in general, higher relative contents of Fe and Mn are also found in these samples. Associations between V, Cr, Ni, Fe and Mn are found in samples collected near garden areas and in green parks. Studies performed on river bottom sediments from the fluvial network in the catchment area shows a significant relative enrichment in the contents of metals, in the most mobile geochemical fractions, in samples collected in the reaches downstream the urban area of Vila Real, suggesting an important contribute from urban generated sediments and associated metals through runoff.

  17. Urban Heat Island Adaptation Strategies are not created equal: Assessment of Impacts and Tradeoffs

    NASA Astrophysics Data System (ADS)

    Georgescu, Matei

    2014-05-01

    Sustainable urban expansion requires an extension of contemporary approaches that focus nearly exclusively on reduction of greenhouse gas emissions. Researchers have proposed biophysical approaches to urban heat island mitigation (e.g., via deployment of cool or green roofs) but little is known how these technologies vary with place and season and what impacts are beyond those of near surface temperature. Using a suite of continuous, multi-year and multi-member continental scale numerical simulations for the United States, we examine hydroclimatic impacts for a variety of U.S. urban expansion (to the year 2100) and urban adaptation futures and compare those to contemporary urban extent. Adaptation approaches include widespread adoption of cool roofs, green roofs, and a hypothetical hybrid approach integrating properties of both cool and green roofs (i.e., reflective green roofs). Widespread adoption of adaptation strategies exhibits hydroclimatic impacts that are regionally and seasonally dependent. For some regions and seasons, urban-induced warming of 3C can be completely offset by the adaptation approaches examined. For other regions and seasons, widespread adoption of some adaptation strategies can result in significant reduction in precipitation. Finally, implications of large-scale urbanization for seasonal energy demand will be examined.

  18. Ring of impact from the mega-urbanization of Beijing between 2000 and 2009

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Nghiem, Son V.; Sorichetta, Alessandro; Whitney, Natasha

    2015-06-01

    The transient climate, soil, and air quality impacts of the rapid urbanization of Beijing between 2000 and 2009 are investigated with three-dimensional computer model simulations. The simulations integrate a new satellite data set for urban extent and a geolocated crowd-sourced data set for road surface area and consider differences only in urban land cover and its physical properties. The simulations account for changes in meteorologically driven natural emissions but do not include changes in anthropogenic emissions resulting from urbanization and road network variations. The astounding urbanization, which quadrupled Beijing urban extent between 2000 and 2009 in terms of physical infrastructure change, created a ring of impact that decreased surface albedo, increased ground and near-surface air temperatures, increased vertical turbulent kinetic energy, and decreased the near-surface relative humidity and wind speed. The meteorological changes alone decreased near-surface particulate matter, nitrogen oxides (NOx), and many other chemicals due to vertical dilution but increased near-surface ozone due to the higher temperature and lower NO. Vertical dilution and wind stagnation increased elevated pollution layers and column aerosol extinction. In sum, the ring of impact around Beijing may have increased urban heating, dried soil, mixed pollutants vertically, aggravated air stagnation, and increased near-surface oxidant pollution even before accounting for changes in anthropogenic emissions.

  19. Impediments and constraints in the uptake of water sensitive urban design measures in greenfield and infill developments.

    PubMed

    Sharma, Ashok K; Cook, Stephen; Tjandraatmadja, Grace; Gregory, Alan

    2012-01-01

    Water sensitive urban developments are designed with integrated urban water management concepts and water sensitive urban design measures. The initiatives that may be included are the substitution of imported drinking water with alternative sources using a fit-for-purpose approach and structural and non-structural measures for the source control of stormwater. A water sensitive approach to urban development can help in achieving sustainability objectives by minimising disturbance to ecological and hydrological processes, and also relieve stress on conventional water systems. Water sensitive urban developments remain novel in comparison with conventional approaches, so the understanding and knowledge of the systems in regards to their planning; design; implementation; operation and maintenance; health impacts and environmental impacts is still developing and thus the mainstream uptake of these approaches faces many challenges. A study has been conducted to understand these challenges through a detailed literature review, investigating a large number of local greenfield and infill developments, and conducting extensive consultation with water professionals. This research has identified the social, economic, political, institutional and technological challenges faced in implementing water sensitive urban design in greenfield and infill developments. The research found in particular that there is the need for long-term monitoring studies of water sensitive urban developments. This monitoring is important to validate the performance of novel approaches implemented and improve associated guidelines, standards, and regulatory and governance frameworks, which can lead to mainstream acceptance of water sensitive urban development approaches. The dissemination of this research will help generate awareness among water professionals, water utilities, developers, planners and regulators of the research challenges to be addressed in order to achieve more mainstream acceptance of water sensitive approaches to urban development. This study is based on existing water sensitive urban developments in Australia, however, the methodology adopted in investigating impediments to the uptake of these developments can be applied globally. It is hoped that insights from this study will benefit water professionals in other countries where there is also a move towards water sensitive urban development. PMID:22233914

  20. Land-use suitability analysis for urban development in Beijing.

    PubMed

    Liu, Renzhi; Zhang, Ke; Zhang, Zhijiao; Borthwick, Alistair G L

    2014-12-01

    Land-use suitability analyses are of considerable use in the planning of mega-cities. An Urban Development Land-use Suitability Mapping (UDLSM) approach has been constructed, based on opportunity and constraint criteria. Two Multi-criteria Evaluation (MCE) methods, the Ideal Point Method (IPM) and Ordered Weighted Averaging (OWA), were used to generate the opportunity map. The protection map was obtained by means of constraint criteria, utilizing the Boolean union operator. A suitability map was then generated by overlaying the opportunity and protection maps. By applying the UDLSM approach to Beijing, its urban development land-use suitability was mapped, and a sensitivity analysis undertaken to examine the robustness of the proposed approach. Indirect validation was achieved by mutual comparisons of suitability maps resulting from the two MCE methods, where the overall agreement of 91% and kappa coefficient of 0.78 indicated that both methods provide very similar spatial land-use suitability distributions. The suitability level decreases from central Beijing to its periphery, and the area classed as suitable amounts to 28% of the total area. Leading attributes of each opportunity factor for suitability were revealed, with 2256 km(2), i.e. 70%, of existing development land being overlaid by suitable areas in Beijing. Conflicting parcels of land were identified by overlaying the resultant map with two previous development blueprints for Beijing. The paper includes several recommendations aimed at improving the long-term urban development plans for Beijing. PMID:25036557

  1. High Spatial Resolution Thermal Infrared Remote Sensing Data for Analysis of the Atlanta, Georgia, Urban Heat Island Effect and Its Impacts on the Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2007-01-01

    The twenty-first century is the first "urban century" according to the United Nations Development Program. The focus of cities reflects awareness of the growing percentage of the world's population that lives in urban areas. In environmental terms, cities are the original producers of many of the global problems related to waste disposal, air and water pollution, and associated environmental and ecological challenges. Expansion of cities, both in population and areal extent, is a relentless process. In 2000, approximately 3 billion people representing about 40% of the global population, resided in urban areas. Urban population will continue to rise substantially over the next several decades according to UN estimates, and most of this growth will Occur in developing countries. The UN estimates that by 2025, 60% of the world's population will live in urban areas. As a consequence, the number of"megacities" (those cities with populations of 10 million inhabitants or more) will increase by 100 by 2025. Thus, there is a critical need to understand urban areas and what their impacts are on environmental, ecological and hydrologic resources, as well as on the local, regional, and even global climate. One of the more egregious side effects of urbanization is the increase in surface and air temperatures that lead to deterioration in air quality. In the United States, under the more stringent air quality guidelines established by the U.S. Environmental Protection Agency in 1997, nearly 300 counties in 34 states will not meet these new air quality standards for ground level ozone. Mitigation of the urban heat island (UHI) effect is actively being evaluated as a possible way to reduce ground ozone levels in cities and assist states in improving air quality. Foremost in the analysis of how the UHI affects air quality and other environmental factors is the use of remote sensing technology and data to characterize urban land covers in sufficient detail to quantifiably measure the impact of increased urban heating on air quality. The urban landscape impacts surface thermal energy exchanges that determine development of the UHI. This paper will illustrate how we are using high spatial remote sensing data collected over the Atlanta, Georgia metropolitan area in conjunction with other geographic information, to perform a detailed urban land cover classification and to determine the contribution of these land covers to the urban heat island effect. Also, the spatial arrangement of the land covers and the impact on urban heating from these selected patterns of development are evaluated. Additionally, this paper will show how these data are being used as inputs to improve air quality modeling for Atlanta, including potential benefits from UHI mitigation.

  2. Biology Experience Impacts Career Development.

    ERIC Educational Resources Information Center

    Moore, Mary Jane; Holmes, William R.

    2003-01-01

    Evaluates a collaborative program in which high achieving biology students participate in genetics research under the guidance and supervision of a geneticist. Reviews the impact of their participation on college and career choices as well as understanding of science methodology, genetics, agricultural science, and product development. (SOE)

  3. Restoring pre-development conditions in a urban environment using green roofs

    NASA Astrophysics Data System (ADS)

    Palla, Anna; Gnecco, Ilaria; Lanza, Luca G.

    2010-05-01

    As development progresses in a urban environment, the impervious areas that rapidly contribute runoff to the receiving water bodies increase while the pervious areas that store and deliver subsurface flow over periods of hours, days or weeks diminish, with the direct consequence of higher runoff rates and volumes and shorter times of concentration. The construction of impervious surfaces modifies the surrounding soils through engineered compaction and eliminates superficial soil and its role as a significant pervious storage interface between the subsurface and the atmosphere. There are documented case studies that conclusively link urbanization and increased watershed imperviousness to hydrologic impacts on streams. The Effective Impervious Area (EIA) in a watershed is the impervious area directly connected to the storm drainage system that contributes to increased storm water volumes and runoff rates. It is shown in the literature that a reduction of EIA could compensate the adverse impact of possible global warming scenarios on urban hydrology and in particular on the efficiency of a combined sewer system. In this paper, the implementation of green roofs is analyzed as a technique able to reduce the amount of EIA in order to mitigate the impact of urbanization on the hydrologic response of the urban catchment of Colle Ometti in the town of Genoa (Italy). Although no green roof installations are now present in the area, this study modelled - using extensive green roof details - the hydrologic effects of hypothetical roof greening scenarios. The modelling of green roof systems was undertaken using the EPA SWMM and was calibrated and validated on a small size green roof test bed completed in September 2007 in the laboratory of the Department of Civil, Environmental and Architectural Engineering (DICAT - University of Genova).

  4. Effects of Land Use Development on Urban Open Spaces

    NASA Astrophysics Data System (ADS)

    Esbah, Hayriye; Deniz, Bulent

    City of Aydin has grown extremely due to immigration from the eastern part of Turkey, immigration from rural areas to urban areas of the city and alterations in economic and social structure of the nation. The rapid expansion of the urban area results in dramatic change in the open space system of the town. Understanding this transformation is important to generate sustainable planning in the area. The purpose of this study is to elaborate the different open space opportunities in Aydin and to detect the change in these areas. Black and white aerial photographs from 1977 and 1993 and Ikonos 2002 images are utilized for the analysis in GIS environment. First, 14 different open space types are defined and the open spaces are delineated from the aerials and satellite images. Second, the change in the area of these patches is analyzed. The results indicate that urban open spaces are negatively affected by historic land use development. The natural and agricultural patches diminished while semi-natural or man made open space patches increased. Opportunities to increase the variability in the open space types should be embraced to promote sustainability in the urban matrix. Ecological design of the man made open spaces is necessary to increase their contribution in this endeavor.

  5. Assessing the role of urban developments on storm runoff response through multi-scale catchment experiments

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Owen, Gareth; Geris, Josie; Soulsby, Chris; Quinn, Paul

    2015-04-01

    Many communities across the world face the increasing challenge of balancing water quantity and quality issues with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). In particular for mixed rural and urban catchments where the spatio-temporal variability of hydrological responses is high, there remains a key research challenge in evaluating the timing and magnitude of storage and flow pathways at multiple scales. This is of crucial importance for appropriate catchment management, for example to aid the design of Green Infrastructure (GI) to mitigate the risk of flooding, among other multiple benefits. The aim of this work was to (i) explore spatio-temporal storm runoff generation characteristics in multi-scale catchment experiments that contain rural and urban land use zones, and (ii) assess the (preliminary) impact of Sustainable Drainage (SuDs) as GI on high flow and flood characteristics. Our key research catchment, the Ouseburn in Northern England (55km2), has rural headwaters (15%) and an urban zone (45%) concentrated in the lower catchment area. There is an intermediate and increasingly expanding peri-urban zone (currently 40%), which is defined here as areas where rural and urban features coexist, alongside GIs. Such a structure is typical for most catchments with urban developments. We monitored spatial precipitation and multiscale nested (five gauges) runoff response, in addition to the storage dynamics in GIs for a period of 6 years (2007-2013). For a range of events, we examined the multiscale nested runoff characteristics (lag time and magnitude) of the rural and urban flow components, assessed how these integrated with changing land use and increasing scale, and discussed the implications for flood management in the catchment. The analyses indicated three distinctly different patterns in the timing and magnitude of the contributions of the different land use zones and their nested integrated runoff response at increasing scales. These can be clearly linked to variations in antecedent conditions and precipitation patterns. For low antecedent flow conditions, the main flood peak is dominated by urban origins (faster responding and larger in relative magnitude); for high antecedent flow conditions, rural (and peri-urban) sources are most dominant. A third type of response involves mixed events, where both rural and urban contributions interact and reinforce the peak flow response. Our analyses showed that the effectiveness of the GIs varied substantially between the different events, suggesting that their design could be improved by introducing variable drainage rates and strategic placements to allow for interactions with the stream network. However, more information is needed on the spatio-temporal variability in water sources, flow pathways and residence times. This is of particular importance to also assess other multiple benefits of GIs, including the impacts on water quality. These challenges are currently addressed in two new case study catchment in the North East of Scotland (10km2) which are undergoing major land use change from rural to urban. Here, integrated tracer and hydrometric data are being collected to characterise the integrated impacts of urbanisation and GIs on flow pathways (nature and length) and associated water quality.

  6. Impacts of urban land-surface forcing on air quality in the Seoul metropolitan area

    NASA Astrophysics Data System (ADS)

    Ryu, Y.-H.; Baik, J.-J.; Kwak, K.-H.; Kim, S.; Moon, N.

    2012-09-01

    Modified local meteorology owing to heterogeneities in the urban-rural surface can affect urban air quality. In this study, the impacts of urban land-surface forcing on air quality during a high ozone (O3) episode in the Seoul metropolitan area, South Korea, are investigated using a high-resolution chemical transport model (CMAQ). Under a fair weather condition, the temperature excess (urban heat island) significantly modifies boundary layer characteristics/structures and local circulations. The modified boundary layer and local circulations result in an increase in O3 levels in the urban area of 16 ppb in the nighttime and 13 ppb in the daytime. Enhanced turbulence in the deepened urban boundary layer dilutes pollutants such as NOx, and this contributes to the elevated O3 levels through the less O3 destruction by NO in the NOx-rich environment. The advection of O3 precursors over the mountains near Seoul by the prevailing valley-breeze circulation in the mid- to late morning results in the build-up of O3 over the mountains in conjunction with biogenic volatile organic compound (BVOC) emissions there. As the prevailing local circulation in the afternoon changes to urban-breeze circulation, the O3-rich air masses over the mountains are advected over the urban area. The urban-breeze circulation exerts significant influences on not only the advection process but also the chemical process under the circumstances in which both anthropogenic and biogenic (natural) emissions play important roles in forming O3. The intrusion of the air masses, characterized by low NOx and high BVOC levels and long OH chain length, from surroundings increases ozone production efficiency in the urban area, thus leading to more O3 production. The relatively strong vertical mixing in the urban boundary layer embedded in the sea-breeze inflow layer reduces NOx levels, thus contributing to the elevated O3 levels in the urban area.

  7. Health impacts of large releases of radionuclides. The fate and impact of radiocontaminants in urban areas.

    PubMed

    Roed, J; Andersson, K G; Lange, C

    1997-01-01

    The Chernobyl accident made it clear that the contaminants released after a severe nuclear accident may spread over large areas, and thereby form a significant external radiation hazard in areas of high population density. Since then, the weathering effects on the deposited radiocontaminants (essentially radiocaesium) have been followed on different types of surface in urban, suburban and industrial areas in order to enable an estimation of the long-term impact of such events. Analytical expressions have been derived for the typical behaviour of radiocaesium on the different surfaces, and dose measurements and calculations for different urban environments have pinpointed which surfaces generally contribute most to the dose and consequently are most important to clean. At this point, after nearly a decade, the dose rate from horizontal pavements has decreased by at least a factor of 10, whereas the dose rate from an area of soil or a roof has generally only been halved. The contamination on walls is the most persistent: it has only decreased by 10-20%. PMID:9339313

  8. An environmental pressure index proposal for urban development planning based on the analytic network process

    SciTech Connect

    Gomez-Navarro, Tomas; Diaz-Martin, Diego

    2009-09-15

    This paper introduces a new approach to prioritize urban planning projects according to their environmental pressure in an efficient and reliable way. It is based on the combination of three procedures: (i) the use of environmental pressure indicators, (ii) the aggregation of the indicators in an Environmental Pressure Index by means of the Analytic Network Process method (ANP) and (iii) the interpretation of the information obtained from the experts during the decision-making process. The method has been applied to a proposal for urban development of La Carlota airport in Caracas (Venezuela). There are three options which are currently under evaluation. They include a Health Club, a Residential Area and a Theme Park. After a selection process the experts chose the following environmental pressure indicators as ANP criteria for the project life cycle: used land area, population density, energy consumption, water consumption and waste generation. By using goal-oriented questionnaires designed by the authors, the experts determined the importance of the criteria, the relationships among criteria, and the relationships between the criteria and the urban development alternatives. The resulting data showed that water consumption is the most important environmental pressure factor, and the Theme Park project is by far the urban development alternative which exerts the least environmental pressure on the area. The participating experts coincided in appreciating the technique proposed in this paper is useful and, for ranking ordering these alternatives, an improvement from traditional techniques such as environmental impact studies, life-cycle analysis, etc.

  9. 75 FR 38514 - Notice of Funding Availability for the Department of Housing and Urban Development's Community...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... URBAN DEVELOPMENT DEPARTMENT OF TRANSPORTATION Notice of Funding Availability for the Department of Housing and Urban Development's Community Challenge Planning Grants and the Department of Transportation's... part V, ``Department of Health and Human Services'' should read ``Department of Housing and...

  10. One Hundred Years of New York City's "Urban Heat Island": Temperature Trends and Public Health Impacts

    NASA Astrophysics Data System (ADS)

    Rosenthal, J. E.; Knowlton, K. M.; Rosenzweig, C.; Goldberg, R.; Kinney, P. L.

    2003-12-01

    In this paper, we examine the relationship between the historical development of New York City and its effect on the urban climate. Urban "heat islands" (UHI) are created principally by man-made surfaces, including concrete, dark roofs, asphalt lots and roads, which absorb most of the sunlight falling on them and reradiate that energy as heat. Many urban streets have fewer trees and other vegetation to shade buildings, block solar radiation and cool the air by evapotranspiration. The historical development of the NYC heat island effect was assessed in terms of average temperature differences of the city center relative to its surrounding 31-county metropolitan region, comprised of parts of New York State, New Jersey, and Connecticut. Monthly maximum and minimum temperatures for 1900-1997 were obtained from NOAA's National Climatic Data Center, the NASA-Goddard Institute for Space Studies, and the Lamont-Doherty Earth Observatory of Columbia University for 24 weather stations within the region that are part of the U.S. Historical Climatology Network. Analysis of annual mean temperatures shows an increasing difference between NYC (Central Park weather station) and its surrounding region over the twentieth century. Analysis of the temperature differences over time between NY Central Park (NYCP) station and 23 regional weather stations classified according to distance and level of urbanization show a heat island effect existing in NYC, with mean temperatures in the NYCP Station generally higher than the surrounding stations, ranging from 1.20\\deg C to 3.02\\deg C. A difference of at least 1\\deg C already existed at the beginning of the 20th century between the mean temperature in NYC and its surrounding rural areas, and this difference increased over the twentieth century. There was a significant decrease in the monthly and seasonal variability of the UHI effect over the century. Temperature extremes and summertime heat can create heat stress and other health consequences for urban residents. Public health impacts are assessed as the proportion of heat-related regional mortality estimated to be attributable to New York City's heat island effect during an average 1990's summer. Concentration-response functions describing the temperature-mortality relationship in NYC derived from the epidemiological literature are used to estimate numbers of deaths in a typical 1990s summer and those attributable to the city's heat island effect. The techniques and potential public health benefits of a pilot project to mitigate the heat island effect in NYC will be discussed.

  11. Examining the impact of urban biophysical composition and neighboring environment on surface urban heat island effect

    NASA Astrophysics Data System (ADS)

    Song, Yang; Wu, Changshan

    2016-01-01

    Due to atmospheric and surface modifications associated with urbanization, surface urban heat island (SUHI) effects have been considered essential in examining urban ecological environments. With remote sensing technologies, numerous land cover type related variables, including spectral indices and land cover fractions, have been applied to estimate land surface temperature (LST), thereby further examining SUHI. This study begins with the reexamination of the commonly used indicators of LST using Landsat Enhanced Thematic Mapper Plus (ETM+) and Landsat Thematic Mapper (TM) images which cover four counties of Wisconsin, United States. Origin of the large variation of LST found in urban areas is then investigated by discriminating soil and impervious surfaces. Except land cover types, neighboring environment is another key factor which may affect LST in urban areas. Thus, a neighboring effect considered method is proposed at the end of the study to better understand the relationship between impervious surfaces fraction (%ISA) and LST by taking the influence of neighboring environment into account. Results indicate that spectral indices have better performance in predicting LST than land cover fractions do within the study area. However, the result remains arguable due to the complexity and uncertainty of spectral mixture analysis. Impervious surfaces are found responsible for the large variation of LST in urban areas, which indicates that impervious surfaces should not be simply considered as a single land cover type has stable negative correlation with LST. Moreover, a better relationship is found between %ISA and LST when neighboring effect is considered, when compared to the traditional method which ignores the neighboring effect.

  12. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale.

    PubMed

    Livesley, S J; McPherson, G M; Calfapietra, C

    2016-01-01

    Many environmental challenges are exacerbated within the urban landscape, such as stormwater runoff and flood risk, chemical and particulate pollution of urban air, soil and water, the urban heat island, and summer heat waves. Urban trees, and the urban forest as a whole, can be managed to have an impact on the urban water, heat, carbon and pollution cycles. However, there is an increasing need for empirical evidence as to the magnitude of the impacts, both beneficial and adverse, that urban trees can provide and the role that climatic region and built landscape circumstance play in modifying those impacts. This special section presents new research that advances our knowledge of the ecological and environmental services provided by the urban forest. The 14 studies included provide a global perspective on the role of trees in towns and cities from five continents. Some studies provide evidence for the cooling benefit of the local microclimate in urban green space with and without trees. Other studies focus solely on the cooling benefit of urban tree transpiration at a mesoscale or on cooling from canopy shade at a street and pedestrian scale. Other studies are concerned with tree species differences in canopy interception of rainfall, water uptake from biofilter systems, and water quality improvements through nutrient uptake from stormwater runoff. Research reported here also considers both the positive and the negative impacts of trees on air quality, through the role of trees in removing air pollutants such as ozone as well as in releasing potentially harmful volatile organic compounds and allergenic particulates. A transdisciplinary framework to support future urban forest research is proposed to better understand and communicate the role of urban trees in urban biogeochemical cycles that are highly disturbed, highly managed, and of paramount importance to human health and well-being. PMID:26828167

  13. Urban Security Initiative: Earthquake impacts on the urban ``system of systems``

    SciTech Connect

    Maheshwari, S.; Jones, E.; Rasmussen, S.

    1999-06-01

    This paper is a discussion of how to address the problems of disasters in a large city, a project titled Urban Security Initiative undertaken by the Los Alamos National Laboratory. The paper first discusses the need to address the problems of disasters in large cities and ten provides a framework that is suitable to address this problem. The paper then provides an overview of the module of the project that deals with assessment of earthquake damage on urban infrastructure in large cities and an internet-based approach for consensus building leading to better coordination in the post-disaster period. Finally, the paper discusses the future direction of the project.

  14. [Changes in urban development: is the globalization era one of urban deconcentration?].

    PubMed

    Rivera, S

    1997-01-01

    Urbanization patterns in Mexico during the past five decades clearly reflect trends in the country's capitalist development. Accelerated industrialization with protectionism; redistributive policies with unlimited expansion of public expenditures; industrial conversion attended by economic crisis and structural adjustment during the "lost decade" of the 1980s; and indiscriminate opening, currency instability, and anti-inflation measures in the stage of globalization represent four successive phases. This work argues that the commercial opening and application of a neoliberal model are likely to renew tendencies toward concentration of population and economic activity in a few metropolitan areas. There are indications that manufacturing is again tending to concentrate in the older industrial cities, especially Mexico City. The 1995 census suggests that, beginning in 1988, the metropolitan areas again began to attract population growth, after a cycle of outflow from the center city to the metropolitan periphery in the 1970s and 1980s. The trend toward deconcentration, thus, may not represent a linear and long-term tendency. Instead, fluctuations over time are intimately related to macroeconomic forces and regulatory mechanisms that influence the urban system. No consensus has been reached concerning the theoretical explanations of effects on regional or urban systems when international restrictions on commerce are eliminated. The neoclassical perspective predicts a homogenizing effect, assuming that key conditions are met, while a competing theory predicts that increasing competition will inevitably be met by increases in the scale of production. Incentives to focus production in a small number of places would lead to economic and demographic concentration in the urban centers or regions enjoying better infrastructure, more qualified labor forces, and more extensive markets for labor and consumption. A renewed cycle of locus in Mexico's largest metropolitan zones may currently be underway. PMID:12158086

  15. Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options.

    PubMed

    Nelson, Kären C; Palmer, Margaret A; Pizzuto, James E; Moglen, Glenn E; Angermeier, Paul L; Hilderbrand, Robert H; Dettinger, Michael; Hayhoe, Katharine

    2009-02-01

    Streams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of these disturbances using process-based models is critical to identifying the form and magnitude of likely impacts. Here, we integrate a new biotic model with four previously developed physical models (downscaled climate projections, stream hydrology, geomorphology, and water temperature) to predict how stream fish growth and reproduction will most probably respond to shifts in climate and urbanization over the next several decades.The biotic submodel couples dynamics in fish populations and habitat suitability to predict fish assemblage composition, based on readily available biotic information (preferences for habitat, temperature, and food, and characteristics of spawning) and day-to-day variability in stream conditions.WE ILLUSTRATE THE MODEL USING PIEDMONT HEADWATER STREAMS IN THE CHESAPEAKE BAY WATERSHED OF THE USA, PROJECTING TEN SCENARIOS: Baseline (low urbanization; no on-going construction; and present-day climate); one Urbanization scenario (higher impervious surface, lower forest cover, significant construction activity); four future climate change scenarios [Hadley CM3 and Parallel Climate Models under medium-high (A2) and medium-low (B2) emissions scenarios]; and the same four climate change scenarios plus Urbanization.Urbanization alone depressed growth or reproduction of 8 of 39 species, while climate change alone depressed 22 to 29 species. Almost every recreationally important species (i.e. trouts, basses, sunfishes) and six of the ten currently most common species were predicted to be significantly stressed. The combined effect of climate change and urbanization on adult growth was sometimes large compared to the effect of either stressor alone. Thus, the model predicts considerable change in fish assemblage composition, including loss of diversity.Synthesis and applications. The interaction of climate change and urban growth may entail significant reconfiguring of headwater streams, including a loss of ecosystem structure and services, which will be more costly than climate change alone. On local scales, stakeholders cannot control climate drivers but they can mitigate stream impacts via careful land use. Therefore, to conserve stream ecosystems, we recommend that proactive measures be taken to insure against species loss or severe population declines. Delays will inevitably exacerbate the impacts of both climate change and urbanization on headwater systems. PMID:19536343

  16. Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options

    PubMed Central

    Nelson, Kären C; Palmer, Margaret A; Pizzuto, James E; Moglen, Glenn E; Angermeier, Paul L; Hilderbrand, Robert H; Dettinger, Michael; Hayhoe, Katharine

    2009-01-01

    Streams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of these disturbances using process-based models is critical to identifying the form and magnitude of likely impacts. Here, we integrate a new biotic model with four previously developed physical models (downscaled climate projections, stream hydrology, geomorphology, and water temperature) to predict how stream fish growth and reproduction will most probably respond to shifts in climate and urbanization over the next several decades. The biotic submodel couples dynamics in fish populations and habitat suitability to predict fish assemblage composition, based on readily available biotic information (preferences for habitat, temperature, and food, and characteristics of spawning) and day-to-day variability in stream conditions. We illustrate the model using Piedmont headwater streams in the Chesapeake Bay watershed of the USA, projecting ten scenarios: Baseline (low urbanization; no on-going construction; and present-day climate); one Urbanization scenario (higher impervious surface, lower forest cover, significant construction activity); four future climate change scenarios [Hadley CM3 and Parallel Climate Models under medium-high (A2) and medium-low (B2) emissions scenarios]; and the same four climate change scenarios plus Urbanization. Urbanization alone depressed growth or reproduction of 8 of 39 species, while climate change alone depressed 22 to 29 species. Almost every recreationally important species (i.e. trouts, basses, sunfishes) and six of the ten currently most common species were predicted to be significantly stressed. The combined effect of climate change and urbanization on adult growth was sometimes large compared to the effect of either stressor alone. Thus, the model predicts considerable change in fish assemblage composition, including loss of diversity. Synthesis and applications. The interaction of climate change and urban growth may entail significant reconfiguring of headwater streams, including a loss of ecosystem structure and services, which will be more costly than climate change alone. On local scales, stakeholders cannot control climate drivers but they can mitigate stream impacts via careful land use. Therefore, to conserve stream ecosystems, we recommend that proactive measures be taken to insure against species loss or severe population declines. Delays will inevitably exacerbate the impacts of both climate change and urbanization on headwater systems. PMID:19536343

  17. An integrated inundation model for highly developed urban areas.

    PubMed

    Chen, A S; Hsu, M H; Chen, T S; Chang, T J

    2005-01-01

    A numerical model is developed in this study with various components for simulating the complex flow phenomena in urban drainage basins. The model integrates the HEC-1 model, a 1-D dynamic channel-flow model, a 2-D non-inertia overland-flow model and the SWMM model to reflect the hydraulic processes in areas with different characteristics. The inundation of underground infrastructure during flood is also considered in the model. The typhoon Nari event in 2001, which resulted in severe flood in downtown Taipei, is simulated by the model. The result is compared with the survey records of flooded areas, which reveals the storage effect of underground infrastrucures is significant to the simulation results of highly developed urban areas. PMID:15790247

  18. ECOLOGICAL SUSTAINABILITY IN RAPIDLY URBANIZING WATERSHEDS: EVALUATING STRATEGIES DESIGNED TO MITIGATE IMPACTS ON STREAM ECOSYSTEMS

    EPA Science Inventory

    Urbanization has profound impacts on the hydrology and ecology of streams via alteration in water temperatures, peak and base flows, and nutrient, sediment, and contaminant inputs. Storm water management (SWM) is commonly used to reduce these impacts; however, comprehensive w...

  19. Survey of European Programs: Education for Urbanization in the Developing Countries. An International Urbanization Survey Report to the Ford Foundation.

    ERIC Educational Resources Information Center

    Bernstein, Beverly

    This report is intended as a contribution to the International Urbanization Survey, initiated by The Ford Foundation. The Survey is designed to review and assess experience in the complex problems posed by the rapid growth of urban centres throughout the developing countries. The terms of reference used here were broadly taken to be as follows: to…

  20. Assessment of LID practices for restoring pre-development runoff regime in an urbanized catchment in southern Finland.

    PubMed

    Guan, Mingfu; Sillanp, Nora; Koivusalo, Harri

    2015-01-01

    This study quantifies the effects of common stormwater management techniques on urban runoff generation. Simulated flow rates for different low impact development (LID) scenarios were compared with observed flow rates during different urban construction phases in a catchment (12.3 ha) that was developed from natural forest to a residential area over a monitoring period of 5 years. The Storm Water Management Model (SWMM) was calibrated and validated against the observed flow rates in the fully developed catchment conditions, and it was then applied to parameterize the LID measures and produce scenarios of their hydrological impacts. The results from the LID scenarios were compared with the observed flow rates in the pre-development and the partially developed catchment conditions. The results show that LID controls reduce urban runoff towards the flow conditions in the partially developed catchment, but the reduction effect diminishes during large rainfall events. The hydrographs with LID are still clearly different from the observed pre-development levels. Although the full restoration of pre-development flow conditions was not feasible, a combination of several measures controlling both volumes and retention times of storm runoff appeared to be effective for managing the stormwater runoff and mitigating the negative impacts of urban development. PMID:26442490

  1. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-04-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions; adaptive approach that provides inherent flexibility and reversibility and avoids closing off options; importance of active learning. References: Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., Nguyen, V-T-V. (2012). Impacts of climate change on rainfall extremes and urban drainage. IWA Publishing, 252 p., Paperback Print ISBN 9781780401256; Ebook ISBN 9781780401263 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118

  2. The Urban Impacts of Federal Policies: Vol. 3, Fiscal Conditions.

    ERIC Educational Resources Information Center

    Barro, Stephen M.

    The growing fiscal problems of American cities have drawn new attention to the dual role of the Federal government: on one hand a contributor to current problems; on the other, the main potential source of solutions and financial relief. Federal involvement in urban affairs is far more extensive than is suggested by the handful of explicitly urban…

  3. Impact of Urbanization on Water Quantity and Quality: The Need for an Integrative Watershed Modeling Approach

    EPA Science Inventory

    Economic development through natural resource extraction is the primary driver of land use change. Land use change generally occurs as a result of urban development (residential, commercial, and industrial), agriculture (pasture and crop production), forestry (wood for constructi...

  4. Impact of rehabilitation of Assiut barrage, Nile River, on groundwater rise in urban areas

    NASA Astrophysics Data System (ADS)

    Dawoud, Mohamed A.; El Arabi, Nahed E.; Khater, Ahmed R.; van Wonderen, Jan

    2006-08-01

    To make optimum use of the most vital natural resource of Egypt, the River Nile water, a number of regulating structures (in the form of dams and barrages) for control and diversion of the river flow have been constructed in this river since the start of the 20th century. One of these barrages is the Assiut barrage which will require considerable repairs in the near future. The design of the rehabilitation of the barrage includes a headpond with water levels maintained at a level approximately 0.60 m higher than the highest water level in the headpond of the present barrage. This development will cause an increase of the seepage flow from the river towards the adjacent agricultural lands, Assiut Town and villages. The increased head pond level might cause a rise of the groundwater levels and impedance of drainage outflows. The drainage conditions may therefore be adversely affected in the so-called impacted areas which comprise floodplains on both sides of the Nile for about 70 km upstream of the future barrage. A rise in the groundwater table, particularly when high river levels impede drainage, may result in waterlogging and secondary salinization of the soil profile in agricultural areas and increase of groundwater into cellars beneath buildings in the urban areas. In addition, a rise in the groundwater table could have negative impact on existing sanitation facilities, in particular in the areas which are served with septic tanks. The impacts of increasing the headpond level were assessed using a three-dimensional groundwater model. The mechanisms of interactions between the Nile River and the underlying Quaternary aquifer system as they affect the recharge/discharge processes are comprehensively outlined. The model has been calibrated for steady state and transient conditions against historical data from observation wells. The mitigation measures for the groundwater rise in the urban areas have been tested using the calibrated mode.

  5. Untangling the effects of urban development on subsurface storage in Baltimore

    NASA Astrophysics Data System (ADS)

    Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.

    2015-02-01

    The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.

  6. An impact assessment methodology for urban surface runoff quality following best practice treatment.

    PubMed

    Ellis, J Bryan; Revitt, D Michael; Lundy, Lian

    2012-02-01

    The paper develops an easy to apply desk-based semi-quantitative approach for the assessment of residual receiving water quality risks associated with urban surface runoff following its conveyance through best practice sustainable drainage systems (SUDS). The innovative procedure utilises an integrated geographical information system (GIS)-based pollution index approach based on surface area impermeability, runoff concentrations/loadings and individual SUDS treatment performance potential to evaluate the level of risk mitigation achievable by SUDS drainage infrastructure. The residual impact is assessed through comparison of the determined pollution index with regulatory receiving water quality standards and objectives. The methodology provides an original theoretically based procedure which complements the current acute risk assessment approaches being widely applied within pluvial flood risk management. PMID:22227301

  7. Focus for Area Development Analysis: Urban Orientation of Counties.

    ERIC Educational Resources Information Center

    Bluestone, Herman

    The orientation of counties to metropolitan systems and urban centers is identified by population density and percentage of urban population. This analytical framework differentiates 6 kinds of counties, ranging from most urban-oriented (group 1) to least urban-oriented (group 6). With this framework, it can be seen that the economic well-being of…

  8. Impacts of atmospheric aerosols on urban boundary layer dynamics: Application during the CAPITOUL field experiment

    NASA Astrophysics Data System (ADS)

    Aouizerats, Benjamin; Tulet, Pierre; Gomes, Laurent; Pigeon, Grgoire; Masson, Valry

    2010-05-01

    The aim of this study is to better understand the direct radiative impact of urban aerosol particles on atmospheric dynamics. This work is based on data collected in Toulouse, France, during the CAPITOUL field campaign, and on explicit aerosol modeling using the mesoscale model MesoNH (Lafore et al., 1998) fully coupled with the ORILAM (ORganic and Inorganic Lognormal Aerosol Model) aerosol scheme. High resolution simulations (500 meters) have been performed over the city of Toulouse for a summer intensive observation period (IOP). In addition, a 500-m resolution emission inventory has been developed over the Toulouse region, using the COPERT 4 software and data from the French national institute in charge of road traffic. A reference simulation has been validated in regard of field observations (dynamics, gas and aerosol chemistry). Then, this reference simulation has been compared with a simulation that takes into account the direct radiative effect of particles by using the aerosol physical properties and the Mie theory and Maxwell-Garnett equation (Tombette et al. 2008). Finally, the study focuses on the effect of aerosol particles on urban boundary layer dynamics such as temperature variations due, for example, to the light absorption by black carbon (BC) aerosol.

  9. Impacts of atmospheric aerosols on urban boundary layer dynamics: Application during the CAPITOUL field experiment

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; Tulet, P.; Gomes, L.; Pigeon, G.; Masson, V.

    2009-09-01

    The aim of this study is to better understand the direct radiative impact of urban aerosol particles on atmospheric dynamics. This work is based on data collected in Toulouse, France, during the CAPITOUL field campaign, and on explicit aerosol modeling using the mesoscale model MesoNH (Lafore et al., 1998) fully coupled with the ORILAM (ORganic and Inorganic Lognormal Aerosol Model) aerosol scheme. High resolution simulations (500 meters) have been performed over the city of Toulouse for a summer intensive observation period (IOP). In addition, a 500-m resolution emission inventory has been developed over the Toulouse region, using the COPERT 4 software and data from the French national institute in charge of road traffic. A reference simulation has been validated in regard of field observations (dynamics, gas and aerosol chemistry). Then, this reference simulation has been compared with a simulation which takes into account the direct radiative effect of particles by using the aerosol physical properties and the Mie theory and Maxwell-Garnett equation (Tombette et al. 2008). Finally, the study focuses on the effect of aerosol particles on urban boundary layer dynamics such as temperature variations due, for example, to the light absorption by black carbon (BC) aerosol.

  10. Impact of Megacity Shanghai on the Urban Heat-Island Effects over the Downstream City Kunshan

    NASA Astrophysics Data System (ADS)

    Kang, Han-Qing; Zhu, Bin; Zhu, Tong; Sun, Jia-Li; Ou, Jian-Jun

    2014-09-01

    The impact of upstream urbanization on the enhanced urban heat-island (UHI) effects between Shanghai and Kunshan is investigated by analyzing seven years of surface observations and results from mesoscale model simulations. The observational analysis indicates that, under easterly and westerly winds, the temperature difference between Shanghai and Kunshan increases with wind speed when the wind speed 5 m s. The Weather Research and Forecasting (WRF) numerical model, coupled with a one-layer urban canopy model (UCM), is used to examine the UHI structure and upstream effects by replacing the urban surface of Shanghai and/or Kunshan with cropland. The WRF/UCM modelling system is capable of reproducing the surface temperature and wind field reasonably well. The simulated urban canopy wind speed is a better representation of the near-surface wind speed than is the 10-m wind speed at the centre of Shanghai. Without the urban landscape of Shanghai, the surface air temperature over downstream Kunshan would decrease by 0.2-0.4 C in the afternoon and 0.4-0.6 C in the evening. In the simulation with the urban landscape of Shanghai, a shallow cold layer is found above the UHI, with a minimum temperature of about to 0.5 C during the afternoon hours. Strong horizontal divergence is found in this cold layer. The easterly breeze over Shanghai is strengthened at the surface by strong UHI effects, but weakened at upper levels. With the appearance of the urban landscape specific humidity decreases by 0.5-1 g kg within the urban area because of the waterproof property of an urban surface. On the other hand, the upper-level specific humidity is increased because of water vapour transferred by the strong upward vertical motions.

  11. A Comparison of Natural and Urban Characteristics and the Development of Urban Intensity Indices Across Six Geographic Settings

    USGS Publications Warehouse

    Falcone, James A.; Stewart, Jana; Sobieszczyk, Steven; Dupree, Jean; McMahon, Gerard; Buell, Gary

    2007-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program, the effects of urbanization on stream ecosystems have been intensively investigated in six metropolitan areas in the United States. Approximately 30 watersheds in each area, ranging in size from 4 to 560 square kilometers (median is 50 square kilometers), and spanning a development gradient from very low to very high urbanization, were examined near Atlanta, Georgia; Raleigh, North Carolina; Denver, Colorado; Dallas-Fort Worth, Texas; Portland, Oregon; and Milwaukee-Green Bay, Wisconsin. These six studies are a continuation of three previous studies in Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah. In each study, geographic information system data for approximately 300 variables were assembled to (a) characterize the environmental settings of the areas and (b) establish a consistent multimetric urban intensity index based on locally important land-cover, infrastructure, and socioeconomic variables. This paper describes the key features of urbanization and the urban intensity index for the study watersheds within each area, how they differ across study areas, and the relation between the environmental setting and the characteristics of urbanization. A number of features of urbanization were identified that correlated very strongly to population density in every study area. Of these, road density had the least variability across diverse geographic settings and most closely matched the multimetric nature of the urban intensity index. A common urban intensity index was derived that ranks watersheds across all six study areas. Differences in local natural settings and urban geography were challenging in (a) identifying consistent urban gradients in individual study areas and (b) creating a common urban intensity index that matched the site scores of the local urban intensity index in all areas. It is intended that the descriptions of the similarities and differences in urbanization and environmental settings across these study areas will provide a foundation for understanding and interpreting the effects of urbanization on stream ecosystems in the studies being conducted as part of the National Water-Quality Assessment Program.

  12. Special Issue "Impact of Natural Hazards on Urban Areas and Infrastructure" in the Bulletin of Earthquake Engineering

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, M.

    2009-04-01

    This special issue includes selected papers on the topic of earthquake impact from the sessions held in 2004 in Nice, France and in 2005 in Vienna, Austria at the first and respectivelly the second European Geosciences Union General Assembly. Since its start in 1999, in the Hague, Netherlands, the hazard of earthquakes has been the most popular of the session. The respective calls in 2004 was for: Nature's forces including earthquakes, floods, landslides, high winds and volcanic eruptions can inflict losses to urban settlements and man-made structures such as infrastructure. In Europe, recent years have seen such significant losses from earthquakes in south and south-eastern Europe, floods in central Europe, and wind storms in western Europe. Meanwhile, significant progress has been made in understanding disasters. Several scientific fields contribute to a holistic approach in the evaluation of capacities, vulnerabilities and hazards, the main factors on mitigating urban disasters due to natural hazards. An important part of the session is devoted to assessment of earthquake shaking and loss scenarios, including both physical damage and human causalities. Early warning and rapid damage evaluation are of utmost importance for addressing the safety of many essential facilities, for emergency management of events and for disaster response. In case of earthquake occurrence strong motion networks, data processing and interpretation lead to preliminary estimation (scenarios) of geographical distribution of damages. Factual information on inflicted damage, like those obtained from shaking maps or aerial imagery permit a confrontation with simulation maps of damage in order to define a more accurate picture of the overall losses. Most recent developments towards quantitative and qualitative simulation of natural hazard impacts on urban areas, which provide decision-making support for urban disaster management, and success stories of and lessons learned from disaster mitigation will be presented. The session includes contributions showing methodological and modelling approaches from scientists in geophysical/seismological, hydrological, remote sensing, civil engineering, insurance, and urbanism, amongst other fields, as well as presentations from practitioners working on specific case studies, regarding analysis of recent events and their impact on cities as well as re-evaluation of past events from the point of view of long-time recovery. In 2005 it was called for: Most strategies for both preparedness and emergency management in case of disaster mitigation are related to urban planning. While natural, engineering and social sciences contribute to the evaluation of the impact of earthquakes and their secondary events (including tsunamis, earthquake triggered landslides, or fire), floods, landslides, high winds, and volcanic eruptions on urban areas, there are the instruments of urban planning which are to be employed for both visualisation as well as development and implementation of strategy concepts for pre- and postdisaster intervention. The evolution of natural systems towards extreme conditions is taken into consideration so far at it concerns the damaging impact on urban areas and infrastructure and the impact on the natural environment of interventions to reduce such damaging impact.

  13. Managing Stormwater Runoff From Urban Areas in Consideration of Predicted Climate Change Impacts in the Mid-Atlantic Region

    NASA Astrophysics Data System (ADS)

    Williams, M.

    2014-12-01

    Mean annual temperature and precipitation in the Mid-Atlantic, USA, increased over the last century, and global climate models applied to this region generally project that these trends will continue throughout the year 2100. Higher temperatures and associated evapotranspiration may decrease total annual baseflow, even as stormflow events increase in magnitude and intensity, leading to more frequent and larger nutrient and sediment fluxes to receiving waters. Development will create more impervious surfaces, thereby increasing the ratio of stormflow to baseflow volumes. The possibility of increasing riverine flow associated with climate change this century necessitates an evaluation of various best management practices (BMPs) in urban areas to develop and utilize BMPs that optimize reductions in nutrient and sediment fluxes, as well as determine the extent to which these BMPs should be implemented. The headwaters of the Patuxent watershed are located in a highly developed urban corridor between Washington DC and Baltimore thus making it an ideal setting to explore potential climate change impacts in urban areas. Scenarios generated from a system of linked watershed and estuarine models were used to determine climate and land use change effects on Patuxent River runoff and estuarine water quality. The uncertainties of climate predictions and their implications regarding proactive mitigation approaches to manage pollutant fluxes from urban areas are discussed.

  14. Conceptual framework for describing selected urban and community impacts of federal energy policies

    SciTech Connect

    Morris, F.A,; Marcus, A.A.; Keller, D.

    1980-06-01

    A conceptual framework is presented for describing selected urban and community impacts of Federal energy policies. The framework depends on a simple causal model. The outputs of the model are impacts, changes in the state of the world of particular interest to policymakers. At any given time, a set of determinants account for the state of the world with respect to an impact category. Application of the model to a particular impact category requires: establishing a definition and measure for the impact category and identifying the determinants of these impacts. Analysis of the impact of a particular policy requires the following: identifying the policy and its effects (as estimated by others), isolating any effects that themselves constitute an urban and community impact, identifying any effects that change the value of determinants, and describing the impact with reference to the new values of determinants. This report provides a framework for these steps. Three impacts addressed are: neighborhood stability, housing availability, and quality and availability of public services. In each chapter, a definition and measure for the impact are specified; its principal determinants are identified; how the causal model can be used to estimate impacts by applying it to three illustrative Federal policies (domestic oil price decontrol, building energy performance standards, and increased Federal aid for mass transit) is demonstrated. (MCW)

  15. Pseudo Paired Catchments Analysis to Assess the Impact of Urbanization on Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Salavati, B.; Oudin, L.; Furusho, C.; Ribstein, P.

    2014-12-01

    Paired catchments analysis provides a robust approach to assess the impact of land use changes on catchment's hydrological response. This approach is limited by the availability of data for two neighbor catchments with and without land use changes under similar climate conditions. Thus, hydrological modelling approaches are also very popular since they do not depend on data of a reference catchment. In the present study, 70 urbanized and non-urbanized paired catchments were selected in the United States. Unit housing density maps over the 1940-2010 time period were used to reconstruct historic impervious area extents with aproximatly the same resolution as the National Land Cover Database (NLCD) maps. Two approaches were compared to assess the impact of urbanization on catchment-scale hydrology: the classical paired catchments approach using observed flow time series and an alternative paired catchments approach involving hydrological modeling that allows to simulate a virtual control catchment. To this aim, the GR4J model, a conceptual daily 4-parameter hydrological model, was used. The parameters of the model calibrated on the pre urbanization period were used to predict the streamflow that would have occurred in the urban catchment if the urbanization had not taken place. Then, classical statistical methods involving ANCOVA were used to detect the significance and to quantify the change on the hydrological responses due to land use changes. Results show that the two approaches lead to similar conclusions on the impact of urbanization on catchment hydrology. Thus, the modelling approach provides a relevant alternative for case studies where data of reference catchments are not available.

  16. Urban lake sediment chemistry: Lake design, runoff, and watershed impact

    SciTech Connect

    Amalfi, F.A.

    1988-01-01

    Sediments of twenty-two urban lakes and stormwater discharge into five of the impoundments were analyzed for the presence of selected metallic priority pollutants, total petroleum hydrocarbons, and volatile and extractable organic compounds. The concentration (mg/kg dry weight) ranges of metals in lake sediments were: arsenic 7-29, cadmium < 0.5-0.5, chromium 14-55, lead <1-138, selenium <0.01-1.1, silver 0.2-2.1, copper 25-2760, nickel 5-40, and zinc 33.9-239. Concentrations of total petroleum hydrocarbons ranged from 30 to 4400 mg/kg (wet weight). Organic priority pollutants detected in the urban lake impoundments included tetrachlorethylene, 1,1,2-trichloroethane, trichlorofluoromethane, phthalate esters, chloroform, and dichlorobromomethane. Stormwater runoff contained measurable quantities of arsenic, chromium, lead, selenium, copper, nickel, zinc, and petroleum hydrocarbons; whereas organic priority pollutants were not detected. Stormwater runoff pollutant loads indicated that runoff provides a significant contribution of metals and petroleum hydrocarbons to lake sediments.

  17. Mitigation of urban heat islands: meteorology, energy, and airquality impacts

    SciTech Connect

    Taha, Haider; Meier, Alan; Gao, Weijun; Ojima, Toshio

    1999-09-30

    This paper presents results from energy, meteorological andphotochemical (air quality) modeling for the Los Angeles Basin, one ofthe largest and smoggiest urban regions in the U.S. and the world. Oursimulations suggest that by mitigating urban heat islands, savings of 5to 10 percent peak utility load may be possible. In addition, heat islandmitigation can reduce smog formation by 10-20 percent. in summer, whichis as effective as controlling emissions from all mobile sources in theregion. For a typical late-August episode, our simulations suggest thatimplementing cool cities in the Los Angeles Basin would have a net effectof reducing ozone concentrations. Peak concentrations at 3 pm decrease byup to 7 percent (from 220 down to 205 ppb) while the total ozone mass inthe mixed layer decreases by up to 640 metric tons (a decrease of 4.7percent). Largest reductions in concentrations at 3 pm are on the orderof 50 ppb whereas the largest increases are on the order of 20 ppb. Withrespect to the National Ambient Air Quality Standard, domain widepopulation weighted exceedance exposure to ozone decreases by up to 20percent during peak afternoon hours and by up to 10 percent during thedaytime.

  18. Direct impact of urbanization on the subsurface temperature field

    NASA Astrophysics Data System (ADS)

    Dedecek, Petr; Kukkonen, Ilmo; Cermak, Vladimir; Safanda, Jan; Kresl, Milan

    2015-04-01

    This poster presents results of 3D modeling of the subsurface temperature field affected by the urbanization of originally forested area on the campus of Geological survey of Finland (GTK) in Otaniemi (Espoo). The stepwise urbanization of the area between the years 1956 and 2004 demonstrated by sequence of aerial photos allowed to define time change of boundary conditions on the surface. The repeated temperature logs from the unique borehole situated directly in the basement of GTK together with long-term air surface temperature series from nearby meteorological station were used to decompose the observed transient component of the subsurface temperature into the part affected by construction of new buildings and other anthropogenic structures in surroundings of the borehole and into the part affected by the ground surface temperature warming due to the surface air temperature rise. The effect of the built surface anthropogenic structures is detectable down to the depth of 150 m and the share of the anthropogenic signal on the non-stationary component of the observed subsurface temperature amounts to 90% at the depth of 50 m. and 80% at the depth of 100 m. Warming rate observed at the depth of 50 m between the years 1990 - 2004 (0.07 °C/year) is four times higher than modeled response to climatic warming on the Earth surface.

  19. Analysis of the impact of low impact development on runoff from a new district in Korea.

    PubMed

    Lee, Jung-min; Hyun, Kyoung-hak; Choi, Jong-soo

    2013-01-01

    An analysis of the impact of a low impact development (LID) on runoff was performed using a Storm Water Management Model 5 (SWMM5)-LID model. The SWMM5 package has been developed to facilitate the analysis of the hydrologic impacts of LID facilities. Continuous simulation of urban stormwater runoff from the district which included the LID design was conducted. In order to examine the impact of runoff in the LID district the first, second and third highest ranked flood events over the past 38 years were analyzed. The assessment estimated that a LID system under historical storm conditions would reduce peak runoff by approximately 55-66% and runoff volume by approximately 25-121% in comparison with that before the LID design. The impact on runoff was also simulated under 50, 80 and 100 year return period conditions. Under these conditions, the runoff reductions within the district were estimated to be about 6-16% (peak runoff) and 33-37% (runoff volume) in comparison with conditions prior to the LID. It is concluded from these results that LID is worthy of consideration for urban flood control in future development and as part of sewer and stormwater management planning. PMID:24056429

  20. Development of a comprehensive air quality modeling framework for a coastal urban airshed in south Texas

    NASA Astrophysics Data System (ADS)

    Farooqui, Mohmmed Zuber

    Tropospheric ozone is one of the major air pollution problems affecting urban areas of United States as well as other countries in the world. Analysis of surface observed ozone levels in south and central Texas revealed several days exceeding 8-hour average ozone National Ambient of Air Quality Standards (NAAQS) over the past decade. Two major high ozone episodes were identified during September of 1999 and 2002. A photochemical modeling framework for the high ozone episodes in 1999 and 2002 were developed for the Corpus Christi urban airshed. The photochemical model was evaluated as per U.S. Environmental Protection Agency (EPA) recommended statistical methods and the models performed within the limits set by EPA. An emission impact assessment of various sources within the urban airshed was conducted using the modeling framework. It was noted that by nudging MM5 with surface observed meteorological parameters and sea-surface temperature, the coastal meteorological predictions improved. Consequently, refined meteorology helped the photochemical model to better predict peak ozone levels in urban airsheds along the coastal margins of Texas including in Corpus Christi. The emissions assessment analysis revealed that Austin and San Antonio areas were significantly affected by on-road mobile emissions from light-duty gasoline and heavy-duty diesel vehicles. The urban areas of San Antonio, Austin, and Victoria areas were estimated to be NOx sensitive. Victoria was heavily influenced by point sources in the region while Corpus Christi was influenced by both point and non-road mobile sources and was identified to be sensitive to VOC emissions. A rise in atmospheric temperature due to climate change potentially increase ozone exceedances and the peak ozone levels within the study region and this will be a major concern for air quality planners. This study noted that any future increase in ambient temperature would result in a significant increase in the urban and regional ozone levels within the modeling domain and it would also enhance the transported levels of ozone across the region. Overall, the photochemical modeling framework helped in evaluating the impact of various parameters affecting ozone air quality; and, it has the potential to be a tool for policy-makers to develop effective emissions control strategies under various regulatory and climate conditions.

  1. Preparation for Teaching in Urban Schools: Perceptions of the Impact of Traditional Preparation Programs

    ERIC Educational Resources Information Center

    Timmons, Crystal

    2010-01-01

    During 2 decades of debate about teacher preparation education practitioners and policymakers have called for a more skilled professional teaching force (Darling-Hammond, 2010). Of particular concern has been poverty's impact on education--specifically in struggling urban schools--prompting legislation such as the No Child Left Behind Act (NCLB),

  2. Impacts of urbanization on river flow frequency: A controlled experimental modeling-based evaluation approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in land use are likely to cause a non-linear response in watershed hydrology. Specifically, small increases in urban expansion may greatly increase surface runoff while decreasing infiltration, impacting aquifer recharge and changing streamflow regimes. Quantifying the effects of urbanizatio...

  3. The Impact of Response to Intervention on Student Reading Achievement in Urban Elementary Schools

    ERIC Educational Resources Information Center

    Weaver, Wendy Smyth

    2011-01-01

    The purpose of this study was to determine if the implementation of a Response to Intervention framework had a positive impact on student reading achievement in urban elementary schools. This was a causal-comparative study that examined the reading performance of a sample of kindergarten through grade three students who experienced the Response to

  4. Cleveland's Project Impact -- A Self Perpetuating Inservice Program for the Urban School.

    ERIC Educational Resources Information Center

    Miller, Ruth R.; Kennedy, William R.

    Project Impact is an innovative three year program being carried out in mutual cooperation by the Cleveland Public Schools and the Department of Education at Case Western Reserve University in Cleveland, Ohio with Elementary Secondary Education Act Title III funding. The program seeks to humanize the educational process in the urban schools by

  5. IMPERVIOUS SURFACE AREA AND BENTHIC MACROINVERTEBRATE RESPONSE AS INDEX OF IMPACT FROM URBANIZATION ON FRESHWATER WETLANDS

    EPA Science Inventory

    The use of benthic macroinvertebrates to monitor water quality and ecological integrity is not as well established for wetlands as it is for rivers, streams and lakes where this form of biomonitoring is now a formalized procedure. he impact to wetlands from urbanization (as measu...

  6. Preparation for Teaching in Urban Schools: Perceptions of the Impact of Traditional Preparation Programs

    ERIC Educational Resources Information Center

    Timmons, Crystal

    2010-01-01

    During 2 decades of debate about teacher preparation education practitioners and policymakers have called for a more skilled professional teaching force (Darling-Hammond, 2010). Of particular concern has been poverty's impact on education--specifically in struggling urban schools--prompting legislation such as the No Child Left Behind Act (NCLB),…

  7. Revolution at the Margins: The Impact of Competition on Urban School Systems.

    ERIC Educational Resources Information Center

    Hess, Frederick M.

    This book examines the impact of school vouchers and charter schools on three urban school districts, exploring the causes of behaviors observed and explaining how the structure of competition will likely shape the future of public education. The book draws on case studies from three districts at the center of the school choice debate: Milwaukee,

  8. Do Teacher Absences Impact Student Achievement? Longitudinal Evidence from One Urban School District

    ERIC Educational Resources Information Center

    Miller, Raegen T.; Murnane, Richard J.; Willett, John B.

    2008-01-01

    This article exploits highly detailed data on teacher absences from a large urban school district in the northern United States to shed light on the determinants and effects of teacher absences. The topic is important because both school and district policies can influence teachers' propensity to be absent. The authors estimate the impact of

  9. 76 FR 12788 - Environmental Impact Statement for a Proposed Urban Rail system in Austin, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ...The Federal Transit Administration (FTA), as the Federal lead agency, and the City of Austin (the City) intend to prepare an Environmental Impact Statement (EIS) for the proposed Urban Rail system in Austin, Texas. The EIS will be prepared in accordance with regulations implementing the National Environmental Policy Act (NEPA), as well as provisions of the recently enacted Safe, Accountable,......

  10. Revolution at the Margins: The Impact of Competition on Urban School Systems.

    ERIC Educational Resources Information Center

    Hess, Frederick M.

    This book examines the impact of school vouchers and charter schools on three urban school districts, exploring the causes of behaviors observed and explaining how the structure of competition will likely shape the future of public education. The book draws on case studies from three districts at the center of the school choice debate: Milwaukee,…

  11. Urban Uses and Social Impact of New Communication Technology: A Critical and Philosophical Perspective.

    ERIC Educational Resources Information Center

    Burd, Gene

    The impact of the new communication technology is analyzed in this paper in the context of cities and urbanization. The paper explores the concurrent decline of central cities and that of the mass media, as well as the rise of decentralization and "suburbanization" and the rise in media specialization. It suggests that the increase in multiple

  12. Urbanization in Kenya: Urbanization Trends and Prospects; Rural Development and Urban Growth. An International Urbanization Survey Report to the Ford Foundation.

    ERIC Educational Resources Information Center

    Laurenti, Luigi; Gerhart, John

    Two articles on the urbanization of Kenya are presented in this survey. The first one, "Urbanization Trends and Prospects," by Luigi Laurenti, states that urbanization has only recently been recognized as a problem of some importance in Kenya, and this recognition is far from comprehensive. Consequently, public policy--and especially planning for…

  13. Development and demonstration of autonomous behaviors for urban environment exploration

    NASA Astrophysics Data System (ADS)

    Ahuja, Gaurav; Fellars, Donald; Kogut, Gregory; Pacis Rius, Estrellina; Schoolov, Misha; Xydes, Alexander

    2012-06-01

    Under the Urban Environment Exploration project, the Space and Naval Warfare Systems Center Pacic (SSC- PAC) is maturing technologies and sensor payloads that enable man-portable robots to operate autonomously within the challenging conditions of urban environments. Previously, SSC-PAC has demonstrated robotic capabilities to navigate and localize without GPS and map the ground oors of various building sizes.1 SSC-PAC has since extended those capabilities to localize and map multiple multi-story buildings within a specied area. To facilitate these capabilities, SSC-PAC developed technologies that enable the robot to detect stairs/stairwells, maintain localization across multiple environments (e.g. in a 3D world, on stairs, with/without GPS), visualize data in 3D, plan paths between any two points within the specied area, and avoid 3D obstacles. These technologies have been developed as independent behaviors under the Autonomous Capabilities Suite, a behavior architecture, and demonstrated at a MOUT site at Camp Pendleton. This paper describes the perceptions and behaviors used to produce these capabilities, as well as an example demonstration scenario.

  14. Impact of urban stormwater runoff on estuarine environmental quality

    NASA Astrophysics Data System (ADS)

    Jeng, Hueiwang Anna C.; Englande, Andrew J.; Bakeer, Reda M.; Bradford, Henry B.

    2005-06-01

    Urban stormwater runoff could contribute to the deterioration of water quality of a receiving water body. In this research, field studies and laboratory experiments were conducted to assess the microbial contamination resulting from urban stormwater runoff into the Lake Pontchartrain estuary. Fecal coliform, Escherichia coli and enterococci were used as indicator organisms. The specific objectives of the research were to examine the distribution of the indicator organisms in different environmental elements (water column, suspended particles and sediment) and to further investigate the mechanisms related to their fate. Results of the research indicated satisfactory water quality at the study sites during dry weather periods. However, a significant increase was observed in the concentrations of the indicator organisms in the water columns and sediment at specific study sites following a given stormwater event. Three to seven days were needed for the elevated indicator organisms to return back to their background levels in the water column and sediment, respectively. The mechanism of sedimentation contributed to a reduction in the microbial concentration in the water column, as the indicator organisms were found to attach to the suspended particles in the stormwater. The percentage of fecal coliform, E. coli and enterococci attached to the suspended particles was found to be within the range of 9.8-27.5%, 21.8-30.4%, and 8.4-11.5% of the total indicator organisms in the stormwater loaded into the estuary, respectively. About 75-80% of the total indicator organisms remained free-floating for some distance in the water column before dying off.

  15. Health impacts of ultraviolet radiation in urban ecosystems: a review

    NASA Astrophysics Data System (ADS)

    Heisler, Gordon M.

    2005-08-01

    This paper explores the literature on ultraviolet irradiance (UV) in urban ecosystems with respect to the likely effects on human health. The focus was the question of whether the health effects of UV radiation should be included in planning of landscape elements such as trees and shading structures. In examining the literature, special attention was given to seeking information on the question of whether it is important that shade be provided for elementary school play areas, and if so, how should it be accomplished? Before such practical questions could be dealt with, it became obvious that answers to several pertinent secondary questions had to be sought. Foremost of these was, what are the negative and positive health effects of UV exposure? Recent epidemiological findings of apparent benefits of sunlight because of vitamin-D photosynthesis and resulting anti-cancer effects make this highly relevant. Another basic question is that of trends in ozone depletion, which leads to interesting questions of long-term trends, short-term extremes, and urban influences on UV irradiance. A host of these and other pertinent questions, such as, "What is the relationship between climate of a location and dress," i.e., "How much exposure will people receive during time spent outdoors?" require much more study. Judging from current knowledge of typical spectra of solar radiation in tree shade and the difference between the action spectra for vitamin D synthesis and erythema in human skin, exposure to solar radiation in tree shade for a short period of time can be somewhat more beneficial for vitamin D synthesis and regulation than detrimental in producing sunburn.

  16. Blogging the Field: An Emergent Continuum for Urban Teacher Development

    ERIC Educational Resources Information Center

    Domine, Vanessa

    2012-01-01

    Preparing teachers to work in urban settings poses unique challenges, as urban communities are complex and require systemic understanding of students and their families, culture, and community. Pre-service teachers often harbor misconceptions about what it means to work in urban settings and many bring to their teacher education program minimal…

  17. A Numerical Study of the Urban Heat Island in the Coastal Tropical City of San Juan, Puerto Rico: Model Validation and Impacts of LCLU Changes

    NASA Technical Reports Server (NTRS)

    Comarazamy, Daniel E.; Gonzalez, Jorge E.; Luvall, Jeff; Rickman, Douglas L.

    2007-01-01

    Urban sprawls in tropical locations are rapidly accelerating and it is more evident in islands where a large percentage of the population resides along the coasts. This paper focuses on the analysis of the impacts of land use and land cover for urbanization in the tropical coastal city of San Juan, in the tropical island of Puerto Rico. A mesoscale numerical model, the Regional Atmospheric Modeling System (RAMS), is used to study specific characteristics and patterns of the urban heat island in the San Juan Metropolitan Area (SJMA), the most noticeable urban core of the Caribbean. The research present in this paper makes use of the observations obtained during the airborne San Juan Atlas Mission in two ways. First, surface and rawinsonde data are used to validate the atmospheric model yielding satisfactory results. Second, airborne remote sensing information is used to update the model's surface characteristics to obtain a detailed configuration of the SJMA in order to perform the LCLU changes impact analysis. This analysis showed that the presence of San Juan has an impact reflected in higher air temperatures over the area occupied by the city, with positive values of up to 2.5 C, for the simulations that have specified urban LCLU indexes in the bottom boundary. One interesting result of the impact analysis was the finding of a precipitation disturbance shown as a difference in total accumulated rainfall between simulation with the city and with a potential natural vegetation induced by the presence of the urban area. Model results indicate that the urban-induced cloud formation and precipitation development occur mainly downwind of the city, including the accumulated precipitation. This spatial pattern can be explained by the presence of a-larger urbanized area in the southwest sector of the city, and of the approaching northeasterly trade winds.

  18. Benchmarking land use change impacts on direct runoff in ungauged urban watersheds

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Elbaşı, Emre

    This paper describes the results of benchmark testing of land use change impact on direct runoff using Soil Conservation Service-Curve Number (SCS-CN) model in two ungauged neighbouring urban watersheds (Çınar and Kadıyakuplu) in Istanbul, Turkey. To examine this impact, the model was applied to daily rainfall data using three different dated (1982, 1996 and 2012) hydrological soil groups and land use of the two ungauged urban watersheds. Finally, the impact of land use change and model performance were evaluated with the rainfall-runoff regression, the coefficient of determination and the NSE test using benchmark runoff data based on 1982 land use conditions. The results of the analysis indicate that the changing of land use types from natural surfaces to impervious surfaces has a significant impact on surface runoff. Additionally, remarkable spatial variations of the land use changes and their impact on the runoff in 1996 and 2012 were more detected in the Çınar watershed compared with the Kadıyakuplu watershed. The planning decision on land use of the watersheds, has vital role in these differences. The results of this research also reveal that change to intensive land use in urban watersheds has a significantly larger impact on runoff generation than those rainfall.

  19. The Arts and Urban Development: Critical Comment and Discussion. Monograph Series in Public and International Affairs No. 12.

    ERIC Educational Resources Information Center

    Hendon, William S., Ed.

    This is a collection of essays on the arts and urban development. Included are the following articles: (1) "The Arts and Urban Development" by James L. Shanahan; (2) "Cultural Policy and Intra-Urban Development" by Richard Raymond and Michael Sesnowitz; (3) "The Vague World of the Arts and Urban Development," by Bruce Seaman; (4) "Business

  20. Dynamic analysis on urban land development based on remote sensing image and GIS technology

    NASA Astrophysics Data System (ADS)

    Li, Xinyan; Xu, Zhe

    2013-10-01

    Recent years, China's rapid economic development speeds up the process of urbanization, the most prominent is the rapid expansion of urban land. In this paper, remote sensing, GIS and statistical analysis techniques are used to analyze the dynamic process of land development of Wuhan city from 1995 to 2010, and its causes. Then the effectiveness of the urban master plan of Wuhan city in 1996 is evaluated. Finally, we analyze the possible reasons for the failure of urban planning, which will provide a reference for the future urban planning and management of Wuhan city.

  1. Economic Impact of Dyspepsia in Rural and Urban Malaysia: A Population-Based Study

    PubMed Central

    Yadav, Hematram; Everett, Simon M; Goh, Khean-Lee

    2012-01-01

    Background/Aims The economic impact of dyspepsia in regions with a diverse healthcare system remains uncertain. This study aimed to estimate the costs of dyspepsia in a rural and urban population in Malaysia. Methods Economic evaluation was performed based on the cost-of-illness method. Resource utilization and quality of life data over a specific time frame, were collected to determine direct, indirect and intangible costs related to dyspepsia. Results The prevalences of dyspepsia in the rural (n = 2,000) and urban (n = 2,039) populations were 14.6% and 24.3% respectively. Differences in socioeconomic status and healthcare utilisation between both populations were considerable. The cost of dyspepsia per 1,000 population per year was estimated at USD14,816.10 and USD59,282.20 in the rural and urban populations respectively. The cost per quality adjusted life year for dyspepsia in rural and urban adults was USD16.30 and USD69.75, respectively. Conclusions The economic impact of dyspepsia is greater in an urban compared to a rural setting. Differences in socioeconomic status and healthcare utilisation between populations are thought to contribute to this difference. PMID:22323987

  2. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    PubMed

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape. PMID:26057724

  3. Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study

    NASA Astrophysics Data System (ADS)

    Goldstein, Benjamin; Birkved, Morten; Quitzau, Maj-Britt; Hauschild, Michael

    2013-09-01

    Cities now consume resources and produce waste in amounts that are incommensurate with the populations they contain. Quantifying and benchmarking the environmental impacts of cities is essential if urbanization of the worlds growing population is to occur sustainably. Urban metabolism (UM) is a promising assessment form in that it provides the annual sum material and energy inputs, and the resultant emissions of the emergent infrastructural needs of a citys sociotechnical subsystems. By fusing UM and life cycle assessment (UM-LCA) this study advances the ability to quantify environmental impacts of cities by modeling pressures embedded in the flows upstream (entering) and downstream (leaving) of the actual urban systems studied, and by introducing an advanced suite of indicators. Applied to five global cities, the developed UM-LCA model provided enhanced quantification of mass and energy flows through cities over earlier UM methods. The hybrid model approach also enabled the dominant sources of a citys different environmental footprints to be identified, making UM-LCA a novel and potentially powerful tool for policy makers in developing and monitoring urban development policies. Combining outputs with socioeconomic data hinted at how these forces influenced the footprints of the case cities, with wealthier ones more associated with personal consumption related impacts and poorer ones more affected by local burdens from archaic infrastructure.

  4. Environmental management of a highly impacted, urbanized tropical estuary: rehabilitation and restoration

    NASA Astrophysics Data System (ADS)

    Thorhaug, A.

    1980-03-01

    The principles of the dynamics and interrelationships within the dominant subtropical and tropical Caribbean seagrass community have been studied previously before, during, and after impact. From these and scores of observations of damage and recovery patterns in Thalassia ecosystems, a sense of management recovery strategy has emerged. Artificial restoring of Thalassia testudinum seeds into areas cut off from stock (fruit, seeds) appeared feasible on a large scale after the Turkey Point (Biscayne Bay, Miami, Florida) restoration and test sampling throughout North Biscayne Bay. Two large-scale seeding attempts were made; after 11 months they compared favorably with Turkey Point specimens with regard to growth parameters, despite the turbidity and other persistent pollution. Thus, the possible areas in which Thalassia seed restoration can be used has increased to include estuaries of multiple impact still in various stages of recovery after physical and sewage pollution. This technique should be especially useful to developing nations where important nearshore fisheries nurseries based on Thalassia ecosystems have been heavily damaged and now lie barren. Man's impact on the estuary where seed restoration was attempted includes the following activities: 50% of the bay bottom directly dredged or filled (leaving much unconsolidated sediment); 50 million gallons of domestic waste dumped directly into a low flushing part of the bay for 20 years; seven major causeways transecting the bay, restricting circulation and flushing; two artificial inlets made into navigational channels; freshwater sheet flow drastically changed due to channelization by flood-control canals; urban runoff from a million people entering the bay. Most of the impacts have now abated; however, their long-term effects remain.

  5. Urban Quality Development and Management: Capacity Development and Continued Education for the Sustainable City

    ERIC Educational Resources Information Center

    Lehmann, Martin; Fryd, Ole

    2008-01-01

    Purpose: The purpose of this paper is to describe and discuss the development and the structure of a new international master on the subject of urban quality development and management (UQDM), and explore the potential of the process and the outcome in serving as models adoptable by faculty at other universities. Design/methodology/approach: The…

  6. Urban Quality Development and Management: Capacity Development and Continued Education for the Sustainable City

    ERIC Educational Resources Information Center

    Lehmann, Martin; Fryd, Ole

    2008-01-01

    Purpose: The purpose of this paper is to describe and discuss the development and the structure of a new international master on the subject of urban quality development and management (UQDM), and explore the potential of the process and the outcome in serving as models adoptable by faculty at other universities. Design/methodology/approach: The

  7. Research and Development and the Role of the Urban University in Strategic Economic Development Planning.

    ERIC Educational Resources Information Center

    Sheppard, Ronald J.

    Urban universities have a definite role to play within the context of strategic economic development. Coordination between state and local government, the private sector, and the academic community can lead to effective partnerships to formulate and implement economic development plans. Declining university enrollments and fewer dollars available

  8. Research and Development and the Role of the Urban University in Strategic Economic Development Planning.

    ERIC Educational Resources Information Center

    Sheppard, Ronald J.

    Urban universities have a definite role to play within the context of strategic economic development. Coordination between state and local government, the private sector, and the academic community can lead to effective partnerships to formulate and implement economic development plans. Declining university enrollments and fewer dollars available…

  9. PM10 concentration levels at an urban and background site in Cyprus: the impact of urban sources and dust storms.

    PubMed

    Achilleos, Souzana; Evans, John S; Yiallouros, Panayiotis K; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2014-12-01

    Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 ?g/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 ?g/m3 every year A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000-2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) ?g/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 ?g/m3 in 1993 to 49.0 ?g/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 ?g/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 ?g/m3 since 2000 and much higher in earlier years. Despite the large impact ofdust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. Implications: This paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Uion annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the hig particle levels. PMID:25562931

  10. PM10 Concentration levels at an urban and background site in Cyprus: The impact of urban sources and dust storms

    PubMed Central

    Achilleos, Souzana; Evans, John S.; Yiallouros, Panayiotis K.; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2016-01-01

    Air quality in Cyprus is influenced by both local and transported pollution including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993 through December 11, 2008, and Ayia Marina (rural background representative) from January 1, 1999 through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records and satellite data were used to identify dust storm days. We investigated long term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 ?g/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 ?g/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 20002008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) ?g/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 ?g/m3 in 1993 to 49.0 ?g/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 ?g/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 ?g/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. PMID:25562931

  11. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.

    PubMed

    Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone

    2016-01-01

    The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban renovation on microclimate. PMID:26828164

  12. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity

    PubMed Central

    Tatem, Andrew J; Guerra, Carlos A; Kabaria, Caroline W; Noor, Abdisalan M; Hay, Simon I

    2008-01-01

    Background The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP) global database of Plasmodium falciparum parasite rate (PfPR) surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. Methods First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs) for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. Results Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed significant differences between author-defined 'urban' and 'rural' designations in Africa, but not for the remainder of the malaria endemic world. The Global Rural Urban Mapping Project (GRUMP) urban extent mask proved most accurate for mapping these author-defined rural and urban locations, and further sub-divisions of urban extents into urban and peri-urban classes enabled the effects of high population densities on malaria transmission to be mapped and quantified. Conclusion The availability of detailed, contemporary census and urban extent data for the construction of coherent and accurate global spatial population databases is often poor. These known sources of uncertainty in population surfaces and urban maps have the potential to be incorporated into future malaria burden estimates. Currently, insufficient spatial information exists globally to identify areas accurately where population density is low enough to impact upon transmission. Medical intelligence does however exist to reliably identify malaria free cities. Moreover, in Africa, urban areas that have a significant effect on malaria transmission can be mapped. PMID:18954430

  13. The Impact of Drainage Network Structure on Flooding in a Small Urban Watershed in Metropolitan Baltimore, MD

    NASA Astrophysics Data System (ADS)

    Meierdiercks, K. L.; Smith, J. A.; Miller, A. J.

    2006-12-01

    The impact of urban development on watershed-scale hydrology is examined in a small urban watershed in the Metropolitan Baltimore area. Analyses focus on Dead Run, a 14.3 km2 tributary of the Gwynns Falls, which is the principal study watershed of the Baltimore Ecosystem Study. Field observations of rainfall and discharge have been collected for storms occurring in the 2003, 2004, and 2005 warm seasons including the flood of record for the USGS Dead Run at Franklintown gage (7 July 2004), in which 5 inches of rain fell in less than 4 hours. Dead Run has stream gages at 6 locations with drainage areas ranging from 1.2 to 14.3 km2. Hydrologic response to storm events varies greatly in each of the subwatersheds due to the diverse development types located there. These subwatersheds range in land use from medium-density residential, with and without stormwater management control, to commercial/light industrial with large impervious lots and an extensive network of stormwater management ponds. The unique response of each subwatershed is captured using field observations in conjunction with the EPA Stormwater Management Model (SWMM), which routes storm runoff over the land surface and through the drainage network of a watershed. Of particular importance to flood response is the structure of the drainage network (both surface channels and storm drain network) and its connectivity to preferential flow paths within the watershed. The Dead Run drainage network has been delineated using geospatial data derived from aerial photography and engineering planning drawings. Model analyses are used to examine the characteristics of flow paths that control flood response in urban watersheds. These analyses aim to identify patterns in urban flow pathways and use those patterns to predict response in other urban watersheds.

  14. Improvement of Working Memory in Preschoolers and Its Impact on Early Literacy Skills: A Study in Deprived Communities of Rural and Urban Areas

    ERIC Educational Resources Information Center

    Rojas-Barahona, Cristian A.; Frster, Carla E.; Moreno-Ros, Sergio; McClelland, Megan M.

    2015-01-01

    Research Findings: The present study evaluated the impact of a working memory (WM) stimulation program on the development of WM and early literacy skills (ELS) in preschoolers from socioeconomically deprived rural and urban schools in Chile. The sample consisted of 268 children, 144 in the intervention group and 124 in the comparison group. The

  15. Feasibility assessment tool for urban anaerobic digestion in developing countries.

    PubMed

    Lohri, Christian Riuji; Rodić, Ljiljana; Zurbrügg, Christian

    2013-09-15

    This paper describes a method developed to support feasibility assessments of urban anaerobic digestion (AD). The method not only uses technical assessment criteria but takes a broader sustainability perspective and integrates technical-operational, environmental, financial-economic, socio-cultural, institutional, policy and legal criteria into the assessment tool developed. Use of the tool can support decision-makers with selecting the most suitable set-up for the given context. The tool consists of a comprehensive set of questions, structured along four distinct yet interrelated dimensions of sustainability factors, which all influence the success of any urban AD project. Each dimension answers a specific question: I) WHY? What are the driving forces and motivations behind the initiation of the AD project? II) WHO? Who are the stakeholders and what are their roles, power, interests and means of intervention? III) WHAT? What are the physical components of the proposed AD chain and the respective mass and resource flows? IV) HOW? What are the key features of the enabling or disabling environment (sustainability aspects) affecting the proposed AD system? Disruptive conditions within these four dimensions are detected. Multi Criteria Decision Analysis is used to guide the process of translating the answers from six sustainability categories into scores, combining them with the relative importance (weights) attributed by the stakeholders. Risk assessment further evaluates the probability that certain aspects develop differently than originally planned and assesses the data reliability (uncertainty factors). The use of the tool is demonstrated with its application in a case study for Bahir Dar in Ethiopia. PMID:23722149

  16. A Multi-scale Method of Mapping Urban Influence

    EPA Science Inventory

    Urban development can impact environmental quality and ecosystem services well beyond urban extent. Many methods to map urban areas have been developed and used in the past, but most have simply tried to map existing extent of urban development, and all have been single-scale t...

  17. Impact of dropout of female volunteer community health workers: An exploration in Dhaka urban slums

    PubMed Central

    2012-01-01

    Background The model of volunteer community health workers (CHWs) is a common approach to serving the poor communities in developing countries. BRAC, a large NGO in Bangladesh, is a pioneer in this area, has been using female CHWs as core workers in its community-based health programs since 1977. After 25?years of implementing of the CHW model in rural areas, BRAC has begun using female CHWs in urban slums through a community-based maternal health intervention. However, BRAC experiences high dropout rates among CHWs suggesting a need to better understand the impact of their dropout which would help to reduce dropout and increase program sustainability. The main objective of the study was to estimate impact of dropout of volunteer CHWs from both BRAC and community perspectives. Also, we estimated cost of possible strategies to reduce dropout and compared whether these costs were more or less than the costs borne by BRAC and the community. Methods We used the ingredient approach to estimate the cost of recruiting and training of CHWs and the so-called friction cost approach to estimate the cost of replacement of CHWs after adapting. Finally, we estimated forgone services in the community due to CHW dropout applying the concept of the friction period. Results In 2009, average cost per regular CHW was US$ 59.28 which was US$ 60.04 for an ad-hoc CHW if a CHW participated a three-week basic training, a one-day refresher training, one incentive day and worked for a month in the community after recruitment. One month absence of a CHW with standard performance in the community meant substantial forgone health services like health education, antenatal visits, deliveries, referrals of complicated cases, and distribution of drugs and health commodities. However, with an additional investment of US$ 121 yearly per CHW BRAC could save another US$ 60 invested an ad-hoc CHW plus forgone services in the community. Conclusion Although CHWs work as volunteers in Dhaka urban slums impact of their dropout is immense both in financial term and forgone services. High cost of dropout makes the program less sustainable. However, simple and financially competitive strategies can improve the sustainability of the program. PMID:22897922

  18. Modeling flood reduction effects of low impact development at a watershed scale.

    PubMed

    Ahiablame, Laurent; Shakya, Ranish

    2016-04-15

    Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas. PMID:26878221

  19. Impact of an improved WRF-urban canopy model on diurnal air temperature simulation over northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, C.-Y.; Su, C.-J.; Kusaka, H.; Akimoto, Y.; Sheng, Y. F.; Huang, J.-C.; Hsu, H.-H.

    2015-10-01

    This study evaluated the impact of urbanization over northern Taiwan using the Weather Research and Forecasting (WRF) model coupled with the Noah land-surface model and a modified Urban Canopy Model (WRF-UCM2D). In the original UCM coupled in WRF (WRF-UCM), when the land use in the model grid net is identified as "urban", the urban fraction value is fixed. Similarly, the UCM assumes the distribution of anthropogenic heat (AH) to be constant. Such not only may lead to over- or underestimation, the temperature difference between urban and non-urban areas has also been neglected. To overcome the above-mentioned limitations and to improve the performance of the original UCM model, WRF-UCM is modified to consider the 2-D urban fraction and AH (WRF-UCM2D). The two models were found to have comparable simulation performance for urban areas but large differences in simulated results were observed for non-urban, especially at nighttime. WRF-UCM2D yielded a higher R2 than WRF-UCM (0.72 vs. 0.48, respectively), while bias and RMSE achieved by WRF-UCM2D were both significantly smaller than those attained by WRF-UCM (0.27 and 1.27 vs. 1.12 and 1.89, respectively). In other words, the improved model not only enhanced correlation but also reduced bias and RMSE for the nighttime data of non-urban areas. WRF-UCM2D performed much better than WRF-UCM at non-urban stations with low urban fraction during nighttime. The improved simulation performance of WRF-UCM2D at non-urban area is attributed to the energy exchange which enables efficient turbulence mixing at low urban fraction. The achievement of this study has a crucial implication for assessing the impacts of urbanization on air quality and regional climate.

  20. Eye exercises of acupoints: their impact on refractive error and visual symptoms in Chinese urban children

    PubMed Central

    2013-01-01

    Background Traditional Chinese eye exercises of acupoints involve acupoint self-massage. These have been advocated as a compulsory measure to reduce ocular fatigue, as well as to retard the development of myopia, among Chinese school children. This study evaluated the impact of these eye exercises among Chinese urban children. Methods 409 children (195 males, 47.7%), aged 11.1??3.2 (range 617) years, from the Beijing Myopia Progression Study (BMPS) were recruited. All had completed the eye exercise questionnaire, the convergence insufficiency symptom survey (CISS), and a cycloplegic autorefraction. Among these, 395 (96.6%) performed the eye exercises of acupoints. Multiple logistic regressions for myopia and multiple linear regressions for the CISS score (after adjusting for age, gender, average parental refractive error, and time spent doing near work and outdoor activity) for the different items of the eye exercises questionnaire were performed. Results Only the univariate odds ratio (95% confidence interval) for seriousness of attitude towards performing the eye exercises of acupoints (0.51, 0.33-0.78) showed a protective effect towards myopia. However, none of the odds ratios were significant after adjusting for the confounding factors. The univariate and multiple ? coefficients for the CISS score were -2.47 (p?=?0.002) and -1.65 (p?=?0.039), -3.57 (p?=?0.002) and -2.35 (p?=?0.042), and -2.40 (p?=?0.003) and -2.29 (p?=?0.004), for attitude, speed of exercise, and acquaintance with acupoints, respectively, which were all significant. Conclusions The traditional Chinese eye exercises of acupoints appeared to have a modest effect on relieving near vision symptoms among Chinese urban children aged 6 to 17 years. However, no remarkable effect on reducing myopia was observed. PMID:24195652

  1. Friend or Foe? Urbanization and the Biosphere

    NASA Astrophysics Data System (ADS)

    Schneider, A.

    2008-12-01

    The environmental influence of urban areas is still often assumed to be negligible at global scales. Although local environmental conditions such as the urban heat island effect are well-documented, surprisingly little work has focused on cross-scale interactions, or the ways in which local urban processes cumulatively impact global changes. Given the rapid rates of rural-urban migration, economic development and urban spatial expansion, improved systems for measuring, monitoring and modeling the global environmental impacts of cities should receive far greater scientific attention. This presentation will summarize urban environmental issues and impacts at local, regional and global scales and introduce the fundamental concepts and tools needed to measure and respond to these problems. Newly available datasets for the distribution and intensity of urban land use will be introduced, demonstrating the importance of clearly defining 'urbanized' land for empirical studies at the global scale. The negative environmental impacts of urban development will be compared with the often over-looked "positives" of urban growth from a global environmental perspective. Progress in understanding and forecasting the global impacts of urban areas will require systematic global urban research designs that treat cities as urban systems, anthropogenic biomes and urban ecoregions. The challenges and opportunities of global environmental research on urban areas have important implications not only for current research but also for educating the next generation of earth system scientists.

  2. Detecting residential land-use development at the urban fringe

    NASA Technical Reports Server (NTRS)

    Jensen, J. R.; Toll, D. L.

    1982-01-01

    Problems associated with the use of Landsat multispectral scanner (MSS) imagery for the detection of urban growth and land use patterns are discussed. The presence of vegetation, either original or added between scanning periods, has been found to dramatically effect the range of signatures in a given area. Different land use developmental stages have been successfully identified by means of 1:50,000 scale panchromatic aerial photography, a resolution only considered possible by spaceborne instrumentation with the advent of the Landsat D satellite. Textural information generated through the grey-tone spatial-dependency matrix for the Landsat band 5 data is compared for different years and a change detection algorithm is described. It is found that the addition of vegetation during development after the removal of natural vegetation resulted in error of omission in the single band data, which must therefore only be used in concert with other data sources.

  3. Humanitarian presence and urban development: new opportunities and contrasts in Goma, DRC.

    PubMed

    Bscher, Karen; Vlassenroot, Koen

    2010-04-01

    This paper examines the impact of the presence of international humanitarian organisations on local urban transformation processes in the city of Goma, Democratic Republic of the Congo (DRC). Rather than evaluating the direct effects of humanitarian interventions and strategies, it focuses on the indirect but profound effects of the presence of this 'humanitarian sector'. It argues that the international humanitarian presence became a significant factor in the recent shaping and reshaping of the city's profile and has reinforced competition over the urban political and socioeconomic space. The paper evaluates the direct and indirect impact of the international humanitarian presence on the local urban economy and the larger political economy of war in eastern DRC. It analyses how this presence has reinforced processes of spatial reconfiguration, how it has influenced urban planning, and how it has affected dynamics of gentrification and marginalisation on the urban spatial level. PMID:20132264

  4. [Impacts of urban cooling effect based on landscape scale: a review].

    PubMed

    Yu, Zhao-wu; Guo, Qing-hai; Sun, Ran-hao

    2015-02-01

    The urban cooling island (UCI) effect is put forward in comparison with the urban heat island effect, and emphasizes on landscape planning for optimization of function and way of urban thermal environment. In this paper, we summarized current research of the UCI effects of waters, green space, and urban park from the perspective of patch area, landscape index, threshold value, landscape pattern and correlation analyses. Great controversy was found on which of the two factors patch area and shape index has a more significant impact, the quantification of UCI threshold is particularly lacking, and attention was paid too much on the UCI effect of landscape composition but little on that of landscape configuration. More attention should be paid on shape, width and location for water landscape, and on the type of green space, green area, configuration and management for green space landscape. The altitude of urban park and human activities could also influence UCI effect. In the future, the threshold determination should dominate the research of UCI effect, the reasons of controversy should be further explored, the study of time sequence should be strengthened, the UCI effects from landscape pattern and landscape configuration should be identified, and more attention should be paid to spatial scale and resolution for the precision and accuracy of the UCI results. Also, synthesizing the multidisciplinary research should be taken into consideration. PMID:26094483

  5. Impact of urbanization on flooding: The Thirusoolam sub watershed - A case study

    NASA Astrophysics Data System (ADS)

    Suriya, S.; Mudgal, B. V.

    2012-01-01

    SummaryThe change in the land use pattern due to rapid urbanization adversely affects the hydrological processes in a catchment, leading to a deteriorating water environment. The increase in impervious areas disrupts the natural water balance. Reduced infiltration increases runoff and leads to higher flood peaks and volumes even for short duration low intensity rainfall. Due to their destructive effects, floods can significantly increase the expenses on mitigation efforts. The present study focuses on the Thirusoolam sub watershed, an urban watershed in Chennai. Land use changes associated with urbanization in the watershed are invariably reflected in the stream flow regime. This paper emphasizes on an integrated approach to flood management, considering the land use change into the hydrological model. Integrated Flood Management (IFM) aims to harmonize human activities and flood risks through appropriate interventions to modify the water regime, and adaptation of human behavior thereby reducing such risks. Therefore, the hydrological impacts of urbanization should be considered for effective urban planning. The outcome of the study would help in formulating policy guidelines and intervention strategies.

  6. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  7. Earthquake impact on settlements: the role of urban and structural morphology

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, M.; Armas, I.

    2015-10-01

    This study is aimed to create an alternative to the classical GIS representation of the impact of earthquake hazards on urban areas. To accomplish this, the traditional map was revised, so that it can cope with contemporary innovative ways of planning, namely strategic planning. As in the theory of fractals, the building dimension and the urban neighbourhood dimension are addressed as different geographic scales between which lessons for decisions can be learned through regression. The interaction between the two scales is useful when looking for alternatives, for the completion of a GIS analysis, and in choosing the landmarks, which, in the case of hazards, become strategic elements in strategic planning. A methodology to innovate mapping as a digital means for analysing and visualising the impact of hazards is proposed. This method relies on concepts from various geography, urban planning, structural engineering and architecture approaches related to disaster management. The method has been tested at the building scale for the N-S Boulevard in Bucharest, Romania, called Magheru. At the urban scale, an incident database has been created, in which the case study for the building level can be mapped. The paper presented is part of a larger research work, which addresses decision making using the framework shown here. The main value of the paper is in proposing a conceptual framework to deconstruct the map for digital earthquake disaster impact analysis and representation. The originality of the concept consists in the representation of elements at different scales considered to be of different levels of importance in the urban tissue, according to the analysis to be performed on them.

  8. Numerical study on the impacts of heterogeneous reactions on ozone formation in the Beijing urban area

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhang, Yuanhang; Wang, Wei

    2006-12-01

    The air quality model CMAQ-MADRID (Community Multiscale Air Quality-Model of Aerosol Dynamics, Reaction, Ionization and Dissolution) was employed to simulate summer O3 formation in Beijing China, in order to explore the impacts of four heterogeneous reactions on O3 formation in an urban area. The results showed that the impacts were obvious and exhibited the characteristics of a typical response of a VOC-limited regime in the urban area. For the four heterogeneous reactions considered, the NO2 and HO2 heterogeneous reactions have the most severe impacts on O3 formation. During the O3 formation period, the NO2 heterogeneous reaction increased new radical creation by 30%, raising the atmospheric activity as more NO?NO2 conversion occurred, thus causing the O3 to rise. The increase of O3 peak concentration reached a maximum value of 67 ppb in the urban area. In the morning hours, high NO titration reduced the effect of the photolysis of HONO, which was produced heterogeneously at night in the surface layer. The NO2 heterogeneous reaction in the daytime is likely one of the major reasons causing the O3 increase in the Beijing urban area. The HO2 heterogeneous reaction accelerated radical termination, resulting in a decrease of the radical concentration by 44% at the most. O3 peak concentration decreased by a maximum amount of 24 ppb in the urban area. The simulation results were improved when the heterogeneous reactions were included, with the O3 and HONO model results close to the observations.

  9. A simplified approach to evaluating and assessing waste impacts in urban African communities

    SciTech Connect

    Sam, P.A.

    1995-12-31

    The region of Africa has been experiencing a fast growing urbanization. This paper is therefore being prepared to provide a simplified approach to be used by city planners, environmental planners, local municipal managers, nongovernmental organizations (NGOs) and local African Community Action Groups, to use in assessing the waste impact of this immense urbanization within their communities and jurisdiction. The prescription for the African urban communities for the years ahead is that the inhabitants of urban communities and villages have to undertake the simplest evaluation and assessment to safeguard its environmental protection. A simplified approach to such schemes in assessing and evaluating ecological and human health impacts associated with environmental pollution in Africa is presented in this document. This approach utilizes historical information and visible indicators of pollution in lieu of conducting an extensive and detailed risk assessment studies. The primary sources of hazardous waste, increasingly so as economies grow, are: small to medium-sized industries and commercial enterprises; households; large manufacturing sectors such as mining, chemical, textiles, rubber, plastics, petroleum, food processing, paper, printing and construction; and agricultural activities.

  10. Development and application of the urban environment geological survey data inspection and acceptance system

    NASA Astrophysics Data System (ADS)

    Cai, Zizhao; Zhang, Yongbo; Zhang, Lizhong; Lang, Guoling; Wang, Qian; Zhou, Xiaoyuan; Huo, Zhibin; Wang, Wei; Shi, Lei

    2011-10-01

    To guarantee the quality of the urban geographical inspection data construction and the effectiveness of the data of the urban environment, in accordance with the urban environment geographical assessment regulations, based on the analysis of the urban environment data inspection and checking requirements, the quality inspection factors that are in accordance with the urban environment geographical database are worked out, and the urban environment database checking and accepting system is being analyzed and function being designed in this thesis, and finally the urban environment database checking and accepting system software is developed with the explorative instruments of Delphi and VC. With computer-aided inspection and manual sampling checking, all the aspects of the database have strict quality control and evaluation.

  11. Impact of urban cover fraction on SMOS and SMAP surface soil moisture retrieval

    NASA Astrophysics Data System (ADS)

    Ye, N.; Walker, J. P.; Rudiger, C.; Ryu, D.; Gurney, R.

    2011-12-01

    L-band (~1.4 GHz) microwave radiometry has been widely acknowledged as the most promising technique for surface (top ~5cm) soil moisture observation at regional and global scales, due to its all weather capability, direct relationship to soil moisture, and reduced sensitivity to surface roughness and vegetation. Radiometer observations of microwave emission from the soil surface are used to estimate soil moisture through a radiative transfer model using ancillary information including land cover and soil properties etc. This technique has been applied to the ESA's (European Space Agency) Soil Moisture and Ocean Salinity (SMOS) satellite, the first soil moisture dedicated space mission, launched on 2nd Nov. 2009. Similarly, radiometer techniques will be employed by NASA's (National Aeronautics and Space Administration) Soil Moisture Active and Passive (SMAP) mission, in both the passive and active-passive products. However, passive microwave soil moisture retrieval suffers from land surface heterogeneity at coarse scales; with the radiometer footprints of both missions being ~40 km, which is the best spatial resolution currently achievable using current satellite antenna technology. In order to achieve the ~0.04 m3/m3 target volumetric soil moisture accuracies at such scales, microwave contributions of non-soil targets (such as urban areas) within the sensors' field-of-view needs to be considered in the retrieval algorithm error budget and implementation, since the impact could potentially be significant if ignored. Currently there is a lack of knowledge on the microwave behaviour of non-soil targets, with little assessment of their microwave emissions and impact on satellite scale footprints. Therefore, the objectives of this study are to 1) investigate the relationship between urban induced brightness temperature uncertainties and urban fraction, 2) extract urban fraction thresholds for negligible brightness temperature impact by urban areas based on the SMOS and SMAP error budgets, and 3) use these thresholds to identify SMOS and SMAP pixels with likely non-negligible urban impacts world-wide. In this work, airborne datasets from three field campaigns in the Murrumbidgee catchment, in southeast of Australia, were used: i) the NAFE'06 (National Airborne Field Experiment in 2006), ii) the AACES-1 (Australian Airborne Cal/val Experiment for SMOS), and iii) the AACES-2. During these campaigns, brightness temperature observations were made at 1-km resolution across 20 independent SMOS/SMAP sized footprints of which a number contain urban areas of different size. The NSW (New South Wales, Australia) Land use map with 50 m resolution was used to distinguish brightness temperature observations of the urban area and surrounding natural land surface, from which urban fraction thresholds for SMOS and SMAP were derived. These thresholds were then applied globally based on an urban fraction map calculated using the MODIS Urban Land Cover 500-m product.

  12. Development and Application of a New Grey Dynamic Hierarchy Analysis System (GDHAS) for Evaluating Urban Ecological Security

    PubMed Central

    Shao, Chaofeng; Tian, Xiaogang; Guan, Yang; Ju, Meiting; Xie, Qiang

    2013-01-01

    Selecting indicators based on the characteristics and development trends of a given study area is essential for building a framework for assessing urban ecological security. However, few studies have focused on how to select the representative indicators systematically, and quantitative research is lacking. We developed an innovative quantitative modeling approach called the grey dynamic hierarchy analytic system (GDHAS) for both the procedures of indicator selection and quantitative assessment of urban ecological security. Next, a systematic methodology based on the GDHAS is developed to assess urban ecological security comprehensively and dynamically. This assessment includes indicator selection, driving force-pressure-state-impact-response (DPSIR) framework building, and quantitative evaluation. We applied this systematic methodology to assess the urban ecological security of Tianjin, which is a typical coastal super megalopolis and the industry base in China. This case study highlights the key features of our approach. First, 39 representative indicators are selected for the evaluation index system from 62 alternative ones available through the GDHAS. Second, the DPSIR framework is established based on the indicators selected, and the quantitative assessment of the eco-security of Tianjin is conducted. The results illustrate the following: urban ecological security of Tianjin in 2008 was in alert level but not very stable; the driving force and pressure subsystems were in good condition, but the eco-security levels of the remainder of the subsystems were relatively low; the pressure subsystem was the key to urban ecological security; and 10 indicators are defined as the key indicators for five subsystems. These results can be used as the basis for urban eco-environmental management. PMID:23698700

  13. Development and application of a new grey dynamic hierarchy analysis system (GDHAS) for evaluating urban ecological security.

    PubMed

    Shao, Chaofeng; Tian, Xiaogang; Guan, Yang; Ju, Meiting; Xie, Qiang

    2013-05-01

    Selecting indicators based on the characteristics and development trends of a given study area is essential for building a framework for assessing urban ecological security. However, few studies have focused on how to select the representative indicators systematically, and quantitative research is lacking. We developed an innovative quantitative modeling approach called the grey dynamic hierarchy analytic system (GDHAS) for both the procedures of indicator selection and quantitative assessment of urban ecological security. Next, a systematic methodology based on the GDHAS is developed to assess urban ecological security comprehensively and dynamically. This assessment includes indicator selection, driving force-pressure-state-impact-response (DPSIR) framework building, and quantitative evaluation. We applied this systematic methodology to assess the urban ecological security of Tianjin, which is a typical coastal super megalopolis and the industry base in China. This case study highlights the key features of our approach. First, 39 representative indicators are selected for the evaluation index system from 62 alternative ones available through the GDHAS. Second, the DPSIR framework is established based on the indicators selected, and the quantitative assessment of the eco-security of Tianjin is conducted. The results illustrate the following: urban ecological security of Tianjin in 2008 was in alert level but not very stable; the driving force and pressure subsystems were in good condition, but the eco-security levels of the remainder of the subsystems were relatively low; the pressure subsystem was the key to urban ecological security; and 10 indicators are defined as the key indicators for five subsystems. These results can be used as the basis for urban eco-environmental management. PMID:23698700

  14. Citizen Participation in Urban Development. Volume 2. Cases and Programs.

    ERIC Educational Resources Information Center

    Spiegel, Hans B.C., Ed.

    The successor to a volume on concepts and issues in urban citizen participation, this work documents selected patterns of participation, issues that trigger participation (school decentralization, housing needs, a proposed highway, and other crisis situations), and outside assistance as embodied in urban planning advocates, community development…

  15. Professional Development: Assisting Urban Schools in Making Annual Yearly Progress

    ERIC Educational Resources Information Center

    Cramer, Elizabeth D.; Gudwin, Denise M.; Salazar, Magda

    2007-01-01

    Under the No Child Left Behind Act (2002), all schools are required to demonstrate that all students make annual yearly progress (AYP). This can be difficult, particularly for students in urban schools and even more so for students with disabilities. The authors report on one large urban school district's attempts to provide support to 140 schools

  16. Dynamic modeling of Tampa Bay urban development using parallel computing

    USGS Publications Warehouse

    Xian, G.; Crane, M.; Steinwand, D.

    2005-01-01

    Urban land use and land cover has changed significantly in the environs of Tampa Bay, Florida, over the past 50 years. Extensive urbanization has created substantial change to the region's landscape and ecosystems. This paper uses a dynamic urban-growth model, SLEUTH, which applies six geospatial data themes (slope, land use, exclusion, urban extent, transportation, hillside), to study the process of urbanization and associated land use and land cover change in the Tampa Bay area. To reduce processing time and complete the modeling process within an acceptable period, the model is recoded and ported to a Beowulf cluster. The parallel-processing computer system accomplishes the massive amount of computation the modeling simulation requires. SLEUTH calibration process for the Tampa Bay urban growth simulation spends only 10 h CPU time. The model predicts future land use/cover change trends for Tampa Bay from 1992 to 2025. Urban extent is predicted to double in the Tampa Bay watershed between 1992 and 2025. Results show an upward trend of urbanization at the expense of a decline of 58% and 80% in agriculture and forested lands, respectively. ?? 2005 Elsevier Ltd. All rights reserved.

  17. Dynamic modeling of Tampa Bay urban development using parallel computing

    NASA Astrophysics Data System (ADS)

    Xian, George; Crane, Mike; Steinwand, Dan

    2005-08-01

    Urban land use and land cover has changed significantly in the environs of Tampa Bay, Florida, over the past 50 years. Extensive urbanization has created substantial change to the region's landscape and ecosystems. This paper uses a dynamic urban-growth model, SLEUTH, which applies six geospatial data themes (slope, land use, exclusion, urban extent, transportation, hillside), to study the process of urbanization and associated land use and land cover change in the Tampa Bay area. To reduce processing time and complete the modeling process within an acceptable period, the model is recoded and ported to a Beowulf cluster. The parallel-processing computer system accomplishes the massive amount of computation the modeling simulation requires. SLEUTH calibration process for the Tampa Bay urban growth simulation spends only 10 h CPU time. The model predicts future land use/cover change trends for Tampa Bay from 1992 to 2025. Urban extent is predicted to double in the Tampa Bay watershed between 1992 and 2025. Results show an upward trend of urbanization at the expense of a decline of 58% and 80% in agriculture and forested lands, respectively.

  18. Potential Impact of Rainfall on the Air-Surface Exchange of Total Gaseous Mercury from Two Common Urban Ground Surfaces

    EPA Science Inventory

    The impact of rainfall on total gaseous mercury (TGM) flux from pavement and street dirt surfaces was investigated in an effort to determine the influence of wet weather events on mercury transport in urban watersheds. Street dirt and pavement are common urban ground surfaces tha...

  19. Urban Runoff Impact on the qPCR Signal of Enterococci and Other Alternative Fecal Indicators in a Tropical Beach

    EPA Science Inventory

    In order to effectively control inputs of contamination to coastal recreational waters, an improved understanding of the impact of both point and non-point sources of urban runoff is needed. In this study, we focused on the effect of non-point source urban runoff on the enterococ...

  20. Assessing the Impact of Urban Runoff in Recreational Beaches in South Carolina and Florida Using Culturable and QPCR Fecal Indicator

    EPA Science Inventory

    Urban/suburban runoff carries a variety of pollutants that often includes bacterial pathogens and indicators of fecal contamination. The objective of this study was to assess the microbial water quality of recreational beaches impacted solely by urban runoff through the use of cu...

  1. An Auxiliary Method To Reduce Potential Adverse Impacts Of Projected Land Developments: Subwatershed Prioritization

    EPA Science Inventory

    An index based method is developed that ranks the subwatersheds of a watershed based on their relative impacts on watershed response to anticipated land developments, and then applied to an urbanizing watershed in Eastern Pennsylvania. Simulations with a semi-distributed hydrolo...

  2. Bringing sexual and reproductive health in the urban contexts to the forefront of the development agenda: the case for prioritizing the urban poor.

    PubMed

    Mberu, Blessing; Mumah, Joyce; Kabiru, Caroline; Brinton, Jessica

    2014-09-01

    Estimates suggest that over 90 % of population increase in the least developed countries over the next four decades will occur in urban areas. These increases will be driven both by natural population growth and rural-urban migration. Moreover, despite its status as the world's least urbanized region, the urban population in the sub-Saharan Africa region is projected to increase from under 40 % currently to over 60 % by 2050. Currently, approximately 70 % of all urban residents in the region live in slums or slum-like conditions. Sexual and reproductive health (SRH) risks for the urban poor are severe and include high rates of unwanted pregnancies, sexually transmitted infections, and poor maternal and child health outcomes. However, the links between poverty, urbanization, and reproductive health priorities are still not a major focus in the broader development agenda. Building on theoretical and empirical data, we show that SRH in urban contexts is critical to the development of healthy productive urban populations and, ultimately, the improvement of quality of life. We posit that a strategic focus on the sexual and reproductive health of urban residents will enable developing country governments achieve international goals and national targets by reducing health risks among a large and rapidly growing segment of the population. To that end, we identify key research, policy and program recommendations and strategies required for bringing sexual and reproductive health in urban contexts to the forefront of the development agenda. PMID:24352624

  3. Developing a district energy system in a competitive urban market

    SciTech Connect

    Mitola, J.P.

    1995-09-01

    In two year`s time, Unicorn Thermal Technologies has grown into one of the largest district cooling systems of 25,000 tons with a 1996 plan to grow to 40,000 tons. This growth is attributed to the development and implementation of a marketing and sales plan based on thorough market research and innovative marketing and sales strategies, and the consistent implementation of those strategies. The beginning of the sales effort was focused around the company`s first district cooling facility, However, it quickly grew into a much broader vision as market acceptance increased. Although the district energy industry has often based its message on being a low cost energy provider, market research and early sales experience indicated that customers choose district cooling as a value added service. As customers began to reserve capacity in the first plant, the idea that district cooling is a value added service and not a commodity energy product was continually reinforced through marketing communications. Although this analysis is a review of developing a district energy system in a competitive urban market, it purposely avoids a long winded discussion of head to head competition.

  4. Modeling integrated urban water systems in developing countries: case study of Port Vila, Vanuatu.

    PubMed

    Poustie, Michael S; Deletic, Ana

    2014-12-01

    Developing countries struggle to provide adequate urban water services, failing to match infrastructure with urban expansion. Despite requiring an improved understanding of alternative infrastructure performance when considering future investments, integrated modeling of urban water systems is infrequent in developing contexts. This paper presents an integrated modeling methodology that can assist strategic planning processes, using Port Vila, Vanuatu, as a case study. 49 future model scenarios designed for the year 2050, developed through extensive stakeholder participation, were modeled with UVQ (Urban Volume and Quality). The results were contrasted with a 2015 model based on current infrastructure, climate, and water demand patterns. Analysis demonstrated that alternative water servicing approaches can reduce Port Vila's water demand by 35 %, stormwater generation by 38 %, and nutrient release by 80 % in comparison to providing no infrastructural development. This paper demonstrates that traditional centralized infrastructure will not solve the wastewater and stormwater challenges facing rapidly growing urban cities in developing countries. PMID:24973053

  5. The influence of urbanization of sinkhole development in central Pennsylvania

    NASA Astrophysics Data System (ADS)

    White, Elizabeth L.; Aron, Gert; White, William B.

    1986-03-01

    The karsted limestone valleys of central Pennsylvania contain two populations of sinkholes. Solution sinkholes occur in the Champlainian limestone units along the margins of the valleys. Solution sinkholes are permanent parts of the landscape and, although a nuisance to construction, do not present other problems. The second population is the suffosional or soil-piping sinkholes These occur on all carbonate rock units including the Beekmantown and Gatesburg dolomites that comprise the two principal carbonate aquifers in the valley. Suffosional sinkholes are the principal land-use hazard. Suffosional sinkholes are transient phonomena. They occur naturally but are exacerbated by runoff modifications that accompany urbanization Suffosional sinkholes are typically 1.5 2.5 m in diameter depending on soil thickness and soil type. The vertical transport of soil to form the void space and soil arch that are the precursors to sinkhole collapse is through solutionally widened fractures and cross-joints and less often through large vertical openings in the bedrock. The limited solution development on the dolomite bedrock combined with soil thickness, seldom greater than 2 m, limits the size of the sinkholes. All aspects of suffosional sinkhole development are shallow processes: transport, piping, void and arch formation, and subsequent collapse take place usually less than 10 m below the land surface Factors exacerbating sinkhole development include pavement, street, and roof runoff which accelerates soil transport Such seemingly minor activities as replacing high grass and brush with mowed grass is observed to accelerate sinkhole development. Dewatering of the aquifer is not a major factor in this region

  6. Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: a case study of Nanjing, China

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Meigen; Wang, Yongwei

    2015-07-01

    The Weather Research and Forecasting (WRF) model, configured with a single-layer urban canopy model, was employed to investigate the influence of urbanization on boundary layer meteorological parameters during a long-lasting heat wave. This study was conducted over Nanjing city, East China, from 26 July to 4 August 2010. The impacts of urban expansion and anthropogenic heat (AH) release were simulated to quantify their effects on 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed and heat stress index. Urban sprawl increased the daily 2-m temperature in urbanized areas by around 1.6 °C and decreased the urban diurnal temperature range (DTR) by 1.24 °C. The contribution of AH release to the atmospheric warming was nearly 22 %, but AH had little influence on the DTR. The urban regional mean surface wind speed decreased by about 0.4 m s-1, and this decrease was successfully simulated from the surface to 300 m. The influence of urbanization on 2-m water vapor mixing ratio was significant over highly urbanized areas with a decrease of 1.1-1.8 g kg-1. With increased urbanization ratio, the duration of the inversion layer was about 4 h shorter, and the lower atmospheric layer was less stable. Urban heat island (UHI) intensity was significantly enhanced when synthesizing both urban sprawl and AH release and the daily mean UHI intensity increased by 0.74 °C. Urbanization increased the time under extreme heat stress (about 40 %) and worsened the living environment in urban areas.

  7. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail; Pincetl, Stephanie; Elizabeth, Zoe; Eisenstein, William; Matute, Juan

    2013-03-01

    Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts. Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48-100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20-30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

  8. Impact of urbanization on suspended sediment and organic matter fluxes from small catchments in Tahiti

    NASA Astrophysics Data System (ADS)

    Wotling, G.; Bouvier, Ch.

    2002-06-01

    This study provides an initial characterization of pollution associated with storm runoff in Tahiti. A thousand floodwater samples were collected from three representative catchments and subsequently analysed. The main pollution parameters chosen were total suspended sediment (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total nitrogen (TN) and Total Phosphorus (TP). First, organic pollution appeared to be related closely to sediment, thus TSS could be used as a global indicator. Next, regression models between an event's TSS load and its hydrological characteristics were used to obtain annual load estimates. Great interannual variability was found to be strongly influenced by the few major floods that occur during the rainy season. Our results also emphasize the importance of the impact of urbanization on solid catchment exportation: from 60 TSS t/km2/year in a natural forested catchment, fluxes reached more than 700 TSS t/km2/year during preparatory urbanization earthworks before stabilizing at 140 TSS t/km2/year in a consolidated urbanized area. Clearly, runoff effects need to be taken into consideration for effective urban planning and for the preservation of the coastal environment in Tahiti.

  9. Three decades of urbanization: Estimating the impact of land-cover change on stream salamander populations

    USGS Publications Warehouse

    Price, S.J.; Dorcas, M.E.; Gallant, A.L.; Klaver, R.W.; Willson, J.D.

    2006-01-01

    Urbanization has become the dominant form of landscape disturbance in parts of the United States. Small streams in the Piedmont region of the eastern United States support high densities of salamanders and are often the first habitats to be affected by landscape-altering factors such as urbanization. We used US Geological Survey land cover data from 1972 to 2000 and a relation between stream salamanders and land cover, established from recent research, to estimate the impact of contemporary land-cover change on the abundance of stream salamanders near Davidson, North Carolina, a Piedmont locale that has experienced rapid urbanization during this time. Our analysis indicates that southern two-lined salamander (Eurycea cirrigera) populations have decreased from 32% to 44% while northern dusky salamanders (Desmognathus fuscus) have decreased from 21% to 30% over the last three decades. Our results suggest that the widespread conversion of forest to urban land in small catchments has likely resulted in a substantial decline of populations of stream salamanders and could have serious effects on stream ecosystems. ?? 2006 Elsevier Ltd. All rights reserved.

  10. Tree Species Suitability to Bioswales and Impact on the Urban Water Budget.

    PubMed

    Scharenbroch, Bryant C; Morgenroth, Justin; Maule, Brian

    2016-01-01

    Water movement between soil and the atmosphere is restricted by hardscapes in the urban environment. Some green infrastructure is intended to increase infiltration and storage of water, thus decreasing runoff and discharge of urban stormwater. Bioswales are a critical component of a water-sensitive urban design (or a low-impact urban design), and incorporation of trees into these green infrastructural components is believed to be a novel way to return stored water to the atmosphere via transpiration. This research was conducted in The Morton Arboretum's main parking lot, which is one of the first and largest green infrastructure installations in the midwestern United States. The parking lot is constructed of permeable pavers and tree bioswales. Trees in bioswales were evaluated for growth and condition and for their effects on water cycling via transpiration. Our data indicate that trees in bioswales accounted for 46 to 72% of total water outputs via transpiration, thereby reducing runoff and discharge from the parking lot. By evaluating the stomatal conductance, diameter growth, and condition of a variety of tree species in these bioswales, we found that not all species are equally suited for bioswales and that not all are equivalent in their transpiration and growth rates, thereby contributing differentially to the functional capacity of bioswales. We conclude that species with high stomatal conductance and large mature form are likely to contribute best to bioswale function. PMID:26828175

  11. An impact assessment of sustainable technologies for the Chinese urban residential sector at provincial level

    NASA Astrophysics Data System (ADS)

    Xing, Rui; Hanaoka, Tatsuya; Kanamori, Yuko; Dai, Hancheng; Masui, Toshihiko

    2015-06-01

    Recently, energy use in the urban residential sector of China has drastically increased due to higher incomes and urbanization. The fossil fuels dominant energy supply has since worsened the air quality, especially in urban areas. In this study we estimate the future energy service demands in Chinese urban residential areas, and then use an AIM/Enduse model to evaluate the emission reduction potential of CO2, SO2, NOx and PM. Considering the climate diversity and its impact on household energy service demands, our analysis is down-scaled to the provincial-level. The results show that in most of the regions, penetration of efficient technologies will bring CO2 emission reductions of over 20% compared to the baseline by the year 2030. Deployment of energy efficient technologies also co-benefits GHG emission reduction. However, efficient technology selection appears to differ across provinces due to climatic variation and economic disparity. For instance, geothermal heating technology is effective for the cold Northern areas while biomass technology contributes to emission reduction the most in the warm Southern areas.

  12. [Social urban development and poverty control as health promotion].

    PubMed

    Trojan, A

    2001-03-01

    The Salomon Neumann Medal of the German Society for Social Medicine and Prevention bears the inscription. "Medicine is a Social Science". This provocative statement is most topical. It compels us to actively promote health by healthier living and environmental conditions apart from medical prevention. A core of this sphere of action is the reduction of social inequalities. Several recent congresses and publications have clearly shown that this subject remains one of the biggest challenges facing health promotion. German law has set the signs for reducing socially rooted inequalities for chances of health. This article postulates the thesis that health promotion can find allies for a healthy public policy in programmes planning for healthy urban development and for combatting poverty. The specific approaches for combatting social inequalities in the health sphere are reported and examples are given how such a health promotion policy may be translated into reality on a communal level. Finally, spotlight is on the dilemma of combatting inequality of chance due to differences in social status. PMID:11329919

  13. Large scale, urban decontamination; developments, historical examples and lessons learned

    SciTech Connect

    Demmer, R.L.

    2007-07-01

    Recent terrorist threats and actions have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the prospect for the cleanup and removal of radioactive dispersal device (RDD or 'dirty bomb') residues. In response, the United States Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. The efficiency of RDD cleanup response will be improved with these new developments and a better understanding of the 'old reliable' methodologies. While an RDD is primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly 'package and dispose' method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination. (authors)

  14. Impacts of Roadway Emissions on Urban Fine Particle Exposures: the Nairobi Area Traffic Contribution to Air Pollution (NATCAP) Study

    NASA Astrophysics Data System (ADS)

    Gatari, Michael; Ngo, Nicole; Ndiba, Peter; Kinney, Patrick

    2010-05-01

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA), due to rapid urbanization, growing vehicle fleets, changing life styles, limited road infrastructure and land use planning, and high per-vehicle emissions. However, the absence of ambient monitoring data, and particularly urban roadside concentrations of particulate matter in SSA cities, severely limits our ability to assess the real extent of air quality problems. Emitted fine particles by on-road vehicles may be particularly important in SSA cities because large concentrations of poorly maintained vehicles operate in close proximity to commercial and other activities of low-income urban residents. This scenario provokes major air quality concerns and its investigation should be of priority interest to policy makers, city planners and managers, and the affected population. As part of collaboration between Columbia University and the University of Nairobi, a PM2.5 air monitoring study was carried out over two weeks in July 2009. The objectives of the study were 1) to assess average daytime PM2.5 concentrations on a range of Nairobi streets that represent important hot-spots in terms of the joint distribution of traffic, commercial, and resident pedestrian activities, 2) to relate those concentrations to motor vehicle counts, 3) to compare urban street concentrations to urban and rural background levels, and 4) to assess vertical and horizontal dispersion of PM2.5 near roadways. Portable, battery-operated PM2.5 samplers were carried by field teams at each of the five sites (three urban, one commuter highway, and one rural site), each of which operated from 7 AM to 7 PM during 10 weekdays in July 2009. Urban background monitoring took place on a rooftop at the University of Nairobi. Preliminary findings suggest highly elevated PM2.5 concentrations at the urban sites where the greatest pedestrian traffic was observed. These findings underscore the need for air quality and transportation planning and management directed at mitigating roadway pollution. Reducing PM emissions from motor vehicles would have direct health benefits for residents of Nairobi and other SSA cities. However, further studies are required to depict the seasonal variations, include gaseous pollution aspect, and strengthen the knowledge on air quality in the region as well as improving the data base for health impact assessment. Acknowledgement This study was initiated and funded by Columbia University's Earth Institute's Center for Sustainable Urban Development (CSUD). CSUD is a Volvo Research and Educational Foundations Center of Excellence for Future Urban Transport. International Science Programs (ISP), Uppsala University, Sweden is recognized for its research support to Institute of Nuclear Science & Technology. Additional technical support for air monitoring and analysis was provided by the Exposure Assessment Facility Core of the Center for Environmental Health in Northern Manhattan (NIEHS P30 ES09089).

  15. Economic Development Impacts of 20% Wind (Poster)

    SciTech Connect

    Kelly, M.; Tegen, S.

    2007-06-01

    Meeting 20% of the nation's electricity demand with wind energy will require enourmous investment in wind farms, manufacturing, and infrastructure. This investment will create substantial economic development impacts on local, regional, and national levels. This conference poster for Windpower 2007 outlines the various economic development impacts from a 20% wind scenario.

  16. Mitigation measures to contain the environmental impact of urban areas: a bibliographic review moving from the life cycle approach.

    PubMed

    Belussi, Lorenzo; Barozzi, Benedetta

    2015-12-01

    The global environmental impact of urban areas has greatly increased over the years, due to the growth of urbanisation and the associated increase in management costs. There are several measures aimed at mitigating this impact that affect in different ways the environmental, economic and societal spheres. This article has analysed a selection of different mitigation measures, related to the built environment, according to the life cycle approach, aimed at identifying the procedural features chosen by the different authors and defining a common way to deal with this issue. In particular, all the individual single steps of a Life Cycle Assessment/Life Cycle Costing of the different studies are analysed and the results of the individual measures are highlighted. The analysis has shown how the scientific literature is mainly focused on the evaluation of the impact of technological solutions related to individual buildings (cool/green roof). Less interest is shown in the solutions for urban areas, while, as far as the impact on greenhouse gas emissions is concerned, some studies are shifting the target to a global scale. Due to the accuracy whereby the calculation of the impact indicators deals with and structures the life cycle methods, opportunities to compare studies developed by different authors are quite rare and hard to find. Hence the need to find a simple, intuitive and flexible scheme to combine some of the most useful results of the bibliographical studies, in a comparative outline of different technological solutions, which can support the decision-making phase through a rough assessment. PMID:26563232

  17. Climate change impacts on urban wildfire and flooding policy in Idaho: a comparative policy network perspective

    NASA Astrophysics Data System (ADS)

    Lindquist, E.; Pierce, J. L.

    2013-12-01

    Numerous frameworks and models exist for understanding the dynamics of the public policy process. A policy network approach considers how and why stakeholders and interests pay attention to and engage in policy problems, such as flood control or developing resilient and fire resistant landscapes. Variables considered in this approach include what the relationships are between these stakeholders, how they influence the process and outcomes, communication patterns within and between policy networks, and how networks change as a result of new information, science, or public interest and involvement with the problem. This approach is useful in understanding the creation of natural hazards policy as new information or situations, such as projected climate change impacts, influence and disrupt the policy process and networks. Two significant natural hazard policy networks exist in the semi-arid Treasure Valley region of Southwest Idaho, which includes the capitol city of Boise and the surrounding metropolitan area. Boise is situated along the Boise River and adjacent to steep foothills; this physiographic setting makes Boise vulnerable to both wildfires at the wildland-urban interface (WUI) and flooding. Both of these natural hazards have devastated the community in the past and floods and fires are projected to occur with more frequency in the future as a result of projected climate change impacts in the region. While both hazards are fairly well defined problems, there are stark differences lending themselves to comparisons across their respective networks. The WUI wildfire network is large and well developed, includes stakeholders from all levels of government, the private sector and property owner organizations, has well defined objectives, and conducts promotional and educational activities as part of its interaction with the public in order to increase awareness and garner support for its policies. The flood control policy network, however, is less defined, dominated by a few historically strong interests and is constrained (and supported) by the complex legal and management foundations of Western water rights, as well as federal and state regulatory practices for flood control and water provision. Overlap between these networks does occur as many of the stakeholders are the same, adding another dimension to the comparative approach presented here. It is the physical and natural sciences that bind these two networks, however, and create opportunities for convergence as hydrological inputs (snowmelt and rain) and summer drought simultaneously inform and impact efforts to increase resilience and reduce vulnerability and risk from both fire and flood. For example, early spring snowmelt can both increase risks of flooding and contribute to later severe fire conditions, and fires greatly increase the risk of catastrophic floods and debris flows in burned basins. Contributing to both of these potential hazards are changes in the climate in the region. This paper will present findings from a comparative study of these two policy networks and discuss the implications from how climate change is defined, understood, accepted, and integrated in both networks and the policy processes associated with these urban hazards.

  18. The urban environment and health in a world of increasing globalization: issues for developing countries.

    PubMed Central

    McMichael, A. J.

    2000-01-01

    Urban living is the keystone of modern human ecology. Cities have multiplied and expanded rapidly worldwide over the past two centuries. Cities are sources of creativity and technology, and they are the engines for economic growth. However, they are also sources of poverty, inequality, and health hazards from the environment. Urban populations have long been incubators and gateways for infectious diseases. The early industrializing period of unplanned growth and laissez-faire economic activity in cities in industrialized countries has been superseded by the rise of collective management of the urban environment. This occurred in response to environmental blight, increasing literacy, the development of democratic government, and the collective accrual of wealth. In many low-income countries, this process is being slowed by the pressures and priorities of economic globalization. Beyond the traditional risks of diarrhoeal disease and respiratory infections in the urban poor and the adaptation of various vector-borne infections to urbanization, the urban environment poses various physicochemical hazards. These include exposure to lead, air pollution, traffic hazards, and the "urban heat island" amplification of heatwaves. As the number of urban consumers and their material expectations rise and as the use of fossil fuels increases, cities contribute to the large-scale pressures on the biosphere including climate change. We must develop policies that ameliorate the existing, and usually unequally distributed, urban environmental health hazards and larger-scale environmental problems. PMID:11019460

  19. Health impact assessment of traffic-related air pollution at the urban project scale: influence of variability and uncertainty.

    PubMed

    Chart-Asa, Chidsanuphong; Gibson, Jacqueline MacDonald

    2015-02-15

    This paper develops and then demonstrates a new approach for quantifying health impacts of traffic-related particulate matter air pollution at the urban project scale that includes variability and uncertainty in the analysis. We focus on primary particulate matter having a diameter less than 2.5 μm (PM2.5). The new approach accounts for variability in vehicle emissions due to temperature, road grade, and traffic behavior variability; seasonal variability in concentration-response coefficients; demographic variability at a fine spatial scale; uncertainty in air quality model accuracy; and uncertainty in concentration-response coefficients. We demonstrate the approach for a case study roadway corridor with a population of 16,000, where a new extension of the University of North Carolina (UNC) at Chapel Hill campus is slated for construction. The results indicate that at this case study site, health impact estimates increased by factors of 4-9, depending on the health impact considered, compared to using a conventional health impact assessment approach that overlooks these variability and uncertainty sources. In addition, we demonstrate how the method can be used to assess health disparities. For example, in the case study corridor, our method demonstrates the existence of statistically significant racial disparities in exposure to traffic-related PM2.5 under present-day traffic conditions: the correlation between percent black and annual attributable deaths in each census block is 0.37 (t(114)=4.2, p<0.0001). Overall, our results show that the proposed new campus will cause only a small incremental increase in health risks (annual risk 6×10(-10); lifetime risk 4×10(-8)), compared to if the campus is not built. Nonetheless, the approach we illustrate could be useful for improving the quality of information to support decision-making for other urban development projects. PMID:25437759

  20. Connecting Urban Youth with Their Environment: The Impact of an Urban Ecology Course on Student Content Knowledge, Environmental Attitudes and Responsible Behaviors

    ERIC Educational Resources Information Center

    Hashimoto-Martell, Erin A.; McNeill, Katherine L.; Hoffman, Emily M.

    2012-01-01

    This study explores the impact of an urban ecology program on participating middle school students' understanding of science and pro-environmental attitudes and behaviors. We gathered pre and post survey data from four classes and found significant gains in scientific knowledge, but no significant changes in student beliefs regarding the

  1. Connecting Urban Youth with Their Environment: The Impact of an Urban Ecology Course on Student Content Knowledge, Environmental Attitudes and Responsible Behaviors

    ERIC Educational Resources Information Center

    Hashimoto-Martell, Erin A.; McNeill, Katherine L.; Hoffman, Emily M.

    2012-01-01

    This study explores the impact of an urban ecology program on participating middle school students' understanding of science and pro-environmental attitudes and behaviors. We gathered pre and post survey data from four classes and found significant gains in scientific knowledge, but no significant changes in student beliefs regarding the…

  2. ETHNICITY AND INCOME IMPACT ON BMI AND STATURE OF SCHOOL CHILDREN LIVING IN URBAN SOUTHERN MEXICO.

    PubMed

    Mendez, Nina; Barrera-Pérez, The Late Mario; Palma-Solis, Marco; Zavala-Castro, Jorge; Dickinson, Federico; Azcorra, Hugo; Prelip, Michael

    2016-03-01

    Obesity affects quality of life and increases the risk of morbidity and mortality. Mexico, a middle-income country, has a high prevalence of overweight and obesity among urban children. Merida is the most populated and growing city in southern Mexico with a mixed Mayan and non-Maya population. Local urbanization and access to industrialized foods have impacted the eating habits and physical activity of children, increasing the risk of overweight and obesity. This study aimed to contribute to the existing literature on the global prevalence of overweight and obesity and examined the association of parental income, ethnicity and nutritional status with body mass index (BMI) and height in primary school children in Merida. The heights and weights of 3243 children aged 6-12 from sixteen randomly selected schools in the city were collected between April and December 2012. Multinomial logistic regression models were used to examine differences in the prevalence of BMI and height categories (based on WHO reference values) by ethnicity and income levels. Of the total students, 1648 (50.9%) were overweight or obese. Stunting was found in 227 children (7%), while 755 (23.3%) were defined as having short stature. Combined stunting and overweight/obesity was found in 301 students (9.3%) and twelve (0.4%) were classified as stunted and of low weight. Having two Mayan surnames was inversely associated with having adequate height (OR=0.69, p<0.05) and the presence of two Maya surnames in children increased the odds of short stature and stunting. Children from lower income families had twice the odds of being stunted and obese. Overweight, obesity and short stature were frequent among the studied children. A significant proportion of Meridan children could face an increased risk of developing cardiovascular disease and its associated negative economic and social outcomes unless healthier habits are adopted. Action is needed to reduce the prevalence of obesity among southern Mexican families of all ethnic groups, particularly those of lower income. PMID:26041567

  3. A Bayesian ridge regression analysis of congestion's impact on urban expressway safety.

    PubMed

    Shi, Qi; Abdel-Aty, Mohamed; Lee, Jaeyoung

    2016-03-01

    With the rapid growth of traffic in urban areas, concerns about congestion and traffic safety have been heightened. This study leveraged both Automatic Vehicle Identification (AVI) system and Microwave Vehicle Detection System (MVDS) installed on an expressway in Central Florida to explore how congestion impacts the crash occurrence in urban areas. Multiple congestion measures from the two systems were developed. To ensure more precise estimates of the congestion's effects, the traffic data were aggregated into peak and non-peak hours. Multicollinearity among traffic parameters was examined. The results showed the presence of multicollinearity especially during peak hours. As a response, ridge regression was introduced to cope with this issue. Poisson models with uncorrelated random effects, correlated random effects, and both correlated random effects and random parameters were constructed within the Bayesian framework. It was proven that correlated random effects could significantly enhance model performance. The random parameters model has similar goodness-of-fit compared with the model with only correlated random effects. However, by accounting for the unobserved heterogeneity, more variables were found to be significantly related to crash frequency. The models indicated that congestion increased crash frequency during peak hours while during non-peak hours it was not a major crash contributing factor. Using the random parameter model, the three congestion measures were compared. It was found that all congestion indicators had similar effects while Congestion Index (CI) derived from MVDS data was a better congestion indicator for safety analysis. Also, analyses showed that the segments with higher congestion intensity could not only increase property damage only (PDO) crashes, but also more severe crashes. In addition, the issues regarding the necessity to incorporate specific congestion indicator for congestion's effects on safety and to take care of the multicollinearity between explanatory variables were also discussed. By including a specific congestion indicator, the model performance significantly improved. When comparing models with and without ridge regression, the magnitude of the coefficients was altered in the existence of multicollinearity. These conclusions suggest that the use of appropriate congestion measure and consideration of multicolilnearity among the variables would improve the models and our understanding about the effects of congestion on traffic safety. PMID:26760688

  4. Evaluation of impacts of trees on PM2.5 dispersion in urban streets

    NASA Astrophysics Data System (ADS)

    Jin, Sijia; Guo, Jiankang; Wheeler, Stephen; Kan, Liyan; Che, Shengquan

    2014-12-01

    Reducing airborne particulate matter (PM), especially PM2.5 (PM with aerodynamic diameters of 2.5 μm or less), in urban street canyons is critical to the health of central city population. Tree-planting in urban street canyons is a double-edged sword, providing landscape benefits while inevitably resulting in PM2.5 concentrating at street level, thus showing negative environmental effects. Thereby, it is necessary to quantify the impact of trees on PM2.5 dispersion and obtain the optimum structure of street trees for minimizing the PM2.5 concentration in street canyons. However, most of the previous findings in this field were derived from wind tunnel or numerical simulation rather than on-site measuring data. In this study, a seasonal investigation was performed in six typical street canyons in the residential area of central Shanghai, which has been suffering from haze pollution while having large numbers of green streets. We monitored and measured PM2.5 concentrations at five heights, structural parameters of street trees and weather. For tree-free street canyons, declining PM2.5 concentrations were found with increasing height. However, in presence of trees the reduction rate of PM2.5 concentrations was less pronounced, and for some cases, the concentrations even increased at the top of street canyons, indicating tree canopies are trapping PM2.5. To quantify the decrease of PM2.5 reduction rate, we developed the attenuation coefficient of PM2.5 (PMAC). The wind speed was significantly lower in street canyons with trees than in tree-free ones. A mixed-effects model indicated that canopy density (CD), leaf area index (LAI), rate of change of wind speed were the most significant predictors influencing PMAC. Further regression analysis showed that in order to balance both environmental and landscape benefits of green streets, the optimum range of CD and LAI was 50%-60% and 1.5-2.0 respectively. We concluded by suggesting an optimized tree-planting pattern and discussing strategies for a better green streets planning and pruning.

  5. US Urban Teachers' Perspectives of Culturally Competent Professional Development

    ERIC Educational Resources Information Center

    Flory, Sara B.; McCaughtry, Nate; Martin, Jeffrey J.; Murphy, Anne; Blum, Barbara; Wisdom, Kimberlydawn

    2014-01-01

    Health disparities related to food choices, nutrition behaviours and smoking habits in urban communities in the United States signal the importance of health education (HE) in schools, yet educators in urban communities face unique cultural challenges often unaddressed in professional development (PD). The purpose of this study was to use a

  6. US Urban Teachers' Perspectives of Culturally Competent Professional Development

    ERIC Educational Resources Information Center

    Flory, Sara B.; McCaughtry, Nate; Martin, Jeffrey J.; Murphy, Anne; Blum, Barbara; Wisdom, Kimberlydawn

    2014-01-01

    Health disparities related to food choices, nutrition behaviours and smoking habits in urban communities in the United States signal the importance of health education (HE) in schools, yet educators in urban communities face unique cultural challenges often unaddressed in professional development (PD). The purpose of this study was to use a…

  7. Opening the Black Box: Influential Elements of an Effective Urban Professional Development School

    ERIC Educational Resources Information Center

    Taymans, Juliana; Tindle, Kathleen; Freund, Maxine; Ortiz, Deanna; Harris, Lindsay

    2012-01-01

    The George Washington University's Urban Initiative Professional Development School (UI-PDS) partnership used interviews, surveys, focus groups, and observations to research its effectiveness in preparing urban educators. The research conducted with UI-PDS preservice teachers and first year graduates, indicates they were well equipped to meet the…

  8. The Future of Institutions as Participants in Urban Development and Conservation.

    ERIC Educational Resources Information Center

    Chapman, M. Perry

    1983-01-01

    Colleges and universities will have a growing role in urban development, in the revitalization of static or declining urban settings, and in setting quality standards for land conservation. Precedents exist in the past and current involvement of a variety of major institutions in projects reflecting both community and institutional needs. (MSE)

  9. THE PROCESS OF URBANIZATION. PROCEEDINGS OF A COMMUNITY DEVELOPMENT CONFERENCE. (MANHATTAN, KANSAS, DEC 6, 1966).

    ERIC Educational Resources Information Center

    DEINES, VERNON, ED.; RICHARDS, LOWELL, ED.

    THESE ABSTRACTS OF CONFERENCE PAPERS INDICATE FORCES AND ASPECTS OF URBANIZATION. ANYTHING CONTRIBUTING TO THE DEVELOPMENT OF STRONG SOCIAL TIES IS HEALTHY AND ANYTHING DESTROYING VIABLE NEIGHBORHOODS IS UNHEALTHY. SINCE MINIMUM SIZE OF MARKET AND SUPPLY AREAS ARE PRECONDITIONS FOR SUSTAINED URBAN GROWTH, NEIGHBORING COMMUNITIES WOULD INCREASE

  10. Opening the Black Box: Influential Elements of an Effective Urban Professional Development School

    ERIC Educational Resources Information Center

    Taymans, Juliana; Tindle, Kathleen; Freund, Maxine; Ortiz, Deanna; Harris, Lindsay

    2012-01-01

    The George Washington University's Urban Initiative Professional Development School (UI-PDS) partnership used interviews, surveys, focus groups, and observations to research its effectiveness in preparing urban educators. The research conducted with UI-PDS preservice teachers and first year graduates, indicates they were well equipped to meet the

  11. Rural Development and Urban Migration: Can We Keep Them Down on the Farm?

    ERIC Educational Resources Information Center

    Rhoda, Richard

    1983-01-01

    Provides evidence from migration theories and empirical research for rejecting the belief that rural development interventions reduce rural to urban migration. Suggests that rural to urban migration may be reduced through programs that increase cultivable land, equalize land or income distribution, or decrease fertility. (Author/MJL)

  12. 75 FR 76481 - Notice of Intent To Prepare Environmental Impact Statement for the HOPE SF Development at Alice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... environmental studies planned or completed in the project area, major issues and dates that the EIS should... URBAN DEVELOPMENT Notice of Intent To Prepare Environmental Impact Statement for the HOPE SF Development... Responsible Entity in accordance with 24 CFR 58.2, intends to prepare a Draft Environmental Impact...

  13. Pollutant impacts to Cape Hatteras National Seashore from urban runoff and septic leachate.

    PubMed

    Mallin, Michael A; McIver, Matthew R

    2012-07-01

    The sandy barrier islands of Cape Hatteras National Seashore, USA, attract large seasonal influxes of tourists, and are host to numerous motels, rentals and second homes. To investigate the impacts of nearby urbanization on public trust waters, sampling was conducted in nine brackish water bodies within this coastal national park. A large tidal urban ditch delivered runoff-driven fecal-contaminated water directly into public beach waters. At all sites except the control, ammonium, phosphorus and fecal bacteria concentrations were high, strongly seasonal and significantly correlated with community water usage, indicating that increased septic tank usage led to increased pollutant concentrations in area waterways. Nutrients from septic systems caused ecosystem-level problems from algal blooms, BOD, and hypoxia while fecal microbes created potential human health problems. Septic system usage is widespread in sensitive coastal areas with high water tables and sandy soils and alternatives to standard septic systems must be required to protect human health and the environment. PMID:22647645

  14. Cumulative impacts of human activities on urban garden soils: origin and accumulation of metals.

    PubMed

    Szolnoki, Zs; Farsang, A; Pusks, I

    2013-06-01

    The concentration of heavy metals and soil properties in fifty urban garden soils of Szeged (SE Hungary) were determined to evaluate the cumulative impacts of urbanization and cultivation on these soils. Using two enrichment factors (EFs) (based on reference horizon; Ti as reference element) and multivariate statistical analysis (PCA), the origin of the studied elements was defined. According to statistical coincidence of EFs confirmed by t-test, anthropogenic enrichment of Cu (EF=4), Zn (EF=2.7) and Pb (EF=2.5) was significant in topsoils. Moreover, PCA also revealed the geogenic origin of Ni, Co, Cr and As and differentiated two groups of the anthropogenic metals [Pb, Zn] [Cu]. Spatial distribution of the metals visualized by GIS reflected the traffic origin of Pb; while based on ANOVA, the anthropogenic source of Cu is relevant (mainly pesticides) and there is a statistically significant difference in its concentration depending on land use. PMID:23500047

  15. Impact of urban and industrial effluents on the coastal marine environment in Oran, Algeria.

    PubMed

    Tayeb, A; Chellali, M R; Hamou, A; Debbah, S

    2015-09-15

    In Algeria most of the urban waste water is dumped without treatment into the Sea. It is tremendously important to assess the consequences of organic matter rich sewage on marine ecosystem. In this study we investigated the effects of industrial and urban sewage on the dissolved oxygen (O2), chemical oxygen demand (COD), biochemical oxygen demands (BOD5), pH, salinity, electrical conductivity (EC), Metal element (Hg, Pb, Cu, Ni, Cr, Cd), petroleum hydrocarbons (HC), oil and grease (OG) in Bay of Oran, Algeria. A ten-year follow-up research showed that the concentrations of oil and grease released into the bionetwork are of higher ecological impact and this needs to be given the desired consideration. Information on bathing water quality revealed that the most beaches in Oran are under the national environmental standard limit. PMID:26164780

  16. Environmental impacts of dispersed development from federal infrastructure projects.

    PubMed

    Southerland, Mark T

    2004-06-01

    Dispersed development, also referred to as urban growth or sprawl, is a pattern of low-density development spread over previously rural landscapes. Such growth can result in adverse impacts to air quality, water quality, human health, aquatic and terrestrial ecosystems, agricultural land, military training areas, water supply and wastewater treatment, recreational resources, viewscapes, and cultural resources. The U.S. Environmental Protection Agency (U.S. EPA) is charged with protecting public health and the environment, which includes consideration of impacts from dispersed development. Specifically, because federal infrastructure projects can affect the progress of dispersed development, the secondary impacts resulting from it must be assessed in documents prepared under the National Environmental Policy Act (NEPA). The Council on Environmental Quality (CEQ) has oversight for NEPA and Section 309 of the Clean Air Act requires that U.S. EPA review and comment on federal agency NEPA documents. The adverse effects of dispersed development can be induced by federal infrastructure projects including transportation, built infrastructure, modifications in natural infrastructure, public land conversion and redevelopment of properties, construction of federal facilities, and large traffic or major growth generation developments requiring federal permits. This paper presents an approach that U.S. EPA reviewers and NEPA practitioners can use to provide accurate, realistic, and consistent analysis of secondary impacts of dispersed development resulting from federal infrastructure projects. It also presents 24 measures that can be used to mitigate adverse impacts from dispersed development by modifying project location and design, participating in preservation or restoration activities, or informing and supporting local communities in planning. PMID:15141453

  17. Power lines: Urban space, energy development and the making of the modern Southwest

    NASA Astrophysics Data System (ADS)

    Needham, Todd Andrew

    "Power Lines: Urban Space, Energy Development, and the Making of the Modern Southwest" explores the social and environmental transformation of the postwar Southwest and the resulting disputes between urban boosters, federal officials, Native Americans, and environmental activists. The dissertation focuses on the infrastructure built to provide the burgeoning populations of Phoenix, Los Angeles, and other Southwestern cities with electricity. This infrastructure allowed metropolitan boosters in the Southwest to attract Cold War defense manufacturing and to build a new suburban landscape even as industrialization on Indian lands provided electricity for those landscapes. Tracing the transition of electrical generation from a dispersed geography relying on local resources to a centralized geography utilizing primarily coal from Navajo land, "Power Lines" demonstrates the increasing centrality of Indian lands and labor to the metropolitan Southwest. Paying close attention to these networks reveals the far-reaching changes caused by postwar metropolitan growth. "Power Lines" challenges understandings of urban space that neglect the material resources that allow cities to "live." As the nation's cities and suburbs became increasingly energy-intensive, electrical utilities reached deep into the metropolitan periphery, transforming landscapes hundreds of miles from city centers into urban space. The construction of the new "geography of power" in the Southwest also reflects the impact of growth liberalism on postwar growth, as federal money funded suburban, manufacturing, and infrastructure developments. This pursuit of growth produced new political struggles, both as the development of energy resources conflicted with emerging environmentalist sensibilities and as American Indians increasingly resented the industrialization of their land for the benefit of others. By the 1970s, the simultaneous pursuit and criticism of growth came to define the modern Southwest. The dissertation examines a variety of sources from actors throughout the Southwest---the papers of Phoenix's boosters, federal officials, environmental leaders, and Navajo politicians; newspapers from Phoenix, Los Angeles, and Window Rock; the records of electric utilities, the Bureau of Reclamation, and the Navajo Tribal Council---emphasizing that the modern Southwest was made not only in metropolitan centers but in the actions of those throughout the region and the nation.

  18. Enviro-HIRLAM in Studies of Urban and Aerosol Impacts on Metropolitan Areas: Science-Education Approach

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Nuterman, Roman; Mazeikis, Adomas; Gonzalez-Aparicio, Iratxe; Ivanov, Sergey; Palamarchuk, Julia

    2014-05-01

    To attract more perspective young scientists (and especially, MSc and PhD students) for advanced research and development of complex and modern modelling systems, a specific approach is required. It should allow within a short period of time to evaluate personal background levels, skills, capabilities, etc. To learn more about new potential science-oriented developers of the models, it is often not enough to look into the personal resume. Thus, a special event such as Young Scientist Summer School (YSSS) can be organized, where young researchers could have an opportunity to attend not only relevant lectures, but also participate in practical exercises allowing to solidify lecture materials. Here, the practical exercises are presented as independent small-scale (having duration of up to a week) research projects or studies oriented on specific topics of YSSS. Developed approach was tested and realized during 2008 and 2011 YSSS events held and organized in Zelenogorsk, Russia (by NetFAM et al.; http://netfam.fmi.fi/YSSS08) and Odessa, Ukraine (by MUSCATEN et al.; http://atmos.physic.ut.ee/~muscaten/YSSS/1info.html), respectively. It has been refined for the new YSSS (Jul 2014) to be organized by the COST Action EuMetChem. The main focus of all these YSSSs was/is on the integrated modelling of meteorological and chemical transport processes and impact of chemical weather on numerical weather prediction and climate modelling. During previous YSSSs some of such projects - "URBAN: The Influence of Metropolitan Areas on Meteorology", "AEROSOL: The Impact of Aerosols Effects on Meteorology", and "COASTAL: The Coastal & Cities Effects on Meteorology" - were focused on evaluation of influence of metropolitan areas on formation of meteorological and chemical fields above urban areas (such as Paris, France; Copenhagen, Denmark, and Bilbao, Spain) and surroundings. The Environment - HIgh Resolution Limited Area Model (Enviro-HIRLAM) was used and modifications were made taking into account urban (anthropogenic heat flux, roughness, buildings and their characteristics), chemical species/ aerosol (feedback mechanisms) effects with further analysis of temporal and spatial variability of diurnal cycle for meteorological variables of key importance. Main items of listed above YSSS small-scale research projects include the following: • Introduction with background discussions (with brainstorming to outline research and technical tasks planned including main goal, specific objectives, etc.) in groups; • Analysis of meteorological situations (selecting specific cases/ dates using surface maps, diagrams of vertical sounding, and surface meteorological measurements); • Learning practical technical steps (in order to make necessary changes in the model and implementing urban and aerosol effects, compiling executables, making test runs); • Performing model runs/simulations at different options (dates, control vs. modified urban and aerosol runs, forecast lengths, spatial and temporal resolutions, etc.); • Visualization/ plotting of results obtained (in a form of graphs, tables, animations); • Evaluation of possible impact on urban areas (estimating differences between the control and modified runs through temporal and spatial variability of simulated meteorological (air temperature, wind speed, relative humidity, sensible and latent heat fluxes, etc.) and chemical pollutants (concentration and deposition) fields/ patterns; • Team's oral presentation of the project about results and findings and following guidelines (including aim and specific objectives, methodology and approaches, results and discussions with examples, conclusions, acknowledgements, references). Outline and detailed description of the developed approach, key items of the research projects and their schedules, preparatory steps including team of students' familiarization with general information on planned exercises and literature list (composed of required, recommended, and additional readings), requirements for successful completion and defense of the project, team independent work as well as under supervision are presented and discussed.

  19. Assessing the relative and cumulative impacts of future urbanisation and climate change on storm runoff in a peri-urban catchment

    NASA Astrophysics Data System (ADS)

    Miller, James; Kim, Hyeonjun; Kjeldsen, Thomas; Grebby, Stephen

    2014-05-01

    Urbanisation brings with it a range of impacts upon the urban water cycle, particularly during storm events where a loss of pervious surfaces (and increase in impervious surfaces) coupled with increased artificial drainage result in decreased infiltration and more rapid runoff - leading to an increased likelihood and magnitude of flooding. Such impacts are especially pronounced in peri-urban catchments where the rapid progression from rural to urban significantly alters storm runoff response, and could be further affected by climate change. This study provides a comparative analysis between the impacts of urbanisation (and associated change in impervious cover) and climate change within a rapidly developing peri-urban catchment in the south of England over a 50 year period. A new methodology for mapping long-term change in historical urban land-use from topographic maps was applied to derive decadal changes in impervious cover. Catchment monitoring was undertaken to provide observed flow and rainfall for indicative hydrological response and hydrological model calibration. The successive impacts of decadal increases in urbanisation on storm runoff were assessed using a hydrological model suited to representing the impacts of change in impervious cover and by applying design summer and winter storm events at both 5 year and 100 year return periods. Both the comparative and cumulative impacts of climate change upon generation of storm runoff were assessed by comparing scenarios of: i) no increase in urbanisation with climate change, and ii) urbanisation with climate change, with the baseline scenario of iii) urbanisation without climate change. Predicted future changes in monthly precipitation and potential evaporation were derived from a downscaled ensemble of climate change scenarios (2070-2099) from the UK Climate Projections (UKCP09) Regional Climate Model (RCM) under A1B emissions scenario. Results are discussed in relation to projections of future growth and climate change for developing peri-urban areas within localised catchments and for the regional Thames basin. The uncertainties in the applied modelling strategy are discussed in relation to the limitations of climate change data and the associated perturbation of design storm events in urban areas.

  20. Assessment of Urban Infrastructure Impact on New York City Neighborhoods Thermal Variations

    NASA Astrophysics Data System (ADS)

    Nazari, R.; Ghandehari, M.; Karimi, M.; Vant-hull, B.; Khanbilvardi, R.

    2013-12-01

    New York City (NYC) is a highly urbanized city with most of the population living in tall buildings. Despite technological improvements and stricter regulations, cities still show increasing signs of environmental stress such as traffic congestion, noise and air quality degradation. Rethinking the current models of city planning could enable to limit these detrimental effects of urbanization. In addition, the built environment creates a new climatic regime which needs a better understanding. Building density, height and emission has a major impact on local temperature and other air quality indicators. Studies have shown that during extreme weather conditions and heat waves the mortality rate in urban areas increases. Cities are comprised of a wide variety of urban settings and various neighborhoods have different physical responses to meteorological events, so it is expected that the temperature and heat stress across a given city to fluctuate sharply. Therefore, this research has focused on neighborhood-scale field campaigns to downscale temperature and air quality predictions from city to neighborhood scale in NYC. In order to assess the temperature variability within the city at street level, during the hottest part of the day, this project used eight mobile units bearing temperature and relative humidity sensors, as well as ten weather stations mounted on light poles in various NYC neighborhoods. This study also looks at fine scale structures in the urban heat island of Manhattan at street level through an infrared camera with the spectral range of 7.5-13 ?m in order to relate heat and emissions from building surfaces to land surface characteristics such as building density, vegetation coverage, proximity to water, and albedo. LandSat TM5 images were used (with 30 m resolution) for land surface classification. During the summer and early fall of 2011, 2012 and 2013 extensive field campaigns were performed, the results of which show some persistent patterns that could be related to surface characteristics. This work is a collaboration between the health component of the Consortium for Climate Risk in the Urban Northeast (CCRUN), funded by NOAA Regional Integrated Science Assessment (RISA), and New York University Center for Urban Science and Progress (CUSP).

  1. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area

    NASA Astrophysics Data System (ADS)

    Zhang, Chao Lin; Chen, Fei; Miao, Shi Guang; Li, Qing Chun; Xia, Xiang Ao; Xuan, Chun Yi

    2009-01-01

    In this study, an analysis of long-term rainfall data reveals that the rapid urban expansion in Beijing since 1981 is statistically correlated to summer rainfall reduction in the northeast areas of Beijing from 1981 to 2005. This coincides with the period in which the shortage of water in the Beijing area has become a serious factor for sustainable economic development. Meanwhile, an analysis of the aerosol optical depth (AOD) from the Total Ozone Mapping Spectrometer spanning the years from 1980 to 2001 shows that there is no clear secular trend in summer AOD in Beijing. With the particular purpose of further understanding the effects of urban expansion on summer rainfall and the potential measures to mitigate such effects, a mesoscale weather/land-surface/urban-coupled model along with different urban land-use change scenarios are used to conduct numerical simulations for two selected heavy summer rainfall events with different, but representative, summer weather patterns in Beijing. Results show that urban expansion can produce less evaporation, higher surface temperatures, larger sensible heat fluxes, and a deeper boundary layer. This leads to less water vapor, more mixing of water vapor in the boundary layer, and hence less (more) convective available potential energy (convective inhibition energy). The combination of these factors induced by expanding urban surfaces is helpful in reducing precipitation for the Beijing area in general and, in particular, for the Miyun reservoir area (the major source for the local water supply). Increasing green vegetation coverage in the Beijing area would produce more rainfall, and model results show that planting grass seems more effective than planting trees. For the same vegetation, the rainfall difference from simulations using two green-planting layouts (annular and cuneiform) is small.

  2. The Power of Micro Urban Structures, Theory of EEPGC - the Micro Urban Energy Distribution Model as a Planning Tool for Sustainable City Development

    NASA Astrophysics Data System (ADS)

    Tkáč, Štefan

    2015-11-01

    To achieve the smart growth and equitable development in the region, urban planners should consider also lateral energies represented by the energy urban models like further proposed EEPGC focused on energy distribution via connections among micro-urban structures, their onsite renewable resources and the perception of micro-urban structures as decentralized energy carriers based on pre industrialized era. These structures are still variously bound when part of greater patterns. After the industrial revolution the main traded goods became energy in its various forms. The EEPGC is focused on sustainable energy transportation distances between the villages and the city, described by the virtual "energy circles". This more human scale urbanization, boost the economy in micro-urban areas, rising along with clean energy available in situ that surely gives a different perspective to human quality of life in contrast to overcrowded multicultural mega-urban structures facing generations of problems and struggling to survive as a whole.

  3. Research on Assessment Methods for Urban Public Transport Development in China

    PubMed Central

    Zou, Linghong; Guo, Hongwei

    2014-01-01

    In recent years, with the rapid increase in urban population, the urban travel demands in Chinese cities have been increasing dramatically. As a result, developing comprehensive urban transport systems becomes an inevitable choice to meet the growing urban travel demands. In urban transport systems, public transport plays the leading role to promote sustainable urban development. This paper aims to establish an assessment index system for the development level of urban public transport consisting of a target layer, a criterion layer, and an index layer. Review on existing literature shows that methods used in evaluating urban public transport structure are dominantly qualitative. To overcome this shortcoming, fuzzy mathematics method is used f